The present invention relates to the field of distributed gaming. More specifically, the present invention relates to the field of distributed gaming utilizing a mobile device.
In the United States alone there are over 170 million registered cellular phones. With the expiration of the U.S. Pat. No. 4,592,546 to Fascenda and Lockton, companies are able to now use the cellular phone and other mobile communication devices utilizing a multicast network to control television viewers in games of skill based upon predicting, for example, what the quarterback may call on the next play within a football game. Both prime time and programs syndicated on a market-by-market basis lend themselves to games of skill. In addition, games of skill with a common start time can be conducted simultaneously among cellular phone owners, based on classic card, dice, trivia, and other games. In order to avoid the anti-gaming laws in the various states, the winners must be determined by the relative skill, experience and practice of the player in each discrete game.
U.S. Pat. No. 5,813,913 ('913) to Berner and Lockton provides for a central computing system which includes a means of grouping participants having similar skill levels together in simultaneous, but separate, levels of competition playing an identical game. The relative performances are communicated to only those participants competing at the same skill level. The '913 patent also provides for a wireless receiving device to permanently store the specific skill level for each participant for each type of common event such as those based on televised sports or game shows. The '913 patent provides for a telephonic link at the completion of the game to collect information and update the skill level of the participants of a particular game. When a person achieves sufficient points or meets other objective criteria to graduate into another skill level, a method is provided for accomplishing this in the central computer and then transmitting an alert to the participant notifying them of their promotion. The '913 patent describes awarding prizes and providing recognition for the members of each discreet skill level in a common game. All users, no matter what level they are on, receive the same number of questions and thus the possibility of earning the same number of points. Thus direct comparisons between users at different levels, although not encouraged are possible. Such comparisons between players of disparate skills can lead to user discouragement.
Games of skill and chance have an intrinsic excitement and entertainment value. Any game is greatly enhanced by a participant's ability to know how their performance compares in relation to other participants and/or to historical performance for the game throughout the contest. As with any game of skill, competition among friends, or with strangers of similar experience, or the ability at ones option, sometimes for an extra consideration, to compete in a separate team or individual contest, offers the opportunity of increased enjoyment and prizes.
Games of skill that rely on participation by watching an event on a television have potential latency issues since television signal reception is not synchronized nationwide. For example, a participant in Texas using a satellite dish network may experience a 3 second delay compared to an individual in California using a cable network. Also, there are delays between individuals attending a game live and those watching the game live on television. Furthermore, for taped programs, both those shown to viewers in time zones or those syndicated on a market-by-market basis, there are potential delay issues as experienced with the live broadcasts in addition to other possible differences in timing of the broadcasts. Therefore, to maintain user enjoyment and fairness for all participants, these delays must be neutralized.
A method of and system for handling latency issues encountered in producing real-time entertainment such as games of skill synchronized with live or taped televised events is described herein. There are multiple situations that are dealt with regarding latencies in receiving a television signal with respect to real-time entertainment based on the unfolding games played along with the telecasts. Systemic delays, arbitrarily imposed delays of a broadcast signal and variances in the precise broadcast times of taped television programs have to be equalized so as to provide fair entertainment.
In one aspect, a method of equalizing effects of latency differences in a game of skill comprises grouping participants into a set of cohorts viewing a telecast delivered by identical transmission and reception systems, determining an amount of delay for each cohort in the set of cohorts and substantially equalizing the set of cohorts through adjustment of the amount of delay. The method further comprises determining how each participant receives a television signal. How each participant receives a television signal is selected from the group consisting of an over the air broadcast, a cable system and a satellite system. The participants are grouped based on how the participants receive a television signal. The method further comprises determining if there is additional processing of a television signal in a reception location. The additional processing occurs within a participant's location selected from the group consisting of a public place, a home, an office and a bar. Since each cable system may impose different delay at their head-ends, the specific cable provider is identified. Determining the amount of delay comprises one or more of requiring the participants to answer questions related to their television system service, requiring the participants to mark on a game playing client device, a precise time that a predetermined audio or visual event is viewed on a television program, utilizing a GPS function in a cellular phone to determine a physical location of each of the participants, utilizing an employee of a game producer who is a member of each cohort in the set of cohorts to determine the amount of delay, inserting an artifact in the telecast in which the participants respond to, and establishing the amount of delay through an automated system which samples an audio or video track of a satellite, cable or over the air broadcast television signal, linked to a game server, to provide information related to a precise arrival of an underlying television picture. An average is taken when requiring participants to mark the precise time the predetermined audio or visual event is viewed on the television program. Equalizing the set of cohorts comprises at least one of time stamping the amount of delay on a game lock out signal, imposing the amount of delay on an entire game data stream and sending game control data to the participant cohorts at the same time where client software delays presentation of game data based on a precise time of reception of the telecast by the group.
In another aspect, a method of preventing a first set of participants at a live event from having an advantage over a second set of participants watching the live event on television comprises determining a cellular site that serves a set of cellular phones at a venue site, determining the set of cellular phones that are utilizing the cellular site of the venue site, determining a subset of cellular phones within the set of cellular phones that are located within the venue site and generating separate groups of competitions based on the subset of cellular phones within the set of cellular phones that are located within the venue site. A first group within the separate groups of competitions includes only the first set of participants and a second group within the separate groups of competitions includes only the second set of participants. An application on a server determines the cellular site, the set of cellular phones utilizing the cellular site and the subset of cellular phones located within the venue site. An application on each cellular phone within the subset of cellular phones determines if the cellular phone is located within the venue site.
In another aspect, a method of equalizing effects of latency issues with a taped television broadcast comprises storing a set of data files on a server, determining one or more start times and transmitting the set of files from the server to each mobile device at a transmission time corresponding to an appropriate start time for the mobile device. An application starts using the set of files at the one or more start times. The set of data files are game data files. Determining the one or more start times includes at least one of utilizing an employee of a game provider based on visual observation of a telecast, utilizing at least one of an audio and video recognition system with online access to the broadcast for each separate market which provides real-time tracking of the broadcast to the server, adding at least one of an audio and video event in the television broadcast which is recognizable at a starting point, designating at least one of the audio and video event in the television broadcast which is recognizable as the starting point, utilizing an audio signal, inserted within the broadcast recognizable by an audio receiver of the mobile device, and using a vertical blanking interval.
In yet another aspect, a system for equalizing effects of latency issues for a game of skill comprises a mobile device and a server coupled to the mobile device wherein the server sends a lockout signal at an appropriate time based on a measured amount of delay to prevent a user from submitting a response after they see the outcome. The mobile device is within a group of mobile devices. The server determines which group the mobile device is in. The server stores game control data and transmits the game control data to the mobile device. The game control data includes delay information for implementing the lockout signal. The server contains a location determination application for determining the location of the mobile device. The mobile device contains a location determination application for determining the location of the mobile device. Variances in delays in receiving the television signal determine delays in transmitting applicable data files within a television signal reception path
In another aspect, a device for equalizing effects of latency issues for a game of skill comprises a storage device and a set of applications contained within the storage device for sending a lockout signal at an appropriate time based on a measured amount of delay to prevent a user from submitting a response after they see the outcome. The set of applications determines which group mobile devices coupled to the device are in. The device stores game control data and transfers the game control data to mobile devices. The game control data includes delay information for implementing the lockout signal. The set of applications includes a location application for determining the location of mobile devices. The amount of delay accounts for delays within a television signal reception path.
A network of devices comprises a plurality of mobile devices and a server coupled to the mobile devices wherein the server groups the plurality of mobile devices into a set of cohorts and wherein the server sends a lockout signal at an appropriate time based on an amount of delay to prevent users from submitting a response after they see the outcome. Each cohort within the set of cohorts is based on a signal reception path. The signal reception path is selected from the group consisting of an over the air network, a cable network and a satellite network. The server stores game control data and transfers the game control data to each mobile device within the plurality of mobile devices. The game control data is specific for each cohort within the set of cohorts. The game control data includes delay information for equalizing the lockout signal.
The amount of delay accounts for delays within a television signal reception path.
U.S. Provisional Patent Application No. 60/692,356, filed Jun. 20, 2005, and entitled “SYSTEMS AND METHODOLOGIES ENABLING A CELL PHONE BASED SUBSCRIPTION SERVICE OFFERING A VARIETY OF SCHEDULED GAMES IN CONNECTION WITH LIVE TELEVISION PROGRAMMING,” is incorporated by reference herein.
