The field of the invention is cleaning apparatus for cleaning carriers used to hold and transport semiconductor wafers and similar flat articles requiring low contamination levels.
The processing of semiconductor wafers, substrates, photomasks, flat panel displays, data disks, optical and MEMS media and other flat articles (collectively referred to here as “wafers”) is very sensitive to contamination. These articles require extremely low contamination levels. Even microscopic contaminants can cause defects. Accordingly, it is necessary to maintain a high level of cleanliness during virtually all stages of manufacture.
Wafers are typically processed in batches. Batch handling may occur throughout the entire production process, or for one or more processing steps or related handling operations. Batch processing usually uses a carrier to hold the wafers. The wafer carriers can be of various designs and are generally a protective case or box optionally including a removable door. These carriers or boxes are known as FOUPs, FOSBYs or cassettes. In these types of carriers, the wafers are held and enclosed, to protect them from contamination during movement and storage within the processing facility. After each use, the wafer carriers must generally be cleaned to avoid having particles and contaminants on the carriers contaminate the wafers. Cleaning the boxes, however, can be difficult because they typically have features such as slots, grooves, and/or apertures.
Carriers have been successfully cleaned in centrifugal cleaners. See, for example, U.S. Pat. No. 5,738,128 incorporated herein by reference. In these centrifugal cleaners, the box is loaded onto a rotor, with the open front side of the box facing radially outwardly from the rotor. The box is then sprayed with cleaning fluids, and then with drying gases, while the rotor turns. Centrifugal force helps to remove cleaning fluids from the box, to help dry it. While these techniques have worked well for different types of boxes, disadvantages remain in loading, holding and unloading especially larger size carriers.
Another engineering challenge is that carrier doors in current systems are generally cleaned separately from the boxes themselves. Accordingly, matching the doors back with their respective boxes after cleaning is often difficult, error prone, and time consuming. Thus, there is a need for a system that efficiently cleans carriers, as well as a system that cleans carriers and carrier doors together.
In a first aspect of the invention, a system for cleaning carriers used for holding flat media or wafers includes a rotor rotatably mounted within an enclosure. Spray nozzles in the enclosure spray fluid toward the rotor. The rotor has at least one box holder assembly for holding a box, such as a FOUP or FOSBY. At least one retainer bar is located on the rotor for engaging a front section of the box to retain the box in the box holder assembly during rotation of the rotor. In a preferred embodiment, the retainer bar is moveable from a first position where the retainer bar restrains the box on the box holder assembly, to a second position where the retainer bar is moved away from the box. This design provides for quick, reliable and ergonomic loading, securing and unloading of boxes.
In a second aspect of the invention, a method of cleaning a box used for handling flat media includes loading a box into a box holder assembly on a rotor preferably via handles on the box. A retainer bar is then moved into engagement with the box to secure the box into the box holder assembly before rotating and spraying the box. The boxes are securely held in the rotor.
In a third aspect of the invention, a method of cleaning a carrier having a box with a removable door includes separating the door from the box and loading the box into a box holder assembly on a rotor. The door is then loaded into a door holder assembly attached to and alongside of the box holder assembly. Since each door remains next to its box at all times, matching doors and boxes after cleaning is greatly simplified.
In a fourth aspect of the invention, a rotor for holding and rotating boxes during cleaning of the boxes includes a top plate and a base plate. A plurality of box holder assemblies are located between the top plate and the bottom plate. Each box holder assembly includes a base plate or other means for holding a box, and a door plate or other means for holding a door, with the door plate attached to the base plate. Each box door is cleaned while remaining adjacent to the box the door came from.
Other and further objects, inventive features, and advantages, will appear hereinafter. The invention resides as well in subsystems and subcombinations of the features described. While various additional elements are discussed in the following detailed description, these elements are not essential to the invention.
In the drawings, wherein the same reference number denotes the same element, throughout the several views:
Turning now in detail to the drawings, as shown in
A rotor assembly 14 is rotatably supported within an enclosure 16 of the box cleaner 12. The rotor assembly 14 is accessed via an enclosure door 18, which slides or pivots open for loading and unloading, and is closed during cleaning. At least one spray manifold 20 (shown in phantom in
Turning to
The box holder assemblies 22 are attached to, and form part of, the rotor assembly 14 within the box cleaner 12. The rotor assembly 14 has a top ring plate 26 and a bottom ring plate (not visible in the drawings) attached to a core structure 28. The box holder assemblies 22 are rigidly attached to the ring plates via bolts 30, screws, or other suitable attachment means.
Door holding ladders or frames are also attached to the ring plates 26. Each door holding ladder 23 has positions for holding a door of a carrier. Each ladder 23 is preferably adjacent to a box bolder assembly, to simplify matching up doors and boxes after cleaning.
