The present invention relates generally to semiconductor device manufacturing, and more particularly to methods and apparatus for repositioning support for a substrate carrier.
Manufacturing of semiconductor devices typically involves performing a sequence of procedures with respect to a substrate such as a silicon substrate, a glass plate, etc. These steps may include polishing, deposition, etching, photolithography, heat treatment, and so forth. Usually a number of different processing steps may be performed in a single processing system or “tool” which includes a plurality of processing chambers. However, it is generally the case that other processes are required to be performed at other processing locations within a fabrication facility, and it is accordingly necessary that substrates be transported within the fabrication facility from one processing location to another. Depending on the type of semiconductor device to be manufactured, there may be a relatively large number of processing steps required, to be performed at many different processing locations within the fabrication facility.
It is conventional to transport substrates from one processing location to another within substrate carriers such as sealed pods, cassettes, containers and so forth. It is also conventional to employ automated substrate carrier transport devices, such as automatic guided vehicles, overhead transport systems, substrate carrier handling robots, etc., to move substrate carriers from location to location within the fabrication facility or to transfer substrate carriers from or to a substrate carrier transport device. However, a need remains for improved methods and apparatus for supporting substrate carriers during transport operations.
In a first aspect of the invention, a first method is provided for repositioning support provided by an end effector. The first method includes the steps of (1) employing the end effector to support a substrate carrier by a bottom of the substrate carrier; (2) transferring the substrate carrier from the end effector to an intermediate support location, wherein the intermediate support location supports the substrate carrier by a bottom of the substrate carrier; (3) repositioning the end effector proximate an overhead transfer flange of the substrate carrier; (4) employing the end effector to support the substrate carrier by the overhead transfer flange of the substrate carrier; and (5) transferring the substrate carrier from the intermediate support location.
In a second aspect of the invention, a second method is provided for repositioning support provided by an end effector. The second method includes the steps of (1) employing the end effector to support a substrate carrier by an overhead transfer flange of the substrate carrier; (2) transferring the substrate carrier from the end effector to an intermediate support location, wherein the intermediate support location supports the substrate carrier by a bottom of the substrate carrier; (3) repositioning the end effector proximate the bottom of the substrate carrier; (4) employing the end effector to support the substrate carrier by the bottom of the substrate carrier; and (5) transferring the substrate carrier from the intermediate support location.
In a third aspect of the invention, a first substrate carrier transferring system is provided. The first substrate carrier transferring system includes (1) an end effector adapted to support a substrate carrier by a bottom of the substrate carrier and support the substrate carrier by an overhead transfer flange of the substrate carrier; (2) an intermediate support location; and (3) a controller coupled to the end effector and adapted to (a) employ the end effector to support the substrate carrier by the bottom of the substrate carrier; (b) transfer the substrate carrier from the end effector to the intermediate support location, wherein the intermediate support location supports the substrate carrier by the bottom of the substrate carrier; (c) reposition the end effector proximate the overhead transfer flange of the substrate carrier; (d) employ the end effector to support the substrate carrier by the overhead transfer flange of the substrate carrier; and (e) transfer the substrate carrier from the intermediate support location.
In a fourth aspect of the invention, a second substrate carrier transferring system is provided. The second substrate carrier transferring system includes (1) an end effector adapted to support a substrate carrier by a bottom of the substrate carrier and support the substrate carrier by an overhead transfer flange of the substrate carrier; (2) an intermediate support location; and (3) a controller coupled to the end effector and adapted to (a) employ the end effector to support the substrate carrier by the overhead transfer flange of the substrate carrier; (b) transfer the substrate carrier from the end effector to the intermediate support location, wherein the intermediate support location supports the substrate carrier by the bottom of the substrate carrier; (c) reposition the end effector proximate the bottom of the substrate carrier; (d) employ the end effector to support the substrate carrier by the bottom of the substrate carrier; and (e) transfer the substrate carrier from the intermediate support location. Numerous other aspects are provided, as are methods, systems, apparatus and computer program products in accordance with these and other aspects of the invention. Each computer program product described herein may be carried by a medium readable by a computer (e.g., a carrier wave signal, a floppy disc, a compact disc, a DVD, a hard drive, a random access memory, etc.).
