This invention relates to methods for automatically generating CO2 snow block within a selected container inside a dispensing station or generating CO2 snow block by auto charging into a container that can be situated within a charging station.
Drug development continues to be a major endeavor in the pharmaceutical industry. Drug development requires clinical trials to establish the safety and efficacy of new treatments. Today, in the United States, alone, there are a large number of on-going clinical trials in various stages. Each clinical trial can involve hundreds to thousands of patients who have volunteered to the administering of certain experimental drugs. Generally speaking, as part of the clinical trial, biological samples (e.g., tissue, urine, blood samples) are collected from participants at a clinical site, such as a hospital, university, or physician office, and then transported to laboratories for analysis or to facilities where they may be stored frozen for analysis at a later time.
The ability to evaluate the safety and efficacy of an experimental drug requires obtaining reproducible and reliable results during the clinical trials. The biological samples must be stabilized and preserved during storage and transport between, by way of example, the clinic and the laboratory. A common means to preserve biological samples today is to freeze and store them in the presence of solid carbon dioxide (i.e., dry ice).
Dry ice systems typically involve manually loading the samples and dry ice into an insulated box, such as a polystyrene box, at the clinical site where the samples are acquired. The insulated box is typically provided to the clinical site by a pharmaceutical company or contract research organization administering the clinical trial. The insulated box components may be provided in an assembled or disassembled state. Assembly of the insulated box and loading of the dry ice can be labor intensive. There may also be considerable cost and inconvenience associated with maintaining a sufficient supply of dry ice at the clinical site. Additionally, the failure to use such dry ice within certain duration can cause the dry ice to lose its cooling effect. Further, the insulated box is typically not reusable and must be discarded, thereby creating waste.
Other drawbacks also exist with the transport of samples in conventional insulated boxes. The dry ice cools the interior of the insulated box as it sublimates to carbon dioxide vapor. A number of insulated boxes are available that can maintain a cold interior temperature for various durations up to four or five days. The interior sample space may be uniformly near dry ice temperature upon initial full dry ice loading, but as the dry ice sublimates, significant temperature gradients can arise within the interior sample space, potentially compromising sample quality. The insulated boxes are generally shipped via expedited delivery methods to ensure a sufficiently cold temperature is maintained within the interior sample space. However, should delays or disruptions occur in the shipping lanes, the samples can degrade. As a result of such delays during shipment, additional dry ice may be required to be loaded into the box during transit, which results in increased cost and logistical complexity to the shipment.
One alternative to conventional dry ice shippers is a cryogenic liquid nitrogen-based vapor vessel. Cryogenic liquid nitrogen-based vapor vessels utilize an absorbent to retain the cold nitrogen in the vapor state and avoid the presence of nitrogen in its liquid form. However, such liquid nitrogen-based vapor vessels suffer from drawbacks. One drawback is the time and labor involved in the preparation of the vessel. Specifically, users prepare such vessels by pouring liquid nitrogen into the vessel; waiting several hours to allow for sufficient absorption of the nitrogen onto the absorbent to occur; followed by decanting the excess liquid nitrogen prior to shipment. Substantial handling of the cryogenic liquid nitrogen is necessary, and significant time is required to prepare the liquid nitrogen shipper prior to its usage. Further, the costs associated with the use of liquid nitrogen-based vapor vessels are significantly higher than alternative dry ice vessels.
In view of these drawbacks, there is an unmet need for an improved way for preserving samples into a container during storage and transport.
