This invention relates to a method of transferring a pattern to an epitaxial layer of a light emitting device.
For III-nitride semiconductor devices, such as light emitting diodes (LEDs) and laser diodes (LDs), both extraction and the corresponding output power have been greatly improved by surface roughening methods such as patterned sapphire substrate (PSS) and photoelectrochemical (PEC) etching techniques. In the case of III-nitride LEDs, light extraction efficiency has become the most important limiting factor for the efficiency of the LEDs, since the internal quantum efficiency (IQE) of nitride-based LEDs has been greatly improved (more than 80%) by the availability of low-dislocation GaN substrates and advances in metal organic chemical vapor deposition (MOCVD) techniques.
The effectiveness of these surface roughening methods by and large depends on the crystal orientation and polarity of the to-be-patterned surface. So far, it has only been established for the nitrogen-face of a c-polar GaN and has not yet been available for arbitrary GaN crystal orientations and polarity, including most semipolar surfaces and nonpolar a-plane and m-plane surfaces.
Reactive ion etching (RIE) is another method used to pattern conical features to enhance light extraction irrespective of crystal orientation. On the other hand, a limitation lies in the non-controllability of the direction of emitted light.
Improving the directionality of light emission has been widely studied either through the use of microcavities or photonic crystals (PhCs) to control the propagation of electromagnetic modes in optoelectronic devices. The periodic modulation of refraction serves as an optical grating to couple guided modes from the semiconductor device to air, thus increasing extraction efficiency and directionality of LEDs. The application of gratings for the light diffraction in optoelectronic devices requires the grating period to be on the order of half of the wavelengths of the light generated by the device. In the case of GaN based optoelectronic devices, the grating period needs to be on the order of a few hundreds of nanometers.
The main difficulty of PhC LEDs is their delicate required fabrication. Thus, there is a need in the art for improved methods of fabricating light guiding or extracting features.
To overcome the limitations in the prior art described above, and to overcome other limitations that will become apparent upon reading and understanding this specification, the present invention discloses a method for fabricating light guiding or extracting features epitaxially on a growth restrict mask of a host substrate, where the host substrate can be a homogeneous or heterogeneous substrate, including substrates with templates deposited thereon. The light guiding or extracting features are fabricated on a wing of III-nitride epitaxial lateral overgrowth (ELO) layers, thereby resulting in a device that has good crystal quality in terms of reduced dislocation densities and stacking faults.
Specifically, this invention performs the following steps: island-like III-nitride semiconductor layers are grown on a substrate using a growth restrict mask and the ELO method, where the growth restrict mask plays an important role for obtaining a desired light extraction or light guiding function. Before the growth, the growth restrict mask is patterned with either a rough surface or a surface of PhCs. Light emitting apertures are confined to the wings of the III-nitride ELO layers, at least in part, such that good crystal quality layers can be guaranteed.
Thereafter, devices are fabricated on the wings of the III-nitride ELO layers, and the devices are plucked from the host substrate. Note that isolated devices remain on the host substrate with a very minimal link, such as an epitaxial or non-epitaxial bridge, until the whole device is finished. Once removed from the substrate, the devices are transferred to another carrier or substrate by an elastomer stamp, vacuum chuck, adhesive tape, or simply by bonding or attaching the devices to the separate carrier or substrate.
The III-nitride semiconductor layers are dimensioned such that one or more of the island-like III-nitride semiconductor layers form a bar (known as a bar of a device). By doing this, nearly identical devices can be fabricated adjacent to each other in a self-assembled array, and thus, by integration, scale up can be made easier. Alternatively, the III-nitride ELO layers can made to coalesce initially, such that they can be later divided into bars of devices or individual devices.
Every device can be addressed separately or together with other devices, by designing a proper fabrication process. For example, one could make a common cathode or anode for such a bar of devices for monolithic integration, or one can address individual devices for full color display applications. Consequently, a high yield can be obtained.
Key aspects of this invention include:
A few of the possible designs using this method are illustrated in the following detailed description of the invention. The invention has many benefits as compared to conventionally manufacturable device elements when combined with the cross-referenced inventions on removing semiconducting devices from a semiconducting substrate set forth above.
Referring now to the drawings in which like reference numbers represent corresponding parts throughout:
In the following description of the preferred embodiment, reference is made to a specific embodiment in which the invention may be practiced. It is to be understood that other embodiments may be utilized, and structural changes may be made without departing from the scope of the present invention.
The present invention describes a method of fabricating semiconductor devices, such as light emitting devices, including LEDs and plano-concave VCSELs, by designing a growth restrict mask accordingly. As ELO is relied on in this invention, this invention is easily applicable to foreign substrates, such as Si, SiC, sapphire, templates of semiconductor layers, or a host substrate containing ELO engineered layer templates. ELO engineered layer templates make it possible to use GaN on sapphire substrates, GaN on silicon substrates, etc. LEDs, PhC LEDs and VCSELs can be fabricated on good crystal quality ELO wings, and then the respective devices can be isolated from the host substrate, to be picked selectively, or to be transferred onto a display back panel or to a product.