Other features and aspects of the present invention will become more fully apparent from the following detailed description, the appended claims and the accompanying drawings.
A substrate carrier, such as a conventional front opening unified pod (FOUP), may store one or more substrates. During a semiconductor device manufacturing process, the substrate carrier is transferred from a first location to a second location of the semiconductor device manufacturing facility using a transporting device, such as an end effector of a robot arm. The transporting device may transfer (e.g., by lifting) the substrate carrier from the first location by supporting a first end (e.g., a top end) of the substrate carrier. In accordance with the present invention, however, the transporting device may then transfer the substrate carrier to the second location by supporting a second end (e.g., a bottom end) of the substrate carrier or vice versa. For example, the support provided to the substrate carrier may be repositioned from the first end to the second end of the substrate carrier during transfer. Accordingly, the present methods and apparatus provide for repositioning support of a substrate carrier.
The end effector 103 includes a top side 113 and a bottom side 115. Details of the top side 113 and the bottom side 115 of the end effector 103 are described below with reference to
The end effector 103 may be coupled to a controller 407, which is adapted to move (e.g., control movement of) the end effector 103 in one or more directions. For example, the controller 407 may be adapted to move the end effector along the x-axis, y-axis and/or z-axis (
In the embodiment of
Exemplary operation of the substrate carrier transferring system 409 (
With reference to
In step 607, the substrate carrier (e.g., FOUP 101) is transferred from the end effector 101 to an intermediate support location 117. The intermediate support location 117 supports the bottom 301 of the substrate carrier (e.g., FOUP 101). For example, the controller 407 may move the end effector 103, while the end effector is supporting a bottom side 301 of the FOUP 101, along the z-axis (e.g., vertically upward or downward) such that the end effector is proximate (e.g., slightly higher) than the intermediate support location 117 (as shown in
The controller 407 then moves the end effector 103, while the end effector 103 is supporting the bottom side 301 of the FOUP 101, along the x-axis (e.g., horizontally left or right) such that the end effector 103 is directly above the intermediate support location 117.
The controller 407 then moves the end effector 103, while the end effector 103 is supporting the bottom side 301 of the FOUP 101, along the z-axis (e.g., vertically downward). While the end effector 103 moves downward along the z-axis, the end effector 103 fully supports the bottom side 301 of the FOUP 101. However, as the end effector 103 approaches the position shown in
As the controller 407 continues to move the end effector 103 vertically downward, the FOUP 101 continues to be supported from the bottom side 301 by the intermediate support location 117, and the end effector pins 401 disengage from the FOUP slots 303. Therefore, the end effector 103 no longer supports the FOUP 101 and the intermediate support location 117 may fully support the FOUP 101 by the bottom (e.g., bottom side) of the FOUP 101. Thus, the FOUP 101 is successfully transferred from the end effector 103 to the intermediate support location 117 (as shown in
In step 609, the end effector 103 is repositioned proximate an overhead transfer (OHT) flange 107 of the substrate carrier (e.g., FOUP 101). The controller 407 is employed for moving the end effector 103, which is not supporting the FOUP 101, along one or more of the x, y, and z axes to reposition the end effector 103 proximate the OHT flange 107. For example, the controller 407 may move the end effector 103 vertically downward after the FOUP 101 is transferred from the end effector 103 to the intermediate support location 117. Such vertically downward movement may be continuous with the vertically downward movement of step 607 or separate movements may be used. As a result of the vertically downward movement, the end effector 103 is directly below the intermediate support location 117 while the intermediate support location 117 supports the FOUP 101.
The controller 407 may then move the end effector 103 horizontally, for example, along the x-axis. The controller 407 moves the end effector 103, for example into an open region or tunnel (see, for example, open region 1911 in
The controller 407 then moves the end effector 103 along the z-axis (e.g., vertically in the tunnel) such that the end effector 103 is slightly higher than the FOUP 101. More specifically, the end effector 103 is moved such that the bottom side 115 of the end effector 103 is higher (e.g., vertically) than the top surface of the FOUP's OHT flange 107 and such that the end effector flanges 501 of the end effector 103 and any raised features (such as the vertically oriented kinematic pins 401 shown in the side elevational view of
The controller 407 moves the end effector 103 horizontally (e.g., along the x and/or y axes) such that the bottom side 115 of the end effector 103 is directly above the top surface 201 of the OHT flange 107 and the end effector flanges 501 are directly below the OHT flange 107. If the end effector 103 is moved upward along the z-axis, the end effector flanges 501 will couple to the OHT flange 107 (e.g., via kinematic pins 401 that provide final alignment between the end effector 103 and the FOUP 101 and that prevent the FOUP 101 from sliding during movement in the X-direction). In this manner, the end effector 103 is repositioned proximate the OHT flange 107 of the FOUP 101.
