Methods for depositing material onto microfeature workpieces in reaction chambers and systems for depositing materials onto microfeature workpieces

Information

  • Patent Grant
  • 9023436
  • Patent Number
    9,023,436
  • Date Filed
    Tuesday, March 13, 2012
    12 years ago
  • Date Issued
    Tuesday, May 5, 2015
    9 years ago
Abstract
Methods for depositing material onto microfeature workpieces in reaction chambers and systems for depositing materials onto microfeature workpieces are disclosed herein. In one embodiment, a method includes depositing molecules of a gas onto a microfeature workpiece in the reaction chamber and selectively irradiating a first portion of the molecules on the microfeature workpiece in the reaction chamber with a selected radiation without irradiating a second portion of the molecules on the workpiece with the selected radiation. The first portion of the molecules can be irradiated to activate the portion of the molecules or desorb the portion of the molecules from the workpiece. The first portion of the molecules can be selectively irradiated by impinging the first portion of the molecules with a laser beam or other energy source.
Description
TECHNICAL FIELD

The present invention is related to methods for depositing material onto microfeature workpieces in reaction chambers and systems for depositing materials onto microfeature workpieces. More particularly, the present invention is related to methods for irradiating a portion of a microfeature workpiece to desorb or activate molecules in that portion of the workpiece.


BACKGROUND

Thin film deposition techniques are widely used in the manufacturing of microfeatures to form a coating on a workpiece that closely conforms to the surface topography. The size of the individual components in the workpiece is constantly decreasing, and the number of layers in the workpiece is increasing. As a result, both the density of components and the aspect ratios of depressions (i.e., the ratio of the depth to the size of the opening) are increasing. Thin film deposition techniques accordingly strive to produce highly uniform conformal layers that cover the sidewalls, bottoms, and corners in deep depressions that have very small openings.


One widely used thin film deposition technique is Chemical Vapor Deposition (CVD). In a CVD system, one or more precursors capable of reacting to form a solid thin film are mixed while in a gaseous or vaporous state, and then the precursor mixture is presented to the surface of the workpiece. The surface of the workpiece catalyzes the reaction between the precursors to form a solid thin film at the workpiece surface. A common way to catalyze the reaction at the surface of the workpiece is to heat the workpiece to a temperature that causes the reaction.


Although CVD techniques are useful in many applications, they also have several drawbacks. For example, if the precursors are not highly reactive, then a high workpiece temperature is needed to achieve a reasonable deposition rate. Such high temperatures are not typically desirable because heating the workpiece can be detrimental to the structures and other materials already formed on the workpiece. Implanted or doped materials, for example, can migrate within the silicon substrate at higher temperatures. On the other hand, if more reactive precursors are used so that the workpiece temperature can be lower, then reactions may occur prematurely in the gas phase before reaching the substrate. This is undesirable because the film quality and uniformity may suffer, and also because it limits the types of precursors that can be used.


Atomic Layer Deposition (ALD) is another thin film deposition technique. FIGS. 1A and 1B schematically illustrate the basic operation of ALD processes. Referring to FIG. 1A, a layer of gas molecules A coats the surface of a workpiece W. The layer of A molecules is formed by exposing the workpiece W to a precursor gas containing A molecules and then purging the chamber with a purge gas to remove excess A molecules. This process can form a monolayer of A molecules on the surface of the workpiece W because the A molecules at the surface are held in place during the purge cycle by physical adsorption forces at moderate temperatures or chemisorption forces at higher temperatures. Referring to FIG. 1B, the layer of A molecules is then exposed to another precursor gas containing B molecules. The A molecules react with the B molecules to form an extremely thin layer of solid material on the workpiece W. The chamber is then purged again with a purge gas to remove excess B molecules.



FIG. 2 illustrates the stages of one cycle for forming a thin solid layer using ALD techniques. A typical cycle includes (a) exposing the workpiece to the first precursor A, (b) purging excess A molecules, (c) exposing the workpiece to the second precursor B, and then (d) purging excess B molecules. In actual processing, several cycles are repeated to build a thin film on a workpiece having the desired thickness. For example, each cycle may form a layer having a thickness of approximately 0.5-1.0 Å, and thus several cycles are required to form a solid layer having a thickness of approximately 60 Å.


One drawback of ALD processing is that it has a relatively low throughput compared to CVD techniques. For example, each A-purge-B-purge cycle can take several seconds. This results in a total process time of several minutes to form a single thin layer of only 60 Å. In contrast to ALD processing, CVD techniques require only about one minute to form a 60 Å thick layer. The low throughput limits the utility of the ALD technology in its current state because ALD may create a bottleneck in the overall manufacturing process.



FIG. 3 schematically illustrates a single-wafer CVD/ALD reactor 10 having a reaction chamber 20 coupled to a gas supply 30 and a vacuum pump 40. The reactor 10 also includes a gas dispenser 60 and a heater 50 for supporting the workpiece W in the reaction chamber 20. The gas dispenser 60 includes a plenum 62 operably coupled to the gas supply 30 and a distributor plate 64 having a plurality of holes 66. In operation, the heater 50 heats the workpiece W to a desired temperature, and the gas supply 30 selectively injects the precursors as described above. The vacuum pump 40 maintains a negative pressure in the reaction chamber 20 to draw the gases from the gas dispenser 60 across the workpiece W and then through an outlet of the chamber 20.


In photoselective CVD processing, the reaction chamber 20 may further include a laser 70 configured to generate a laser beam 72 for activating at least one of the precursors. The laser 70 produces the laser beam 72 along a beam path generally parallel to the workpiece W, with the laser beam 72 positioned between the gas dispenser 60 and the workpiece W to selectively activate a precursor(s) before the precursor(s) is deposited onto the workpiece W. The activated precursor(s) subsequently reacts with other precursors on the surface of the workpiece W to form a solid thin film.


In addition to CVD and ALD processing, other processing steps are necessary to form features and devices on workpieces. For example, conventional processing includes patterning a design onto a workpiece, etching unnecessary material from the workpiece, depositing selected material onto the workpiece, and planarizing the surface of the workpiece. These additional processing steps are expensive and time-consuming. Accordingly, a need exists to improve the efficiency with which features are formed on workpieces.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B are schematic cross-sectional views of stages in ALD processing in accordance with the prior art.



FIG. 2 is a graph illustrating a cycle for forming a layer using ALD techniques in accordance with the prior art.



FIG. 3 is a schematic representation of a system including a reaction chamber for depositing materials onto a microfeature workpiece in accordance with the prior art.



FIG. 4 is a schematic representation of a system for depositing materials onto a microfeature workpiece in accordance with one embodiment of the invention.



FIGS. 5A-5C illustrate stages in an ALD process in which a laser desorbs material from a workpiece in accordance with another embodiment of the invention.



FIG. 5A is a schematic side cross-sectional view of a portion of the workpiece after depositing a layer of first molecules onto a surface of the workpiece.



FIG. 5B is a schematic side cross-sectional view of the workpiece after desorbing a selected portion of the first molecules.



FIG. 5C is a schematic side cross-sectional view of the workpiece after depositing a layer of second molecules onto the workpiece.



FIGS. 6A-6D illustrate stages in a CVD process in which the laser desorbs material from a workpiece in accordance with another embodiment of the invention.



FIG. 6A is a schematic side cross-sectional view of a portion of the workpiece after depositing a layer of first molecules onto a surface of the workpiece.



FIG. 6B is a schematic side cross-sectional view of the workpiece after with the laser desorbing selected first molecules from a portion of the workpiece.



FIG. 6C is a schematic side cross-sectional view of the workpiece after depositing second molecules onto the workpiece.



FIG. 6D is a schematic side cross-sectional view of the workpiece after desorbing a selected portion of the second molecules.



FIGS. 7A-7C illustrate stages in an ALD process in which the laser activates molecules on a workpiece in accordance with another embodiment of the invention.



FIG. 7A is a schematic side cross-sectional view of a portion of the workpiece after depositing a layer of first molecules onto the workpiece.



FIG. 7B is a schematic side cross-sectional view of the workpiece after depositing a plurality of second molecules onto the workpiece.



FIG. 7C a schematic side cross-sectional view of the workpiece after removing the nonreacted second molecules from the workpiece.



FIG. 8 is a schematic representation of a system for depositing materials onto a microfeature workpiece in accordance with another embodiment of the invention.