In one aspect, a method of automatically filling carbon dioxide (CO2) snow block into a container within an automatic dispensing station, comprising: receiving a first signal corresponding to a pressure of liquid CO2 into a controller as a first set point; inputting into the controller a volume of the CO2 snow block to be generated as a second set point; the controller determining a fill time to generate the volume of the CO2 snow block based on the first set point and the second set point; the controller selecting the container with an interior volume corresponding to the second set point, said container located within the automatic dispensing station, and said automatic dispensing station comprising two or more containers of different interior volumes; flowing a gaseous CO2 into a fill conduit to pressurize the fill conduit at or above a pressure sufficient to prevent a phase change of the liquid CO2; the controller causing a liquid CO2 control valve to allow the liquid CO2 to flow along the fill conduit and into the container when the controller determines the pressure in the fill conduit is at or above the pressure sufficient to prevent the phase change of the liquid CO2; introducing said liquid CO2 into the container; at least a portion of said liquid CO2 undergoing a phase change to transform into said CO2 snow block and offgas CO2 within the container; withdrawing said offgas CO2 from the container through a plate permanently affixed or removably affixed to the container, said plate permeable to the offgas CO2 and at least partially impermeable to a solid phase CO2; measuring an elapsed time of filling the container with the liquid CO2 and generating a second signal corresponding to the elapsed time; transmitting the second signal corresponding to the elapsed time to the controller; the controller (i) allowing said liquid CO2 to continue to flow into the container, in the absence of an override, when the elapsed time is less than the fill time, and (ii) preventing said liquid CO2 to flow in the container when the elapsed time has reached the fill time.
In a second aspect, a method of automatically filling carbon dioxide (CO2) snow block into a container within an automatic dispensing station and vending said CO2 snow block from the selected container, comprising: inputting into a controller a set point to be used for determining completion of fill of CO2 snow block into the container, said set point based on i) fill duration; (ii) a pre-defined weight of the CO2 snow block, (iii) a pressure in the selected container, (iv) a capacitance of the CO2 snow block, (v) a temperature in the container or (vi) a deformation of a plate, said plate permanently affixed or removably affixed to the container; the controller receiving a volume of the CO2 snow block to be generated; the controller selecting the container having an interior volume that is capable of receiving the volume of the CO2 snow block to be generated, said container located within the automatic dispensing station comprising two or more containers of different interior volumes; flowing a sufficient amount of gaseous CO2 into and along a fill conduit; the controller transmitting a first signal to a liquid CO2 control valve to cause the liquid CO2 to flow along the fill conduit and into the container and therein undergo a phase change to transform into CO2 snow block and offgas CO2; withdrawing said offgas CO2 from the selected container through the plate, said plate permeable to the offgas CO2 and at least partially impermeable to a solid phase CO2, and further wherein said fill conduit is operably connected to the container; measuring a real-time variable corresponding to the set point and generating a second signal corresponding to the real-time variable; transmitting the second signal to the controller; the controller (i) allowing said liquid CO2 to continue to flow into the container, in the absence of an override, when determining the real-time variable has not reached the set point; and the controller (ii) preventing said liquid CO2 to flow in the container when the real-time variable has reached the set point, and in response thereto, the controller transmitting a third signal to configure the container into a dispensing orientation, said container in the dispensing orientation containing the volume of the CO2 snow block.
In a third aspect, a method of automatically charging carbon dioxide (CO2) snow block into a container, comprising: inputting into a controller a set point to be used for determining completion of fill of the CO2 snow block into the container, said set point based on i) fill duration; (ii) a pre-defined weight of the CO2 snow block, (iii) a pressure in the container, (iii) a capacitance of the CO2 snow block, (v) a temperature in the container or (vi) a deformation of a plate, said plate permanently affixed or removably affixed to the container; the controller performing integrity checks and determining said integrity checks to meet applicable criteria; and in response thereto, flowing a sufficient amount of gaseous CO2 from a supply manifold into the fill conduit; the controller receiving a first signal corresponding to the pressure in the supply manifold and the fill conduit; the controller transmitting a second signal to a liquid CO2 control valve situated along the supply manifold to configure the liquid CO2 valve into the open position when the controller determines the first signal corresponding to the pressure in the supply manifold and the fill conduit is at or above a pressure sufficient to prevent a phase change of liquid CO2; withdrawing the liquid CO2 from a CO2 source into the supply manifold at a pressure higher than that of the gaseous CO2, thereby stopping flow of the gaseous CO2 through the fill conduit, said CO2 source operably connected upstream of the supply manifold; introducing the liquid CO2 into the container through the fill conduit; the CO2 liquid undergoing a phase change to transform into said CO2 snow block and offgas CO2 within the container; withdrawing said offgas CO2 from the container; measuring a real-time variable corresponding to the set point and generating a third signal corresponding to the real-time variable; transmitting the third signal corresponding to the real-time variable to the controller; wherein said liquid CO2 continues to enter the container, in the absence of an override, until the controller determines the real-time variable to reach the set point.
