The present invention generally relates to methods and apparatus for cleaning semiconductor wafers, and more particularly, relates to controlling the bubble cavitation generated by an ultra or mega sonic device during the cleaning process to achieve a stable or controlled cavitation on the entire semiconductor wafer, which removes fine particles efficiently without damaging the device structure on the semiconductor wafer.
Semiconductor devices are manufactured or fabricated on semiconductor wafers using a number of different processing steps to create transistor and interconnection elements. Recently, the transistors are built from two dimensions to three dimensions such as finFET transistors. To electrically connect transistor terminals associated with the semiconductor wafer, conductive (e.g., metal) trenches, vias, and the like are formed in dielectric materials as part of the semiconductor device. The trenches and vias couple electrical signals and power between transistors, internal circuit of the semiconductor devices, and circuits external to the semiconductor device.
In forming the finFET transistors and interconnection elements the semiconductor wafer may undergo, for example, masking, etching, and deposition processes to form the desired electronic circuitry of the semiconductor devices. In particular, multiple masking and plasma etching step can be performed to form a pattern of finFET and or recessed areas in a dielectric layer on a semiconductor wafer that serve as fin for the transistor and or trenches and vias for the interconnection elements. In order to remove particles and contaminations in fin structure and or trench and via post etching or photo resist ashing, a wet cleaning step is necessary. Especially, when device manufacture node migrating to 14 or 16 nm and beyond, the side wall loss in fin and or trench and via is crucial for maintaining the critical dimension. In order to reduce or eliminate the side wall loss, it is important to use moderate, dilute chemicals, or sometime de-ionized water only. However, the dilute chemical or de-ionized water usually is not efficient to remove the particles in the fin structure and or trench and via. Therefore the mechanical force such as ultra or mega sonic is needed in order to remove those particles efficiently. Ultra sonic or mega sonic wave will generate bubble cavitation which applies mechanical force to the wafer structure, the violent cavitation such as transit cavitation or micro jet will damage those patterned structures. To maintain a stable or controlled cavitation is key parameters to control the mechanical force within the damage limit and at the same time efficiently to remove the particles.
Mega sonic energy coupled with nozzle to clean semiconductor wafer is disclosed in U.S. Pat. No. 4,326,553. The fluid is pressurized and mega sonic energy is applied to the fluid by a mega sonic transducer. The nozzle is shaped to provide a ribbon-like jet of cleaning fluid vibrating at ultra/mega sonic frequencies for the impingement on the surface.
A source of energy vibrates an elongated probe which transmits the acoustic energy into the fluid is disclosed in U.S. Pat. No. 6,039,059. In one arrangement, fluid is sprayed onto both sides of a wafer while a probe is positioned close to an upper side. In another arrangement, a short probe is positioned with its end surface close to the surface, and the probe is moved over the surface as wafer rotates.
A source of energy vibrates a rod which rotates around it axis parallel to wafer surface is disclosed in U.S. Pat. No. 6,843,257 B2. The rod surface is etched to curve groves, such as spiral groove.
It is needed to have a better method for controlling the bubble cavitation generated by an ultra or mega sonic device during the cleaning process to achieve a stable or controlled cavitation on the entire semiconductor wafer, which removes fine particles efficiently without damaging the device structure on the semiconductor wafer.
One method of the present invention is to achieve a damage free ultra or mega sonic cleaning on a semiconductor wafer with patterned structure by maintaining a stable bubble cavitation. The stable bubble cavitation is controlled by setting a sonic power supply with power P1 at a time interval shorter than τ1, and setting the sonic power supply with power P2 at a time interval longer than τ2, and repeating above steps till the semiconductor wafer is cleaned, where power P2 is equal to zero or much smaller than power P1, τ1 is a time interval that the temperature inside bubble raises to a critical implosion temperature; and τ2 is a time interval that the temperature inside bubble falls down to a temperature much lower than the critical implosion temperature.