As is best illustrated in
The rotor assembly 14 includes a retainer mechanism for securing boxes 24 to their respective box holder assemblies 22 during rotation of the rotor assembly 14. The retainer mechanism includes a plurality of retainer plates or bars 32, with one retainer bar 32 aligned over each box holder assembly 22 on the rotor assembly 14. In a preferred embodiment, each retainer bar 32 is substantially C-shaped so that it may engage three sides of a box 24, as illustrated in
Each retainer bar 32 is preferably attached to a pair of vertically extending arms 34 located on opposite sides of each column of box holder assemblies 22. The retainer mechanism is preferably raised and lowered by an actuator 35, which is located at the bottom of the rotor assembly 14, as illustrated in
The rotor assembly 14 further includes an angled guide 39 attached thereto and positioned above each box holder assembly 22. The angled guide 39 is located between the retainer bar 32 and the central axis of the rotor assembly 14 such that, 24 when a box 24 is positioned on the box holder assembly 22, the angled guide 39 is aligned over the top of the box 24, as illustrated in
The rotor assembly 14 preferably includes one or more sensors for indicating when boxes 24 are properly loaded and retained in the box holder assemblies 22. Sensors may also be positioned on the rotor assembly 14 to indicate when a box holder assembly 22 is open for loading/unloading a carrier box 24, or closed for cleaning a box 24. As illustrated in
A variety of standard carriers used in the semiconductor wafer processing industry, such as FOUP carriers, may be cleaned in the rotor assembly 14. The box component of the carrier 24, as illustrated in
In use, carriers 24 to be cleaned are transported to the container cleaning system 10. A system (human) operator typically lifts a carrier box 24 from a cart and removes the door from the carrier box 24. To load the carrier 24 into the box cleaner 12, the operator turns the rotor assembly 14, via a control panel, until an empty box holder assembly 22 is aligned with the opening of the enclosure door 18. The enclosure door slides open and closed automatically via operator control of the control panel.
The operator, preferably holding the carrier box 24 by the handles 36, then slides the carrier box 24 over the lip 44 and between the side guides 42 of the box holder assembly 22, in the direction shown in
Once the box holder assemblies 22 are loaded with carrier boxes 24, the operator, via the actuator 35, lowers the retaining mechanism. Each retainer bar 32 engages the top of the frame 50 of its respective carrier box 24, as illustrated in
Before starting the cleaning process, the operator checks to ensure that none of the carrier boxes 24 are loaded improperly, preferably via the sensors on the rotor assembly 14 and/or on the box holder assemblies. If a carrier box 24 is loaded improperly, such that it protrudes out of the box holder assembly 22, for example, the operator can then adjust the box 24 by hand.
When each of the box holder assemblies 22 is properly loaded with a carrier box 24, or when there are no further boxes 24 to be cleaned, the operator closes the enclosure door 18 and initiates the cleaning sequence via a control panel 15. The rotor assembly 14 spins and cleaning fluids (typically water optionally including detergent) are sprayed onto the carrier boxes 24. Heated air, optionally along with drying gases may then be used to dry the carrier boxes 22, as described, for example, in U.S. Pat. No. 5,738,128. After the carrier boxes 24 have been cleaned and dried, they are unloaded and removed from the box cleaner 12 following the reverse of the sequence of steps described above.
The doors of the box carriers 24 may be cleaned in a separate cleaning apparatus, such as the centrifugal cleaner described in U.S. Pat. No. 6,412,502, incorporated herein by reference. The doors may then be matched up with their after cleaning respective carrier boxes. Generally, each door should be returned and attached to the box it came off of.
While embodiments and applications of the present invention have been shown and described, it will be apparent to one skilled in the art that other modifications are possible without departing from the inventive concepts herein. The invention, therefore, is not to be restricted except to the following claims and their equivalents.
This application is a division of U.S. patent application Ser. No. 10/286,317, filed Nov. 11, 2002, now U.S. Pat. No. 6,830,057, and incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3620234 | Everroad | Nov 1971 | A |
4299245 | Clapper | Nov 1981 | A |
4437479 | Bardina et al. | Mar 1984 | A |
4736759 | Coberly et al. | Apr 1988 | A |
4941489 | Kamimura et al. | Jul 1990 | A |
5022419 | Thompson | Jun 1991 | A |
5238503 | Phenix et al. | Aug 1993 | A |
5271774 | Leenaars et al. | Dec 1993 | A |
5301700 | Kamikawa et al. | Apr 1994 | A |
5363867 | Kawano et al. | Nov 1994 | A |
5562113 | Thompson | Oct 1996 | A |
5698038 | Guldi et al. | Dec 1997 | A |
5715851 | Jung et al. | Feb 1998 | A |
5738128 | Thompson et al. | Apr 1998 | A |
5972127 | Thompson et al. | Oct 1999 | A |
6096100 | Guldi et al. | Aug 2000 | A |
6248177 | Halbmaier | Jun 2001 | B1 |
6267123 | Yoshikawa | Jul 2001 | B1 |
6279724 | Davis | Aug 2001 | B1 |
6322633 | Bexten et al. | Nov 2001 | B1 |
6358328 | Yang et al. | Mar 2002 | B1 |
6412502 | Bexten et al. | Jul 2002 | B1 |
6432214 | Bryer et al. | Aug 2002 | B1 |
6446647 | Chu et al. | Sep 2002 | B1 |
6797076 | Bryer | Sep 2004 | B1 |
Number | Date | Country |
---|---|---|
61-164225 | Jul 1986 | JP |
61-166134 | Jul 1986 | JP |
01-111338 | Apr 1989 | JP |
01-199431 | Aug 1989 | JP |
Number | Date | Country | |
---|---|---|---|
20050011540 A1 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10286317 | Nov 2002 | US |
Child | 10917750 | US |