In a fourth aspect, a method of preparing a container for automated charging carbon dioxide (CO2) snow block into a single container, comprising: inputting into a controller a set point to be used for determining completion of fill of the CO2 snow block into the container, said set point based on i) fill duration; (ii) a pre-defined weight of the CO2 snow block, (iii) a pressure in the container, (iii) a capacitance of the CO2 snow block, (v) a temperature in the container or (vi) a deformation of a plate, said plate permanently or removably affixed to the container; the controller performing integrity checks and determining said integrity checks to meet applicable criteria; and in response thereto, the controller validating the container is in a filling orientation, and if the container is determined to not be in the filling orientation, said controller either (i) transmitting a first signal to cause the container to actuate into the filling orientation, or (ii) transmitting an alert notification for a user to manually configure the container into the filling orientation.
In a fifth aspect, a method of selecting a container within an automatic dispensing station to automatically fill carbon dioxide (CO2) snow block into the container, comprising: inputting into the controller a volume of the CO2 snow block to be generated as a set point; the controller selecting the container with an interior volume corresponding to the set point, said container located within the automatic dispensing station, and said automatic dispensing station comprising two or more containers of different interior volumes; and the controller validating the container is in a filling orientation, and if the container is determined to not be in the filling orientation, said controller either (i) transmitting a signal to cause the container to actuate into the filling orientation, or (ii) transmitting an alert notification for a user to manually configure the container into the filling orientation.
As will be described, in one aspect, the present invention offers a method for automatically generating various size CO2 snow blocks available from an automatic dispensing station. A user can readily access the generated CO2 snow block from an inlet and outlet accessing window of a conveyor system located within the dispensing station. The on-demand generation of the present invention eliminates the need for a user to maintain an inventory of CO2 snow block or dry ice on-site.
It should be understood that the term “CO2 snow” and “dry ice” have the same meaning and may be used interchangeably herein and throughout to mean particles of solidified CO2.
“CO2 snow block” or “CO2 block,” both of which may be used interchangeably herein and throughout, are intended to mean the creation of CO2 snow particles in a substantially block-like form of any shape consisting of tightly held-particles.
“CO2 fluid” as used herein means any phase including, a liquid phase, gaseous phase, vapor phase, supercritical phase, or any combination thereof.
“CO2 source” or “CO2 liquid source” as used herein includes, but is not limited to, cylinders, dewars, bottles, and bulk or microbulk tanks.
“Conduit” or “conduit flow network” as used herein means tube, pipe, hose, manifold and any other suitable structure that is sufficient to create one or more flow paths and/or allow the passage of a fluid.
“Connected” or “operably connected” as used herein means a direct or indirect connection between two or more components, such as piping and assembly, including, but not limited to instrumentation, valves and conduit, unless specified otherwise, so as to enable fluid, mechanical, chemical and/or electrical communication between the two or more components.
“Item” as used herein means any temperature-sensitive goods, products or supplies which may be susceptible to spoilage, degradation, and/or structural alteration or modification if not maintained frozen or below a certain temperature, including, but not limited to, biological samples, such as blood, urine and tissue samples or their constituents; perishable foods, such as meat, poultry, fish and dairy products; personal care items; and chemicals.
“Charging” as used herein means the process of introducing CO2 fluid from an external CO2 source into a container operably connected to the external CO2 source.
“Container” as used herein means any storage, filling, delivery or transportable vessel capable of receiving CO2 fluid, including but not limited to, mold cavities, cylinders, dewars, bottles, tanks, barrels, bulk and microbulk.
“Transportable” means an apparatus that is capable of being moved, transported or shipped from a user location to another destination by any known means, including, but not limited to, air, ground or water. The transport or shipping can occur through various packaged delivery services, including, but not limited to, parcel post, UPS® shipping services, FedEx® shipping services and the like.
The embodiments as described below are by way of example only, and the invention is not limited to the embodiments illustrated in the drawings. It should also be understood that the drawings are not to scale and in certain instances details have been omitted, which are not necessary for an understanding of the embodiments, such as conventional details of fabrication and assembly. It should also be understood that the exact conduit and valving configuration are not drawn to scale, and certain features are intentionally omitted in each of the drawings to better illustrate various aspects of the automated filling and auto charging processes in accordance with the principles of the present invention.