In step 611, the end effector 103 is employed to support the substrate carrier (e.g., FOUP 101) by the OHT flange 107 of the substrate carrier (e.g., FOUP 101). The controller 407 moves the end effector 103 upward along the z-axis (e.g., vertically). While the end effector 103 is moved upward along the z-axis, the end effector flanges 501 couple to and support the OHT flange 107. As a result of the upward movement of the end effector 103, the FOUP 101 is lifted upward along the z-axis from the intermediate support location 117. Consequently the support location pins 403 of the support location 117 disengage from corresponding FOUP slots 303. Therefore, the end effector 103 fully supports the FOUP 101 by the OHT flange 107 of the FOUP 101.
In step 613, after the end effector 103 supports the substrate carrier by its OHT flange, the substrate carrier, (e.g., FOUP 101) is transferred from the intermediate support location 117. For example, the FOUP 101 may be placed into a processing or load lock chamber (not shown). The end effector 103 is moved, and therefore the FOUP 101 is lifted upward along the z-axis such that the support location 117 pins do not contact the bottom side 301 of the FOUP 101 during any horizontal movement of the end effector 103 and the FOUP 101. Thus, the end effector 101 supports the FOUP 101 directly above the intermediate support location 117, as shown in
The controller 407 moves the end effector 103 horizontally (e.g., along the x and/or y axes), for example into the open region or tunnel, such that no portion of the end effector 103 and the FOUP 101, which is supported by the end effector 103, is over (e.g., extends above) the intermediate support location 117.
The controller 407 moves the end effector 103 and the FOUP 101 supported by the end effector 103, along the z-axis (e.g., vertically) to position the FOUP 101 relative to another component, such as a load lock chamber (not shown), docking station of a processing tool, or the like, included in the semiconductor device manufacturing facility. The controller 407 may move the end effector 103 and the FOUP 101 horizontally (e.g., along the x and/or y axis) to position the FOUP 101 relative to the component. In this manner, the FOUP 101 is transferred from the intermediate support location 117.
In step 615, the method 601 ends. Through the use of the method 601 of
In one particular embodiment, the method 601 may be used as part of an operation to transfer a substrate carrier from an overhead conveyor system that supports substrate carriers via an overhead transfer flange, to a load port of a processing tool that supports substrate carriers via a bottom side of the substrate carriers. For example, the end effector 103 may be used to remove a substrate carrier from an overhead conveyor system as described in previously incorporated U.S. patent application Ser. Nos. 10/650,310 and 10/650,480, both filed Aug. 28, 2003 (e.g., while the conveyor system is in motion), by supporting the substrate carrier via a bottom of the substrate carrier. The end effector 103 then may be repositioned so that the end effector 103 supports the substrate carrier via the OHT flange of the substrate carrier (as described by method 601). The substrate carrier then may be positioned (lowered) onto a load port of a processing tool and docked/opened to allow processing of the substrates contained within the substrate carrier. The reverse operation may be performed to remove the substrate carrier from the load port by supporting the substrate carrier via its OHT flange, and loading the substrate carrier back onto the overhead conveyor system by supporting the substrate carrier via its bottom side.