The present invention addresses three separate classes of latency issues for the length of time it takes a television signal to reach a viewer in producing real-time entertainment such as games of skill synchronized with television programming. The latency issues are: 1) systemic propagation delays in the delivery of a television signal to a receiver, 2) arbitrarily imposed delays of a broadcast television signal and 3) variances in precise broadcast times of segments of taped television programs between local and national commercials, sold through syndication to individual television stations.
Systemic Propagation Delays
There are specific challenges facing a service comprised of games or other entertainment played by remote participants utilizing cellular phones or the Internet, in connection with a live or taped telecast. Examples are live baseball, basketball and football games, taped game shows such as Wheel of Fortune™ and Jeopardy™ or other television programming such as predicting the winners of the Oscars. In a game of skill, for example, fair competition necessitates that a fast paced game, based on the unfolding television action has a level playing field for all participants regardless of how they receive their television signal. Propagation delays result from, among other things, the number of satellite hops required to deliver the signal, the method of processing and rebroadcasting the signal after it is received by cable systems head ends or an over the air broadcast television station, and whether or not the signal is further processed for high definition television. Furthermore, digital television recording systems (DVRs) such as TiVo™ are also able to generate delays in the viewing of the picture after receipt via satellite or cable. These delays are able to result in a difference between the first signal received and the last received of more than several seconds.
People have an unsatisfactory experience and/or others are able to gain a potential competitive advantage from the variances in the exact time one viewer sees an event on their television versus another competitor who receives their television signal through a different delivery path. In the U.S., the 120 million television homes receive their signal either through an over the air broadcast, cable system or via satellite delivery. Each delivery system can impose propagation delays of various time lengths. If the delay between the time a viewer with the least amount of delay and the person receiving the signal with the greatest amount of delay exceeds several seconds, some inequalities in game experience and play are able to result.
One example is a game is based upon a football telecast, wherein competitors predict the play that the coaches and/or quarterback call prior to the snap of the ball. The competitor's prediction is based among other things on their observation of the down, distance and the offensive and defensive formations on the field and tendencies of the teams in these situations. Such a game utilizes a “lock out” signal, as described in the U.S. Pat. No. 4,592,546 to Fascenda, entitled “Game of Skill Playable by Remote Participants in Conjunction with a Live Event,” which is incorporated by reference herein, to prohibit the entry of predictions after the competitor sees the play begin to unfold, at the snap of the ball. The time stamped “lock out” signal is generated by a game producer also viewing the same telecast from a different location. If the game producer is viewing a television signal several seconds before some competitors and generating a time stamp based on that event, an advantage is able to result if the difference in the time stamp and the receipt of the “lock out” signal is more than several seconds earlier in relation to another competitor's television signal which is delayed. During this period of time, for example, on a first or second down situation, a competitor receives the “lock out” just as the quarterback receives the snap and the corresponding television signal at the same time as the game producer while another competitor with a delayed television signal, receives a “lock out” signal while the quarterback is approaching the line of scrimmage. In another example, if the game producer is viewing a signal after a viewer, a competitor might see the quarterback start to drop back into a “shot gun” formation, making the likelihood of a pass considerably higher. This latter player might have time to change his prediction from, “run” to “pass” before receiving a “lock out” generated at the snap of the ball. A person consistently receiving a “lock out” later than another competitor might, through the course of the game, gain some competitive advantage.
While it is not clear that sufficient enough competitive advantage is gained between a competitor receiving his “lock out” signal precisely at the snap of the ball and one who is locked out a few seconds prior to the snap of the ball, this discrepancy could present the appearance of a playing field that is not level, and one of the primary benefits of the system addressed in the present invention is to ensure the competitors feel they are on equal footing.
The present invention solves the above described issue through a system and method to effectively equalize systemic propagation delay variances to a required level dictated by the demands and rules of a particular game, so that a material competitive advantage is not obtained and the user experience is optimized for all players.
The solution first relies on the determination of how each viewer is receiving their television signal (e.g. via an over the air broadcast in a metropolitan area, via a particular cable system or a particular satellite system). All subscribers to a particular service provider or who are receiving an over the air broadcast in a specific metropolitan area will receive the signal at their location at the same time. It is also able to be determined if there is further processing of the signal within the homes, office, bar and others, which could further increase the total length of the propagation delay. Examples would be the use of a DVR, such as TiVo™. The present invention relies on a variety of methodologies which are able to be utilized to determine the time difference between the reception of the television picture being utilized by the central game production facility where “lock out” signals are generated and each separate group of viewers around the country or around the world.
For this system, the total viewing population for a telecast is divided into segments or blocks of viewers referred to as “cohorts.” For example, the 2 million inhabitants of the San Francisco Bay Area would be divided into approximately 1 over the air broadcast, 3 satellite independent providers and several cable “head ends” or central broadcast points serving a “cohort.” This information would be gathered at a central game server, and all players registered to play in a particular contest would be assigned to a specific cohort of viewers.
The following are some methodologies for determining the delays experienced by various cohorts which are able to be used in combination or separately.
In one methodology, upon joining the service and prior to initial game play, subscribers and competitors are required to identify the method by which they receive their television signal and identify the cable or satellite service provider and answer questions relative to whether or not they subscribe to an analog or digital high definition service or utilize a DVR. This information is able to be verified by sending questions to their cellular phones concerning commercials, station breaks and the precise time they are viewed or utilizing other information only seen by members of that cohort.
In another methodology, a routine is established upon entry into the game where the individual viewer is asked to mark the precise time a predetermined audio or visual event in the television program occurs, such as the initial kickoff, which would establish the deviation of their receipt of their television picture from the television signal utilized by the game producers. While some viewers might attempt to cheat by delaying their input, the earliest entries from the cohorts in this group would be averaged to establish the accurate delta between the receipt of the telecast by the production crew and those in each discrete sub group of viewers.
In another methodology, the GPS function in the cellular phone is used to determine the physical location of a viewer which is matched to a database of cable lead ends or over the air broadcast stations available to a consumer in that precise location.
In another methodology, employees of the game producer who are members of the subgroups which constitute the competitors/viewers, e.g. a subscriber to Comcast Cable in San Francisco, are utilized by the game service provider. These individuals would provide the current propagation delay information sent to the game server utilizing their identification of a recognizable event they observe on their television set, such as the initial snap of the ball.
In another methodology, audio or video artifacts or information done in cooperation with the television signal provider are inserted which must be immediately responded to by the competitor to verify the source of their television signal or monitored at cooperative viewers' television sets.
In another methodology, the various delays through an automated system linked to the game server, which continuously samples the audio or video track of the underlying satellite, cable or over the air broadcast television signals are established around the country to provide the information of the precise arrival of the underlying television picture.
Utilizing software resident in the game control server, game control data for each set of viewers/competitors of the game in progress who are receiving their television picture through the same source are batched together by the game control server, and the appropriate delay is either time stamped on the game “lock out” signals, or is imposed on the entire data stream so that competitors receiving their television information slightly behind or ahead of others gain no material competitive advantage. Another method is for the game control server to send all the game control data to all of the viewers/competitors of the game at the same time, and the client software is able to delay the presentation of the game data based on the viewers' cohort.
Utilizing these methodologies to measure the delays in each cohort, each cohort of viewers would have artificial time delays on the game control information imposed by the game control server, which would substantially equalize the receipt of “lock out” data relative to the event triggering the “lock out,” based on the underlying television programming, for example, the snap of the football. Players receiving the television signals in advance of the one with the slowest receipt of the television signal would receive “lock out” signals slightly delayed or time stamped with a slightly later time as described in U.S. Pat. No. 4,592,546. By providing a correspondingly delayed lock out to a viewer receiving their signal later, a potential advantage is mitigated.
Alternatively, this time equalization from cohort to cohort could, for example, involve artificially delaying the transmission of the game control data stream sent to all competitors cell phones or other mobile devices by the appropriate amount of seconds, to sufficiently minimize the advantage a player with a few more seconds of television based information would have. For example, by time stamping the “lock out” signal at an earlier event, such as when the team breaks from the huddle, the chance of some cohorts seeing the actual beginning of the play is eliminated and the discrepancy in propagation delay provides little or no advantage.
Arbitrarily Imposed Delays on the Broadcast of the Signal and the Physically Present Competitor
As a result of the Janet Jackson half time show episode at the 2004 Super Bowl, some networks have announced their intentions to impose up to a 7 second delay on telecasts of live sporting events. More recently an obscenity uttered by a competitor at the conclusion of a live NASCAR race has resulted in another network announcing it may impose a 5-7 second delay on future broadcasts of NASCAR races. These arbitrarily imposed delays are a significantly longer duration than those resulting from the above described propagation delays of the broadcast television or cellular network control information.