Schematic 100a1 shows a growth restrict mask 102 is formed on or above the III-nitride based substrate 101. Specifically, the growth restrict mask 102 is disposed directly in contact with the substrate 101, or is disposed indirectly through an intermediate layer grown by MOCVD, etc., made of a III-nitride-based semiconductor layer or template deposited on the substrate 101.
The growth restrict mask 102 can be formed from an insulator film, for example, an Sift film deposited upon the base substrate 101, for example, by a plasma chemical vapor deposition (CVD), sputter, ion beam deposition (IBD), etc., wherein the Sift film is patterned by photolithography using a predetermined photo mask and then etched to include opening areas 103, as well as no-growth regions 104 (which may or may not be patterned). The present invention can use Sift, SiN, SiON, TiN, etc., as the growth restrict mask 102. A multi-layer growth restrict mask 102 which is comprised of the above materials is preferred.
Epitaxial III-nitride layers 105, such as GaN-based layers, are grown using the ELO method on the GaN substrate 101 and the growth restrict mask 102. The growth of the III-nitride ELO layers 105 occurs first in the opening areas 103 on the III-nitride based substrate 101, and then laterally from the opening areas 103 over the growth restrict mask 102. The growth of the III-nitride ELO layers 105 may be stopped or interrupted before the III-nitride ELO layers 105 at adjacent opening areas 103 can coalesce on top of the growth restrict mask 102, wherein this interrupted growth results in the no-growth regions 104 between adjacent III-nitride ELO layers 105. Alternatively, the growth of the III-nitride ELO layers 105 may be continued and coalesce with neighboring III-nitride ELO layers 105, as shown in schematic 100a2, thereby forming a coalesced region 106 of increased defects at a meeting region.
In
The III-nitride ELO layers 105 and III-nitride device layers 107 include one or more flat surface regions 108 and layer bending regions 109 at the edges thereof adjacent the no-growth regions 104, when the III-nitride ELO layers 105 stopped before coalescing as shown in 100a1 of
A light-emitting active region 107a of a device 110 is processed at the flat surface regions 108, preferably between opening area 103 and the edge portion 109 or coalesced region 106. By doing so, a bar of a device 110 will possess an array of twin or nearly identical light emitting apertures on either side of the opening area 103 along the length of the bar. Moreover, electrodes may be placed on the device layers 107, as well as a backside interface 111 between the III-nitride ELO layers 105 and the growth restrict mask 102.
There are many methods of removing the light emitting devices 110 from the substrate 101. For example, the present invention can utilize the ELO method for removing the light emitting devices 110. In the present invention, the bonding strength between the substrate 101 and the III-nitride ELO layers 105 is weakened by the growth restrict mask 102. In this case, the bonding area between the substrate 101 and the III-nitride ELO layers 105 is the opening area 103, wherein the width of the opening area 103 is narrower than the III-nitride ELO layers 105. Consequently, the bonding area is reduced by the growth restrict mask 102, so that this method is preferable for removing the epitaxial layers 105, 107.
In schematics 100c1 and 100c2 in
This invention proposes several approaches in order to realize a light extraction or light guiding tools for the light emitting devices.
The typical fabrication steps for this invention are described in more detail below:
Process Steps
Block 201 represents the step of providing a host substrate 101, wherein the host substrate 101 is a semiconducting substrate, and the semiconducting substrate is independent of crystal orientation. In one example, the host substrate 101 has one or more trenches.
Block 202 represents the step of forming a growth restrict mask 102 on the host substrate 101, wherein the growth restrict mask is comprised of one or more layers.
Blocks 203, 204 and 205 represent the steps of forming one or more patterns on the growth restrict mask 102 and/or the host substrate 101, wherein the patterns result in light controlling structures at an interface between the III-nitride ELO layers 105 and the host substrate 101. Specifically, Block 203 comprises one or more random patterns, such as one or more random valley-hill patterns, for example, one or more unleveled regions; Block 204 represents a 2D periodic lattice array equal in size to a wavelength of light emitted from an active region 107a, namely, a PhC; and Block 205 represents one or more concave patterns or curved surfaces, for example, a plano-concave mirror of a resonant cavity of a vertical cavity surface emitting laser (VCSEL). wherein the resonant cavity is comprised of one or more layers grown epitaxially.
Block 206 represents the step of opening stripes comprised of opening areas 103 on the growth restrict mask 102 for ELO growth.