FIG. 9 is a schematic representation of a system for depositing materials onto a microfeature workpiece in accordance with another embodiment of the invention.





DETAILED DESCRIPTION

A. Overview


The following disclosure describes several embodiments of systems for depositing materials onto microfeature workpieces, and methods for depositing materials onto workpieces in reaction chambers. Many specific details of the invention are described below with reference to single-wafer reaction chambers for depositing materials onto microfeature workpieces, but several embodiments can be used in batch systems for processing a plurality of workpieces simultaneously. The term “microfeature workpiece” is used throughout to include substrates upon which and/or in which microelectronic devices, micromechanical devices, data storage elements, read/write components, and other features are fabricated. For example, microfeature workpieces can be semiconductor wafers such as silicon or gallium arsenide wafers, glass substrates, insulative substrates, and many other types of materials. Furthermore, the term “gas” is used throughout to include any form of matter that has no fixed shape and will conform in volume to the space available, which specifically includes vapors (i.e., a gas having a temperature less than the critical temperature so that it may be liquefied or solidified by compression at a constant temperature). Several embodiments in accordance with the invention are set forth in FIGS. 4-9 and the following text to provide a thorough understanding of particular embodiments of the invention. A person skilled in the art will understand, however, that the invention may have additional embodiments, or that the invention may be practiced without several of the details of the embodiments shown in FIGS. 4-9.


Several aspects of the invention are directed to methods for depositing materials onto microfeature workpieces in a reaction chamber. In one embodiment, a method includes depositing molecules of a gas onto a microfeature workpiece in the reaction chamber and selectively irradiating a first portion of the molecules on the microfeature workpiece in the reaction chamber with a selected radiation without irradiating a second portion of the molecules on the workpiece with the selected radiation. The first portion of the molecules can be irradiated to activate the molecules or desorb the molecules from the workpiece. The first portion of the molecules can be selectively irradiated by impinging the molecules with a laser beam or another energy source.


In another embodiment, a method includes depositing first molecules of a first gas onto the microfeature workpiece in the reaction chamber, directing a laser beam toward a first portion of the first molecules to desorb the first portion of the first molecules without desorbing a second portion of the first molecules, and depositing second molecules of a second gas onto the second portion of the first molecules. The first and second gases can have generally the same or different compositions. The method can further include directing the laser beam toward a first portion of the second molecules to desorb the first portion of the second molecules without directing the laser beam toward a second portion of the second molecules.


In another embodiment, a method includes depositing first molecules of a first gas onto the microfeature workpiece in the reaction chamber, directing a laser beam toward a selected portion of the first molecules to activate the selected portion of the first molecules to react with second molecules of a second gas, and depositing the second molecules of the second gas onto the selected portion of the first molecules. The first and second gases can have the same or different compositions. The method can further include purging excess first gas from the reaction chamber before depositing molecules of the second gas.


Other aspects of the invention are directed to systems for depositing materials onto a surface of a microfeature workpiece. In one embodiment, a system includes a gas supply assembly having a gas source, a gas phase reaction chamber for carrying the microfeature workpiece, a gas distributor carried by the reaction chamber and coupled to the gas supply assembly, an energy source positioned to selectively irradiate portions of the microfeature workpiece, and a controller operably coupled to the energy source and the gas supply assembly. The controller has a computer-readable medium containing instructions to perform one of the above-mentioned methods.


B. Embodiments of Deposition Systems



FIG. 4 is a schematic representation of a system 100 for depositing materials onto a microfeature workpiece W in accordance with one embodiment of the invention. In this embodiment, the system 100 includes a reactor 110 having a reaction chamber 120 coupled to a gas supply 130 and a vacuum pump 140. The reactor 110 also includes a gas distributor 160 coupled to the gas supply 130 to dispense gas(es) into the reaction chamber 120 and onto the workpiece W. Byproducts including excess and/or unreacted gas molecules are removed from the reaction chamber 120 by the vacuum pump 140 and/or by injecting a purge gas into the chamber 120.


The gas supply 130 includes a plurality of gas sources 132 (shown schematically and identified individually as 132a-c) and a plurality of gas lines 136 coupled to corresponding gas sources 132. The gas sources 132 can include a first gas source 132a for providing a first gas, a second gas source 132b for providing a second gas, and a third gas source 132c for providing a third gas. The first and second gases can be first and second precursors, respectively. The third gas can be a purge gas. The first and second precursors are the gas and/or vapor phase constituents that react to form the thin, solid layer on the workpiece W. The purge gas can be a suitable type of gas that is compatible with the reaction chamber 120 and the workpiece W. In other embodiments, the gas supply 130 can include a different number of gas sources 132 for applications that require additional precursors or purge gases.


The system 100 of the illustrated embodiment further includes a valve assembly 133 (shown schematically) coupled to the gas lines 136 and a controller 134 (shown schematically) operably coupled to the valve assembly 133. The controller 134 generates signals to operate the valve assembly 133 to control the flow of gases into the reaction chamber 120 for ALD and CVD applications. For example, the controller 134 can be programmed to operate the valve assembly 133 to pulse the gases individually through the gas distributor 160 in ALD applications or to mix selected precursors in the gas distributor 160 in CVD applications. More specifically, in one embodiment of an ALD process, the controller 134 directs the valve assembly 133 to dispense a pulse of the first gas (e.g., the first precursor) into the reaction chamber 120. Next, the controller 134 directs the valve assembly 133 to dispense a pulse of the third gas (e.g., the purge gas) to purge excess molecules of the first gas from the reaction chamber 120. The controller 134 then directs the valve assembly 133 to dispense a pulse of the second gas (e.g., the second precursor), followed by a pulse of the third gas. In one embodiment of a pulsed CVD process, the controller 134 directs the valve assembly 133 to dispense a pulse of the first and second gases (e.g., the first and second precursors) into the reaction chamber 120. Next, the controller 134 directs the valve assembly 133 to dispense a pulse of the third gas (e.g., the purge gas) into the reaction chamber 120. In other embodiments, the controller 134 can dispense the gases in other sequences.


In the illustrated embodiment, the reactor 110 also includes a workpiece support 150 to hold the workpiece W in the reaction chamber 120. The workpiece support 150 can be heated to bring the workpiece W to a desired temperature for catalyzing the reaction between the first gas and the second gas at the surface of the workpiece W. For example, the workpiece support 150 can be a plate with a heating element. The workpiece support 150, however, may not be heated in other applications.


The illustrated reaction chamber 120 further includes a laser 170 (shown schematically) operably coupled to the controller 134 for producing a laser beam 172 to irradiate selected portions of the workpiece W. The laser beam 172 provides sufficient localized energy to desorb or activate the irradiated molecules on the workpiece W. For example, after a layer of material has been deposited onto the workpiece W, the laser 170 can direct the laser beam 172 toward a selected portion of the material to desorb or activate the material, as described in greater detail below. Depending on the material, the power required for desorption can be on the order of 1e6 W/cm2. Accordingly, in several embodiments, the laser 170 can be a stand-alone laser system; and in other embodiments, the laser 170 can include one or more laser diodes. For example, suitable laser diodes include a 600 W QCW Laser Diode Array, part number ARR48P600, manufactured by Cutting Edge Optronics in St. Charles, Mo. In additional embodiments, the reaction chamber 120 may include an energy source in lieu of a laser to heat a localized portion of the workpiece W for desorbing or activating selected molecules.


The reactor 110 may further include a positioning device 180 (shown schematically) coupled to the laser 170 and operably coupled to the controller 134 for moving the laser 170 and aligning the laser beam 172 with the selected portion of the workpiece W. For example, the positioning device 180 can move the laser 170 from a stowed position (shown in hidden lines) to a deployed position (shown in solid lines) for irradiating the selected portion of the workpiece W. In the stowed position, the laser 170 and the positioning device 180 are arranged so as not to interfere with the flow of gases from the gas distributor 160 to the workpiece W. The positioning device 180 can be configured to move the laser 170 side to side (e.g., X direction) and forward and backward (e.g., Y direction) to align the laser beam 170 with the selected portion of the workpiece W. Alternatively, the positioning device 180 may also be able to move the laser 170 upward and downward (e.g., Z direction). The positioning device 180 can accordingly have an articulating arm, a telescoping arm, or other type of structure to support the laser 170 over the workpiece W. The positioning device 180 can further include an actuator to move the arm. In other embodiments, such as those described below with reference to FIGS. 8 and 9, the reactor may not include a positioning device coupled to the laser.


