Not applicable.
Not applicable.
Not applicable.
1. Field of the Invention
The present invention is related to telecommunications, and in particular, to methods and systems for call processing.
2. Description of the Related Art
People are increasingly associated with a multiplicity of communication devices and phone numbers. For example, an individual may have a work phone, a home phone connected to a switched telephone network, a phone connected to an Internet protocol network, and a cellular phone.
In addition, mobile virtual network operators have become increasingly common as niche target consumers are identified that can be better addressed with offerings more focused on their needs. The existence of mobile virtual network operators can add additional complexity to the operation of a telecommunications system.
The present invention is related to telecommunications, and in particular, to methods and systems for call processing.
Certain example embodiments provide integrated wireline and wireless call processing. Further, certain embodiments integrate the contributions of wireless, wireline, and mobile virtual network operators (MVNOs). In an example embodiment, a communications service provider and a wireline carrier optionally integrate with a wireless MVNO to provide certain call processing services.
An example embodiment provides a method of routing calls: receiving at a softswitch a call from a first phone address intended for a user associated with a second phone address; using signaling information associated with the call to access account information for the user; determining if a client application associated with the user is online; if the client application is online, transmitting information over a data network regarding the call to the client application while the call is in progress; placing an outbound call from the call processing system to a wireless communications service provider, wherein the call processing system configures call signaling parameters so as to preserve the first phone address in the outbound call signaling information, and so that the outbound call appears to be to a phone address ported to the wireless communication service provider, and to cause, at least in part, the wireless communication service provider to route the outbound call to the user's mobile telecommunications device; and causing at least in part the outbound call to be bridged with the call intended for the user.
An example embodiment provides a method of routing calls: receiving at a softswitch a call intended for a user, the call associated with a calling party phone address; using signaling information associated with the call to access account information for the user; placing an outbound call from the call processing system to a wireless communications service provider associated with a user phone address, wherein the call processing system configures call signaling parameters so as to preserve the calling party phone address in the outbound call signaling information, wherein the outbound call appears to be to a phone address ported to the wireless communication service provider, and to cause, at least in part, the wireless communication service provider to route the outbound call to the user's mobile telecommunications device; and causing at least in part the outbound call to be bridged with the inbound call.
An example embodiment provides a method of routing calls: receiving at a softswitch a call from a calling phone address intended for a user; using signaling information associated with the call to access account information for the user; determining if a client application associated with the user is online; if the client application is online, transmitting information over a data network regarding the call to the client application while the call is in progress; placing a first outbound call from the call processing system to a wireless communications service provider wherein the call processing system configures call signaling parameters so as to preserve the calling party phone address, wherein the outbound call appears to be to a phone address ported to the wireless communication service provider, and to cause, at least in part, the wireless communication service provider to route the first outbound call to the user's mobile telecommunications device; placing a second outbound call from the call processing system to a phone address associated with the user; and causing at least in part an outbound call to be bridged with the call.
An example embodiment provides a method of routing calls, the method comprising: receiving at a softswitch a call intended for a user; using signaling information associated with the call to access account information for the user; determining if a client application associated with the user is online; if the client application is online, transmitting information over a data network regarding the call to the client application while the call is in progress; receiving a call handling instruction from the user via the telecommunications client application regarding the call; placing a first outbound call from the call processing system to a wireless communications service provider wherein the call processing system configures call signaling parameters associated with the outbound call so as to preserve the calling party phone address and to cause, at least in part, the wireless communication service provider to route the first outbound call to the user's mobile telecommunications device; and causing at least in part the outbound call to be bridged with the call.
As discussed above, people are increasingly associated with a multiplicity of communication devices, such as a work phone, a home phone connected to a switched telephone network, a phone connected to an Internet protocol network, a cellular phone, etc. Thus, it is often difficult for a caller wishing to reach a person to decide which of the many phone numbers associated with the person to call. For example, a caller may first try a work phone, and if the person is not there or does not answer, the caller may then call the person's home phone, then the person's mobile phone, etc. It would be advantageous to have a phone address, such as a single phone number, which can be used to reach a person whether the person is at a landline phone, mobile phone, or a VoIP phone.
There are challenges in routing calls seamlessly across wireline and wireless networks. As described herein, certain example embodiments provide integrated wireline and wireless call processing that is seamless to the subscriber. Further, certain embodiments integrate the contributions of wireless, wireline, and mobile virtual network operators (MVNOs). For example, an MVNO may not own a licensed frequency spectrum, but instead resells wireless telecommunications services under the MVNO's brand name using a mobile phone network of another (e.g., a mobile phone network operator which may provide mobile phone services on a wholesale and/or retail level, which will sometimes be referred to herein as the “underlying wireless service provider”).
