METHODS FOR GENERATING BARCODED COMBINATORIAL LIBRARIES

Abstract
Provided herein are methods and composition for trackable genetic variant libraries. Further provided herein are methods and compositions for recursive engineering. Further provided herein are methods and compositions for multiplex engineering. Further provided herein are methods and compositions for enriching for editing and trackable engineered sequences and cells using nucleic acid-guided nucleases.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted in XML file format via EFS-Web and is hereby incorporated by reference in its entirety. Said XML copy, created Mar. 6, 2023, is named 14325_002US5_SL.xml and is 666,805 bytes in size.


BACKGROUND OF THE DISCLOSURE

Understanding the relationship between a protein's amino acid structure and its overall function continues to be of great practical, clinical, and scientific significance for biologists and engineers. Directed evolution can be a powerful engineering and discovery tool, but the random and often combinatorial nature of mutations makes their individual impacts difficult to quantify and thus challenges further engineering. More systematic analysis of contributions of individual residues or saturation mutagenesis remains labor- and time-intensive for entire proteins and simply is not possible on reasonable timescales for editing of multiple proteins in parallel, such as metabolic pathways or multi-protein complexes, using standard methods.


SUMMARY OF THE DISCLOSURE

Disclosed herein are compositions comprising: i) a first donor nucleic acid comprising: a) a modified first target nucleic acid sequence; b) a first protospacer adjacent motif (PAM) mutation; and c) a first guide nucleic acid sequence comprising a first spacer region complementary to a portion of the first target nucleic acid; and ii) a second donor nucleic acid comprising: a) a barcode corresponding to the modified first target nucleic acid sequence; and b) a second guide nucleic acid sequence comprising a second spacer region complementary to a portion of a second target nucleic acid. Further disclosed are compositions wherein the modified first target nucleic acid sequence comprises at least one inserted, deleted, or substituted nucleic acid compared to a corresponding un-modified first target nucleic acid. Further disclosed are compositions wherein the first guide nucleic acid and second guide nucleic acid are compatible with a nucleic acid-guided nuclease. Further disclosed are compositions wherein the nucleic acid-guided nuclease is a Type II or Type V Cas protein. Further disclosed are compositions wherein the nucleic acid-guided nuclease is a Cas9 homologue or a Cpf1 homologue. Further disclosed are compositions wherein the second donor nucleic acid comprises a second PAM mutation. Further disclosed are compositions wherein the second donor nucleic acid sequence comprises a regulatory sequence or a mutation to turn a screenable or selectable marker on or off. Further disclosed are compositions wherein the second donor nucleic acid sequence targets a unique landing site.


Disclosed herein are methods of genome engineering, the method comprising: a) contacting a population of cells with a polynucleotide, wherein each cell comprises a first target nucleic acid, a second target nucleic acid, and a nucleic acid-guided nuclease, wherein the polynucleotide comprises 1) an editing cassette comprising: i) a modified first target nucleic acid sequence; ii) a first protospacer adjacent motif (PAM) mutation; iii) a first guide nucleic acid sequence comprising a spacer region complementary to a portion of the first target nucleic acid and compatible with the nucleic acid-guided nuclease; and 2) a recorder cassette comprising i) a barcode corresponding to the modified first target nucleic acid sequence; and ii) a second guide nucleic acid sequence comprising a second spacer region complementary to a portion of the second target nucleic acid and compatible with the nucleic acid-guided nuclease; b) allowing the first guide nucleic acid sequence, the second guide nucleic acid sequence, and the nucleic acid-guided nuclease to create a genome edit within the first target nucleic acid and the second target nucleic acid. Further disclosed are methods further comprising c) sequencing a portion of the barcode, thereby identifying the modified first target nucleic acid that was inserted within the first target nucleic acid in step a). Further disclosed are methods wherein the nucleic acid-guided nuclease is a CRISPR nuclease. Further disclosed are methods wherein the PAM mutation is not recognized by the nucleic acid-guided nuclease. Further disclosed are methods wherein the nucleic acid-guided nuclease is a Type II or Type V Cas protein. Further disclosed are methods wherein the nucleic acid-guided nuclease is a Cas9 homologue or a Cpf1 homologue. Further disclosed are methods wherein the recorder cassette further comprises a second PAM mutation that is not recognized by the nucleic acid-guided nuclease.


Disclosed herein are methods of selectable recursive genetic engineering comprising a) contacting cells comprising a nucleic acid-guided nuclease with a polynucleotide comprising a recorder cassette, said recorder cassette comprising i) a nucleic acid sequence that recombines into a unique landing site incorporated during a previous round of engineering, wherein the nucleic acid sequence comprises a unique barcode; and ii) a guide RNA compatible with the nucleic acid-guided nuclease that targets the unique landing site; and b) allowing the nucleic acid-guided nuclease to edit the unique landing site, thereby incorporating the unique barcode into the unique landing site. Further disclosed are methods wherein the nucleic acid sequence further comprises a regulatory sequence that turns transcription of a screenable or selectable marker on or off. Further disclosed are methods wherein the nucleic acid sequence further comprises a PAM mutation that is not compatible with the nucleic acid-guided nuclease. Further disclosed are methods wherein the nucleic acid sequence further comprises a second unique landing site for subsequent engineering rounds. Further disclosed are methods wherein the polynucleotide further comprises an editing cassette comprising a) a modified first target nucleic acid sequence; b) a first protospacer adjacent motif (PAM) mutation; and c) a first guide nucleic acid sequence comprising a first spacer region complementary to a portion of the first target nucleic acid, wherein the unique barcode corresponds to the modified first target nucleic acid such that the modified target nucleic acid can be identified by the unique barcode.


Provided herein are compositions comprising i) a first donor nucleic acid comprising: a) a modified first target nucleic acid sequence; b) a mutant protospacer adjacent motif (PAM) sequence; and c) a first guide nucleic acid sequence comprising a first spacer region complementary to a portion of the first target nucleic acid; and ii) a second donor nucleic acid comprising: a) a recorder sequence; and b) a second guide nucleic acid sequence comprising a second spacer region complementary to a portion of the second target nucleic acid. In some aspects, the first donor nucleic acid and the second donor nucleic acid are covalently linked or comprised on a single nucleic acid molecule. Further provided are compositions wherein the modified first target nucleic acid comprises a 5′ homology are and a 3′ homology arm. Further provided are compositions wherein the 5′ homology arm and the 3′ homology arm are homologous to nucleic acid sequence flanking a protospacer complementary to the first spacer region. Further provided are compositions wherein the modified first target nucleic acid sequence comprises at least one inserted, deleted, or substituted nucleic acid compared to a corresponding un-modified first target nucleic acid. Further provided are compositions wherein the first gRNA is compatible with a nucleic acid-guided nuclease, thereby facilitating nuclease-mediate cleavage of the first target nucleic acid. Further provided are compositions wherein the nucleic acid-guided nuclease is a Cas protein, such as a Type II or Type V Cas protein. Further provided are compositions wherein the nucleic acid-guided nuclease is Cas9 or Cpf1. Further provided are compositions wherein the nucleic acid-guided nuclease is MAD2 or MAD7. Further provided are compositions wherein the nucleic acid-guided nuclease is an engineered or non-natural enzyme. Further provided are compositions wherein the nucleic acid-guided nuclease is a engineered or non-natural enzyme derived from Cas9 or Cpf1. Further provided are compositions wherein the nucleic acid-guided nuclease is an engineered or non-natural enzyme that has less than 80% homology to either Cas9 or Cpf1. Further provided are compositions wherein the mutant PAM sequence is not recognized by the nucleic acid-guided nuclease. Further provided are compositions wherein the recorder sequence comprises a barcode. Further provided are compositions wherein the recorder sequence comprises a fragment of a screenable or selectable marker. Further provided are compositions wherein the recorder sequence comprises a unique sequence by which the modified first target nucleic acid sequence is specifically identified. Further provided are compositions wherein the recorder sequence comprises a unique sequence by which the edited cells may be selected or enriched. A first donor nucleic acid can be a cassette, such as an editing cassette as disclosed herein. A second donor nucleic acid can be a cassette, such as a recording cassette as disclosed herein. A first donor nucleic acid and a second donor nucleic acid can be comprised on a single cassette. A first donor nucleic acid and a second donor nucleic acid can be covalently linked. In any of these examples, the elements of the cassette or donor nucleic acids can be contiguous or non-contiguous.


Provided herein are cells comprising an engineered chromosome or polynucleic acid comprising: a first modified sequence; a first mutant protospacer adjacent motif (PAM); a first recorder sequence, the sequence of which uniquely identifies the first modified sequence, wherein the first modified sequence and the first recorder sequence are separated by at least 1 bp. Further provided are cells wherein the first modified sequence and the first recorder sequence are separated by at least 100 bp. Further provided are cells wherein the first modified sequence and the first recorder sequence are separated by at least 500 bp. Further provided are cells wherein the first modified sequence and the first recorder sequence are separated by at least lkbp. Further provided are cells wherein the first recorder sequence is a barcode. Further provided are cells wherein the first modified sequence is within a coding sequence. Further provided are cells wherein the first modified sequence comprises at least one inserted, deleted, or substituted nucleotide compared to an unmodified sequence. Further provided are cells further comprising: a second modified sequence; a second mutant PAM; and a second recorder sequence, the sequence of which uniquely identifies the second modified sequence, wherein the second modified sequence and the second recorder sequence are separated by at least 1 kb. Further provided are cells wherein the first recorder sequence and the second recorder sequence are separated by less than 100 bp. Further provided are cells wherein the second recorder sequence is a barcode. Further provided are cells wherein the second modified sequence is within a coding sequence. Further provided are cells wherein the second modified sequence comprises at least one inserted, deleted, or substituted nucleotide compared to an unmodified sequence. Further provided are cells wherein the first recorder sequence and the second recorder sequence are immediately adjacent to each other or overlapping, thereby generating a combined recorder sequence. Further provided are cells wherein the combined recorder sequence comprises a selectable or screenable marker. Further provided are cells wherein the combined recorder sequence comprises a selectable or screenable marker by which the cells may be enriched or selected.


Provided herein are methods of genome engineering, the method comprising: a) introducing into a population of cells a plurality of polynucleotides, wherein each cell comprises a first target nucleic acid, a second target nucleic acid, and a targetable nuclease, wherein each polynucleotide comprises: i) a modified first target nucleic acid sequence; ii) a mutant protospacer adjacent motif (PAM) sequence; iii) a first guide nucleic acid sequence comprising a guide sequence complementary to a portion of the first target nucleic acid; and (iv) a recorder sequence; b) inserting the modified first target nucleic acid sequence within the first target nucleic acid; c) inserting the recorder sequence within the second target nucleic acid; d) cleaving the first target nucleic acid by the targetable nuclease in cells that do not comprise the mutant PAM sequence, thereby enriching for cells comprising the inserted modified first target nucleic acid sequence. Further provided are methods wherein the recorder sequence is linked to the modified first target nucleic acid. Further provided are methods wherein each polynucleotide further comprises a second mutant PAM sequence. Further provided are methods wherein each polynucleotide further comprises a second guide nucleic acid sequence comprising a guide sequence complementary to a portion of the second target nucleic acid. Further provided are methods wherein the recorder sequence comprises a unique sequence by which the modified first target nucleic acid is specifically identified upon sequencing the recorder sequence. Further provided are methods further comprising e) sequencing the recorder sequence, thereby identifying the modified first target nucleic acid that was inserted within the first target nucleic acid in step b). Further provided are methods wherein inserting the modified first target nucleic acid sequence comprises cleaving the first target nucleic acid by the nuclease complexed with the transcription product of the first guide nucleic acid sequence. Further provided are methods wherein inserting the modified first target nucleic acid sequence further comprises homology-directed repair. Further provided are methods wherein inserting the modified first target nucleic acid sequence further comprises homologous recombination. Further provided are methods wherein the polynucleotide further comprises a second guide nucleic acid sequence comprising a spacer region complementary to a portion of the second target nucleic acid. Further provided are methods wherein inserting the recorder sequence comprises cleaving the second target nucleic acid by the nuclease complexed with the transcription product of the second guide nucleic acid sequence. Further provided are methods wherein inserting the modified first target nucleic acid sequence further comprises homology-directed repair. Further provided are methods wherein inserting the modified first target nucleic acid sequence further comprises homologous recombination. Further provided are methods wherein the targetable nuclease is a Cas protein. Further provided are methods wherein the Cas protein is a Type II or Type V Cas protein. Further provided are methods wherein the Cas protein is Cas9 or Cpf1. Further provided are methods wherein the targetable nuclease is a nucleic acid-guided nuclease. Further provided are methods wherein the targetable nuclease is MAD2 or MAD7. Further provided are methods wherein the mutant PAM sequence is not recognized by the targetable nuclease. Further provided are methods wherein the targetable nuclease is an engineered targetable nuclease. Further provided are methods wherein the mutant PAM sequence is not recognized by the engineered targetable nuclease. Further provided are methods further comprising introducing a second plurality of polynucleotides into a second population of cells comprising the enriched cells from step d), wherein each cell within the second population of cells comprises a third nucleic acid, a fourth target nucleic acid, and a targetable nuclease. Further provided are methods wherein each of the second polynucleotides comprises: i) a modified third target nucleic acid sequence; ii) a third mutant protospacer adjacent motif (PAM) sequence; iii) a third guide nucleic acid sequence comprising a spacer region complementary to a portion of the third target nucleic acid; and (iv) a second recorder sequence. Further provided are methods wherein each second polynucleotide further comprises a fourth mutant PAM sequence. Further provided are methods wherein each second polynucleotide further comprises a fourth guide nucleic acid sequence comprising a guide sequence complementary to a portion of the fourth target nucleic acid. Further provided are methods further comprising: a) inserting the modified third target nucleic acid sequence within the third target nucleic acid; b) inserting the second recorder sequence within the fourth target nucleic acid; c) cleaving the third target nucleic acid by the nuclease in cells that do not comprise the second mutant PAM sequence, thereby enriching for cells comprising the inserted modified third target nucleic acid sequence. Further provided are methods wherein the fourth target nucleic acid is adjacent to the second target nucleic acid. Further provided are methods wherein the inserted first recorder sequence is adjacent to the second recorder sequence, such that sequencing information can be obtained for the first and second recorder sequence from a single sequencing read. Further provided are methods further comprising obtaining sequence information from the first and second recorder sequences within a single sequence read, thereby identifying the modified first and third target nucleic acid sequences inserted into the first and third target nucleic acids respectively.


Provided herein are methods of identifying engineered cells, the method comprising: a) providing cells, wherein each cell comprises a first target nucleic acid, a second target nucleic acid, and a targetable nuclease, b) introducing into the cells a polynucleotide comprising: 1) a first donor nucleic acid comprising i) a modified target nucleic acid sequence; ii) a mutant protospacer adjacent motif (PAM) sequence; and iii) a first guide nucleic acid sequence comprising a first guide sequence complementary to a portion of the first target nucleic acid; and 2) a second donor nucleic acid comprising i) a recorder sequence corresponding to the modified target nucleic acid sequence; and ii) a second guide nucleic acid sequence comprising a second guide sequence complementary to a portion of the second target nucleic acid, c) cleaving the first target nucleic acid by the nuclease in cells that do not comprise the mutant PAM sequence, thereby enriching for cells comprising the modified target nucleic acid sequence, d) repeating steps a)-c) at least one time using the cells enriched for in step c) as the cells for step a) of the following round, wherein the recorder sequence from each round is incorporated adjacent to the recorder sequence from the previous round, thereby generating a record sequence array comprising a plurality of traceable barcodes, and e) sequencing the record sequence, thereby identifying engineered cells comprising a desired combination of modified target nucleic acids. Further provided are methods wherein the second donor nucleic acid further comprises a second mutant PAM sequence. Further provided are methods wherein sequencing the record sequence array comprises obtaining sequence information for each of the plurality of recorder sequences within a single sequencing read. Further provided are methods wherein steps a)-c) are repeated at least once. Further provided are methods wherein steps a)-c) are repeated at least twice. Further provided are methods wherein the recorder sequence is a barcode. Further provided are methods where the first donor nucleic acid and the second donor nucleic acid are covalently linked. A first donor nucleic acid can be a cassette, such as an editing cassette as disclosed herein. A second donor nucleic acid can be a cassette, such as a recording cassette as disclosed herein. A first donor nucleic acid and a second donor nucleic acid can be comprised on a single cassette. A first donor nucleic acid and a second donor nucleic acid can be covalently linked. In any of these examples, the elements of the cassette or donor nucleic acids can be contiguous or non-contiguous.