Further exemplary operation of the substrate carrier transferring system 409 is now described with reference to
With reference to
In step 1807, the substrate carrier (e.g., FOUP 101) is transferred from the end effector 103 to an intermediate support location 117. The intermediate support location supports the bottom side 301 of the FOUP 101. The controller 407 may be employed for moving the end effector 103 along one or more of the x, y and z axes such that the FOUP 101 is transferred from the end effector 103 to the intermediate support location 117. For example, the controller 407 may move the end effector 103 and therefore, the FOUP 101, along the z-axis such that the FOUP 101 is proximate (e.g., slightly higher than) the intermediate support location 117. More specifically, the controller 407 positions the end effector 103 and the FOUP 101 such that the bottom side 301 of the FOUP 101 does not contact the support location pins 403 when the end effector 103 and the FOUP 101 are moved horizontally (e.g., along the x and/or y axes). As shown in
The controller 407 moves the end effector 103, and therefore the FOUP 101, horizontally (e.g., along the x and/or y axes) such that each FOUP slot 303 in the bottom side 301 of the FOUP 101 is positioned directly above a corresponding support location pin 403 of the intermediate support location 117. As shown in
The controller 407 moves the end effector 103, and therefore the FOUP 101, downward vertically (e.g., along the z-axis). When the bottom surface 301 of the FOUP 101 is positioned slightly higher than the intermediate support location 117, the support location pins 403 begin to enter the corresponding FOUP slots 303 in the bottom side 301 of the FOUP 101. As shown in
The controller 407 moves the end effector 103 and the FOUP 101, downward vertically until the support location pins 403 engage or contact (e.g., couple to) the FOUP slots 303. As described above, the support location pins 403 may include sensors 405 for indicating when and/or determining whether one or more end effector pins 401 and/or the one or more support location pins 403 are properly positioned relative to the FOUP slots 303. When the support location pins 403 are properly positioned in (e.g., coupled to) the FOUP slots 303, the end effector flanges 501 are not coupled to the OHT flange 107. Consequently, the intermediate support location 117 fully supports the FOUP 101, and the end effector 103 does not support the FOUP 101. Therefore, the FOUP 101 is transferred from the end effector 103 to the intermediate support location 117. As shown in
In step 1809, the end effector 103 is repositioned proximate the bottom of the substrate carrier (e.g., FOUP 101). The controller 407 may be employed for moving the end effector 103 along one or more of the x, y and z axes so as to reposition the end effector 103 proximate the bottom side 301 of the FOUP 101. For example, the controller 407 moves the end effector 103 horizontally along the x and/or y axes (e.g., into the tunnel) such that no portion of the end effector 103 is over (e.g., extends above) the FOUP 101, which is supported by the intermediate support location 117. As shown in
The controller 407 then moves the end effector 103 downward along the z-axis (e.g., vertically in the tunnel) such that the end effector 103 is lower than the intermediate support location 117. The end effector 103 is positioned such that the end effector pins 401 do not contact the intermediate support location 117 when the end effector 103 is moved horizontally (e.g., along the x and or y axes). As shown in
The controller 407 then moves the end effector 103 horizontally (e.g., along the x and/or y axes) such that the end effector 103 is directly below the intermediate support location 117 and FOUP 101. More specifically, the end effector 103 is positioned such that the end effector 103 and the intermediate support location 117 may occupy the same plane (e.g., xy plane) when the end effector 103 is moved vertically, and the end effector pins 401 are positioned directly below corresponding FOUP slots 303 in the bottom side 301 of the FOUP 101. As shown in
In step 1811, the end effector 103 is employed to support the bottom of the substrate carrier (e.g., FOUP 101). The controller 407 moves the end effector 103 upward along the z-axis (e.g., vertically) such that the end effector pins 401 engage or couple to corresponding FOUP slots 303. The end effector 103 then supports the FOUP 101 as shown in
In step 1813, the substrate carrier (e.g., FOUP 101) is transferred from the intermediate support location 117. The controller 407 may be employed for moving the end effector 103 along one or more of the x, y and z axes such that the FOUP 101 is transferred from the intermediate support location 117. For example, the controller 407 moves the end effector 103, which supports the bottom side 301 of the FOUP 101, upward along the z-axis (e.g., vertically) to a position directly above the intermediate support location. More specifically, the end effector 103 is positioned such that the end effector 103 does not contact the intermediate support location 117 when the end effector 103 is moved horizontally (e.g., along the x and/or y axes). As shown in
The controller 407 may move the end effector 103 horizontally (e.g., along the x and/or y axes) such that no portion of the end effector 103 and the FOUP 101 is over (e.g., extends above) the intermediate support location 117. For example, the end effector 103, and therefore the FOUP 103, are moved into the tunnel or open region. As shown in
In step 1815, the method 1801 ends. Through the use of the method 1801 of
The present invention is particularly advantageous when employed in a system such as that described in previously incorporated U.S. patent application Ser. No. 10/650,480, filed Aug. 28, 2003 and titled “SUBSTRATE CARRIER HANDLER THAT UNLOADS SUBSTRATE CARRIERS DIRECTLY FROM A MOVING CONVEYOR,”.