While the following description refers to example Web page, network and telephony standards and protocols, other standards and protocols can be used as well. In addition, unless otherwise indicated, the functions described herein may be performed by executable code and instructions stored in computer readable memory and running on one or more processor-based systems. However, state machines, and/or hardwired electronic circuits can also be utilized. Further, with respect to the example processes described herein, not all the process states need to be reached, nor do the states have to be performed in the illustrated order. Further, certain process states that are illustrated as being serially performed can be performed in parallel.
Similarly, while certain examples may refer to a personal computer system, other computer or electronic systems can be used as well, such as, without limitation, an interactive television, a networked-enabled personal digital assistant (PDA), a networked game console, a networked entertainment device, and so on. While certain references are made to certain system components or services, other components and services can be used as well. In addition, while certain user inputs are described as being provided via key presses or by clicking on a button, optionally, user inputs can be provides using other techniques, such as by voice or otherwise. While certain phone numbers are referenced for purposes of illustration, other phone numbers or electronic addresses or locators can be used as well.
Unless otherwise specified, the term phone number refers generally to a telephonic address, such as, without limitation, a standard POTs telephone number, an E.164 phone number (ITU-T recommendation which defines the international public telecommunication numbering plan and telephone format used in the PSTN and certain data networks), or a VoIP address.
The following is a glossary of certain abbreviations.
Glossary:
BTS—Base Transceiver Station
CP MVNO—Carrier Partner MVNO
FCI—Forward Call Indicator
HLR—Home Location Register
ISDN—Integrated Services Digital Network
ISUP—ISDN User Part
LERG—Local Exchange Routing Guide
LNP—Local Number Portability
LRN—Location Routing Number
MDN—Mobile Device Number
MSC—Mobile Switching Center
MVNO—Mobile Virtual Network Operator
PSTN—Public Switched Telephone Network
SIP—Session Initiation Protocol
SMS—Short Message Service
SMSC—Short Message Service Center
TCNI—Translated Called Number Indicator
In an example embodiment, a communications service provider (e.g., offering enhanced telecommunication services) and a wireline carrier optionally integrate with a wireless MVNO to provide certain call processing services, such as a mobile one-number service. In this example embodiment, phone numbers owned/controlled by the wireline carrier are utilized as the Mobile Device Numbers (MDN) (sometimes referred to as a Mobile Directory Number) for the MVNO's wireless, mobile phones. Calls to these MDNs route through a call processing system (also referred to herein as a softswitch) associated with the communications service provider, which in turn routes the calls to the wireless MVNO. The softswitch optionally also communicates with a telecommunications client associated with a subscriber or other user.
The telecommunications client application is used to provide communication services, although such interfaces can be provided using other applications, such as a browser accessing call processing user interfaces and information from a remote server. In an example embodiment, the telecommunications client application connects to and communicates with the softswitch via the Internet, a cable network, or other communication medium. The client application, executing on a subscriber's computer terminal, can make the subscriber's online presence known to the softswitch (e.g., by transmitting a message from the client application host to the softswitch).
The softswitch can be used to receive and display call log data from the softswitch (e.g., a list of calls placed to/received by the subscriber, or placed by the subscriber, including phone numbers, caller or called party names, date/time of the call, an indication as to whether a call was an outbound/inbound call, the city/state of the caller/called party, etc.), and call alert data (e.g., listing the caller phone number, name, city/state, and/or call status (e.g., ringing, playing message, recording caller message, terminating call)). The client application can display a log of recorded messages from callers, and can provide playback controls for playing back the recorded message via the client computer terminal. The client optionally can also be used to screen calls in substantially real time while calls are in progress and to instruct the softswitch to accept calls on the host computer terminal, forward calls, refuse calls, initiate call conferencing, and/or to otherwise provide call handling instructions.