Blocks 207, 208 represent the steps of growing the III-nitride ELO layers 105 on the growth restrict mask 102, wherein the III-nitride ELO layers 105 may be non-coalesced in Block 207 or coalesced in Block 208, followed growing the III-nitride device layers 107 on the III-nitride ELO layers 105.
Block 209 represents the step of singulating the devices 110 on the host substrate 101.
Block 210 represents the step of detaching the devices 110 from the host substrate 101, and Block 211 represents the step of reusing the host substrate 101.
Block 212 represents the step of performing any necessary back-end processing of the devices 110, e.g., for VCSEL devices 110.
These steps are described in more detail below.
Forming a Growth Restrict Mask
In one embodiment, the III-nitride layers 105 are grown by ELO on a III-nitride substrate 101, such as an m-plane GaN substrate 101 patterned with a growth restrict mask 102 comprised of SiO2, wherein the III-nitride ELO layers 105 may or may not coalesce on top of the SiO2.
The growth restrict mask 102 is comprised of striped opening areas 103, wherein the SiO2 stripes of the growth restrict mask 102 between the opening areas 103 have a width of 1 μm-20 μm and an interval of 10 μm-100 μm. if a nonpolar substrate used the opening areas 103 are oriented along a <0001> axis. If semipolar (20-21) or (20-2-1) planes are used, the opening areas 103 are oriented in a direction parallel to or [10-14], respectively. Other planes may be use as well, with the opening areas 103 oriented in other directions.
When using a III-nitride substrate 101, the present invention can obtain high quality III-nitride semiconductor layers 105, 107. As a result, the present invention can also easily obtain devices with reduced defect density, such as dislocation and stacking faults.
Moreover, these techniques can be used with a hetero-substrate, such as sapphire, SiC, LiAlO2, Si, Ga2O3 etc., as long as it enables growth of the III-nitride ELO layers 105 through the growth restrict mask 102.
Pattern on Growth Restrict Mask
Before proceeding to opening of stripes on growth restrict mask 102, a pre-process is carried on the growth restrict mask 102. This invention proposes three different possible types of patterns for the devices 110; however, several alternative designs may also be practiced in the same way as described below. A random-hill-valley pattern on the growth restrict mask 102 will translate onto the interface 111 with the ELO layers 105 during the MOCVD growth. Device 110 fabrication, including p-pads and n-pad, is carried on the surface of the III-nitride ELO layers 105, devices 110 are singularized on the host substrate 101, and the devices 110 are picked using a carrier wafer. The result leaves the random-hill-valley pattern at the interface 111 of the III-nitride ELO layers 105. The is also the case for every other pattern, such as PhCs for LEDs or VCSELs. In the case of PhCs for LEDs, the patterns must have dimensions on the order of the wavelength of the light emitted by the device 110; in the case of PhCs for VCSELs, a concave surface with a radius of curvature designed such that a beam waist must pass through the plano-concave mirror cavity with less losses.
Growing Epitaxial Layers on the Substrate Using the Growth Restrict Mask
The III-nitride semiconductor device layers 107 are grown on the III-nitride ELO layers 105 in the flat region 108 by conventional methods. In one embodiment, MOCVD is used for the epitaxial growth of the island-like III-nitride semiconductor layers including the III-nitride ELO layers 105 and the III-nitride semiconductor device layers 107. The island-like III-nitride semiconductor layers 105, 107 are separated from each other, because the MOCVD growth is stopped before the III-nitride ELO layers 105 coalesce. In one embodiment, the island-like III-nitride semiconductor layers 105, 107 are made to coalesce and later etching is performed to remove unwanted regions.
Trimethylgallium (TMGa), trimethylindium (TMIn) and triethylaluminium (TMAl) are used as III elements sources. Ammonia (NH3) is used as the raw gas to supply nitrogen. Hydrogen (H2) and nitrogen (N2) are used as a carrier gas of the III elements sources. It is important to include hydrogen in the carrier gas to obtain a smooth surface epi-layer.
Saline and Bis(cyclopentadienyl)magnesium (Cp2Mg) are used as n-type and p-type dopants. The pressure setting typically is 50 to 760 Torr. III-nitride-based semiconductor layers are generally grown at temperature ranges from 700 to 1250° C.
For example, the growth parameters include the following: TMG is 12 sccm, NH3 is 8 slm, carrier gas is 3 slm, SiH4 is 1.0 sccm, and the V/III ratio is about 7700.
