1. Field
One embodiment of the present invention relates to a method of manufacturing a stamper used to produce a large number of information recording media by means of injection molding or imprinting technique to transfer patterns, and a stamper manufactured by the method.
2. Description of the Related Art
In manufacture of optical recording media represented by CDs (compact disks) and DVDs (digital versatile disks), a method is usually employed in which injection molding is carried out using a nickel (Ni) stamper having a thickness of about 300 μm as a mold.
With regard to magnetic recording, a read/write system using a discrete track recording (DTR) medium has been proposed to achieve high recording density (see Jpn. Pat. Appln. KOKAI Publication No. 2004-110896). In manufacture of the DTR media, a method is employed in which fine patterns of a nickel (Ni) stamper are transferred by nano-imprinting lithography.
The stamper is manufactured by, for example, the following methods. A resist is applied to a Si wafer or polished glass substrate, and then patterns are drawn on the resist by artificial method as follow. At this time, electron beam (EB) lithography or focused ion beam (FIB) lithography is employed as a fine processing technique to form patterns of protrusions and recesses of 100 nm or less. The resist is developed to produce a master having patterns of protrusions and recesses on the surface thereof. A metal conductive layer is deposited on the surface of the master by sputtering, vacuum evaporation or electroless plating. The conductive layer is used as a seed to form an electroforming layer made of Ni by electroforming. The electroforming layer and the conductive layer are separated from the master to provide a father stamper. The father stamper is washed to remove organic materials such as resist residues. The father stamper thus obtained may be used to produce media by transferring patterns.
Also, a mother stamper or a son stamper may be manufactured from the father stamper. This method may be carried out in the following manner. An oxidized layer serving as a releasing layer is formed on the surface of the father stamper by anodic oxidation or oxygen RIE (reactive ion etching) or oxygen plasma ashing. A conductive layer is formed on the releasing layer and an electroforming layer made of Ni is further formed on the conductive layer. The electroforming layer and the conductive layer are separated from the father stamper to replicate a mother stamper. An oxidized layer serving as a releasing layer is formed on the surface of the mother stamper. A conductive layer is formed on the releasing layer and an electroforming layer made of Ni is further formed on the conductive layer. The electroforming layer and the conductive layer are separated from the mother stamper to replicate a son stamper.
The mother stamper or the son stamper is subjected to processes such as back surface polishing and punching, and then is used to mass-produce media by transferring patterns.
An example of a method of manufacturing a DTR medium using the stamper manufactured in the above manner will be described with reference to
As shown in
Now, in the above production method, such a phenomenon occurs that the recesses are widened in the step of removing resist residues and in the step of etching the magnetic layer using the resist patterns as masks because of side etching. This phenomenon will be described with reference to
Because the ratio of the recess to the protrusion varies in the manufacturing process, it is necessary to form the stamper 30 such that the width a of the protrusions is smaller in consideration of the finally required ratio of the recess to the protrusion (a=b<c<d).
A method of manufacturing a stamper has already been proposed in which only the width of the patterns can be corrected without changing the depth and height of the patterns (see Jpn. Pat. Appln. KOKAI Publication No. 4-351731). In this method, resist residues left on the surface of the stamper separated from the resist master are removed, and then the surface metal layer is etched to change the width of the patterns. In this document, there are described a method in which plasma etching is carried out using CF4 gas and a wet etching method using a mixed solution of phosphoric acid, nitric acid and water in a ratio of 80 parts, 4 parts and 16 parts. However, specific etching conditions are not described and therefore the width of the patterns cannot be satisfactorily controlled. Also, if a usual etching method is used, good releasing property is not always provided in processed in
A general architecture that implements the various feature of the invention will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate embodiments of the invention and not to limit the scope of the invention.
Embodiments of the present invention will be described with reference to the drawings. Each drawing is a schematic view for better understanding of the invention and therefore, the structures differ from actual ones in shape, dimension, ratio and the like. However, the designs of these structures in these drawings may be properly modified in consideration of the following descriptions and known techniques.
In general, according to an aspect of the present invention, there is provided a method of manufacturing a stamper, comprising: forming a conductive layer on a surface of a master having patterns of protrusions and recesses; forming an electroforming layer on the conductive layer; separating the electroforming layer and the conductive layer from the master to form a stamper to which the patterns of protrusions and recesses of the master are transferred; removing a resist left on the surface of the stamper; and etching the surface of the stamper with an acidic solution having a pH value of less than 3.
According to another aspect of the present invention, there is provided a method of manufacturing a stamper, comprising: forming a first conductive layer on a surface of a master having patterns of protrusions and recesses; forming a first electroforming layer on the first conductive layer; separating the first electroforming layer and the first conductive layer from the master to form a father stamper to which the patterns of protrusions and recesses of the master are transferred; removing a resist left on the surface of the father stamper; forming a first releasing layer on the surface of the father stamper; forming a second conductive layer on the first releasing layer; forming a second electroforming layer on the second conductive layer; separating the second electroforming layer and the second conductive layer from the father stamper to form a mother stamper to which the patterns of protrusions and recesses of the father stamper are transferred; forming a second releasing layer on the surface of the mother stamper; forming a third conductive layer on the second releasing layer; forming a third electroforming layer on the third conductive layer; separating the third electroforming layer and the third conductive layer from the mother stamper to form a son stamper to which the patterns of protrusions and recesses of the mother stamper are transferred; and etching the surface of the son stamper with an acidic solution having a pH value of less than 3.
