1. Field of the Invention
The present invention relates to a method of manufacturing a MOS-type solid-state imaging apparatus.
2. Description of the Related Art
A CCD-type or CMOS-type solid-state imaging apparatus is used as an image sensor such as a digital still camera and a digital video camera. There is a requirement of forming such image sensor into a multi-pixel and miniaturized (microminiaturized) structure.
Japanese Patent Application Laid-Open No. 2005-012189 discloses a CMOS-type solid-state imaging apparatus having a multilayer wiring structure and describes that the wiring pattern of an imaging region has a lower density configuration than that of the wiring pattern of a peripheral region. Here, according to the Patent document 1, an insulating film is deposited on a wiring layer by a CVD process and then planarized by a CMP process; and thereby the insulating film is formed under the interlayer lens.
Japanese Patent Application Laid-Open No. 2006-294765 discloses a solid-state imaging apparatus having a multilayer wiring structure using a CMOS technology and describes that when a planarization layer is formed on an upper layer of the wiring layer, a step is formed according to the density of the wiring layer pattern. In order to reduce steps, Patent document 2 discloses a technique by which a light transmitting dummy pattern is formed on a light-receiving portion whose wiring layer pattern has a low density so as to reduce density variations in the pattern between the light-receiving portion and the peripheral region of the light-receiving portion for planarization.
Here, the present inventors have found the following. First, according to Japanese Patent Application Laid-Open No. 2005-012189, the wiring pattern of the imaging region has a lower density than that of the wiring pattern of the peripheral region. Therefore, when an insulating film is formed by the CVD process, a step occurs on a surface of the insulating film between the imaging region and the peripheral region. When planarization is performed by the CMP process in a state in which a step exists, dishing occurs and the film thickness may be uneven. Such an uneven thickness of interlayer insulation film causes the multilayer wiring structure to be different in optical path between a central portion and a peripheral portion of the imaging region. Thus, color unevenness occurs due to light interference.
According to the technique disclosed in Japanese Patent Application Laid-Open No. 2006-294765 by which a dummy pattern is arranged in the light-receiving portion, reflection, refraction, absorption, and the like of light may cause a reduction in incident light reaching the light-receiving portion and a reduction in sensitivity.
In light of this, an object of the present invention is to provide a method of manufacturing the solid-state imaging apparatus in which even if a wiring pattern has a density variation between the imaging region and the peripheral region, variations in film thickness after planarization of the insulating film on the wiring layer are reduced and color unevenness is suppressed.
According to one aspect of the present invention, a manufacturing method of a solid-state imaging apparatus comprises steps of: forming an imaging region including a plurality of photoelectric conversion elements arranged on a substrate and a peripheral circuit region arranged at a periphery of the imaging region; forming a plurality of wiring patterns such that a density of the wiring patterns in the peripheral circuit region is larger than a density of the wiring patterns in the imaging region; forming an insulating film filling between the plurality of wiring patterns above the imaging region and the peripheral circuit region; removing by etching at least a part of the insulating film arranged in the peripheral circuit region; and planarizing a surface of the insulating film by CMP process, after the step of removing by etching at least the part of the insulating film.
Other features and advantages of the present invention will be apparent from the following description taken in conjunction with the accompanying drawings, in which like reference characters designate the same or similar parts throughout the figures thereof.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
Preferred embodiments of the present invention will now be described in detail in accordance with the accompanying drawings.
The method of manufacturing the solid-state imaging apparatus of the present invention includes forming elements of an imaging region and a peripheral region on a substrate, forming a plurality of wiring patterns such that the wiring patterns of the peripheral region are denser than those of the imaging region, and forming an insulating film interposed between the wiring patterns. Further, the manufacturing method includes etching and removing at least a part of the insulating film on the peripheral region, and planarizing a surface of the insulating film by a CMP process. Even if the wiring patterns have density variations between the imaging region and the peripheral region, such a manufacturing method can suppress reduction in sensitivity of a photoelectric conversion element and can reduce variations in film thickness after planarization of the insulating film on the wiring layer. Thus, color unevenness can be suppressed and a high-sensitive solid-state imaging apparatus can be manufactured.
The method of manufacturing the solid-state imaging apparatus according to the present embodiment is described using
In
Here, in
Then, in
Then, as illustrated in
Then, the photoresist 8 is removed and the entire surface of the third insulating film 7 is planarized by the CMP process (
Subsequently, as illustrated in
By such a manufacturing method, part of the insulating film of the peripheral region having a dense wiring pattern is removed by etching and then planarization is performed thereon by a CMP process. Thereby, planarization can be uniformly performed even on a layout having a density variation of wiring pattern. Therefore, the film thickness of the multilayer wiring structure in the entire imaging region, namely, the optical path can be uniform. Thus, generation of color unevenness can be suppressed and the optical characteristics of a photoelectric conversion element can be uniform.
Here, the present inventors have found that the film thickness X(Å) of the insulating film is preferably twice or more and four times or less of the removed film thickness Y(Å). In particular, approximately three times thereof provides the most remarkable effect of suppressing color unevenness caused by variations in film thickness. For example, when the insulating film has a film thickness X of 15000 (Å) and a removed film thickness Y of 5000 (Å), and the final insulating film has a film thickness Z of 2500 (Å), an image free from color unevenness was obtained.
Now, by using
The present embodiment is described by using
In
As described in the present embodiment, even if two lenses (an interlayer lens and a micro lens) are formed per photodiode 1, the optical path is uniform in the multilayer wiring structure, and thus degrading optical characteristics such as color unevenness can be suppressed. Further, a lower layer of the interlayer lens layer 20 is planarized, and thus the interlayer lens can be formed with good accuracy.
Here, Table 1 illustrates image evaluation results of a CMOS-type solid-state imaging apparatus in a central portion and a peripheral portion of the imaging region under the conditions that the film thickness X is 15000 (Å), the removed film thickness Y is 5000 (Å), and the density ratio A/B of the second wiring pattern 6 is 0.35 in the configuration of the second embodiment.
In Table 1, the film thickness Z is a film thickness of the third insulating film 7 after planarization by a CMP process (see
As described above, according to the method of manufacturing the solid-state imaging apparatus of the present invention, even if a wiring pattern has a density variation between the imaging region and the peripheral region, reduction in sensitivity of the photoelectric conversion element is suppressed and variations in film thickness after planarization of the insulating film on the wiring layer can be reduced. Thus, color unevenness can be suppressed and a high-sensitive solid-state imaging apparatus can be manufactured.
A configuration of each embodiment can be combined as needed.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2009-282285, filed Dec. 11, 2009, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2009-282285 | Dec 2009 | JP | national |