Provided herein are methods of identifying engineered cells, the method comprising: a) providing cells, wherein each cell comprises a first target nucleic acid, a second target nucleic acid, and a targetable nuclease, b) introducing into the cells a polynucleotide comprising: 1) a first donor nucleic acid comprising i) a modified target nucleic acid sequence; ii) a mutant protospacer adjacent motif (PAM) sequence; and iii) a first guide nucleic acid sequence comprising a first guide sequence complementary to a portion of the first target nucleic acid; and 2) a second donor nucleic acid comprising i) a marker fragment corresponding to the modified target nucleic acid sequence; and ii) a second guide nucleic acid sequence comprising a second guide sequence complementary to a portion of the second target nucleic acid, c) cleaving the first target nucleic acid by the nuclease in cells that do not comprise the mutant PAM sequence, thereby enriching for cells comprising the modified target nucleic acid sequence, d) repeating steps a)-c) at least one time using the cells enriched for in step c) as the cells for step a) of the following round, wherein the marker fragment from each round is incorporated adjacent to the marker fragment from the previous round, thereby generating a complete marker, and e) identifying cells comprising the complete marker, thereby identifying engineered cells comprising a desired combination of modified target nucleic acids. Further provided are methods wherein the second donor nucleic acid further comprises a second mutant PAM sequence. Further provided are methods wherein the complete marker comprises a selectable marker. Further provided are methods wherein the selectable marker comprises an antibiotic resistance marker or an auxotrophic marker. Further provided are methods wherein the complete marker comprises a screenable reporter. Further provided are methods wherein the screenable reporter comprises a fluorescent reporter. Further provided are methods wherein the screenable reporter comprises a gene. Further provided are methods wherein the screenable reporter comprises a promotor or regulatory element. Further provided are methods wherein the promoter or regulatory element turns on or off transcription of a screenable or selectable element. Further provided are methods wherein the screenable reporter comprises a screenable or selectable element which alters a characteristic of a colony comprising the element compared to a colony that does not comprise the element. A first donor nucleic acid can be a cassette, such as an editing cassette as disclosed herein. A second donor nucleic acid can be a cassette, such as a recording cassette as disclosed herein. A first donor nucleic acid and a second donor nucleic acid can be comprised on a single cassette. A first donor nucleic acid and a second donor nucleic acid can be covalently linked. In any of these examples, the elements of the cassette or donor nucleic acids can be contiguous or non-contiguous.


Provided herein are methods of genome engineering, the method comprising: a) introducing into a population of cells a polynucleotide, wherein each cell comprises a first target nucleic acid, a second target nucleic acid, and a targetable nuclease, wherein the polynucleotide comprises: i) a modified first target nucleic acid sequence; ii) a mutant nuclease recognition sequence; iii) a recorder sequence; b) inserting the modified first target nucleic acid sequence within the first target nucleic acid; c) inserting the recorder sequence within the second target nucleic acid; and d) selecting for a phenotype of interest. Further provided are methods wherein the polynucleotide further comprises a second mutant nuclease recognition site. Further provided are methods wherein selecting for a phenotype of interest comprises cleaving the first target nucleic acid by the nuclease in cells that do not comprise the mutant nuclease recognition sequence, thereby enriching for cells comprising the inserted modified first target nucleic acid sequence. Further provided are methods wherein selecting for a phenotype of interest comprises cleaving the second target nucleic acid by the nuclease in cells that do not comprise the second mutant nuclease recognition sequence, thereby enriching for cells comprising the inserted modified first target nucleic acid sequence. Further provided are methods wherein the recorder sequence is linked to the modified first target nucleic acid. Further provided are methods wherein the recorder sequence comprises a unique sequence by which the modified first target nucleic acid is specifically identified upon sequencing the recorder sequence. Further provided are methods further comprising e) sequencing the recorder sequence, thereby identifying the modified first target nucleic acid that was inserted within the first target nucleic acid in step b). Further provided are methods wherein inserting the modified first target nucleic acid sequence comprises homology-directed repair. Further provided are methods wherein inserting the modified first target nucleic acid sequence comprises homologous recombination. Further provided are methods wherein the nuclease is a Cas protein. Further provided are methods wherein the polynucleotide further comprises a first guide nucleic acid sequence comprising a guide sequence complementary to a portion of the first target nucleic acid. Further provided are methods wherein inserting the modified first target nucleic acid sequence comprises cleaving the first target nucleic acid by the nuclease complexed with the transcription product of the first guide nucleic acid sequence. Further provided are methods wherein the polynucleotide further comprises a second guide nucleic acid sequence comprising a guide sequence complementary to a portion of the second target nucleic acid. Further provided are methods wherein inserting the recorder sequence comprises cleaving the second target nucleic acid by the nuclease complexed with the transcription product of the second guide nucleic acid sequence. Further provided are methods wherein inserting the modified first target nucleic acid sequence or the recorder sequence comprises homology-directed repair. Further provided are methods wherein inserting the modified first target nucleic acid sequence or the recorder sequence comprises homologous recombination. Further provided are methods wherein the mutant nuclease recognition sequence comprises a mutant PAM sequence not recognized by the targetable nuclease. Further provided are methods wherein the Cas protein is a Type II or Type V Cas protein. Further provided are methods wherein the targetable nuclease is MAD2. Further provided are methods wherein the mutant PAM sequence is not recognized by MAD2. Further provided are methods wherein the targetable nuclease is MAD7. Further provided are methods wherein the mutant PAM sequence is not recognized by MAD7. Further provided are methods wherein the Cas protein is Cas9. Further provided are methods wherein the mutant PAM sequence is not recognized by Cas9. Further provided are methods wherein the Cas protein is Cpf1. Further provided are methods wherein the mutant PAM sequence is not recognized by Cpf1. Further provided are methods wherein the nuclease is an Argonaute nuclease. Further provided are methods further comprising introducing guide DNA oligonucleotides comprising a guide sequence complementary to a portion of the first target nucleic acid prior to selecting for a phenotype. Further provided are methods wherein the mutant nuclease recognition sequence comprises a mutant target flanking sequence not recognized by the Argonaute nuclease. Further provided are methods wherein the nuclease is a zinc finger nuclease. Further provided are methods wherein the mutant nuclease recognition sequence is not recognized by the zinc finger nuclease. Further provided are methods wherein the nuclease is a transcription activator-like effector nuclease (TALEN). Further provided are methods wherein the mutant nuclease recognition sequence is not recognized by the TALEN.


INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.



FIGS. 1A-1C depict an example genetic engineering workflow including target design, plasmid design, and plasmid library generation. Figure discloses SEQ ID NOS 187-190, respectively, in order of appearance.



FIGS. 2A-2D depicts validation data for an example experiment using a disclosed engineering method.



FIGS. 3A-3C depict an example trackable genetic engineering workflow, including a plasmid comprising an editing cassette and a recording cassette, and downstream sequencing of barcodes in order to identify the incorporated edit or mutation. Figure discloses SEQ ID NOS 191-192, respectively, in order of appearance.



FIGS. 3D-3E depict an example trackable genetic engineering workflow, including iterative rounds of engineering with a different editing cassette and recorder cassette with unique barcode (BC) at each round, followed by selection and tracking to confirm the successful engineering step at each round.



FIGS. 4A-4B depict an example of incorporation of a target mutation and PAM mutation using a plasmid comprising an editing cassette. Figure discloses SEQ ID NOS 193, 193, 194, 193, 194, 193, 193, 195, 193, 196, 193, 197, 194, 193, and 198, respectively, in order of appearance.



FIGS. 5A-5B depict an example of a plasmid comprising an editing cassette, designed to incorporate a target mutation and a PAM mutation into a first target sequence, and a recording cassette, designed to incorporate a barcode sequence into a second target sequence. FIG. 5B depicts example data validating incorporation of the editing cassette and recorder cassette and selection of the engineered bacterial cells. FIG. 5A discloses the left column sequences as SEQ ID NOS 201, 200, 201, 200, 200, 200, 200, 200, 200, 200, 200, 201, 202, 200, 200, 200, 200, 200, 200, 200, 202, and 200, respectively, in order of appearance and the right column sequences as SEQ ID NOS 203, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 203, 205, 205, 205, 205, 205, 205, 205, 205, 205, and 205, respectively, in order of appearance.



FIG. 6 depicts an example recursive engineering workflow.



FIGS. 7A-7B depict an example plasmid curing workflow for combinatorial engineering and validation of an example experiment using said workflow.



FIGS. 8A-8B depict an example genetic engineering workflow including target design, plasmid design, and plasmid library generation. Figure discloses SEQ ID NOS 187-190, respectively, in order of appearance.



FIGS. 9A-9D depicts validation data for an example genetic engineering experiment.



FIGS. 10A-10F depict an example data set from a genetic engineering experiment.



FIGS. 11A-11C depict an example design and data set from a genetic engineering experiment.



FIGS. 12A-12F depict an example design for a genetic engineering experiment.



FIGS. 13A-13D depict example designed edits to be made by a genetic engineering. Figure discloses SEQ ID NOS 187-190 and 206-207, respectively, in order of appearance.



FIGS. 14A-14B depict an example design for a genetic engineering experiment.



FIGS. 15A-15D depict an example of Cas9 editing efficiency controls. Figure discloses SEQ ID NOS 208-209, respectively, in order of appearance.



FIGS. 16A-16E depict an examples of toxicity of dsDNA cleavage in E. coli.



FIG. 16F-16H depict an example of a transformation and survival assay, and editing and recording efficiencies, with low and high copy plasmids expressing Cas9.



FIGS. 17A-17D depict an example of genetic engineering strategy for gene deletion. FIGS. 17A and 17C disclose SEQ ID NO: 210.



FIGS. 18A-18B depicts an example of editing efficiency controls by cotransformation of guide nucleic acid and linear dsDNA cassettes.



FIGS. 19A-19D depict an example of library cloning analysis and statistics.



FIGS. 20A-20B depict an example of precision of editing cassette tracking of recombineered populations.



FIG. 21 depicts an example of growth characteristics of folA mutations in M9 minimal media



FIGS. 22A-22C depicts an example of enrichment profiles for folA editing cassettes in minimal media.



FIGS. 23A-23F depict an example of validation of identified acrB mutations for improved solvent and antibiotic tolerance.



FIGS. 24A-24D depict an example mutant variant assessment analysis.



FIG. 25 depicts an example of reconstruction of mutations identified by erythromycin selection.



FIGS. 26A-26B depict an example of validation of Crp S28P mutation for furfural or thermal tolerance.



FIGS. 27A-27C depict an example of edit and barcode correlation studies.



FIG. 28 depicts an example of a selectable recording strategy.



FIG. 29 depicts an example of a selectable recording strategy.



FIGS. 30A-30B depict data from a selectable recording experiment. Figure discloses “TCCACTGGTATGCAT” as SEQ ID NO: 211.



FIGS. 31A-31B depict editing and transformation efficiencies from various nucleic acid-guided nucleases from an example experiment.



FIG. 32 depict editing efficiencies of the MAD2 nuclease with various guide nucleic acids.



FIG. 33 depict editing efficiencies of the MAD7 nuclease with various guide nucleic acids.





DETAILED DESCRIPTION OF THE DISCLOSURE

While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention.


Methods and compositions for enabling sophisticated combinatorial engineering strategies to optimize and explore complex phenotypes are provided herein. Many phenotypes of interest to basic research and biotechnology are the result of combinations of mutations that occur at distal loci. For example, cancer is often linked to mutations that influence multiple hallmark gene functions rather than a single chromosomal edit. Likewise, many metabolic and regulatory processes that are the target of continuing engineering efforts require the activities of many proteins acting in concert to produce the phenotypic output of interest. Methods and compositions disclosed herein can provide ways of rapid engineering and prototyping of such functions since they can provide rapid construction and accurate reporting on the mutational effects at many sites in parallel.


The methods and compositions described herein can be carried out or used in any type of cell in which a nucleic acid-guided nuclease system, such as CRISPR or Argonaute, or other targetable nuclease systems, such as TALEN, ZFN, or meganuclease can function (e.g., target and cleave DNA), including prokaryotic, eukaryotic, or archaeal cells. The cell can be a bacterial cell, such as Escherichia spp. (e.g., E. coli). The cell can be a fungal cell, such as a yeast cell, e.g., Saccharomyces spp. The cell can be a human cell. The cell can be an algal cell, a plant cell, an insect cell, or a mammalian cell, including a human cell. Additionally or alternatively, the methods described herein can be carried out in vitro or in cell-free systems in which a nucleic acid guided nuclease system, such as CRISPR or Argonaute, or other nuclease systems, such as TALEN, ZFN, or meganuclease can function (e.g., target and cleave DNA).


Disclosed herein are compositions and methods for genetic engineering. Disclosed are methods and compositions suitable for trackable or recursive genetic engineering. Disclosed method and compositions can use massively multiplexed oligonucleotide synthesis and cloning to enable high fidelity, trackable, multiplexed genome editing at single nucleotide resolution on a whole genome scale.


Trackable Plasmids

Methods and compositions can be used to perform high-fidelity trackable editing, for example, at single-nucleotide resolution and can be used to perform editing at a whole genome scale or on episomal nucleic acid molecules. Massively multiplexed oligonucleotide synthesis and/or cloning can be used in combination with a targetable nuclease system, such as a CRISPR system, MAD2 system, MAD7 system, or other nucleic acid-guided nuclease system, for editing.


As used herein, “cassette” often refers to a single molecule polynucleotide. A cassette can comprise DNA. A cassette can comprise RNA. A cassette can comprise a combination of DNA and RNA. A cassette can comprise non-naturally occurring nucleotides or modified nucleotides. A cassette can be single stranded. A cassette can be double stranded. A cassette can be synthesized as a single molecule. A cassette can be assembled from other cassettes, oligonucleotides, or other nucleic acid molecules. A cassette can comprise one or more elements. Such elements can include, as non-limiting examples, one or more of any of editing sequences, recorder sequences, guide nucleic acids, promoters, regulatory elements, mutant PAM sequences, homology arms, primer sites, linker regions, unique landing sites, a cassette, and any other element disclosed herein. Such elements can be in any order or combination. Any two or more elements can be contiguous or non-contiguous. A cassette can be comprised within a larger polynucleic acid. Such a larger polynucleic acid can be linear or circular, such as a plasmid or viral vector. A cassette can be a synthesized cassette. A cassette can be a trackable cassette.


A cassette can be designed to be used in any method or composition disclosed herein, including multiplex engineering methods and trackable engineering methods. An exemplary cassette can couple two or more elements, such as 1) a guide nucleic acid (e.g. gRNAs or gDNAs) designed for targeting a user specified target sequence in the genome and 2) an editing sequence and/or recorder sequence as disclosed herein (e.g. FIG. 1B and FIG. 5A). A cassette comprising an editing sequence and guide nucleic acid can be referred to as an editing cassette. A cassette comprising an editing sequence can be referred to as an editing cassette. A cassette comprising a recorder sequence and a guide nucleic acid can be referred to as a recorder cassette. A cassette comprising a recorder sequence can be referred to as a recorder cassette. In a preferred embodiment, an editing cassette and a recorder cassette are delivered into the cell at the same time. Further, an editing cassette and a recorder cassette may be covalently linked. Further, these elements may be synthesized together by multiplexed oligonucleotide synthesis.


A cassette can comprise one or more guide nucleic acids and editing cassette as a contiguous polynucleotide. In other examples, one or more guide nucleic acids and editing cassette are contiguous. In other examples, one or more guide nucleic acids and editing cassette are non-contiguous. In other examples, two or more guide nucleic acids and editing cassette are non-contiguous.


A cassette can comprise one or more guide nucleic acids, an editing cassette, and a recorder cassette as a contiguous polynucleotide. In other examples, one or more guide nucleic acids, editing cassette, and recorder cassette are contiguous. In other examples, two or more guide nucleic acids, editing cassette, and recorder cassette are contiguous. In other examples, one or more guide nucleic acids, editing cassette, and recorder cassette are non-contiguous. In other examples, two or more guide nucleic acids, editing cassette, and recorder cassette are non-contiguous.