Another method of the present invention is to achieve a damage free ultra or mega sonic cleaning on a semiconductor wafer with patterned structure by maintaining a stable bubble cavitation. The stable bubble cavitation is controlled by setting a sonic power supply with frequency f1 at a time interval shorter than τ1, and setting the sonic power supply with frequency f2 at a time interval longer than τ2, and repeating above steps till the semiconductor wafer is cleaned, where f2 is much higher than f1, better to be 2 times or 4 times higher, τ1 is a time interval that the temperature inside bubble raises to a critical implosion temperature; and τ2 is a time interval that the temperature inside bubble falls down to a temperature much lower than the critical implosion temperature.
Another method of the present invention is to achieve a damage free ultra or mega sonic cleaning on a semiconductor wafer with patterned structure by maintaining a stable bubble cavitation with bubble size less than space in patterned structure. The stable bubble cavitation with bubble size less than space in patterned structure is controlled by setting a sonic power supply at power P1 for a time interval shorter than τ1, and setting the sonic power supply at power P2 for a time interval longer than τ2, and repeating above steps till the semiconductor wafer is cleaned, where P2 is equal to zero or much smaller than P1, τ1 is a time interval that the bubble size increases to a critical size equal to or larger than the space in patterned structure; and τ2 is a time interval that the bubble size decreases to a value much smaller than the space in patterned structure.
Another method of the present invention is to achieve a damage free ultra or mega sonic cleaning on a semiconductor wafer with patterned structure by maintaining a stable bubble cavitation with bubble size less than space in patterned structure. The stable bubble cavitation with bubble size less than space in patterned structure is controlled by setting a sonic power supply with frequency f1 for a time interval shorter than τ1, and setting the sonic power supply with frequency f2 for a time interval longer than τ2, and repeating above steps till the semiconductor wafer is cleaned, where f2 is much higher than f1, better to be 2 times or 4 times higher, τ1 is a time interval that the bubble size increases to a critical size equal to or larger than the space in patterned structure; and τ2 is a time interval that the bubble size decreases to a value much smaller than the space in patterned structure.
Another method of the present invention is to achieve a damage free ultra or mega sonic cleaning on a semiconductor wafer with patterned structure by monitoring the ultra or mega sonic power supply operation status for maintaining a stable bubble cavitation. The method comprises the following steps: applying liquid into a space between a semiconductor wafer and an ultra or mega sonic device; setting an ultra or mega sonic power supply at frequency f1 and power P1 to drive the ultra or mega sonic device; before bubble cavitation in the liquid damaging patterned structure on the semiconductor wafer, setting the ultra or mega sonic power supply at zero output; after temperature inside bubble cooling down to a set temperature, setting the ultra or mega sonic power supply at frequency f1 and power P1 again; detecting power on time at power P1 and frequency f1 and power off time separately; comparing the detected power on time at power P1 and frequency f1 with a preset time τ1, if the detected power on time is longer than the preset time τ1, shut down the ultra or mega sonic power supply and send out an alarm signal; comparing the detected power off time with a preset time τ2, if the detected power off time is shorter than the preset time τ2, shut down the ultra or mega sonic power supply and send out an alarm signal; repeating above steps till the semiconductor wafer is cleaned.
Another method of the present invention is to achieve a damage free ultra or mega sonic cleaning on a semiconductor wafer with patterned structure by monitoring the ultra or mega sonic power supply operation status for maintaining a stable bubble cavitation. The method comprises the following steps: applying liquid into a space between a semiconductor wafer and an ultra or mega sonic device; setting an ultra or mega sonic power supply at frequency f1 and power P1 to drive the ultra or mega sonic device; before bubble cavitation in the liquid damaging patterned structure on the semiconductor wafer, setting the ultra or mega sonic power supply at zero output; after temperature inside bubble cooling down to a set temperature, setting the ultra or mega sonic power supply at frequency f1 and power P1 again; detecting amplitude of each waveform output by the ultra or mega sonic power supply; comparing detected amplitude of each waveform with a preset value, if the detected amplitude of any waveform is larger than the preset value, shut down the ultra or mega sonic power supply and send out an alarm signal, where the preset value is larger than waveform amplitude at normal operation; repeating above steps till the semiconductor wafer is cleaned.
