1. Field of the Invention
The present invention relates to the field of medical devices, more specifically medical to devices intended to treat stenoses in the vascular system.
Balloon dilatation (angioplasty) is a common medical procedure mainly directed at revascularization of stenotic vessels by inserting a catheter having a dilatation balloon through the vascular system. The balloon is inflated inside a stenosed region in a blood vessel in order to apply radial pressure to the inner wall of the vessel and widen the stenosed region to enable better blood flow.
In many cases, the balloon dilatation procedure is immediately followed by a stenting procedure where a stent is placed to maintain vessel patency following the angioplasty. Failure of the angioplasty balloon to properly widen the stenotic vessel, however, may result in improper positioning of the stent in the blood vessel. If a drug-eluting stent is used, its effectiveness may be impaired by such improper positioning and the resulting restenosis rate may be higher. This is a result of several factors, including the presence of gaps between the stent and the vessel wall, calcified areas that were not treated properly by the balloon, and others.
Conventional balloon angioplasty suffers from a number of other shortcomings as well. In some cases the balloon dilatation procedure causes damage to the blood vessel due to aggressive balloon inflation that may stretch the diseased vessel beyond its elastic limits. Such over inflation may damage the vessel wall and lead to restenosis of the section that was stretched by the balloon. In other cases, slippage of the balloon during the dilatation procedure may occur. This may result in injury to the vessel wall surrounding the treated lesion. One procedure in which slippage is likely to happen is during treatment of in-stent restenosis, which at present is difficult to treat by angioplasty balloons. Fibrotic lesions are also hard to treat with conventional balloons, and elastic recoil is usually observed after treatment of these lesions. Many long lesions have fibrotic sections that are difficult to treat using angioplasty balloons.
To overcome at least some of these problems, U.S. Pat. No. 5,320,634 describes the addition of cutting blades to the balloon. The blades can cut the lesions as the balloon is inflated. U.S. Pat. No. 5,616,149 describes a similar method of attaching sharp cutting edges to the balloon. U.S. Patent Publication 2003/0032973 describes a stent-like structure having non-axial grips for securing an angioplasty balloon during inflation. U.S. Pat. No. 6,129,706 describes a balloon catheter having bumps on its outer surface. U.S. Pat. No. 6,394,995 describes a method of reducing the balloon profile to allow crossing of tight lesions. U.S. Patent Publication 2003/0153870 describes a balloon angioplasty catheter having a flexible elongate elements that create longitudinal channels in a lesion or stenosis.
While the use of angioplasty balloons having cutting blades has proved to be a significant advantage under many circumstances, the present cutting balloon designs and methods for their use continue to suffer from shortcomings. Most commercial cutting balloon designs, including those available from INTERVENTIONAL TECHNOLOGIES, INC., of San Diego, Calif., now owned by BOSTON SCIENTIFIC, of Natick, Mass., have relatively long, axially aligned blades carried on the outer surface of an angioplasty balloon. Typically, the blades are carried on a relatively rigid base directly attached to the outer balloon surface. The addition of such rigid, elongated blade structures makes the balloon itself quite stiff and limits the ability to introduce the balloon through torturous regions of the vasculature, particularly the smaller vessels within the coronary vasculature. Moreover, the cutting balloons can be difficult to deflate and collapse, making removal of the balloons from the vasculature more difficult than with corresponding angioplasty balloons which do not include cutting blades. Additionally, the axially oriented cuts imparted by such conventional cutting balloons do not always provide the improved dilatation and treatment of fibrotic lesions which would be desired.
In addition to the above, drug eluting stents (DES), although very successful, are not suitable for every patient. Patients undergoing DES implantation are kept under a regimen of anti-coagulant therapy for an extended period of time to minimize risk of late thrombosis. Anticoagulants may cause excessive bleeding and are not recommended for people who are suffering from certain other health problems and/or who might need surgery. Some patients are intolerant to anticoagulants.
For all of these reasons, it would be desirable to provide improved methods, catheters, and systems for performing angioplasty and other vascular interventions for treating vascular occlusive diseases, including but not limited to treatment of hardened and calcified plaque. It would be particularly desirable if such methods and systems could be utilized for other body lumens beyond the vasculature. In particular, it would be desirable to provide methods and systems which could utilize both conventional and novel balloon non-cutting scoring structures for delivering therapeutic agents to blood vessels and other body lumens. Such methods and systems could thus disrupt vascular and luminal occlusions in a manner provided by conventional scoring structures while simultaneously delivering therapeutic agents to the blood vessel, and more particularly to the intimal and subintimal regions of the blood vessel which can be accessed by the non-cutting scoring element in order to enhance distribution of the therapeutic agents. At least some of these objectives will be met by the inventions described hereinbelow.
