1. Field of the Invention
This invention relates to a method of manufacturing a liquid discharging head for use in an ink jet recording process or the like, and particularly aims at an improvement in the discharging performance of a so-called side shooter type head from which liquid droplets are discharged in a direction perpendicular to a substrate on which an energy generating element is formed.
2. Related Background Art
As a liquid discharging head for discharging liquid, there is known one which, as disclosed in U.S. Pat. No. 6,155,673, discharges an ink droplet by giving heat energy to a heat generating resistance member to thereby film-boil ink, and communicating a produced bubble with the atmosphere. As a schematic manufacturing method for realizing the above-described ink jet recording head, there is known a method disclosed in U.S. Pat. No. 5,478,606.
This method has the following steps:
(1) The step of forming an ink flow path pattern with a soluble resin on a substrate on which an ink discharge pressure generating element is formed;
(2) The step of dissolving a coat resin in a solvent, and solvent-coating a soluble resin layer with this to thereby form a nozzle-constituting resin layer providing an ink flow path wall on the soluble resin layer;
(3) The step of forming an ink discharge port in the nozzle-constituting resin layer above the ink discharge pressure generating element; and
(4) The step of eluting the soluble resin layer.
Now, in the above-described ink jet recording head, the shape of the ink flow path determines the discharge amount, the discharge direction and the discharge speed of an ink droplet, and it greatly affects the quality of print. Here, observing the cross-section of the ink jet recording head formed by the method disclosed in U.S. Pat. No. 5,478,606, a minute projection-shaped object is sometimes observed near the interface between the soluble resin layer and the nozzle-constituting resin layer. Further, the phenomenon that the discharge direction of the ink droplet flying from a discharge port surface is bent by this minute projection-shaped object, whereby a printed image is deteriorated, has been observed.
The present invention has been made in view of the above-noted points, and can provide a method of manufacturing a liquid discharging head capable of being improved in a discharging characteristic, and a liquid discharging head manufactured by this manufacturing method.
In order to solve the above-noted problems, the method of manufacturing a liquid discharging head according to the present invention is provided with (1) the step of laminating a positive type resist on a substrate provided with an energy generating element, and forming a first flow path pattern by the positive type resist, (2) the step of applying onto the positive type resist a first nozzle-constituting resin layer which is a negative type resist containing an optical cation polymerization starting agent and having an epoxy resin as a chief component, and forming a second flow path pattern in the first nozzle-constituting resin layer by exposure and baking, (3) the step of applying onto the first nozzle-constituting resin layer a second nozzle-constituting resin layer which is a negative type resist containing an optical cation polymerization starting agent and having an epoxy resin as a chief component, and forming a discharge port pattern in the second nozzle-constituting resin layer by exposure and baking, (4) the step of collectively developing unexposed portions on the first and second nozzle-constituting resin layers, and (5) the step of removing the first flow path pattern formed at the step (1), and is characterized in that the second flow path pattern is larger than the discharge port pattern.
Also, the liquid discharging head according to the present invention is a liquid discharging head manufactured by the above-described manufacturing method, provided with a discharge port for discharging liquid therethrough, a flow path for supplying the liquid to be discharged through the discharge port, and an energy generating element for generating energy for discharging the liquid supplied from the flow path, and is characterized in that a level difference portion providing an opening portion larger than the discharge port is provided between the flow path and the discharge port.
According to the above-described invention, a minute projection is formed at a location in the cross-section of the ink discharge port which is separate from the surface of the substrate and therefore, the deviation of the flying direction of an ink droplet due to the asymmetry of the inner shape of the ink flow path is minimized. As a result, there can be provided an ink jet recording head which is capable of effecting ink discharge free of dot-misalignment, irregularity, diminished dot printing, etc., at a high quality and stably.
A method of manufacturing a liquid discharging head according to the present invention will hereinafter be described in detail with reference to
First, as shown in
Next, as shown in
Next, the first nozzle-constituting resin layer is exposed to light of a wavelength area having photosensitivity, and baking is effected to thereby form the latent image pattern 40 of the ink flow path pattern (
A second nozzle-constituting resin layer 5 which is a negative type resist containing an optical cation polymerization starting agent and having an epoxy resin as a chief component is further applied onto this, as shown in
Subsequently, the second nozzle-constituting resin layer is exposed to light of a wavelength area having photosensitivity, and baking is effected to thereby form the latent image pattern 50 of the ink discharge port (
Next, as shown in
Lastly, a thermosetting step is executed, whereafter electrical joint (not shown) for driving the heat generating resistance member 2, and an ink jet recording head is completed.