The foregoing description discloses only exemplary embodiments of the invention. Modifications of the above disclosed apparatus and methods which fall within the scope of the invention will be readily apparent to those of ordinary skill in the art. For instance, although exemplary sequences of movements for the end effector 103 were provided while describing one or more steps of the present methods 601, 1801, different sequences of movement may be employed to perform any of the steps of the present methods 601, 1801. In one or more embodiments, the controller 407 is adapted to perform one or more of the steps of the present methods 601, 1801. Alternatively, other control devices may be employed to perform one or more steps of the present methods 601, 1801. Although in one or more embodiments, the first end was a bottom side 301 of the FOUP 101 and the second end was the top side 109 of the FOUP 101, or vice versa, the first end may be any side of the FOUP 101 and the second end may be any other side of the FOUP 101.
Further, although the end effector 103 and/or intermediate support location 117 supports the bottom side 301 of the FOUP 101 by coupling pins 401, 403 to corresponding to (e.g., complementary to) slots 303, the end effector 103 and/or the intermediate support location 117 and the FOUP 101 may be coupled using different complementary devices. Similarly, the end effector flanges 501 and the OHT flange 107 may be replaced by other complementary devices. In some embodiments, the intermediate support locations 117 may support a substrate carrier by its overhead transfer flange.
In one or more embodiments of the invention, the overhead conveyor system 1903 may be configured as shown in previously incorporated U.S. patent application Ser. Nos. 10/650,310 and 10/650,480, both filed Aug. 28, 2003, and adapted to be continuously in motion. Other overhead conveyor systems, including conveyor systems that are not continuously in motion, may be used. In the embodiment of
The processing tool 1907 includes the end effector 103, which is adapted to support a substrate carrier 1905 via a bottom of the substrate carrier 1905 or via an overhead transfer flange 1906 of the substrate carrier 1905 (as shown in phantom). The processing tool 1907 includes a plurality of load ports 1909a-f separated into two columns as shown. Other configurations and/or numbers of load ports may be used. Each load port 1909a-f may be adapted to support, dock and/or open a substrate carrier 1905 (e.g., to allow substrates within the substrate carrier 1905 to be extracted and processed within the processing tool 1907), as well as to undock and/or close a substrate carrier 1905. In the embodiment shown, each load port 1909a-f is adapted to support a substrate carrier 1905 by a bottom of the substrate carrier.
The processing tool 1907 also includes a plurality of support locations 117a-f. Other numbers and/or arrangements of support locations 117a-f may be used. An open region or tunnel 1911 exists between the columns of support locations 117a-f and load ports 1909a-f that defines an area in which the end effector 103 may be moved along the z-axis (e.g., vertically) without contacting other support locations and/or load ports.
The controller 407 is coupled to the processing tool 1907 and may be adapted to control operation of the processing tool 1907, including operation of the end effector 103 as previously described (e.g., so as to perform methods 601 or 1801).
During exemplary operation of the system 1901, a substrate carrier 1905 may be unloaded from the overhead conveyor system 1903 using the end effector 103 to support the substrate carrier 1905 via a bottom of the substrate carrier 1905 (see, for example, U.S. patent application Ser. Nos. 10/650,310 and 10/650,480, both filed Aug. 28, 2003). The substrate carrier 1905 then may be placed on one of the support locations 117a-f and the end effector 103 may be repositioned to support the substrate carrier 1905 via its overhead transfer flange 1906 (as previously described). The substrate carrier 1905 then may be transferred from the support location 117a-f to one of the load ports 1909a-f and supported at the respective load port via a bottom of the substrate carrier 1905. The substrate carrier 1905 then may be docked and opened at the load port, and the substrates of the substrate carrier 1905 may be processed within the processing tool 1907. Thereafter, the substrate carrier 1905 may be closed and undocked at the load port. The end effector 103 then may transfer the substrate carrier 1905 from the respective load port to one of the support locations 117a-f, supporting the substrate carrier 1905 via its overhead transfer flange. Thereafter, the end effector 103 may be repositioned (as previously described) to support the substrate carrier 1905 via the bottom of the substrate carrier 1905. The substrate carrier 1905 then may be loaded onto the overhead conveyor system 1903 via the end effector 103 and transported to another processing tool (not shown) or other location within a fabrication facility. The controller 407 may include computer program code for performing any of the above steps. The steps of loading/unloading a substrate carrier onto/from the overhead conveyor system 1903 may be performed while the conveyor system is stopped or in motion.