2. Description of the Background Art
The following U.S. patents and printed publication relate to cutting balloons and balloon structures: U.S. Pat. Nos. 6,450,988; 6,425,882; 6,394,995; 6,355,013; 6,245,040; 6,210,392; 6,190,356; 6,129,706; 6,123,718; 5,891,090; 5,797,935; 5,779,698; 5,735,816; 5,624,433; 5,616,149; 5,545,132; 5,470,314; 5,320,634; 5,221,261; 5,196,024; and Published U.S. Pat. App. 2003/0032973. Other U.S. patents of interest include U.S. Pat. Nos. 6,454,775; 5,100,423, 4,998,539; 4,969,458; and 4,921,984. The following patents describe drug delivery catheters having needle based delivery mechanisms: U.S. Pat. No. 4,578,061, describes needle injection catheters having deflectable, axially advanceable needles. U.S. Pat. No. 5,538,504, describes a needle injection catheter having a transversely oriented needle that is laterally advanced by a balloon driver. Also of interest are U.S. Pat. Nos. 6,319,230; 6,283,951; 6,283,947; 6,004,295; 5,419,777; and 5,354,279. Drug coated stents and angioplasty balloons are described in numerous patents and published applications including U.S. Pat. Nos. 6,280,411; 6,656,156; 6,682,545; and Publication Nos. US2004/0193257; US2004/0208985; and US2005/0033417. U.S. Pat. No. 7,494,497 discloses a cutting balloon with drug delivery capability.
The present invention provides methods and apparatus for delivering active substances to luminal sites, and in particular for delivering anti-hyperplasia substances to diseased sites in a patient's vascular system, such as sites of thrombosis and plaque in a patient's arteries. Methods for delivering active substance to a luminal site comprise positioning a non-cutting scoring element within the body lumen and advancing the scoring element to score a wall of the body lumen. The scoring element comprises the active substance to be delivered to the luminal site. By initially scoring an exposed surface of the luminal wall or a lesion, the active substance can be released to locations in or beneath the intimal layer of the vessel wall, typically to a depth in the range from 0.001 mm to 1 mm, usually from 0.01 mm to 0.1 mm. In the case of treatment of arterial sites, the scoring can not only deliver the drug to regions within the thrombus or plaque, it can further score the vascular wall and deliver the drug into the intimal and subintimal layers surrounding the blood vessel. In all instances in which the scoring element of the present invention is referred to, it is to be understood that the scoring element is a non-cutting scoring element.
In addition to treatment of blood vessels, the methods and systems of the present invention can be used to treat a variety of other body lumens, including vein grafts and synthetic grafts, as well as lumens of the respiratory, urinary, reproductive and digestive systems, and the like.
The benefits of drug delivery using a non-cutting scoring device include rapid (short term) release to intimal and subintimal areas rather than sustained delivery over few days or weeks with DES (constant concentration over time). The combination of scoring the lesion to open diffusion channels and delivering therapeutic agent directly to the diffusion channels increases the efficacy of the system.
The methods and systems of the present invention are particularly useful for delivering drugs which are hydrophobic and lipophilic. The hydrophobic nature of some drugs (e.g. paclitaxel and sirulimus) and the fact that those drugs are lipophilic (i.e. high affinity to liposome) help retain the drug for longer time in the lesion and minimize the loss of rug during the time of delivery due to dissolution in the blood.
Given the above, the characteristics of the polymer matrix may very different from stents. Ideally the drug diffuses over a short period of time (few seconds to several minutes in the case of the circulation system) to the lesion not to diffuse over time (days or weeks). Many different polymers can be used including polymers that will dissolve in blood within the interaction time and those that will not be dissolve but will release drug.
The scoring element(s) are typically positioned using an intravascular or other intraluminal catheter which carries one or more scoring elements at or near its distal end. In the case of blood vessels, the catheter is typically introduced over a guidewire in a conventional manner, e.g., through the femoral artery to reach the coronary arteries or through sheath in case of peripheral arteries.
The scoring element(s) may be advanced to score a plaque in a body lumen by radially advancing the scoring elements into the lesion and the luminal wall. Typically, such radial expansion is achieved using an expandable shell, such as an inflatable balloon carried by the catheter. Alternatively, the radial expansion can be achieved using self-expanding materials such as nitinol or expandable geometries using other materials (such as stainless steel). Preferably, however, the scoring elements will comprise one or more resilient elements having helical geometries, as taught by co-pending patent application Ser. No. 10/631,499 , filed on Jul. 30, 2003; Ser. No. 10/810,330 , filed on Mar. 25, 2004; and Ser. No. 10/917,917 , filed on Aug. 13, 2004, assigned to the assignee of the present application, the full disclosures of which are incorporated herein by reference.