An example telecommunications client providing a call log 202 and a contacts user interface 214 is shown in
A play caller message control 204 (which when activated by the user causes a caller message to be played back on the host) and a stop/pause message playback control 206 are optionally provided. In addition, optionally, a delete log entry control 208, a reply to caller (e.g., via a text or multimedia message) control 210, and/or a forward caller message (and/or log entry) control 212 are provided. The contact user interface can list one or more contacts of the user (e.g., including some or all of the following: contact name; contact location, contact email address, one or more contact phone addresses, a designation for one or more of the phone addresses indicated if the phone address is a mobile phone address, a home phone address, a work phone address, an IP phone address, or a fax phone address). An edit contact record control 216, a create new contact record control 218, and a send contact record control 220 are optionally provided. Examples of certain of such controls are described below. A second example telecommunication client, with call log and contacts accessed and displayed via a Web browser, is illustrated in
Clicking on or otherwise moving a cursor to a call entry in an example call log selects the call, and then applicable button controls then apply to that call. Optionally, the first time the call log is displayed in a given session, the first (most recent) call is selected by default. Optionally, when switching between call log and contacts user interfaces, the previously selected call is remembered and redisplayed when the call log is again selected.
If a message (e.g., a recorded message from a caller) is associated with the call, the message can be played by clicking on a Play button (e.g., control 204). While a call is playing, optionally a sliding cursor shows play progress. Playing can be stopped at a desired point by clicking a stop/pause button (e.g., control 206), or a play cursor can be repositioned to restart play at another point. Optionally, call volume can be adjusted via a client application call control and/or via a separate operating system or other volume control.
A Delete control (e.g., delete control 208) is provided, which, when activated, causes the deletion of a call log entry. An Undo control is optionally provided, which, when activated can undelete previously deleted calls (e.g., up to a certain limit, such as the last 10 deleted calls).
A Forward control (e.g., control 212) is optionally provided, which, when activated causes information regarding the currently selected call to be forwarded to a designated recipient (e.g., via email, SMS, MMS, instant messaging, etc.). Activating the Forward control optionally causes a drop down list of the user's contacts, or a portion thereof, to be displayed. Optionally, the user contacts are listed alphabetically by name, and optionally contact entries without a name are excluded or listed after those entries with a name.
A Reply control (e.g., control 210) is optionally provided, which, when activated causes, by way of example, a text message field and/or a multimedia message field to be presented to the user into which the user can enter a reply message (e.g., text or multimedia). The message address field will optionally be pre-populated with the name/address of a selected call log entry. Optionally, if the reply is to a cell phone message, the default prepopulated address field can be the caller's SMS or MMS address. Optionally, the address field can be overwritten by the sender or an email address stored in the caller's contact record can be used.
A Send control is optionally provided, which, when activated causes, by way of example, a text message field to be presented to the user into which the user can enter a text or multimedia message. The message address field can be prepopulated with the name/address of a selected call log entry or contact.
An Invite button control provided is provided (optionally, when the contact has not yet been sent an email or other electronic invitation via the softswitch to try certain services (e.g., TYF email or other electronic communication) to the given address (e.g., email address) or if the address is blank; if an invitation had previously been sent, a Reinvite control is optionally provided. Optionally, users who click on or otherwise activate the Invite button control for a blank email address are asked to enter an email address first; otherwise, both Invite and Reinvite display a TYF form with this entry's email address pre-populated.
The user's call log is optionally stored on the user's computer and is available when the application client is offline. As similarly discussed elsewhere herein, the call log stored on the user's computer is synchronized with the softswitch when the telecommunications client logs in to the softswitch, and synchronization is optionally periodically performed while online (e.g., every minute, every two minutes, or at other interval) while the client is online.
Optionally, when an incoming call is received, the telecommunications client is automatically maximized or increased in size if it is currently minimized, the information about the caller (e.g., name, phone number, and/or city/state) is displayed, and the message being left by the caller is played, unless the speaker mute control is activated, as discussed below. When the call completes, the call is optionally displayed as the first call in the call log and it is highlighted or otherwise emphasized (e.g., via a new call icon) to indicate it is a new call. Optionally, an indication is provided (e.g., via a blinking icon) that new calls have been received until the indicator is clicked on or the new calls in the call log are clicked.
If incoming calls are received by the softswitch when a telecommunications client is offline, when the telecommunications client goes online and a session is established with the softswitch, information related to those incoming calls is transmitted by the softswitch to the client. The call information for the calls is optionally displayed at the top of the call log (or at another designated position) with highlighting or other indicator that indicates the calls are new calls, and optionally, an icon is blinked or otherwise emphasized to indicate that new calls have been received.