The idea gas equation can be expressed as follows:
p0v0/T0=pv/T (1)
where, p0 is pressure inside bubble before compression, v0 initial volume of bubble before compression, T0 temperature of gas inside bubble before compression, p is pressure inside bubble in compression, v volume of bubble in compression, T temperature of gas inside bubble in compression.
In order to simplify the calculation, assuming the temperature of gas is no change during the compression or compression is very slow and temperature increase is cancelled by liquid surrounding the bubble. So that the mechanical work wm did by sonic pressure PM during one time of bubble compression (from volume N unit to volume 1 unit or compression ratio=N) can be expressed as follows:
wm=∫0x
Where, S is area of cross section of cylinder, x0 the length of the cylinder, p0 pressure of gas inside cylinder before compression. The equation (2) does not consider the factor of temperature increase during the compression, so that the actual pressure inside bubble will be higher due to temperature increase. Therefore the actual mechanical work conducted by sonic pressure will be larger than that calculated by equation (2).
If assuming all mechanical work did by sonic pressure is partially converted to thermal energy and partially converted mechanical energy of high pressure gas and vapor inside bubble, and such thermal energy is fully contributed to temperature increase of gas inside bubble (no energy transferred to liquid molecules surrounding the bubble), and assuming the mass of gas inside bubble staying constant before and after compression, then temperature increase T after one time of compression of bubble can be expressed in the following formula:
ΔT=Q/(mc)=βwm/(mc)=βSx0p0 ln(x0)/(mc) (3)
where, Q is thermal energy converted from mechanical work, β ratio of thermal energy to total mechanical works did by sonic pressure, m mass of gas inside the bubble, c gas specific heat coefficient. Substituting β=0.65, S=1E-12 m2, x0=1000 μm=1E-3 m (compression ratio N=1000), p0=1 kg/cm2=1E4 kg/m2, m=8.9E-17 kg for hydrogen gas, c=9.9E3 J/(kg ° k) into equation (3), then ΔT=50.9° C.
The temperature T1 of gas inside bubble after first time compression can be calculated as:
T1=T0+ΔT=20° C.+50.9° C.=70.9° C. (4)
When the bubble reaches the minimum size of 1 micron as shown in
T2=T1−δT=T0+ΔT−δT (5)
Where δT is temperature decrease after one time of expansion of the bubble, and δT is smaller than ΔT.
When the second cycle of bubble cavitation reaches the minimum bubble size, the temperature T3 of gas and or vapor inside bubble will be:
T3=T2+ΔT=T0+ΔT−δT+ΔT=T0+2ΔT−δT (6)
When the second cycle of bubble cavitation finishes, the temperature T4 of gas and/or vapor inside bubble will be:
T4=T3−δT=T0+2ΔT−δT−δT=T0+2ΔT−2δT (7)
Similarly, when the nth cycle of bubble cavitation reaches the minimum bubble size, the temperature T2n−1 of gas and or vapor inside bubble will be:
T2n−1=T0nΔT−(n−1)δT (8)
When the nth cycle of bubble cavitation finishes, the temperature T2n of gas and/or vapor inside bubble will be:
T2n=T0+nΔT−nδT=T0+n(ΔT−δT) (9)
As cycle number n of bubble cavitation increase, the temperature of gas and vapor will increase, therefore more molecules on bubble surface will evaporate into inside of bubble 6082 and size of bubble 6082 will increase too, as shown in
From equation (8), implosion cycle number ni can be written as following:
ni=(Ti−T0−ΔT)/(ΔT−δT)+1 (10)
From equation (10), implosion time τi can be written as following:
τi=nit1=t1((Ti−T0−ΔT)/(ΔT−δT)+1)=ni/f1=((Ti−T0−ΔT)/(ΔT−δT)+1)/f1 (11)
Where, t1 is cycle period, and f1 frequency of ultra/mega sonic wave.
According to formulas (10) and (11), implosion cycle number ni and implosion time τi can be calculated. Table 1 shows calculated relationships among implosion cycle number ni, implosion time τi and (ΔT−δT), assuming Ti=3000° C., ΔT=50.9° C., T0=20° C., f1=500 KHz, f1=1 MHz, and f1=2 MHz.