Regardless of the geometry of the scoring elements, radial advancement will usually comprise expanding an expandable shell, such as an inflatable balloon, which carries at least one scoring element. In this way, the outward edge(s) of the non-cutting scoring element can engage and penetrate the luminal wall and/or the occlusive or other material which covers at least a portion of the luminal wall. Alternatively, the radial expansion can be achieved using self-expanding materials such as nickel titanium alloys or expandable geometries using other materials (such as stainless steel). Scoring element can be expanded by other means by using temperature controlled structured (i.e. made of heat memory alloys) or mechanical means such as internal sliders with an increased diameter.
The methods, catheters, and systems of the present invention can be utilized to deliver a wide variety of active substances, including drugs useful for treating a wide variety of luminal diseases and conditions. The methods and apparatus of the present invention are particularly useful for delivering a wide variety of therapeutic and pharmaceutical agents, referred to collectively herein as active substances, particularly those suitable for treating vascular and other luminal conditions, including:
(1) antiproliferative and antimitotic agents such as natural products such as vinca alkaloids (i.e. vinblastine, vincristine, and vinorelbine), paclitaxel, epidipodophyllotoxins (i.e. etoposide, teniposide), antibiotics (dactinomycin, actinomycin D, daunorubicin, doxorubicin and idarubicin), anthracyclines, mitoxantrone, bleomycins, plicamycin (mithramycin) and mitomycin, enzymes (L-asparaginase which systemically metabolizes L-asparagine and deprives cells which do not have the capacity to synthesize their own asparagine);
(2) antiplatelet agents such as G(GP) inhibitors and vitronectin receptor antagonists;
(3) alkylating agents such as nitrogen mustards (mechlorethamine, cyclophosphamide and analogs, melphalan, chlorambucil), ethylenimines and methylmelamines (hexamethylmelamine and thiotepa), alkyl sulfonates-busulfan, nirtosoureas (carmustine (BCNU) and analogs, streptozocin), trazenes-dacarbazinine (DTIC);
(4) antiproliferative and antimitotic antimetabolites such as folic acid analogs (methotrexate), pyrimidine analogs (fluorouracil, floxuridine, and cytarabine), purine analogs and related inhibitors (mercaptopurine, thioguanine, pentostatin and 2-chlorodeoxyadenosine {cladribine});
(5) platinum coordination complexes such as cisplatin, carboplatin, procarbazine, hydroxyurea, mitotane, and aminoglutethimide;
(6) hormones (e.g. estrogen);
(7) anticoagulants (heparin, synthetic heparin salts and other inhibitors of thrombin);
(8) fibrinolytic agents (such as tissue plasminogen activator, streptokinase and urokinase), aspirin, dipyridamole, ticlopidine, clopidogrel, abciximab;
(9) antimigratory agents;
(10) antisecretory agents (breveldin);
(11) anti-inflammatory agents, such as adrenocortical steroids (cortisol, cortisone, fludrocortisone, prednisone, prednisolone, 6.alpha.-methylprednisolone, triamcinolone, betamethasone, and dexamethasone), non-steroidal agents (salicylic acid derivatives i.e. aspirin; para-aminophenol derivatives i.e. acetaminophen;
(12) indole and indene acetic acids (indomethacin, sulindac, and etodalac), heteroaryl acetic acids (tolmetin, diclofenac, and ketorolac), arylpropionic acids (ibuprofen and derivatives), anthranilic acids (mefenamic acid, and meclofenamic acid), enolic acids (piroxicam, tenoxicam, phenylbutazone, and oxyphenthatrazone), nabumetone, gold compounds (auranofin, aurothioglucose, gold sodium thiomalate);
(13) immunosuppressive agents such as cyclosporine, tacrolimus (FK-506), sirolimus (rapamycin), azathioprine, mycophenolate, mofetil;
(14) angiogenic agents such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF);
(15) angiotensin receptor blockers;
(16) nitric oxide donors;
(17) anti-sense oligionucleotides and combinations thereof;
(18) cell cycle inhibitors, mTOR inhibitors, and growth factor receptor signal transduction kinase inhibitors;
(19) retenoids;
(20) cyclin/CDK inhibitors;
(21) HMG co-enzyme reductase inhibitors (statins); and
(22) protease inhibitors.
The present invention further comprises catheters for delivering active substances to body lumens. Catheters of the present invention comprise a catheter body having a proximal end and a distal end and a scoring element disposed near the distal end. The scoring element comprises an active substance that is delivered to a luminal wall scored or cut by the scoring element. The active substance may be provided on or within the scoring element in a variety of ways. For example, the active substance may be coated over at least a portion of an exposed surface of the scoring element, typically by dipping, spraying, painting, plasma deposition, electroplating, centrifuge systems or the like. More typically, however, the active substance may be incorporated in a polymeric carrier. Suitable polymeric carriers may be resorbable, such as those comprising polylactic acids (PLA), polyglycolic acids (PLG), collagens, and the like. Alternatively, the polymeric carrier may be a porous but non-resorbable material such as porous silicon or polyethylene. Hydrogels such as Poly Ethylene Oxide (PEO) may be used and release the drug through swelling and erosion. Degradable polymers which include polyhydroxyalkanoate can be used as well. The polymer can coat the scoring element struts or alternatively can create a film between at least some of the scoring element struts or any combination of the above.