C. Embodiments of Methods for Depositing Materials Onto Workpieces



FIGS. 5A-5C illustrate stages in an ALD process in which the laser 170 desorbs material from the workpiece W in accordance with one embodiment of the invention. FIG. 5A, more specifically, is a schematic side cross-sectional view of a portion of the workpiece W after dispensing a pulse of a first gas into the reaction chamber 120 (FIG. 4) and depositing a layer of first molecules 192 from the first gas onto a surface 190 of the workpiece W. FIG. 5B is a schematic side cross-sectional view of the workpiece W with the laser beam 172 impinging a selected portion P1 of the workpiece W. After depositing the first molecules 192 onto the workpiece W, the positioning device 180 aligns the laser 170 with the selected portion P1 of the workpiece W and the laser 170 directs the laser beam 172 toward selected first molecules 192a. The power, wavelength, and other laser beam parameters are selected based on the chemistry of the first molecules 192 so that the energy from the laser beam 172 breaks the bonds securing the selected first molecules 192a to the surface 190 and, consequently, desorbs the selected first molecules 192a from the workpiece W. As the laser 170 moves across the workpiece W, the laser beam 172 impinges the selected first molecules 192a without impinging a plurality of nonselected first molecules 192b. Consequently, the nonselected first molecules 192b remain physisorbed and/or chemisorbed to the surface 190 of the workpiece W.


After irradiating the portion P1 of the workpiece W, a purge gas can be dispensed into the reaction chamber 120 (FIG. 4) to remove the desorbed first molecules 192a and the excess first gas molecules from the chamber 120. Alternatively, the purge gas can be dispensed into the reaction chamber 120 while the portion P1 of the workpiece W is irradiated. In other embodiments, the desorbed first molecules 192a can be removed from the reaction chamber 120 without injecting a purge gas by drawing the molecules 192a from the chamber 120 with the vacuum pump 140 (FIG. 4). In additional embodiments, the desorbed first molecules 192a can be removed from the reaction chamber 120 as a second gas is subsequently injected into the chamber 120 and deposited onto the workpiece W.



FIG. 5C is a schematic side cross-sectional view of the workpiece W after dispensing a pulse of a second gas into the reaction chamber 120 (FIG. 4) and depositing a layer of second molecules 194 from the second gas onto the workpiece W. The second molecules 194 react with the first molecules 192b to form a discrete film 195a on the workpiece W.


The first and second gases can have the same or different compositions. For example, in one embodiment, the composition of the second molecules 194 can be chosen such that the second molecules 194 adhere to the nonirradiated first molecules 192b but do not adhere to the exposed portion P1 of the surface 190. Suitable gases for such an embodiment include TMA for the first gas and O3 for the second gas, although other gases can be used. In other embodiments, the second molecules 194 can adhere to the exposed portion P1 of the surface 190 in addition to the nonirradiated first molecules 192b. If some of the second molecules 194 adhere to the exposed portion P1 of the surface 190, the laser 170 (FIG. 4) can optionally irradiate and desorb these molecules. In either case, after depositing the second molecules 194 onto the workpiece W, the reaction chamber 120 can be purged and the process can be repeated to build additional layers (shown in hidden lines as 195b and 195c) on the workpiece W.


In additional embodiments, the laser 170 can irradiate the selected portion P1 of the workpiece W only after the second molecules 194 have been deposited onto the workpiece W. For example, in one method, the first molecules 192 are deposited across the workpiece W, and then the reaction chamber 120 can be optionally purged. Next, the second molecules 194 are deposited across the workpiece W, and then the laser 170 irradiates the selected portion P1 of the workpiece W to desorb the selected first and second molecules.


One advantage of the method illustrated in FIGS. 5A-5C is the ability to form features 199, such as conductive lines, on the workpiece W during an ALD process. Forming features 199 on the workpiece W during the deposition process simplifies and reduces the number of subsequent production steps required to construct devices on the workpiece W. For example, by forming the features 199 on the illustrated workpiece W during an ALD process, post-deposition processing, including masking, etching, depositing material, and planarizing, may be reduced and/or eliminated.



FIGS. 6A-6D illustrate stages in a CVD process in which the laser 170 desorbs material from the workpiece W in accordance with another embodiment of the invention. FIG. 6A, more specifically, is a schematic side cross-sectional view of a portion of the workpiece W after dispensing a pulse of one or more precursors into the reaction chamber 120 (FIG. 4), mixing the precursors to form a gas, and depositing a layer of first molecules 292 from the gas onto the surface 190 of the workpiece W. FIG. 6B is a schematic side cross-sectional view of the workpiece W with the laser 170 directing the laser beam 172 toward selected first molecules 292a to desorb the molecules 292a from a portion P2 of the workpiece W. As the laser 170 moves across the workpiece W, the laser beam 172 does not impinge and desorb a plurality of nonselected molecules 292b. After desorption, the selected first molecules 292a can be removed from the reaction chamber 120 by dispensing a purge gas into the chamber 120 and/or drawing the desorbed molecules 292a from the chamber 120 with the vacuum pump 140 (FIG. 4). Alternatively, the purge gas can be dispensed into the reaction chamber 120 while the portion P2 of the workpiece W is irradiated.



FIG. 6C is a schematic side cross-sectional view of the workpiece W after dispensing another pulse of the precursors into the reaction chamber 120 (FIG. 4), mixing the precursors to form the gas, and depositing a plurality of second molecules 294 of the gas onto the workpiece W. The second molecules 294 are deposited onto the nonirradiated molecules 292b and the exposed portion P2 of the workpiece W. The second molecules 294 proximate to the first molecules 292b react with the first molecules 292b to form a discrete film 295a on the workpiece W.



FIG. 6D is a schematic side cross-sectional view of the workpiece W with the laser 170 directing the laser beam 172 toward selected second molecules 294a to desorb the selected molecules 294a from the portion P2 of the workpiece W. After desorbing the selected second molecules 294a, the process can be repeated to build additional layers (shown in hidden lines as 295b and 295c) on the workpiece W. In other embodiments, the selected second molecules 294a may not be desorbed from the workpiece W or may be desorbed during subsequent process steps.


In additional embodiments, more than one layer of molecules can be desorbed during a single irradiation cycle. For example, in one method, a layer of first molecules 292 can be deposited onto the workpiece W, a layer of second molecules 294 can be deposited onto the workpiece W, and then the laser beam 172 can desorb the selected first and second molecules 292a and 294a from the workpiece W.



FIGS. 7A-7C illustrate stages in an ALD process in which the laser 170 activates molecules on the workpiece W in accordance with another embodiment of the invention. More specifically, FIG. 7A is a schematic side cross-sectional view of a portion of the workpiece W after dispensing a pulse of a first gas into the reaction chamber 120 (FIG. 4) and depositing a layer of first molecules 392 (shown as 392a and 392b) from the first gas onto the surface 190 of the workpiece W. After depositing the first molecules 392, the reaction chamber 120 can optionally be purged to remove excess molecules of the first gas. Next, the laser 170 moves across the workpiece W and directs the laser beam 172 toward selected first molecules 392a on a portion P3 of the workpiece W. The power, wavelength, and other laser beam parameters are selected based on the chemistry of the first molecules 392 so that the energy from the laser beam 172 activates the selected first molecules 392a such that the molecules 392a are inclined to react with a subsequent gas. More specifically, the energy from the laser beam 172 breaks one or more of the bonds of the selected adsorbed molecules 392a, which destabilizes the molecules 392a such that the molecules 392a are inclined to react with the next molecule in the ALD sequence. As the laser 170 moves across the workpiece W, the laser beam 172 activates the selected first molecules 392a without exposing or activating a plurality of nonselected first molecules 392b on the workpiece W.



FIG. 7B is a schematic side cross-sectional view of the workpiece W after dispensing a pulse of a second gas into the reaction chamber 120 (FIG. 4) and depositing a layer of second molecules 394 (shown as 394a and 394b) from the second gas onto the workpiece W. The first and second gases can have the same or different compositions. The second molecules 394a proximate to the activated first molecules 392a react with the activated molecules 392a to form a discrete film 395 on the workpiece W. The second molecules 394b proximate to the nonactivated first molecules 392b generally do not react with the nonactivated molecules 392b.