While the present invention has been described primarily with reference to FOUPs, it will be understood that other types of substrate carriers may be employed (e.g., bottom opening substrate carriers, top opening substrate carriers, etc.). Likewise, the present invention may be used with small lot size or large lot size substrate carriers. As used herein, a “small lot” size substrate carrier refers to a substrate carrier that is adapted to hold significantly fewer substrates than a conventional “large lot” size substrate carrier which typically holds 13 or 25 substrates. As an example, in one embodiment, a small lot size substrate carrier is adapted to hold 5 or less substrates. Other small lot size substrate carriers may be employed (e.g., small lot size carriers that hold 1, 2, 3, 4, 5, 6, 7 or more substrates, but significantly less than that of a large lot size substrate carrier). For example, in one embodiment, each small lot size substrate carrier may hold too few substrates for human transport of substrates carriers to be viable within a semiconductor device manufacturing facility.
Accordingly, while the present invention has been disclosed in connection with exemplary embodiments thereof, it should be understood that other embodiments may fall within the spirit and scope of the invention as defined by the following claims.
This application is a division of and claims priority to U.S. Non-Provisional patent application Ser. No. 11/180,029, filed Jul. 12, 2005, now U.S. Pat. No. 7,409,263 which claims priority to U.S. Provisional Patent Application Ser. No. 60/587,752, filed Jul. 14, 2004. Both of these patent applications are incorporated herein by reference in their entirety. The present application is related to the following commonly-assigned, co-pending U.S. Patent Applications, each of which is hereby incorporated by reference herein in its entirety: U.S. patent application Ser. No. 10/650,310, filed Aug. 28, 2003 and titled “System For Transporting Substrate Carriers”; and U.S. patent application Ser. No. 10/650,480, filed Aug. 28, 2003 and titled “Substrate Carrier Handler That Unloads Substrate Carriers Directly From a Moving Conveyor”.
Number | Name | Date | Kind |
---|---|---|---|
4449885 | Hertel et al. | May 1984 | A |
4776744 | Stonestreet et al. | Oct 1988 | A |
4859137 | Bonora et al. | Aug 1989 | A |
4861222 | Mirkovich | Aug 1989 | A |
4886412 | Wooding et al. | Dec 1989 | A |
5169272 | Bonora et al. | Dec 1992 | A |
5246218 | Yap et al. | Sep 1993 | A |
5256204 | Wu | Oct 1993 | A |
5360106 | Nakayama et al. | Nov 1994 | A |
5370491 | Bonora et al. | Dec 1994 | A |
5372471 | Wu | Dec 1994 | A |
5607276 | Muka et al. | Mar 1997 | A |
5615988 | Wiesler et al. | Apr 1997 | A |
5664925 | Muka et al. | Sep 1997 | A |
5668056 | Wu et al. | Sep 1997 | A |
5674039 | Walker et al. | Oct 1997 | A |
5713711 | McKenna et al. | Feb 1998 | A |
5752796 | Muka | May 1998 | A |
5772386 | Mages et al. | Jun 1998 | A |
5788454 | Thompson et al. | Aug 1998 | A |
5870488 | Rush et al. | Feb 1999 | A |
5931631 | Bonora et al. | Aug 1999 | A |