Coatings may comprise a polymer matrix such as vinylpyrrolidone-vinyl acetate, styrene acrylic polymer, ethylene acrylic acid copolymer, carboxyl function acrylic polymer, hydroxyl function acrylic polymer, and acrylic dispersion polymer, among others. In some cases it is desirable to use a coherent bond coat (i.e. epoxies, acetals, acrylics, ethylene copolymers, or other suitable groups). Coatings may also comprise poly(glycol methacrylate), poly(methyl methacrylate), poly(ethyl methacrylate), poly(butyl methacrylate), poly(sulfanato ethyl methacrylate), poly(ethylene-co-vinyl acetate), poly(ethyl acrylate), poly(urethane-acrylate), poly(acrylamide-co-ethyl methacrylate), poly(divinyl benzene), poly(triethylene glycol-co-divinyl ether), poly(tri-methylol propane triacrylate), poly(pentaerythritol tetraacrylate), poly(bisphenol A ethoxylate diacrylate), poly(allyl ether), poly(diallyl maleate), poly(vinylidene fluoride), poly(triallyl isocyanurate), poly vinyl alcohol, ethylene vinyl alcohol copolymer, or alike. The drug may also be carried on the surface of the scoring element using an oxide layer or porous oxide layer. Alternatively the scoring element may be coated by drug without any polymer or carrying matrix of any kind.
As an alternative to coating, the active substances, either with or without a polymer carrier, may be incorporated into apertures, such as holes, grooves, or wells formed in the scoring element. The apertures may be distributed over the entire surface of the scoring element, or may be provided over only portions thereof. The active substances will thus be released from the apertures when the scoring elements are engaged against the luminal wall.
Scoring elements may have any conventional geometry, generally as described above, including linear, helical, or other geometries. In the exemplary embodiments, the scoring elements will be formed as at least a portion of a resilient cage which surrounds an expandable shell carried by the treatment catheter. The resilient cage will have a structure which expands with shell expansion and collapses over the shell, e.g., helping to deflate a balloon which carries the cage.
a illustrates yet another alternative embodiment of a catheter constructed in accordance with the principles of the present invention, where an attachment structure is disposed between the scoring structure and the catheter body.
b illustrates the structure of
a-c illustrate a catheter constructed in accordance with the principles of the present invention having an attachment structure with various patterned perforations.
In the following description, various aspects of the present invention will be described. For purposes of explanation, specific configurations and details are set forth in order to provide a thorough understanding of the present invention. However, it will also be apparent to one skilled in the art that the present invention may be practiced without the specific details presented herein. Furthermore, well-known features may be omitted or simplified in order not to obscure the present invention.
Embodiments of the present invention relate to device for revascularization of stenotic vessels and specifically to a balloon catheter having external elements. The dilatation device comprises a conventional dilatation balloon such as a polymeric balloon and a spiral, or external elements with other configurations mounted on the balloon catheter. The apparatus comprise one or more scoring elements which are coated or otherwise loaded with an active substance to be released into a blood vessel wall or stenotic region in accordance with the principles of the present invention. The invention will also find use in treating other body lumens, such as vein and synthetic grafts, as well as lumens of the respiratory, urinary, reproductive and digestive systems, and the like, for other conditions such as lesions or tumors or some types of cancer or other local disorders.
Reference is now made to
Helical unit 14 typically made of nitinol. Helical unit 14 may be made of other metals such stainless steel, cobalt-chromium alloy, titanium, and the like. Alternatively, spiral unit 14 may be a polymeric spiral, or made of another elastic material. Helical unit 14 may be attached at its proximal and distal ends to the proximal end 17 and distal end 18 of dilatation balloon 12. Alternatively, spiral unit 14 may be attached to the distal end and/or the proximal end of dilatation balloon 12 by collar-like attachment elements 15 and 16. Spring or other compliant elements may be alternatively or additionally provided as part of the attachment elements to accommodate shortening of the helical unit as it is expanded.
Dilatation device 10 is inserted into the vascular system, for example, using a conventional catheter procedure, to a region of stenotic material 22 of blood vessel 20. (The term “stenotic” is used herein to refer to the vascular lesion, e.g., the narrowed portion of the vessel that the balloon is meant to open.) At the stenotic area, the dilatation balloon 12 is inflated, for example, by liquid flow into the balloon. Helical unit 14 widens on the inflated dilatation balloon 12. On inflation, the dilatation balloon 12 together with the helical unit 14 is pressed against the walls of blood vessel 20 as shown in
Reference is now made to
Reference is now made to
In other embodiments, the scoring structure of the present invention can have a non-helical configuration. Any design of scoring structure that can accommodate an increase in the diameter of the balloon 12 upon inflation, and return to its configuration when the balloon is deflated, is an appropriate design useful in the invention. At least a portion of the scoring elements will not be parallel to the longitudinal axis of the balloon catheter to enhance flexibility and improve scoring.
