Methods and systems for point of use removal of sacrificial material

Information

  • Patent Grant
  • 9852919
  • Patent Number
    9,852,919
  • Date Filed
    Wednesday, April 1, 2015
    9 years ago
  • Date Issued
    Tuesday, December 26, 2017
    7 years ago
Abstract
A method of manufacturing a sensor, the method including forming an array of chemically-sensitive field effect transistors (chemFETs), depositing a dielectric layer over the chemFETs in the array, depositing a protective layer over the dielectric layer, etching the dielectric layer and the protective layer to form cavities corresponding to sensing surfaces of the chemFETs, and removing the protective layer. The method further includes, etching the dielectric layer and the protective layer together to form cavities corresponding to sensing surfaces of the chemFETs. The protective layer is at least one of a polymer, photoresist material, noble metal, copper oxide, and zinc oxide. The protective protective layer is removed using at least one of sodium hydroxide, organic solvent, aqua regia, ammonium carbonate, hydrochloric acid, acetic acid, and phosphoric acid.
Description
FIELD

This application generally relates to methods and systems for nucleic acid sequencing. More specifically, the specification relates to methods and systems for processing and/or analyzing nucleic acid sequencing data and/or signals.


BACKGROUND

Deoxyribonucleic acid, or DNA, is the genetic material in the nuclei of all cells. DNA is made of chemical building blocks called nucleotides. Nucleotides comprise three parts: a phosphate group, a sugar group and one of four types of nitrogen bases. The four types of nitrogen bases found in nucleotides are: adenine (A), thymine (T), cytosine (C) and guanine (G). To form a strand of DNA, nucleotides are linked into chains, with the phosphate and sugar groups alternating.


The structure of a DNA molecule was first described in 1953 by Francis Crick and James D. Watson as two strands wound around each other in a double helix to resemble a twisted ladder. The two strands of DNA contain complementary information: A forms hydrogen bonds only with T, C only with G. The precise order in which the four types of nitrogen bases (A, T, C, G) appear in the strand determines genetic characteristics of all life forms. The process of determining the precise order of nucleotides within a DNA molecule is termed DNA sequencing. DNA sequencing may be used to determine the sequence of individual genes, larger genetic regions (i.e. clusters of genes or operons), full chromosomes or entire genomes. Depending on the methods used, sequencing may provide the order of nucleotides in DNA or RNA isolated from cells of animals, plants, bacteria, archaea, or virtually any other source of genetic information. The resulting sequences may be used by researchers in molecular biology or genetics to further scientific progress or may be used by medical personnel to make treatment decisions.


Conventional methods of DNA sequencing comprise chemical (i.e. electrophoresis), optical, and electronic methods. As compared to other methods for detecting a DNA sequence, electronic sequencing methods differ from other sequencing technologies in that modified/labeled nucleotides and/or optics/optical measurements are not necessary. Instead, electronic sequencing methods rely on ion or other reaction byproducts to identify the relevant DNA sequence.


A type of electronic DNA sequencing, ion semiconductor sequencing is a method of DNA sequencing based on the detection of ions (for example, hydrogen ions) that are released during the polymerization of DNA. Ion semiconductor sequencing is a method of “sequencing by synthesis,” during which a complementary strand is built by incorporation (pairing of bases) based on the sequence of a template strand.


The incorporation of a deoxyribonucleotide triphosphate (dNTP) into a growing DNA strand involves the formation of a covalent bond and the release of pyrophosphate and a positively charged hydrogen ion. A dNTP will only be incorporated if it is complementary to the leading unpaired template nucleotide. Ion semiconductor sequencing leverages this process by detecting whether a hydrogen ion is released when a single species of dNTP is provided to the reaction.


Hydrogen ions may be detected by providing an array of microwells on a semiconductor chip. Beneath the layer of microwells is an ion sensitive layer, below which is an ion sensitive (ISFET) or a chemical sensitive (chemFET) sensor. Each microwell on the chip may contain a template DNA molecule to be sequenced. Each microwell containing a template strand DNA molecule also contains a DNA polymerase. A DNA polymerase is a cellular or viral enzyme that synthesizes DNA molecules from their nucleotide building blocks. A microfluidics device may be used to introduce a solution of unmodified A, T, C, or G dNTP into the microwells one after the other and one at a time. If an introduced dNTP is complementary to the next unpaired nucleotide on the template strand, a biochemical reaction occurs (which includes the release of a hydrogen ion) and the introduced dNTP is incorporated into the growing complementary strand by the DNA polymerase. If the introduced dNTP is not complementary there is no incorporation and no biochemical reaction. The release of a hydrogen ion during incorporation causes a change in the pH of the solution in the microwell. That change in the pH of the solution can be detected/measured by the ISFET or chemFET sensor and translated into an electrical pulse.


Before the next cycle of dNTP is introduced into the microwells, the microwells are flushed with a wash solution. Unattached dNTP molecules are washed out during the flush cycle. The detected series of electrical pulses are transmitted from the chip to a computer and are translated into a DNA sequence. Because nucleotide incorporation events are measured directly by electronics, intermediate signal conversion is not required. Signal processing and DNA assembly can then be carried out in software.


The chip may be fabricated by taking advantage of conventional semiconductor technology. However, the release of a hydrogen ion produces a small and transient signal that is difficult to measure. To further complicate detection and nucleic acid sequencing, ion detection is sensitive to various forms of contaminants on the chip surfaces. Accordingly, problems arise during manufacturing, packaging and exposure of the chip surfaces to the environment. Thus, there is a need for improved methods and an apparatus to prevent contamination of the chip surfaces for reliable ion detection and sequencing.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated into and form a part of the specification, illustrate one or more exemplary embodiments and serve to explain the principles of various exemplary embodiments. The drawings are exemplary and explanatory only and are not to be construed as limiting or restrictive in any way.



FIG. 1 illustrates components of a system for nucleic acid sequencing according to an exemplary embodiment.



FIG. 2 illustrates cross-sectional and expanded views of a flow cell for nucleic acid sequencing according to an exemplary embodiment.



FIGS. 3A-F are schematic representations of a method of manufacturing a sensor with a protective layer according to an exemplary embodiment.



FIGS. 4A-C are schematic representations of a sensor with a protective layer according to an exemplary embodiment.



FIG. 5 is flow diagram for performing a method of manufacturing a sensor with a protective layer according to an exemplary embodiment.



FIGS. 6A-B are schematic representations of a sensor with ion-sensing layers according to different exemplary embodiments.





SUMMARY

The disclosure relates to methods of manufacturing a sensor for nucleic acid sequencing having a protective layer that prevents surface contamination of the sensor during various stages of fabrication. The disclosure further relates to a sensor for nucleic acid sequencing comprising an array of chemically-sensitive field effect transistors (chemFETs) and a conformal protective layer over the sensing surfaces, sidewalls of the cavities, and top surface of the array of chemFETs. The protective layer over the array of chemFETs may be removed by an end user before Nucleic acid sequencing is performed.


In one embodiment, the disclosure relates to a method of manufacturing a sensor for Nucleic acid sequencing. The method comprises forming an array of chemically-sensitive field effect transistors (chemFETs); depositing a dielectric layer over the chemFETs in the array; depositing a protective layer over the dielectric layer; etching the dielectric layer and the protective layer to form cavities corresponding to sensing surfaces of the chemFETs; and removing the protective layer. In another embodiment, the step of etching includes etching the dielectric layer and the protective layer together to form cavities corresponding to sensing surfaces of the chemFETs. In one embodiment, the protective layer is at least one of a polymer, photoresist material, noble metal, copper oxide, and zinc oxide. In another embodiment, the protective layer is removed using at least one of an acid, a base, and an oxidizing solution. For example, the protective layer may be removed using at least one of sodium hydroxide, organic solvent, aqua regia, ammonium carbonate, hydrochloric acid, acetic acid, and phosphoric acid. In another embodiment, the dielectric layer includes at least one of silicon oxide, silicon nitride and silicon oxynitride. In one embodiment, the method further comprises patterning a photosensitive etch mask and wherein the etching of the dielectric layer and the protective layer is a photolithographic process.


In another embodiment, the disclosure relates to a sensor for Nucleic acid sequencing. The sensor comprises an array of chemically-sensitive field effect transistors (chemFETs), each chemFET in the array having a floating gate structure including an upper surface; a dielectric layer over the upper surfaces of the floating gate structures of the chemFETs in the array, the dielectric layer including cavities extending to the upper surfaces of the floating gate structures and corresponding to sensing surfaces of the chemFETs; a conformal protective layer over the sensing surfaces, sidewalls of the cavities, and top surface of the array. In one embodiment, the protective layer defines a removable layer. In another embodiment, the protective layer is at least one of a polymer, photoresist, noble metal, copper oxide, and zinc oxide. In another embodiment, the protective layer is removed using at least one of sodium hydroxide, organic solvent, aqua regia, ammonium carbonate, hydrochloric acid, acetic acid, and phosphoric. In another embodiment, the dielectric layer includes at least one of silicon oxide, silicon nitride and silicon oxynitride. In another embodiment, the sensing material includes at least one of tantalum oxide, titanium oxide, and titanium nitride. In another embodiment, the sensing material is a metal oxide or metal nitride selected from one or more of the group of Al2O3, Ta2O5, HfO3, WO3, ZrO2, TiO2 or mixtures thereof.


DETAILED DESCRIPTION


FIG. 1 illustrates components of a system for nucleic acid sequencing according to an exemplary embodiment. The components include a flow cell and sensor array 100, a reference electrode 108, a plurality of reagents 114, valve block 116, wash solution 110, valve 112, fluidics controller 118, lines 120/122/126, passages 104/109/111, waste container 106, array controller 124, and user interface 128. The flow cell and sensor array 100 includes inlet 102, outlet 103, microwell array 107, and flow chamber 105 defining a flow path of reagents over the microwell array 107. The reference electrode 108 may be of any suitable type or shape, including a concentric cylinder with a fluid passage or a wire inserted into a lumen of passage 111. The reagents 114 may be driven through the fluid pathways, valves, and flow cell by pumps, gas pressure, or other suitable methods, and may be discarded into the waste container 106 after exiting the flow cell and sensor array 100.


Fluidics controller 118 may control driving forces for reagents 114 and the operation of valve 112 and valve block 116 with suitable software. Microwell array 107 may include an array of defined spaces or reaction confinement regions, such as microwells, for example, that is operationally associated with a sensor array 100 so that, for example, each microwell has a sensor suitable for detecting an analyte or reaction property of interest. Microwell array 107 may preferably be integrated with the sensor array as a single device or chip. The flow cell may have a variety of designs for controlling the path and flow rate of reagents over microwell array 107, and may be a microfluidics device. Array controller 124 may provide bias voltages and timing and control signals to the sensor, and collect and/or process output signals. User interface 128 may display information from the flow cell and sensor array 100 as well as instrument settings and controls, and allow a user to enter or set instrument settings and controls.


In an exemplary embodiment, such a system may deliver reagents to the flow cell and sensor array in a predetermined sequence, for predetermined durations, at predetermined flow rates, and may measure physical and/or chemical parameters providing information about the status of one or more reactions taking place in defined spaces or reaction confinement regions, such as, for example, microwells (or in the case of empty microwells, information about the physical and/or chemical environment therein). In an exemplary embodiment, the system may also control a temperature of the flow cell and sensor array so that reactions take place and measurements are made at a known, and preferably, a predetermined temperature.


In an exemplary embodiment, such a system may be configured to let a single fluid or reagent contact reference electrode 108 throughout an entire multi-step reaction. Valve 112 may be shut to prevent any wash solution 110 from flowing into passage 109 as the reagents are flowing. Although the flow of wash solution may be stopped, there may still be uninterrupted fluid and electrical communication between the reference electrode 108, passage 109, and the sensor array 107. The distance between reference electrode 108 and the junction between passages 109 and 111 may be selected so that little or no amount of the reagents flowing in passage 109 and possibly diffusing into passage 111 reach the reference electrode 108. In an exemplary embodiment, wash solution 110 may be selected as being in continuous contact with the reference electrode 108, which may be especially useful for multi-step reactions using frequent wash steps.



FIG. 2 is an illustration of expanded and cross-sectional views of an exemplary flow cell 200 and shows a portion of an exemplary flow chamber 206. A reagent flow 208 flows across a surface of a microwell array 202, in which reagent flow 208 flows over the open ends of the microwells. Microwell array 202 and sensor array 205 together can form an integrated unit forming a bottom wall (or floor) of flow cell 200. Reference electrode 204 can be fluidly coupled to flow chamber 206. Further, flow cell cover 230 encapsulates flow chamber 206 to contain reagent flow 208 within a confined region.


Example flow cell structures and associated components can be found in U.S. Pat. No. 7,948,015 (filed Dec. 14, 2007).