The embodiments are described with reference to the drawings in which similar elements are referred to by like numerals. The relationship and functioning of the various elements of the embodiments are better understood by the following detailed description. The detailed description contemplates the features, aspects and embodiments in various permutations and combinations, as being within the scope of the disclosure. The disclosure may therefore be specified as comprising, consisting or consisting essentially of, any of such combinations and permutations of these specific features, aspects, and embodiments, or a selected one or ones thereof.
In one aspect of the present invention, a method of automatically filling carbon dioxide (CO2) snow block into a selected container within an automatic dispensing station will be discussed with reference to
Upon completion of the fill, the CO2 snow block 2 is transferred from the mold cavity 13 into a user box 22 (
The structural details of the first container 10 are shown in
A fill conduit 23 has one end connected to the top plate 15 and another end connected to a CO2 supply manifold 1000. In a preferred embodiment, a total of four nozzles 12 are distributed evenly at the one end of the fill conduit 23. Each nozzle 12 is spaced apart from the other by approximately 90°, and each nozzle 12 has the same sized opening and shape. The structure of the nozzles 12 creates a substantially uniform flow of CO2 fluid therethrough, which allows for the creation of substantially uniform formation and distribution of CO2 snow block 2 within the mold cavity 13. The nozzles 12 are oriented away from a vertical of the fill conduit 23 at an angle ranging from approximately 30° to 60° relative to the vertical of the fill conduit 23, whereby the vertical extends perpendicular to a horizontal surface of the mold cavity 13. It should be understood that other nozzle designs and orientations are contemplated without departing from the scope of the present invention.
The PLC 1085 is in electrical communication with the supply manifold 1000 and the various components of the automatic dispensing station 1 and as a result can regulate the various actuators, valving, including automatic control valves and pressure regulating devices, pressure transducers and ventilation system as shown in
The automation process in connection with the automatic dispensing station 1 will now be described. In a preferred embodiment, the PLC 1085 is utilized to control the filling and vending of CO2 snow block 2 by the control methodology 5000 of
A box 22 (e.g., cardboard box) is fed to an inlet window 21 of conveyor system 4, which is located within the automatic dispensing station 1 (step 503). The box 22 may be fed manually by a user or automatically. The box 22 has a volume that is sized to receive the inputted volume of CO2 snow block 2 to be generated within a mold cavity.
Having selected the proper container for filling of CO2 therein; and with the box 22 having been placed along the inlet 21 of the conveyor belt 20 (step 503), the PLC 1085 is ready to perform pre-fill integrity checks (step 504). Numerous criteria must pass before the filling operation can begin. The PLC 1085 verifies that the ventilation system 1050 (
If each of the pre-fill integrity checks has been satisfied, then the PLC 1085 selects a suitable mold cavity and activates the selected suitable mold cavity from an idle orientation into the filling orientation (step 506). The PLC 1085, in response to the inputted volume of CO2 snow block, selects a suitable container within the automatic dispensing station 1 that has a volume capable of generating the inputted volume of CO2 snow block 2. The PLC 1085 determines that the volume of the mold cavity 13 corresponding to the first container 10 is smaller than the inputted volume. The PLC 1085 further determines that the volume of the mold cavity 25 corresponding to the second container 26 is equal to or larger than the inputted volume of the CO2 snow block 2. As a result, the PLC 1085 selects the second container 26 to be used for the filling of CO2, and accordingly transmits a signal to the second container 26 to activate the second container 26 from the idle orientation (
The PLC 1085 validates that the selected container 26 is in the filling orientation, and if not, the PLC 1085 will relay appropriate signals to orient the selected container 26 into the filling orientation. Upon verification that the second container 26 is activated into the filling orientation as shown in
With the PLC 1085 calculating the predetermined fill time, the PLC 1085 prompts a user message to activate a start button (step 508) to initiate pressurization of the supply manifold 1000 before the filling process. The valving, instrumentation and components of