In order to avoid damage to patterned structure on wafer, a stable cavitation must be maintained, and the bubble implosion or micro jet must be avoided.
Step 1: Put ultra/mega sonic device adjacent to surface of wafer or substrate set on a chuck or tank;
Step 2: Fill chemical liquid or gas (hydrogen, nitrogen, oxygen, or CO2) doped water between wafer and the ultra/mega sonic device;
Step 3: Rotate chuck or oscillate wafer;
Step 4: Set power supply at frequency f1 and power P1;
Step 5: Before temperature of gas and vapor inside bubble reaches implosion temperature Ti, (or time reaches τ1<τi as being calculated by equation (11)), set power supply output to zero watts, therefore the temperature of gas inside bubble start to cool down since the temperature of liquid or water is much lower than gas temperature.
Step 6: After temperature of gas inside bubble decreases to room temperature T0 or time (zero power time) reaches τ2, set power supply at frequency f1 and power P1 again.
Step 7: repeat Step 1 to Step 6 until wafer is cleaned.
In step 5, the time τ1 must be shorter than τi in order to avoid bubble implosion, and τi can be calculated by using equation (11).
In step 6, the temperature of gas inside bubble is not necessary to be cooled down to room temperature or liquid temperature; it can be certain temperature above room temperature or liquid temperature, but better to be significantly lower than implosion temperature Ti.
According to equations 8 and 9, if (ΔT−δT) can be known, the τi can be calculated. But in general, (ΔT−δT) is not easy to be calculated or measured directly. The following method can determine the implosion time τi experimentally.
Step 1: Based on Table 1, choosing 5 different time τ1 as design of experiment (DOE) conditions.
Step 2: choose time τ2 at least 10 times of τ1, better to be 100 times of τ1 at the first screen test.
Step 3: fix certain power P0 to run above five conditions cleaning on specific patterned structure wafer separately. Here, P0 is the power at which the patterned structures on wafer will be surely damaged when running on continuous mode (non-pulse mode).
Step 4: Inspect the damage status of above five wafers by SEMS or wafer pattern damage review tool such as AMAT SEM vision or Hitachi IS3000, and then the implosion time τi can be located in certain range.
Step 1 to step 4 can be repeated again to narrow down the range of implosion time τi. After knowing the implosion time τi, the time τ1 can be set at a value smaller than 0.5τi for safety margin. One example of experimental data is described as following.
The patterned structures are 55 nm poly-silicon gate lines. Ultra/mega sonic wave frequency was 1 MHz, and ultra/mega sonic device manufactured by Prosys was used and operated in a gap oscillation mode (disclosed by PCT/CN2008/073471) for achieving better uniform energy dose within wafer and wafer to wafer. Other experimental parameters and final pattern damage data are summarized in Table 2 as follows:
It was clear that the τ1=2 ms (or 2000 cycle number) introduced as many as 1216 damage sites to patterned structure with 55 nm feature size, but that the τ1=0.1 ms (or 100 cycle number) introduced zero (0) damage sites to patterned structure with 55 nm feature size. So that the tis some number between 0.1 ms and 2 ms, more detail tests need to be done to narrow its range. Obviously, the cycle number related to ultra or mega sonic power density and frequency, the larger the power density, the less the cycle number; and the lower the frequency, the less the cycle number. From above experimental results, we can predict that the damage-free cycle number should be smaller than 2,000, assuming the power density of ultra or mega sonic wave is larger than 0.1 wattsorcm2, and frequency of ultra or mega sonic wave is equal to or less than 1 MHz. If the frequency increases to a range larger than 1 MHz or power density is less than than 0.1 watts/cm2, it can be predicted that the cycle number will increase.
After knowing the time τ1, then the time τ2 can be shorten based on similar DEO method described above, i.e. fix time τ1, gradually shorten the time τ2 to run DOE till damage on patterned structure being observed. As the time τ2 is shorten, the temperature of gas and or vapor inside bubble cannot be cooled down enough, which will gradually shift average temperature of gas and vapor inside bubble up, eventually it will trigger implosion of bubble. This trigger time is called critical cooling time. After knowing critical cooling time τc, the time τ2 can be set at value larger than 2τc for the same reason to gain safety margin.