ELO of Limited Area Epitaxy (LAE) III-Nitride Layers
In the prior art, a number of pyramidal hillocks have been observed on the surface of m-plane III-nitride films following growth. See, for example, US Patent Application Publication No. 2017/0092810. Furthermore, a wavy surface and depressed portions have appeared on the growth surface, which made the surface roughness worse. This is a very severe problem. For example, according to some papers, a smooth surface can be obtained by controlling an off-angle (>1 degree) of the substrate's growth surface, as well as by using an N2 carrier gas condition. These are very limiting conditions for mass production, however, because of the high production costs. Moreover, GaN substrates have a large fluctuation of off-angles to the origin from their fabrication methods. For example, if the substrate has a large in-plane distribution of off-angles, it has a different surface morphology at these points in the wafer. In this case, the yield is reduced by the large in-plane distribution of the off-angles. Therefore, it is necessary that the technique does not depend on the off-angle in-plane distribution.
The present invention solves these problems as set forth below:
In this invention, a hydrogen atmosphere can be used during non-polar and semi-polar growth. Using this condition is preferable because hydrogen can prevent excessive growth at an edge of the open area 103 from occurring in the initial growth phase.
Those results have been obtained by the following growth conditions.
In one embodiment, the growth pressure ranges from 60 to 760 Torr, although the growth pressure preferably ranges from 100 to 300 Torr to obtain a wide width for the island-like III-nitride semiconductor layers 105, 107; the growth temperature ranges from 900 to 1200° C. degrees; the V/III ratio ranges from 10-30,000; the TMG is from 2-20 sccm; NH3 ranges from 0.1 to 10 slm; and the carrier gas is only hydrogen gas, or both hydrogen and nitrogen gases. To obtain a smooth surface, the growth conditions of each plane needs to be optimized by conventional methods.
After growing for about 2-8 hours, the III-nitride ELO layers 105 had a thickness of about 1-50 μm and a bar width of about 50-150 μm.
Fabricating the Device
The device 110 is fabricated at the flat surface region 108 by conventional methods, wherein various device 110 designs are possible. For example, for μLEDs, if only a front-end process is necessary to realize the device 110, p-pads and n-pads can be fabricated either along the length or width of the wing of the III-nitride ELO layers 105.
Forming a Structure for Separating Device Units
The aim of this step is to isolate devices 110 from the host substrate 101 for the III-nitride ELO layers 105 and III-nitride device layers 107. At least two methods can be used to transfer the devices 110 onto a carrier substrate.
In one method, the III-nitride ELO layers 105 and device layers 107 are separated from the host substrate 101 by etching regions 112, 113 at least to expose the growth restrict mask 102. The separating may also be performed via scribing by a diamond tipped scriber or laser scriber, for example, tools such as RIE (Reactive Ion Etching) or ICP (Inductively Coupled Plasma); but is not limited to those methods also be used to isolate devices 110.
To keep the isolated III-nitride device layers 107 on the host substrate 101, region 112, which connects the III-nitride ELO layers 105 directly with the host substrate 101, was modified in such a way that a connecting link with the host substrate 101 still remains even after exposing the growth restrict mask 102 at region 113. Alternatively, one may choose to eliminate any connection with the host substrate 101 at the open area 103 by etching all the open area 103.
In another method, devices 110 are isolated by etching at region 113 to at least expose the growth restrict mask 102 (in the case of ELO Type 2). Then, the method described in the publication by Srinivas Gandrothula et al, Appl. Phys. Express, vol. 13, p. 041003 (2020), can be used to isolate devices 110 from the host substrate 101. Alternatively, one may also use a supporting carrier, such as a sub-mount, before attaching an adhesive film to transfer isolated devices 110 onto the carrier.
ELO III-Nitride Device Layers are Removed from the Substrate
After etching regions 112 and 113, whichever is best, the completed III-nitride device layers 107 may be transferred from their host substrate 101 using one of the following methods.
When a substrate 101 is left with a weak connecting link or no link after etching regions 112, 113:
When etching is not performed at region 112:
Mounting the Device on a Display Panel
The divided/isolated devices 110 are lifted using the approaches described above: (1) a PDMS stamp; or (2) vacuum chuck.
Using a Vacuum Chuck to Pick the Device
This invention provides a solution to the problem of mass transferring devices 110 with smaller light emitting apertures, also called emissive inorganic pixels, when targeted sizes are below 50 μm. These devices 110, known as μLEDs, are fabricated on the wings of the III-nitride ELO layers 105, and can be removed from the substrate 1010 as mentioned above. In particular, these devices 110 preferably have larger wing regions of the III-nitride ELO layers 105 and smaller open regions 112, that is, a ratio between the wing region and open region 112 should be more than 1, more preferably 5-10, and in particular, open regions 112 should be around 1-5 μm. Therefore, devices 110 can be removed from the III-nitride substrate 101 more easily, and can be transferred to external carriers or processed in further steps in an easy manner.
III-Nitride-Based Substrate
The III-nitride-based substrate 101 may comprise any type of III-nitride-based substrate, as long as a III-nitride-based substrate enables growth of III-nitride-based semiconductor layers 105, 107 through a growth restrict mask 102, any GaN substrate 101 that is sliced on a {0001}, {11-22}, {1-100}, {20-21}, {20-2-1}, {10-11}, {10-1-1} plane, etc., or other plane, from a bulk GaN, and AlN crystal substrate.