FIG. 2 also illustrates an expanded view of exemplary microwell 201, dielectric layer 210, and exemplary sensor 214. The volume, shape, aspect ratio (such as base width-to-well depth ratio), and other dimensional characteristics of the microwells are design parameters that depend on a particular application, including the nature of the reaction taking place, as well as the reagents, byproducts, and labeling techniques (if any) that are employed. Sensor 214 can be an ion-sensitive field-effect transistor (ISFET) with a floating gate structure 218 having sensor plate 220 separated from the microwell interior by ion-sensing layer 216. Ion-sensing layer 216 may cover the entire microwell or a portion thereof. Ion-sensing layer 216 may cover surfaces between microwells. (See, for example, FIGS. 6A-B). Ion-sensing layer 216 may be a metal oxide layer such as, for example and without limitation, silicon nitride, tantalum oxide, aluminum oxide, or a combination thereof.


Ion-sensing layer 216, particularly in a region above floating gate structure 218 and sensor plate 220, can alter the electrical characteristics of the ISFET so as to modulate a current flowing through a conduction channel of the ISFET. That is, sensor 214 can be responsive to (and generate an output signal related to) the amount of charge 224 present on ion-sensing layer 216 opposite of sensor plate 220. Changes in charge 224 can cause changes in a current between source 221 and drain 222 of the ISFET. In turn, the ISFET can be used to provide a current-based output signal or indirectly with additional circuitry to provide a voltage-based output signal. Reactants, wash solutions, and other reagents can move in and out of the microwells by a diffusion mechanism 240.


In an embodiment, reactions carried out in microwell 201 can be analytical reactions to identify or determine characteristics or properties of an analyte of interest. Such reactions can generate directly or indirectly byproducts that affect the amount of charge adjacent to sensor plate 220. If such byproducts are produced in small amounts or rapidly decay or react with other constituents, then multiple copies of the same analyte can be analyzed in microwell 201 at the same time in order to increase the output signal ultimately generated. For instance, multiple copies of an analyte may be attached to solid phase support 212, either before or after deposition into a microwell. The solid phase support 212 may be a microparticle, nanoparticle, bead, or the like. For nucleic acid analyte, multiple, connected copies may be made by rolling circle amplification (RCA), exponential RCA, and other similar techniques, to produce an amplicon without the need of a solid support.



FIGS. 3A-F are schematic representations of a method of manufacturing a sensor with a protective layer according to one embodiment. Sensor 314 may be an ion sensitive (ISFET) or a chemical sensitive (chemFET) sensor with a floating gate 318 having sensor plate 320 separated from the microwell interior by an ion-sensing layer (not shown), and may be predominantly responsive to (and generate an output signal related to) an amount of charge present on the ion-sensing layer opposite of sensor plate 320. Changes in the amount of charge cause changes in the current between source 321 and drain 322 of sensor 314, which may be used directly to provide a current-based output signal or indirectly with additional circuitry to provide a voltage output signal.



FIG. 3A shows a sensor 314 which may be an ion sensitive (ISFET) or a chemical sensitive (chemFET). Substrate 300 may comprise a silicon wafer, or other relevant materials for CMOS fabrication as appropriate.



FIG. 3B shows dielectric layer 330 disposed on sensor 314. Dielectric layer 330 may comprise silicon oxide, silicon nitride and silicon oxynitride.



FIG. 3C shows protective layer 340 disposed on dielectric layer 330. Protective layer 340 may comprise a polymer, photoresist material, noble metal, copper oxide, or zinc oxide.



FIG. 3D shows sensor 314 after patterning of protective layer 340.



FIG. 3E shows cavity 350 extending to the upper surfaces of the floating gate structures and corresponding to sensing surfaces of the chemFETs after etching protective layer 340 and dielectric layer 330.



FIG. 3F shows sensor 314 with cavity 350 after removal of protective layer 340. Protective layer 340 may be removed using sodium hydroxide, organic solvent, aqua regia, ammonium carbonate, hydrochloric acid, acetic acid, and phosphoric acid, for example.



FIGS. 4A-C are schematic representations of a sensor with protective layer 440 according to one embodiment. Sensor 414 may be an ion sensitive (ISFET) or a chemical sensitive (chemFET) sensor 414 with floating gate 418 having sensor plate 420 separated from the microwell interior by an ion-sensing layer (not shown, see FIGS. 6A and 6B for example), and may be predominantly responsive to (and generate an output signal related to) an amount of charge present on the ion-sensing layer opposite of sensor plate 420. Changes in the amount of charge cause changes in the current between source 421 and drain 422 of sensor 414, which may be used directly to provide a current-based output signal or indirectly with additional circuitry to provide a voltage output signal.



FIG. 4A shows sensor 414 with cavity 450 formed for use as a microwell, for example, as described above with reference to FIG. 1. Dielectric layer 430 extends to the upper surface of the floating gate structure. Dielectric layer 430 may include at least one of silicon oxide, silicon nitride and silicon oxynitride. Substrate 400 may comprise a silicon wafer, or other relevant materials for CMOS fabrication as appropriate.



FIG. 4B shows a conformal protective layer 440 over the microwell structure of sensor 414. Protective layer 440 may comprise a polymer, photoresist material, noble metal, copper oxide, or zinc oxide.



FIG. 4C shows sensor 414 with cavity 450 formed for use as a microwell after removal of protective layer 440. Protective layer 440 serves to protect sensor 414 from environmental contamination and is removed before performing nucleic acid sequencing according to an exemplary embodiment. Protective layer 440 may be removed using at least one of sodium hydroxide, organic solvent, aqua regia, ammonium carbonate, hydrochloric acid, acetic acid, or phosphoric acid.



FIG. 5 is flow diagram for performing a method of manufacturing a sensor with a protective layer 500 according to one embodiment. Step 510 includes forming an array of chemically-sensitive field effect transistors (chemFETs). Step 520 includes depositing a dielectric layer over the chemFETs in the array. Step 530 includes depositing a protective layer over the dielectric layer. Step 540 includes etching the dielectric layer and the protective layer to form cavities corresponding to sensing surfaces of the chemFETs. Step 550 includes removing the protective layer. The protective layer serves to protect the sensor from environmental contamination and is removed before performing nucleic acid sequencing according to an exemplary embodiment.


In one embodiment, the dielectric layer and the protective layer are etched together to form cavities corresponding to sensing surfaces of the chemFETs. In one embodiment, the protective layer comprises a polymer, photoresist material, noble metal, copper oxide, or zinc oxide. In one embodiment, the protective layer is removed using at least one of sodium hydroxide, organic solvent, aqua regia, ammonium carbonate, hydrochloric acid, acetic acid, or phosphoric acid. In one embodiment, the dielectric layer includes at least one of silicon oxide, silicon nitride and silicon oxynitride. In one embodiment, a further act includes patterning a photosensitive etch mask, wherein the etching of the dielectric layer and the protective layer is a photolithographic process. In one embodiment, the protective layer removal includes removal of photoresist residue contamination resulting from the etching step.



FIGS. 6A-B are schematic representations of exemplary sensors with cavity 650 formed for use as a microwell, for example, as described above with reference to FIG. 1. Sensor 614 may be an ion sensitive (ISFET) or a chemical sensitive (chemFET) sensor 614 with floating gate 618 having sensor plate 620 separated from the microwell interior by an ion-sensing layer 616, and may be predominantly responsive to (and generate an output signal related to) an amount of charge present on the ion-sensing layer opposite of sensor plate 620. Changes in the amount of charge cause changes in the current between source 621 and drain 622 of sensor 614, which may be used directly to provide a current-based output signal or indirectly with additional circuitry to provide a voltage output signal. Substrate 600 may comprise a silicon wafer, or other relevant materials for CMOS fabrication as appropriate.

Claims
  • 1. A method of manufacturing a sensor, the method comprising: forming an array of chemically-sensitive field effect transistors (chemFETs);depositing a dielectric layer over the chemFETs in the array;depositing a protective layer over the dielectric layer;etching the dielectric layer and the protective layer together to form cavities corresponding to sensing surfaces of the chemFETs; andremoving the protective layer to form a plurality of sensors having one or more exposed cavities that provide sensing surfaces of the chemFETs while protecting one or more unexposed surfaces.
  • 2. The method of claim 1, further comprising patterning a photosensitive etch mask on the protective layer and wherein the etching of the dielectric layer and the protective layer is a photolithographic process.
  • 3. The method of claim 1, wherein the protective layer is at least one of a polymer, photoresist material, noble metal, copper oxide, and zinc oxide.
  • 4. The method of claim 1, wherein the protective layer is removed using at least one of an acid, a base, and an oxidizing solution.
  • 5. The method of claim 1, wherein the protective layer is removed using at least one of sodium hydroxide, organic solvent, aqua regia, ammonium carbonate, hydrochloric acid, acetic acid, and phosphoric acid.
  • 6. The method of claim 2, wherein the removing the protective layer includes removal of photoresist residue contamination resulting from the etching step.
  • 7. The method of claim 1, wherein the dielectric layer includes at least one of silicon oxide, silicon nitride and silicon oxynitride.
RELATED APPLICATION

This application is a Divisional application of U.S. patent application Ser. No. 13/734,696 filed Jan. 4, 2013, the entire contents of which is herein incorporated by reference.