Similar to method shown in
Again similar to method shown in
Again similar to method shown in
Again similar to method shown in
Again similar to method shown in
Again similar to method shown in
Step 1: Put an ultra/mega sonic device adjacent to surface of wafer or substrate set on a chuck or tank;
Step 2: Fill chemical liquid or gas doped water between wafer and the ultra/mega sonic device;
Step 3: Rotate chuck or oscillate wafer;
Step 4: Set power supply at frequency f1 and power P1;
Step 5: Before temperature of gas and vapor inside bubble reaches implosion temperature Ti, (total time τ1 elapse), set power supply output at frequency f1 and power P2, and P2 is smaller than P1. Therefore the temperature of gas inside bubble start to cool down since the temperature of liquid or water is much lower than gas temperature.
Step 6: After temperature of gas inside bubble decreases to certain temperature close to room temperature T0 or time (zero power time) reach τ2, set power supply at frequency f1 and power P1 again.
Step 7: repeat Step 1 to Step 6 until wafer is cleaned.
In step 6, the temperature of gas inside bubble can not be cooled down to room temperature due to power P2, there should be a temperature difference ΔT2 existing in later stage of τ2 time zone, as shown in
Step 1: Put an ultra/mega sonic device adjacent to surface of wafer or substrate set on a chuck or tank;
Step 2: Fill chemical liquid or gas doped water between wafer and the ultra/mega sonic device;
Step 3: Rotate chuck or oscillate wafer;
Step 4: Set power supply at frequency f1 and power P1;
Step 5: Before size of bubble reaches the same dimension of space W in patterned structures (time τ1 elapse), set power supply output to zero watts, therefore the temperature of gas inside bubble starts to cool down since the temperature of liquid or water is much lower than gas temperature;
Step 6: After temperature of gas inside bubble continues to reduce either it reaches room temperature T0 or time (zero power time) reach τ2, set power supply at frequency f1 and power P1 again;
Step 7: repeat Step 1 to Step 6 until wafer is cleaned.
In step 6, the temperature of gas inside bubble is not necessary to be cooled down to room temperature, it can be any temperature, but better to be significantly lower than implosion temperature Ti. In the step 5, bubble size can be slightly larger than dimension of patterned structures as long as bubble expansion force does not break or damage the patterned structure. The time τ1 can be determined experimentally by using the following method:
Step 1: Similar to Table 1, choosing 5 different time τ1 as design of experiment (DOE) conditions,
Step 2: choose time τ2 at least 10 times of τl, better to be 100 times of τ1 at the first screen test;
Step 3: fix certain power P0 to run above five conditions cleaning on specific patterned structure wafer separately. Here, P0 is the power at which the patterned structures on wafer will be surely damaged when running on continuous mode (non-pulse mode).
Step 4: Inspect the damage status of above five wafers by SEMS or wafer pattern damage review tool such as AMAT SEM vision or Hitachi IS3000, and then the damage time τi can be located in certain range.
Step 1 to step 4 can be repeated again to narrow down the range of damage time τd. After knowing the damage time τd, the time τ1 can be set at a value smaller than 0.5 τd for safety margin.
All cleaning methods described from
Generally speaking, an ultra/mega sonic wave with the frequency between 0.1 MHz˜10 MHz may be applied to the method disclosed in the present invention.
In the above embodiments, all the critical process parameters of sonic power supply, such as power, frequency, power on time (τ1) and power off time (τ2) are preset in a power supply controller, but no real-time monitoring was provided during the wafer cleaning process. Patterned structure damage cannot be avoided if the sonic power supply operation abnormal occurs during the wafer cleaning process. Hence, there needs an apparatus and method for real-time monitoring the sonic power supply operation status. If the parameters are not in the normal range, the sonic power supply should be shut down and an alarm signal should be sent out and reported.
Vout=(R2/R1)*Vin
Assuming R1=200 k, R2=R3=R4=10K, Vout=(R2/R1)*Vin=Vin/20
Where Vout is amplitude value output by the voltage attenuation circuit 2190, Vin is amplitude value input to the voltage attenuation circuit 2190, R1, R2, R3, R4 are resistances of the two operational amplifiers 23102 and 23104.