In addition to adequately pressurizing the conduit of manifold 1000, the CO2 gas can optionally be added to flow and purge any residuals and/or impurities for any amount of time. In one example, the purging process can continue for approximately 30 seconds to about 2 minutes. As the CO2 gas flows through the various portions of the gas conduit 1091, any residuals and/or impurities may also be purged. The CO2 gas may be directed into the selected second container 26 by setting valve 1301 open and setting valve 1302 closed. The container 26 at this stage of the filling process does not contain any substantial amount of CO2 snow particulates or CO2 snow block 2. The CO2 gas flows in a downward direction through fill conduit 27 and enters mold cavity 25. The CO2 gas subsequently escapes from container 26 through meshed sheet 31 of second top plate 28 (e.g., withdrawn in a substantially vertically oriented direction as shown in greater detail in
When the PLC 1085 determines the pressure in the selected fill conduit 27 and the CO2 supply manifold 1000 is at or above a pressure sufficient to prevent phase change of the liquid CO2 (e.g., preferably, equal to or higher than 150 psig and more preferably from 200 psig up to about 350 psig), the filling of CO2 snow block 2 into selected container 26 begins (step 509). CO2 vapor valve 1094 can remain in the open position; and control valve 1100 can remain in the open position thereby ensuring adequate gas pressurization within manifold 1000 is present prior to and during liquid CO2 filling into container 26. To begin flow of liquid CO2 from CO2 source 1090, control valve 1302 is set in the closed position to ensure that liquid-containing CO2 does not flow into the first container 10 (i.e., the unselected container as determined by PLC 1085); and control valve 1301 is set in the open position to allow liquid-containing CO2 to flow into the second container 26 (i.e., the selected container as determined by PLC 1085). Referring to
The CO2-containing liquid emerges from the nozzles 12 of second fill conduit 27 to enter selected mold cavity 25 of selected second container 26. In a preferred embodiment, the end of the second fill conduit 27 has four nozzles 12, which are angled to direct or inject the CO2-containing liquid into the selected mold cavity 25 as shown in
The particles of CO2 snow continue to form within the selected mold cavity 25 in a block-like form. A timer can continue to monitor an elapsed time and generate a corresponding signal for the elapsed time that is transmitted to the PLC 1085. The PLC 1085 continues to allow the CO2-containing liquid to flow along conduit 1092 as long as the elapsed time is less than the predetermined fill time (step 510).
When the PLC 1085 has determined that the elapsed time has reached the predetermined fill time, filling stops. Specifically, PLC 1085 transmits a signal to control valve 1301 to configure it into the closed position, thereby preventing CO2-containing liquid from continuing to flow into selected container 26. Main liquid withdrawal valve 1093 is also closed. The fill process stops (step 511) in this manner. In response to stopping flow of liquid CO2, gaseous CO2 can resume to flow along gas conduit 1091 and into fill conduit 807 and into container, if desired, for a certain duration as a means for purging any impurities or residuals within conduit of manifold 1000 and/or selected container 26. As the CO2 gas flows into the selected container 26 and then vents, the snow block 2 may become more packed.
Shut down of manifold 1000 can also occur as part of step 511. Residual liquid CO2 may be entrapped along the portion of liquid conduit 1092 extending from the control valve 1200 to the main liquid withdrawal valve 1093. Safety relief valves 1086 and 1087 (“SRV 1102” and “SRV 1200”) are designed to relieve residual pressure that may be entrapped within gas conduit 1091 and/or liquid conduit 1092. As the trapped liquid CO2 therealong can eventually sublime into CO2 gas, the pressure buildup can be relieved by the safety relief valve 1087, which in one example is set to actuate at 400 psig. The safety relief valve 1086 also serves to relieve pressure if and when the pressure buildup in the CO2 gas 1091 conduit reaches an upper limit (e.g., 400 psig).
Having ended the fill process, the PLC 1085 activates the selected mold cavity 25 from the filling orientation into a dispensing orientation (step 512). First, actuators 30a and 30b are contracted to cause the top plate 28 to be lifted away from the top of mold cavity 25 in a similar manner as show in
Starting from the orientation of
With CO2 snow block 2 released from mold cavity 25 and dispensed into box 22, the actuator arms are retracted, causing the pins 93a, 93b and arms attached thereto to travel downwards along slots 92a, 92b to be reconfigured into the orientation of
While the automated filling into an automatic dispensing station 1 has been performed based on a predetermined fill time, the automated fill can also occur based on other criteria. For example, the PLC 1085 can use another set point for filling, including, by way of example, a pre-defined weight of the CO2 snow block 2; a pressure in the selected mold cavity; a capacitance of the CO2 snow block 2; a temperature in the container; or a deformation of a top plate of the selected mold cavity.