In the liquid discharging head of the present invention, a minute projection 9 is not produced on the substrate surface side 8 of the cross-section of the ink discharge port, but is produced on the ink flow path side of the level difference portion 10 which is separate therefrom.
For comparison,
In the present invention, as described above, the minute projection is produced at a location separate from the substrate surface side of the cross-section of the ink discharge port and therefore, the deviation of the flying direction of an ink droplet due to the asymmetry of the inner shape of the ink flow path is minimized. Also, a reduction in a refill frequency due to the hindrance of the flow during ink refilling can be minimized.
Further, three-dimensional flow path structure is formed by the nozzle-constituting resin layers and therefore, the height of the ink flow path important to the refilling characteristic of the ink, i.e., the height of the photodecomposable resin layer, can be formed with good accuracy.
Consequently, there can be provided an ink jet recording head which is capable of effecting ink discharge free of dot-misalignment, irregularity, diminished dot printing, etc. at a high quality and stably.
The present invention will hereinafter be described in greater detail with respect to some embodiments thereof.
(1) First, as shown in
(2) Next, a first negative resist consisting of the following composition was spin-coated as the first nozzle-constituting resin layer 4, and was prebaked at 90° C. for 3 minutes by a hot plate.
(3) Then, as shown in
(4) Subsequently, as shown in
(5) Subsequently, as shown in
(6) Next, it was developed with mixed liquid of methyl isobutyl ketone/xylene=2/3, and was rinsed with xylene to thereby collectively form the ink discharge port 6 and a portion of the ink flow path pattern.
(7) Then, an opening pattern for ink supply was formed (not shown), whereafter exposure at 300 kJ/m2 was effected on the photodecomposable resin 3 by UX-3000, and elusion was effected by imparting an ultrasonic wave to methyl lactate to thereby form the ink flow path. Lastly, electrical joint (not shown) for driving the heat generating resistance member 2 was effected to thereby complete the ink jet recording head.
In this embodiment, an ink jet recording head is manufactured by a method similar to that in Embodiment 1 above. However, an aligner FPA-3000EX6 produced by Canon Inc. is used for the exposure of the first nozzle-constituting resin layer 4 effected in item (3) in Embodiment 1 above, and exposure at 400 J/m2 is effected by the use of light of a wavelength of 248 nm. As in the pattern exposure of the ink discharge port, a stepper is used for the exposure at this step, whereby it becomes possible to form a pattern of higher accuracy.
As the result of printing effected by the use of an ink jet recording head manufactured in this manner, printing of a high quality free of dot-misalignment, irregularity, diminished dot printing, etc. was possible. Consequently, ink discharge free of dot-misalignment, irregularity, diminished dot printing, etc. became possible at a high quality and stably.
This application claims priority from Japanese Patent Application No. 2004-356785 filed Dec. 9, 2004, which is hereby incorporated by reference herein.
Number | Date | Country | Kind |
---|---|---|---|
2004-356785 | Dec 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5478606 | Ohkuma et al. | Dec 1995 | A |
5730889 | Miyagawa et al. | Mar 1998 | A |
6041501 | Suzuki et al. | Mar 2000 | A |
6155673 | Nakajima et al. | Dec 2000 | A |
6241335 | Suzuki | Jun 2001 | B1 |
6638439 | Shimomura | Oct 2003 | B2 |
6811715 | Suzuki | Nov 2004 | B2 |
20060125884 | Sato et al. | Jun 2006 | A1 |
20060127813 | Ohkuma et al. | Jun 2006 | A1 |
20060277755 | Kubota et al. | Dec 2006 | A1 |
20070099121 | Kubota et al. | May 2007 | A1 |
Number | Date | Country |
---|---|---|
04312856 | Nov 1992 | JP |
Number | Date | Country | |
---|---|---|---|
20060125884 A1 | Jun 2006 | US |