5950643 | Miyazaki et al. | Sep 1999 | A |
5976199 | Wu et al. | Nov 1999 | A |
5980183 | Fosnight | Nov 1999 | A |
6014817 | Thompson et al. | Jan 2000 | A |
6042324 | Aggarwal et al. | Mar 2000 | A |
6048259 | Asai | Apr 2000 | A |
6053688 | Cheng | Apr 2000 | A |
6135168 | Yang et al. | Oct 2000 | A |
6165268 | Ow et al. | Dec 2000 | A |
6183186 | Howells et al. | Feb 2001 | B1 |
6249342 | Cheng | Jun 2001 | B1 |
6281516 | Bacchi et al. | Aug 2001 | B1 |
6283692 | Perlov et al. | Sep 2001 | B1 |
6506009 | Nulman et al. | Jan 2003 | B1 |
6579052 | Bonora et al. | Jun 2003 | B1 |
6677690 | Fosnight et al. | Jan 2004 | B2 |
6955517 | Nulman et al. | Oct 2005 | B2 |
7039499 | Nasr et al. | May 2006 | B1 |
7051870 | Schoendienst et al. | May 2006 | B2 |
7077614 | Hasper et al. | Jul 2006 | B1 |
7168553 | Rice et al. | Jan 2007 | B2 |
7230702 | Rice et al. | Jun 2007 | B2 |
7234584 | Rice et al. | Jun 2007 | B2 |
7234908 | Nulman et al. | Jun 2007 | B2 |
7243003 | Elliott et al. | Jul 2007 | B2 |
7346431 | Elliott et al. | Mar 2008 | B2 |
7359767 | Elliott et al. | Apr 2008 | B2 |
7360981 | Weaver | Apr 2008 | B2 |
7409263 | Elliott et al. | Aug 2008 | B2 |
7433756 | Rice et al. | Oct 2008 | B2 |
20010043849 | Perlov et al. | Nov 2001 | A1 |
20020090282 | Bachrach | Jul 2002 | A1 |
20030031538 | Weaver | Feb 2003 | A1 |
20030110649 | Hudgens | Jun 2003 | A1 |
20030202865 | Ponnekanti et al. | Oct 2003 | A1 |
20030202868 | Bachrach | Oct 2003 | A1 |
20040081546 | Elliott et al. | Apr 2004 | A1 |
20040191042 | Chen et al. | Sep 2004 | A1 |
20050040662 | Rice et al. | Feb 2005 | A1 |
20050135903 | Rice et al. | Jun 2005 | A1 |
20050167554 | Rice et al. | Aug 2005 | A1 |
20050240290 | Stone et al. | Oct 2005 | A1 |
20060072986 | Perlov et al. | Apr 2006 | A1 |
20070237609 | Nulman et al. | Oct 2007 | A1 |
20070258796 | Englhardt et al. | Nov 2007 | A1 |
20070274813 | Elliott et al. | Nov 2007 | A1 |
20080050217 | Rice et al. | Feb 2008 | A1 |
20080051925 | Rice et al. | Feb 2008 | A1 |
20080071417 | Rice et al. | Mar 2008 | A1 |
20080187414 | Elliott et al. | Aug 2008 | A1 |
20080187419 | Rice et al. | Aug 2008 | A1 |
20080213068 | Weaver | Sep 2008 | A1 |
20090030547 | Rice et al. | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
0 472 536 | Dec 1994 | EP |
0 651 429 | May 1995 | EP |
0 556 193 | Dec 1995 | EP |
0 663 686 | Jun 1997 | EP |
0 795 892 | Sep 1997 | EP |
04-179143 | Jun 1992 | JP |
2000-068350 | Mar 2000 | JP |
2002-265011 | Sep 2002 | JP |
2005-136294 | May 2005 | JP |
325777 | Jan 1998 | TW |
494079 | Jul 2002 | TW |
494910 | Jul 2002 | TW |
593080 | Jun 2004 | TW |
WO 9703001 | Jan 1997 | WO |
WO 9846503 | Oct 1998 | WO |
WO 9932381 | Jul 1999 | WO |
WO 0032472 | Jun 2000 | WO |
WO 0059004 | Oct 2000 | WO |
WO 0067334 | Nov 2000 | WO |
WO 0110756 | Feb 2001 | WO |
WO 03105216 | Dec 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20080286076 A1 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
60587752 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11180029 | Jul 2005 | US |
Child | 12185786 | US |