In another embodiment, as an alternative to using an automatic dispensing station 1, a method of automatically charging CO2 snow block into a single container within a charging station can be carried out.
When all pre-fill integrity checks are completed, the container is activated from the idle orientation into the filling orientation (step 605). By way of example and not intending to be limit, the fill orientation can include configuring a top plate onto the top of container by one or more vertical actuators which are placed onto the top of container to create a seal along the periphery. It should be understood that the container need not utilize a top plate and mold cavity as described with reference to
When the container is validated to be in a fill orientation, user can input the desired volume of CO2 snow block 2 desired to be generated within the container. At step 606, the PLC 1085 determines a predetermined fill time as described hereinbefore with respect to step 507 in the example of
A user activates a start button (step 607) to initiate the auto charge process. Filling begins as follows (step 608). A sufficient amount of gaseous CO2 from the supply manifold 1000 is introduced from the vapor headspace of CO2 source 1090 into fill conduit 807, which extends between the supply manifold 1000 and the container. The supply manifold 1000 is operably connected to the fill conduit 807. CO2 gas is added into the conduit to pressurize the conduits of manifold 1000 to a level that is sufficient to prevent the pressure of the liquid CO2 from reducing below a certain pressure (e.g., below about 150 psig) at which the liquid CO2 can prematurely undergo a phase change to solid and/or gas within the conduit of manifold 1000 and fill conduit 807. The PLC 1085 continues to monitor pressure in the supply manifold 1000 from pressure transducer 1070 (
Shut down can now be performed (step 611). Residual liquid CO2 may be entrapped along the portion of liquid conduit 1092 extending from the control valve 1200 to the main liquid withdrawal valve 1093. Safety relief valves 1086 and 1087 (“SRV 1102” and “SRV 1200”) are designed to relieve residual pressure that may be entrapped within gas conduit 1091 and/or liquid conduit 1092 when various system components of charging station 800 and manifold 1000 are shut down. As the trapped liquid CO2 therealong can eventually sublime into CO2 gas, the pressure buildup can be relieved by the safety relief valve 1087, which in one example is set to actuate at 400 psig. The safety relief valve 1086 also serves to relieve pressure if and when the pressure buildup in the CO2 gas 1091 conduit reaches an upper limit (e.g., 400 psig).
After shutdown has been completed at step 611, the PLC 1085 deactivates the safety interlocks of charging station 800 so that door 803 of charging station can be opened to access container and remove container with the CO2 snow block 2 filled therein.
It should be understood that the automated charging into a container can also occur based on other criteria. For example, the PLC 1085 can use another set point for filling, including, by way of example, a pre-defined weight of the CO2 snow block 2; a pressure in the container; a capacitance of the CO2 snow block 2; a temperature in the container; or a deformation of a top plate which may be utilized to seal the container.
While the container with CO2 snow block 2 as has been described can be used with any “item” as defined herein below, in a preferred embodiment, the present invention is especially conducive for maintaining compliance with the packaging protocols required to reproducibly preserve biological samples, thereby avoiding sample degradation and allowing the samples to revert back to its functional state and be subject to applicable testing upon arrival to its destination site. Further, the CO2 snow block 2 is preferably generated with improved packing density that can hold the requisite temperature of the container with extended cooling effect duration in comparison to standard dry ice shipping containers containing CO2 dry ice produced by conventional techniques. The extended cooling effect duration can reduce the risk of sample degradation in transport and allow the user more flexibility to optimize cost and convenience regarding preparation and assembly of transportable containers of the present invention; when items (including samples, such as biological samples) are acquired; and the types of shipping methods that can be utilized.