Optionally, the telecommunications client has a user accessible control (e.g., with a speaker icon) for muting telecommunications sound signals that would otherwise be produced by the host computer speaker. When clicked on or depressed, sound from the client application to the speaker is muted, and when not depressed or when clicked on again, the sound is unmuted. Optionally, the user can control the default state/position of the mute control for incoming calls (e.g., via the option setting “Enable speaker during incoming calls”). Optionally, by default the client application sound to the speaker is not muted for incoming calls. If the user clicks on a message entry in a call log to play the message (or otherwise activates a play message control), optionally the mute control automatically changes to the unmuted position/state, and again changes to its specified default position/state if an incoming call is received. The mute control can be clicked while playing a message or receiving a call to change the speaker/mute behavior.
In an example embodiment, a “one-number” communication process is used, wherein a user is assigned a phone address (e.g., a phone number) that externally identifies one or more telecommunication devices (e.g., a wireless telephone), and can be used as follows:
The “one-number” is the number the customer publishes for people to call the telecommunication device (e.g., a telephone) or send messages (e.g., SMS text messages or MMS messages) to the “one-number”.
The “one-number” is the number that is published as the caller ID when the customer makes calls with the phone or sends SMS/MMS messages.
Optionally, calls to this “one-number” are routed through the softswitch on their way to the phone to provide enhanced call management services.
In an example illustrative embodiment, the CP MVNO allocates phone numbers for its mobile phones from its own number pool. Calls to numbers in this pool will route through the PSTN and terminate on the softswitch because it would own the assigned point code (node address). Optionally, the CP MVNO provisions one or more phone number blocks as wireless (e.g., coded as NXXTYPE=51, which indicates that the NXX (the 3 digits after the area code in the United States) is shared between wireless and POTs). This phone address provisioning step may simplify SMS routing for wireless carriers that rely upon this wireless designation in routing databases (e.g., the LERG). Certain example embodiments include a call processing system softswitch that configures call signaling parameters associated with an outbound call so that the outbound call appears to be to a phone number ported to a wireless communication service provider, even though the phone number has not been ported to the wireless communication service provider.
In an example embodiment, the CP MVNO contracts with an inter-carrier SMS gateway to broadcast the CP MVNO number blocks to other inter-carrier SMS gateway providers and to route SMS messages addressed to the numbers in the block to the underlying wireless service provider's SMSC. Otherwise, in certain telecommunication systems, because the phone number appears to be landline phone number, if a pool of landline phone numbers are used, an SMS message would pass to the gateway MSC provider associated with the landline phone number, which would discard it (e.g., because the SMS message is not deliverable to a landline phone) or otherwise fail to deliver the SMS message.
In an example embodiment, when provisioning service for a CP MVNO mobile phone, the phone numbers that are offered to the customer to choose from come from the CP MVNO number pool. Optionally, the underlying wireless service provider assigns the chosen phone number as the phone's MDN and disables or inhibits optimal routing for the phone, as discussed below.
In this example, the underlying wireless service provider MSC and SMSC are configured to accept/route calls and SMS messages directed to MDN's of mobile phones it is servicing, even though these MDN's are not owned (from a call routing database (e.g., LERG) perspective) by the underlying wireless service provider.
CallWave, Inc. is an example of an enhanced service provider providing integrated wireline and wireless enhanced call processing. Sprint Wireless, Verizon, Cingular are examples of wireless phone operators currently providing wholesale Mobile Virtual Network Operator services. Of course, other providers can be used instead or in addition.
State 1. A caller associated with a telecommunications device 102 dials the phone number of the CP MVNO mobile phone 120.
State 2. The PSTN system compares the phone number with a database of phone numbers that indicates the “ownership” of the phone number. The phone number is recognized in the PSTN 106 as “owned” by the CP MVNO with a point code assigned to the softswitch 104. The PSTN 106 routes the call to the softswitch 104, which then receives the call.
State 3. In this example, the softswitch 104 utilizes signaling information associated with the call (e.g., the called phone number) to identify the customer being called, accesses account information associated with the customer using the called phone number, utilizes the account information to identify address information associated with the customer's telecommunications client 108, and determines that the customer's telecommunications client 108 (e.g., CP MVNO-branded telecommunications client hosted on a personal computer, networked television, smart phone, etc.) is online (e.g., from a message sent by the client to the softswitch).
The softswitch 104 transmits over the Internet 122 (or other network) to the telecommunications client 108 a notification regarding the call (optionally including the name, phone number, city and/or state of the caller), and the client 108 provides the customer with some or all of the received call information (e.g., initiates or otherwise provides a ringing sound indicating the existence of an inbound call and/or displays call information/status, such as the number/identity of the caller, the geographical (city, state) location from which the call originated, etc.). This gives the customer the opportunity to screen the call (e.g., via the caller information associated with the call or via a message being left by the caller on a voice answering system, which may be include in the softswitch, and streamed to the customer's terminal in substantially real time so the customer can decide whether or not to take the call), take the call on the telecommunication application client host, and/or transfer the call to another phone (e.g., a mobile phone, a landline phone, a broadband phone, a VoIP phone, etc.