A cassette can comprise one or more guide nucleic acids, one or more editing cassettes, and one or more recorder cassettes as a contiguous polynucleotide. In other examples, one or more guide nucleic acids, one or more editing cassettes, and one or more recorder cassettes are contiguous. In other examples, two or more guide nucleic acids, two or more editing cassettes, and two or more recorder cassettes are contiguous. In other examples, one or more guide nucleic acids, one or more editing cassettes, and one or more recorder cassettes are non-contiguous. In other examples, two or more guide nucleic acids, two or more editing cassettes, and two or more recorder cassettes are non-contiguous.


A cassette can comprise one or more guide nucleic acids and editing sequence as a contiguous polynucleotide. In other examples, one or more guide nucleic acids and editing sequence are contiguous. In other examples, one or more guide nucleic acids and editing sequence are non-contiguous. In other examples, two or more guide nucleic acids and editing sequence are non-contiguous.


A cassette can comprise one or more guide nucleic acids, an editing sequence, and a recorder sequence as a contiguous polynucleotide. In other examples, one or more guide nucleic acids, editing sequence, and recorder sequence are contiguous. In other examples, two or more guide nucleic acids, editing sequence, and recorder sequence are contiguous. In other examples, one or more guide nucleic acids, editing sequence, and recorder sequence are non-contiguous. In other examples, two or more guide nucleic acids, editing sequence, and recorder sequence are non-contiguous.


A cassette can comprise one or more guide nucleic acids, one or more editing sequences, and one or more recorder sequences as a contiguous polynucleotide. In other examples, one or more guide nucleic acids, one or more editing sequences, and one or more recorder sequences are contiguous. In other examples, two or more guide nucleic acids, two or more editing sequences, and two or more recorder sequences are contiguous. In other examples, one or more guide nucleic acids, one or more editing sequences, and one or more recorder sequences are non-contiguous. In other examples, two or more guide nucleic acids, two or more editing sequences, and two or more recorder sequences are non-contiguous.


An editing cassette can comprise an editing sequence. An editing sequence can comprise a mutation, such as a synonymous or non-synonymous mutation, and homology arms (HAs). An editing sequence can comprise a mutation, such as a synonymous or non-synonymous mutation, and homology arms (HAs) designed to undergo homologous recombination with the target sequence at the site of nucleic acid-guided nuclease-mediated double strand break (e.g. FIG. 1B).


A recorder cassette can comprise a recorder sequence. A recorder sequence can comprise a trackable sequence, such as a barcode or marker, and homology arms (HAs). A recorder sequence can comprise a trackable sequence, such as a barcode or marker, and homology arms (HAs) designed to undergo homologous recombination with the chromosome at the site of nucleic acid-guided nuclease-mediated double strand break (e.g. FIG. 1B).


A cassette can encode machinery (e.g. targetable nuclease, guide nucleic acid, editing cassette, and/or recorder cassette as disclosed herein) necessary to induce strand breakage as well as designed repair that can be selectively enriched and/or tracked in cells. A cell can be any cell such as eukaryotic cell, archaeal cell, prokaryotic cell, or microorganisms such as E. coli (e.g. FIG. 2A-2D).


A cassette can comprise an editing cassette. A cassette can comprise a recorder cassette. A cassette can comprise a guide nucleic acid and an editing cassette. A cassette can comprise a guide nucleic acid and a recorder cassette. A cassette can comprise a guide nucleic acid, an editing cassette, and a recorder cassette. A cassette can comprise two guide nucleic acids, an editing cassette, and a recorder cassette. A cassette can comprise more than two guide nucleic acids, one or more editing cassettes, and one or more recorder cassettes. These elements of a cassette can be linked covalently. These elements of a cassette can be contiguous. These elements of a cassette can be contiguous.


A cassette can comprise an editing sequence. A cassette can comprise a recorder sequence. A cassette can comprise a guide nucleic acid and an editing sequence. A cassette can comprise a guide nucleic acid and a recorder sequence. A cassette can comprise a guide nucleic acid, an editing sequence, and a recorder sequence. A cassette can comprise two guide nucleic acids, an editing sequence, and a recorder sequence. A cassette can comprise more than two guide nucleic acids, one or more editing sequences, and one or more recorder sequences. These elements of a cassette can be linked covalently. These elements of a cassette can be contiguous. These elements of a cassette can be contiguous.


Single genome edits can be tracked using sequencing technologies, e.g. short read sequencing technologies (e.g. FIG. 1C), long read sequencing technologies, or any other sequencing technologies known in the art.


In some embodiments, upon transformation, each editing cassette generates the designed genetic modification within the transformed cell. In some examples, the editng cassette can act in trans as a barcode of the genetic mutation introduced by the editing cassette and can enable the tracking of this mutation frequency in a complex population over time and across many different growth conditions (e.g. FIG. 2A-2D and FIG. 1C).


In some examples, a recording cassette inserts the designed trackable sequence, such as a marker or barcode sequence, within the transformed cell. In some examples, the recorder cassette can act in cis as a barcode of the chromosomal mutation and can enable the tracking of this mutation frequency in a complex population over time and across many different growth conditions.


By providing cis and/or trans tracking of designed genomic mutations, the methods provided herein simplify sample preparation and depth of coverage for mapping diversity genome wide, and provide powerful tools for engineering on a genome scale (e.g. FIG. 1C).


A plurality of cassettes can be pooled into a library of cassettes. A library of cassettes can comprise at least 2 cassettes. A library of cassettes can comprise from 5 to a million cassettes. A library of cassettes can comprise at least a million cassettes. It should be understood, that a library of cassettes can comprise any number of cassettes.


A library of cassettes can comprise cassettes that have any combination of common elements and non-common or unique elements as compared to the other cassettes within the pool. For example, a library of cassettes can comprise common priming sites or common homology arms while also containing non-common or unique barcodes. Common elements can be shared by a plurality, majority, or all of the cassettes within a library of cassettes. Non-common elements can be shared by a plurality, minority, or sub-population of cassettes within the library of cassettes. Unique elements can be shared by a one, a few, or a sub-population of cassettes within the library of cassettes, such that it is able to identify or distinguish the one, few, or sub-population of cassettes from the other cassettes within the library of cassettes. Such combinations of common and non-common are advantageous for multiplexing techniques as disclosed herein.


Cassettes disclosed herein can generate the designed genetic modification or insert the designed marker or barcode sequence with high efficiency within a transformed cell. In many examples, the efficiency is greater than 50%. In some examples the efficiency is 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, or 100% (e.g., FIGS. 32A, 32B, and 33).


In some examples, transformation, editing, and/or recording efficiency can be increased by modulating the expression of one or more components disclosed herein, such as a nucleic acid-guided nuclease. Methods for modulating components are disclosed herein and are known in the art. Such methods can include expressing a component, such as a nucleic acid-guided nuclease or CRISPR enzyme of a subject system on a low or high copy plasmid, depending on the experimental design.


Disclosed herein are methods and compositions for generating cassettes. A cassettes can comprise a cassettes as disclosed herein. For example, a cassette can comprise any combination of an editing cassette and/or recorder cassette disclosed herein. Such a cassette can be comprised on a larger polynucleic acid molecule. Such a larger polynucleic acid molecule can be linear or circular, such as a plasmid or viral vector.


An editing cassette can comprise a mutation relative to a target nucleic acid sequence. The editing cassette can comprise sequence homologous to the target sequence flanking the desired mutation or editing sequence. The editing cassette can comprise a region which recognizes, or hybridizes to, a target sequence of a nucleic acid in a cell or population of cells, is homologous to the target sequence of the nucleic acid of the cell and includes a mutation, or a desired mutation, of at least one nucleotide relative to the target sequence.


An editing cassette can comprise a first editing sequence comprising a first mutation relative to a target sequence. A first mutation can comprise a mutation such as an insertion, deletion, or substitution of at least one nucleotide compared to the non-editing target sequence. The mutation can be incorporated into a coding region or non-coding region.


An editing cassette can comprise a second editing sequence comprising a second mutation relative to a target sequence. The second mutation can be designed to mutate or otherwise silence a PAM sequence such that a corresponding nucleic acid guided nuclease or CRISPR nuclease is no longer able to cleave the target sequence. In such cases, this mutation or silencing of a PAM can serve as a method for selecting transformants in which the first editing sequence has been incorporated.


In some examples, an editing cassette comprises at least two mutations, wherein one mutation is a PAM mutation. In some examples, the PAM mutation can be in a second editing cassette. Such a second editing cassette can be covalently linked and can be continuous or non-contiguous to the other elements in the cassette.


An editing cassette can comprise a guide nucleic acid, such as a gRNA encoding gene, optionally operably linked to a promoter. The guide nucleic acid can be designed to hybridize with the targeted nucleic acid sequence in which the editing sequence will be incorporated.


A recording cassette can comprise a recording sequence. A recorder sequence can comprise a barcoding sequence, or other screenable or selectable marker or fragment thereof. The recording sequence can be comprised within a recorder cassette. Recorder cassettes can comprise regions homologous to an insertion site within a target nucleic acid sequence such that the recording sequence is incorporated by homologous recombination or homology-driven repair systems. The site of incorporation of the recording cassette can be comprised on the same DNA molecule as the target nucleic acid to be edited by an editing cassette. The recorder sequence can comprise a barcode, unique DNA sequence, and/or a complete copy or fragment of a selectable or screenable element or marker.


A recorder cassette can comprise a mutation relative to the target sequence. The mutation can be designed to mutate or otherwise silence a PAM sequence such that a corresponding nucleic acid guided nuclease or CRISPR nuclease is no longer able to cleave the target sequence. In such cases, this mutation or silencing of a PAM site can serve as a method for selecting transformants in which the first recording sequence has been incorporated. A recorder cassette can comprise a PAM mutation. The PAM mutation can be designed to mutate or otherwise silence a PAM site such that a corresponding CRISPR nuclease is no longer able to cleave the target sequence. In such cases, this mutation or silencing of a PAM site can serve as a method for selecting transformants in which the recorder sequence has been incorporated.


A recorder cassette can comprise a guide nucleic acid, such as a gene encoding a gRNA. A promoter can be operably linked to a nucleic acid sequence encoding a guide nucleic acid capable of targeting a nucleic acid-guided nuclease to the desired target sequence. A guide nucleic acid can target a unique site within the target site. In some cases, the guide nucleic acid targets a unique landing site that was incorporated in a prior round of engineering. In some cases, the guide nucleic acid targets a unique landing site that was incorporated by a recorder cassette in a prior round of engineering.


A recorder cassette can comprise a barcode. A barcode can be a unique barcode or relatively unique such that the corresponding mutation can be identified based on the barcode. In some examples, the barcode is a non-naturally occurring sequence that is not found in nature. In most examples, the combination of the desired mutation and the barcode within the editing cassette is non-naturally occurring and not found in nature. A barcode can be any number of nucleotides in length. A barcode can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more than 30 nucleotides in length. In some cases, the barcode is more than 30 nucleotides in length. A barcode can be generated by degenerate oligonucleotide synthesis. A barcode can be rationally designed or user-specified.


A recorder cassette can comprise a landing site. A landing site can serve as a target site for a recorder cassette for a successive engineering round. A landing site can comprise a PAM. A landing site can be a unique sequence. A landing site can be at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50 nucleotides in length. In some cases, the landing site is greater than 50 nucleotides in length.


A recorder cassette can comprise a selectable or screenable marker, or a regulatory sequence or mutation that turns a selectable or screenable marker on or off. In such cases, the turning on or off of a selectable marker can be used of selection or counter-selection, respectively, of iterative rounds of engineering. An example regulatory sequence includes a ribosome-binding site (RBS), though other such regulatory sequences are envisioned. Mutations that turn a selectable or screenable marker on can include any possible start codon that is recognized by the host transcription machinery. A mutation that turns off a selectable or screenable marker includes a mutation that deletes a start codon or one that inserts a premature stop codon or a reading frame shift mutation.


A recorder cassette can comprise one or more of a guide nucleic acid targeting a target site into which the recorder sequence is to be incorporated, a PAM mutation to silence a PAM used by the guide RNA, a barcode corresponding to an editing cassette, a unique site to serve as a landing site for a recorder cassette of a subsequent rounds of engineering, a regulatory sequence or mutation that turns a screenable or selectable marker on or off, these one or more elements being flanked by homology arms that are designed to promote recombination of these one or more elements into the cleaved target site that is targeted by the guide RNA.


A recorder cassette can comprise a first homology arm, a PAM mutation, a barcode, a unique landing site, a regulatory sequence or mutation for a screenable or selectable marker, a second homology arm, and guide RNA. The first homology arm can be an upstream homology arm. The second homology arm can be a downstream homology arm. The homology arms can be homologous to sequences flanking a cleavage site that is targeted by the guide RNA.


A cassette can comprise two guide nucleic acids designed to target two distinct target nucleic acid sequences. In any case, the guide nucleic acid can comprise a single gRNA or chimeric gRNA consisting of a crRNA and trRNA sequences, or alternatively, the gRNA can comprise separated crRNA and trRNAs, or a guide nucleic acid can comprise a crRNA. In other examples, guide nucleic acid can be introduced simultaneously with a trackable polynucleic acid or plasmid comprising an editing cassette and/or recorder cassette. In these cases, the guide nucleic acid can be encoded on a separate plasmid or be delivered in RNA form via delivery methods well known in the art.


A cassette can comprise a gene encoding a nucleic acid-guided nuclease, such as a CRISPR nuclease, functional with the chosen guide nucleic acid. A nucleic acid-guided nuclease or CRISPR nuclease gene can be provided on a separate plasmid. A nucleic acid-guided nuclease or CRISPR nuclease can be provided on the genome or episomal plasmid of a host organism to which a trackable polynucleic acid or plasmid will be introduced. In any of these examples, the nucleic acid-guided nuclease or CRISPR nuclease gene can be operably linked to a constitutive or inducible promotor. Examples of suitable constitutive and inducible promoters are well known in the art. A nucleic acid-guided nuclease or CRISPR nuclease can be provided as mRNA or polypeptide using delivery systems well known in the art. Such mRNA or polypeptide delivery systems can include, but are not limited to, nanoparticles, viral vectors, or other cell-permeable technologies.


A cassette can comprise a selectable or screenable marker, for example, such as that comprised within a recorder cassette. For example, the recorder cassette can comprise a barcode, such as trackable nucleic acid sequence which can be uniquely correlated with a genetic mutation of the corresponding editing cassette, or otherwise identifiably correlated with such a genetic mutation such that sequencing the barcode will allow identification of the corresponding genetic mutation introduced by the editing cassette. In other examples, recorder cassette can comprise a complete copy of or a fragment of a gene encoding an antibiotic resistance gene, auxotrophic marker, fluorescent protein, or other known selectable or screenable markers.


Trackable Plasmid Libraries

A trackable library can comprise a plurality of cassettes as disclosed herein. A trackable library can comprise a plurality of trackable polynucleic acids or plasmids comprising a cassette as disclosed herein. A cassette, polynucleotide, or plasmid comprising a recorder sequence or recorder cassette as disclosed herein can be referred to as a trackable cassette, polynucleotide, or plasmid. A cassette, polynucleotide, or plasmid comprising an editing sequence or editing cassette as disclosed herein can be referred to as a trackable cassette, polynucleotide, or plasmid.


In some cases, within the trackable library are distinct editing cassette and recorder cassette combinations that are sequenced to determine which editing sequence corresponds with a given marker or barcode sequence comprised within the recorder cassette. Therefore, when the editing and recorder sequences are incorporated into a target sequence, you can determine the edit that was incorporated by sequencing the recorder sequence. Sequence the recorder sequence or barcode can significantly cut down on sequencing time and cost.