According to still another aspect of the present invention, there is provided a stamper comprising patterns of protrusions and recessed on a surface thereof, wherein arithmetic average roughness Ra of the surface is 1 nm or more and 5 nm or less.
A method of manufacturing a replicated stamper according to an embodiment of the present invention will be described with reference to sectional views shown in
As shown in
The reason why the pitch of the patterns corresponding to the tracks is designed to be 200 nm or less as mentioned above is as follows. Specifically, a density of 60 GB (gigabyte) or more per 1.8-inch disk which is obtained by the current technologies is required in consideration of a recording density specific to a DTR medium. The recording track pitch at this time is about 200 nm and the DTR medium is desired to have a pitch less than the above pitch.
Also, in the resist master, the ratio of the width of the protrusions corresponding to the tracks to the width of the recesses corresponding to the separating portions between the tracks is desired to be larger than 2:1. Specifically, the width of the recesses is desired to be smaller than about 60 nm. In order to carry out such a fine processing, a method superior in controllability like that of the present invention is preferably used. In the case of an optical recording medium, the tracks take a form of lands/grooves or pit trains.
As shown in
As shown in
Although not shown, a protective film is formed on the patterned surface by spin coating, followed by drying, and back surface polishing and punching, if desired. Thus, the son stamper having a final form can be provided.
Although the son stamper is etched in the present embodiment, the father stamper may be etched to produce a father stamper reduced in the width of the protrusions.
As the first, second and third conductive layers 3, 12 and 22, a metal containing Ni as its major component is generally used because it has high physical and mechanical strength and strong resistance to corrosion and abrasion and also in consideration of miscibility with Ni of the electroforming material. As the electroforming material, Ni or a metal including Ni and Co, S, B or P is generally used.
Also, the sectional shape of the protrusions is rectangular before etching as shown in
Further, an atomic force microscope (AFM) is used to measure the surface roughness (arithmetic average roughness Ra) of the stamper before and after etching. At this time, a scan area of 2 μm×2 μm square to be measured is set in a mirror area (non-pattern region) 42 in the outer or inner periphery other than the patterned region 41 of the stamper 30 shown in
When an aqueous sulfamic acid solution having a pH value adjusted to 1.0 is used in the etching, it takes 30 minutes to etch the surface the son stamper by 15 nm which is almost the same as in Example 1. In this case, Ra of the stamper after etching is 4.2 nm. Here, in order to raise the concentration of sulfamic acid in pure water to adjust the etching solution to a higher pH value than that in Example 1, sulfamic acid is additionally dissolved while monitoring the pH value of the solution by means of a pH meter.
When an aqueous sulfamic acid solution having a pH value adjusted to 3.0 is used in the etching, neither reduction in pattern width nor increase in Ra is observed even after 120 minutes. Here, in order to lower the concentration of sulfamic acid in pure water to adjust the etching solution to a lower pH value than that in Example 1, pure water is added while monitoring the pH value of the solution by means of a pH meter.
From the above result, it is unpractical to carry out etching carried using an aqueous acidic solution having a pH value of 3.0 or more because a long time is required for etching, and it is therefore desired to carry out etching using an aqueous acidic solution having a pH value of less than 3.0.
From these results, if the width of the protrusions formed on the stamper before etching is measured in advance, the amount of etching and Ra are properly controlled by adjusting the pH value and etching time, making it possible to obtain a stamper provided with protrusions having a desired width.
Next, using the stamper manufactured in Examples 1 and 2, DTR media are manufactured by a method as shown in
Also, the obtained DTR medium is used to fabricate a magnetic recording apparatus (hard disk drive) as shown in
The magnetic recording medium 71 is rotated by the spindle motor 72. A magnetic head containing a write head and a read head is incorporated into the head slider 76. The actuator arm 74 is rotatably attached to a pivot 73. The suspension 75 is attached to one end of the actuator arm 74. The head slider 76 is elastically supported via a gimbal incorporated into the suspension 75. The voice coil motor (VCM) 77 is disposed on the other end of the actuator arm 74. The voice coil motor (VCM) 77 generates a torque to the actuator arm 74 around the pivot 73 to control the position of the magnetic head such that the magnetic head is floated above an arbitrary radial position of the magnetic recording medium 71.
When the fabricated magnetic recording apparatus is evaluated, the error rate is improved. This is because the width a of the protrusions of the stamper shown in
Although the embodiments of the invention have been described, the present invention is not limited to the above embodiments and may be variously modified within the scope of the invention described in the claims. Also, various modifications can be made without departing from the spirit of the present invention when the invention is practiced. Also, various inventions may be made by combining plural structural elements disclosed in the above embodiments.
While certain embodiments of the inventions have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2007-256161 | Sep 2007 | JP | national |
This is a Divisional application of U.S. application Ser. No. 12/473,071, now abandoned, which is a continuation of PCT Application No. PCT/JP2008/066031, filed Aug. 29, 2008 and published under PCT Article 21(2) in English, which is based upon and claims the benefit of priority from Japanese Patent Application No. 2007-256161, filed Sep. 28, 2007, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 13082252 | Apr 2011 | US |
Child | 13492681 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2008/066031 | Aug 2008 | US |
Child | 13082252 | US |