A distinct advantage is able to arise for a game player who is physically present at an event being televised which is the basis of a contest of skill in the home, or other location, separate from the live game venue. This is because in certain instances they will receive “lock out” signals generated for competitors among the television viewing audience, particularly if the game producer is not physically present at the venue, but producing by viewing a telecast. This discrepancy would permit prediction entry as much as 7 seconds later than those watching an artificially delayed television picture. This magnitude of delay can result in a significant competitive advantage for the game player who is physically present. For example, a soccer or hockey contest of skill might contain an element where a competitor is given a limited number of opportunities to predict if there will be a “shot on goal” within the next 5 seconds. The 5 second advantage to the competitor physically present would be significant, because the receipt of a lockout signal generated for the huge television audience could occur after a shot had occurred.
In a contest based on a football game, a competitor present at the stadium would receive their “lock out” signals after the play was underway and could often determine whether the play was a pass or a run prior to receipt of the lockout signal. It is also likely that other live televised events such as The Oscars, Grammy's, beauty contests and other television programming that can support games of skill would impose delays on the telecast for the same or different reasons, also providing the opportunity for a competitive advantage for those who are attending the event in person.
The cellular telephone system currently has methodologies to determine a user's physical location. The 911 emergency laws mandate the cellular systems to have the capability of determining the location of a 911 emergency caller within 150 feet. More sophisticated approaches combine cellular site location technology with geosynchronous positioning satellite capabilities. Companies like Qualcomm™ have implemented various location technologies such as Snaptrack, Snap Smart and Snapcore, which provide a cellular phone's physical location within a matter of yards.
For each televised live event, the physical venue for this event would be known by the organizer of a game of skill in advance. Therefore, it is possible to determine for each contest of skill the specific cellular sites which will serve cellular phone owners physically present at that venue. A methodology is employed to identify all of the cellular phones logging into the game server registering to play the game of skill which are co-located within cellular sites servicing the stadium or auditorium where the televised live event is taking place. The present invention is also able to involve a communication methodology between the cellular carrier and the game control computer software contained in the game application resident on a game competitor's phone, which would identify the cellular phone physically in the stadium.
Before the start of the contest of skill, the system informs the central computer of the game selected to be played by each competitor, for example, the San Francisco 49ers versus the New York Giants. The central game control server's software would hold current information on the physical location of the stadium of each game, for example, Candlestick Park in South San Francisco, and the cellular sites covering this location. The software resident on the cellular phone or on the server then identifies the phone as one located physically at the telecast game's venue.
To ensure that potential competitors at the live venue are able to also compete in a contest of skill, the central game server will separate the scoring data and game control data for competitors using these cellular phones in this specific location from the general pool of competitors who are not so located, but watching the game via television. A separate contest is then generated and scored for those competitors who have the advantage of viewing the event live, and a separate prize pool is awarded. This separate game would be produced though the observation of the actual game physically at the venue or through the operation of a non-delayed satellite feed.
If it is ultimately determined that certain groups of television viewers, as opposed to live event attendees, who are competitors in these games of skill are gaining sufficient enough competitive advantage, segregating those players at the extreme ends of the propagation delays, into two or more separate contests with separate sets of prizes, may also be employed as described above. For example, separate contests for satellite viewers versus cable and over the air viewers are able to be generated.
In addition to implementing the above-mentioned solutions to latency issues, additional groups are able to be generated if the delays between signal providers are not resolved. For example, all viewers with satellite television signals compete against each other, and all cable television viewers compete against each other, with no cross competition.
Taped and Syndicated Television Programs
A separate but related latency problem arises in the case of syndicated television shows, which are by necessity pre-taped. Examples are game shows like Wheel of Fortune™ and Jeopardy™. These pre-recorded television game shows are generally syndicated, meaning they are sold to a specific television station on an exclusive lease for the local television market served by the station's signal. The television stations generally air these half hour episodes at various times in “prime time access,” which is generally considered between 6-8 pm. Therefore, with 3 different time zones in the United States, the start times will differ from market to market. In addition, the precise time each commercial bracketed television show segment that is broadcast is able to vary by a few seconds based on the time each station's engineering personnel starts the show's segments after the insertion of local and national commercials. Thus, for a show like Jeopardy™, there might be over 100 separate slightly different broadcasts from a time standpoint for a single episode of Jeopardy™ on a given day. In addition, these syndicated telecasts can also experience the same propagation delays as described above.
Contests of skill on cellular phones around these syndicated telecasts are produced with the cooperation of the game show producers, and game data files are produced which are precisely time-synchronized to the final video tape of the television game show. These files must be precisely synchronized and a delay of just a few seconds could give an unfair competitive advantage to a viewer who is receiving their “lock out” signal later than another competitor in a fast paced game like Jeopardy™. The game data files must be synchronized with the television show at the beginning of the program and again as the show returns to the game competition from each commercial break.
This solution addresses the separate, but related problems of synchronizing game data files with the broadcast of prerecorded and syndicated games, entertainment, reality or other television programming that is aired in different time zones at the choice of the purchasing television station. As opposed to live sporting events, the game production for this genre of programming is not done live through real-time observation of the unfolding telecast but is produced in advance with the cooperation of the show producer as a time synchronized file utilizing the final edited for broadcast, television program.
In general, the game data files are divided into separate “segments” which comprise the entire television program and aired between the insertion of national, regional and local advertising. As the television program returns from the opening commercials, the initial game or entertainment segment is launched by the game producer, synchronized to the playing of the television tape, and the data files for this segment would end with the first commercial break. The other game “chapters” are resynchronized as each segment of the telecast resumes from commercial break. The local telecasts might have variations of anywhere from 1 to 5 seconds, or more, resulting from the use of different commercials by different stations, and the variances in the local production by the engineering management of the syndicated telecasts.
This invention protects a system which first determines all of the separate and unique television markets where the cellular phone service will be offered in connection with a syndicated, taped version of an underlying television program, for example, Jeopardy™. Network broadcasts usually air in three separate time zones. This information is available from the shows syndicator, for example, Jeopardy™, the syndicator King World™ or Sony™, the show's licensor. This information is also publicly available through the various television guides. The game production servers hold the pre-produced game data files to be broadcast to the cellular phones of the participating subscribers, containing, for example, the correct answers and possibly some intentionally wrong multiple choice answers in the case of Jeopardy™ or other multiple choice based game shows. The server begins the broadcast of its time synchronized files for each discrete telecast of a single television program at a precise start point for each “segment” or chapter. With knowledge of the precise timing of the discrete segments of the broadcast, for each separate syndicated market, the server transmits the pre-recorded files in most cases, at a slightly separate and different time to each viewer who is viewing the telecast in a particular market via a particular broadcast, satellite or cable signal.
The precise start times of the beginning episode of a game show and the start times of the other segments, beginning as the show resumes after a national and local commercial are delivered to the server through various methodologies.
One methodology requires the cooperation of an employee of the game provider based on visual observation of the telecast for that market, utilizing a personal computer and the Internet, or by utilizing their local cellular phone, all coupled to the game server.
Another methodology includes utilizing an audio or video recognition system with online access to the broadcast of the underlying television program for each separate market which provides real-time tracking of the television broadcast to the game control server, ensuring the game data file is able to be precisely synchronized to the television picture. Information is also able to be inserted in a Vertical Banking Interval (VBI) of the taped syndicated show and tracked online in real time by the game control server. For remote telecasts and online connection from a remote device, reading data embedded in the VBI via a high speed connection to the central game server is utilized. Utilizing some of the procedures outlined above, the propagation delays in the receipt of the cellular transmissions are also monitored and the game server adjusts the data files containing the “lock outs” to accommodate the systemic delay in the delivery of the game data on the cellular networks.
Another methodology, with the cooperation of the producers of game shows, precise audio or video events in the telecast could either be added to the video, such as a visible count down, or existing events in the telecast identified by the producers as synchronization points which the competitors could utilize as start points for the previously downloaded data files at the press of an appropriate button on their cellular phone. This would trigger the launch of a program previously downloaded to the phone's RAM. Then, time synchronization would be launched.
One more methodology uses an audio signal, possibly sub-audible to humans, which is inserted into the taped audio track recognizable by the audio receiver in a cellular phone which would be utilized to start and/or continually keep the pre-produced data files resident on the cellular phone in synchronization with the telecast.