Numerous modifications to the present invention are contemplated without departing from the spirit of the present invention. For example, the sequence of steps in the control methodology for the automated filling station (
The automated control methodology of the present invention can be applied to any container. In one embodiment, the automated control methodology and process can be used in connection with a container as described in Serial application Ser. No. 15/645,152, the details of which are incorporated herein by reference in its entirety for all purposes. Such container can be utilized as part of the automatic fill dispensing station or charging system of the present invention.
While it has been shown and described what is considered to be certain embodiments of the invention, it will, of course, be understood that various modifications and changes in form or detail can readily be made without departing from the spirit and scope of the invention. It is, therefore, intended that this invention not be limited to the exact form and detail herein shown and described, nor to anything less than the whole of the invention herein disclosed and hereinafter claimed.
This application claims the benefit of priority to U.S. provisional application Ser. No. 62/599,949, filed Dec. 18, 2017, the disclosure of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1713348 | O'Brien | May 1929 | A |
1770944 | Payson | Jul 1930 | A |
3178903 | Proctor | Apr 1965 | A |
3667242 | Kilburn | Jun 1972 | A |
3810367 | Peterson | May 1974 | A |
3875754 | Faust et al. | Apr 1975 | A |
4131450 | Saito et al. | Dec 1978 | A |
4170320 | Eager | Oct 1979 | A |
4191028 | Audet et al. | Mar 1980 | A |
4206616 | Frank et al. | Jun 1980 | A |
4262494 | Karow, Jr. | Apr 1981 | A |
4429542 | Sakao et al. | Feb 1984 | A |
4580409 | Angelier et al. | Apr 1986 | A |
4597266 | Entrekin | Jul 1986 | A |
4783973 | Angelier et al. | Nov 1988 | A |
4799358 | Knopf et al. | Jan 1989 | A |
4821914 | Owen et al. | Apr 1989 | A |
4916922 | Mullens | Apr 1990 | A |
4974423 | Pring | Dec 1990 | A |
5105627 | Kurita | Apr 1992 | A |
5257503 | Rhoades et al. | Nov 1993 | A |
5355684 | Guice | Oct 1994 | A |
5434045 | Jost | Jul 1995 | A |
5511379 | Gibot et al. | Apr 1996 | A |
5528907 | Pint et al. | Jun 1996 | A |
5548974 | Rhoades | Aug 1996 | A |
5647226 | Scaringe et al. | Jul 1997 | A |
5924302 | Derifield | Jul 1999 | A |
5993165 | Lorimer et al. | Nov 1999 | A |
6044650 | Cook et al. | Apr 2000 | A |
6119465 | Mullens et al. | Sep 2000 | A |
6131404 | Hase et al. | Oct 2000 | A |
6141985 | Cluzeau et al. | Nov 2000 | A |
6209341 | Benedetti et al. | Apr 2001 | B1 |
6209343 | Owen | Apr 2001 | B1 |
6347525 | Cosman | Feb 2002 | B2 |
6457323 | Marotta | Oct 2002 | B1 |
6467642 | Mullens et al. | Oct 2002 | B2 |
6584802 | Cofield et al. | Jul 2003 | B1 |
6635414 | Wisniewski | Oct 2003 | B2 |
6988370 | Iarocci et al. | Jan 2006 | B2 |
7197884 | Jones et al. | Apr 2007 | B2 |
7226552 | Manini et al. | Jun 2007 | B2 |
7275395 | Ventura | Oct 2007 | B1 |
7290396 | Rampersad et al. | Nov 2007 | B2 |
7310967 | Aragon | Dec 2007 | B2 |
7547416 | Lihl et al. | Jun 2009 | B2 |
7634917 | Fuhr et al. | Dec 2009 | B2 |
8037696 | Shaham et al. | Oct 2011 | B2 |