FIG. 7C a schematic side cross-sectional view of the workpiece W after removing the nonreacted second molecules 394b (FIG. 7B) from the workpiece W. The nonreacted second molecules 394b can be removed from the workpiece W and the reaction chamber 120 (FIG. 4) by dispensing a purge gas into the chamber 120 and/or drawing the molecules 294b from the chamber 120 with the vacuum pump 140 (FIG. 4). In some embodiments, the nonactivated first molecules 392b can also be removed from the workpiece W; however, in other embodiments, the nonactivated first molecules 392b may not be removed from the workpiece W. In either case, the process can be repeated to build additional layers (shown in hidden lines as 395b and 395c) and form a feature 399 on the workpiece W.


In other embodiments, the laser 170 can irradiate the selected portion P3 of the workpiece W after the second molecules 394 have been deposited onto the workpiece W. For example, in one method, a layer of first molecules 392 are deposited across the workpiece W, and then the reaction chamber 120 can be optionally purged. Next, a layer of second molecules 394 are deposited across the workpiece W, and then the laser 170 irradiates the selected portion P3 of the workpiece W to activate the selected first and/or second molecules and catalyze the reaction between the selected molecules.


In additional embodiments, the methods described above with reference to FIGS. 7A-7C can also be used in a CVD process. For example, in one CVD process, a layer of first molecules can be deposited onto a workpiece, and the laser can activate a selected portion of the first molecules. Next, a plurality of second molecules can be deposited onto and react with the activated first molecules. Alternatively, as described above, the laser can irradiate the selected portion of the workpiece after a layer of second molecules have been deposited to catalyze the reaction between the selected first and second molecules.


D. Additional Embodiments of Deposition Systems



FIG. 8 is a schematic representation of a system 400 for depositing materials onto a microfeature workpiece W in accordance with another embodiment of the invention. The illustrated system 400 is generally similar to the system 100 described above with reference to FIG. 4. For example, the illustrated system 400 includes a reactor 410 having a reaction chamber 420 coupled to the gas supply 130 and the vacuum pump 140. The illustrated reaction chamber 420 includes a laser 470 (shown schematically) for producing a laser beam 472 along a path, a reflector 478 positioned along the path of the laser beam 472, and a positioning device 480 (shown schematically) for moving the reflector 478 relative to the workpiece W. The laser 470 can be fixed relative to the workpiece W and configured to pivot about the Z axis. The positioning device 480 can move the reflector 478 side to side (e.g., X direction) and forward and backward (e.g., Y direction) to reflect the laser beam 472 toward the selected portion of the workpiece W.



FIG. 9 is a schematic representation of a system 500 for depositing materials onto a microfeature workpiece W in accordance with another embodiment of the invention. The illustrated system 500 is generally similar to the system 100 described above with reference to FIG. 4. For example, the illustrated system 500 includes a reactor 510 having a reaction chamber 520 coupled to the gas supply 130 and the vacuum pump 140. The illustrated reaction chamber 520 includes a laser 570 (shown schematically) for generating a laser beam 572 (shown in hidden lines), a workpiece support 150 for carrying the workpiece W, and a positioning device 580 (shown schematically) attached to the workpiece support 150 for moving the workpiece W relative to the laser 570. For example, the positioning device 580 can move the workpiece support 150 from a first position (shown in solid lines) in which the workpiece W is oriented for deposition to a second position (shown in broken lines) in which the workpiece W is oriented for irradiation.


From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. For example, any one of the systems 100, 400 and 500 described above with reference to FIGS. 4, 8 and 9 can be used to perform any one of the methods described above with reference to FIGS. 5-7. Accordingly, the invention is not limited except as by the appended claims.

Claims
  • 1. A system for forming features on a microfeature workpiece by depositing materials onto a surface of the microfeature workpiece, the system comprising: a gas supply assembly having a gas source;a gas phase reaction chamber for carrying the microfeature workpiece;a gas distributor carried by the reaction chamber and coupled to the gas supply assembly;an energy source positioned to selectively irradiate portions of the microfeature workpiece, wherein the energy source comprises a laser configured for producing a laser beam; anda controller operably coupled to the energy source and the gas supply assembly, the controller having a computer-readable medium containing instructions and configured to perform a method comprising—depositing a monolayer or approximately a monolayer of molecules of a gas onto the microfeature workpiece in the reaction chamber, wherein the molecules of the gas comprise a plurality of first molecules of a first gas;selectively irradiating a first portion of the first molecules on the microfeature workpiece in the reaction chamber with a laser beam having a selected radiation without irradiating a second portion of the first molecules on the workpiece with the selected radiation, wherein selectively irradiating the first portion comprises desorbing the first portion of the first molecules from the workpiece;depositing second molecules of a second gas onto the second portion of the first molecules, wherein the first gas and the second gas have different compositions; andrepeating the depositing and selectively irradiating to form a feature on the workpiece.
  • 2. The system of claim 1, further comprising a positioning device coupled to the laser, wherein the positioning device is configured to move the laser to selectively direct the laser beam toward the first portion of the microfeature workpiece.
  • 3. The system of claim 1, further comprising a reflector positioned in the path of the laser beam to reflect the laser beam toward the microfeature workpiece.
  • 4. The system of claim 1 wherein the system further comprises: a reflector positioned in the path to reflect the laser beam toward the microfeature workpiece; anda positioning device coupled to the reflector for moving the reflector so that the reflector directs the laser beam toward the first portion of the microfeature workpiece.
  • 5. The system of claim 1 wherein the system further comprises: a workpiece support for carrying the microfeature workpiece; anda positioning device coupled to the workpiece support for moving the support to align the microfeature workpiece with the laser beam.
  • 6. The system of claim 5 wherein the workpiece support is further configured to heat the workpiece to a desired temperature during operation.
  • 7. The system of claim 1 wherein the gas source of the gas supply assembly comprises a first gas source configured to supply the first gas, and wherein the gas supply assembly further comprises a second gas source configured to provide the second gas.
  • 8. The system of claim 7 wherein the first gas comprises a first precursor and the second gas comprises a second precursor.
  • 9. The system of claim 8 wherein the gas supply assembly further comprises a third gas source configured to provide a third gas, and wherein the third gas comprises a purge gas.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a divisional of U.S. application Ser. No. 10/840,571 filed May 6, 2004, now U.S. Pat. No. 8,133,554, which is incorporated herein by reference in its entirety.