The output of the voltage attenuation circuit 2190 connects to the shaping circuit 2192. The waveform output from the voltage attenuation circuit 2190 is input to the shaping circuit 2192 to convert sinusoidal wave into square wave which can be dealt with by the main controller (FPGA) 2194.
The square wave output from the shaping circuit 2192 is input to the main controller (FPGA) 2194.
τ1=Counter_H*20 ns,τ2=Counter_L*20 ns.
Where Counter_H is the number of high level, Counter_L is the number of low level.
The main controller (FPGA) 2194 compares the calculated power on time with a preset time τ1, if the calculated power on time is longer than the preset time τ1, the main controller (FPGA) 2194 sends out an alarm signal to the host computer 2080 and the host computer 2080 receives the alarm signal and shuts down the sonic power supply 2082. The main controller (FPGA) 2194 compares the calculated power off time with a preset time τ2, if the calculated power off time is shorter than the preset time τ2, the main controller (FPGA) 2194 sends out an alarm signal to the host computer 2080 and the host computer 2080 receives the alarm signal and shuts down the sonic power supply 2082. The model of the main controller (FPGA) 2194 can select Altera Cyclone IV EP4CE22F17C6N.
As shown in
As shown in
As shown in
The present invention provides a method for cleaning substrate without damaging patterned structure on the substrate using ultra/mega sonic device, including the following steps:
Step 1: applying liquid into a space between a substrate and an ultra/mega sonic device;
Step 2: setting an ultra/mega sonic power supply at frequency f1 and power P1 to drive the ultra/mega sonic device;
Step 3: before bubble cavitation in the liquid damaging the patterned structure on the substrate, setting the ultra/mega sonic power supply at zero output;
Step 4: after temperature inside bubble cooling down to a set temperature, setting the ultra/mega sonic power supply at frequency f1 and power P1 again;
Step 5: detecting power on time at power P1 and frequency f1 and power off time separately;
Step 6: comparing the detected power on time at power P1 and frequency f1 with a preset time τ1, if the detected power on time is longer than the preset time τ1, shut down the ultra/mega sonic power supply and send out an alarm signal;
Step 7: comparing the detected power off time with a preset time τ2, if the detected power off time is shorter than the preset time τ2, shut down the ultra/mega sonic power supply and send out an alarm signal;
Step 8: repeating step 1 to step 7 till the substrate is cleaned.
In an embodiment, the step 5 further comprises: attenuating amplitude of the waveform output by the ultra/mega sonic power supply; converting sinusoidal wave of which amplitude is attenuated into square wave; converting pulse signal of the power on time to high level signal, and the low level signal of power off time remaining the same; measuring the time of high level and low level for comparing with the preset time τ1 and the preset time τ2.
The attenuation rate is set in the range of 5 to 100, and preferably 20.
In an embodiment, the actual power on time is equal to τ−τ3, wherein τ is the measured time of high level, τ3 is the time of the ultra/mega sonic power supply oscillating several periods after the ultra/mega sonic power supply is shut down. Compare the actual power on time with the preset time τ1, if the actual power on time is longer than the preset time τ1, shut down the ultra/mega sonic power supply and send out an alarm signal. The present invention provides another method for cleaning substrate without damaging patterned structure on the substrate using ultra/mega sonic device, including the following steps:
Step 1: applying liquid into a space between a substrate and an ultra/mega sonic device;
Step 2: setting an ultra/mega sonic power supply at frequency f1 and power P1 to drive the ultra/mega sonic device;
Step 3: before bubble cavitation in the liquid damaging patterned structure on the substrate, setting the ultra/mega sonic power supply at zero output;
Step 4: after temperature inside bubble cooling down to a set temperature, setting the ultra/mega sonic power supply at frequency f1 and power P1 again;
Step 5: detecting amplitude of each waveform output by the ultra/mega sonic power supply;
Step 6: comparing detected amplitude of each waveform with a preset value, if the detected amplitude of any waveform is larger than the preset value, shut down the ultra/mega sonic power supply and send out an alarm signal, where the preset value is larger than waveform amplitude at normal operation;
Step 7: repeating step 1 to step 6 till the substrate is cleaned.