Library size can depend on the experiment design. For example, if the aim is to edit each amino acid within a protein of interest, then the library size can depend on the number (N) of amino acids in a protein of interest, with a full saturation library (all 20 amino acids at each position or non-naturally occurring amino acids) scaling as 19 (or more)×N and an alanine-mapping library scaling as 1×N. Thus, screening of even very large proteins of more than 1,000 amino acids can be tractable given current multiplex oligo synthesis capabilities (e.g. 120,000 oligos). In addition to or as an alternative to activity screens, more general properties with developed high-throughput screens and selections can be efficiently tested using the libraries disclosed herein. It should be readily understood that libraries can be designed to mutate any number of amino acids within a target protein, including 1, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, etc. up to the total number of amino acids within a target protein. Additionally, select amino acids can be targeted, such as catalytically active amino acids, or those involved in protein-protein interactions. Each amino acid that is targeted for mutation can be mutated into any number of alternate amino acids, such as any other natural or non-naturally occurring amino acid or amino acid analog. In some examples, all targeted amino acids are mutated to the same amino acid, such as alanine. In other cases, the targeted amino acids are independently mutated to any other amino acid in any combination or permutation.


Trackable libraries can comprise trackable mutations in individual residues or sequences of interest. Trackable libraries can be generated using custom-synthesized oligonucleotide arrays. Trackable plasmids can be generated using any cloning or assembly methods known in the art. For example, CREATE-Recorder plasmids can be generated by chemical synthesis, Gibson assembly, SLIC, CPEC, PCA, ligation-free cloning, other in vitro oligo assembly techniques, traditional ligation-based cloning, or any combination thereof.


Recorder sequences, such as barcodes, can be designed in silico via standard code with a degenerate mutation at the target codon. The degenerate mutation can comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more than 30 nucleic acid residues. In some examples, the degenerate mutations can comprise 15 nucleic acid residues (N15).


Homology arms can be added to a recorder sequence and/or editing sequence to allow incorporation of the recorder and/or editing sequence into the desired location via homologous recombination or homology-driven repair. Homology arms can be added by synthesis, in vitro assembly, PCR, or other known methods in the art. For example, homology arms can be assembled via overlapping oligo extension, Gibson assembly, or any other method disclosed herein. A homology arm can be added to both ends of a recorder and/or editing sequence, thereby flanking the sequence with two distinct homology arms, for example, a 5′ homology arm and a 3′ homology arm.


The same 5′ and 3′ homology arms can be added to a plurality of distinct recorder sequences, thereby generating a library of unique recorder sequences that each have the same spacer target or targeted insertion site. The same 5′ and 3′ homology arms can be added to a plurality of distinct editing sequences, thereby generating a library of unique editing sequences that each have the same spacer target or targeted insertion site. In alternative examples, different or a variety of 5′ or 3′ homology arms can be added to a plurality of recorder sequences or editing sequences.


A recorder sequence library comprising flanking homology arms can be cloned into a vector backbone. In some examples, the recorder sequence and homology arms are cloned into a recorder cassette. Recorder cassettes can, in some cases, further comprise a nucleic acid sequence encoding a guide nucleic acid or gRNA engineered to target the desired site of recorder sequence insertion. In many cases, the nucleic acid sequences flanking the CRISPR/Cas-mediated cleavage site are homologous or substantially homologous to the homology arms comprised within the recorder cassette.


An editing sequence library comprising flanking homology arms can be cloned into a vector backbone. In some examples, the editing sequence and homology arms are cloned into an editing cassette. Editing cassettes can, in some cases, further comprise a nucleic acid sequence encoding a guide nucleic acid or gRNA engineered to target the desired site of editing sequence insertion. In many cases, the nucleic acid sequences flanking the CRISPR/Cas-mediated cleavage site are homologous or substantially homologous to the homology arms comprised within the editing cassette.


Gene-wide or genome-wide editing libraries can be subcloned into a vector backbone. In some cases, the vector backbone comprises a recorder cassette as disclosed herein. The editing sequence library can be inserted or assembled into a second site to generate competent trackable plasmids that can embed the recording barcode at a fixed locus while integrating the editing libraries at a wide variety of user defined sites.


A recorder sequence and/or cassette can be assembled or inserted into a vector backbone first, followed by insertion of an editing sequence and/or cassette. In other cases, an editing sequence and/or cassette can be inserted or assembled into a vector backbone first, followed by insertion of a recorder sequence and/or cassette. In other cases, a recorder sequence and/or cassette and an editing sequence and/or cassette are simultaneous inserted or assembled into a vector. In other cases, a recorder sequence and/or cassette and an editing sequence and/or cassette are comprised on the same cassette prior to simultaneous insertion or assembly into a vector. In other cases, a recorder sequence and/or cassette and an editing sequence and/or cassette are linked prior to simultaneous insertion or assembly into a vector. In other cases, a recorder sequence and/or cassette and an editing sequence and/or cassette are covalently linked prior to simultaneous insertion or assembly into a vector. In any of these cases, trackable plasmids or plasmid libraries can be generated.


A cassette or nucleic acid molecule can be synthesized which comprises one or more elements disclosed herein. For example, a nucleic acid molecule can be synthesized that comprises an editing cassette and a guide nucleic acid. A nucleic acid molecule can be synthesized that comprises an editing cassette and a recorder cassette. A nucleic acid molecule can be synthesized that comprises an editing cassette, a guide nucleic acid, and a recorder cassette. A nucleic acid molecule can be synthesized that comprises an editing cassette, a recorder cassette, and two guide nucleic acids. A nucleic acid molecule can be synthesized that comprises a recorder cassette and a guide nucleic acid. A nucleic acid molecule can be synthesized that comprises a recorder cassette. A nucleic acid molecule can be synthesized that comprises an editing cassette. In any of these cases, the guide nucleic acid can optionally be operably linked to a promoter. In any of these cases, the nucleic acid molecule can further include one or more barcodes.


Synthesized cassettes or synthesized nucleic acid molecules can be synthesized using any oligonucleotide synthesis method known in the art. For example, cassettes can be synthesized by array based oligonucleotide synthesis. In such examples, following synthesis of the oligonucleotides, the oligonucleotides can be cleaved from the array. Cleavage of oligonucleotides from an array can create a pool of oligonucleotides.


Software and automation methods can be used for multiplex synthesis and generation. For example, software and automation can be used to create 10, 102, 103, 104, 105, 106, or more cassettes, such as trackable cassettes. An automation method can generate trackable plasmids in rapid fashion. Trackable cassettes can be processed through a workflow with minimal steps to produce precisely defined genome-wide libraries.


Cassette libraries, such as trackable cassette libraries, can be generated which comprise two or more nucleic acid molecules or plasmids comprising any combination disclosed herein of recorder sequence, editing sequence, guide nucleic acid, and optional barcode, including combinations of one or more of any of the previously mentioned elements. For example, such a library can comprise at least 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 104, 105, 106, 107, 108, 109, 1010, or more nucleic acid molecules or plasmids of the present disclosure. It should be understood that such a library can include any number of nucleic acid molecules or plasmids, even if the specific number is not explicit listed above.


Cassettes or cassette libraries can be sequenced in order to determine the recorder sequence and editing sequence pair that is comprised on each cassette. In other cases, a known recorder sequence is paired with a known editing sequence during the library generation process. Other methods of determining the association between a recorder sequence and editing sequence comprised on a common nucleic acid molecule or plasmid are envisioned such that the editing sequence can be identified by identification or sequencing of the recorder sequence.


Methods and compositions for tracking edited episomal libraries that are shuttled between E. coli and other organisms/cell lines are provided herein. The libraries can be comprised on plasmids, Bacterial artificial chromosomes (BACs), Yeast artificial chromosomes (YACs), synthetic chromosomes, or viral or phage genomes. These methods and compositions can be used to generate portable barcoded libraries in host organisms, such as E. coli. Library generation in such organisms can offer the advantage of established techniques for performing homologous recombination. Barcoded plasmid libraries can be deep-sequenced at one site to track mutational diversity targeted across the remaining portions of the plasmid allowing dramatic improvements in the depth of library coverage (e.g. FIG. 3A).


Trackable Engineering Methods

An example of trackable engineering workflow is depicted in FIG. 3A. Each plasmid can encode a recorder cassette designed to edit a site in the target DNA (e.g. FIG. 3A, black cassette). Sites to be targeted can be functionally neutral sites, or they can be a screenable or selectable marker gene. The homology arm (HA) of the recorder cassette can contain a recorder sequence (e.g., FIG. 3B) that is inserted into the recording site during recombineering. Recombineering can comprise DNA cleavage, such as nucleic acid-guided nuclease-mediated DNA cleavage, and repair via homologous recombination. The recorder sequence can comprise a barcode, unique DNA sequence, or a complete copy or fragment of a screenable or selectable marker. In some examples, the recorder sequence is 15 nucleotides. The recorder sequence can comprise less than 10, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 88, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, or more than 200 nucleotides.


Through a multiplexed cloning approach, the recorder cassette can be covalently coupled to at least one editing cassette in a plasmid (e.g., FIG. 3A, green cassette) to generate trackable plasmid libraries that have a unique recorder and editing cassette combination. This trackable library can be sequenced to generate the recorder/edit mapping and used to track editing libraries across large segments of the target DNA (e.g., FIG. 3C). Recorder and editing sequences can be comprised on the same polynucleotide, in which case they are both incorporated into the target nucleic acid sequence, such as a genome or plasmid, by the same recombination event. In other examples, the recorder and editing sequences can be comprised on separate cassettes within the same trackable plasmid, in which case the recorder and editing sequences are incorporated into the target nucleic acid sequence by separate recombination events, either simultaneously or sequentially.


Methods are provided herein for combining multiplex oligonucleotide synthesis with recombineering, to create libraries of specifically designed and trackable mutations. Screens and/or selections followed by high-throughput sequencing and/or barcode microarray methods can allow for rapid mapping of mutations leading to a phenotype of interest.


Methods and compositions disclosed herein can be used to simultaneously engineer and track engineering events in a target nucleic acid sequence.


Trackable plasmids can be generated using in vitro assembly or cloning techniques. For example, the CREATE-Recorder plasmids can be generated using chemical synthesis, Gibson assembly, SLIC, CPEC, PCA, ligation-free cloning, other in vitro oligo assembly techniques, traditional ligation-based cloning, or any combination thereof.


Trackable plasmids can comprise at least one recording sequence, such as a barcode, and at least one editing sequence. In most cases, the recording sequence is used to record and track engineering events. Each editing sequence can be used to incorporate a desired edit into a target nucleic acid sequence. The desired edit can include insertion, deletion, substitution, or alteration of the target nucleic acid sequence. In some examples, the one or more recording sequence and editing sequences are comprised on a single cassette comprised within the trackable plasmid such that they are incorporated into the target nucleic acid sequence by the same engineering event. In other examples, the recording and editing sequences are comprised on separate cassettes within the trackable plasmid such that they are each incorporated into the target nucleic acid by distinct engineering events. In some examples, the trackable plasmid comprises two or more editing sequences. For example, one editing sequence can be used to alter or silence a PAM sequence while a second editing sequence can be used to incorporate a mutation into a distinct sequence.


Recorder sequences can be inserted into a site separated from the editing sequence insertion site. The inserted recorder sequence can be separated from the editing sequence by 1 bp or any number of base pairs. For example, the separation distance can be about 1 bp, 10 bp, 50 bp, 100 bp, 500 bp, lkp, 2 kb, 5 kb, 10 kb, or greater. The separation distance can be any discrete integer of base pairs. It should be readily understood that there the limit of the number of base pairs separating the two insertion sites can be limited by the size of the genome, chromosome, or polynucleotide into which the insertions are being made. In some examples, the maximum distance of separation depends on the size of the target nucleic acid or genome.


Recorder sequences can be inserted adjacent to editing sequences, or within proximity to the editing sequence. For example, the recorder sequence can be inserted outside of the open reading frame within which the editing sequence is inserted. Recorder sequence can be inserted into an untranslated region adjacent to an open reading frame within which an editing sequence has been inserted. The recorder sequence can be inserted into a functionally neutral or non-functional site. The recorder sequence can be inserted into a screenable or selectable marker gene.


In some examples, the target nucleic acid sequence is comprised within a genome, artificial chromosome, synthetic chromosome, or episomal plasmid. In various examples, the target nucleic acid sequence can be in vitro or in vivo. When the target nucleic acid sequence is in vivo, the CREATE-Recorder plasmid can be introduced into the host organisms by transformation, transfection, conjugation, biolistics, nanoparticles, cell-permeable technologies, or other known methods for DNA delivery, or any combination thereof. In such examples, the host organism can be a eukaryote, prokaryote, bacterium, archaea, yeast, or other fungi.


The engineering event can comprise recombineering, non-homologous end joining, homologous recombination, or homology-driven repair. In some examples, the engineering event is performed in vitro or in vivo.


The methods described herein can be carried out in any type of cell in which a nucleic acid-guided nuclease system can function (e.g., target and cleave DNA), including prokaryotic and eukaryotic cells or in vitro. In some embodiments the cell is a bacterial cell, such as Escherichia spp. (e.g., E. coli). In other embodiments, the cell is a fungal cell, such as a yeast cell, e.g., Saccharomyces spp. In other embodiments, the cell is an algal cell, a plant cell, an insect cell, or a mammalian cell, including a human cell.


In some examples, a cell is a recombinant organism. For example, the cell can comprise a non-native nucleic acid-guided nuclease system. Additionally or alternatively, the cell can comprise recombination system machinery. Such recombination systems can include lambda red recombination system, Cre/Lox, attB/attP, or other integrase systems. Where appropriate, the trackable plasmid can have the complementary components or machinery required for the selected recombination system to work correctly and efficiently.


A method for genome editing can comprise: (a) introducing a vector that encodes at least one editing cassette and at least one guide nucleic acid into a first population of cells, thereby producing a second population of cells comprising the vector; (b) maintaining the second population of cells under conditions in which a nucleic acid-guided nuclease is expressed or maintained, wherein the nucleic acid-guided nuclease is encoded on the vector, a second vector, on the genome of cells of the second population of cells, or otherwise introduced into the cell, resulting in DNA cleavage and incorporation of the editing cassette; (c) obtaining viable cells. Such a method can optionally further comprise (d) sequencing the target DNA molecule in at least one cell of the second population of cells to identify the mutation of at least one codon.


A method for genome editing can comprise: (a) introducing a vector that encodes at least one editing cassette comprising a PAM mutation as disclosed herein and at least one guide nucleic acid into a first population of cells, thereby producing a second population of cells comprising the vector; (b) maintaining the second population of cells under conditions in which nucleic acid-guided nuclease is expressed or maintained, wherein the nucleic acid-guided nuclease is encoded on the vector, a second vector, on the genome of cells of the second population of cells, or otherwise introduced into the cell, resulting in DNA cleavage, incorporation of the editing cassette, and death of cells of the second population of cells that do not comprise the PAM mutation, whereas cells of the second population of cells that comprise the PAM mutation are viable; (c) obtaining viable cells. Such a method can optionally further comprise (d) sequencing the target DNA in at least one cell of the second population of cells to identify the mutation of at least one codon.


Method for trackable genome editing can comprise: (a) introducing a vector that encodes at least one editing cassette, at least one recorder cassette, and at least two gRNA into a first population of cells, thereby producing a second population of cells comprising the vector; (b) maintaining the second population of cells under conditions in which a nucleic acid-guided nuclease is expressed or maintained, wherein the nucleic acid-guided nuclease is encoded on the vector, a second vector, on the genome of cells of the second population of cells, or otherwise introduced into the cell, resulting in DNA cleavage and incorporation of the editing and recorder cassettes; (c) obtaining viable cells. Such a method can optionally further comprise (d) sequencing the recorder sequence of the target DNA molecule in at least one cell of the second population of cells to identify the mutation of at least one codon.


In some examples where the trackable plasmid comprises an editing cassette designed to silence a PAM site, a method for trackable genome editing can comprise: (a) introducing a vector that encodes at least one editing cassette, a recorder cassette, and at least two gRNA into a first population of cells, thereby producing a second population of cells comprising the vector; (b) maintaining the second population of cells under conditions in which a nucleic acid-guided nuclease is expressed or maintained, wherein the nucleic acid-guided nuclease is encoded on the vector, a second vector, on the genome of cells of the second population of cells, or otherwise introduced into the cell, resulting in DNA cleavage, incorporation of the editing cassette and recorder cassette, and death of cells of the second population of cells that do not comprise the PAM mutation, whereas cells of the second population of cells that comprise the PAM mutation are viable; and (c) obtaining viable cells. Such a method can optionally further comprise (d) sequencing the recorder sequence of the target DNA in at least one cell of the second population of cells to identify the mutation of at least one codon. Such methods can also further comprise a recorder cassette comprising a second PAM mutation, such that both PAMs must be silences by the editing cassette PAM mutation and recorder cassette PAM mutation in order to escape cell death.