US Referenced Citations (477)
Number Name Date Kind
127031 Dayton May 1872 A
131943 Dayton Oct 1872 A
579269 Hent Mar 1897 A
1741519 Huff Dec 1926 A
2508500 de Lange May 1950 A
RE24291 Goodyer Mar 1957 E
3522836 King Aug 1970 A
3618919 Beck Nov 1971 A
3620934 Endle Nov 1971 A
3630769 Hart et al. Dec 1971 A
3630881 Lester Dec 1971 A
3634212 Valayll et al. Jan 1972 A
3744771 Deaton Jul 1973 A
3945804 Shang et al. Mar 1976 A
4018949 Donakowski et al. Apr 1977 A
4022928 Piwcyzk et al. May 1977 A
4098923 Alberti et al. Jul 1978 A
4242182 Popescu et al. Dec 1980 A
4242370 Abdalla et al. Dec 1980 A
4269625 Molenaar et al. May 1981 A
4289061 Emmett Sep 1981 A
4313783 Davies et al. Feb 1982 A
4388342 Suzuki et al. Jun 1983 A
4397753 Czaja Aug 1983 A
4436674 McMenamin Mar 1984 A
4438724 Doehler et al. Mar 1984 A
4469801 Hirai et al. Sep 1984 A
4492716 Yamazaki et al. Jan 1985 A
4509456 Kleinert et al. Apr 1985 A
4545136 Izu et al. Oct 1985 A
4590042 Drage May 1986 A
4593644 Hanak Jun 1986 A
4595399 Collins et al. Jun 1986 A
4607167 Petric Aug 1986 A
4615904 Ehrlich et al. Oct 1986 A
4681777 Engelken et al. Jul 1987 A
4721629 Sakai et al. Jan 1988 A
4738295 Genser et al. Apr 1988 A
4780178 Yoshida et al. Oct 1988 A
4821302 Whitlock et al. Apr 1989 A
4826579 Westfall May 1989 A
4832115 Albers et al. May 1989 A
4871417 Nishizawa et al. Oct 1989 A
4894132 Tanaka et al. Jan 1990 A
4911638 Bayne et al. Mar 1990 A
4923715 Matsuda et al. May 1990 A
4948979 Munakata et al. Aug 1990 A
4949669 Ishii et al. Aug 1990 A
4962057 Epler et al. Oct 1990 A
4966646 Zdeblick Oct 1990 A
4977106 Smith Dec 1990 A
4988879 Zare et al. Jan 1991 A
5015330 Okumura et al. May 1991 A
5017404 Paquet et al. May 1991 A
5020476 Bay et al. Jun 1991 A
5062446 Anderson Nov 1991 A
5065697 Yoshida et al. Nov 1991 A
5076205 Vowles et al. Dec 1991 A
5090985 Soubeyrand Feb 1992 A
5091207 Tanaka et al. Feb 1992 A
5131752 Yu et al. Jul 1992 A
5136975 Bartholomew et al. Aug 1992 A
5172849 Barten et al. Dec 1992 A
5178683 Takamura et al. Jan 1993 A
5200023 Gifford et al. Apr 1993 A
5223113 Kaneko et al. Jun 1993 A
5232749 Gilton Aug 1993 A
5248527 Uchida et al. Sep 1993 A
5286296 Sato et al. Feb 1994 A
5325020 Campbell et al. Jun 1994 A
5364219 Takahashi et al. Nov 1994 A
5366557 Yu Nov 1994 A
5372837 Shimoyama et al. Dec 1994 A
5377429 Sandhu et al. Jan 1995 A
5378502 Willard et al. Jan 1995 A
5380396 Shikida et al. Jan 1995 A
5409129 Tsukada et al. Apr 1995 A
5418180 Brown May 1995 A
5421957 Carlson et al. Jun 1995 A
5427666 Mueller et al. Jun 1995 A
5432015 Wu et al. Jul 1995 A
5433787 Suzuki et al. Jul 1995 A
5433835 Demaray et al. Jul 1995 A
5445491 Nakagawa et al. Aug 1995 A
5453124 Moslehi et al. Sep 1995 A
5474612 Sato et al. Dec 1995 A
5477623 Tomizawa et al. Dec 1995 A
5480818 Matsumoto et al. Jan 1996 A
5496410 Fukuda et al. Mar 1996 A
5498292 Ozaki et al. Mar 1996 A
5500256 Watabe et al. Mar 1996 A
5505986 Velthaus et al. Apr 1996 A
5514501 Tarlov May 1996 A
5522934 Suzuki et al. Jun 1996 A
5527396 Saitoh et al. Jun 1996 A
5532190 Goodyear et al. Jul 1996 A
5536317 Crain et al. Jul 1996 A
5558717 Zhao et al. Sep 1996 A
5562800 Kawamura et al. Oct 1996 A
5569350 Osada et al. Oct 1996 A
5575883 Nishikawa et al. Nov 1996 A
5589002 Su Dec 1996 A
5589110 Motoda et al. Dec 1996 A
5592581 Okase et al. Jan 1997 A
5595606 Fujikawa et al. Jan 1997 A
5599513 Masaki et al. Feb 1997 A
5609798 Liu et al. Mar 1997 A
5624498 Lee et al. Apr 1997 A
5626936 Alderman May 1997 A
5640751 Faria Jun 1997 A
5643394 Maydan et al. Jul 1997 A
5654589 Huang et al. Aug 1997 A
5658503 Johnston et al. Aug 1997 A
5663797 Sandhu Sep 1997 A
5683538 O'Neill et al. Nov 1997 A
5693288 Nakamura et al. Dec 1997 A
5716796 Bull et al. Feb 1998 A
5729896 Dalal et al. Mar 1998 A
5733375 Fukuda et al. Mar 1998 A
5746434 Boyd et al. May 1998 A
5754297 Nulman May 1998 A
5766364 Ishida et al. Jun 1998 A
5769950 Takasu et al. Jun 1998 A
5769952 Komino et al. Jun 1998 A
5772771 Li et al. Jun 1998 A
5773085 Inoue et al. Jun 1998 A
5788778 Shang et al. Aug 1998 A
5792269 Deacon et al. Aug 1998 A
5792700 Turner et al. Aug 1998 A
5803938 Yamaguchi et al. Sep 1998 A
5819683 Ikeda et al. Oct 1998 A
5820641 Gu et al. Oct 1998 A
5820686 Moore Oct 1998 A
5827370 Gu Oct 1998 A
5833888 Arya et al. Nov 1998 A
5846275 Lane et al. Dec 1998 A
5846330 Quirk et al. Dec 1998 A
5851294 Young et al. Dec 1998 A
5851849 Comizzoli et al. Dec 1998 A
5865417 Harris et al. Feb 1999 A
5865887 Wijaranakula et al. Feb 1999 A
5866986 Pennington Feb 1999 A
5868159 Loan et al. Feb 1999 A
5879459 Gadgil et al. Mar 1999 A
5879516 Kasman Mar 1999 A
5885425 Hsieh et al. Mar 1999 A
5895530 Shrotriya et al. Apr 1999 A
5902403 Aitani et al. May 1999 A
5908947 Vaartstra Jun 1999 A
5911238 Bump et al. Jun 1999 A
5932286 Beinglass et al. Aug 1999 A
5936829 Moslehi Aug 1999 A
5940684 Shakuda et al. Aug 1999 A
5953634 Kajita et al. Sep 1999 A
5956613 Zhao et al. Sep 1999 A
5958140 Arami et al. Sep 1999 A
5961775 Fujimura et al. Oct 1999 A
5963336 McAndrew et al. Oct 1999 A
5968587 Frankel Oct 1999 A
5972430 DiMeo, Jr. et al. Oct 1999 A
5994181 Hsieh et al. Nov 1999 A
5997588 Goodwin et al. Dec 1999 A
5998932 Lenz Dec 1999 A
6006694 DeOrnellas et al. Dec 1999 A
6008086 Schuegraf et al. Dec 1999 A
6016611 White et al. Jan 2000 A
6022483 Aral Feb 2000 A
6025110 Nowak Feb 2000 A
6032923 Biegelsen et al. Mar 2000 A
6039557 Unger et al. Mar 2000 A
6042652 Hyun et al. Mar 2000 A
6045620 Tepman et al. Apr 2000 A
6059885 Ohashi et al. May 2000 A
6062256 Miller et al. May 2000 A
6070551 Li et al. Jun 2000 A
6079426 Subrahmanyam et al. Jun 2000 A
6080446 Tobe et al. Jun 2000 A
6086677 Umotoy et al. Jul 2000 A
6089543 Freerks Jul 2000 A
6090210 Ballance et al. Jul 2000 A
6109206 Maydan et al. Aug 2000 A
6113698 Raaijmakers et al. Sep 2000 A
6123107 Selser et al. Sep 2000 A
6129331 Henning et al. Oct 2000 A
6139700 Kang et al. Oct 2000 A
6142163 McMillin et al. Nov 2000 A
6143077 Ikeda et al. Nov 2000 A
6143078 Ishikawa et al. Nov 2000 A
6143085 Marsh Nov 2000 A
6143659 Leem et al. Nov 2000 A
6144060 Park et al. Nov 2000 A
6149123 Harris et al. Nov 2000 A