To utilize the present invention, for the most part, a participant in a game of skill playing on his/her mobile device does not have to perform any different actions when playing a standard game of skill without the present invention. The user simply plays as usual except that with the present invention, users with faster or slower connections do not receive any advantages or disadvantages. In embodiments which require user input, the user performs an action, such as recognizing an event to synchronize the game with a live or taped event. For game producers, implementing the present invention is able to be automated or performed manually. Automation includes technology to automatically determine the start of an event such as automatically detecting the start of a football game. Manual implementation requires a person to watch an event and respond to that event such as watching a football game and noting when the first play occurs in order to synchronize the “lock out” signal appropriately.
In operation, the present invention is able to synchronize separate games of skill which have different latencies based on television signal reception differences, random delays and/or other delays. For live events where all of the participants are watching the event on television and participating in a game of skill corresponding to that live event, delays related to the television signal reception differences have to be handled. Television signal reception differences occur because some televisions receive the live event signal via satellite, while others have cable and still others have something else. The signals do not arrive at the participants at the same time. Therefore, to ensure fair competition, participants are separated into groups or cohorts based on delivery system type, location and other parameters that affect the timing of the signal. Then, using a mechanism described above, the delay for each group is determined. Based on that determined delay, the game of skill is able to be configured with the appropriate timing for a lock out signal, so that each participant has the same amount of time to select an answer and also sees the same amount of the live event as others before the lock out occurs.
For games of skill where there are both participants attending the event live and watching it on television which typically has a few seconds delay, the participants are separated into different competitive groups wherein the attending participants are in one group and the television viewing participants are in another group.
For games of skill using tape recorded events like game shows, the important aspect is ensuring the game of skill corresponds with the televised recorded event. For example, if the game of skill were off by a few seconds, participants could receive multiple choice answers to the wrong questions. Therefore, the present invention ensures that the game of skill is synchronized with the taped televised event even when there are different latencies depending on how and where the television signal is being displayed.
Furthermore, although the methods of handling latency have been described above as handling a specific scenario such as delays in television signal reception, the methods are able to be used in conjunction with each other as well. For example, when participants are separated into attending and televised groups because some participants are actually attending an event while others watch it on television, for those watching it on television there will still be issues from location to location and based on the television signal reception, so the latency balancer which handles that aspect of latency is also able to be implemented.
The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of principles of construction and operation of the invention. Such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be readily apparent to one skilled in the art that other various modifications may be made in the embodiment chosen for illustration without departing from the spirit and scope of the invention as defined by the claims.
This Patent Application is a continuation application of U.S. patent application Ser. No. 15/900,438, filed Feb. 20, 2018, titled “A METHODOLOGY FOR EQUALIZING SYSTEMIC LATENCIES IN TELEVISION RECEPTION IN CONNECTION WITH GAMES OF SKILL PLAYED IN CONNECTION WITH LIVE TELEVISION PROGRAMMING”, which is a continuation of U.S. patent application Ser. No. 15/648,101, filed Jul. 12, 2017, titled “A METHODOLOGY FOR EQUALIZING SYSTEMIC LATENCIES IN TELEVISION RECEPTION IN CONNECTION WITH GAMES OF SKILL PLAYED IN CONNECTION WITH LIVE TELEVISION PROGRAMMING,” which is a continuation application of U.S. patent application Ser. No. 15/263,186, filed Sep. 12, 2016, titled, “A METHODOLOGY FOR EQUALIZING SYSTEMIC LATENCIES IN TELEVISION RECEPTION IN CONNECTION WITH GAMES OF SKILL PLAYED IN CONNECTION WITH LIVE TELEVISION PROGRAMMING,” which is a divisional application of U.S. patent application Ser. No. 14/172,571, filed Feb. 4, 2014, titled, “A METHODOLOGY FOR EQUALIZING SYSTEMIC LATENCIES IN TELEVISION RECEPTION IN CONNECTION WITH GAMES OF SKILL PLAYED IN CONNECTION WITH LIVE TELEVISION PROGRAMMING,” which is a continuation of U.S. patent application Ser. No. 13/681,172, filed Nov. 19, 2012, titled, “A METHODOLOGY FOR EQUALIZING SYSTEMIC LATENCIES IN TELEVISION RECEPTION IN CONNECTION WITH GAMES OF SKILL PLAYED IN CONNECTION WITH LIVE TELEVISION PROGRAMMING,” which is a divisional of U.S. patent application Ser. No. 13/403,845, filed Feb. 23, 2012, titled, “A METHODOLOGY FOR EQUALIZING SYSTEMIC LATENCIES IN TELEVISION RECEPTION IN CONNECTION WITH GAMES OF SKILL PLAYED IN CONNECTION WITH LIVE TELEVISION PROGRAMMING,” which is a continuation of U.S. patent application Ser. No. 11/786,992, filed Apr. 12, 2007, (now U.S. Pat. No. 8,149,530), titled, “A METHODOLOGY FOR EQUALIZING SYSTEMIC LATENCIES IN TELEVISION RECEPTION IN CONNECTION WITH GAMES OF SKILL PLAYED IN CONNECTION WITH LIVE TELEVISION PROGRAMMING,” which claims priority under 35 U.S.C. § 119(e) of the co-owned U.S. Provisional Patent Application No. 60/791,793, filed Apr. 12, 2006, and titled “A METHODOLOGY FOR EQUALIZING SYSTEMIC LATENCIES IN TELEVISION RECEPTION IN CONNECTION WITH GAMES OF SKILL PLAYED IN CONNECTION WITH LIVE TELEVISION PROGRAMMING” which are also all hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2831105 | Parker | Apr 1958 | A |