Hetero-Substrate
Moreover, the present invention can also use a hetero-substrate 101. For example, a GaN template or other III-nitride-based semiconductor layer may be grown on a hetero-substrate 101, such as sapphire, Si, GaAs, SiC, Ga2O3, etc., prior to the growth restrict mask 102. The GaN template or other III-nitride-based semiconductor layer is typically grown on the hetero-substrate 101 to a thickness of about 2-6 μm, and then the growth restrict mask 102 is disposed on the GaN template or another III-nitride-based semiconductor layer.
Growth Restrict Mask
The growth restrict mask 102 comprises a dielectric layer, such as SiO2, SiN, SiON, Al2O3, AN, AlON, MgF, ZrO2, TiN, etc., or a refractory metal or precious metal, such as W, Mo, Ta, Nb, Rh, Ir, Ru, Os, Pt, etc. The growth restrict mask 102 may be a laminate structure selected from the above materials. It may also be a multiple-stacking layer structure chosen from the above materials.
In one embodiment, the thickness of the growth restrict mask 102 is about 0.05-3 μm. The width of the mask 102 is preferably larger than 20 μm, and more preferably, the width is larger than 40 μm. The growth restrict mask 102 is deposited by sputter, electron beam evaporation, plasma-enhanced chemical vaper deposition (PECVD), ion beam deposition (IBD), etc., but is not limited to those methods.
On an m-plane free standing GaN substrate 101, the growth restrict mask 102 comprises a plurality of opening areas 103, which are arranged in a first direction parallel to the 11-20 direction of the substrate 101 and a second direction parallel to the 0001 direction of the substrate 101, periodically at intervals extending in the second direction. The length of the opening area 103 is, for example, 200 to 35000 μm; the width is, for example, 2 to 180 μm; and the interval of the opening area 103 is, for example, 20 to 180 μm. The width of the opening area 103 is typically constant in the second direction but may be changed in the second direction as necessary.
On a c-plane free standing GaN substrate 101, the opening areas 103 are arranged in a first direction parallel to the 11-20 direction of the substrate 101 and a second direction parallel to the 1-100 direction of the substrate 101.
On a semipolar (20-21) or (20-2-1) GaN substrate 101, the opening areas 103 are arranged in a direction parallel to [−1014] and [10-14], respectively.
Alternatively, a hetero-substrate 101 can be used. When a c-plane GaN template is grown on a c-plane sapphire substrate 101, the opening area 103 is in the same direction as the c-plane free-standing GaN substrate 101; when an m-plane GaN template is grown on an m-plane sapphire substrate 101, the opening area 103 is same direction as the m-plane free-standing GaN substrate 101. By doing this, an m-plane cleaving plane can be used for dividing the bar of the device 110 with the c-plane GaN template, and a c-plane cleaving plane can be used for dividing the bar of the device 110 with the m-plane GaN template; which is much preferable.
III-Nitride-Based Semiconductor Layers
The III-nitride ELO layers 105 and the III-nitride semiconductor device layers 107 can include In, Al and/or B, as well as other impurities, such as Mg, Si, Zn, 0, C, H, etc.
The III-nitride-based semiconductor device layers 107 generally comprise more than two layers, including at least one layer among an n-type layer, an undoped layer and a p-type layer. The III-nitride-based semiconductor device layers 107 specifically comprise a GaN layer, an AlGaN layer, an AlGaInN layer, an InGaN layer, etc. In the case where the device 110 has a plurality of III-nitride-based semiconductor layers 105, 107, the distance between the island-like III-nitride semiconductor layers 105, 107 adjacent to each other is generally 30 μm or less, and preferably 10 μm or less, but is not limited to these figures. In the semiconductor device 110, a number of electrodes according to the types of the semiconductor device 110 are disposed at predetermined positions.
Flat Surface Region
The flat surface region 108 is between layer bending regions 109. Furthermore, the flat surface region 108 is in the region of the growth restrict mask 102.
Fabrication of the semiconductor device 110 is mainly performed on the flat surface region 108. The width of the flat surface region 108 is preferably at least 5 μm, and more preferably is 10 μm or more. The flat surface region 108 has a high uniformity of thickness for each of the semiconductor layers 105, 107.
Layer Bending Region
If the layer bending region 109 that includes the active layer 107a remains in the device 110, a portion of the emitted light from the active layer 107a is reabsorbed. As a result, it is preferable to remove at least a part of the active layer 107a in the layer bending region 109 by etching.