In some examples transformation efficiency is determined by using a non-targeting guide nucleic acid control, which allows for validation of the recombineering procedure and CFU/ng calculations. In some cases, absolute efficient is obtained by counting the total number of colonies on each transformation plate, for example, by counting both red and white colonies from a galK control. In some examples, relative efficiency is calculated by the total number of successful transformants (for example, white colonies) out of all colonies from a control (for example, galK control).


The methods of the disclosure can provide, for example, greater than 1000× improvements in the efficiency, scale, cost of generating a combinatorial library, and/or precision of such library generation.


The methods of the disclosure can provide, for example, greater than: 10×, 50×, 100×, 200×, 300×, 400×, 500×, 600×, 700×, 800×, 900×, 1000×, 1100×, 1200×, 1300×, 1400×, 1500×, 1600×, 1700×, 1800×, 1900×, 2000×, or greater improvements in the efficiency of generating genomic or combinatorial libraries.


The methods of the disclosure can provide, for example, greater than: 10×, 50×, 100×, 200×, 300×, 400×, 500×, 600×, 700×, 800×, 900×, 1000×, 1100×, 1200×, 1300×, 1400×, 1500×, 1600×, 1700×, 1800×, 1900×, 2000×, or greater improvements in the scale of generating genomic or combinatorial libraries.


The methods of the disclosure can provide, for example, greater than: 10×, 50×, 100×, 200×, 300×, 400×, 500×, 600×, 700×, 800×, 900×, 1000×, 1100×, 1200×, 1300×, 1400×, 1500×, 1600×, 1700×, 1800×, 1900×, 2000×, or greater decrease in the cost of generating genomic or combinatorial libraries.


The methods of the disclosure can provide, for example, greater than: 10×, 50×, 100×, 200×, 300×, 400×, 500×, 600×, 700×, 800×, 900×, 1000×, 1100×, 1200×, 1300×, 1400×, 1500×, 1600×, 1700×, 1800×, 1900×, 2000×, or greater improvements in the precision of genomic or combinatorial library generation.


Recursive Tracking for Combinatorial Engineering

Disclosed herein are methods and compositions for iterative rounds of engineering. Disclosed herein are recursive engineering strategies that allow implementation of trackable engineering at the single cell level through several serial engineering cycles (e.g., FIG. 3D or FIG. 6). These disclosed methods and compositions can enable search-based technologies that can effectively construct and explore complex genotypic space. The terms recursive and iterative can be used interchangeably.


Combinatorial engineering methods can comprise multiple rounds of engineering. Methods disclosed herein can comprise 2 or more rounds of engineering. For example, a method can comprise 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, or more than 30 rounds of engineering.


In some examples, during each round of engineering a new recorder sequence, such as a barcode, is incorporated at the same or nearby locus in a target site (e.g., FIG. 3D, green bars or FIG. 6, black bars) such that following multiple engineering cycles to construct combinatorial diversity throughout the genome (e.g., FIG. 3E, green bars or FIG. 6, grey bars) a PCR, or similar reaction, of the recording locus can be used to reconstruct each combinatorial genotype or to confirm that the engineered edit from each round has been incorporated into the target site.


Disclosed herein are methods for selecting for successive rounds of engineering. Selection can occur by a PAM mutation incorporated by an editing cassette. Selection can occur by a PAM mutation incorporated by a recorder cassette. Selection can occur using a screenable, selectable, or counter-selectable marker. Selection can occur by targeting a site for editing or recording that was incorporated by a prior round of engineering, thereby selecting for variants that successfully incorporated edits and recorder sequences from both rounds or all prior rounds of engineering.


Quantitation of these genotypes can be used for understanding combinatorial mutational effects on large populations and investigation of important biological phenomena such as epistasis.


Serial editing and combinatorial tracking can be implemented using recursive vector systems as disclosed herein. These recursive vector systems can be used to move rapidly through the transformation procedure (e.g., FIG. 7A). In some examples, these systems consist of two or more plasmids containing orthogonal replication origins, antibiotic markers, and gRNAs. The gRNA in each vector can be designed to target one of the other resistance markers for destruction by nucleic acid-guided nuclease-mediated cleavage. These systems can be used, in some examples, to perform transformations in which the antibiotic selection pressure is switched to remove the previous plasmid and drive enrichment of the next round of engineered genomes. Two or more passages through the transformation loop can be performed, or in other words, multiple rounds of engineering can be performed. Introducing the requisite recording cassettes and editing cassettes into recursive vectors as disclosed herein can be used for simultaneous genome editing and plasmid curing in each transformation step with high efficiencies.


In some examples, the recursive vector system disclosed herein comprises 2, 3, 4, 5, 6, 7, 8, 9, 10, or more than 10 unique plasmids. In some examples, the recursive vector system can use a particular plasmid more than once as long as a distinct plasmid is used in the previous round and in the subsequent round.


Recursive methods and compositions disclosed herein can be used to restore function to a selectable or screenable element in a targeted genome or plasmid. The selectable or screenable element can include an antibiotic resistance gene, a fluorescent gene, a unique DNA sequence or watermark, or other known reporter, screenable, or selectable gene. In some examples, each successive round of engineering can incorporate a fragment of the selectable or screenable element, such that at the end of the engineering rounds, the entire selectable or screenable element has been incorporated into the target genome or plasmid. In such examples, only those genome or plasmids, which have successfully incorporated all of the fragments, and therefore all of the desired corresponding mutations, can be selected or screened for. In this way, the selected or screened cells will be enriched for those that have incorporated the edits from each and every iterative round of engineering.


Recursive methods can be used to switch a selectable or screenable marker between an on and an off position, or between an off and an on position, with each successive round of engineering. Using such a method allows conservation of available selectable or screenable markers by requiring, for example, the use of only one screenable or selectable marker. Furthermore, short regulatory sequence or start codon or non-start codons can be used to turn the screenable or selectable marker on and off. Such short sequences can easily fit within a cassette or polynucleotide, such as a synthesized cassette.


One or more rounds of engineering can be performed using the methods and compositions disclosed herein. In some examples, each round of engineering is used to incorporate an edit unique from that of previous rounds. Each round of engineering can incorporate a unique recording sequence. Each round of engineering can result in removal or curing of the CREATE plasmid used in the previous round of engineering. In some examples, successful incorporation of the recording sequence of each round of engineering results in a complete and functional screenable or selectable marker or unique sequence combination.


Unique recorder cassettes comprising recording sequences such as barcodes or screenable or selectable markers can be inserted with each round of engineering, thereby generating a recorder sequence that is indicative of the combination of edits or engineering steps performed. Successive recording sequences can be inserted adjacent to one another. Successive recording sequences can be inserted within proximity to one another. Successive sequences can be inserted at a distance from one another.


Successive sequences can be inserted at a distance from one another. For example, successive recorder sequences can be inserted and separated by 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, or greater than 100 bp. In some examples, successive recorder sequences are separated by about 10, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, or greater than 1500 bp.


Successive recorder sequences can be separated by any desired number of base pairs and can be dependent and limited on the number of successive recorder sequences to be inserted, the size of the target nucleic acid or target genomes, and/or the design of the desired final recorder sequence. For example, if the compiled recorder sequence is a functional screenable or selectable marker, than the successive recording sequences can be inserted within proximity and within the same reading frame from one another. If the compiled recorder sequence is a unique set of barcodes to be identified by sequencing and have no coding sequence element, then the successive recorder sequences can be inserted with any desired number of base pairs separating them. In these cases, the separation distance can be dependent on the sequencing technology to be used and the read length limit.


In some examples, a recorder cassette comprises a landing site to be used as a target site for the recorder cassette of the next round of engineering. By using such a method, successive rounds of recorder cassettes can only be introduced into the target site if the recorder cassette from the previous round was successfully incorporated, thereby providing the target site for the present engineering round (e.g., FIG. 28).


Guide Nucleic Acid

A guide nucleic acid can complex with a compatible nucleic acid-guided nuclease and can hybridize with a target sequence, thereby directing the nuclease to the target sequence. A subject nucleic acid-guided nuclease capable of complexing with a guide nucleic acid can be referred to as a nucleic acid-guided nuclease that is compatible with the guide nucleic acid. Likewise, a guide nucleic acid capable of complexing with a nucleic acid-guided nuclease can be referred to as a guide nucleic acid that is compatible with the nucleic acid-guided nucleases.


A guide nucleic acid can be DNA. A guide nucleic acid can be RNA. A guide nucleic acid can comprise both DNA and RNA. A guide nucleic acid can comprise modified of non-naturally occurring nucleotides. In cases where the guide nucleic acid comprises RNA, the RNA guide nucleic acid can be encoded by a DNA sequence on a polynucleotide molecule such as a plasmid, linear construct, or editing cassette as disclosed herein.


A guide nucleic acid can comprise a guide sequence. A guide sequence is a polynucleotide sequence having sufficient complementarity with a target polynucleotide sequence to hybridize with the target sequence and direct sequence-specific binding of a complexed nucleic acid-guided nuclease to the target sequence. The degree of complementarity between a guide sequence and its corresponding target sequence, when optimally aligned using a suitable alignment algorithm, is about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or more. Optimal alignment may be determined with the use of any suitable algorithm for aligning sequences. In some embodiments, a guide sequence is about or more than about 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 75, or more nucleotides in length. In some embodiments, a guide sequence is less than about 75, 50, 45, 40, 35, 30, 25, 20 nucleotides in length. Preferably the guide sequence is 10-30 nucleotides long. The guide sequence can be 15-20 nucleotides in length. The guide sequence can be 15 nucleotides in length. The guide sequence can be 16 nucleotides in length. The guide sequence can be 17 nucleotides in length. The guide sequence can be 18 nucleotides in length. The guide sequence can be 19 nucleotides in length. The guide sequence can be 20 nucleotides in length.


A guide nucleic acid can comprise a scaffold sequence. In general, a “scaffold sequence” includes any sequence that has sufficient sequence to promote formation of a targetable nuclease complex, wherein the targetable nuclease complex comprises a nucleic acid-guided nuclease and a guide nucleic acid comprising a scaffold sequence and a guide sequence. Sufficient sequence within the scaffold sequence to promote formation of a targetable nuclease complex may include a degree of complementarity along the length of two sequence regions within the scaffold sequence, such as one or two sequence regions involved in forming a secondary structure. In some cases, the one or two sequence regions are comprised or encoded on the same polynucleotide. In some cases, the one or two sequence regions are comprised or encoded on separate polynucleotides. Optimal alignment may be determined by any suitable alignment algorithm, and may further account for secondary structures, such as self-complementarity within either the one or two sequence regions. In some embodiments, the degree of complementarity between the one or two sequence regions along the length of the shorter of the two when optimally aligned is about or more than about 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 97.5%, 99%, or higher. In some embodiments, at least one of the two sequence regions is about or more than about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 50, or more nucleotides in length.


A scaffold sequence of a subject guide nucleic acid can comprise a secondary structure. A secondary structure can comprise a pseudoknot region. In some example, the compatibility of a guide nucleic acid and nucleic acid-guided nuclease is at least partially determined by sequence within or adjacent to a pseudoknot region of the guide RNA. In some cases, binding kinetics of a guide nucleic acid to a nucleic acid-guided nuclease is determined in part by secondary structures within the scaffold sequence. In some cases, binding kinetics of a guide nucleic acid to a nucleic acid-guided nuclease is determined in part by nucleic acid sequence with the scaffold sequence.


In aspects of the invention the terms “guide nucleic acid” refers to a polynucleotide comprising 1) a guide sequence capable of hybridizing to a target sequence and 2) a scaffold sequence capable of interacting with or complexing with an nucleic acid-guided nuclease as described herein.


A guide nucleic acid can be compatible with a nucleic acid-guided nuclease when the two elements can form a functional targetable nuclease complex capable of cleaving a target sequence. Often, a compatible scaffold sequence for a compatible guide nucleic acid can be found by scanning sequences adjacent to a native nucleic acid-guided nuclease loci. In other words, native nucleic acid-guided nucleases can be encoded on a genome within proximity to a corresponding compatible guide nucleic acid or scaffold sequence.


Nucleic acid-guided nucleases can be compatible with guide nucleic acids that are not found within the nucleases endogenous host. Such orthogonal guide nucleic acids can be determined by empirical testing. Orthogonal guide nucleic acids can come from different bacterial species or be synthetic or otherwise engineered to be non-naturally occurring.


Orthogonal guide nucleic acids that are compatible with a common nucleic acid-guided nuclease can comprise one or more common features. Common features can include sequence outside a pseudoknot region. Common features can include a pseudoknot region. Common features can include a primary sequence or secondary structure.


A guide nucleic acid can be engineered to target a desired target sequence by altering the guide sequence such that the guide sequence is complementary to the target sequence, thereby allowing hybridization between the guide sequence and the target sequence. A guide nucleic acid with an engineered guide sequence can be referred to as an engineered guide nucleic acid. Engineered guide nucleic acids are often non-naturally occurring and are not found in nature.


More Methods

Disclosed herein are methods for genome engineering that employ a nuclease, such as a nucleic acid-guided nuclease to perform directed genome evolution/produce changes (deletions, substitutions, additions) in a target sequence, such as DNA or RNA, for example, genomic DNA or episomal DNA. Suitable nucleases can include, for example, RNA-guided nucleases such as Cas9, Cpf1, MAD2, or MAD7, DNA-guided nucleases such as Argonaute, or other nucleases such as zinc-finger nucleases, TALENs, or meganucleases. Nuclease genes can be obtained from any source, such as from a bacterium, archaea, prokaryote, eukaryote, or virus. For example, a Cas9 gene can be obtained from a bacterium harboring the corresponding Type II CRISPR system, such as the bacterium S. pyogenes (SEQ ID NO: 110). The nucleic acid sequence and/or amino acid sequence of the nuclease may be mutated, relative to the sequence of a naturally occurring nuclease. A mutation can be, for example, one or more insertions, deletions, substitutions or any combination of two or three of the foregoing. In some cases, the resulting mutated nuclease can have enhanced or reduced nuclease activity relative to the naturally occurring nuclease. In some cases, the resulting mutated nuclease can have no nuclease activity relative to the naturally occurring nuclease.


Methods for nucleic acid-guided nuclease-mediated genome editing are provided herein. Some disclosed methods can include a two-stage construction process which relies on generation of cassette libraries that incorporate directed mutations from an editing cassettes directly into a genome, episomal nucleic acid molecule, or isolated nucleic acid molecule. In some examples, during the first stage of cassette library construction, rationally designed editing cassettes can be cotransformed into cells with a guide nucleic acid (e.g., guide RNA) that hybridizes to or targets a target DNA sequence. In some examples, the guide nucleic acid is introduced as an RNA molecule, or encoded on a DNA molecule.


Editing cassettes can be designed such that they couple deletion or mutation of a PAM site with the mutation of one or more desired codons or nucleic acid residues in the adjacent nucleic acid sequence. The deleted or mutated PAM site, in some cases, can no longer be recognized by the chosen nucleic acid-guided nuclease. In some examples, at least one PAM or more than one PAM can be deleted or mutated, such as two, three, four, or more PAMs.


Methods disclosed herein can enable generation of an entire cassette library in a single transformation. The cassette library can be retrieved, in some cases, by amplification of the recombinant chromosomes, e.g. by a PCR reaction, using a synthetic feature or priming site from the editing cassettes. In some examples, a second PAM deletion or mutation is simultaneously incorporated. This approach can covalently couple the codon-targeted mutations directly to a PAM deletion.


In some examples, there is a second stage to construction of cassette libraries. During the second stage the PCR amplified cassette libraries carrying the destination PAM deletion/mutation and the targeted mutations, such as a desired mutation of one or more nucleotides, such as one or more nucleotides in one or more codons, can be co-transformed into naive cells. The cells can be eukaryotic cell, archaeal cell, or prokaryotic cells. The cassette libraries can be co-transformed with a guide nucleic acid or plasmid encoding the same to generate a population of cells that express a rationally designed protein library. The libraries can be co-transformed with a guide nucleic acid such as a gRNA, chimeric gRNA, split gRNA, or a crRNA and trRNA set. The cassette library can comprise a plurality of cassettes wherein each cassette comprises an editing cassette and guide nucleic acid. The cassette library can comprise a plurality of cassettes wherein each cassette comprises an editing cassette, recorder cassettes and two guide nucleic acids.