Referring again to
In another embodiment of the invention, dilatation device 10 may carry a stent. The stent can be crimped over the helical unit 14. In this way, the helical unit 14 can push the stent against hard areas of the lesion, enabling proper positioning of the stent against the vessel wall, even in hard-calcified lesions without pre-dilation.
Reference is now made to
Wires 19 (
In alternative embodiments, the wires 19 may comprise short segments that are attached to the balloon 12.
In further alternative embodiments of the invention, the helical unit 14 may be glued, thermally bonded, fused or mechanically attached at one or both ends to dilatation balloon 12.
In yet another embodiment, a scoring structure may comprise wires that are attached to the dilatation balloon 12 in helical configuration or other configuration. The wires may be thermally attached to the balloon 12, glued, mechanically attached, or the like.
In still another embodiment, a scoring structure comprises wire or cage elements that are not parallel to the longitudinal axis of the balloon 12 so that the combination of the scoring structure 19 and the balloon 12 remains flexible.
In additional embodiments, the combination of dilatation balloon 12 and scoring structure scores the lesion and provides better vessel preparation for drug eluting stents by allowing better positioning of the stent against the vessel wall and diffusion of the drug through the scores in the lesion.
In these embodiments, the balloon can be used as a platform to carry drugs to the lesion where scoring of the lesion can enhance delivery of the drug to the vessel wall.
In these embodiments, the balloon can be used for a local drug delivery by embedding drug capsules, drug containing polymer, and the like, through the stenotic material and into the vessel wall.
From the above, it can be seen that the invention comprises catheters and scoring structures, where the scoring structures are positioned over the balloons or other expandable shells of the catheter. The scoring structures may be attached directly to the balloons or other shells, in some cases being embedded in the balloon material, but will more usually be formed as separate cage structures which are positioned over the balloon and attached to the catheter through attachment elements on either side of the balloon. The expandable cages may be formed using conventional medical device fabrication techniques, such as those used for fabricating stents, such as laser cutting of hypotube and other tubular structures, EDM forming of hypotubes and tubes, welding of wires and other components and the like.
Typically, such expandable shell structures will comprise the attachment elements and an intermediate scoring section between the attachment elements. As illustrated in the embodiments above, the attachment elements may be simple cylindrical or tube structures which circumscribe the catheter body on either side of the balloon or other expandable shell. The simple tube structures may float over the catheter body, i.e., be unattached, or may be fixed to the catheter body. A number of alternative embodiments for the attachment elements will be described in connections with the embodiments below.
The intermediate scoring sections may also have a variety of configurations where at least some of the scoring elements will typically be disposed in a non-axial configuration, i.e., in a direction which is not parallel to the axial direction of the expandable cage. A preferred configuration for the intermediate scoring section comprises one or more helical elements, generally as illustrated in the prior embodiments. Other exemplary configurations are set forth in the embodiments described below.
Referring now in particular to
It will be appreciated that a variety of different circumferential structures may be used in place of the C-shaped structures of
The expandable cage structures 100 and 120 will each be mounted over a dilatation balloon, such as the balloon of
Referring now to
Referring now to
The attachment structure 180 is advantageous since it permits a fixed attachment of the outermost ring 182 to the underlying catheter body while the inner ring 184 remains floating and expansion and contraction of the intermediate scoring section, comprising helical elements 196, is accommodated by the coil spring structure 186. Since the scoring cage is fixed to the catheter, any risk of loss or slippage from the balloon is reduced while sufficient compliance is provided to easily accommodate radial expansion of the intermediate scoring section. By attaching the structures 180 at least one, and preferably both ends of the scoring cage, the risk of interference with a stent is reduced.
In some embodiments, collars, such as those shown in
Yet another embodiment of the attachment element of the present invention includes an axial spring as shown in
The nature of the serpentine ring elements 206 can be observed in the rolled-out configuration of
The embodiments of
Referring now to
In a preferred embodiment, attachment structure 258 comprises a cylindrical over-tube, or compliance tube, made of an elastic material. Over-tube 258 generally has an inner diameter that is slightly greater than the outer diameter of the catheter body 256. Because only a small section of the proximal end of the attachment structure 258 is fixed to the catheter body, the distal end 264 attached to external structure 252 is free floating, and is free to slide axially and rotationally with respect to catheter body 256. Attachment structure 252 may be fixed, for example by adhesion, directly to the to catheter body 256 and external structure 252, or to a collar or other intermediate attachment means.