3562650 | Gossard et al. | Feb 1971 | A |
4141548 | Everton | Feb 1979 | A |
4270755 | Willhide et al. | Jun 1981 | A |
4386377 | Hunter, Jr. | May 1983 | A |
4496148 | Morstain et al. | Jan 1985 | A |
4521803 | Gittinger | Jun 1985 | A |
4592546 | Fascenda et al. | Jun 1986 | A |
4816904 | McKenna et al. | Mar 1989 | A |
4918603 | Hughes et al. | Apr 1990 | A |
4930010 | MacDonald | May 1990 | A |
5013038 | Luvenberg | May 1991 | A |
5018736 | Pearson et al. | May 1991 | A |
5035422 | Berman | Jul 1991 | A |
5073931 | Audebert et al. | Dec 1991 | A |
5083271 | Thatcher et al. | Jan 1992 | A |
5083800 | Lockton | Jan 1992 | A |
5119295 | Kapur | Jun 1992 | A |
5120076 | Luxenberg et al. | Jun 1992 | A |
5213337 | Sherman | May 1993 | A |
5227874 | Von Kohom | Jul 1993 | A |
5256863 | Ferguson | Oct 1993 | A |
5263723 | Pearson et al. | Nov 1993 | A |
5283734 | Von Kohom | Feb 1994 | A |
5327485 | Leaden | Jul 1994 | A |
5343236 | Koppe et al. | Aug 1994 | A |
5343239 | Lappington et al. | Aug 1994 | A |
5417424 | Snowden | May 1995 | A |
5462275 | Lowe et al. | Oct 1995 | A |
5479492 | Hofstee et al. | Dec 1995 | A |
5488659 | Millani | Jan 1996 | A |
5519433 | Lappington | May 1996 | A |
5530483 | Cooper | Jun 1996 | A |
5553120 | Katz | Sep 1996 | A |
5566291 | Boulton et al. | Oct 1996 | A |
5585975 | Bliss | Dec 1996 | A |
5586257 | Perlman | Dec 1996 | A |
5589765 | Ohmart et al. | Dec 1996 | A |
5594938 | Engel | Jan 1997 | A |
5618232 | Martin | Apr 1997 | A |
5628684 | Jean-Etienne | May 1997 | A |
5636920 | Shur et al. | Jun 1997 | A |
5638113 | Lappington | Jun 1997 | A |
5643088 | Vaughn et al. | Jul 1997 | A |
5663757 | Morales | Sep 1997 | A |
5759101 | Won Kohom | Jun 1998 | A |
5761606 | Wolzien | Jun 1998 | A |
5762552 | Voung et al. | Jun 1998 | A |
5764275 | Lappington et al. | Jun 1998 | A |
5794210 | Goldhaber et al. | Aug 1998 | A |
5805230 | Staron | Sep 1998 | A |
5813913 | Bemer et al. | Sep 1998 | A |
5818438 | Howe et al. | Oct 1998 | A |
5828843 | Grimm | Oct 1998 | A |
5838774 | Weiser, Jr. | Nov 1998 | A |
5846132 | Junkin | Dec 1998 | A |
5848397 | Marsh et al. | Dec 1998 | A |
5860862 | Junkin | Jan 1999 | A |
5894556 | Grimm | Apr 1999 | A |
5916024 | Von Kohom | Jun 1999 | A |
5870683 | Wells et al. | Sep 1999 | A |
5970143 | Schneier et al. | Oct 1999 | A |
5971854 | Pearson et al. | Oct 1999 | A |
5987440 | O'Neil et al. | Nov 1999 | A |
6009458 | Hawkins et al. | Dec 1999 | A |
6015344 | Kelly et al. | Jan 2000 | A |
6016337 | Pykalisto | Jan 2000 | A |
6042477 | Addink | Mar 2000 | A |
6064449 | White | May 2000 | A |
6104815 | Alcorn et al. | Aug 2000 | A |
6110041 | Walker et al. | Aug 2000 | A |
6117013 | Elba | Sep 2000 | A |
6126543 | Friedman | Oct 2000 | A |
6128660 | Grimm | Oct 2000 | A |
6135881 | Abbott et al. | Oct 2000 | A |
6174237 | Stephenson | Jan 2001 | B1 |
6182084 | Cockrell et al. | Jan 2001 | B1 |
6193610 | Junkin | Feb 2001 | B1 |
6222642 | Farrell et al. | Apr 2001 | B1 |
6233736 | Wolzien | May 2001 | B1 |
6251017 | Leason et al. | Jun 2001 | B1 |
6267670 | Walker | Jul 2001 | B1 |
6287199 | McKeown et al. | Sep 2001 | B1 |
6293868 | Bernard | Sep 2001 | B1 |
6312336 | Handelman et al. | Nov 2001 | B1 |
6345297 | Grimm | Feb 2002 | B1 |
6371855 | Gavriloff | Apr 2002 | B1 |
6373462 | Pan | Apr 2002 | B1 |
6411969 | Tam | Jun 2002 | B1 |
6416414 | Stadelmann | Jul 2002 | B1 |
6425828 | Walker et al. | Jul 2002 | B2 |
6434398 | Inselberg | Aug 2002 | B1 |
6470180 | Kotzin et al. | Oct 2002 | B1 |
6475090 | Roelofs | Nov 2002 | B2 |
6524189 | Rautila | Feb 2003 | B1 |
6527641 | Sinclair et al. | Mar 2003 | B1 |
6530082 | Del Sesto et al. | Mar 2003 | B1 |
6536037 | Guheen et al. | Mar 2003 | B1 |
6578068 | Bowma-Amuah | Jun 2003 | B1 |
6594098 | Sutardja | Jul 2003 | B1 |
6604997 | Saidakovsky et al. | Jul 2003 | B2 |
6610953 | Tao et al. | Aug 2003 | B1 |
6611755 | Coffee | Aug 2003 | B1 |
6648760 | Nicastro | Nov 2003 | B1 |
6659860 | Yamamoto et al. | Dec 2003 | B1 |
6659861 | Faris | Dec 2003 | B1 |
6659872 | Kaufman et al. | Dec 2003 | B1 |
6690661 | Agarwal et al. | Feb 2004 | B1 |
6718350 | Karbowski | Apr 2004 | B1 |
6752396 | Smith | Jun 2004 | B2 |
6758754 | Lavanchy et al. | Jul 2004 | B1 |
6758755 | Kelly et al. | Jul 2004 | B2 |
6760595 | Insellberg | Jul 2004 | B2 |
6763377 | Balknap et al. | Jul 2004 | B1 |
6766524 | Matheny et al. | Jul 2004 | B1 |
6774926 | Ellis et al. | Aug 2004 | B1 |
6785561 | Kim | Aug 2004 | B1 |
6801380 | Saturdja | Oct 2004 | B1 |
6806889 | Malaure et al. | Oct 2004 | B1 |
6807675 | Millard et al. | Oct 2004 | B1 |
6811482 | Letovsky | Nov 2004 | B2 |
6811487 | Sengoku | Nov 2004 | B2 |
6816628 | Sarachik et al. | Nov 2004 | B1 |
6817947 | Tanskanen | Nov 2004 | B2 |
6824469 | Allibhoy et al. | Nov 2004 | B2 |
6837789 | Garahi et al. | Jan 2005 | B2 |
6837791 | McNutt et al. | Jan 2005 | B1 |
6840861 | Jordan et al. | Jan 2005 | B2 |
6845389 | Sen | Jan 2005 | B1 |
6846239 | Washio | Jan 2005 | B2 |
6857122 | Takeda et al. | Feb 2005 | B1 |
6863610 | Vancraeynest | Mar 2005 | B2 |
6870720 | Iwata et al. | Mar 2005 | B2 |
6871226 | Ensley et al. | Mar 2005 | B1 |
6873610 | Noever | Mar 2005 | B1 |
6884166 | Leen et al. | Apr 2005 | B2 |
6884172 | Lloyd et al. | Apr 2005 | B1 |
6887159 | Leen et al. | May 2005 | B2 |
6888929 | Saylor | May 2005 | B1 |
6893347 | Zilliacus et al. | May 2005 | B1 |
6898762 | Ellis et al. | May 2005 | B2 |
6899628 | Leen et al. | May 2005 | B2 |
6903681 | Faris | Jun 2005 | B2 |
6908389 | Puskaia | Jun 2005 | B1 |
6942574 | LeMay et al. | Sep 2005 | B1 |
6944228 | Dakss et al. | Sep 2005 | B1 |
6960088 | Long | Nov 2005 | B1 |
6978053 | Sarachik et al. | Dec 2005 | B1 |
7001279 | Barber et al. | Feb 2006 | B1 |
7029394 | Leen et al. | Apr 2006 | B2 |
7035626 | Luciano, Jr. | Apr 2006 | B1 |
7035653 | Simon et al. | Apr 2006 | B2 |
7058592 | Heckerman et al. | Jun 2006 | B1 |
7076434 | Newnam et al. | Jul 2006 | B1 |
7085552 | Buckley | Aug 2006 | B2 |
7116310 | Evans et al. | Oct 2006 | B1 |
7117517 | Milazzo et al. | Oct 2006 | B1 |
7120924 | Katcher et al. | Oct 2006 | B1 |
7125336 | Anttila et al. | Oct 2006 | B2 |
7136871 | Ozer et al. | Nov 2006 | B2 |
7144011 | Asher et al. | Dec 2006 | B2 |
7169050 | Tyler | Jan 2007 | B1 |
7191447 | Ellis et al. | Mar 2007 | B1 |