By way of example, the client application 108 can provide a “take the call” control (e.g., via a soft button or link), which when activated by the customer, causes the call to be connected to the client host (e.g., using VoIP where the host is equipped with VoIP software, microphone, speaker) so that the customer and caller can converse. By way of further example, the client application 108 can provide a “forward the call” control, which when activated by the customer, causes a listing of predefined destinations to be presented and/or a phone address field in which the customer can enter a destination phone address. The customer can select a destination or enter a phone address, and the call is forwarded to the new destination (e.g., the softswitch 104 places an outcall to the new destination and bridged the inbound call from the caller with the outcall).
State 4. The softswitch routes the call (e.g., by placing an outcall) to a Gateway MSC 110 (Mobile Switching Center) that optionally is operated and/or owned by an underlying wireless service provider (e.g., that provides a wireless network and wireless cellular services compatible with one or more standards, such as CDMA, GSM, HSDPA, HSUPA, etc.) to the MVNO. In this example, the softswitch causes the call to be routed to the MSC 110 via the SS7 ISUP (ISDN User Part) Initial Address Message used to originate the call by: a) setting the Generic Address parameter to the called party number, b) setting the Called Party Number parameter to the LRN (Location Routing Number) of the underlying wireless service provider Gateway MSC (Mobile Switching Center), and c) setting the Translated Called Number Indicator (TCNI) bit in the Forward Call Parameter. Other routing techniques can be used as well.
State 5. The Gateway MSC 110 queries it's HLR 116 with the called party phone number. In this example, the HLR 116 stores and locates a match on the MDN of the CP MVNO mobile phone 120, and the query returns the phone's presence/location and the MSC that is currently serving the phone 120.
State 6. The Gateway MSC 110 routes the call to the serving MSC 112, which routes it to the appropriate BTS (Base Transceiver Station) 114.
State 7. The BTS 114 transmits an indication regarding the incoming call to the mobile phone 120, and in response, the mobile phone 120 rings and is answered by the customer. The answer state status is provided to the softswitch 104. When the softswitch 104 detects the answer state, it begins screening the call to the mobile phone (e.g., transmitting caller identification information and/or transmitting in substantially real time a message being left by the caller (e.g., in response to a “leave message” request played by the softswitch 104 to the caller) to the mobile phone while optionally preventing or not enabling the caller to hear the called party). The mobile phone user can then press 1 on the mobile phone 120 to take the call or 2 to transfer the call. Other user inputs can be used as well (e.g., voice commands, different key presses, etc.). If a take the call instruction is received, the softswitch can bridge the original call and the outcall in full duplex mode. Alternatively or in addition, the telecommunications user can take action on the call (e.g., take the call, forward the call, etc.).
Optionally, the Gateway MSC 110 is configured so that if the mobile phone had been turned off, was out of range, was busy, or was otherwise unavailable, the Gateway MSC 110 would have followed the forwarding rules configured in the HLR 116. For example, the forwarding rules can be configured to call the softswitch 104. The softswitch 104, configured to detect loopbacks and to take a message or attempt to deliver calls to another destination which such a loopback condition occurs, would detect this loopback situation and would act appropriately to take a message or attempt to deliver the call to a different phone used by the customer, as configured in a customer account database (e.g., where the customer specifies the telecommunication device order in which the softswitch should attempt to reach the customer if a higher ranked device is unavailable and/or not answered).
In this example, “optimal routing” (which, when a mobile phone is not in its home system, allows a call to be routed directly from the originating switch to the MSC currently serving the mobile phone, replacing the leg from the originating switch to the home MSC and the leg from the home MSC to the Serving MSC) in the HLR 116, would be disabled for the CP MVNO mobile phone 120. Thus, if a mobile phone being served by the underlying wireless service provider originates a call, the call will still route through PSTN 106 to the softswitch 104.
If the CP MVNO mobile phone 120 originates a call, the call is routed via standard or other wireless process, optionally without passing through the softswitch 104 unless the call is to another CP MVNO mobile phone.