As balloon 254 is expanded, external structure 252 expands in circumference and contracts axially along the catheter body 256, creating axial force A on attachment structure 258. Attachment structure 258, fixed to the catheter at its end 266, axially stretches to accommodate the axial movement of the external structure 252. External structure 252 also tends to rotate about the catheter body 256, causing a torsional force T. The distal end 264 of attachment structure 258 rotates through the full range of motion of scoring structure 252 to accommodate torsional force T, while proximal end 266 remains stationary with respect to catheter body 256.
The configuration illustrated in
The compliance of the system may be varied by any combination of material selection, wall thickness, or length of the over-tube 258. Over-tube 258 may comprise any elastomer, such as elastic polymer like Nylon, Pebax, or PET. Typically, compliance tube 258 is formed from extruded tubing, but is may also comprise braided polymeric or metallic fibers, or wire mesh. A high memory metal such as nitinol or stainless steel may also be used. Where the compliance tube comprises an extruded polymeric tube, the wall thickness can vary in the ranges set forth above, and the length of the tube can range from 1 cm to 10 cm. For the same material, the thinner-walled and longer the tube, the more compliant the system.
Referring to
Referring to
The taper may run across the whole length of the compliance tube, or alternatively be only tapered at a section of the length of the compliance tube. The tapered compliance tube 258 smoothes the transition between the scoring structure and catheter body, and minimizes the likelihood of the outer tube or scoring structure snagging or catching on a portion of the luminal wall during delivery or retrieval of the catheter.
Now referring to
In some embodiments, the compliance of the scoring structure 252 and balloon 254 is controlled by actuating the manipulator during expansion or contraction of the radially expandable shell. In one aspect, the attachment structure 258 may be axially advanced with respect to the catheter body 256 as the balloon is being inflated or deflated. For example, the attachment structure 258 may be pulled away from the distal end of the catheter body 256 while the balloon 254 is being expanded to constrain the compliance of balloon. The attachment structure 258 may also be pulled away from the distal end of the catheter body 256 during or after the balloon 254 is being deflated to minimize the profile of the balloon and scoring structure. Alternatively, the manipulator 360 may be used to rotate the attachment structure 258 with respect to the catheter body 256 to control the compliance of the balloon and scoring structure during transition from a collapsed to expanded state and back to a collapsed state.
Now referring to
The laminating structure may be composed of a polymer similar to the compliance tube 402, and may be heat shrunk or melted to thermally bond the compliance sleeve to the compliance tube and sandwich the scoring structure 406. Alternatively, an adhesive or other bonding method such as ultrasonic or RF energy may be used to laminate the structure. The laminated structure as shown in
Now referring to
As described thus far, the scoring structures and catheter apparatus have not included any drugs, active substances, or other coatings or features related to releasing such drugs or substances into the vasculature or other body lumens. The scoring elements, however, can be easily modified by a variety of known techniques for incorporating such drugs and active substances on, over, or within the structures of the scoring elements, as illustrated for example in
Referring to
Referring now to
Referring now to
As shown if
It will be appreciated that with either the well 512 or the hole 522, the polymer matrix may be composed of layers having different properties and/or include layers composed of different polymers or other materials. In this way, a variety of release mechanisms can be achieved.