From another point of view, an epitaxial layer of the flat surface region 108 except for the opening area 103 has a lesser defect density than an epitaxial layer of the opening area 103. Therefore, it is more preferable that the aperture structures should be formed in the flat surface region 108 including on a wing region of the III-nitride ELO layers 105.
Semiconductor Device
The semiconductor device 110 is, for example, a Schottky diode, a light-emitting diode, a semiconductor laser, a photodiode, a transistor, etc., but is not limited to these devices. This invention is particularly useful for micro-LEDs and VCSELs. This invention is especially useful for a semiconductor laser which require smooth regions for cavity formation.
The following describes alternative embodiments of the present invention.
The first embodiment is directed to a III-nitride-based light emitting diode device 110 with an attached pattern for extraction and/or guiding light, and a method for manufacturing the same.
As shown in schematics 300a1, 300a2, 300a3, 300a4 in
As shown in schematic 300b1, 300b2, 300b3 in
Preferably, the surface to start the ELO growth and the upper surface of the growth restrict mask 102 should be within 3 Otherwise, if the application demands deeper patterns, such that h2 is above 3 one may follow an approach described in the third embodiment where a trench pattern is formed on the host substrate 101 to keep the surface of the host substrate 101 to the surface of the growth restrict mask 102 below 3 μm.
For a proof of concept, a feasibility experiment was conducted to transfer a random valley-hill pattern on to the interface 111 of the III-nitride ELO layer 105; however, several other patterns, such as PhCs, or a curved concave mirror (described in the second embodiment), are also possible.
A non-polar GaN substrate 101 was used for this study. A random valley-hill pattern in the form of stripes was placed on the host substrate 101, as shown in schematic 400a1 and SEM image 400a2 in
In the next step, a combination of growth restricts masks 102 comprised of 300 nm of SiO2 was placed on the patterned host substrate 101 and opened parallel stripes on host substrate 101 along a c-axis, which serve as open areas 103, as shown in schematic 400b1, SEM image 400b2, schematic 400b3 and schematic 400b4 in
As shown in schematics 400c1, 400c2, 400c3, SEM image 400c4, and AFM image 400c5 in
Note that, for the sake of demonstration, the random valley hill pattern was limited to stripes; however, the same results can be observed even when the pattern is extended to the whole device 110.
The same is true when the pattern design is a PhC, wherein the PhC is implemented on the backside interface 111 of the III-nitride ELO layers 105 with the emitted light from the device 110 controlled to desired angles.
Then, the devices 110 with the patterned III-nitride ELO layers 105 are transferred onto a desired carrier, which can be a display panel, using tools such as a PDMS elastomer stamp, vacuum chuck, etc. The display panels can be used in a number of applications, such as TVs, laptops, phones, AR/VR/MR headsets, HUDs, etc.
The second embodiment is about increasing the pattern size to realize a simple fabrication method for curved mirror VCSELs. Plano concave mirror VCSELs seem to be attractive for long cavity resonant cavity VCSELs, in terms of controlling resonances of the cavity wavelength and for thermal management. Researchers have proposed methods such as thinning the host substrate to the desired cavity length, forming a curved mirror on the back of the substrate, and photochemical etching for realizing thin cavity VCSELs, etc. However, these approaches have severe disadvantages in terms of controllability and substrate orientation limitations. The proposed method in this application works irrespective of substrate orientation or crystallinity, and moreover recycling of the host substrate is also possible.
As shown in schematics 500a1 (top view), 500a2 (side view) in
As shown in schematic 500b1 (side view) in
As shown in schematics 500c1 and 500c2 in
As shown in schematics 500d1 (top view), 500d2 (plan view), 500d3 (side view) in
The third embodiment is about types of preparations to achieve patterns at the interface 111 of the III-nitride ELO layers 105, as indicated in
Type 1 Pattern
As shown in schematics 600a1, 600a2, 600a3, 600a4 in
Type 2 Pattern
As shown in schematics 600b1, 600b2, 600b3, 600b4 in
Type 3 Pattern
Another alternative embodiment is shown in schematics 600c1, 600c2, 600c3, 600c4, 600c5 in
In some cases of Type 1, when h2 demands more depth (>3 μm), then the resulting h1 will also increase to meet the condition that h1 must be greater than h2. As a result, the III-nitride ELO layers 105 originating at the open area 103 of the host substrate 101 may find it difficult to rise over the designed pattern shapes on the growth restrict mask 102. In such a scenario, the rising surface S near to the surface of growth restrict mask 102 would be preferred.