In some targetable nuclease systems, the guide nucleic acid can guide selection of a target sequence. As used herein, a target sequence refers to any locus in vitro or in in vivo, or in the nucleic acid of a cell or population of cells in which a mutation of at least one nucleotide, such as a mutation of at least one nucleotide in at least one codon, is desired. The target sequence can be, for example, a genomic locus, target genomic sequence, or extrachromosomal locus. The guide nucleic acid can be expressed as a DNA molecule, referred to as a guide DNA, or as a RNA molecule, referred to as a guide RNA. A guide nucleic acid can comprise a guide sequence, that is complementary to a region of the target region. A guide nucleic acid can comprise a scaffold sequence that can interact with a compatible nucleic acid-guided nuclease, and can optionally form a secondary structure. A guide nucleic acid can functions to recruit a nucleic acid-guided nuclease to the target site. A guide sequence can be complementary to a region upstream of the target site. A guide sequence can be complementary to at least a portion of the target site. A guide sequence can be completely complementary (100% complementary) to the target site or include one or more mismatches, provided that it is sufficiently complementary to the target site to specifically hybridize/guide and recruit the nuclease. Suitable nucleic acid guided nuclease include, as non-limiting examples, CRISPR nucleases, Cas nucleases, such as Cas9 or Cpf1, MAD2, and MAD7.


In some CRISPR systems, the CRISPR RNA (crRNA or spacer-containing RNA) and trans-activating CRISPR RNA (tracrRNA or trRNA) can guide selection of a target sequence. As used herein, a target sequence refers to any locus in vitro or in in vivo, or in the nucleic acid of a cell or population of cells in which a mutation of at least one nucleotide, such as a mutation of at least one nucleotide in at least one codon, is desired. The target sequence can be, for example, a genomic locus, target genomic sequence, or extrachromosomal locus. The tracrRNA and crRNA can be expressed as a single, chimeric RNA molecule, referred to as a single-guide RNA, guide RNA, or gRNA. The nucleic acid sequence of the gRNA comprises a first nucleic acid sequence, also referred to as a first region, that is complementary to a region of the target region and a second nucleic acid sequence, also referred to a second region, that forms a stem loop structure and functions to recruit a CRISPR nuclease to the target region. The first region of the gRNA can be complementary to a region upstream of the target genomic sequence. The first region of the gRNA can be complementary to at least a portion of the target region. The first region of the gRNA can be completely complementary (100% complementary) to the target genomic sequence or include one or more mismatches, provided that it is sufficiently complementary to the target genomic sequence to specifically hybridize/guide and recruit a CRISPR nuclease, such as Cas9 or Cpf1.


A guide sequence or first region of the gRNA can be at least 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or at least 30 nucleotides in length. The guide sequence or first region of the gRNA can be at least 20 nucleotides in length.


A stem loop structure that can be formed by the scaffold sequence or second nucleic acid sequence of a gRNA can be at least 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 7, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 nucleotides in length. A stem loop structure can be from 80 to 90 or 82 to 85 nucleotides in length. A scaffold sequence or second region of the gRNA that forms a stem loop structure can be 83 nucleotides in length.


A guide nucleic acid of a cassette that is introduced into a first cell using the methods disclosed herein can be the same as the guide nucleic acid of a second cassette that is introduced into a second cell. More than one guide nucleic acid can be introduced into the population of first cells and/or the population of second cells. The more than one guide nucleic acids can comprise guide sequences that are complementary to more than one target region.


Methods disclosed herein can comprise using oligonucleotides. Such oligonucleotides can be obtained or derived from many sources. For example, an oligonucleotide can be derived from a nucleic acid library that has been diversified by nonhomologous random recombination (NRR); such a library is referred to as an NRR library. An oligonucleotide can be synthesized, for example by array-based synthesis or other known chemical synthesis method. The length of an oligonucleotide can be dependent on the method used in obtaining the oligonucleotide. An oligonucleotide can be approximately 50-200 nucleotides, 75-150 nucleotides, or between 80-120 nucleotides in length. An oligonucleotide can be about 10, 20, 30, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, or more nucleotides in length, including any integer, for example, 51, 52, 53, 54, 201, 202, etc. An oligonucleotide can be about 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1250, 1500, 1750, 2000, or more nucleotides in length, including any integer, for example, 101, 203, 1001, 2001, 2010, etc.


Oligonucleotides and/or other nucleic acid molecules can be combined or assembled to generate a cassette. Such a cassette can comprise (a) a region that is homologous to a target region of the nucleic acid of the cell and includes a desired mutation of at least one nucleotide or one codon relative to the target region, and (b) a protospacer adjacent motif (PAM) mutation. The PAM mutation can be any insertion, deletion or substitution of one or more nucleotides that mutates the sequence of the PAM such that it is no longer recognized by a nucleic acid-guided nuclease system or CRISPR nuclease system. A cell that comprises such a PAM mutation may be said to be “immune” to nuclease-mediated killing. The desired mutation relative to the sequence of the target region can be an insertion, deletion, and/or substitution of one or more nucleotides. In some examples, the insertion, deletion, and/or substitution of one or more nucleotides is in at least one codon of the target region. Alternatively, the cassette can be synthesized in a single synthesis, comprising (a) a region that is homologous to a target region of the nucleic acid of the cell and includes a desired mutation of at least one nucleotide or one codon relative to the target region, (b) a protospacer adjacent motif (PAM) mutation, and optionally (c) a region that is homologous to a second target region of the nucleic acid of the cell and includes a recorder sequence.


The methods disclosed herein can be applied to any target nucleic acid molecule of interest, from any prokaryote including bacteria and archaea, or any eukaryote, including yeast, mammalian, and human genes, or any viral particle. The nucleic acid module can be a non-coding nucleic acid sequence, gene, genome, chromosome, plasmid, episomal nucleic acid molecule, artificial chromosome, synthetic chromosome, or viral nucleic acid.


Methods for assessing recovery efficiency of donor strain libraries are disclosed herein. Recovery efficiency can be verified based on the presence of a PCR product or on changes in amplicon or PCR product sizes or sequence obtained with primers directed at the selected target locus. Primers can be designed to hybridize with endogenous sequences or heterologous sequences contained on the donor nucleic acid molecule. For example, the PCR primer can be designed to hybridize to a heterologous sequence such that PCR will only be possible if the donor nucleic acid is incorporated. Sequencing of PCR products from the recovered libraries indicates the heterologous sequence or synthetic priming site from the dsDNA cassettes or donor sequences can be incorporated with about 90-100% efficiency. In other examples, the efficiency can be about 5%, 10% 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 99% or 100%.


In some cases, the ability to improve final editing efficiencies of the methods disclosed herein can be assessed by carrying out cassette construction in gene deficient strains before transferring to a wild-type donor strain in an effort to prevent loss of mutations during the donor construction phase. Additionally or alternatively, efficiency of the disclosed methods can be assessed by targeting an essential gene. Essential genes can include any gene required for survival or replication of a viral particle, cell, or organism. In some examples, essential genes include dxs, metA, and folA. Essential genes have been effectively targeted using guide nucleic acid design strategies described. Other suitable essential genes are well known in the art.


Provided herein are method of increasing editing efficiencies by modulating the level of a nucleic acid-guided nuclease. This could be done by using copy control plasmids, such as high copy number plasmids or low copy number plasmids. Low copy number plasmids could be plasmids that can have about 20 or less copies per cell, as opposed to high copy number plasmids that can have about 1000 copies per cell. High copy number plasmids and low copy number plasmids are well known in the art and it is understood that an exact plasmid copy per cell does not need to be known in order to characterize a plasmid as either high or low copy number.


In some cases, the decreasing expression level of a nucleic acid-guided nuclease, such as Cas9, Cpf1, MAD2, or MAD7, can increase transformation, editing, and/or recording efficiencies. In some cases, decreasing expression level of the nucleic acid-guided nuclease is done by expressing the nucleic acid-guided nuclease on a low copy number plasmid.


In some cases, the increasing expression level of a nucleic acid-guided nuclease, such as Cas9, Cpf1, MAD2, or MAD7, can increase transformation, editing, and/or recording efficiencies. In some cases, increasing expression level of the nucleic acid-guided nuclease is done by expressing the nucleic acid-guided nuclease on a high copy number plasmid.


Other methods of modulating the expression level of a protein are also envisioned and are known in the art. Such methods include using a inducible or constitutive promoter, incorporating enhancers or other expression regulatory elements onto an expression plasmid, using RNAi, amiRNAi, or other RNA silencing techniques to modulate transcript level, fusing the protein of interest to a degradation domain, or any other method known in the art.


Provided herein are methods for generating mutant libraries. In some examples, the mutant library can be effectively constructed and retrieved within 1-3 hours post recombineering. In some examples, the mutant library is constructed within 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, or 24 hours post recombineering. In some examples, the mutant library can be retrieved within 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 24, 36, or 48 hours post recombineering and/or post-constructing by recombineering.


Some methods disclosed herein can be used for trackable, precision genome editing. In some examples, methods disclosed herein can achieve high efficiency editing/mutating using a single cassette that encodes both an editing cassette and guide nucleic acid, and optionally a recorder cassette and second guide nucleic acid. Alternatively, a single vector can encode an editing cassette while a guide nucleic acid is provided sequentially or concomitantly. When used with parallel DNA synthesis, such as array-based DNA synthesis, methods disclosed herein can provide single step generation of hundreds or thousands of precision edits/mutations. Mutations can be mapped by sequencing the editing cassette on the vector, rather than by sequencing of the genome or a section of the genome of the cell or organism.


The methods disclosed herein can have broad utility in protein and genome engineering applications, as well as for reconstruction of mutations, such as mutations identified in laboratory evolution experiments. In some examples, the methods and compositions disclosed here can combine an editing cassette, which could include a desired mutation and a PAM mutation, with a gene encoding a guide nucleic acid on a single vector.


In some examples, a trackable mutant library can be generated in a single transformation or single reaction.


Methods disclosed herein can comprise introducing a cassette comprising an editing cassette that includes the desired mutation and the PAM mutation into a cell or population of cells. In some embodiments, the cell into which the cassette or vector is introduced also comprises a nucleic acid-guided nuclease, such as Cas9, Cpf1, MAD2, or MAD7. In some embodiments, a gene or mRNA encoding the nucleic acid-guided nuclease is concomitantly, sequentially, or subsequently introduced into the cell or population of cells. Expression of a targetable nuclease system, including nucleic acid-guided nuclease and a guide nucleic acid, in the cell or cell population can be activated such that the guide nucleic acid recruits the nucleic acid-guided nuclease to the target region, where dsDNA cleavage occurs.


In some examples, without wishing to be bound by any particular theory, the homologous region of an editing cassette complementary to the target sequence mutates the PAM and the one or more codon of the target sequence. Cells of the population of cells that did not integrate the PAM mutation can undergo unedited cell death due to nucleic acid-guided nuclease mediated dsDNA cleavage. In some examples, cells of the population of cells that integrate the PAM mutation do not undergo cell death; they remain viable and are selectively enriched to high abundance. Viable cells can be obtained and can provide a library of trackable or targeted mutations.


In some examples, without wishing to be bound by any particular theory, the homologous region of a recorder cassette complementary to the target sequence mutates the PAM and introduces a barcode into a target sequence. Cells of the population of cells that did not integrate the PAM mutation can undergo unedited cell death due to nucleic acid-guided nuclease mediated dsDNA cleavage. In some examples, cells of the population of cells that integrate the PAM mutation do not undergo cell death; they remain viable and are selectively enriched to high abundance. Viable cells can be obtained and can provide a library of trackable mutations.


A separate vector or mRNA encoding a nucleic acid-guided nuclease can be introduced into the cell or population of cells. Introducing a vector or mRNA into a cell or population of cells can be performed using any method or technique known in the art. For example, vectors can be introduced by standard protocols, such as transformation including chemical transformation and electroporation, transduction and particle bombardment. Additionally or alternatively, mRNA can be introduced by standard protocols, such as transformation as disclosed herein, and/or by techniques involving cell permeable peptides or nanoparticles.


An editing cassette can include (a) a region, which recognizes (hybridizes to) a target region of a nucleic acid in a cell or population of cells, is homologous to the target region of the nucleic acid of the cell and includes a mutation, referred to a desired mutation, of at least one nucleotide that can be in at least one codon relative to the target region, and (b) a protospacer adjacent motif (PAM) mutation. In some examples, the editing cassette also comprises a barcode. The barcode can be a unique barcode or relatively unique such that the corresponding mutation can be identified based on the barcode. The PAM mutation may be any insertion, deletion or substitution of one or more nucleotides that mutates the sequence of the PAM such that the mutated PAM (PAM mutation) is not recognized by a chosen nucleic acid-guided nuclease system. A cell that comprises such as a PAM mutation may be said to be “immune” to nucleic acid-guided nuclease-mediated killing. The desired mutation relative to the sequence of the target region may be an insertion, deletion, and/or substitution of one or more nucleotides and may be at least one codon of the target region. In some embodiments, the distance between the PAM mutation and the desired mutation is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 50, 60, 70, 80, 90, or 100 nucleotides on the editing cassette In some embodiments, the PAM mutation is located at least 9 nucleotides from the end of the editing cassette. In some embodiments, the desired mutation is located at least 9 nucleotides from the end of the editing cassette.


A desired mutation can be an insertion of a nucleic acid sequence relative to the sequence of the target sequence. The nucleic acid sequence inserted into the target sequence can be of any length. In some embodiments, the nucleic acid sequence inserted is at least 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or at least 2000 nucleotides in length. In embodiments in which a nucleic acid sequence is inserted into the target sequence, the editing cassette comprises a region that is at least 10, 15, 20, 25, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 51, 52, 53, 54, 55, 56, 57, 58, 59, or at least 60 nucleotides in length and homologous to the target sequence. The homology arms or homologous region can be about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, or more nucleotides in length, including any integer therein. The homology arms or homologous region can be over 200 nucleotides in length.


A barcode can be a unique barcode or relatively unique such that the corresponding mutation can be identified based on the barcode. In some examples, the barcode is a non-naturally occurring sequence that is not found in nature. In most examples, the combination of the desired mutation and the barcode within the editing cassette is non-naturally occurring and not found in nature. A barcode can be any number of nucleotides in length. A barcode can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more than 30 nucleotides in length. In some cases, the barcode is more than 30 nucleotides in length.


An editing cassette or recorder cassette can comprise at least a portion of a gene encoding a guide nucleic acid, and optionally a promoter operable linked to the encoded guide nucleic acid. In some embodiments, the portion of the gene encoding the guide nucleic acid encodes the portion of the guide nucleic acid that is complementary to the target sequence. The portion of the guide nucleic acid that is complementary to the target sequence, or the guide sequence, can be at least 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or at least 30 nucleotides in length. In some embodiments, the guide sequence is 24 nucleotides in length. In some embodiments, the guide sequence is 18 nucleotides in length.


In some embodiments, the editing cassette or recorder cassette further comprises at least two priming sites. The priming sites may be used to amplify the cassette, for example by PCR. In some embodiments, the portion of the guide sequence is used as a priming site.


Editing cassettes or recorder cassettes for use in the described methods can be obtained or derived from many sources. For example, the cassettes can be synthesized, for example by array-based synthesis, multiplex synthesis, multi-parallel synthesis, PCR assembly, in vitro assembly, Gibson assembly, or any other synthesis method known in the art. In some embodiments, the editing cassette or recorder cassette is synthesized, for example by array-based synthesis, multiplex synthesis, multi-parallel synthesis, PCR assembly,—in vitro assembly, Gibson assembly, or any other synthesis method known in the art. The length of the editing cassette or recorder cassette may be dependent on the method used in obtaining said cassette.


An editing cassette can be approximately 50-300 nucleotides, 75-200 nucleotides, or between 80-120 nucleotides in length. In some embodiments, the editing cassette can be any discrete length between 50 nucleotide and 1 Mb.


A recorder cassette can be approximately 50-300 nucleotides, 75-200 nucleotides, or between 80-120 nucleotides in length. In some embodiments, the recorder cassette can be any discrete length between 50 nucleotide and 1 Mb.