6156393 Polanyi et al. Dec 2000 A
6159297 Herchen et al. Dec 2000 A
6159298 Saito Dec 2000 A
6160243 Cozad Dec 2000 A
6161500 Kopacz et al. Dec 2000 A
6173673 Golovato et al. Jan 2001 B1
6174366 Ihantola Jan 2001 B1
6174377 Doering et al. Jan 2001 B1
6174809 Kang et al. Jan 2001 B1
6178660 Emmi et al. Jan 2001 B1
6179923 Yamamoto et al. Jan 2001 B1
6182603 Shang et al. Feb 2001 B1
6183563 Choi et al. Feb 2001 B1
6190459 Takeshita et al. Feb 2001 B1
6192827 Welch et al. Feb 2001 B1
6193802 Pang et al. Feb 2001 B1
6194628 Pang et al. Feb 2001 B1
6197119 Dozoretz et al. Mar 2001 B1
6199465 Hattori et al. Mar 2001 B1
6200415 Maraschin Mar 2001 B1
6203613 Gates et al. Mar 2001 B1
6206967 Mak et al. Mar 2001 B1
6206972 Dunham Mar 2001 B1
6207937 Stoddard et al. Mar 2001 B1
6210754 Lu et al. Apr 2001 B1
6211033 Sandhu et al. Apr 2001 B1
6211078 Mathews Apr 2001 B1
6214714 Wang et al. Apr 2001 B1
6217704 Kitagawa et al. Apr 2001 B1
6237394 Harris et al. May 2001 B1
6237529 Spahn May 2001 B1
6245192 Dhindsa et al. Jun 2001 B1
6251190 Mak et al. Jun 2001 B1
6255222 Xia et al. Jul 2001 B1
6263829 Schneider et al. Jul 2001 B1
6264788 Tomoyasu et al. Jul 2001 B1
6270572 Kim et al. Aug 2001 B1
6273954 Nishikawa et al. Aug 2001 B2
6277763 Kugimiya et al. Aug 2001 B1
6280584 Kumar et al. Aug 2001 B1
6287965 Kang et al. Sep 2001 B1
6287980 Hanazaki et al. Sep 2001 B1
6290491 Shahvandi et al. Sep 2001 B1
6291337 Sidhwa Sep 2001 B1
6294394 Erickson et al. Sep 2001 B1
6297539 Ma et al. Oct 2001 B1
6302964 Umotoy et al. Oct 2001 B1
6302965 Umotoy et al. Oct 2001 B1
6303953 Doan et al. Oct 2001 B1
6305314 Sneh et al. Oct 2001 B1
6309161 Hofmeister Oct 2001 B1
6315859 Donohoe Nov 2001 B1
6328803 Rolfson et al. Dec 2001 B2
6329297 Balish et al. Dec 2001 B1
6333272 McMillin et al. Dec 2001 B1
6334928 Sekine et al. Jan 2002 B1
6342277 Sherman Jan 2002 B1
6346477 Kaloyeros et al. Feb 2002 B1
6347602 Goto et al. Feb 2002 B2
6347918 Blahnik Feb 2002 B1
6355561 Sandhu et al. Mar 2002 B1
6358323 Schmitt et al. Mar 2002 B1
6364219 Zimmerman et al. Apr 2002 B1
6374831 Chandran et al. Apr 2002 B1
6375744 Murugesh et al. Apr 2002 B2
6378502 Betz et al. Apr 2002 B1
6383300 Saito et al. May 2002 B1
6387185 Doering et al. May 2002 B2
6387207 Janakiraman et al. May 2002 B1
6387324 Patterson et al. May 2002 B1
6402806 Schmitt et al. Jun 2002 B1
6402849 Kwag et al. Jun 2002 B2
6415736 Hao et al. Jul 2002 B1
6419462 Horie et al. Jul 2002 B1
6420230 Derderian et al. Jul 2002 B1
6420742 Ahn et al. Jul 2002 B1
6425168 Takaku et al. Jul 2002 B1
6428859 Chiang et al. Aug 2002 B1
6432256 Raoux Aug 2002 B1
6432259 Noorbakhsh et al. Aug 2002 B1
6432831 Dhindsa et al. Aug 2002 B2
6435865 Tseng et al. Aug 2002 B1
6444039 Nguyen Sep 2002 B1
6450117 Murugesh et al. Sep 2002 B1
6451119 Sneh et al. Sep 2002 B2
6454912 Ahn et al. Sep 2002 B1
6458416 Derderian et al. Oct 2002 B1
6461436 Campbell et al. Oct 2002 B1
6461931 Eldridge Oct 2002 B1
6475336 Hubacek Nov 2002 B1
6486081 Ishikawa et al. Nov 2002 B1
6503330 Sneh et al. Jan 2003 B1
6506254 Bosch et al. Jan 2003 B1
6508268 Kouketsu et al. Jan 2003 B1
6509280 Choi et al. Jan 2003 B2
6534007 Blonigan et al. Mar 2003 B1
6534395 Werkhoven et al. Mar 2003 B2
6534423 Turner Mar 2003 B1
6540838 Sneh et al. Apr 2003 B2
6541353 Sandhu et al. Apr 2003 B1
6551929 Kori et al. Apr 2003 B1
6562140 Bondestam et al. May 2003 B1
6562141 Clarke May 2003 B2
6573184 Park et al. Jun 2003 B2
6579372 Park et al. Jun 2003 B2
6579374 Bondestam et al. Jun 2003 B2
6585823 Van Wijck Jul 2003 B1
6592709 Lubomirsky Jul 2003 B1
6596085 Schmitt et al. Jul 2003 B1
6602346 Gochberg et al. Aug 2003 B1
6610352 Cheong et al. Aug 2003 B2
6622104 Wang et al. Sep 2003 B2
6630201 Chiang et al. Oct 2003 B2
6634314 Hwang et al. Oct 2003 B2
6635965 Lee et al. Oct 2003 B1
6638672 Deguchi et al. Oct 2003 B2
6638879 Hsieh et al. Oct 2003 B2
6641673 Yang Nov 2003 B2
6656539 Haight et al. Dec 2003 B1
6663713 Robles et al. Dec 2003 B1
6666982 Brcka Dec 2003 B2
6673196 Oyabu et al. Jan 2004 B1
6676759 Takagi et al. Jan 2004 B1
6689220 Nguyen Feb 2004 B1
6704913 Rossman Mar 2004 B2
6705345 Bifano Mar 2004 B1
6706334 Kobayashi et al. Mar 2004 B1
6720272 Sandhu et al. Apr 2004 B2
6734020 Lu et al. May 2004 B2
6770145 Saito et al. Aug 2004 B2
6800139 Shinriki et al. Oct 2004 B1
6807971 Saito et al. Oct 2004 B2
6818249 Derderian Nov 2004 B2
6821347 Carpenter et al. Nov 2004 B2
6830652 Ohmi et al. Dec 2004 B1
6838114 Carpenter et al. Jan 2005 B2
6845734 Carpenter et al. Jan 2005 B2
6849131 Chen et al. Feb 2005 B2
6858120 Ahn et al. Feb 2005 B2
6861094 Derderian et al. Mar 2005 B2
6861356 Matsuse et al. Mar 2005 B2
6877726 Rindt et al. Apr 2005 B1
6878402 Chiang et al. Apr 2005 B2
6881295 Nagakura et al. Apr 2005 B2
6882406 Kurt et al. Apr 2005 B2
6887521 Basceri May 2005 B2
6905547 Londergan et al. Jun 2005 B1
6905549 Okuda et al. Jun 2005 B2
6926775 Carpenter et al. Aug 2005 B2
6966936 Yamasaki et al. Nov 2005 B2
6991684 Kannan et al. Jan 2006 B2
7022184 Van Wijck et al. Apr 2006 B2
7086410 Chouno et al. Aug 2006 B2
7153396 Genser et al. Dec 2006 B2
7238294 Koops et al. Jul 2007 B2
7282239 Sarigiannis et al. Oct 2007 B2
7311947 Dando et al. Dec 2007 B2
7389023 Yeo et al. Jun 2008 B2
7601393 Chiang et al. Oct 2009 B2
7906393 Zheng et al. Mar 2011 B2
8133554 Dando et al. Mar 2012 B2
20010001952 Nishizawa et al. May 2001 A1
20010010309 Van Bilsen Aug 2001 A1
20010011526 Doering et al. Aug 2001 A1
20010012697 Mikata Aug 2001 A1
20010020447 Murugesh et al. Sep 2001 A1
20010024387 Raaijmakers et al. Sep 2001 A1
20010029892 Cook et al. Oct 2001 A1
20010045187 Uhlenbrock Nov 2001 A1
20010050267 Hwang et al. Dec 2001 A1
20010054484 Komino Dec 2001 A1
20020000202 Yuda et al. Jan 2002 A1
20020007790 Park Jan 2002 A1
20020016044 Dreybrodt et al. Feb 2002 A1
20020020353 Redemann et al. Feb 2002 A1
20020042205 McMillin et al. Apr 2002 A1
20020043216 Hwang et al. Apr 2002 A1
20020052097 Park May 2002 A1
20020066411 Chiang et al. Jun 2002 A1
20020073924 Chiang et al. Jun 2002 A1
20020076490 Chiang et al. Jun 2002 A1
20020076507 Chiang et al. Jun 2002 A1