Referring now to
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Alternate embodiments are contemplated that fall within the scope of the invention.
The present application is a continuation of U.S. patent application Ser. No. 11/411,635 filed Apr. 26, 2006, which is non-provisional of U.S. Patent Application Ser. No. 60/680,450 filed May 11, 2005, the full disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4578061 | Lemelson | Mar 1986 | A |
4604762 | Robinson | Aug 1986 | A |
4838853 | Parisi | Jun 1989 | A |
4887613 | Farr et al. | Dec 1989 | A |
4895166 | Farr et al. | Jan 1990 | A |
4921984 | Nowatari et al. | May 1990 | A |
4942788 | Farr et al. | Jul 1990 | A |
4950277 | Farr | Aug 1990 | A |
4966604 | Reiss | Oct 1990 | A |
4969458 | Wiktor | Nov 1990 | A |
4986807 | Farr | Jan 1991 | A |
4998539 | Delsanti | Mar 1991 | A |
5003918 | Olson et al. | Apr 1991 | A |
5019088 | Farr | May 1991 | A |
5019089 | Farr | May 1991 | A |
5026384 | Farr et al. | Jun 1991 | A |
5062648 | Gomringer | Nov 1991 | A |
5100423 | Fearnot | Mar 1992 | A |
5101682 | Radisch, Jr. et al. | Apr 1992 | A |
5102402 | Dror et al. | Apr 1992 | A |
5108416 | Ryan et al. | Apr 1992 | A |
5112345 | Farr | May 1992 | A |
5120322 | Davis et al. | Jun 1992 | A |
5133732 | Wiktor | Jul 1992 | A |
5176693 | Pannek, Jr. | Jan 1993 | A |
5192291 | Pannek, Jr. | Mar 1993 | A |
5196024 | Barath | Mar 1993 | A |
5209727 | Radisch, Jr. et al. | May 1993 | A |
5221261 | Termin et al. | Jun 1993 | A |
5224945 | Pannek, Jr. | Jul 1993 | A |
5224949 | Gomringer et al. | Jul 1993 | A |
5226887 | Farr et al. | Jul 1993 | A |
5243997 | Uflacker et al. | Sep 1993 | A |
5295493 | Radisch, Jr. | Mar 1994 | A |
5304121 | Sahatjian | Apr 1994 | A |
5306250 | March et al. | Apr 1994 | A |
5308354 | Zacca et al. | May 1994 | A |
5318576 | Weiss et al. | Jun 1994 | A |
5320634 | Vigil et al. | Jun 1994 | A |
5336234 | Vigil et al. | Aug 1994 | A |
5344401 | Radisch et al. | Sep 1994 | A |
5350101 | Godlewski | Sep 1994 | A |
5354279 | Hofling | Oct 1994 | A |
5376077 | Gomringer | Dec 1994 | A |
5419777 | Hofling | May 1995 | A |
5423745 | Todd | Jun 1995 | A |
5443078 | Uflacker | Aug 1995 | A |
5443496 | Schwartz et al. | Aug 1995 | A |
5456667 | Ham et al. | Oct 1995 | A |
5458568 | Racchini et al. | Oct 1995 | A |
5470314 | Walinsky | Nov 1995 | A |
5524635 | Uflacker et al. | Jun 1996 | A |
5538504 | Linden et al. | Jul 1996 | A |
5545132 | Fagan et al. | Aug 1996 | A |
5556405 | Lary | Sep 1996 | A |
5556408 | Farhat | Sep 1996 | A |
5569195 | Saab | Oct 1996 | A |
5571086 | Kaplan et al. | Nov 1996 | A |
5616149 | Barath | Apr 1997 | A |
5624433 | Radisch, Jr. | Apr 1997 | A |
5649941 | Lary | Jul 1997 | A |
5681281 | Vigil et al. | Oct 1997 | A |
5697944 | Lary | Dec 1997 | A |
5707385 | Williams | Jan 1998 | A |
5713863 | Vigil et al. | Feb 1998 | A |
5713913 | Lary et al. | Feb 1998 | A |
5735816 | Lieber et al. | Apr 1998 | A |
5742019 | Radisch, Jr. | Apr 1998 | A |
5746716 | Vigil et al. | May 1998 | A |
5746968 | Radisch, Jr. | May 1998 | A |
5779698 | Clayman et al. | Jul 1998 | A |
5797935 | Barath | Aug 1998 | A |
5800450 | Lary et al. | Sep 1998 | A |
5868719 | Tsukernik | Feb 1999 | A |
5868779 | Ruiz | Feb 1999 | A |
5873852 | Vigil et al. | Feb 1999 | A |
5891090 | Thornton | Apr 1999 | A |
5902475 | Trozera et al. | May 1999 | A |
5916166 | Reiss et al. | Jun 1999 | A |
5994667 | Merdan et al. | Nov 1999 | A |
6004295 | Langer et al. | Dec 1999 | A |
6036689 | Tu et al. | Mar 2000 | A |
6053913 | Tu et al. | Apr 2000 | A |
6071285 | Lashinski et al. | Jun 2000 | A |
6071286 | Mawad | Jun 2000 | A |
6077298 | Tu et al. | Jun 2000 | A |
6102904 | Vigil et al. | Aug 2000 | A |
6106548 | Roubin et al. | Aug 2000 | A |
6117104 | Fitz | Sep 2000 | A |
6117153 | Lary et al. | Sep 2000 | A |
6123718 | Tu et al. | Sep 2000 | A |
6129706 | Janacek | Oct 2000 | A |