7192352 | Walker et al. | Mar 2007 | B2 |
7194758 | Waki et al. | Mar 2007 | B1 |
7228349 | Barone, Jr. et al. | Jun 2007 | B2 |
7231630 | Acott et al. | Jun 2007 | B2 |
7233922 | Asher et al. | Jun 2007 | B2 |
7240093 | Danieli et al. | Jul 2007 | B1 |
7244181 | Wang et al. | Jul 2007 | B2 |
7249367 | Bove, Jr. et al. | Jul 2007 | B2 |
7254605 | Strum | Aug 2007 | B1 |
7260782 | Wallace et al. | Aug 2007 | B2 |
RE39818 | Slifer | Sep 2007 | E |
7283830 | Buckley | Oct 2007 | B2 |
7288027 | Overton | Oct 2007 | B2 |
7341517 | Asher et al. | Mar 2008 | B2 |
7343617 | Katcher et al. | Mar 2008 | B1 |
7347781 | Schultz | Mar 2008 | B2 |
7351149 | Simon et al. | Apr 2008 | B1 |
7367042 | Dakss et al. | Apr 2008 | B1 |
7379705 | Rados et al. | May 2008 | B1 |
7389144 | Osorio | Jun 2008 | B1 |
7430718 | Gariepy-Viles | Sep 2008 | B2 |
7452273 | Amaitis et al. | Nov 2008 | B2 |
7460037 | Cattone et al. | Dec 2008 | B2 |
7461067 | Dewing et al. | Dec 2008 | B2 |
7502610 | Maher | Mar 2009 | B2 |
7517282 | Pryor | Apr 2009 | B1 |
7534169 | Amaitis et al. | May 2009 | B2 |
7562134 | Fingerhut et al. | Jul 2009 | B1 |
7614944 | Hughes et al. | Nov 2009 | B1 |
7630986 | Herz et al. | Dec 2009 | B1 |
7693781 | Asher et al. | Apr 2010 | B2 |
7699707 | Bahou | Apr 2010 | B2 |
7711628 | Davie et al. | May 2010 | B2 |
7753772 | Walker | Jul 2010 | B1 |
7753789 | Walker et al. | Jul 2010 | B2 |
7780528 | Hirayama | Aug 2010 | B2 |
7828661 | Fish | Nov 2010 | B1 |
7835961 | Davie et al. | Nov 2010 | B2 |
7886003 | Newnam | Feb 2011 | B2 |
7907211 | Oostveen et al. | Mar 2011 | B2 |
7926810 | Fisher et al. | Apr 2011 | B2 |
7937318 | Davie et al. | May 2011 | B2 |
7976389 | Cannon et al. | Jul 2011 | B2 |
8006314 | Wold | Aug 2011 | B2 |
8025565 | Leen et al. | Sep 2011 | B2 |
8028315 | Barber | Sep 2011 | B1 |
8082150 | Wold | Dec 2011 | B2 |
8086445 | Wold et al. | Dec 2011 | B2 |
8086510 | Amaitis et al. | Dec 2011 | B2 |
8092303 | Amaitis et al. | Jan 2012 | B2 |
8105141 | Leen et al. | Jan 2012 | B2 |
8107674 | Davis et al. | Jan 2012 | B2 |
8109827 | Cahill et al. | Feb 2012 | B2 |
8128474 | Amaitis et al. | Mar 2012 | B2 |
8147313 | Amaitis et al. | Apr 2012 | B2 |
8149530 | Lockton et al. | Apr 2012 | B1 |
8176518 | Junkin et al. | May 2012 | B1 |
8186682 | Amaitis et al. | May 2012 | B2 |
8204808 | Amaitis et al. | Jun 2012 | B2 |
8240669 | Asher et al. | Aug 2012 | B2 |
8246048 | Asher et al. | Aug 2012 | B2 |
8267403 | Fisher et al. | Sep 2012 | B2 |
8342924 | Leen et al. | Jan 2013 | B2 |
8342942 | Amaitis et al. | Jan 2013 | B2 |
8353763 | Amaitis et al. | Jan 2013 | B2 |
8397257 | Barber | Mar 2013 | B1 |
8465021 | Asher et al. | Jun 2013 | B2 |
8473393 | Davie et al. | Jun 2013 | B2 |
8474819 | Asher et al. | Jul 2013 | B2 |
8535138 | Amaitis et al. | Sep 2013 | B2 |
8538563 | Barber | Sep 2013 | B1 |
8543487 | Asher et al. | Sep 2013 | B2 |
8555313 | Newnam | Oct 2013 | B2 |
8556691 | Leen et al. | Oct 2013 | B2 |
8585490 | Amaitis et al. | Nov 2013 | B2 |
8638517 | Lockton et al. | Jan 2014 | B2 |
8641511 | Ginsberg et al. | Feb 2014 | B2 |
8659848 | Lockton et al. | Feb 2014 | B2 |
8672751 | Leen et al. | Mar 2014 | B2 |
8708789 | Asher et al. | Apr 2014 | B2 |
8727352 | Amaitis et al. | May 2014 | B2 |
8734227 | Leen et al. | May 2014 | B2 |
8771058 | Alderucci et al. | Jul 2014 | B2 |
8805732 | Davie et al. | Aug 2014 | B2 |
8814664 | Amaitis et al. | Aug 2014 | B2 |
8849225 | Choti | Sep 2014 | B1 |
8858313 | Selfors | Oct 2014 | B1 |
9069651 | Barber | Jun 2015 | B2 |
9076303 | Park | Jul 2015 | B1 |
9098883 | Asher et al. | Aug 2015 | B2 |
9111417 | Leen et al. | Aug 2015 | B2 |
9289692 | Barber | Mar 2016 | B2 |
9306952 | Burman et al. | Apr 2016 | B2 |
9355518 | Amaitis et al. | May 2016 | B2 |
9406189 | Scott et al. | Aug 2016 | B2 |
9536396 | Amaitis et al. | Jan 2017 | B2 |
9556991 | Furuya | Jan 2017 | B2 |
9716918 | Lockton et al. | Jul 2017 | B1 |
9787243 | Schussler | Oct 2017 | B2 |
9805549 | Asher et al. | Oct 2017 | B2 |
9881337 | Jaycobs et al. | Jan 2018 | B2 |
9901820 | Lockton | Feb 2018 | B2 |
10089815 | Asher et al. | Oct 2018 | B2 |
10096210 | Amaitis et al. | Oct 2018 | B2 |
10248290 | Galfond | Apr 2019 | B2 |
20010004609 | Walker et al. | Jun 2001 | A1 |
20010005670 | Lahtinen | Jun 2001 | A1 |
20010013125 | Kitsukawa et al. | Aug 2001 | A1 |
20010020298 | Rector, Jr. et al. | Sep 2001 | A1 |
20010032333 | Flickinger | Oct 2001 | A1 |
20010036272 | Hirayama | Nov 2001 | A1 |
20010036853 | Thomas | Nov 2001 | A1 |
20020010789 | Lord | Jan 2002 | A1 |
20020026321 | Faris | Feb 2002 | A1 |
20020029381 | Inselberg | Mar 2002 | A1 |
20020035609 | Lessard | Mar 2002 | A1 |
20020037766 | Muniz | Mar 2002 | A1 |
20020069265 | Bountour | Mar 2002 | A1 |
20020042293 | Ubale et al. | Apr 2002 | A1 |
20020046099 | Frengut et al. | Apr 2002 | A1 |
20020054088 | Tanskanen et al. | May 2002 | A1 |
20020055385 | Otsu | May 2002 | A1 |
20020056089 | Houston | May 2002 | A1 |
20020059094 | Hosea et al. | May 2002 | A1 |
20020059623 | Rodriguez et al. | May 2002 | A1 |
20020069076 | Faris | Jun 2002 | A1 |
20020076084 | Tian | Jun 2002 | A1 |
20020078176 | Nomura et al. | Jun 2002 | A1 |
20020083461 | Hutcheson | Jun 2002 | A1 |
20020091833 | Grimm | Jul 2002 | A1 |
20020095333 | Jokinen et al. | Jul 2002 | A1 |
20020097983 | Wallace et al. | Jul 2002 | A1 |
20020099709 | Wallace | Jul 2002 | A1 |
20020100063 | Herigstad et al. | Jul 2002 | A1 |
20020103696 | Huang et al. | Aug 2002 | A1 |
20020105535 | Wallace et al. | Aug 2002 | A1 |
20020107073 | Binney | Aug 2002 | A1 |
20020108112 | Wallace et al. | Aug 2002 | A1 |
20020108125 | Joao | Aug 2002 | A1 |
20020108127 | Lew et al. | Aug 2002 | A1 |
20020112249 | Hendricks et al. | Aug 2002 | A1 |
20020115488 | Berry et al. | Aug 2002 | A1 |
20020119821 | Sen | Aug 2002 | A1 |
20020120930 | Yona | Aug 2002 | A1 |
20020124247 | Houghton | Sep 2002 | A1 |
20020132614 | Vanlujit et al. | Sep 2002 | A1 |
20020133817 | Markel | Sep 2002 | A1 |
20020133827 | Newman et al. | Sep 2002 | A1 |
20020142843 | Roelofs | Oct 2002 | A1 |
20020144273 | Reto | Oct 2002 | A1 |
20020147049 | Carter, Sr. | Oct 2002 | A1 |
20020157002 | Messerges et al. | Oct 2002 | A1 |
20020157005 | Brunk | Oct 2002 | A1 |
20020159576 | Adams | Oct 2002 | A1 |
20020162031 | Levin et al. | Oct 2002 | A1 |
20020162117 | Pearson | Oct 2002 | A1 |