In an example embodiment, for proper routing of SMS messages, the CP MVNO contracts with or otherwise arranges with an inter-carrier SMS gateway vendor to service the CP MVNO's block of mobile phone numbers. The SMS gateway is configured to route SMS messages addressed to phone numbers in the block to the underlying wireless service provider SMSC (Short Message Service Center). An SMS message sent by the CP MVNO mobile phone would have the phone's MDN in the HLR as the sending address signaled to the device receiving the message. If the address is not marked as private, the number, may be displayed via the receiving device (e.g., via a Caller ID display).
If the MDN assigned to a CP MVNO mobile phone had been ported to the CP MVNO, routing of calls and SMS messages still works properly. In the case of a call to the mobile phone, the LNP (Local Number Portability) dip is performed in the PSTN to cause the call to be routed to the softswitch. After that, the softswitch's routing to the wireless network is the same as or substantially similar to the above described scenario. Similarly for SMS messages, the inter-carrier SMS gateways perform an LNP dip to get the LRN identifying the owner of the addressed phone number. This LRN is recognized by the gateway as being associated with the CP MVNO's number block, which is designated to route to the underlying wireless service provider SMSC.
The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated.
This application is a continuation of U.S. application Ser. No. 13/450,113, filed Apr. 18, 2012, which is a continuation of U.S. application Ser. No. 11/676,479, filed Feb. 19, 2007, now U.S. Pat. No. 8,165,572, which claims priority from U.S. Patent Application No. 60/775,601, filed Feb. 22, 2006, the contents of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3936613 | Nishigori et al. | Feb 1976 | A |
3956595 | Sobanski | May 1976 | A |
4009337 | Sakai et al. | Feb 1977 | A |
4022983 | Braun et al. | May 1977 | A |
4485470 | Reali | Nov 1984 | A |
4736405 | Akiyama | Apr 1988 | A |
4809321 | Morganstein et al. | Feb 1989 | A |
4893336 | Wuthnow | Jan 1990 | A |
4994926 | Gordon et al. | Feb 1991 | A |
5040208 | Jolissaint | Aug 1991 | A |
5046087 | Sakai | Sep 1991 | A |
5291302 | Gordon et al. | Mar 1994 | A |
5361295 | Solomon et al. | Nov 1994 | A |
5384831 | Creswell et al. | Jan 1995 | A |
5404537 | Olnowich et al. | Apr 1995 | A |
5434908 | Klein | Jul 1995 | A |
5440620 | Slusky | Aug 1995 | A |
5459584 | Gordon et al. | Oct 1995 | A |
5467388 | Redd, Jr. et al. | Nov 1995 | A |
5526524 | Madduri | Jun 1996 | A |
5533102 | Robinson et al. | Jul 1996 | A |
5533106 | Blumhardt | Jul 1996 | A |
5548636 | Bannister et al. | Aug 1996 | A |
5577111 | Iida et al. | Nov 1996 | A |
5583918 | Nakagawa | Dec 1996 | A |
5619557 | Van Berkum | Apr 1997 | A |
5640677 | Karlsson | Jun 1997 | A |
5651054 | Dunn et al. | Jul 1997 | A |
5668861 | Watts | Sep 1997 | A |
5751795 | Hassler et al. | May 1998 | A |
5774067 | Olnowich et al. | Jun 1998 | A |
5805587 | Norris et al. | Sep 1998 | A |
5809128 | McMullin | Sep 1998 | A |
5812551 | Tsukazoe et al. | Sep 1998 | A |
5825867 | Epler et al. | Oct 1998 | A |
5832060 | Corlett et al. | Nov 1998 | A |
5835573 | Dee et al. | Nov 1998 | A |
5862208 | MeLampy et al. | Jan 1999 | A |