US Referenced Citations (633)
Number Name Date Kind
4086642 Yoshida et al. Apr 1978 A
4411741 Janata Oct 1983 A
4437969 Covington et al. Mar 1984 A
4438354 Haque et al. Mar 1984 A
4444644 Hiramoto Apr 1984 A
4490678 Kuisl et al. Dec 1984 A
4641084 Komatsu Feb 1987 A
4660063 Anthony Apr 1987 A
4691167 Vlekkert et al. Sep 1987 A
4701253 Litenberg et al. Oct 1987 A
4722830 Urie et al. Feb 1988 A
4743954 Brown May 1988 A
4764797 Shaw et al. Aug 1988 A
4777019 Dandekar Oct 1988 A
4822566 Newman Apr 1989 A
4863849 Melamede Sep 1989 A
4864229 Lauks et al. Sep 1989 A
4874499 Smith et al. Oct 1989 A
4893088 Myers et al. Jan 1990 A
4927736 Mueller et al. May 1990 A
4971903 Hyman Nov 1990 A
5009766 Lauks Apr 1991 A
5038192 Bonneau et al. Aug 1991 A
5110441 Kinlen et al. May 1992 A
5113870 Rossenfeld May 1992 A
5126759 Small et al. Jun 1992 A
5138251 Koshiishi et al. Aug 1992 A
5140393 Hijikihigawa et al. Aug 1992 A
5142236 Maloberti et al. Aug 1992 A
5151587 Machida et al. Sep 1992 A
5151759 Vinal Sep 1992 A
5164319 Hafeman et al. Nov 1992 A
5202576 Liu et al. Apr 1993 A
5284566 Cuomo et al. Feb 1994 A
5317407 Michon May 1994 A
5319226 Sohn et al. Jun 1994 A
5407854 Baxter et al. Apr 1995 A
5436149 Barnes Jul 1995 A
5439839 Jang Aug 1995 A
5466348 Holm-Kennedy Nov 1995 A
5475337 Tatsumi Dec 1995 A
5490971 Gifford et al. Feb 1996 A
5554339 Cozzette et al. Sep 1996 A
5583462 Grasshoff Dec 1996 A
5587894 Naruo Dec 1996 A
5593838 Zanzucchi et al. Jan 1997 A
5600451 Maki Feb 1997 A
5627403 Bacchetta et al. May 1997 A
5631704 Dickinson et al. May 1997 A
5637469 Wilding et al. Jun 1997 A
5646558 Jamshidi et al. Jul 1997 A
5702964 Lee Dec 1997 A
5793230 Chu et al. Aug 1998 A
5846708 Hollis et al. Dec 1998 A
5894284 Garrity et al. Apr 1999 A
5907765 Lescouzeres May 1999 A
5911873 McCarron et al. Jun 1999 A
5912560 Pasternak Jun 1999 A
5922591 Anderson et al. Jul 1999 A
5923421 Rajic et al. Jul 1999 A
5944970 Rosenblatt Aug 1999 A
5958703 Dower et al. Sep 1999 A
5965452 Kovacs Oct 1999 A
6002299 Thomsen Dec 1999 A
6021172 Fossum et al. Feb 2000 A
6107032 Kilger et al. Aug 2000 A
6191444 Clampitt et al. Feb 2001 B1
6195585 Karunasiri et al. Feb 2001 B1
6210891 Nyren et al. Apr 2001 B1
6255678 Sawada et al. Jul 2001 B1
6274320 Rothberg et al. Aug 2001 B1
6275061 Tomita Aug 2001 B1
6280586 Wolf et al. Aug 2001 B1
6294133 Sawada et al. Sep 2001 B1
6327410 Walt et al. Dec 2001 B1
6353324 Uber, III et al. Mar 2002 B1
6355431 Chee et al. Mar 2002 B1
6361671 Mathies et al. Mar 2002 B1
6372291 Hua et al. Apr 2002 B1
6376256 Dunnington et al. Apr 2002 B1
6384684 Redman-White May 2002 B1
6403957 Fodor et al. Jun 2002 B1
6406848 Bridgham et al. Jun 2002 B1
6413792 Sauer et al. Jul 2002 B1
6429027 Chee et al. Aug 2002 B1
6432360 Church Aug 2002 B1
6433386 Yun et al. Aug 2002 B1
6459398 Gureshnik et al. Oct 2002 B1
6465178 Chappa et al. Oct 2002 B2
6475728 Martin et al. Nov 2002 B1
6482639 Snow et al. Nov 2002 B2
6485944 Church et al. Nov 2002 B1
6490220 Merritt et al. Dec 2002 B1
6499499 Dantsker et al. Dec 2002 B2
6511803 Church et al. Jan 2003 B1
6518024 Choong et al. Feb 2003 B2
6518146 Singh et al. Feb 2003 B1
6535824 Mansky et al. Mar 2003 B1
6537881 Rangarajan et al. Mar 2003 B1
6538593 Yang et al. Mar 2003 B2
6545620 Groeneweg Apr 2003 B2
6571189 Jensen et al. May 2003 B2
6602702 McDevitt et al. Aug 2003 B1
6605428 Klinger et al. Aug 2003 B2
6613513 Parce et al. Sep 2003 B1
6618083 Chen et al. Sep 2003 B1
6624637 Pechstein Sep 2003 B1
6627154 Goodman et al. Sep 2003 B1
6654505 Bridgham et al. Nov 2003 B2
6671341 Kinget et al. Dec 2003 B1
6682899 Bryan et al. Jan 2004 B2
6682936 Kovacs Jan 2004 B2
6686638 Fischer et al. Feb 2004 B2
6700814 Nahas et al. Mar 2004 B1
6703660 Yitzchaik et al. Mar 2004 B2
6716629 Hess et al. Apr 2004 B2
6762022 Makarov et al. Jul 2004 B2
6770472 Manalis et al. Aug 2004 B2
6780591 Williams et al. Aug 2004 B2
6795006 Delight et al. Sep 2004 B1
6806052 Bridgham et al. Oct 2004 B2
6828100 Ronaghi Dec 2004 B1
6831994 Bridgham et al. Dec 2004 B2
6841128 Kambara et al. Jan 2005 B2
6859570 Walt et al. Feb 2005 B2
6878255 Wang et al. Apr 2005 B1
6888194 Yoshino May 2005 B2
6898121 Chien et al. May 2005 B2
6906524 Chung et al. Jun 2005 B2
6919211 Fodor et al. Jul 2005 B1
6926865 Howard Aug 2005 B2
6929944 Matson Aug 2005 B2
6939451 Zhao et al. Sep 2005 B2
6953958 Baxter et al. Oct 2005 B2
6969488 Bridgham et al. Nov 2005 B2
6998274 Chee et al. Feb 2006 B2
7008550 Li et al. Mar 2006 B2
7019305 Eversmann et al. Mar 2006 B2
7022288 Boss Apr 2006 B1
7033754 Chee et al. Apr 2006 B2
7037687 Williams et al. May 2006 B2
7049645 Sawada et al. May 2006 B2
7060431 Chee et al. Jun 2006 B2
7067886 Bonges et al. Jun 2006 B2
7084641 Brederlow et al. Aug 2006 B2
7085502 Shushakob et al. Aug 2006 B2
7087387 Gerdes et al. Aug 2006 B2
7090975 Shultz et al. Aug 2006 B2
7091059 Rhodes Aug 2006 B2
7097973 Zenhausern Aug 2006 B1
7105300 Parce et al. Sep 2006 B2
7106089 Nakano et al. Sep 2006 B2
7169560 Lapidus et al. Jan 2007 B2
7173445 Fujii et al. Feb 2007 B2
7190026 Lotfi et al. Mar 2007 B2
7192745 Jaeger Mar 2007 B2
7193453 Wei et al. Mar 2007 B2
7211390 Rothberg May 2007 B2
7223540 Pourmand et al. May 2007 B2
7226734 Chee et al. Jun 2007 B2
7235389 Lim et al. Jun 2007 B2
7238323 Knapp et al. Jul 2007 B2
7244559 Rothberg et al. Jul 2007 B2
7244567 Chen Jul 2007 B2
7264929 Rothberg et al. Sep 2007 B2
7264934 Fuller Sep 2007 B2
7265929 Umeda et al. Sep 2007 B2
7267751 Gelbart et al. Sep 2007 B2
7276749 Martin et al. Oct 2007 B2
7282370 Bridgham et al. Oct 2007 B2
7285384 Fan et al. Oct 2007 B2
7291496 Holm-Kennedy Nov 2007 B2
7297518 Quake et al. Nov 2007 B2
7298475 Gandhi et al. Nov 2007 B2
7303875 Bock et al. Dec 2007 B1
7317216 Holm-Kennedy Jan 2008 B2
7317484 Dosluoglu et al. Jan 2008 B2
7323305 Leamon et al. Jan 2008 B2
7335762 Rothberg et al. Feb 2008 B2
7359058 Kranz et al. Apr 2008 B2
7361946 Johnson et al. Apr 2008 B2
7363717 Ekseth et al. Apr 2008 B2
7381936 Tan et al. Jun 2008 B2
7394263 Pechstein et al. Jul 2008 B2
7419636 Aker et al. Sep 2008 B2
7425431 Church et al. Sep 2008 B2
7455971 Chee et al. Nov 2008 B2
7462452 Williams et al. Dec 2008 B2
7462512 Levon et al. Dec 2008 B2
7465512 Wright et al. Dec 2008 B2
7466258 Akopyan et al. Dec 2008 B1
7470352 Eversmann et al. Dec 2008 B2
7482153 Okada et al. Jan 2009 B2
7482677 Lee et al. Jan 2009 B2
7499513 Tetzlaff et al. Mar 2009 B1
7515124 Yaguma et al. Apr 2009 B2
7575865 Leamon et al. Aug 2009 B2
7576037 Engelhardt et al. Aug 2009 B2
7595883 El Gamal et al. Sep 2009 B1
7605650 Forbes Oct 2009 B2
7608810 Yamada Oct 2009 B2
7609093 Sarig et al. Oct 2009 B2
7609303 Lee Oct 2009 B1
7612817 Tay Nov 2009 B2
7614135 Santini, Jr. et al. Nov 2009 B2
7667501 Surendranath et al. Feb 2010 B2
7686929 Toumazou et al. Mar 2010 B2
7695907 Miyahara et al. Apr 2010 B2
7733401 Takeda Jun 2010 B2
7785790 Church et al. Aug 2010 B1
7824900 Iwadate et al. Nov 2010 B2
7842377 Lanphere et al. Nov 2010 B2
7842457 Berka et al. Nov 2010 B2
7859029 Lee et al. Dec 2010 B2
7885490 Heideman et al. Feb 2011 B2
7888013 Miyahara et al. Feb 2011 B2
7888708 Yazawa et al. Feb 2011 B2
7923240 Su Apr 2011 B2
7932034 Esfandyarpour et al. Apr 2011 B2
7948015 Rothberg et al. May 2011 B2
7955995 Kakehata et al. Jun 2011 B2
7960776 Kim et al. Jun 2011 B2
7981362 Glezer et al. Jul 2011 B2
8012690 Berka et al. Sep 2011 B2
8017938 Gomez et al. Sep 2011 B2
8035175 Shim et al. Oct 2011 B2
8067731 Matyjaszczyk et al. Nov 2011 B2
8072188 Yorinobu et al. Dec 2011 B2
8124936 Lagna Feb 2012 B1
8133698 Silver Mar 2012 B2
8138496 Li et al. Mar 2012 B2
8154480 Shishido et al. Apr 2012 B2
8199859 Zerbe et al. Jun 2012 B2
8217433 Fife Jul 2012 B1
8227877 Lee et al. Jul 2012 B2
8231831 Hartzell et al. Jul 2012 B2
8232813 Burdett et al. Jul 2012 B2
8247849 Fife et al. Aug 2012 B2
8248356 Chen Aug 2012 B2
8262900 Rothberg et al. Sep 2012 B2
8263336 Rothberg et al. Sep 2012 B2
8264014 Rothberg et al. Sep 2012 B2
8269261 Rothberg et al. Sep 2012 B2
8293082 Rothberg et al. Oct 2012 B2
8306757 Rothberg et al. Nov 2012 B2
8313625 Rothberg et al. Nov 2012 B2
8313639 Rothberg et al. Nov 2012 B2
8317999 Rothberg et al. Nov 2012 B2
8340914 Gatewood et al. Dec 2012 B2
8343856 Therrien et al. Jan 2013 B2
8349167 Rothberg et al. Jan 2013 B2
8357547 Lee et al. Jan 2013 B2
8361713 Bridgham et al. Jan 2013 B2
8415716 Rothberg et al. Apr 2013 B2
8421437 Levine Apr 2013 B2
8426898 Rothberg et al. Apr 2013 B2
8426899 Rothberg et al. Apr 2013 B2
8435395 Rothberg et al. May 2013 B2
8441044 Rothberg et al. May 2013 B2
8445194 Drmanac et al. May 2013 B2
8445945 Rothberg et al. May 2013 B2
8449824 Sun May 2013 B2
8450781 Rothberg et al. May 2013 B2
8470164 Rothberg et al. Jun 2013 B2
8487790 Fife et al. Jul 2013 B2
8492800 Rothberg et al. Jul 2013 B2
8496802 Rothberg et al. Jul 2013 B2
8502278 Rothberg et al. Aug 2013 B2
8519448 Rothberg et al. Aug 2013 B2
8524057 Rothberg et al. Sep 2013 B2
8530941 Rothberg et al. Sep 2013 B2
8535513 Rothberg et al. Sep 2013 B2
8552771 Jordan et al. Oct 2013 B1
8558288 Rothberg et al. Oct 2013 B2
8575664 Rothberg et al. Nov 2013 B2
8592154 Rearick et al. Nov 2013 B2
8653567 Fife Feb 2014 B2
8658017 Rothberg et al. Feb 2014 B2
8673627 Nobile et al. Mar 2014 B2
8685230 Rothberg et al. Apr 2014 B2
8728844 Liu et al. May 2014 B1
8742469 Milgrew Jun 2014 B2
8742472 Rothberg et al. Jun 2014 B2
8747748 Li et al. Jun 2014 B2
8764969 Rothberg et al. Jul 2014 B2
8766327 Milgrew Jul 2014 B2
8766328 Rothberg et al. Jul 2014 B2
8776573 Rearick et al. Jul 2014 B2
8786331 Jordan et al. Jul 2014 B2
8796036 Fife et al. Aug 2014 B2
8821798 Bustillo et al. Sep 2014 B2
8841217 Fife et al. Sep 2014 B1
8847637 Guyton Sep 2014 B1
8912005 Fife et al. Dec 2014 B1
8945912 Bashir et al. Feb 2015 B2
8962366 Putnam et al. Feb 2015 B2
8963216 Fife et al. Feb 2015 B2
8983783 Johnson et al. Mar 2015 B2
9023674 Shen et al. May 2015 B2
9164070 Fife Oct 2015 B2
9201041 Dalton et al. Dec 2015 B2
9270264 Jordan et al. Feb 2016 B2
9389199 Cheng et al. Jul 2016 B2
20010007418 Komatsu et al. Jul 2001 A1
20010024790 Kambara et al. Sep 2001 A1
20020001801 Fan et al. Jan 2002 A1
20020012930 Rothberg et al. Jan 2002 A1
20020012933 Rothberg et al. Jan 2002 A1
20020012937 Tender et al. Jan 2002 A1
20020029971 Kovacs Mar 2002 A1
20020042059 Makarov et al. Apr 2002 A1
20020042388 Cooper et al. Apr 2002 A1
20020050611 Yitzchaik et al. May 2002 A1
20020061529 Bridgham et al. May 2002 A1
20020081714 Jain et al. Jun 2002 A1