One such possibility is presented in Type 3. To achieve this, a III-nitride host substrate 101 is provided, as shown in schematic 600c1. A trench of height h is formed on the host substrate 101 at the open region 112, as shown in schematic 600c2. The growth restrict mask 102 of thickness h1 is laid over the substrate 101 to cover the trench at the open region 103 and the host substrate 101, as shown in schematic 600c3. The desired pattern is formed on the growth restrict mask 102, for example, with depth h2, as shown in schematic 600c4. The open area 103 is opened on the trench of the host substrate 101 so that surface S is just below a thickness d, as shown in schematic 600c5, thus providing a wall of lesser height for the later-grown III-nitride ELO layers 105.
In a fourth embodiment, AlGaN layers are used as the island-like III-nitride semiconductor layers 105, 107. The AlGaN layers may be grown as the ELO III-nitride layers 105 on various off-angle substrates 101, as well as the device layers 107. The AlGaN layers 105, 107 can have a very smooth surface using the present invention. Using the present invention, the AlGaN layers 105, 107 can be removed, as the island-like III-nitride semiconductor layers 105, 107, from various off-angle substrates 101.
In this case, an active laser, which emits UV-light (UV-A or UV-B or UV-C), can be grown on the AlGaN ELO layers 105. After removal, the AlGaN ELO layers 105 with an active region 107a looks like a UV-device with a pseudo-AlGaN substrate. By doing this, one can obtain a high-quality UV-LED device 110, which is useful in applications of sterilization, lighting, etc.
In a fifth embodiment, the III-nitride ELO layers 105 are grown on various off-angle substrates 101. The off-angle orientations range from 0 to +15 degrees and 0 to −28 degrees from the m-plane towards the c-plane. The present invention can remove the bar of the device 110 from the various off-angle substrates 101. This is a big advantage for this technique, as various off-angle orientations semiconductor plane devices 110 can be realized without changing the fabrication process.
In a sixth embodiment, the III-nitride ELO layers 105 are grown on c-plane substrates 101 with two different mis-cut orientations. The III-nitride semiconductor layers 105, 107 are removed after processing a desired device 110 using the invention described in this application.
In a seventh embodiment, a sapphire substrate 101 is used as the hetero-substrate 101. The resulting structure is almost the same as the first and second embodiments, except for using the sapphire substrate 101 and a buffer layer. In this embodiment, the buffer layer may also include an additional n-GaN layer or an undoped GaN layer. The buffer layer is grown at a low temperature of about 500-700° C. degrees. The n-GaN layer or undoped GaN layer is grown at a higher temperature of about 900-1200° C. degrees. The total thickness is about 1-3 μm. Then, the growth restrict mask 102 is disposed on the buffer layer and the n-GaN layer or undoped GaN layer.
On the other hand, it is not necessary to use the buffer layer. For example, the growth restrict mask 102 can be disposed on the hetero-substrate 101 directly. After that, the III-nitride ELO layers 105 and/or III-nitride-based semiconductor device layers 107 can be grown.
An eighth embodiment describes a device made using the first, second or third embodiments described above. A random valley-hill pattern LED device 110 is presented in schematic 700a1 in
This approach of having a light extraction/controlling structure near the active region 107a will certainly improve light extraction efficiency. Conventionally, such light extraction and/or controlling structures were fabricated on either the backside of the substrate 101 or on the front surface of the device 110, where the former depends on substrate 101 conductivity, and the latter imposes restrictions on the current injection and complicates the fabrication. However, the method described in this invention still allows for fabrication on flat surface 108 of the light emitting device 110, while allowing light controlling structures to be placed near the active region 107a. Alternatively, different shapes, such as PhCs, can be used with this LED to provide the best light extraction. Schematics 300a2, 300a3 and 300a4 in
In a similar way, a plano-concave mirror resonant cavity VCSEL device 110 can be fabricated, as shown in schematic 700a2 in
This concludes the description of the preferred embodiment of the present invention. The foregoing description of one or more embodiments of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto.