Methods disclosed herein can also involve obtaining editing cassettes and recorder cassettes and constructing a trackable plasmid or vector. Methods of constructing a vector will be known to one ordinary skill in the art and may involve ligating the cassettes into a vector backbone. In some examples, plasmid construction occurs by in vitro DNA assembly methods, oligonucleotide assembly, PCR-based assembly, SLIC, CPEC, or other assembly methods well known in the art. In some embodiments, the cassettes or a subset (pool) of the cassettes can be amplified prior to construction of the vector, for example by PCR.


The cell or population of cells comprising a polynucleotide encoding a nucleic acid-guided nuclease can be maintained or cultured under conditions in which the nuclease is expressed. Nucleic acid-guided nuclease expression can be controlled or can be constitutively on. The methods described herein can involve maintaining cells under conditions in which nuclease expression is activated, resulting in production of the nuclease, for example, Cas9, Cpf1, MAD2, or MAD7. Specific conditions under which the nucleic acid-guided nuclease is expressed can depend on factors, such as the nature of the promoter used to regulate expression of the nuclease. Nucleic acid-guided nuclease expression can be induced in the presence of an inducer molecule, such as arabinose. When the cell or population of cells comprising nucleic acid-guided nuclease encoding DNA are in the presence of the inducer molecule, expression of the nuclease can occur. CRISPR-nuclease expression can be repressed in the presence of a repressor molecule. When the cell or population of cells comprising nucleic acid-guided nuclease encoding DNA are in the absence of a molecule that represses expression of the nuclease, expression of the nuclease can occur.


Cells or the population of cells that remain viable can be obtained or separated from the cells that undergo unedited cell death as a result of nucleic acid-guided nuclease-mediated killing; this can be done, for example, by spreading the population of cells on culture surface, allowing growth of the viable cells, which are then available for assessment.


Disclosed herein are methods for the identification of the mutation without the need to sequence the genome or large portions of the genome of the cell. The methods can involve sequencing of the editing cassette, recorder cassette, or barcode to identify the mutation of one of more codon. Sequencing of the editing cassette can be performed as a component of the vector or after its separation from the vector and, optionally, amplification. Sequencing can be performed using any sequencing method known in the art, such as by Sanger sequencing or next-generation sequencing methods.


Some methods described herein can be carried out in any type of cell in which a targetable nuclease system can function, or target and cleave DNA, including prokaryotic and eukaryotic cells. In some embodiments, the cell is a bacterial cell, such as Escherichia spp., e.g., E. coli. In other embodiments, the cell is a fungal cell, such as a yeast cell, e.g., Saccharomyces spp. In other embodiments, the cell is an algal cell, a plant cell, an insect cell, or a mammalian cell, including a human cell.


A “vector” is any of a variety of nucleic acids that comprise a desired sequence or sequences to be delivered to or expressed in a cell. A desired sequence can be included in a vector, such as by restriction and ligation or by recombination or assembly methods know in the art. Vectors are typically composed of DNA, although RNA vectors are also available. Vectors include, but are not limited to plasmids, fosmids, phagemids, virus genomes, artificial chromosomes, and synthetic nucleic acid molecules.


Vectors useful in the methods disclosed herein can comprise at least one editing cassette as described herein, at least one gene encoding a gRNA, and optionally a promoter and/or a barcode. More than one editing cassette can be included on the vector, for example 2, 3, 4, 5, 6, 7, 8, 9, 10 or more editing cassettes. The more than one editing cassettes can be designed to target different target regions, for example, there could be different editing cassettes, each of which contains at least one region homologous with a different target region. In other examples, each editing cassette target the same target region while each editing cassette comprises a different desired mutation relative to the target region. In other examples, the plurality of editing cassettes can comprise a combination of editing cassettes targeting the same target region and editing cassettes targeting different target regions. Each editing cassette can comprise an identifying barcode. Alternatively or additionally, the vector can include one or more genes encoding more than one gRNA, e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10 or more gRNAs. The more than one gRNAs can contain regions that are complementary to a portion of different target regions, for example, if there are different gRNAs, each of which can be complementary to a portion of a different target region. In other examples, the more than one gRNA can each target the same target region. In other examples, the more than one gRNA can be a combination of gRNAs targeting the same and different target regions.


A cassette comprising a gene encoding a portion of a guide nucleic acid, can be ligated or assembled into a vector that encodes another portion of a guide nucleic acid. Upon ligation or assembly, the portion of the guide nucleic acid from the cassette and the other portion of the guide nucleic acid can form a functional guide nucleic acid. A promoter and a gene encoding a guide nucleic acid can be operably linked.


In some embodiments, the methods involve introduction of a second vector encoding a nucleic acid-guided nuclease, such as Cas9, Cpf1, MAD2, or MAD7. The vector may further comprise one or more promoters operably linked to a gene encoding the nucleic acid-guided nuclease.


As used herein, “operably” linked can mean the promoter affects or regulates transcription of the DNA encoding a gene, such as the gene encoding the gRNA or the gene encoding a CRISPR nuclease.


A promoter can be a native promoter such as a promoter present in the cell into which the vector is introduced. A promoter can be an inducible or repressible promoter, for example, the promoter can be regulated allowing for inducible or repressible transcription of a gene, such as the gene encoding the guide nucleic acid or the gene encoding a nucleic acid-guided nuclease. Such promoters that are regulated by the presence or absence of a molecule can be referred to as an inducer or a repressor, respectively. The nature of the promoter needed for expression of the guide nucleic acid or nucleic acid-guided nuclease can vary based on the species or cell type and can be recognized by one of ordinary skill in the art.


A separate vector encoding a nucleic acid-guided nuclease can be introduced into a cell or population of cells before or at the same time as introduction of a trackable plasmid as disclosed herein. The gene encoding a nucleic acid-guided nuclease can be integrated into the genome of the cell or population of cells, or the gene can be maintained episomally. The nucleic acid-guided nuclease-encoding DNA can be integrated into the cellular genome before introduction of the trackable plasmid, or after introduction of the trackable plasmid. In some examples, a nucleic acid molecule, such as DNA-encoding a nucleic acid-guided nuclease, can be expressed from DNA integrated into the genome. In some embodiments, a gene encoding Cas9, Cpf1, MAD2, or MAD7 is integrated into the genome of the cell.


Vectors or cassettes useful in the methods described herein can further comprise two or more priming sites. In some embodiments, the presence of flanking priming sites allows amplification of the vector or cassette.


In some embodiments, a cassette or vector encodes a nucleic acid-guided nuclease comprising one or more nuclear localization sequences (NLSs), such as about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs. In some embodiments, the engineered nuclease comprises about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the amino-terminus, about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the carboxy-terminus, or a combination of these (e.g. one or more NLS at the amino-terminus and one or more NLS at the carboxy terminus). When more than one NLS is present, each may be selected independently of the others, such that a single NLS may be present in more than one copy and/or in combination with one or more other NLSs present in one or more copies. In a preferred embodiment of the invention, the engineered nuclease comprises at most 6 NLSs. In some embodiments, an NLS is considered near the N- or C-terminus when the nearest amino acid of the NLS is within about 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50, or more amino acids along the polypeptide chain from the N- or C-terminus. Non-limiting examples of NLSs include an NLS sequence derived from: the NLS of the SV40 virus large T-antigen, having the amino acid sequence PKKKRKV (SEQ ID NO: 111); the NLS from nucleoplasmin (e.g. the nucleoplasmin bipartite NLS with the sequence KRPAATKKAGQAKKKK (SEQ ID NO:112)); the c-myc NLS having the amino acid sequence PAAKRVKLD (SEQ ID NO:113) or RQRRNELKRSP (SEQ ID NO:114); the hRNPA1 M9 NLS having the sequence NQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGY (SEQ ID NO: 115); the sequence RMRIZFKNKGKDTAELRRRRVEVSVELRKAKKDEQILKRRNV (SEQ ID NO: 116) of the IBB domain from importin-alpha; the sequences VSRKRPRP (SEQ ID NO:117) and PPKKARED (SEQ ID NO:11 of the myoma T protein; the sequence PQPKKKPL (SEQ ID NO:119) of human p53; the sequence SALIKKKKKMAP (SEQ ID NO:120) of mouse c-abl IV; the sequences DRLRR (SEQ ID NO:121) and PKQKKRK (SEQ ID NO:122) of the influenza virus NS1; the sequence RKLKKKIKKL (SEQ ID NO:123) of the Hepatitis virus delta antigen; the sequence REKKKFLKRR (SEQ ID NO: 124) of the mouse M×1 protein; the sequence KRKGDEVDGVDEVAKKKSKK (SEQ ID NO: 125) of the human poly(ADP-ribose) polymerase; and the sequence RKCLQAGMNLEARKTKK (SEQ ID NO: 126) of the steroid hormone receptors (human) glucocorticoid.


In general, the one or more NLSs are of sufficient strength to drive accumulation of the nucleic acid-guided nuclease in a detectable amount in the nucleus of a eukaryotic cell. In general, strength of nuclear localization activity may derive from the number of NLSs, the particular NLS(s) used, or a combination of these factors. Detection of accumulation in the nucleus may be performed by any suitable technique. For example, a detectable marker may be fused to the nucleic acid-guided nuclease, such that location within a cell may be visualized, such as in combination with a means for detecting the location of the nucleus (e.g. a stain specific for the nucleus such as DAPI). Cell nuclei may also be isolated from cells, the contents of which may then be analyzed by any suitable process for detecting protein, such as immunohistochemistry, Western blot, or enzyme activity assay. Accumulation in the nucleus may also be determined indirectly, such as by an assay for the effect of the nucleic acid-guided nuclease complex formation (e.g. assay for DNA cleavage or mutation at the target sequence, or assay for altered gene expression activity affected by targetable nuclease complex formation and/or nucleic acid-guided nuclease activity), as compared to a control not exposed to the nucleic acid-guided nuclease or targetable nuclease complex, or exposed to a nucleic acid-guided nuclease lacking the one or more NLSs.


ProSAR

Methods disclosed herein are capable of engineering a few to hundreds of genetic sequence or proteins simultaneously. These methods can permit one to map in a single experiment many or all possible residue changes over a collection of desired proteins onto a trait of interest, as part of individual proteins of interest or as part of a pathway. This approach can be used at least for the following by mapping i) any number of residue changes for any number of proteins of interest in a specific biochemical pathway or that catalyze similar reactions or ii) any number of residues in the regulatory sites of any number of proteins or interest with a specific regulon or iii) any number of residues of a biological agent used to treat a health condition.


In some embodiments, methods described herein include identifying genetic variations of one or more target genes that affect any number or residues, such as one or more, or all residues of one or more target proteins. In accordance with these embodiments, compositions and methods disclosed herein permit parallel analysis of two or more target proteins or proteins that contribute to a trait. Parallel analysis of multiple proteins by a single experiment described can facilitate identification, modification and design of superior systems for example for producing a eukaryotic or prokaryotic byproduct, producing a eukaryotic byproduct, for example, a biological agent such as a growth factor or antibody, in a prokaryotic organism and the like. Relevant biologics used in analysis and treatment of disease can be produced in these genetically engineered environments that could reduce production time, increase quality all while reducing costs to the manufacturers and the consumers.


Some embodiments disclosed herein comprise constructs of use for studying genetic variations of a gene or gene segment wherein the gene or gene segment is capable of generating a protein. A construct can be generated for any number of residues, such as one, two, more than two, or all residue modifications of a target protein that is linked to a trackable agent such as a barcode. A barcode indicative of a genetic variation of a gene of a target protein can be located outside of the open reading frame of the gene. In some embodiments such a barcode can be located many hundreds or thousands of bases away from the gene. It is contemplated herein that these methods can be performed in vivo. In some examples, such a construct comprises a trackable polynucleic acid or plasmid as disclosed herein.


Constructs described herein can be used to compile a comprehensive library of genetic variations encompassing all residue changes of one target protein, more than one target protein or target proteins that contribute to a trait. In certain embodiments, libraries disclosed herein can be used to select proteins with improved qualities to create an improved single or multiple protein system for example for producing a byproduct, such as a chemical, biofuels, biological agent, pharmaceutical agent, or for biomass, or biologic compared to a non-selective system.


Protein Sequence Activity Relationship (ProSAR) Mapping

Understanding the relationship between a protein's amino acid structure and its overall function continues to be of great practical, clinical, and scientific significance for biologists and engineers. Directed evolution can be a powerful engineering and discovery tool, but the random and often combinatorial nature of mutations makes their individual impacts difficult to quantify and thus challenges further engineering. More systematic analysis of contributions of individual residues or saturation mutagenesis remains labor- and time-intensive for entire proteins and simply is not possible on reasonable timescales for multiple proteins in parallel, such as metabolic pathways or multi-protein complexes, using standard methods.


Provided herein are methods which can be used to rapidly and efficiently examine the roles of some or all genes in a viral, microbial, or eukaryotic genome using mixtures of barcoded oligonucleotides. In some embodiments, these compositions and methods can be used to develop a powerful new technology for comprehensively mapping protein structure-activity relationships (ProSAR).


Using methods and compositions disclosed herein, multiplex cassette synthesis can be combined with recombineering, to create mutant libraries of specifically designed and barcoded mutations along one or more genes of interest in parallel. Screens and/or selections followed by high-throughput sequencing and/or barcode microarray methods can allow for rapid mapping of protein sequence-activity relationships (ProSAR). In some embodiments, systematic ProSAR mapping can elucidate individual amino acid mutations for improved function and/or activity and/or stability etc.


Methods can be iterated to combinatorially improve the function, activity, or stability. Cassettes can be generated by oligonucleotide synthesis. Given that existing capabilities of multiplex oligonucleotide synthesis can reach over 120,000 oligonucleotides per array, combined with recombineering, the methods disclosed herein can be scaled to construct mutant libraries for dozens to hundreds of proteins in a single experiment. In some examples, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 25, 50, 75, 100, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000, or more proteins can be partially or completely covered by mutant libraries generated by the methods disclosed herein.


Disclosed herein are strategies to construct barcoded substitution libraries for several different proteins at the same time. Using existing multiplex DNA synthesis technology, as disclosed, a partial or complete substitution library for one or more protein constructs can be barcoded, or non-barcoded if desired, for one or for several hundred proteins at the same time. In some examples, such libraries comprise trackable plasmids as disclosed herein.


Some embodiments herein apply to analysis and structure/function/stability library construction of any protein with a corresponding screen or selection for activity. Cassette library size can depend on the number (N) of amino acids in a protein of interest, with a full saturation library, including all 20 amino acids at each position and optionally non-naturally occurring amino acids, scaling as 19 (or more)×N and an alanine-mapping library scaling as 1×N. Thus, in some examples, screening of even very large proteins of more than 1,000 amino acids can be tractable given current multiplex oligo synthesis capabilities of at least 120,000 oligos per array.


In addition or as an alternative to activity screens, more general properties with developed high-throughput screens and selections can be efficiently tested using methods and cassettes disclosed herein. For example, universal protein folding and solubility reporters can be engineered for expression in the cytoplasm, periplasm, and the inner membrane. In some examples, a protein library can be screened under different conditions such as different temperatures, different substrates or co-factors, in order to identify residue changes required for expression of various traits. In other embodiments, because residues can be analyzed one at a time, mutations at residues important for a particular trait, such as thermostability, resistance to environmental pressures, or increases or decreases in functionality or production, can be combined via multiplex recombineering with mutations important for various other traits, such as catalytic activity, to create combinatorial libraries for multi-trait optimization.


Methods disclosed herein can provide for creating and/or evaluating comprehensive, in vivo, mutational libraries of one or more target protein(s). These approaches can be extended via a recorder cassettes or barcoding technology to generate trackable mutational libraries for any number of residues or every residue in a protein. This approach can be based on protein sequence-activity relationship mapping method extended to work in vivo, capable of working on one or a few to hundreds of proteins simultaneously depending on the technology selected. For example, these methods permit one to map in a single experiment any number of, the majority of, or all possible residue changes over a collection of desired proteins onto a trait of interest, as part of individual proteins of interest or as part of a pathway.