20020076508 Chiang et al. Jun 2002 A1
20020088547 Tomoyasu et al. Jul 2002 A1
20020094689 Park Jul 2002 A1
20020100418 Sandhu et al. Aug 2002 A1
20020104481 Chiang et al. Aug 2002 A1
20020108714 Doering et al. Aug 2002 A1
20020110991 Li Aug 2002 A1
20020127745 Lu et al. Sep 2002 A1
20020129768 Carpenter et al. Sep 2002 A1
20020132374 Basceri et al. Sep 2002 A1
20020144655 Chiang et al. Oct 2002 A1
20020146512 Rossman Oct 2002 A1
20020162506 Sneh et al. Nov 2002 A1
20020164420 Derderian et al. Nov 2002 A1
20020185067 Upham Dec 2002 A1
20020195056 Sandhu et al. Dec 2002 A1
20020195145 Lowery et al. Dec 2002 A1
20020195201 Beer et al. Dec 2002 A1
20020197402 Chiang et al. Dec 2002 A1
20030000473 Chae et al. Jan 2003 A1
20030003697 Agarwal et al. Jan 2003 A1
20030003730 Li Jan 2003 A1
20030013320 Kim et al. Jan 2003 A1
20030023338 Chin et al. Jan 2003 A1
20030024477 Okuda et al. Feb 2003 A1
20030027428 Ng et al. Feb 2003 A1
20030027431 Sneh et al. Feb 2003 A1
20030031794 Tada et al. Feb 2003 A1
20030037729 DeDontney et al. Feb 2003 A1
20030045129 Sandhu et al. Mar 2003 A1
20030049372 Cook et al. Mar 2003 A1
20030060030 Lee et al. Mar 2003 A1
20030066483 Lee et al. Apr 2003 A1
20030070609 Campbell et al. Apr 2003 A1
20030070617 Kim et al. Apr 2003 A1
20030070618 Campbell et al. Apr 2003 A1
20030075273 Kilpela et al. Apr 2003 A1
20030079686 Chen et al. May 2003 A1
20030090676 Goebel et al. May 2003 A1
20030094903 Tao et al. May 2003 A1
20030098372 Kim May 2003 A1
20030098419 Ji et al. May 2003 A1
20030106490 Jallepally et al. Jun 2003 A1
20030121608 Chen et al. Jul 2003 A1
20030159780 Carpenter et al. Aug 2003 A1
20030170389 Sandhu Sep 2003 A1
20030175423 Saenger et al. Sep 2003 A1
20030185979 Nelson Oct 2003 A1
20030192645 Liu et al. Oct 2003 A1
20030194862 Mardian et al. Oct 2003 A1
20030200926 Dando et al. Oct 2003 A1
20030203109 Dando et al. Oct 2003 A1
20030213435 Okuda et al. Nov 2003 A1
20030232892 Guerra-Santos et al. Dec 2003 A1
20040000270 Carpenter et al. Jan 2004 A1
20040003777 Carpenter et al. Jan 2004 A1
20040007188 Burkhart et al. Jan 2004 A1
20040025733 Kurt et al. Feb 2004 A1
20040025786 Kontani et al. Feb 2004 A1
20040035358 Basceri et al. Feb 2004 A1
20040040502 Basceri et al. Mar 2004 A1
20040040503 Basceri et al. Mar 2004 A1
20040083959 Carpenter et al. May 2004 A1
20040083960 Dando May 2004 A1
20040083961 Basceri May 2004 A1
20040089240 Dando et al. May 2004 A1
20040094095 Huang et al. May 2004 A1
20040099377 Newton et al. May 2004 A1
20040124131 Aitchison et al. Jul 2004 A1
20040154538 Carpenter et al. Aug 2004 A1
20040226507 Carpenter et al. Nov 2004 A1
20040226516 Daniel et al. Nov 2004 A1
20040238123 Becknell et al. Dec 2004 A1
20050016956 Liu et al. Jan 2005 A1
20050016984 Dando Jan 2005 A1
20050022739 Carpenter et al. Feb 2005 A1
20050028734 Carpenter et al. Feb 2005 A1
20050039680 Beaman et al. Feb 2005 A1
20050039686 Zheng et al. Feb 2005 A1
20050045100 Derderian Mar 2005 A1
20050045102 Zheng et al. Mar 2005 A1
20050048742 Dip et al. Mar 2005 A1
20050059261 Basceri et al. Mar 2005 A1
20050081786 Kubista et al. Apr 2005 A1
20050087130 Derderian Apr 2005 A1
20050087132 Dickey et al. Apr 2005 A1
20050087302 Mardian et al. Apr 2005 A1
20050103275 Sasaki et al. May 2005 A1
20050120954 Carpenter et al. Jun 2005 A1
20050126489 Beaman et al. Jun 2005 A1
20050133161 Carpenter et al. Jun 2005 A1
20050145337 Derderian et al. Jul 2005 A1
20050217575 Gealy et al. Oct 2005 A1
20050217582 Kim et al. Oct 2005 A1
20050249873 Sarigiannis et al. Nov 2005 A1
20050249887 Dando et al. Nov 2005 A1
20050268856 Miller et al. Dec 2005 A1
20060134345 Rueger et al. Jun 2006 A1
20060165873 Rueger et al. Jul 2006 A1
20060237138 Qin Oct 2006 A1
20090220381 McGimpsey Sep 2009 A1
20100136245 Albano et al. Jun 2010 A1
20100143847 Afzali-Ardakani et al. Jun 2010 A1
Foreign Referenced Citations (70)
Number Date Country
4003882 Aug 1991 DE
19851824 May 2000 DE
140246 May 1985 EP
740490 Oct 1996 EP
1167569 Jan 2002 EP
1065762 Apr 1967 GB
1469230 Apr 1977 GB
55108944 Aug 1980 JP
60054443 Mar 1985 JP
61292894 Dec 1986 JP
62235728 Oct 1987 JP
62263629 Nov 1987 JP
63020490 Jan 1988 JP
63052134 Mar 1988 JP
63111177 May 1988 JP
63234198 Sep 1988 JP
63259067 Oct 1988 JP
1022371 Jan 1989 JP
6481311 Mar 1989 JP
1117243 May 1989 JP
127399 Nov 1989 JP
02208925 Aug 1990 JP
2306591 Dec 1990 JP
03174717 Jul 1991 JP
04064225 Feb 1992 JP
04069933 Mar 1992 JP
410053 Apr 1992 JP
421381 Aug 1992 JP
05024975 Feb 1993 JP
05102025 Apr 1993 JP
615155 May 1994 JP
06172979 Jun 1994 JP
06201539 Jul 1994 JP
06202372 Jul 1994 JP
6325646 Nov 1994 JP
634278 Dec 1994 JP
7263144 Oct 1995 JP
83467 Feb 1996 JP
08179307 Jul 1996 JP
98265 Mar 1997 JP
09082650 Mar 1997 JP
10008255 Jan 1998 JP
10200091 Jul 1998 JP
10200091 Jul 1998 JP
20018268 Mar 2001 JP
200126137 Sep 2001 JP
200216433 Jun 2002 JP
200125418 Sep 2002 JP
2005112371 Nov 2005 KR
598630 Feb 1978 SU
9837258 Aug 1998 WO
9906610 Feb 1999 WO
0040772 Jul 2000 WO
0063952 Oct 2000 WO
0065649 Nov 2000 WO
0079019 Dec 2000 WO
0132966 May 2001 WO
0146490 Jun 2001 WO
0245871 Jun 2002 WO
0248427 Jun 2002 WO
02073329 Sep 2002 WO
02073660 Sep 2002 WO
02081771 Oct 2002 WO
02095807 Nov 2002 WO
03008662 Jan 2003 WO
03016587 Feb 2003 WO
03028069 Apr 2003 WO
03033762 Apr 2003 WO
03035927 May 2003 WO
03052807 Jun 2003 WO
Non-Patent Literature Citations (38)
Entry
Aera Corporation, “Fundamentals of Mass Flow Control,” 1 page, retrieved from the Internet on Mar. 6, 2003, <http://www.aeramfc.com/funda.shtml>.
Bardell, R.L., et al., “Designing High-Performance Micro-Pumps Based on No-Moving-Parts Valves”, DSC-vol. 62/HTD-vol. 354, Microelectromechanical Systems (MEMS) ASME 1997, pp. 47-53.
Cameron, I., “Atomic Layer Deposition Chamber Works at Low Temperatures”, 2 pages, Electronic Times, Jul. 19, 2001, <http://www.electronictimes.com/story/OEG20010719S0042>.
Cowin, J.P., et al., “Measurement of Fast Desorption Kinetics of D2 From Tungsten by Laser Induced Thermal Desorption,” Surface Science, vol. 78, pp. 545-564, 1978, North-Holland Publishing Company.