6152944 | Holman et al. | Nov 2000 | A |
6165187 | Reger | Dec 2000 | A |
6190356 | Bersin | Feb 2001 | B1 |
6197013 | Reed et al. | Mar 2001 | B1 |
6210392 | Vigil et al. | Apr 2001 | B1 |
6245040 | Inderbitzen et al. | Jun 2001 | B1 |
6258108 | Lary | Jul 2001 | B1 |
6280411 | Lennox | Aug 2001 | B1 |
6283947 | Mirzaee | Sep 2001 | B1 |
6283951 | Flaherty et al. | Sep 2001 | B1 |
6296651 | Lary et al. | Oct 2001 | B1 |
6306151 | Lary | Oct 2001 | B1 |
6312459 | Huang et al. | Nov 2001 | B1 |
6319230 | Palasis et al. | Nov 2001 | B1 |
6325779 | Zedler | Dec 2001 | B1 |
6355013 | van Muiden | Mar 2002 | B1 |
6364856 | Ding et al. | Apr 2002 | B1 |
6371961 | Osborne et al. | Apr 2002 | B1 |
6394995 | Solar et al. | May 2002 | B1 |
6416494 | Wilkins | Jul 2002 | B1 |
6425882 | Vigil | Jul 2002 | B1 |
6447501 | Solar et al. | Sep 2002 | B1 |
6450988 | Bradshaw | Sep 2002 | B1 |
6454775 | Demarais et al. | Sep 2002 | B1 |
6471979 | New et al. | Oct 2002 | B2 |
6475233 | Trozera | Nov 2002 | B2 |
6475234 | Richter et al. | Nov 2002 | B1 |
6500186 | Lafontaine | Dec 2002 | B2 |
6517765 | Kelley | Feb 2003 | B1 |
6562062 | Jenusaitis et al. | May 2003 | B2 |
6565528 | Mueller | May 2003 | B1 |
6569180 | Sirhan et al. | May 2003 | B1 |
6592548 | Jayaraman | Jul 2003 | B2 |
6605107 | Klein | Aug 2003 | B1 |
6656156 | Yang et al. | Dec 2003 | B2 |
6682545 | Kester | Jan 2004 | B1 |
6939320 | Lennox | Sep 2005 | B2 |
7011654 | Dubrul et al. | Mar 2006 | B2 |
7060051 | Palasis | Jun 2006 | B2 |
7494497 | Weber | Feb 2009 | B2 |
7976557 | Kunis | Jul 2011 | B2 |
20020010487 | Evans et al. | Jan 2002 | A1 |
20020010489 | Grayzel et al. | Jan 2002 | A1 |
20020029015 | Camenzind et al. | Mar 2002 | A1 |
20020038144 | Trout, III et al. | Mar 2002 | A1 |
20020091438 | Trozera | Jul 2002 | A1 |
20020165599 | Nasralla | Nov 2002 | A1 |
20030018376 | Solar et al. | Jan 2003 | A1 |
20030032973 | Jenusaitis et al. | Feb 2003 | A1 |
20030065381 | Solar et al. | Apr 2003 | A1 |
20030074046 | Richter | Apr 2003 | A1 |
20030105509 | Jang et al. | Jun 2003 | A1 |
20030144683 | Sirhan et al. | Jul 2003 | A1 |
20030149468 | Wallsten | Aug 2003 | A1 |
20030153870 | Meyer et al. | Aug 2003 | A1 |
20030171799 | Lee et al. | Sep 2003 | A1 |
20030195609 | Berenstein et al. | Oct 2003 | A1 |
20030199970 | Shanley | Oct 2003 | A1 |
20030199988 | Devonec et al. | Oct 2003 | A1 |
20030208255 | O'Shaughnessy et al. | Nov 2003 | A1 |
20040127475 | New et al. | Jul 2004 | A1 |
20040133223 | Weber | Jul 2004 | A1 |
20040143287 | Konstantino et al. | Jul 2004 | A1 |
20040193257 | Wu et al. | Sep 2004 | A1 |
20040208985 | Rowan et al. | Oct 2004 | A1 |
20040243158 | Konstantino et al. | Dec 2004 | A1 |
20050021070 | Feld et al. | Jan 2005 | A1 |
20050021071 | Konstantino et al. | Jan 2005 | A1 |
20050033417 | Borges et al. | Feb 2005 | A1 |
20050083768 | Hara | Apr 2005 | A1 |
20050119723 | Peacock III | Jun 2005 | A1 |
20050288629 | Kunis | Dec 2005 | A1 |
20060004323 | Chang et al. | Jan 2006 | A1 |
20060020243 | Speck et al. | Jan 2006 | A1 |
20060111736 | Kelley | May 2006 | A1 |
20060112536 | Herweck et al. | Jun 2006 | A1 |
20060129093 | Jackson | Jun 2006 | A1 |
20060149308 | Melsheimer et al. | Jul 2006 | A1 |
20060184191 | O'Brien | Aug 2006 | A1 |
20060247674 | Roman | Nov 2006 | A1 |
20060259062 | Konstantino | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
2002-126086 | May 2002 | JP |
WO 9424946 | Nov 1994 | WO |
WO 9503083 | Feb 1995 | WO |
WO 03039628 | May 2003 | WO |
WO 03041760 | May 2003 | WO |
WO 2004028610 | Apr 2004 | WO |
Entry |
---|
International Search Report and written opinion dated Feb. 27, 2007 for PCT/US2006/017872. |
Office Action of Japanese Patent Application No. 2007-505113, mailed Jul. 9 2010 (8 pgs) (English translation included). |
Number | Date | Country | |
---|---|---|---|
20130204179 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
60680450 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11411635 | Apr 2006 | US |
Child | 13707401 | US |