In an embodiment, the method further comprises: attenuating amplitude of the waveform output by the ultra/mega sonic power supply; obtaining analog DC reference voltages Vref+ and Vref−; comparing the attenuated amplitude Vin with the reference voltages Vref+ and Vref−, if the attenuated amplitude Vin exceeds the reference voltages Vref+ and Vref−, shut down the ultra/mega sonic power supply and send out an alarm signal.
The present invention provides an apparatus for cleaning semiconductor substrate using ultra/mega sonic device, comprising a chuck, an ultra/mega sonic device, at least one nozzle, an ultra/mega sonic power supply, a host computer, and a detection system. The chuck holds a semiconductor substrate. The ultra/mega sonic device is positioned adjacent to the semiconductor substrate. The at least one nozzle injects chemical liquid on the semiconductor substrate and a gap between the semiconductor substrate and the ultra/mega sonic device. The host computer sets the ultra/mega sonic power supply at frequency f1 and power P1 to drive the ultra/mega sonic device, before bubble cavitation in the liquid damaging patterned structure on the semiconductor substrate, setting the ultra/mega sonic power supply at zero output, after temperature inside bubble cooling down to a set temperature, setting the ultra/mega sonic power supply at frequency f1 and power P1 again. The detection system detects power on time at power P1 and frequency f1 and power off time separately, comparing the detected power on time at power P1 and frequency f1 with a preset time τ1, if the detected power on time is longer than the preset time τ1, the detection system sends out an alarm signal to the host computer, and the host computer receives the alarm signal and shuts down the ultra/mega sonic power supply, comparing the detected power off time with a preset time τ2, if the detected power off time is shorter than the preset time τ2, the detection system sends out an alarm signal to the host computer, and the host computer receives the alarm signal and shuts down the ultra/mega sonic power supply.
In an embodiment, the ultra/mega sonic device is further coupled with the nozzle and positioned adjacent to the semiconductor substrate, and the energy of the ultra/mega sonic device is transmitted to the semiconductor substrate through the liquid column out of the nozzle.
The present invention provides another apparatus for cleaning semiconductor substrate using ultra/mega sonic device, comprising a chuck, an ultra/mega sonic device, at least one nozzle, an ultra/mega sonic power supply, a host computer, and a detection system. The chuck holds a semiconductor substrate. The ultra/mega sonic device is positioned adjacent to the semiconductor substrate. The at least one nozzle injects chemical liquid on the semiconductor substrate and a gap between the semiconductor substrate and the ultra/mega sonic device. The host computer sets the ultra/mega sonic power supply at frequency f1 and power P1 to drive the ultra/mega sonic device, before bubble cavitation in the liquid damaging patterned structure on the semiconductor substrate, setting the ultra/mega sonic power supply at zero output, after temperature inside bubble cooling down to a set temperature, setting the ultra/mega sonic power supply at frequency f1 and power P1 again. The detection system detects amplitude of each waveform output by the ultra/mega sonic power supply, comparing detected amplitude of each waveform with a preset value, if detected amplitude of any waveform is larger than the preset value, the detection system sends out an alarm signal to the host computer, and the host computer receives the alarm signal and shuts down the ultra/mega sonic power supply, wherein the preset value is larger than waveform amplitude at normal operation.
In an embodiment, the ultra/mega sonic device is further coupled with the nozzle and positioned adjacent to the semiconductor substrate, and the energy of the ultra/mega sonic device is transmitted to the semiconductor substrate through the liquid column out of the nozzle.