20020085136 Moon et al. Jul 2002 A1
20020086318 Manalis et al. Jul 2002 A1
20020094533 Hess et al. Jul 2002 A1
20020117659 Lieber et al. Aug 2002 A1
20020117694 Migliorato et al. Aug 2002 A1
20020131899 Kovacs Sep 2002 A1
20020132221 Chee et al. Sep 2002 A1
20020137062 Williams et al. Sep 2002 A1
20020150909 Stuelpnagel et al. Oct 2002 A1
20020168678 Williams et al. Nov 2002 A1
20020172963 Kelley et al. Nov 2002 A1
20020187515 Chee et al. Dec 2002 A1
20030020334 Nozu Jan 2003 A1
20030032052 Hadd et al. Feb 2003 A1
20030044799 Matson Mar 2003 A1
20030044833 Benchikh et al. Mar 2003 A1
20030049624 Shultz et al. Mar 2003 A1
20030054396 Weiner Mar 2003 A1
20030064366 Hardin et al. Apr 2003 A1
20030068629 Rothberg et al. Apr 2003 A1
20030077615 Bridgham et al. Apr 2003 A1
20030100102 Rothberg et al. May 2003 A1
20030102510 Lim et al. Jun 2003 A1
20030108867 Chee et al. Jun 2003 A1
20030119020 Stevens et al. Jun 2003 A1
20030124572 Umek et al. Jul 2003 A1
20030124599 Chen et al. Jul 2003 A1
20030138809 Williams et al. Jul 2003 A1
20030141928 Lee Jul 2003 A1
20030141929 Casper et al. Jul 2003 A1
20030148301 Aono et al. Aug 2003 A1
20030148344 Rothberg et al. Aug 2003 A1
20030152929 Howard Aug 2003 A1
20030152994 Woudenberg et al. Aug 2003 A1
20030155942 Thewes et al. Aug 2003 A1
20030157504 Chee et al. Aug 2003 A1
20030175990 Hayenga et al. Sep 2003 A1
20030186262 Cailloux Oct 2003 A1
20030194740 Williams Oct 2003 A1
20030211502 Sauer et al. Nov 2003 A1
20030215791 Garini et al. Nov 2003 A1
20030215857 Kilger et al. Nov 2003 A1
20030224419 Corcoran et al. Dec 2003 A1
20030231531 Baxter et al. Dec 2003 A1
20040002470 Keith et al. Jan 2004 A1
20040012998 Chien et al. Jan 2004 A1
20040023253 Kunwar et al. Feb 2004 A1
20040038420 Gelbart et al. Feb 2004 A1
20040049237 Larson et al. Mar 2004 A1
20040079636 Hsia et al. Apr 2004 A1
20040106211 Kauer et al. Jun 2004 A1
20040121354 Yazawa et al. Jun 2004 A1
20040130377 Takeda et al. Jul 2004 A1
20040134798 Toumazou et al. Jul 2004 A1
20040136866 Pontis et al. Jul 2004 A1
20040146849 Huang et al. Jul 2004 A1
20040185484 Costa et al. Sep 2004 A1
20040185591 Hsiung et al. Sep 2004 A1
20040197803 Yaku et al. Oct 2004 A1
20040207384 Brederlow et al. Oct 2004 A1
20040235216 Rhodes Nov 2004 A1
20040248161 Rothberg et al. Dec 2004 A1
20050006234 Hassibi Jan 2005 A1
20050009022 Weiner et al. Jan 2005 A1
20050017190 Eversmann et al. Jan 2005 A1
20050031490 Gumbrecht et al. Feb 2005 A1
20050032075 Yaku et al. Feb 2005 A1
20050032076 Williams et al. Feb 2005 A1
20050042627 Chakrabarti et al. Feb 2005 A1
20050058990 Guia et al. Mar 2005 A1
20050062093 Sawada et al. Mar 2005 A1
20050079510 Berka et al. Apr 2005 A1
20050093072 Bonges et al. May 2005 A1
20050093645 Watanabe et al. May 2005 A1
20050106587 Klapproth et al. May 2005 A1
20050119497 Hong et al. Jun 2005 A1
20050130173 Leamon et al. Jun 2005 A1
20050130188 Walt et al. Jun 2005 A1
20050142033 Glezer et al. Jun 2005 A1
20050151181 Beintner et al. Jul 2005 A1
20050156207 Yazawa et al. Jul 2005 A1
20050156584 Feng Jul 2005 A1
20050181440 Chee et al. Aug 2005 A1
20050189960 Tajima Sep 2005 A1
20050191698 Chee et al. Sep 2005 A1
20050202582 Eversmann et al. Sep 2005 A1
20050206548 Muramatsu et al. Sep 2005 A1
20050212016 Brunner et al. Sep 2005 A1
20050221473 Dubin et al. Oct 2005 A1
20050224346 Holm-Kennedy Oct 2005 A1
20050227264 Nobile et al. Oct 2005 A1
20050230245 Morgenshtein et al. Oct 2005 A1
20050230271 Levon et al. Oct 2005 A1
20050233318 Chee et al. Oct 2005 A1
20050239132 Klapprith Oct 2005 A1
20050266456 Williams et al. Dec 2005 A1
20050282224 Fouillet et al. Dec 2005 A1
20050285155 Johnson et al. Dec 2005 A1
20060000772 Sano et al. Jan 2006 A1
20060016699 Kamahori et al. Jan 2006 A1
20060024711 Lapidus et al. Feb 2006 A1
20060035400 Wu et al. Feb 2006 A1
20060040297 Leamon et al. Feb 2006 A1
20060051807 Fuller Mar 2006 A1
20060057025 Eversmann et al. Mar 2006 A1
20060057604 Chen et al. Mar 2006 A1
20060073513 Chee et al. Apr 2006 A1
20060093488 Wong et al. May 2006 A1
20060105373 Pourmand et al. May 2006 A1
20060115857 Keen Jun 2006 A1
20060121670 Stasiak Jun 2006 A1
20060134633 Chen et al. Jun 2006 A1
20060141474 Miyahara et al. Jun 2006 A1
20060154399 Sauer et al. Jul 2006 A1
20060166203 Tooke et al. Jul 2006 A1
20060182664 Peck et al. Aug 2006 A1
20060183145 Turner Aug 2006 A1
20060197118 Migliorato et al. Sep 2006 A1
20060199193 Koo et al. Sep 2006 A1
20060199493 Hartmann et al. Sep 2006 A1
20060205061 Roukes Sep 2006 A1
20060216812 Okada et al. Sep 2006 A1
20060219558 Hafeman et al. Oct 2006 A1
20060228721 Leamon et al. Oct 2006 A1
20060244147 Lee et al. Nov 2006 A1
20060246497 Huang et al. Nov 2006 A1
20060269927 Lieber Nov 2006 A1
20060289726 Paulus et al. Dec 2006 A1
20070059741 Kamahori et al. Mar 2007 A1
20070069291 Stuber et al. Mar 2007 A1
20070087362 Church et al. Apr 2007 A1
20070087401 Neilson et al. Apr 2007 A1
20070092872 Rothberg et al. Apr 2007 A1
20070095663 Chou et al. May 2007 A1
20070096164 Peters et al. May 2007 A1
20070099173 Spira et al. May 2007 A1
20070099208 Drmanac et al. May 2007 A1
20070099351 Peters et al. May 2007 A1
20070109454 Chou May 2007 A1
20070117099 Engelhardt et al. May 2007 A1
20070117137 Jaeger May 2007 A1
20070138028 Chodavarapu et al. Jun 2007 A1
20070138132 Barth Jun 2007 A1
20070172865 Hardin et al. Jul 2007 A1
20070212681 Shapiro et al. Sep 2007 A1
20070217963 Elizarov et al. Sep 2007 A1
20070231824 Chee et al. Oct 2007 A1
20070233477 Halowani et al. Oct 2007 A1
20070247170 Barbaro et al. Oct 2007 A1
20070250274 Volkov et al. Oct 2007 A1
20070252176 Shim et al. Nov 2007 A1
20070262363 Tao et al. Nov 2007 A1
20070278488 Hirabayashi et al. Dec 2007 A1
20080003142 Link et al. Jan 2008 A1
20080012007 Li et al. Jan 2008 A1
20080014589 Link et al. Jan 2008 A1
20080032295 Toumazou et al. Feb 2008 A1
20080035494 Gomez et al. Feb 2008 A1
20080047836 Strand et al. Feb 2008 A1
20080063566 Matsumoto et al. Mar 2008 A1
20080085219 Beebe et al. Apr 2008 A1
20080094074 Kim et al. Apr 2008 A1
20080096216 Quake Apr 2008 A1
20080111161 Sorge et al. May 2008 A1
20080115361 Santini et al. May 2008 A1
20080121946 Youn et al. May 2008 A1
20080132693 Berka et al. Jun 2008 A1
20080136933 Dosluoglu et al. Jun 2008 A1
20080145910 Ward et al. Jun 2008 A1
20080164917 Floyd et al. Jul 2008 A1
20080166727 Esfandyarpour et al. Jul 2008 A1
20080176271 Silver et al. Jul 2008 A1
20080185616 Johnson et al. Aug 2008 A1
20080186093 Forbes Aug 2008 A1
20080197022 Suzuki et al. Aug 2008 A1
20080204048 Stasiak et al. Aug 2008 A1
20080205559 Iida Aug 2008 A1
20080210931 Truong et al. Sep 2008 A1
20080213770 Williams et al. Sep 2008 A1
20080230386 Srinivasan et al. Sep 2008 A1
20080265985 Toumazou et al. Oct 2008 A1
20080286767 Miyahara et al. Nov 2008 A1
20090026082 Rothberg et al. Jan 2009 A1
20090030117 Lanphere et al. Jan 2009 A1
20090032401 Ronaghi et al. Feb 2009 A1
20090033370 Sarig et al. Feb 2009 A1
20090048124 Leamon et al. Feb 2009 A1
20090062132 Borner Mar 2009 A1
20090075838 El Gamal et al. Mar 2009 A1
20090079414 Levon et al. Mar 2009 A1
20090108831 Levon et al. Apr 2009 A1
20090120905 Kohl et al. May 2009 A1
20090121258 Kumar May 2009 A1
20090127589 Rothberg et al. May 2009 A1
20090127689 Ye et al. May 2009 A1
20090140763 Kim Jun 2009 A1
20090143244 Bridgham et al. Jun 2009 A1
20090149607 Karim et al. Jun 2009 A1
20090156425 Walt et al. Jun 2009 A1
20090170728 Walt et al. Jul 2009 A1
20090194416 Hsiung et al. Aug 2009 A1
20090201032 Burdett et al. Aug 2009 A1
20090273386 Korobeynikov et al. Nov 2009 A1
20090316477 Horiuchi Dec 2009 A1
20100007326 Nakazato Jan 2010 A1
20100026814 Shimoda Feb 2010 A1
20100039146 Park et al. Feb 2010 A1
20100052765 Makino Mar 2010 A1
20100105373 Kanade Apr 2010 A1
20100133547 Kunze et al. Jun 2010 A1
20100137143 Rothberg et al. Jun 2010 A1
20100156454 Weir Jun 2010 A1
20100176463 Koizumi et al. Jul 2010 A1
20100188073 Rothberg et al. Jul 2010 A1
20100197507 Rothberg et al. Aug 2010 A1
20100244106 Parker et al. Sep 2010 A1
20100255595 Toumazou et al. Oct 2010 A1
20100273166 Garcia Oct 2010 A1
20100282617 Rothberg et al. Nov 2010 A1
20100300895 Nobile et al. Dec 2010 A1
20100301398 Rothberg et al. Dec 2010 A1
20110037121 Lee et al. Feb 2011 A1
20110062972 Je et al. Mar 2011 A1
20110114827 Yamaoka et al. May 2011 A1
20110165557 Ah et al. Jul 2011 A1
20110169056 Wey et al. Jul 2011 A1
20110181253 Isham et al. Jul 2011 A1
20110217697 Rothberg et al. Sep 2011 A1
20110230375 Rothberg et al. Sep 2011 A1
20110236263 Sawada et al. Sep 2011 A1
20110247933 Rothberg et al. Oct 2011 A1
20110248320 Rothberg et al. Oct 2011 A1
20110262903 Davidson et al. Oct 2011 A1
20110263463 Rothberg et al. Oct 2011 A1
20110275522 Rothberg et al. Nov 2011 A1
20110281737 Rothberg et al. Nov 2011 A1
20110281741 Rothberg et al. Nov 2011 A1
20110287945 Rothberg et al. Nov 2011 A1
20110299337 Parris et al. Dec 2011 A1
20120000274 Fife Jan 2012 A1
20120001056 Fife et al. Jan 2012 A1
20120001235 Fife Jan 2012 A1
20120001236 Fife et al. Jan 2012 A1
20120001237 Fife et al. Jan 2012 A1
20120001615 Levine et al. Jan 2012 A1
20120001646 Bolander et al. Jan 2012 A1
20120001685 Levine et al. Jan 2012 A1
20120001779 Fife et al. Jan 2012 A1
20120012900 Lee et al. Jan 2012 A1
20120013392 Rothberg et al. Jan 2012 A1
20120022795 Johnson et al. Jan 2012 A1
20120034607 Rothberg et al. Feb 2012 A1
20120037961 Rothberg et al. Feb 2012 A1
20120040844 Rothberg et al. Feb 2012 A1
20120045368 Hinz et al. Feb 2012 A1
20120045844 Rothberg et al. Feb 2012 A1
20120055811 Rothberg et al. Mar 2012 A1
20120055813 Rothberg et al. Mar 2012 A1
20120056248 Fife et al. Mar 2012 A1
20120060587 Babcock et al. Mar 2012 A1
20120074956 Fife et al. Mar 2012 A1
20120129703 Rothberg et al. May 2012 A1
20120129728 Rothberg et al. May 2012 A1
20120129732 Rothberg et al. May 2012 A1
20120135870 Rothberg et al. May 2012 A1
20120143531 Davey et al. Jun 2012 A1
20120154018 Sugiura Jun 2012 A1
20120161207 Homyk et al. Jun 2012 A1
20120168307 Fife Jul 2012 A1
20120173159 Davey et al. Jul 2012 A1
20120228136 Levine Sep 2012 A1
20120247977 Rothberg et al. Oct 2012 A1
20120249192 Matsushita et al. Oct 2012 A1
20120261274 Rearick et al. Oct 2012 A1
20120265474 Rearick et al. Oct 2012 A1
20120279859 Rothberg et al. Nov 2012 A1
20120280285 Rothberg et al. Nov 2012 A1
20120280286 Rothberg et al. Nov 2012 A1
20120283146 Rothberg et al. Nov 2012 A1
20120286332 Rothberg et al. Nov 2012 A1
20120286333 Rothberg et al. Nov 2012 A1