20020165020 | Koyama | Nov 2002 | A1 |
20020165025 | Kawahara | Nov 2002 | A1 |
20020177483 | Cannon | Nov 2002 | A1 |
20020187825 | Tracy | Dec 2002 | A1 |
20020198050 | Patchen | Dec 2002 | A1 |
20030002638 | Kaars | Jan 2003 | A1 |
20030013528 | Allibhoy et al. | Jan 2003 | A1 |
20030023547 | France | Jan 2003 | A1 |
20030040363 | Sandberg | Feb 2003 | A1 |
20030054885 | Pinto et al. | Mar 2003 | A1 |
20030060247 | Goldberg et al. | Mar 2003 | A1 |
20030066089 | Anderson | Apr 2003 | A1 |
20030069828 | Blazey et al. | Apr 2003 | A1 |
20030070174 | Solomon | Apr 2003 | A1 |
20030078924 | Liechty et al. | Apr 2003 | A1 |
20030086691 | Yu | May 2003 | A1 |
20030087652 | Simon et al. | May 2003 | A1 |
20030088648 | Bellaton | May 2003 | A1 |
20030114224 | Anttila et al. | Jun 2003 | A1 |
20030115152 | Flaherty | Jun 2003 | A1 |
20030134678 | Tanaka | Jul 2003 | A1 |
20030144017 | Inselberg | Jul 2003 | A1 |
20030154242 | Hayes et al. | Aug 2003 | A1 |
20030165241 | Fransdonk | Sep 2003 | A1 |
20030177167 | Lafage et al. | Sep 2003 | A1 |
20030177504 | Paulo et al. | Sep 2003 | A1 |
20030189668 | Newnam et al. | Oct 2003 | A1 |
20030195023 | Di Cesare | Oct 2003 | A1 |
20030195807 | Maggio | Oct 2003 | A1 |
20030208579 | Brady et al. | Nov 2003 | A1 |
20030211856 | Zilliacus | Nov 2003 | A1 |
20030212691 | Kuntala et al. | Nov 2003 | A1 |
20030216185 | Varley | Nov 2003 | A1 |
20030216857 | Feldman et al. | Nov 2003 | A1 |
20030233425 | Lyons et al. | Dec 2003 | A1 |
20040005919 | Walker et al. | Jan 2004 | A1 |
20040014524 | Pearlman | Jan 2004 | A1 |
20040022366 | Ferguson et al. | Feb 2004 | A1 |
20040025190 | McCalla | Feb 2004 | A1 |
20040056897 | Ueda | Mar 2004 | A1 |
20040060063 | Russ et al. | Mar 2004 | A1 |
20040073915 | Dureau | Apr 2004 | A1 |
20040088729 | Petrovic et al. | May 2004 | A1 |
20040093302 | Baker et al. | May 2004 | A1 |
20040152454 | Kauppinen | May 2004 | A1 |
20040107138 | Maggio | Jun 2004 | A1 |
20040117831 | Ellis et al. | Jun 2004 | A1 |
20040117839 | Watson et al. | Jun 2004 | A1 |
20040128319 | Davis et al. | Jul 2004 | A1 |
20040139482 | Hale | Jul 2004 | A1 |
20040148638 | Weisman et al. | Jul 2004 | A1 |
20040152517 | Hardisty | Aug 2004 | A1 |
20040152519 | Wang | Aug 2004 | A1 |
20040158855 | Gu et al. | Aug 2004 | A1 |
20040162124 | Barton | Aug 2004 | A1 |
20040166873 | Simic | Aug 2004 | A1 |
20040176162 | Rothschild | Sep 2004 | A1 |
20040178923 | Kuang | Sep 2004 | A1 |
20040183824 | Benson | Sep 2004 | A1 |
20040185881 | Lee | Sep 2004 | A1 |
20040190779 | Sarachik et al. | Sep 2004 | A1 |
20040198495 | Cisneros et al. | Oct 2004 | A1 |
20040201626 | Lavoie | Oct 2004 | A1 |
20040203667 | Shroder | Oct 2004 | A1 |
20040203898 | Bodin et al. | Oct 2004 | A1 |
20040210507 | Asher et al. | Oct 2004 | A1 |
20040215756 | VanAntwerp | Oct 2004 | A1 |
20040216161 | Barone, Jr. et al. | Oct 2004 | A1 |
20040216171 | Barone, Jr. et al. | Oct 2004 | A1 |
20040224750 | Ai-Ziyoud | Nov 2004 | A1 |
20040242321 | Overton | Dec 2004 | A1 |
20040266513 | Odom | Dec 2004 | A1 |
20050003878 | Updike | Jan 2005 | A1 |
20050005303 | Barone, Jr. et al. | Jan 2005 | A1 |
20050021942 | Diehl et al. | Jan 2005 | A1 |
20050026699 | Kinzer et al. | Feb 2005 | A1 |
20050028208 | Ellis | Feb 2005 | A1 |
20050043094 | Nguyen et al. | Feb 2005 | A1 |
20050076371 | Nakamura | Apr 2005 | A1 |
20050060219 | Ditering et al. | May 2005 | A1 |
20050097599 | Potnick et al. | May 2005 | A1 |
20050101309 | Croome | May 2005 | A1 |
20050113164 | Buecheler et al. | May 2005 | A1 |
20050131984 | Hofmann et al. | Jun 2005 | A1 |
20050138668 | Gray et al. | Jun 2005 | A1 |
20050144102 | Johnson | Jun 2005 | A1 |
20050155083 | Oh | Jul 2005 | A1 |
20050177861 | Ma et al. | Aug 2005 | A1 |
20050210526 | Levy et al. | Sep 2005 | A1 |
20050216838 | Graham | Sep 2005 | A1 |
20050235043 | Teodosiu et al. | Oct 2005 | A1 |
20050239551 | Griswold | Oct 2005 | A1 |
20050255901 | Kreutzer | Nov 2005 | A1 |
20050256895 | Dussault | Nov 2005 | A1 |
20050266869 | Jung | Dec 2005 | A1 |
20050273804 | Preisman | Dec 2005 | A1 |
20050283800 | Ellis et al. | Dec 2005 | A1 |
20050288080 | Lockton | Dec 2005 | A1 |
20050288101 | Lockton et al. | Dec 2005 | A1 |
20050288812 | Cheng | Dec 2005 | A1 |
20060025070 | Kim et al. | Feb 2006 | A1 |
20060046810 | Tabata | Mar 2006 | A1 |
20060047772 | Crutcher | Mar 2006 | A1 |
20060053390 | Gariepy-Viles | Mar 2006 | A1 |
20060058103 | Danieli | Mar 2006 | A1 |
20060059161 | Millett et al. | Mar 2006 | A1 |
20060063590 | Abassi et al. | Mar 2006 | A1 |
20060082068 | Patchen | Apr 2006 | A1 |
20060087585 | Seo | Apr 2006 | A1 |
20060089199 | Jordan et al. | Apr 2006 | A1 |
20060111168 | Nguyen | May 2006 | A1 |
20060135253 | George et al. | Jun 2006 | A1 |
20060148569 | Beck | Jul 2006 | A1 |
20060156371 | Maetz et al. | Jul 2006 | A1 |
20060174307 | Hwang et al. | Aug 2006 | A1 |
20060183547 | McMonigle | Aug 2006 | A1 |
20060183548 | Morris et al. | Aug 2006 | A1 |
20060205483 | Meyer et al. | Sep 2006 | A1 |
20060205510 | Lauper | Sep 2006 | A1 |
20060217198 | Johnson | Sep 2006 | A1 |
20060236352 | Scott, III | Oct 2006 | A1 |
20060248553 | Mikkelson et al. | Nov 2006 | A1 |
20060256865 | Westerman | Nov 2006 | A1 |
20060256868 | Westerman | Nov 2006 | A1 |
20060269120 | Mehmadi et al. | Nov 2006 | A1 |
20060285586 | Westerman | Dec 2006 | A1 |
20070004516 | Jordan et al. | Jan 2007 | A1 |
20070013547 | Boaz | Jan 2007 | A1 |
20070019826 | Horbach et al. | Jan 2007 | A1 |
20070028272 | Lockton | Feb 2007 | A1 |
20070037623 | Romik | Feb 2007 | A1 |
20070054695 | Huske et al. | Mar 2007 | A1 |
20070078009 | Lockton et al. | Apr 2007 | A1 |
20070083920 | Mizoguchi et al. | Apr 2007 | A1 |
20070086465 | Paila et al. | Apr 2007 | A1 |
20070093296 | Asher | Apr 2007 | A1 |
20070106721 | Schloter | May 2007 | A1 |
20070107010 | Jolna et al. | May 2007 | A1 |
20070129144 | Katz | Jun 2007 | A1 |
20070147870 | Nagashima et al. | Jul 2007 | A1 |
20070162328 | Reich | Jul 2007 | A1 |
20070183744 | Koizumi | Aug 2007 | A1 |
20070210908 | Putterman et al. | Sep 2007 | A1 |
20070219856 | Ahmad-Taylor | Sep 2007 | A1 |
20070222652 | Cattone et al. | Sep 2007 | A1 |
20070226062 | Hughes et al. | Sep 2007 | A1 |
20070238525 | Suomela | Oct 2007 | A1 |
20070243936 | Binenstock et al. | Oct 2007 | A1 |
20070244570 | Speiser et al. | Oct 2007 | A1 |