5894504 | Alfred et al. | Apr 1999 | A |
5912948 | Nelson et al. | Jun 1999 | A |
5946386 | Rogers et al. | Aug 1999 | A |
5960064 | Foladare et al. | Sep 1999 | A |
5960073 | Kikinis et al. | Sep 1999 | A |
5963629 | Jung | Oct 1999 | A |
5991367 | Robuck | Nov 1999 | A |
5995594 | Shaffer et al. | Nov 1999 | A |
5995603 | Anderson | Nov 1999 | A |
5999806 | Kaplan et al. | Dec 1999 | A |
6014436 | Florence et al. | Jan 2000 | A |
6023503 | Schneider et al. | Feb 2000 | A |
6031896 | Gardell et al. | Feb 2000 | A |
6032051 | Hall et al. | Feb 2000 | A |
6034956 | Olnowich et al. | Mar 2000 | A |
6035031 | Silverman | Mar 2000 | A |
6041103 | La Porta et al. | Mar 2000 | A |
6044059 | Olnowich | Mar 2000 | A |
6055430 | Cooper et al. | Apr 2000 | A |
6078581 | Shtivelman et al. | Jun 2000 | A |
6100873 | Bayless et al. | Aug 2000 | A |
6101249 | Weber | Aug 2000 | A |
6104800 | Benson | Aug 2000 | A |
6144644 | Bajzath et al. | Nov 2000 | A |
6160881 | Beyda et al. | Dec 2000 | A |
6167127 | Smith et al. | Dec 2000 | A |
6169795 | Dunn et al. | Jan 2001 | B1 |
6169796 | Bauer et al. | Jan 2001 | B1 |
6173054 | Beyda et al. | Jan 2001 | B1 |
6175622 | Chiniwala et al. | Jan 2001 | B1 |
6178183 | Buskirk, Jr. | Jan 2001 | B1 |
6181691 | Markgraf et al. | Jan 2001 | B1 |
6208638 | Rieley et al. | Mar 2001 | B1 |
6212261 | Meubus et al. | Apr 2001 | B1 |
6230009 | Holmes et al. | May 2001 | B1 |
6243378 | Olnowich | Jun 2001 | B1 |
6253249 | Belzile | Jun 2001 | B1 |
6278704 | Creamer et al. | Aug 2001 | B1 |
6292478 | Farris | Sep 2001 | B1 |
6304565 | Ramamurthy | Oct 2001 | B1 |
6310939 | Varney | Oct 2001 | B1 |
6337898 | Gordon | Jan 2002 | B1 |
6350066 | Bobo, II | Feb 2002 | B1 |
6353660 | Burger et al. | Mar 2002 | B1 |
6353663 | Stevens et al. | Mar 2002 | B1 |
6363414 | Nicholls et al. | Mar 2002 | B1 |
6374102 | Brachman et al. | Apr 2002 | B1 |
6381459 | Gervens et al. | Apr 2002 | B1 |
6405035 | Singh | Jun 2002 | B1 |
6411601 | Shaffer et al. | Jun 2002 | B1 |
6411692 | Scherer | Jun 2002 | B1 |
6411805 | Becker et al. | Jun 2002 | B1 |
6438216 | Aktas | Aug 2002 | B1 |
6438222 | Burg | Aug 2002 | B1 |
6477246 | Dolan et al. | Nov 2002 | B1 |
6496569 | Pelletier et al. | Dec 2002 | B2 |
6496576 | Tanaka et al. | Dec 2002 | B2 |
6501750 | Shaffer et al. | Dec 2002 | B1 |
6505163 | Zhang et al. | Jan 2003 | B1 |
6510162 | Fijolek et al. | Jan 2003 | B1 |
6510417 | Woods et al. | Jan 2003 | B1 |
6512930 | Sandegren | Jan 2003 | B2 |
6519258 | Tsukazoe et al. | Feb 2003 | B1 |
6529587 | Cannon et al. | Mar 2003 | B1 |
6539084 | Long | Mar 2003 | B1 |
6545589 | Fuller et al. | Apr 2003 | B1 |
6546087 | Shaffer et al. | Apr 2003 | B2 |
6549612 | Gifford et al. | Apr 2003 | B2 |
6553222 | Weiss | Apr 2003 | B1 |
6564264 | Creswell et al. | May 2003 | B1 |
6564321 | Bobo, II | May 2003 | B2 |
6567505 | Omori et al. | May 2003 | B1 |
6574319 | Latter et al. | Jun 2003 | B2 |
6621892 | Banister et al. | Sep 2003 | B1 |
6643034 | Gordon et al. | Nov 2003 | B1 |
6658100 | Lund | Dec 2003 | B1 |
6661785 | Zhang et al. | Dec 2003 | B1 |
6661886 | Huart et al. | Dec 2003 | B1 |
6662232 | Nicholls et al. | Dec 2003 | B1 |
6690785 | Stelter et al. | Feb 2004 | B1 |
6751299 | Brown et al. | Jun 2004 | B1 |
6775370 | Burg | Aug 2004 | B2 |
6782088 | Gabara | Aug 2004 | B1 |