20120286771 Rothberg et al. Nov 2012 A1
20120288853 Rothberg et al. Nov 2012 A1
20120288976 Rothberg et al. Nov 2012 A1
20120289413 Rothberg et al. Nov 2012 A1
20120293158 Rothberg et al. Nov 2012 A1
20120295795 Rothberg et al. Nov 2012 A1
20120322054 Rothberg et al. Dec 2012 A1
20120325683 Milgrew Dec 2012 A1
20120326213 Bustillo et al. Dec 2012 A1
20120326767 Milgrew Dec 2012 A1
20120329043 Milgrew Dec 2012 A1
20120329044 Milgrew Dec 2012 A1
20120329192 Bustillo et al. Dec 2012 A1
20130001653 Milgrew Jan 2013 A1
20130004948 Milgrew Jan 2013 A1
20130004949 Rearick et al. Jan 2013 A1
20130009214 Bustillo et al. Jan 2013 A1
20130015505 Rothberg et al. Jan 2013 A1
20130015506 Rothberg et al. Jan 2013 A1
20130017959 Rothberg et al. Jan 2013 A1
20130105868 Kalnitsky et al. May 2013 A1
20130210128 Rothberg et al. Aug 2013 A1
20130210182 Rothberg et al. Aug 2013 A1
20130210641 Rothberg et al. Aug 2013 A1
20130217004 Rothberg et al. Aug 2013 A1
20130217587 Rothberg et al. Aug 2013 A1
20130281307 Li et al. Oct 2013 A1
20130324421 Rothberg et al. Dec 2013 A1
20130341734 Merz Dec 2013 A1
20140080717 Li et al. Mar 2014 A1
20140148345 Li et al. May 2014 A1
20140234981 Zarkesh-Ha et al. Aug 2014 A1
20140235452 Rothberg et al. Aug 2014 A1
20140235463 Rothberg et al. Aug 2014 A1
20140308752 Chang et al. Oct 2014 A1
20150097214 Chen et al. Apr 2015 A1
20160178568 Cheng et al. Jun 2016 A1
Foreign Referenced Citations (116)
Number Date Country
1582334 Feb 2005 CN
1585896 Feb 2005 CN
1703623 Nov 2005 CN
1826525 Aug 2006 CN
101669026 Mar 2010 CN
101676714 Mar 2010 CN
102203282 Sep 2011 CN
102301228 Dec 2011 CN
102484267 May 2012 CN
4232532 Apr 1994 DE
4430811 Sep 1995 DE
19512117 Oct 1996 DE
102004044299 Mar 2006 DE
102008012899 Sep 2009 DE
0223618 May 1987 EP
1243925 Sep 2002 EP
1243925 Mar 2003 EP
1371974 Dec 2003 EP
1432818 Jun 2004 EP
1542009 Jun 2005 EP
1557884 Jul 2005 EP
1669749 Jun 2006 EP
1975246 Mar 2007 EP
1870703 Dec 2007 EP
2307577 Apr 2011 EP
2457851 Sep 2009 GB
2461127 Dec 2009 GB
2461127 Jul 2010 GB
58070155 Apr 1983 JP
62-237349 Oct 1987 JP
02-250331 Oct 1990 JP
02-310931 Dec 1990 JP
H05-080115 Apr 1993 JP
2000055874 Feb 2000 JP
2002-221510 Aug 2002 JP
2002272463 Sep 2002 JP
2002272463 Sep 2002 JP
PCTJP200304697 Apr 2003 JP
2003-279532 Oct 2003 JP
2003-322633 Nov 2003 JP
2004-510125 Apr 2004 JP
2005218310 Aug 2004 JP
2004-271384 Sep 2004 JP
05077210 Mar 2005 JP
2005077210 Mar 2005 JP
2005-515475 May 2005 JP
05518541 Jun 2005 JP
2005518541 Jun 2005 JP
2005-207797 Aug 2005 JP
06138846 Jun 2006 JP
2006-284225 Oct 2006 JP
2007243003 Sep 2007 JP
2008-215974 Sep 2008 JP
2010513869 Apr 2010 JP
2011525810 Sep 2011 JP
2012-506557 Mar 2012 JP
2015-506557 Mar 2012 JP
100442838 Jul 2004 KR
100442838 Aug 2004 KR
10-0455283 Oct 2004 KR
100455283 Nov 2004 KR
200946904 Nov 2009 TW
8909283 Oct 1989 WO
1990005910 May 1990 WO
9813523 Apr 1998 WO
9846797 Oct 1998 WO
0120039 Mar 2001 WO
0142498 Jun 2001 WO
0147804 Jul 2001 WO
0181896 Nov 2001 WO
02077287 Oct 2002 WO
02086162 Oct 2002 WO
03073088 Sep 2003 WO
2004017068 Feb 2004 WO
2004040291 May 2004 WO
2004040291 May 2004 WO
2004048962 Jun 2004 WO
WO2004081234 Sep 2004 WO
2005015156 Feb 2005 WO
2005022142 Mar 2005 WO
2005047878 May 2005 WO
2005043160 May 2005 WO
2005054431 Jun 2005 WO
2005062049 Jul 2005 WO
2005062049 Jul 2005 WO
2005084367 Sep 2005 WO
2005090961 Sep 2005 WO
2006005967 Jan 2006 WO
2006022370 Mar 2006 WO
2006056226 Jun 2006 WO
2007002204 Jan 2007 WO
2007002204 Jan 2007 WO
2007086935 Aug 2007 WO
2008007716 Jan 2008 WO
2008058282 May 2008 WO
2008076406 Jun 2008 WO
2008076406 Jun 2008 WO
2008107014 Sep 2008 WO
2009012112 Jan 2009 WO
WO2009014155 Jan 2009 WO
2009041917 Apr 2009 WO
2009074926 Jun 2009 WO
2009081890 Jul 2009 WO
2009158006 Dec 2009 WO
2010008480 Jan 2010 WO
2010047804 Apr 2010 WO
2010138182 Dec 2010 WO
2010138186 Dec 2010 WO
2010138188 Dec 2010 WO
2012003359 Jan 2012 WO
2012003363 Jan 2012 WO
2012003368 Jan 2012 WO
2012003380 Jan 2012 WO
2012006222 Jan 2012 WO
2012046137 Apr 2012 WO
2012152308 Nov 2012 WO
Non-Patent Literature Citations (273)
Entry
European Search Report for European Application No. EP10780935 mailed Jun. 9, 2015, 5 pages.
Supplementary European Search Report for European Application No. EP10780935 mailed Sep. 30, 2015, 6 pages.
Ligler, Frances S. et al., “Array biosensor for detection of toxins”, Anal. Bioanal Chem vol. 377, 2003, pp. 469-477.
Rowe, Chris A. et al., “An Array Immunosensor for Simultaneous Detection of Clinical Analytes”, Anal. Chem. vol. 71, 1999, pp. 433-439.
[No Author Listed], “ISFET Wikipedia article”, Wikipedia, Last modified Nov. 7, 2006.
Ahmadian, A. et al., “Single-nucleotide polymorphism analysis by pyrosequencing”, Anal. Biochem, vol. 280, 2000, pp. 103-110.
Akiyama, T et al., “Ion-Sensitive Field-Effect Transistors with Inorganic Gate Oxide for pH Sensing”, IEE Transactions on Electron Devices, vol. ED-20(12), 1982, pp. 1936-1941.
AU2011226767 Search Information Statement Mailed Oct. 26, 2011, pp. 1-3.
Bandiera, L. et al., “A fully electronic sensor for the measurement of cDNA hybridization kinetics”, Biosens Bioelectron, vol. 22, 2007, pp. 2108-2114.
Barbaro, M et al., “A CMOS, Fully Integrated Sensor for Electronic Detection of DNA Hybridization”, IEEE Electron Device Letters, vol. 27(7), 2006, pp. 595-597.
Barbaro, M. et al., “A Charge-Modulated FET for Detection of Biomolecular Processes: Conception, Modeling, and Simulation”, IEEE Transactions on Electron Devices, vol. 53(1), 2006, pp. 158-166.
Barbaro, M. et al., “Fully electronic DNA hybridization detection by a standard CMOS biochip”, Sensors and Actuators B Chemical, vol. 118, 2006, pp. 41-46.
Bashford, G. et al., “Automated bead-trapping apparatus and control system for single-molecule DNA sequencing”, Optics Express, vol. 16(5), Mar. 3, 2008, pp. 3445-3455.
Baumann, W. et al., “Microelectronic sensor system for microphysiological application on living cells”, Sensors Actuators B, vol. 55, 1999, pp. 77-89.
Bausells, J. et al., “Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology”, Sensors and Actuators B Chemical, vol. 57, 1999, pp. 56-62.
Bergveld, P., “ISFET, Theory and Practice”, IEEE Sensor Conference, Toronto, Oct. 2003, 2003, pp. 1-26.
Bergveld, P., “Thirty years of ISFETOLOGY What happened in the past 30 years and what may happen in the next 30 years”, Sensors and Actuators B, vol. 88, 2003, pp. 1-20.
Besselink, G et al., “ISFET Affinity Sensor”, Methods in Biotechnology, vol. 7: Affinity Biosensors: Techniques and Protocols, 1998, pp. 173-185.
Bobrov, P. et al., “Chemical sensitivity of an ISFET with Ta2O5 membrane in strong acid and alkaline solutions”, Sensors and Actuators B, vol. 3, 1991, pp. 75-81.
Bockelmann, U. et al., “Detecting DNA by field effect transistor arrays”, Proceedings of the 2006 IFIP International Conference on Very Large Scale Integration, 2006, 164-168.
Bousse, L. et al., “A process for the combined fabrication of ion sensors and CMOS circuits”, IEEE Electron Device Letters, vol. 9(1), 1988, pp. 44-46.
Bousse, L. et al., “Zeta potential measurements of Ta2O5 and SiO2 thin films”, J. Colloid Interface Sci., vol. 147(1), 1991, pp. 22-32.
Chan, Wai P. et al., “An Integrated ISFETs Instrumentation System in Standard CMOS Technology”, IEEE Journal of Solid-State Circuits, vol. 45, No. 9, 2010, pp. 1923-1934.
Chen, Y. et al., “Nanoscale field effect transistor for biomolecular signal amplification”, App Phys Letter, vol. 91, 2007, pp. 243511-1-243511-3.
Chen, Y. et al., “Silicon-based nanoelectronic field-effect pH sensor with local gate control”, App Phys Letter, vol. 89, 2006, pp. 223512-1-223512-3.
Chinese Patent Application 200780051353.2 Second Office Action Mailed Mar. 5, 2013.
Chou, J. et al., “Letter to the Editor on Simulation of Ta2O5 gate ISFET temperature characteristics”, Sensors and Actuators B, vol. 80, 2001, pp. 290-291.
Chou, J. et al., “Simulation of Ta2O5 gate ISFET temperature characteristics”, Sensor and Actuators B, vol. 71, Letter to the Editor, 2000, pp. 73-76.
Chung, W-Y et al., “ISFET interface circuit embedded with noise rejection capability”, Electronics Letters, vol. 40(18), e-pub; 2 pages, 2004.
Chung, W-Y et al., “ISFET performance enhancement by using the improved circuit techniques”, Sensors and Actuators B, vol. 113, 2006, pp. 555-562.
Chung, W-Y. et al., “New ISFET Interface Circuit Design with Temperature Compensation”, Microelectronics Journal, vol. 37(10), 2006, pp. 1105-1114.
Chung, W-Y. et al., “Temperature Compensation Electronics for ISFET Readout Applications”, Biomedical Circuits and Systems, IEEE International Workshop Singapore, 2004, pp. 305-308.
Dazhong, Z. et al. “Research of CMOS Biosensor IC for Extracellular Electrophysiological Signal Recording and pH value Measuring” Solid-State and Integrated Circuit Technology, 9th International Conference, Oct. 20, 2008, pp. 2557-2560.
Eijkel, J. et al., “Measuring Donnan-related phenomena using a solid-state ion sensor and a concentration-step method”, J. Membrane Sci., vol. 127, 1997, pp. 203-221.
Eijkel, J., “Potentiometric detection and characterization of adsorbed protein using stimulus-response measurement techniques”, Thesis, Sep. 3, 1955, pp. 1-147; 160-192.
Eltoukhy, H et al., “A 0.18um CMOS 10-6 lux Bioluminescence Detection System-on-Chip”, ISSCC 2004/Session12/Biomicrosystems/12.3, 2004, pp. 1-3.
Eltoukhy, H. et al., “A. 0.18-um CMOS Bioluminescence Detection Lab-on-Chip”, IEEE J Solid-State Circuits, vol. 41(3), 2006, pp. 651-662.
EP11801437.2 Extended European Search Report dated Jul. 25, 2013.
EP11804218.3 Extended European Search Report dated Jul. 11, 2013.
EP11801439.8 EP Extended Search Report dated Mar. 7, 2014.
EP11804218.3 First Office Action dated Jul. 29, 2013.
EP11827128.7 European Search Report dated Aug. 1, 2013.
EP13163995.7 Extended European Search Report dated Aug. 20, 2013.
EP13174555.6 EP Extended Search Report Dec. 12, 2013.
EP13174555.6 EP Search Report Nov. 21, 2013.
EP13177039.8 EP Search Report Nov. 21, 2013.
EP13177590.0 EP Search Report Nov. 20, 2013.
EP14152861.2 EP Search Report date Jul. 7, 2014.
EP7867780.4 Examination Report Mailed Jul. 3, 2012.
Eriksson, J. et al. “Pyrosequencing Technology at Elevated Temperature” Electrophoresis, vol. 25, 2004, pp. 20-27.
Esfandyarpour, H. et al., “Gate-controlled microfluidic chamber with magnetic bead for DNA sequencing-by-synthesis technology”, Proc 5th Intl Conf Nanochannels, Microchannels, Minnichannels, Puebla, Mexico (Jun. 18-20, 2007), Jun. 18, 2007, pp. 1-5.
