"A Bifunctional Exoglucanase-Endoglucanase Fusion Protein", Warren et al., Gene (1987) 61(3):421-427. |
"Production in Escherichia coli and One-Step Purification of Bifunctional Hybrid Proteins Which Bind Maltose", Bedouelle & Duplay, Eur. J. Biochem. (1988) 171:541-549. |
"Fusion to an Endoglucanase Allows Alkaline Phosphatase to Bind To Cellulose", Greenwood et al., FEBS Letters (1989) 244(1):127-131. |
"Enzyme Immobilization Using the Cellulose-Binding Domain of a Cellulomonas Fimi Exoglucanase", Ong et al., Bio/Technology (1989) 7:604-607. |
"Affinity Chromatography of the Cellulase of Trichodermakoningii", Halliwell & Griffin, Biochem J. (1978) 169:713-715. |
"Studies on the Mechanism of Enzymatic Hydrolysis of Cellulosic Substances", Ghose & Bisaria, Biotechnology and Bioengineering (1979) 21:131-146. |
"Isolation of Cellulases by Means of Biospecific Sorption on Amorphous Cellulose" Nummi et al., Analytical Biochemistry (1981) 116:137-141. |
"Molecular Cloning of a Cellulomonas Fimi Cellulase Gene in Escherichia Coli", Whittle et al., Gene (1982) 17:139-145. |
"Oligonucleotide-Directed Mutagenesis Using M13-Derived Vectors: an Efficient and General Procedure for the Production of Point Mutations in Any Fragment of DNA", Zoller & Smith, Nuc. Acids Res. (1982) 10:6487-6501. |
"The pUC Plasmids, an M13mp7-Derived System for Insertion Mutagenesis and Sequencing with Synthesis Universal Primers", Vieira and Messing, Gene (1982) 19:259-268. |
"Adsorption of Cellulase from Trichoderma Viride on Cellulose", Ooshima et al., Biotechnology and Bioengineering (1983) 25:3103-3114. |
"Improved Plasmid Vectors with a Thermoinducible Expression and Temperature-Regulated Runaway Replication", Remaut et al., Gene (1983) 22:103-113. |
"Oligonucleotide-Directed Mutagenesis of DNA Fragments Cloned Into M13 Vectors", Zoller and Smith, Methods in Enzymology (1983) 100:468-501. |
"Sorption of Talaromyces Emersonii Cellulase on Cellulosic Substrates", Moloney & Coughlan, Biotechnology and Bioengineering (1983) 25:271-280. |
"A Mutant of Escherichia coli That Leaks Cellulase Activity Encoded by Cloned Cellulase Genes From Cellulomonas Fimi", Gilkes et al., Bio/Technology (1984) 2:259-263. |
"The Cellulase System of Cellulomonas Fimi", Langsford et al., Journal of General Microbiology (1984) 130:1367-1376. |
"Competitive Adsorption of Cellulase Components and Its Signifigance in a Synergistic Mechanism", Ryu et al., Biotechnology and Bioengineering (1984) 26:488-496. |
"Mode of Action and Substrate Specificaties of Cellulases From Cloned Bacterial Genes", Gilkes et al., The Journal of Biological Chemistry (1984) 259 (16):10455-10459. |
"Isolation and Characterization of Escherichia coli Clones Expressing Cellulase Genes From Cellulomonas Fimi", Gilkes et al., Journal of Microbiology (1984) 130:1377-1384. |
"Improved M13 Phage Cloning Vectors and Host Strains: Nucleotide Sequences of the M13mp18 and pUC19 Vectors", Yanisch-Perron et al., Gene (1985) 33:103-119. |
"Characterization and Structure of an Endoglucanase Gene cenA of Cellulomonas Fimi", Wong et al., Gene (1986) 44:315-324. |
"Limited Proteolysis of the Cellobiohydrolase I from Trichoderma Ressei: Separation of Functional Domains", Van Tilbeurgh et al., FEBS Letters (1986) 204(2):223-227. |
"Sequence Conservation and Region Shuffling in an Endoglucanase and an Exoglucanase From Cellulomonas Fimi", Warren et al., Proteins: Structure, Function and Genetics (1986) 1:335-341. |
"Structure of the Gene Encoding the Exoglucanase of Cellulomonas Fimi", O'Neill et al., Gene (1986) 44:325-330. |
"Adsorption of Thermomonospora Curvata Cellulases on Insoluble Substrates", Williamson and Stutzenberger, Letters in Applied Microbiology (1987) 5:101-105. |
"Fractionation of Aspergillus niger Cellulases by Combined Ion Exchange Affinity Chromatography", Boyer et al., Biotechnology and Bioengineering (1987) 29:176-179. |
"Glycosylation of Bacterial Cellulases Prevents Proteolytic Cleavage Between Functional Domains", Langsford et al., FEBS Letters (1987) 225(1,2):163-167. |
"Homologous Domains in Trichoderman Reesei Cellulolytic Enzymes: Gene Sequence and Expression of Cellobiohydrolase II," Teeri et al., Gene (1987) 51:43-52. |
"The Use of Transposon TnphoA to Detect Genes for Cell Envelope Proteins Subject to a Common Regulatory Stimulus", Gutierrez et al., J. Mol. Biol. (1987) 195:289-297. |
"Studies of the Cellulolytic System of Trichoderma Reesei QM 9414 Analysis of Domain Function in Two Cellobiohydrolases by Limited Proteolysis", Tomme et al., Eur. J. Biochem (1988) 170:575-581. |
Owolabi et al., Applied and Environmental Microbiology, vol. 54, No. 2, Feb. 1988, pp. 518-523. |
"Purification and Characterization of Endoglucanase C of Cellulomonas fimi, Cloning of the Gene, and Analysis of In Vivo Transcripts of the Gene", Moser et al., Applied and Environmental Microbiology, 55:2480-2487 (1989). |
"Precise Excision of the Cellulose Binding Domains from Two Cellulomonas fimi Cellulases by a Homologous Protease and the Effect on Catalysis", Gilkes et al., The Journal of Biological Chemistry, 263:10401-10407 (1988). |
"Regulation and Initiation of cenB Transcripts of Cellulomonas fimi", Greenburg et al., Journal of Bacteriology, 169:4574-4677 (1987). |
"Characterization of a glucoamylase G2 from Aspergillus niger," Svensson et al., Eur. J. Biochem., vol. 154, pp. 497-502 (1986). |
"Different Behavior toward Raw Starch of Three Forms of Glucoamylase from a Rhizopus Sp.", Takahashi et al., J. Biochem, vol. 98, pp. 663-671 (1985). |
"Sequence Homology between Putative Raw-Starch Binding Domains from different Starch-Degrading Enzymes", Biochem J., vol. 264, pp. 309-311 (1989). |
"Gene Cloning of Chitinase A1 from Bacillus circulans WL-12 Revealed Its Evolutionary Relationship to Serratia Chitinase and to the Type III Homology Units of Fibronection", Watanabe et al., The Journal of Bio. Chem., vol. 265, pp. 15659-15665 (1990). |
"Chitinase System of Bacillus Circulans WL-12 and Importance of Chitinase A1 in Chitin Degradation," Watanabe, et al., Journal of Bacteriology, vol. 172, pp. 4017-4022 (1990). |
"Xylanase B and an arabinofuranosidase from Pseudomonas fluorescens subsp. cellulosa contain identical cellulose-binding domains and are encoded by adjacent genes", Kellett et al., Biochem, J., vol. 272 pp. 369-376 (1990). |