This application claims the benefit under 35 U.S.C. Section 119(e) of the following co-pending and commonly-assigned application: U.S. Provisional Application Ser. No. 63/106,444, filed on Oct. 28, 2020, by Srinivas Gandrothula and Takeshi Kamikawa, entitled “METHOD OF TRANSFERRING A PATTERN TO AN EPITAXIAL LAYER OF A LIGHT EMITTING DEVICE,” attorneys' docket number G&C 30794.0786USP1 (UC 2021-565-1);which application is incorporated by reference herein. This application is related to the following co-pending and commonly-assigned applications: U.S. Utility patent application Ser. No. 16/608,071, filed on Oct. 24, 2019, by Takeshi Kamikawa, Srinivas Gandrothula, Hongjian Li and Daniel A. Cohen, entitled “METHOD OF REMOVING A SUBSTRATE,” attorney's docket no. 30794.0653USWO (UC 2017-621-2), which application claims the benefit under 35 U.S.C. Section 365(c) of co-pending and commonly-assigned PCT International Patent Application Serial No. PCT/US18/31393, filed on May 7, 2018, by Takeshi Kamikawa, Srinivas Gandrothula, Hongjian Li and Daniel A. Cohen, entitled “METHOD OF REMOVING A SUBSTRATE,” attorney's docket no. 30794.0653WOU1 (UC 2017-621-2), which application claims the benefit under 35 U.S.C. Section 119(e) of co-pending and commonly-assigned U.S. Provisional Patent Application Ser. No. 62/502,205, filed on May 5, 2017, by Takeshi Kamikawa, Srinivas Gandrothula, Hongjian Li and Daniel A. Cohen, entitled “METHOD OF REMOVING A SUBSTRATE,” attorney's docket no. 30794.0653USP1 (UC 2017-621-1);U.S. Utility patent application Ser. No. 16/642,298, filed on Feb. 26, 2020, by Takeshi Kamikawa, Srinivas Gandrothula and Hongjian Li, entitled “METHOD OF REMOVING A SUBSTRATE WITH A CLEAVING TECHNIQUE,” attorney's docket no. 30794.0659USWO (UC 2018-086-2), which application claims the benefit under 35 U.S.C. Section 365(c) of co-pending and commonly-assigned PCT International Patent Application Serial No. PCT/US18/51375, filed on Sep. 17, 2018, by Takeshi Kamikawa, Srinivas Gandrothula and Hongjian Li, entitled “METHOD OF REMOVING A SUBSTRATE WITH A CLEAVING TECHNIQUE,” attorney's docket no. 30794.0659WOU1 (UC 2018-086-2), which application claims the benefit under 35 U.S.C. Section 119(e) of co-pending and commonly-assigned U.S. Provisional Patent Application Ser. No. 62/559,378, filed on Sep. 15, 2017, by Takeshi Kamikawa, Srinivas Gandrothula and Hongjian Li, entitled “METHOD OF REMOVING A SUBSTRATE WITH A CLEAVING TECHNIQUE,” attorney's docket no. 30794.0659USP1 (UC 2018-086-1);U.S. Utility patent application Ser. No. 16/978,493, filed on Sep. 4, 2020, by Takeshi Kamikawa, Srinivas Gandrothula and Hongjian Li, entitled “METHOD OF FABRICATING NON-POLAR AND SEMI-POLAR DEVICES USING EPITAXIAL LATERAL OVERGROWTH,” attorney's docket no. 30794.0680USWO (UC 2018-427-2), which application claims the benefit under 35 U.S.C. Section 365(c) of co-pending and commonly-assigned PCT International Patent Application Serial No. PCT/US19/25187, filed on Apr. 1, 2019, by Takeshi Kamikawa, Srinivas Gandrothula and Hongjian Li, entitled “METHOD OF FABRICATING NON-POLAR AND SEMI-POLAR DEVICES USING EPITAXIAL LATERAL OVERGROWTH,” attorney's docket no. 30794.0680WOU1 (UC 2018-427-2), which application claims the benefit under 35 U.S.C. Section 119(e) of co-pending and commonly-assigned U.S. Provisional Patent Application Ser. No. 62/650,487, filed on Mar. 30, 2018, by Takeshi Kamikawa, Srinivas Gandrothula, and Hongjian Li, entitled “METHOD OF FABRICATING NON-POLAR AND SEMI-POLAR DEVICES USING EPITAXIAL LATERAL OVERGROWTH,” attorney docket number G&C 30794.0680USP1 (UC 2018-427-1); and U.S. Utility patent application Ser. No. 17/049,156, filed on Oct. 20, 2020, by Srinivas Gandrothula and Takeshi Kamikawa, entitled “METHOD OF REMOVING SEMICONDUCTING LAYERS FROM A SEMICONDUCTING SUBSTRATE,” attorney's docket no. 30794.0682USWO (UC 2018-614-2), which application claims the benefit under 35 U.S.C. Section 365(c) of co-pending and commonly-assigned PCT International Patent Application Serial No. PCT/US19/34868, filed on May 30, 2019, by Srinivas Gandrothula and Takeshi Kamikawa, entitled “METHOD OF REMOVING SEMICONDUCTING LAYERS FROM A SEMICONDUCTING SUBSTRATE,” attorneys' docket number G&C 30794.0682WOU1 (UC 2018-614-2), which application claims the benefit under 35 U.S.C. Section 119(e) of co-pending and commonly-assigned U.S. Provisional Application Ser. No. 62/677,833, filed on May 30, 2018, by Srinivas Gandrothula and Takeshi Kamikawa, entitled “METHOD OF REMOVING SEMICONDUCTING LAYERS FROM A SEMICONDUCTING SUBSTRATE,” attorneys' docket number G&C 30794.0682USP1 (UC 2018-614-1);all of which applications are incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US21/56962 | 10/28/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63106444 | Oct 2020 | US |