Eversmann, B. et al., “A 128×128 CMOS Biosensor Array for Extracellular Recording of Neural Activity”, IEEE J. Solid-State Circ., vol. 38(12), Dec. 12, 2003, pp. 2306-2317.
Faramarzpour, N. et al., “CMOS-Based Active Pixel for Low-Light Level Detection: Analysis and Measurements”, IEEE Trans Electron Devices, vol. 54(12), Dec. 2007, pp. 3229-3237.
Finn, A et al., “Towards an Optimization of FET-Based Bio-Sensors”, European Cells and Materials, vol. 4, Sup 2, 2002, pp. 21-23.
Fraden, J., “Handbook of Modern Sensors—Physics, Designs, and Applications . . . ”, 17.3.2 CHEMFET Sensors, 1996, pp. 499-501.
Fritz, J. et al., “Electronic detection of DNA by its intrinsic molecular charge”, PNAS, vol. 99(22), 2002, pp. 14142-14146.
GB0811656.8 Search and Examination Report Mailed Mar. 12, 2010.
GB0811656.8 Search Report Mailed Sep. 21, 2009.
GB0811657.6 Examination Report Mailed Jun. 30, 2010.
GB0811657.6 Search Report under Section 17 Mailed Oct. 26, 2009.
Gracia, I. et al., “Test Structures for ISFET Chemical Sensors”, Proc IEEE 1992 Intl Conf Microelec Test Struct, vol. 5, 1992, pp. 156-159.
Hammond, et al., “Performance and System-on-Chip Integration of an Unmodified CMOS ISFET”, Science Direct, Sensors and Actuators vol. 111-112, 2005, pp. 254-258.
Hammond, P. et al., “A System-on-Chip Digital pH Meter for Use in a Wireless Diagnostic Capsule”, IEEE Transactons on Biomedical Engineering, vol. 52(4), 2005, pp. 687-694.
Hammond, P. et al., “Design of a Single-Chip pH Sensor Using a Conventional 0.6-μm CMOS Process”, IEEE Sensors Journal, vol. 4(6), 2004, pp. 706-712.
Hammond, P. et al., “Encapsulation of a liquid-sensing microchip using SU-8 photoresist”, MicroElectronic Engineering, vol. 73-74, 2004, pp. 893-897.
Hammond, S. et al., “Genomic sequencing and analysis of a Chinese Hamster ovary cell line using Illumina sequencing technology”, BMC Genomics, vol. 12:67, 2011, pp. 1-8.
Han, Y., “Label-free detection of biomolecules by a field-effect transistor microarray biosensor with bio-functionalized gate surfaces”, Masters Dissertation, 2006, pp. 1-63.
Hara, H. et al., “Dynamic response of a Ta205-gate pH-sensitive field-effect transistor”, Sensors Actuators B, vol. 32, 1996, pp. 115-119.
Hermon, Z. et al., “Miniaturized bio-electronic hybrid for chemical sensing applications”, Tech Connect News, Apr. 22, 2008, pp. 1.
Hideshima, S. et al., “Detection of tumor marker in blood serum using antibody-modified field effect transistor with optimized BSA blocking”, Sensors and Actuations B: Chemical, vol. 161, 2012, pp. 146-150.
Hijikata, M. et al., “Identification of a Single Nucleotide Polymorphism in the MXA Gene Promoter (T/T at nt-88) Correlated with the Response of Hepatitis C Patients to Interferon”, Intervirology, vol. 43, 2000, pp. 124-127.
Hizawa, et al. “Sensing Characteristics of Charge Transfer Type pH Sensor by Accumulative Operation” IEEE Sensors, EXCO, Daegu, Korea, 2006, pp. 144-147.
Hizawa, T et al., “Fabrication of a two-dimensional pH image sensor using a charge transfer technique”, Sensors and Actuators B Chemical, vol. 117, 2006, pp. 509-515.
Hizawa, T. et al., “32×32 pH Image Sensors for Real Time Observation of Biochemical Phenomena”, Transducers & Eurosensors '07, 14th Intl. Conf. on Solid-State, Actuators and Microsystems, Lyon, France, Jun. 10-14, 2007, 2007, pp. 1311-1312.
Ingebrandt, Sven et al., “Label-free Detection of DNA using Field-Effect Transistors”, Phys. stat. sol. (a) 203, No. 14, 2006, pp. 3399-3411.
Jakobson, C. et al., “Low frequency noise and drift in Ion Sensitive Field Effect Transistors”, Sensors Actuators B, vol. 68, 2000, pp. 134-139.
Ji, H. et al., “A CMOS contact imager for locating individual cells”, ISCAS, 2006, pp. 3357-3360.
Ji, H. et al., “Contact Imaging: Simulation and Experiment”, IEEE Trans Circuits Systems—I: Regular Papers, vol. 54(8), 2007, pp. 1698-1710.
Kim, D. et al., “An FET-type charger sensor for highly sensitive detection of DNA sequence”, Biosens Bioelectron, vol. 20(1), 2004, pp. 69-74.
Klein, M., “Time effects of ion-sensitive field-effect transistors”, Sens Act B, vol. 17, 1989.
Koch, S et al., “Protein detection with a novel ISFET-based zeta potential analyzer”, Biosensors & Bioelectronics, vol. 14, 1999, pp. 413-421.
Krause, M. et al., “Extended Gate Electrode Arrays for Extracellular Signal Recordings” Sensors and Actuators B, vol. 70, 2000, pp. 101-107.
Kruise, J. et al., “Detection of protein concentrations using a pH-step titration method”, Sensors Actuators B, vol. 44, 1997, pp. 297-303.
Leamon, J. et al., “A Massively Parallel PicoTiterPlate Based Platform for Discrete Picoliter-Scale Polymerase Chain Reactions”, Electrophoresis, vol. 24, 2003, pp. 3769-3777.
Leamon, J. et al., “Cramming More Sequencing Reactions onto Microreactor Chips”, Chemical Reviews, vol. 107, 2007, pp. 3367-3376.
Lee, C-S et al., “Ion-sensitive Field-Effect Transistor for Biological Sensing”, Sensors, vol. 9, 2009, pp. 7111-7131.
Lee, S. et al. “An Enhanced Glucose Biosensor Using Charge Transfer Techniques” Biosensors and Bioelectronics, vol. 24, 2008, pp. 650-656.
Li, et al., “Sequence-Specific Label-Free DNA Sensors Based on Silico Nanowires”, Nano Letters, vol. 4(2), 2004, pp. 245-247.
Lohrengel, M. et al., “A new microcell or microreactor for material surface investigations at large current densities”, Electrochimica Acta, vol. 49, 2004, pp. 2863-2870.
Lui, A. et al., “A Test Chip for ISFET/CMNOS Technology Development”, Proc. of the 1996 IEEE Intl. Conf. on Microelectronic Test Structures, vol. 9, 1996, pp. 123-128.
Margulies, M. et al., “Genome sequencing in microfabricated high-density picolitre reactors”, Nature, vol. 437(7057), 2005, pp. 376-380.
Marshall, A. et al., “DNA chips: an array of possibilities”, Nature Biotechnology, vol. 16, 1998, pp. 27-31.
Martinoia, S. et al., “A behavioral macromodel of the ISFET in SPICE”, Sensors Actuators B, vol. 62, 2000, pp. 182-189.
Martinoia, S. et al., “Development of ISFET Array-Based Microsystems for Bioelectrochemical measurements of cell populations”, Biosensors & Bioelectronics, vol. 16, 2001, pp. 1043-1050.
Matsuo, J. et al. “Charge Transfer Type pH Sensor with Super High Sensitivity” 14th International Conference on Solid-State Sensors Actuators and Microsystems, France, Jun. 10-14, 2007, pp. 1881-1884.
Medoro, G. et al., “A Lab-on-a-Chip for Cell Detection and Manipulation”, IEEE Sensors J, vol. 3(3), 2003, pp. 317-325.
Meyburg, S. et al., “N-Channel field-effect transistors with floating gates for extracellular recordings”, Biosens Bioelectron, vol. 21(7), 2006, pp. 1037-1044.
Milgrew, M. et al. “A Proton Camera Array Technology for Direct Extracellular Ion Imaging” IEEE International Symposium on Industrial Electronics, 2008, pp. 2051-2255.
Milgrew, M. et al., “A 16×16 CMOS proton camera array for direct extracellular imaging of hydrogen-ion activity”, IEEE Intl Solid-State Circuits Conf, Session 32:24, 2008, pp. 590-591; 638.
Milgrew, M. et al., “A large transistor based sensor array chip for direct extracellular imaging”, Sensors and Actuators B Chemical, vol. 111-112, 2005, pp. 347-353.
Milgrew, M. et al., “Matching the transconductance characteristics of CMOS ESFET arrays by removing trapped charge”, IEEE Trans Electron Devices, vol. 55(4), 2008, pp. 1074-1079.
Milgrew, M. et al., “Microsensor Array Technology for Direct Extracellular Imaging”, Apr. 5, 2006, pp. 1-23.
Milgrew, M. et al., “The development of scalable sensor arrays using standard CMOS technology”, Sensors and Actuators B, vol. 103, 2004, pp. 37-42.
Milgrew, M. et al., “The fabrication of scalable multi-sensor arrays using standard CMOS technology”, 2003 IEEE Custom Integrated Circuits Conference, 2003, pp. 513-516.
Milgrew, M.J. et al., “The Development of Scalable Sensor Arrays Using Standard CMOS Technology” ScienceDirect, Sensors and Actuators, vol. 103, 2004, pp. 37-42.
Miyahara, Y. et al., “Biochip Using Micromachining Technology”, J. Institute of Electrostatics, Japan, vol. 27(6), 2003, pp. 268-272.
Miyahara, Y. et al., “Direct Transduction of Primer Extension into Electrical Signal Using Genetic Field Effect Transistor”, Micro Total Analysis Systems 2004, vol. 1, 2004, pp. 303-305.
Miyahara, Y. et al., “Potentiometric Detection of DNA Molecules Using Field Effect Transistor”, The Japan Society of Applied Physics, No. 3 (Translation included), 2003, pp. 1180, 30A-S2.
Nyren, P. et al., “Enzymatic Method for Continuous Monitoring of Inorganic Pyrophosphate Synthesis”, Analytical Biochemistry, vol. 151, 1985, pp. 504-509.
Oelbner, W. et al., “Encapsulation of ESFET sensor chips”, Sensors Actuators B, vol. 105, 2005, pp. 104-117.
Oelbner, W. et al., “Investigation of the dynamic response behavior of ISFET pH sensors by means of laser Doppler velocimetry (LDV)”, Sensors Actuators B, vol. 26-27, 1995, pp. 345-348.
Offenhausser, A. et al., “Field-Effect transistor array for monitoring electrical activity from mammalian neurons in culture”, Biosensors & Bioelectronics, vol. 12(8), 1997, pp. 819-826.
Ohno, Y. et al., “Electrolyte-Gated Graphene Field-Effect Transistors for Detecting pH and Protein Adsorption”, Nano Letters, vol. 9(9), Jul. 28, 2009, pp. 3318-3322.
Palan, B. et al., “New ISFET sensor interface circuit for biomedical applications”, Sensors and Actuators B: Chemical: International Journal Devoted to Research and Development of Physical and Chemical Transducers, Elsevier S.A. Ch., vol. 57, No. 1-3, 1999, pp. 63-68.
Park, K-Y. et al., “ISFET Glucose Sensor System With Fast Recovery Characteristics by Employing Electrolysis”, Sensors and Actuators B: Chemical, vol. 83 (1-3), 2002, pp. 90-97.
Patolsky, F. et al., “Nanowire-Based Biosensors”, Analyt Chem 1, vol. 78(13), 2006, pp. 4261-4269.
PCT/JP2005/001987 International Search Report Mailed Apr. 5, 2005.
PCT/JP2005/015522 International Preliminary Report on Patentability Mailed Mar. 19, 2007.
PCT/JP2005/015522 International Search Report Mailed Sep. 27, 2005.
PCT/US/2009/05745 International Preliminary Report on Patentability Issued Apr. 26, 2011.
PCT/US/2009/05745 International Search Report Mailed Dec. 11, 2009.
PCT/US/2009/05745 Written Opinion Mailed Dec. 11, 2009.
PCT/US2007/025721 International Preliminary Report on Patentability Mailed Jun. 16, 2009.
PCT/US2007/025721 Written Opinion Mailed Jun. 16, 2009.
PCT/US2009/003766 International Preliminary Report on Patentability Mailed Jan. 5, 2011.