The present invention provides another apparatus for cleaning semiconductor substrate using ultra/mega sonic device, comprising a cassette, a tank, an ultra/mega sonic device, at least one inlet, an ultra/mega sonic power supply, a host computer, and a detection system. The cassette holds at least one semiconductor substrate. The tank holds the cassette. The ultra/mega sonic device is attached to outside wall of the tank. The at least one inlet is used for filling chemical liquid into the tank to immerse the semiconductor substrate. The host computer sets the ultra/mega sonic power supply at frequency f1 and power P1 to drive the ultra/mega sonic device, before bubble cavitation in the liquid damaging patterned structure on the semiconductor substrate, setting the ultra/mega sonic power supply at zero output, after temperature inside bubble cooling down to a set temperature, setting the ultra/mega sonic power supply at frequency f1 and power P1 again. The detection system detects power on time at power P1 and frequency f1 and power off time separately, comparing the detected power on time at power P1 and frequency f1 with a preset time τ1, if the detected power on time is longer than the preset time τ1, the detection system sends out an alarm signal to the host computer, and the host computer receives the alarm signal and shuts down the ultra/mega sonic power supply, comparing the detected power off time with a preset time τ2, if the detected power off time is shorter than the preset time τ2, the detection system sends out an alarm signal to the host computer, and the host computer receives the alarm signal and shuts down the ultra/mega sonic power supply.
The present invention provides another apparatus for cleaning semiconductor substrate using ultra/mega sonic device, comprising a cassette, a tank, an ultra/mega sonic device, at least one inlet, an ultra/mega sonic power supply, a host computer and a detection system. The cassette holds at least one semiconductor substrate. The tank holds the cassette. The ultra/mega sonic device is attached to outside wall of the tank. The at least one inlet is used for filling chemical liquid into the tank to immerse the semiconductor substrate. The host computer sets the ultra/mega sonic power supply at frequency f1 and power P1 to drive the ultra/mega sonic device, before bubble cavitation in the liquid damaging patterned structure on the semiconductor substrate, setting the ultra/mega sonic power supply at zero output, after temperature inside bubble cooling down to a set temperature, setting the ultra/mega sonic power supply at frequency f1 and power P1 again. The detection system detects amplitude of each waveform output by the ultra/mega sonic power supply, comparing detected amplitude of each waveform with a preset value, if detected amplitude of any waveform is larger than the preset value, the detection system sends out an alarm signal to the host computer, and the host computer receives the alarm signal and shuts down the ultra/mega sonic power supply, wherein the preset value is larger than waveform amplitude at normal operation.
Although the present invention has been described with respect to certain embodiments, examples, and applications, it will be apparent to those skilled in the art that various modifications and changes may be made without departing from the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2016/078510 | 4/6/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/173588 | 10/12/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5625249 | Grant | Apr 1997 | A |
5777860 | Halbert | Jul 1998 | A |
6313565 | Puskas | Nov 2001 | B1 |
7247977 | Goodson | Jul 2007 | B2 |
7306002 | Kim et al. | Dec 2007 | B2 |
7495371 | Goodson | Feb 2009 | B2 |
7598654 | Goodson | Oct 2009 | B2 |
8310131 | Goodson | Nov 2012 | B2 |
8936032 | Goodson | Jan 2015 | B2 |
9159311 | Goodson | Oct 2015 | B2 |
20010013355 | Busnaina | Aug 2001 | A1 |
20020043893 | Puskas | Apr 2002 | A1 |
20020195133 | Miranda et al. | Dec 2002 | A1 |
20040163682 | Boyd | Aug 2004 | A1 |
20060054182 | Korbler | Mar 2006 | A1 |
20060260639 | Fani | Nov 2006 | A1 |
20060286808 | Kashkoush | Dec 2006 | A1 |
20080047575 | Puskas | Feb 2008 | A1 |
20100139710 | Wang | Jun 2010 | A1 |
20110041871 | Fan | Feb 2011 | A1 |
20120097195 | Wang et al. | Apr 2012 | A1 |
20140216508 | Korbler | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
101087007 | Dec 2007 | CN |
101879511 | Nov 2010 | CN |
103736690 | Apr 2014 | CN |
0430072 | Jun 1991 | EP |
H06-296942 | Oct 1994 | JP |
2001179195 | Jul 2001 | JP |
2002-289565 | Oct 2002 | JP |
2007-165695 | Jun 2007 | JP |
2013-021160 | Jan 2013 | JP |
Number | Date | Country | |
---|---|---|---|
20200335325 A1 | Oct 2020 | US |