Cutting Edge Optronics, 600W QCW Laser Diode Array, Part No. ARR48P600, 2 pages, Oct. 2001, <www.ceolaser.com>.
Deublin Company, “Precision Rotating Connections for Water, Steam, Air, Hydraulic, Vacuum, Coolant and Hot Oil Service,” 1 page, retrieved from the Internet on Feb. 4, 2002, <http://www.deublin.com>.
Deublin Company, “Rotating Unions”, 1 page, retrieved from the Internet on Feb. 4, 2002, <http://www.com/products/rotatingunions.htm>.
Deublin Company, “Sealing,” 2 pages, retrieved from the Internet on Feb. 4, 2002, <http://www.deublin.com/products/sealing.htm>.
Eguchi, K. et al., “Composition Self-Matching Phenomena in Chemical Vapor Deposition of (Ba,Sr)TiO3 Thin Films,” Electrochemical Society Proceedings vol. 98-3, pp. 179-189.
EMCO Flow Systems, “Mach One Mass Flow Controllers”, 1 page, retrieved from the Internet on Nov. 7, 2003, <http://emcoflow.com/mach-one.htm>.
EMCO Flow Systems, Mach One Mass Flow Controller Product Brochure, 6 pages, retrieved from the Internet on Nov. 7, 2003, <http://www.emcoflow.com/literature/brochures—product—sheets/mach—one/mach—one—brochure—2—01.pdf>.
Engelke, F., et al., “Determination of Phenylthiohydantoin-Amino Acids by Two-Step Laser Sesorption/Multiphoton Ionization,” Analytical Chemistry, vol. 59, No. 6, pp. 909-912, Mar. 15, 1987, The American Chemical Society.
Fitch, J.S., et al., “Pressure-Based Mass-Flow Control Using Thermopneumatically-Actuated Microvalves,” Proceedings, Sensors and Actuators Workshop, pp. 162-165 (Transducers Research Foundation, Cleveland, OH, 1998).
Henning, A.K. et al., “Contamination Reduction Using MEMS-Based, High-Precision Mass Flow Controllers,” Proceedings, SEMICON West Symposium on Contamination Free Manufacturing for Semiconductor Processing (SEMI, Mountain View, CA, 1998), pp. 1-11.
Henning, A.K., “Liquid and gas-liquid phase behavior in thermopneumatically actuated microvalves,” Proceedings, Micro Fluidic Devices and Systems (SPIE, Bellingham, WA, 1998; A.B. Frazier and C.H. Ahn, eds.), vol. 3515, pp. 53-63.
Henning, A.K., “Microfluidic MEMS,” Proceedings, IEEE Aerospace Conference, Paper 4.906 (IEEE Press, Piscataway, NJ, 1998), 16 pages.
Henning, A.K., et al., “A thermopneumatically actuated microvalve for liquid expansion and proportional control”, Proceedings, Transducers '97: 1997 International Solid State Sensors and Actuators Conference, pp. 825-828.
Henning, A.K., et al., “Microfluidic MEMS for Semiconductor Processing,” IEEE Trans. Components, Packaging, and Manufacturing Technology B21, pp. 329-337, 1998.
Henning, A.K., et al., “Performance of MEMS-Based Gas Distribution and Control Systems for Semiconductor Processing”, 8 pages, Proceedings, SEMICON West Workshop on Gas Distribution (SEMI, Mountain View, CA, 1998).
Henning, A.K., et al., “Performance of MEMS-Based Gas Distribution and Control Systems for Semiconductor Processing,” Proceedings, Micromachined Devices and Components (SPIR, Bellingham, WA, 1998; P.J. French and K. Chau, eds.), vol. 3514, pp. 159-170.
Integrated Process Systems Ltd., “ALD & CVD”, 2 pages, retrieved from the Internet on Dec. 11, 2001, <http://www.ips-tech.com/eng/pro-p2-2.htm>.
Integrated Process Systems Ltd., “Nano-ALD”, 2 pages, retrieved from the Internet on Dec. 11, 2001, <http://www.ips-tech.com/eng/pro-p2.htm>.
Integrated Process Systems Ltd., “Welcome to IPS Ltd.”, 1 page, retrieved from the Internet on Dec. 11, 2001, <http://www.ips-tech.com/eng/main.htm>.
Kawahara, T. et al., “Step Coverage and Electrical Properties of (BA,Sr)TiO3 Films Prepared by Liquid Source Chemical Vapor Deposition,” Electrochemical Society Proceedings, vol. 98-3, pp. 190-195.
Maillefer, D., et al., “A High-Performance Silicon Micropump for Disposable Drug Delivery Systems,” pp. 413-417, IEEE, 2001.
MKS Instruments, ASTeX® Microwave Plasma Sources and Subsystems, 1 page, retrieved from the Internet on Nov. 19, 2004, <http://www.mksinst.com/PRG2.html>.
MKS Instruments, Data Sheet, Downstream Plasma Source, Type AX7610, 4 pages, Dec. 2002, <http://www.mksinst.com/docs/UR/ASTEXax7610DS.pdf>.
Olsson, A., “Valve-less Diffuser Micropumps”, ISSN 0281-2878, 66 pages, 1998.
Peters, L., “Thermal Processing's Tool of Choice: Single-Wafer RTP or Fast Ramp Batch?” Semiconductor International, Apr. 1, 1998, 8 pages, <http://www.e-incite.net/semiconductor/index.asp?alyout+article&articleid=CA163937>.
Ready, J.F., “Effects Due to Absorption of Laser Radiation,” Journal of Applied Physics, vol. 36, No. 2, pp. 462-468, Feb. 1965, Journal of Applied Physics, American Institute of Physics.
“Selective Deposition with ‘Dry’ Vaporizable Lift-Off Mask,” IBM Technical Disclosure Bulletin, vol. 35, No. 1A, pp. 75-76, Jun. 1, 1992.
SemiZone, “EMCO Flow Systems Granted Patent for the Mach One Mass Flow Controller for the Semiconductor Industry (Jun. 28, 2001)”, 2 pages, retrieved from the Internet on Nov. 7, 2003, <http://www.semizone.com/news/item?news—item—id=100223>.
Takahashi, K et al., “Process Integration of 3D Chip Stack With Vertical Interconnection,” pp. 601-609, 2004 Electronic Components and Technology Conference, IEEE, Jun. 2004.
The University of Adelaide, Australia, Department of Chemistry, “Spectroscopy”, 2 pages, retrieved from the Internet on Feb. 9, 2002, <http://www.chemistry.adelaide.edu.au/external/Soc-Rel/Content/spectros.htm>.
Tokyo Electron Limited, Plasma Process System, Trias SPA, 1 page, retrieved from the Internet on Oct. 16, 2004, <http://www.tel.com/eng/products/spe/sdtriasspa.htm>.
University of California, Berkeley, University Extension, “Atomic Layer Deposition,” 5 pages, Sep. 24-25, 2001, <http://www.unex.berkeley.edu/eng/br225/1-1.html>.
Wright, D.R., et. al. , “Maufacturing issues of electrostatic chucks,” J. Vac. Sci. Technol. B 13(4), pp. 1910-1916, Jul./Aug. 1995, American Vacuum Society.
Zare, R.N., et al. “Mass Spectrometry of Molecular Adsorbates Using Laser Desorption/Laser Multiphoton Ionization,” Bulletin of the Chemical Society of Japan, vol. 61, No. 1, pp. 87-92, Jan. 1988.
Related Publications (1)
Number Date Country
20120171389 A1 Jul 2012 US
Divisions (1)
Number Date Country
Parent 10840571 May 2004 US
Child 13419002 US