20070244585 | Speiser et al. | Oct 2007 | A1 |
20070244749 | Speiser et al. | Oct 2007 | A1 |
20070265089 | Robarts | Nov 2007 | A1 |
20080013927 | Kelly et al. | Jan 2008 | A1 |
20080051201 | Lore | Feb 2008 | A1 |
20080066129 | Katcher et al. | Mar 2008 | A1 |
20080076497 | Kiskis et al. | Mar 2008 | A1 |
20080104630 | Bruce | May 2008 | A1 |
20080146337 | Halonen | Jun 2008 | A1 |
20080169605 | Shuster et al. | Jul 2008 | A1 |
20080240681 | Fukushima | Oct 2008 | A1 |
20080248865 | Tedesco | Oct 2008 | A1 |
20080270288 | Butterly et al. | Oct 2008 | A1 |
20080288600 | Clark | Nov 2008 | A1 |
20090011781 | Merrill et al. | Jan 2009 | A1 |
20090094632 | Newnam et al. | Apr 2009 | A1 |
20090103892 | Hirayama | Apr 2009 | A1 |
20090186676 | Amaitis et al. | Jul 2009 | A1 |
20090163271 | George et al. | Sep 2009 | A1 |
20090228351 | Rijsenbrij | Sep 2009 | A1 |
20090234674 | Wurster | Sep 2009 | A1 |
20090264188 | Soukup | Oct 2009 | A1 |
20100099421 | Patel et al. | Apr 2010 | A1 |
20100099471 | Feeney et al. | Apr 2010 | A1 |
20100107194 | McKissick et al. | Apr 2010 | A1 |
20100120503 | Hoffman et al. | May 2010 | A1 |
20100137057 | Fleming | Jun 2010 | A1 |
20100203936 | Levy | Aug 2010 | A1 |
20100279764 | Allen et al. | Nov 2010 | A1 |
20110053681 | Goldman | Mar 2011 | A1 |
20110065490 | Lutnick | Mar 2011 | A1 |
20110081958 | Herrmann | Apr 2011 | A1 |
20110130197 | Bythar et al. | Jun 2011 | A1 |
20110227287 | Reabe | Sep 2011 | A1 |
20110269548 | Barclay et al. | Nov 2011 | A1 |
20120115585 | Goldman | May 2012 | A1 |
20120157178 | Lockton | Jun 2012 | A1 |
20120264496 | Behrman et al. | Oct 2012 | A1 |
20120282995 | Allen et al. | Nov 2012 | A1 |
20130005453 | Nguyen et al. | Jan 2013 | A1 |
20140100011 | Gingher | Apr 2014 | A1 |
20140128139 | Shuster et al. | May 2014 | A1 |
20140279439 | Brown | Sep 2014 | A1 |
20140378212 | Sims | Dec 2014 | A1 |
20150067732 | Howe et al. | Mar 2015 | A1 |
20150238873 | Arnone et al. | Aug 2015 | A1 |
20160023116 | Wire | Jan 2016 | A1 |
20160217653 | Beyer | Jul 2016 | A1 |
20160271501 | Balsbaugh | Sep 2016 | A1 |
20170098348 | Odom | Apr 2017 | A1 |
20170103615 | Theodospoulos | Apr 2017 | A1 |
20170128840 | Croci | May 2017 | A1 |
20170243438 | Merati | Aug 2017 | A1 |
20170249801 | Malek | Aug 2017 | A1 |
20170345260 | Strause | Nov 2017 | A1 |
20180071637 | Baazov | Mar 2018 | A1 |
20180190077 | Hall | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
2252074 | Nov 1997 | CA |
2252021 | Nov 1998 | CA |
2279069 | Jul 1999 | CA |
2287617 | Oct 1999 | CA |
0649102 | Jun 1996 | EP |
2364485 | Jan 2002 | GB |
11-46356 | Feb 1999 | JP |
11-239183 | Aug 1999 | JP |
2000-165840 | Jun 2000 | JP |
2000-217094 | Aug 2000 | JP |
2000-358255 | Dec 2000 | JP |
2001-28743 | Jan 2001 | JP |
2000-209563 | Jul 2008 | JP |
330242 | Oct 1989 | NZ |
01039506 | May 2001 | WO |
0165743 | Sep 2001 | WO |
0203698 | Oct 2002 | WO |
2005064506 | Jul 2005 | WO |
2006004855 | Jan 2006 | WO |
2006004856 | Jan 2006 | WO |
2007002284 | Jan 2007 | WO |
2007016575 | Feb 2007 | WO |
2007041667 | Apr 2007 | WO |
2008027811 | Mar 2008 | WO |
2008115858 | Sep 2008 | WO |
Entry |
---|
Two Way TV Patent and Filing Map www.twowaytv.com/version4/technologies/tech_patents.asp. |
Ark 4.0 Standard Edition, Technical Overview www.twowaytv.com/version4/technologies/tech_ark_professionals.asp. |
“Understanding the Interactivity Between Television and Mobile commerce”, Robert Davis and David Yung, Communications of the ACM, Jul. 2005, vol. 48, No. 7, pp. 103-105. |
“Re: Multicast Based Voting System” www.ripe.net/ripe/maillists/archives/mbone-eu-op/1997/msg00100html. |
“IST and Sportal.com: Live on the Internet Sep. 14, 2004 by Clare Spoonheim”, www.isk.co.usk/NEWS/dotcom/ist_sportal.html. |
“Modeling User Behavior in Networked Games byTristan Henderson and Saleem Bhatti”, www.woodworm.cs.uml.edu/rprice/ep/henderson. |
“SMS Based Voting and Survey System for Meetings”, www.abbit.be/technology/SMSSURVEY.html. |
“PurpleAce Launches 3GSM Ringtone Competition”, www.wirelessdevnet.com/news/2005/jan/31/news6html. |
“On the Perfomance of Protocols for collecting Responses over a Multiple-Access Channel”, Mostafa H. Ammar and George N. Rouskas, IEEE INCOMFORM '91, pp. 1490-1499, vol. 3, IEEE, New York, NY. |
Merriam-Webster, “Game” definition, <http://www.merriam-webster.com/dictionary/agme.pg.1. |
Ducheneaut et al., “The Social Side of Gaming: A Study of Interaction Patterns in a Massively Multiplayer Online Game”, Palo Alto Research Center, Nov. 2004, vol. 6, Issue 4, pp. 360-369. |
http://help.yahoo.com/help/us/tourn/tourn-03.html. |
Pinnacle, “The basics of reverse line movement,” Jan. 19, 2018, Retrieved on Jan. 22, 2020 , http://www.pinnacle.com/en/betting-articles educational/basics-of-reverse-line-movement/QAH26XGGQQS7M3GD. |
Gambling Commission,“Virtual currencies, eSports and social casino gaming-position paper,” Mar. 2017, Retrieved on Jan. 22, 2020, http://gamblingcomission.gov.uk/PDF/Virtual-currencies-eSports-and -social-casino-gaming.pdf. |
Sipko et al.,“Machine learning for the prediction of professional tennis matches,” In: MEng computing-final year project, Imperial College London, Jun. 15, 2015, http://www.doc.ic.ac.uk/teaching/distinguished-projects/2015/m.sipko.pdf. |
Winview Game Producer, “Live TV Sports Play Along App WinView Games Announces Sponsorship With PepsiCo to Start This Holiday Season,” In Winview Games. Dec. 21, 2016, Retrieved on Jan. 21, 2020 from , http://www. winviewgames./press-release/live-tv-sports-play-along-app-winview-games-announces-sponsorship-pepsico-start-holiday-season/. |
The International Search Report and The Written Opinion for the PCT/US2019/054859 dated Feb. 4, 2020. |
Number | Date | Country | |
---|---|---|---|
20190060750 A1 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
60791793 | Apr 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14172571 | Feb 2014 | US |
Child | 15263186 | US | |
Parent | 13403845 | Feb 2012 | US |
Child | 13681172 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15900438 | Feb 2018 | US |
Child | 16177118 | US | |
Parent | 15648101 | Jul 2017 | US |
Child | 15900438 | US | |
Parent | 15263186 | Sep 2016 | US |
Child | 15648101 | US | |
Parent | 13681172 | Nov 2012 | US |
Child | 14172571 | US | |
Parent | 11786992 | Apr 2007 | US |
Child | 13403845 | US |