6785021 | Gordon et al. | Aug 2004 | B1 |
6792094 | Kirkpatrick | Sep 2004 | B1 |
6829332 | Farris et al. | Dec 2004 | B2 |
6857074 | Bobo, II | Feb 2005 | B2 |
6898275 | Dolan et al. | May 2005 | B2 |
6968174 | Trandal et al. | Nov 2005 | B1 |
7003087 | Spencer et al. | Feb 2006 | B2 |
7120455 | Chen et al. | Oct 2006 | B1 |
7209964 | Dugan et al. | Apr 2007 | B2 |
7254219 | Hansen et al. | Aug 2007 | B1 |
7382773 | Schoeneberger et al. | Jun 2008 | B2 |
7388949 | Contractor et al. | Jun 2008 | B2 |
7412050 | Renner et al. | Aug 2008 | B2 |
7522580 | Miller et al. | Apr 2009 | B2 |
7548756 | Velthuis et al. | Jun 2009 | B2 |
7688958 | Dolan et al. | Mar 2010 | B2 |
20020010616 | Itzhaki | Jan 2002 | A1 |
20020035616 | Diamond et al. | Mar 2002 | A1 |
20020097710 | Burg | Jul 2002 | A1 |
20030039339 | Luehrig et al. | Feb 2003 | A1 |
20030063731 | Woodring | Apr 2003 | A1 |
20030123629 | Hussain et al. | Jul 2003 | A1 |
20030156700 | Brown et al. | Aug 2003 | A1 |
20030191823 | Bansal et al. | Oct 2003 | A1 |
20030215078 | Brahm et al. | Nov 2003 | A1 |
20040028203 | Wurster et al. | Feb 2004 | A1 |
20040066926 | Brockbank et al. | Apr 2004 | A1 |
20040073566 | Trivedi | Apr 2004 | A1 |
20040105536 | Williams | Jun 2004 | A1 |
20040174983 | Olschwang et al. | Sep 2004 | A1 |
20040190706 | Fleisher, III et al. | Sep 2004 | A1 |
20040247105 | Mullis et al. | Dec 2004 | A1 |
20040249650 | Freedman et al. | Dec 2004 | A1 |
20040258220 | Levine et al. | Dec 2004 | A1 |
20050010573 | Garg | Jan 2005 | A1 |
20050053216 | Spencer et al. | Mar 2005 | A1 |
20050078612 | Lang | Apr 2005 | A1 |
20050117726 | DeMent et al. | Jun 2005 | A1 |
20050123118 | Terry et al. | Jun 2005 | A1 |
20050154599 | Kopra et al. | Jul 2005 | A1 |
20050186950 | Jiang | Aug 2005 | A1 |
20050201362 | Klein et al. | Sep 2005 | A1 |
20050207556 | Gonzalez et al. | Sep 2005 | A1 |
20050265322 | Hester | Dec 2005 | A1 |
20050286498 | Rand et al. | Dec 2005 | A1 |
20050287993 | Gogic | Dec 2005 | A1 |
20060013374 | Fleisher, III et al. | Jan 2006 | A1 |
20060268007 | Gopalakrishnan | Nov 2006 | A1 |
20060276193 | Itzkovitz et al. | Dec 2006 | A1 |
20070002077 | Gopalakrishnan | Jan 2007 | A1 |
20070067738 | Flynt et al. | Mar 2007 | A1 |
20070153999 | Daigle | Jul 2007 | A1 |
20070160188 | Sharpe et al. | Jul 2007 | A1 |
20070202898 | Bae et al. | Aug 2007 | A1 |
20090100027 | Malik | Apr 2009 | A1 |
20100008356 | Boni et al. | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
1329852 | Sep 1989 | CA |
1120954 | Aug 2001 | EP |
10-513632 | Dec 1998 | JP |
11-506292 | Jun 1999 | JP |
2001-168989 | Jun 2001 | JP |
WO 9726749 | Jul 1997 | WO |
WO 0060840 | Oct 2000 | WO |
WO 0176210 | Oct 2001 | WO |
Entry |
---|
Johnson, D., “Now You're Talking—voice—response systems for home offices—Product Information”; http://www.findarticles.com, Feb. 1999. |
“Widget MySpace Widget”; posted by 4INFO Bob; http://4info.typepad.com/blog/2006/09/widget—myspace—.html; Sep. 15, 2006; 3 pages. |
Communications-SMS, Dashboard Widgets—Showcase; http://www.dashboardwidgets.com/showcase/details.php?wid=1082; Oct. 14, 2005; 2 pages. |
Number | Date | Country | |
---|---|---|---|
60775601 | Feb 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13450113 | Apr 2012 | US |
Child | 13798963 | US | |
Parent | 11676479 | Feb 2007 | US |
Child | 13450113 | US |