8067149 | Livesey et al. | Nov 2011 | B2 |
8181813 | Cognard | May 2012 | B2 |
8372634 | Lin et al. | Feb 2013 | B2 |
8448454 | Bowdish et al. | May 2013 | B2 |
8448457 | Cutting et al. | May 2013 | B2 |
8453477 | Crespo et al. | Jun 2013 | B2 |
8469228 | Adams | Jun 2013 | B2 |
8739556 | Koshimura et al. | Jun 2014 | B2 |
8770907 | Koshimura et al. | Jul 2014 | B2 |
8794012 | Cheng | Aug 2014 | B2 |
8956855 | Cognard et al. | Feb 2015 | B2 |
8997615 | Minemura et al. | Apr 2015 | B2 |
9227741 | Oztas et al. | Jan 2016 | B2 |
9275508 | Lavra et al. | Mar 2016 | B1 |
9554572 | Katkov et al. | Jan 2017 | B2 |
9664431 | Mullen et al. | May 2017 | B2 |
9694964 | McCormick | Jul 2017 | B2 |
9920970 | Arnitz et al. | Mar 2018 | B2 |
9939422 | Rice et al. | Apr 2018 | B2 |
9939423 | Rice et al. | Apr 2018 | B2 |
10001313 | Petrov | Jun 2018 | B2 |
20060045754 | Lukens | Mar 2006 | A1 |
20060101832 | Wurzinger et al. | May 2006 | A1 |
20060162652 | Lang et al. | Jul 2006 | A1 |
20060260328 | Rampersad | Nov 2006 | A1 |
20060260329 | Rampersad et al. | Nov 2006 | A1 |
20070170201 | Steffens | Jul 2007 | A1 |
20080083763 | Nielsen | Apr 2008 | A1 |
20080141700 | Fuchs | Jun 2008 | A1 |
20090202978 | Shaham | Aug 2009 | A1 |
20100281886 | Shaham et al. | Nov 2010 | A1 |
20100299278 | Kriss et al. | Nov 2010 | A1 |
20110073630 | Saho et al. | Mar 2011 | A1 |
20120247999 | Nishio et al. | Oct 2012 | A1 |
20120318808 | McCormick | Dec 2012 | A1 |
20120325826 | McCormick | Dec 2012 | A1 |
20130232998 | Ward et al. | Sep 2013 | A1 |
20140079794 | Miura | Mar 2014 | A1 |
20150017689 | Darde et al. | Jun 2015 | A1 |
20150166350 | Fritz | Jun 2015 | A1 |
20150176892 | Darde | Jun 2015 | A1 |
20150204598 | Affleck et al. | Jul 2015 | A1 |
20150289500 | Fuhr et al. | Oct 2015 | A1 |
20160057992 | Lou et al. | Mar 2016 | A1 |
20160084563 | Ghiraldi | Mar 2016 | A1 |
20160114326 | Schryver | Apr 2016 | A1 |
20160153614 | Cognard | Jun 2016 | A1 |
20160158759 | Derdau et al. | Jun 2016 | A1 |
20160165881 | Arndt et al. | Jun 2016 | A1 |
20160260161 | Atchley et al. | Sep 2016 | A1 |
20160289000 | Caveney et al. | Oct 2016 | A1 |
20160334062 | Kermaidic et al. | Nov 2016 | A1 |
20170146277 | Newman | May 2017 | A1 |
20170198959 | Morris | Jul 2017 | A1 |
20170206497 | Kriss | Jul 2017 | A1 |
20170284723 | Newman | Oct 2017 | A1 |
20180010839 | Zhou et al. | Jan 2018 | A1 |
20180055042 | Sarmentero Ortiz | Mar 2018 | A1 |
20180299193 | Burkot et al. | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
106386786 | Feb 2017 | CN |
10129217 | Jan 2003 | DE |
0854334 | Jul 1998 | EP |
2336684 | Apr 2013 | EP |
2604956 | Jun 2013 | EP |
2873937 | May 2015 | EP |
2881646 | Jun 2015 | EP |
3032195 | Jun 2016 | EP |
3173715 | May 2017 | EP |
2030277 | Apr 1980 | GB |
H02-307819 | Dec 1990 | JP |
H06-293508 | Oct 1994 | JP |
3029950 | Apr 2000 | JP |
3247675 | Jan 2002 | JP |
3295695 | Jun 2002 | JP |
2009-196838 | Sep 2009 | JP |
3162797 | Sep 2010 | JP |
2014-101241 | Jun 2014 | JP |
2014006281 | Jan 2014 | WO |
2015082704 | Jun 2015 | WO |
Entry |
---|
https://www.savsu.com/new-index/#evo-80c; EVO—80′C “dry ice”. |
Number | Date | Country | |
---|---|---|---|
20190185327 A1 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
62599949 | Dec 2017 | US |