PCT/US2009/003766 International Search Report Mailed Apr. 8, 2010.
PCT/US2009/003766 Written Opinion Mailed Apr. 8, 2010.
PCT/US2009/003797 International Search Report Mailed Mar. 12, 2010.
PCT/US2009/003797 Written Opinion Mailed Mar. 12, 2010.
PCT/US2010/001543 International Preliminary Report on Patentability Mailed Nov. 29, 2011.
PCT/US2010/001543 International Search Report and Written Opinion Mailed Oct. 13, 2010.
PCT/US2010/001553 International Preliminary Report on Patentability Mailed Dec. 8, 2011.
PCT/US2010/001553 International Search Report Mailed Jul. 28, 2010.
PCT/US2010/001553 Written Opinion Mailed Jul. 14, 2010.
PCT/US2010/048835 International Preliminary Report on Patentability Mailed Mar. 19, 2013.
PCT/US2010/048835 International Search Report and Written Opinion Mailed Dec. 16, 2010.
PCT/US2011/042655 International Search Report Mailed Oct. 21, 2011.
PCT/US2011/042660 International Search Report Mailed Nov. 2, 2011.
PCT/US2011/042665 International Search Report Mailed Nov. 2, 2011.
PCT/US2011/042668 International Preliminary Report on Patentability Mailed Mar. 26, 2013.
PCT/US2011/042668 International Search Report Mailed Oct. 28, 2011.
PCT/US2011/042669 International Search Report Mailed Jan. 9, 2012.
PCT/US2011/042669 Written Opinion Mailed Jan. 9, 2012.
PCT/US2011/042683 International Preliminary Report on Patentability Mailed Jun. 4, 2013.
PCT/US2011/042683 International Search Report Mailed Feb. 16, 2012.
PCT/US2011/042683 Written Opinion Mailed Feb. 16, 2012.
PCT/US2012/058996 International Search Report and Written Opinion Mailed Jan. 22, 2013.
PCT/US2012/071471 International Search Report and Written Opinion Mailed Apr. 24, 2013.
PCT/US2012/071482 International Search Report and Written Opinion Mailed May 23, 2013.
PCT/US2013/022129 International Preliminary Report on Patentability dated Jul. 22, 2014.
PCT/US2013/022140 International Preliminary Report on Patentability dated Jul. 22, 2014.
PCT/US2013/022140 International Search Report and Written Opinion Mailed May 2, 2013.
Poghossian, A. et al., “Functional testing and characterization of ISFETs on wafer level by means of a micro-droplet cell”, Sensors, vol. 6, 2006, pp. 397-404.
Pollack, J. et al. “Genome-Wide Analysis of DNA copy-number changes using cDNA Microarrays”, Nature Genetics, vol. 23, 1999, pp. 41-46.
Pourmand, N et al., “Direct electrical detection of DNA synthesis”, PNAS, vol. 103(17), 2006, pp. 6466-6470.
Pouthas, F. et al., “Spatially resolved electronic detection of biopolymers”, Phys Rev, vol. 70, 2004, pp. 031906-1-031906-8.
Premanode, B. et al. “Drift Reduction in Ion-Sensitive FETs Using Correlated Double Sampling”, Electronics Letters, IEEE Stevenage, GB, vol. 43 (16) Aug. 2, 2007.
Premanode, B. et al., “A composite ISFED readout circuit employing current feedback”, Sensors Actuators B, vol. 127, 2007, pp. 486-490.
Premanode, B. et al., “A novel, low power biosensor for real time monitoring of creatine and urea in peritoneal dialysis”, Sensors Actuators B, vol. 120, 2007, pp. 732-735.
Premanode, B. et al., “Ultra-low power precision ISFET readout using global current feedback”, Electronic Lett, vol. 42(22), 2006, 2 pages.
Purushothaman, S. et al., “Protons and single nucleotide polymorphism detection: A simple use for the Ion Sensitive Field Effect Transistor”, Sensors and Actuators B Chemical, vol. 114(2), 2006, pp. 964-968.
Purushothaman, S. et al., “Towards Fast Solid State DNA Sequencing”, IEEE ISCAS 2002 Proceedings, Circuits and Systems, vol. 4, 2002, pp. IV-169-IV-172.
Rodriguez-Villegas, E., “Solution to trapped charge in FGMOS transistors”, Electronics Letters, vol. 39(19), 2003.
Ronaghi, M. et al., “A Sequencing Method Based on Real-Time Pyrophosphate”, Science, vol. 281, 1998, pp. 363-365.
Sakata, T. et al., “Cell-based field effect devices for cell adhesion analysis”, Intl. Conf. on Microtechnologies in Medicine and Biology, May 9-12, 2006, Okinawa, Japan, 2006, pp. 177-179.
Sakata, T. et al., “Detection of DNA recognition events using multi-well field effect transistor”, Biosensors and Bioelectronics vol. 21, 2005, pp. 827-832.
Sakata, T. et al., “Detection sensitivity of genetic field effect transistor combined with charged nanoparticle-DNA conjugate”, Proc. of 2006 Intl. Conf. on Microtechnologies in Medicine and Biology, May 9-12, 2005, Okinawa, Japan, 2006, pp. 97-100.
Sakata, T. et al., “Direct detection of single nucleotide polymorphism using genetic field effect transistor”, Digest of Papers Microprocesses and Nanotechnology 2004, Osaka, Japan, 2004 International Microprocesses and Nanotechnology Conference, 2004, pp. 226-227.
Sakata, T. et al., “Direct Detection of Single-Base Extension Reaction Using Genetic Field Effect Transistor”. Proc. of 3rd Ann. Intl. IEEE EMBS Special Topic Conf. on Microtechnologies in Medicine and Biology, Kahuku, Oahu, HI, May 12-15, 2005, 2005, pp. 219-222.
Sakata, T. et al., “Direct transduction of allele-specific primer extension into electrical signal using genetic field effect transistor”, Biosensors and Bioelectronics, vol. 22, 2007, pp. 1311-1316.
Sakata, T. et al., “DNA Analysis Chip Based on Field-Effect Transistors”, Japanese Journal of Applied Physics, vol. 44(4B), 2005, pp. 2854-2859.
Sakata,T. et al., “DNA Sequencing Based on Intrinsic Molecular Charges”, Angewandte Chemie International Edition 2006, vol. 118, 2006, pp. 2283-2286.
Sakata, T. et al., “DNA Sequencing Based on Intrinsic Molecular Charges”, Angewandte Chemie International Edition 2006, vol. 45, 2006, pp. 2225-2228.
Sakata, T. et al., “DNA Sequencing Using Genetic Field Effect Transistor”, 13th Intl. Conf. on Solid-State Sensors, Actuators and Microsystems, Jun. 5-9, 2005, Seoul, Korea, 2005.
Sakata, T. et al., “Immobilization of oligonucleotide probes on Si3N4 surface and its application to genetic field effect transistor”, Materials Science and Engineering: C, vol. 24, 2004, pp. 827-832.
Sakata, T. et al., “Potential Behavior of Biochemically Modified Gold Electrode for Extended-Gate Field-Effect Transistor”, Japanese Journal of Applied Physics, vol. 44(4B), 2005, pp. 2860-2863.
Sakata, T. et al., “Potential Response of Genetic Field Effect Transistor to Charged Nanoparticle-DNA Conjugate”, Digest of Papers Microprocesses and Nanotechnology 2005, Tokyo, Japan, 2005 Intl Microprocesses and Nanotech Conf., Hotel Bellclassic, 2005, pp. 42-43.
Sakata, T. et al., “Potentiometric Detection of Allele Specific Oligonucleotide Hybridization Using Genetic Field Effect Transistor”, Micro Total Analysis Systems 2004, 8th Intl. Conf. on Miniaturized Systems for Chemistry and Life Sciences, Sep. 26-30, 2004, Malmo, Sweden, 2004, pp. 300-302.
Sakata, T. et al., “Potentiometric Detection of DNA Molecules Hybridization Using Gene Field Effect Transistor and Intercalator”, Materials Research Society Symposium Proceesings, vol. 782, Micro- and Nanosystems, Dec. 1-3, 2003, Boston, Massachusetts, 2004, pp. 393-398.
Sakata, T. et al., “Potentiometric Detection of DNA Using Genetic Transistor”, Denki Gakkai Kenkyukai Shiryo Chemical Sensor Kenkyukai, CHS-03-51-55, 2003, pp. 1-5.
Sakata, T. et al., “Potentiometric Detection of Single Nucleotide Polymorphism by Using a Genetic Field-effect transistor”, ChemBioChem, vol. 6, 2005, pp. 703-710.
Sakurai, T. et al., “Real-Time Monitoring of DNA Polymerase Reactions by a Micro ISFET pH Sensor”, Anal Chem, vol. 64(17), 1992, pp. 1996-1997.
Salama, K., “CMOS luminescence detection lab-on-chip: modeling, design, and characterization”, Thesis, Presented at Stanford University, 2005, pp. ii-78.
Salama, K., “Modeling and simulation of luminescence detection platforms”, Biosensors & Bioelectronics, 2004, pp. 1377-1386.
Sawada, K. et al., “A novel fused sensor for photo- and ion-sensing”, Sensors Actuators B, vol. 106, 2005, pp. 614-618.
Sawada, K. et al., “Highly sensitive ion sensors using charge transfer technique”, Sensors Actuators B, vol. 98, 2004, pp. 69-72.
Schasfoort, R. et al., “A new approach to immunoFET operation”, Biosensors & Bioelectronics, vol. 5, 1990, pp. 103-124.
Schasfoort, R. et al., “Field-effect flow control for microfabricated fluidic networks”, Science, vol. 286(5441), 1999, pp. 942-945.
Schoning, M. et al., “Bio FEDs (Field-Effect Devices): State-of-the-Art and New Directions”, Electroanalysis, vol. 18(19-20), 2006, pp. 1893-1900.
Seong-Jin, K. et al. “Label-Free CMOS DNA Quantification With On-Chip Noise Reduction Schemes” Solid-State Sensors, Actuators and Microsystems Conference, IEEE, Jun. 10, 2013, pp. 947-950.
SG200903992-6 Search and Examination Report Mailed Jan. 20, 2011.
Shah, N., “Microfabrication of a parellel-array DNA pyrosequencing chip”, NNIN REU Research Accomplishments, 2005, pp. 130-131.
Shepherd, L. et al., “A biochemical translinear principle with weak inversion ISFETs”, IEEE Trans Circuits Syst—I, vol. 52(12), Dec. 2005, pp. 2614-2619.
Shepherd, L. et al., “A novel voltage-clamped CMOS ISFET sensor interface”, IEEE, 2007, pp. 3331-3334.
Shepherd, L. et al., “Towards direct biochemical analysis with weak inversion ISFETS”, Intl Workshop on Biomedical . . . , 2004, S1.5-5-S1.5-8.
Shepherd, L. et al., “Weak inversion ISFETs for ultra-low power biochemical sensing and real-time analysis”, Sensors Actuators B, vol. 107, 2005, pp. 468-473.
Shi, Y. et al., “Radical Capillary Array Electrophoresis Microplace and Scanner for High-Performance Nucleic Acid Analysis”, Anal. Chem., vol. 71(23), 1999, pp. 5354-5361.
Simonian, A. L. et al., “FET based biosensors for the direct detection of organophosphate neurotoxins”, Electroanalysis, vol. 16(22), 2004, pp. 1896-1906.
Souteyrand, E. et al., “Direct detection of the hybridization of synthetic homo-oligomer DNA sequences by field effect”, J Phys Chem B, vol. 101(15), 1997, pp. 2980-2985.
Starodub, N. et al., “Immunosensor for the determination of the herbicide simazine based on an ion-selective field-effect transistor”, Analytica Chimica Acta, vol. 424, 2000, pp. 37-43.
Takenaka, S. et al., “DNA Sensing on a DNA Probe-Modified Electrode Using Ferrocenylnaphthalene Dimide as the Electrochemically Active Ligand”, Anal. Chem., vol. 72(6), 2000, pp. 1334-1341.
Tokuda, T. et al., “A CMOS image sensor with optical and potential dual imaging function for on-chip bioscientific applications”, Sensors and Actuators A, vol. 125, No. 2, 2006, 273-280.
Tomaszewski, D. et al., “Electrical characterization of ISFETs”, J Telecomm Info Technol, Mar. 2007, pp. 55-60.
Toumazou, C. et al., “Using transistors to linearase biochemistry”, Electronics Letters, vol. 43(2), Jan. 18, 2007, 3 pages.
Truman, P., “Monitoring liquid transport and chemical composition in lab on . . . ”, Lab on a Chip, vol. 6, 2006, pp. 1220-1228.
Uslu, F. et al., “Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device”, Biosens & Bioelectron, vol. 19(12), 2004, pp. 1723-1731.
Van Der Wouden, E. et al., “Directional flow induced by synchronized longitudinal and zeta-potential controlling AC-electrical fields”, Lab Chip, vol. 6(10), 2006, pp. 1300-1305.
Van Hal, R.E.G. et al., “A general model to describe the electrostatic potential at electrolyte oxide interfaces”, Advances in Colloid and Interface Science, vol. 69, 1996, pp. 31-62.
Van Kerkhof, J. et al., “ISFET Responses on a stepwise change in electrolyte concentration at constant pH”, Sensors Actuators B: Chemical, vol. 18-19, 1994, pp. 56-59.
Van Kerkhof, J. et al., “The ISFET based heparin sensor with a monolayer of protamine as affinity ligand”, Biosensors & Bioelectronics, vol. 10(3), 1995, pp. 269-282.
Van Kerkhof, J., “The Development of an ISFET-based Heparin Sensor”, Thesis 1994.
Voigt, H. et al. “Diamond-like carbon-gate pH-ISFET” Sensors and Actuators B., vol. 44, 1997, pp. 441-445.
Wagner, T et al., “All-in-one solid-state device based on a light-addressable potentiometric sensor platform”, Sensors and Actuators B, vol. 117, 2006, pp. 472-479.
Wang, W. et al., “Label-free detection of small-molecule-protein interactions by using nanowire nanosensors”, Proc. of the Natl. Acad. of Sciences (PNAS), vol. 102(9), 2005, pp. 3208-3212.
Woias, P. et al., “Slow pH response effects of silicon nitride ISFET sensors”, Sensors and Actuators B, vol. 48, 1998, pp. 501-504.
Woias, P., “Modelling the short time response of ISFET sensors”, Sensors and Actuators B, vol. 24-25, 1995, pp. 211-217.
Wood, et al. “Base composition-independent hybridization in tetramethylammonium chloride: a method for oligonucleotide screening of highly complex gene libraries” Proc. Nat. Acad. Sci., 1985, pp. 1585-1588.
Wu, P. et al., “DNA and protein microarray printing on silicon nitride waveguide surfaces”, Biosensens Bioelectron, vol. 21(7), 2006, pp. 1252-1263.
Xu, J-J et al., “Analytical Aspects of FET-Based Biosensors”, Frontiers in Bioscience, vol. 10, 2005, pp. 420-430.
Yeow, T.C.W. et al., “A very large integrated pH-ISFET sensor array chip compatible with standard CMOS processes”, Sensor and Actuators B, vol. 44, 1997, pp. 434-440.
Yuqing, M. et al., “Ion sensitive field effect transducer-based biosensors”, Biotechnology Advances, vol. 21, 2003, pp. 527-534.
Zhang, X. et al., “32-Channel Full Customized CMOS Biosensor Chip for Extracellular neural Signal Recording”, Proc. of the 2nd Intl. IEEE EMBs Conf. on Neural Engineering, Arlington, Virginia, 2005, pp. v-viii.
Zhao, B. et al., “Floating-Gate Ion Sensitive Field-Effect Transistor for Chemical and Biological Sensing”, MRS Proceedings, vol. 828, 2004, pp. 349-354.
Zhou, G. et al., “Quantitative detection of single nucleotide polymorphisms for a pooled sample by a bioluminometric assay coupled with modified primer extension reactions (BAMPER)”, Nuc. Acids Res., vol. 29(19), e93, 2001, pp. 1-11.
Dorf, Richard C. , “The Electrical Engineering Handbook”, University of California, Davis, CRC Press, 2 edition, Chapter 3—Linear Circuit Analysis, Jun. 25, 2004, pp. 3-1 to 3-66.
EP09798251.6, “Extend European Search Report”, mailed Aug. 27, 2013, 6 pages.
EP11801437.2, “EP Office Action with Search Report mailed Jul. 8, 2014”.
EP11801437.2, “LT00349EP Examination Notification”, mailed Feb. 12, 2015, 8 pages.
EP13161312.7, “Extend European Search Report”, mailed Oct. 15, 2013, 8 pages.
EP13163995.7, “EP Search Report mailed Jul. 9, 2014”.
EP13177590.0, “European Examination Notification”, mailed Sep. 8, 2014, 9 pages.
Gardner, J.W. et al., “Enhancing electronic nose performance by sensor selection using a new integer-based genetic algorithm approach”, Science Direct, Sensors and Actuators B, vol. 106, 2005, pp. 114-121.
Hanshaw, R. et al., “An indicator displacement system for fluorescent detection of phosphate oxyanions under physiological conditions”, Science Direct, Tetrahedron Letters, vol. 45, Nov. 15, 2004, pp. 8721-8724.
Lin, B.J. et al., “Practicing the Novolac deep-UV portable conformable masking technique”, Journal of Vacuum Science and Technology, Vo. 19, No. 4, 1981, 1313-1319.
Maki, W et al., “Nanowire-transistor based ultra-sensitive DNA methylation detection”, Biosensors & Bioelectronics, 23, 2008, pp. 780-787.
Naidu, M. S. et al., “Introduction to Electrical Engineering”, Chapter 1—Fundamental Concepts of Electricity, McGraw Hill Education (India) Private Limited, 1995, pp. 1-10.
Neaman, Donald A. , “Electronic Circuit Analysis and Design”, McGraw Hill Higher Education, 2nd edition, Chapter 6—Basic FET Amplifiers, (reference will be uploaded in 2 parts due to size) part 1 of 2, Dec. 1, 2000, pp. 313-345.
Neaman, Donald A. , “Electronic Circuit Analysis and Design”, McGraw Hill Higher Education, 2nd edition, Chapter 6—Basic FET Amplifiers, (reference will be uploaded in 2 parts due to size) part 2 of 2, Dec. 1, 2000, pp. 346-381.
Nishiguchi, K. et al., “Si nanowire ion-sensitive field-effect transistors with a shared floating gate”, Applied Physics Letters vol. 94, 2009, pp. 163106-1 to 163106-3.
PCT/US2012/071471, “International Preliminary Report on Patentability”, mailed Jun. 24, 2014, 8 pages.
PCT/US2012/071482, “International Preliminary Amendment”, mailed Jun. 24, 2014, 7 pages.
PCT/US2013/022129 , “International Search Report of the International Searching Authority and Written Opinion”, mailed Aug. 9, 2013, 18 pages.
PCT/US2014/020887, “International Search Report and Written Opinion”, mailed May 30, 2014, 12 pages.
PCT/US2014/020892, “International Search Report and Written Opinion mailed Jun. 3, 2014”.
PCT/US2014/040923, “International Search Report and Written Opinion”, mailed Sep. 1, 2014, 14 pages.
Rothberg, J. et al., “An integrated semiconductor device enabling non-optical genome sequencing”, Nature, vol. 475, No. 7356, Jul. 21, 2011, pp. 348-352.
Van Der Schoot, Bart et al., “The Use of a Multi-ISFET Sensor Fabricated in a Single Substrate”, Letter to the Editors, Sensors and Actuators, vol. 12, 1987, pp. 463-468.
Vardalas, John , “Twists and Turns in the Development of the Transistor”, IEEE-USA Today's Engineer Online, May 2003, 6 pages.
European Extended Search Report for European Application No. EP09822323.3 mailed May 27, 2015, 8 pages.
European Search Report for European Application No. EP10780930 mailed Jun. 15, 2015, 3 pages.
European Search Report for European Application No. EP10857377 mailed Jun. 26, 2015, 3 pages.
International Search Report and Written Opinion for International Application No. PCT/US2014/020892 mailed Jun. 3, 2014.
Temes, G.C. et al., “A Tutorial Discussion of the Oversampling Method for A/D and D/A Conversion”, 1990 IEEE International Symposium on Circuits and Systems, vol. 2 of 4, 1990, 5 pages.
Thewes, R. et al., “CMOS-based Biosencor Arrays”, Proceedings of the Design, Automation and Test in Europe Conference and Exhibition, 2005, 2 pages.
Van Kerkhof, “The Development of an ISFET based heparin sensor using the ion-step measuring method”, Biosensors and Bioelectronics, vol. 9, Nos. 9-10, 1993, 463-472.
Yoshida, Shoji et al., “Development of a Wide Range pH Sensor based on Electrolyte-Insulator-Semiconductor Structure with Corrosion-Resistant Al2O3—Ta2O5 and Al2O3—ZrO2”, Journal of the Electrochemical Society vol. 151(3), 2004, pp. H53-H58.
Chin, Yuan-Lung et al., “Titanium Nitride Membrane Application to Extended Gate Field Effect Transistor pH Sensor Using VLSI Technology”, Jpn. J. AppI. Phys. vol. 40, Part 1, No. 11, Nov. 2001, pp. 6311-6315.
International Preliminary Amendment on Patentability for International Application No. PCT/US2014/020887 mailed Sep. 15, 2015, 8 pages.
0V5640 Datasheet Product Specification, ¼″ color CMOS QSXGA (5 megapixel) image sensor with OmniBSI technology, May 1, 2011, p. 1, line 9 and pp. 2-7, paragraph 1.
European Search Report for European Application No. EP15170247.9 mailed Nov. 10, 2015, 4 pages.
Izuru, Shinmura, “Kojien”, published by Owanami, Fourth Edition, 1991, p. 2683.
Liu, Yan et al., “An ISFET based sensing array with sensor offset compensation and pH sensitivity enhancement” Proc. of 2010 IEEE Int. Symp. on Circuits and Systems (ISCAS), ISBN:978-1-4244-5308-5, Jun. 2, 2010, pp. 2283-2286.
Matula, Richard A., “Electrical Resistivity of Copper, Gold, Palladium, and Silver”, Journal of Physical and Chemical Reference Data, vol. 8.4, 1979, pp. 1147-1298.
Morgenshtein, Arkadiy et al., “Wheatstone-Bridge readout interface for ISFET/REFET applications”, Sensors and Actuators B: Chemical, vol. 98, No. 1, Mar. 2004, pp. 18-27.
Moriizumi, Toyosaka, “Biosensors”, Oyo Buturi (monthly publication of the Japan Society of Applied Physics), vol. 54, No. 2, Feb. 10, 1985, pp. 98-114.
Nakazato, Kazuo, “An Integrated ISFET Sensor Array”, Sensors, vol. 9, No. 11, 2009, 8831-8851.
Nakazato, Kazuro et al., “28p-Y-7 ISFET sensor array integrated circuits based on standard CMOS process”, The 55th annual meeting of the Japan Society of Applied Physics, book of Abstracts, ISBN:978-4-903968-44-5, Mar. 27, 2008, p. 70.
Nakazato, Kazuro, “An Integrated ISFET Sensor Array”, Sensors, Nov. 2009, vol. 9, No. 11, ISSN:1424-8220, [online], Internet, URL, http://www.mdpi.com/1424-8220/9/11/8831/pdf, Nov. 2009, pp. 8831-8851.
International Preliminary Report on Patentability for International Application No. PCT/US2014/040923 mailed Dec. 15, 2015, 8 pages.
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2015/066052 mailed Apr. 7, 2016, 19 pages.
Wen-Yaw, Chung A. et al., “New ISFET interface circuit design with temperature Compensation”, CiteSeerx—URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.2321&rep=rep1&type=pdf, 2006, 1.
Schroder, Dieter K., “6. Oxide and Interface Trapped Charges, Oxide Thickness”, Semiconductor Material and Device Characterization, John Wiley & Sons, ISBN: 978-0-471-73906-7, Feb. 17, 2006, pp. 319-387.
PCT/US2015/066052, International Preliminary Reporrt on Patentability, Jun. 29, 2017, 1-16.
Related Publications (1)
Number Date Country
20150206762 A1 Jul 2015 US
Divisions (1)
Number Date Country
Parent 13734696 Jan 2013 US
Child 14676697 US