In some examples, these approaches can be used at least for the following by mapping i) any number of or all residue changes for any number of or all proteins in a specific biochemical pathway, such as lycopene production, or that catalyze similar reactions, such as dehydrogenases or other enzymes of a pathway of use to produce a desired effect or produce a product, or ii) any number of or all residues in the regulatory sites of any number of or all proteins with a specific regulatory mechanism, such as heat shock response, or iii) any number of or all residues of a biological agent used to treat a health condition, such as insulin, a growth factor (HCG), an anti-cancer biologic, or a replacement protein for a deficient population.


Scores related to various input parameters can be assigned in order to generate one or more composite score(s) for designing genomically-engineered organisms or systems. These scores can reflect quality of genetic variations in genes or genetic loci as they relate to selection of an organism or design of an organism for a predetermined production, trait or traits. Certain organisms or systems can be designed based on a need for improved organisms for biorefining, biomass, such as crops, trees, grasses, crop residues, or forest residues, biofuel production, and using biological conversion, fermentation, chemical conversion and catalysis to generate and use compounds, biopharmaceutical production and biologic production. In certain embodiments, this can be accomplished by modulating growth or production of microorganism through genetic manipulation methods disclosed herein.


Genetic manipulation by methods disclosed herein of genes encoding a protein can be used to make desired genetic changes that can result in desired phenotypes and can be accomplished through numerous techniques including but not limited to, i) introduction of new genetic material, ii) genetic insertion, disruption or removal of existing genetic material, as well as, iii) mutation of genetic material, such as a point mutation, or any combinations of i, ii, and iii, that results in desired genetic changes with desired phenotypic changes. Mutations can be directed or random, in addition to those including, but not limited to, error prone or directed mutagenesis through PCR, mutator strains, and random mutagenesis. Mutations can be incorporated using trackable plasmids and methods as disclosed herein.


Disclosed methods can be used for inserting and accumulating higher order modifications into a microorganism's genome or a target protein; for example, multiple different site-specified mutations in the same genome, at high efficiency to generate libraries of genomes with over 1, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, or more targeted modifications are described. In some examples, these mutations are within regulatory modules, regulatory elements, protein-coding regions, or non-coding regions. Protein coding modifications can include, but are not limited to, amino acid changes, codon optimization, and translation tuning.


In some instances, methods are provided for the co-delivery of reagents to a single biological cell. The methods generally involve the attachment or linkage of two or more cassettes, followed by delivery of the linked cassettes to a single cell. Generally, the methods provided herein involve the delivery of two or more cassettes to a single cell. In many cases, it is desirable that each individual cell receives the two or more cassettes. Traditional methods of reagent delivery may often be inefficient and/or inconsistent, leading to situations in which some cells receive only one of the cassettes. The methods provided herein may improve the efficiency and/or consistency of reagent delivery, such that a majority of cells in a cell population each receive the two or more cassettes. For example, more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% of the cells in a cell population may receive the two or more cassettes.


The two or more cassettes may be linked by any known method in the art and generally the method chosen will be commensurate with the chemistry of the cassettes. Generally, the two or more cassettes are linked by a covalent bond (i.e., covalently-linked), however, other types of non-covalent chemical bonds are envisioned, such as hydrogen bonds, ionic bonds, and metallic bonds. In this way, the editing cassette and the recorder cassette may be linked and delivered into a single cell. A known edit is then associated with a known recorder or barcode sequence for that cell.


In one example, the two or more cassettes are nucleic acids, such as two or more nucleic acids. The nucleic acids may be RNA, DNA, or a combination of both, and may contain any number of chemically-modified nucleotides or nucleotide analogues. In some cases, two or more RNA cassettes are linked for delivery to a single cell. In other cases, two or more DNA cassettes are linked for delivery to a single cell. In yet other cases, a DNA cassettes and an RNA cassettes are linked for delivery to a single cell. The nucleic acids may be derived from genomic RNA, complementary DNA (cDNA), or chemically or enzymatically synthesized DNA.


A cassettes may be of 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, about 110, about 120, about 130, about 140, about 150, about 160, about 170, about 180, about 190, about 200, about 210, about 220, about 230, about 240, about 250, about 275, about 300, about 325, about 350, about 375, about 400, about 425, about 450, about 475, about 500, about 525, about 550, about 575, about 600, about 625, about 650, about 675, about 700, about 725, about 750, about 775, about 800, about 825, about 850, about 875, about 900, about 925, about 950, about 975, about 1000, about 1100, about 1200, about 1300, about 1400, about 1500, about 1750, about 2000, about 2500, about 3000, about 4000, about 5000, about 6000, about 7000, about 8000, about 9000, about 10,000 or greater nucleotide residues in length, up to a full length protein encoding or regulatory genetic element.


Two or more cassettes may be linked on a linear nucleic acid molecule or may be linked on a plasmid or circular nucleic acid molecule. The two or more cassettes may be linked directly to one another or may be separated by one or more nucleotide spacers or linkers.


Two or more cassettes may be covalently linked on a linear cassettes or may be covalently linked on a plasmid or circular nucleic acid molecule. The two or more cassettes may be covalently linked directly to one another or may be separated by one or more nucleotide spacers or linkers.


Any number and variety of cassettes may be linked for co-delivery. For example, the two or more cassettes may include nucleic acids, lipids, proteins, peptides, small molecules, or any combination thereof. The two or more cassettes may be essentially any cassettes that are amenable to linkage.


In preferred examples, the two or more cassettes are covalently linked (e.g., by a chemical bond). Covalent linkage may help to ensure that the two or more cassettes are co-delivered to a single cell. Generally, the two or more cassettes are covalently linked prior to delivery to a cell. Any method of covalently linking two or more molecules may be utilized, and it should be understood that the methods used will be at least partly determined by the types of cassettes to be linked.


In some instances, methods are provided for the co-delivery of reagents to a single biological cell. The methods generally involve the covalent attachment or linkage of two or more cassettes, followed by delivery of the covalently-linked cassettes into a single cell. The methods provided may help to ensure that an individual cell receives the two or more cassettes. Any known method of reagent delivery may be utilized to deliver the linked cassettes to a cell and will at least partly depend on the chemistry of the cassettes to be delivered. Non-limiting examples of reagent delivery methods may include: transformation, lipofection, electroporation, transfection, nanoparticles, and the like.


In various embodiments, cassettes, or isolated, donor, or editing nucleic acids may be introduced to a cell or microorganism to alter or modulate an aspect of the cell or microorganism, for example survival or growth of the microorganism as disclosed herein. The isolated nucleic acid may be derived from genomic RNA, complementary DNA (cDNA), chemically or enzymatically synthesized DNA. Additionally or alternatively, isolated nucleic acids may be of use for capture probes, primers, labeled detection oligonucleotides, or fragments for DNA assembly.


A “nucleic acid” can include single-stranded and/or double-stranded molecules, as well as DNA, RNA, chemically modified nucleic acids and nucleic acid analogs. It is contemplated that a nucleic acid may be of 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, about 110, about 120, about 130, about 140, about 150, about 160, about 170, about 180, about 190, about 200, about 210, about 220, about 230, about 240, about 250, about 275, about 300, about 325, about 350, about 375, about 400, about 425, about 450, about 475, about 500, about 525, about 550, about 575, about 600, about 625, about 650, about 675, about 700, about 725, about 750, about 775, about 800, about 825, about 850, about 875, about 900, about 925, about 950, about 975, about 1000, about 1100, about 1200, about 1300, about 1400, about 1500, about 1750, about 2000, about 2500, about 3000, about 4000, about 5000, about 6000, about 7000, about 8000, about 9000, about 10,000 or greater nucleotide residues in length, up to a full length protein encoding or regulatory genetic element.


Isolated nucleic acids may be made by any method known in the art, for example using standard recombinant methods, assembly methods, synthetic techniques, or combinations thereof. In some embodiments, the nucleic acids may be cloned, amplified, assembled, or otherwise constructed.


The nucleic acids may conveniently comprise sequences in addition to a portion of a lysine riboswitch. For example, a multi-cloning site comprising one or more endonuclease restriction sites may be added. A nucleic acid may be attached to a vector, adapter, or linker for cloning of a nucleic acid. Additional sequences may be added to such cloning and sequences to optimize their function, to aid in isolation of the nucleic acid, or to improve the introduction of the nucleic acid into a cell. Use of cloning vectors, expression vectors, adapters, and linkers is well known in the art.


Isolated nucleic acids may be obtained from cellular, bacterial, or other sources using any number of cloning methodologies known in the art. In some embodiments, oligonucleotide probes which selectively hybridize, under stringent conditions, to other oligonucleotides or to the nucleic acids of an organism or cell. Methods for construction of nucleic acid libraries are known and any such known methods may be used.


Cellular genomic DNA, RNA, or cDNA may be screened for the presence of an identified genetic element of interest using a probe based upon one or more sequences. Various degrees of stringency of hybridization may be employed in the assay.


High stringency conditions for nucleic acid hybridization are well known in the art. For example, conditions may comprise low salt and/or high temperature conditions, such as provided by about 0.02 M to about 0.15 M NaCl at temperatures of about 50° C. to about 70° C. It is understood that the temperature and ionic strength of a desired stringency are determined in part by the length of the particular nucleic acid(s), the length and nucleotide content of the target sequence(s), the charge composition of the nucleic acid(s), and by the presence or concentration of formamide, tetramethylammonium chloride or other solvent(s) in a hybridization mixture. Nucleic acids may be completely complementary to a target sequence or may exhibit one or more mismatches.


Nucleic acids of interest may also be amplified using a variety of known amplification techniques. For instance, polymerase chain reaction (PCR) technology may be used to amplify target sequences directly from DNA, RNA, or cDNA. PCR and other in vitro amplification methods may also be useful, for example, to clone nucleic acid sequences, to make nucleic acids to use as probes for detecting the presence of a target nucleic acid in samples, for nucleic acid sequencing, or for other purposes.


Isolated nucleic acids may be prepared by direct chemical synthesis by methods such as the phosphotriester method, or using an automated synthesizer. Chemical synthesis generally produces a single stranded oligonucleotide. This may be converted into double stranded DNA by hybridization with a complementary sequence or by polymerization with a DNA polymerase using the single strand as a template.


Any method known in the art for identifying, isolating, purifying, using and assaying activities of target proteins contemplated herein are contemplated. Target proteins contemplated herein include protein agents used to treat a human condition or to regulate processes (e.g. part of a pathway such as an enzyme) involved in disease of a human or non-human mammal. Any method known for selection and production of antibodies or antibody fragments is also contemplated. Additionally or alternatively, target proteins can be proteins or enzymes involved in a pathway or process in a virus, cell, or organism.


Targetable Nucleic Acid Cleavage Systems

Some methods disclosed herein comprise targeting cleavage of specific nucleic acid sequences using a site-specific, targetable, and/or engineered nuclease or nuclease system. Such nucleases can create double-stranded break (DSBs) at desired locations in a genome or nucleic acid molecule. In other examples, a nuclease can create a single strand break. In some cases, two nucleases are used, each of which generates a single strand break.


The one or more double or single strand break can be repaired by natural processes of homologous recombination (HR) and non-homologous end-joining (NHEJ) using the cell's endogenous machinery. Additionally or alternatively, endogenous or heterologous recombination machinery can be used to repair the induced break or breaks.


Engineered nucleases such as zinc finger nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), engineered homing endonucleases, and RNA or DNA guided endonucleases, such as CRISPR/Cas such as Cas9 or CPF1, and/or Argonaute systems, are particularly appropriate to carry out some of the methods of the present invention. Additionally or alternatively, RNA targeting systems can use used, such as CRISPR/Cas systems including c2c2 nucleases.


Methods disclosed herein can comprise cleaving a target nucleic acid using a CRISPR systems, such as a Type I, Type II, Type III, Type IV, Type V, or Type VI CRISPR system. CRISPR/Cas systems can be multi-protein systems or single effector protein systems. Multi-protein, or Class 1, CRISPR systems include Type I, Type III, and Type IV systems. Alternatively, Class 2 systems include a single effector molecule and include Type II, Type VI, and Type VI.


CRISPR systems used in methods disclosed herein can comprise a single or multiple effector proteins. An effector protein can comprise one or multiple nuclease domains. An effector protein can target DNA or RNA, and the DNA or RNA may be single stranded or double stranded. Effector proteins can generate double strand or single strand breaks. Effector proteins can comprise mutations in a nuclease domain thereby generating a nickase protein. Effector proteins can comprise mutations in one or more nuclease domains, thereby generating a catalytically dead nuclease that is able to bind but not cleave a target sequence. CRISPR systems can comprise a single or multiple guiding RNAs. The gRNA can comprise a crRNA. The gRNA can comprise a chimeric RNA with crRNA and tracrRNA sequences. The gRNA can comprise a separate crRNA and tracrRNA. Target nucleic acid sequences can comprise a protospacer adjacent motif (PAM) or a protospacer flanking site (PFS). The PAM or PFS may be 3′ or 5′ of the target or protospacer site. Cleavage of a target sequence may generate blunt ends, 3′ overhangs, or 5′ overhangs.


A gRNA can comprise a spacer sequence. Spacer sequences can be complementary to target sequences or protospacer sequences. Spacer sequences can be 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, or 36 nucleotides in length. In some examples, the spacer sequence can be less than 10 or more than 36 nucleotides in length.


A gRNA can comprise a repeat sequence. In some cases, the repeat sequence is part of a double stranded portion of the gRNA. A repeat sequence can be 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides in length. In some examples, the spacer sequence can be less than 10 or more than 50 nucleotides in length.


A gRNA can comprise one or more synthetic nucleotides, non-naturally occurring nucleotides, nucleotides with a modification, deoxyribonucleotide, or any combination thereof. Additionally or alternatively, a gRNA may comprise a hairpin, linker region, single stranded region, double stranded region, or any combination thereof. Additionally or alternatively, a gRNA may comprise a signaling or reporter molecule.


A CRISPR nuclease can be endogenously or recombinantly expressed within a cell. A CRISPR nuclease can be encoded on a chromosome, extrachromosomally, or on a plasmid, synthetic chromosome, or artificial chromosome. A CRISPR nuclease can be provided or delivered to the cell as a polypeptide or mRNA encoding the polypeptide. In such examples, polypeptide or mRNA can be delivered through standard mechanisms known in the art, such as through the use of cell permeable peptides, nanoparticles, or viral particles.


gRNAs can be encoded by genetic or episomal DNA within a cell. In some examples, gRNAs can be provided or delivered to a cell expressing a CRISPR nuclease. gRNAs can be provided or delivered concomitantly with a CRISPR nuclease or sequentially. Guide RNAs can be chemically synthesized, in vitro transcribed, or otherwise generated using standard RNA generation techniques known in the art.


A CRISPR system can be a Type II CRISPR system, for example a Cas9 system. The Type II nuclease can comprise a single effector protein, which, in some cases, comprises a RuvC and HNH nuclease domains. In some cases a functional Type II nuclease can comprise two or more polypeptides, each of which comprises a nuclease domain or fragment thereof. The target nucleic acid sequences can comprise a 3′ protospacer adjacent motif (PAM). In some examples, the PAM may be 5′ of the target nucleic acid. Guide RNAs (gRNA) can comprise a single chimeric gRNA, which contains both crRNA and tracrRNA sequences. Alternatively, the gRNA can comprise a set of two RNAs, for example a crRNA and a tracrRNA. The Type II nuclease can generate a double strand break, which is some cases creates two blunt ends. In some cases, the Type II CRISPR nuclease is engineered to be a nickase such that the nuclease only generates a single strand break. In such cases, two distinct nucleic acid sequences can be targeted by gRNAs such that two single strand breaks are generated by the nickase. In some examples, the two single strand breaks effectively create a double strand break. In some cases where a Type II nickase is used to generate two single strand breaks, the resulting nucleic acid free ends can either be blunt, have a 3′ overhang, or a 5′ overhang. In some examples, a Type II nuclease may be catalytically dead such that it binds to a target sequence, but does not cleave. For example, a Type II nuclease could have mutations in both the RuvC and HNH domains, thereby rendering the both nuclease domains non-functional. A Type II CRISPR system can be one of three sub-types, namely Type II-A, Type II-B, or Type II-C.


A CRISPR system can be a Type V CRISPR system, for example a Cpf1, C2c1, or C2c3 system. The Type V nuclease can comprise a single effector protein, which in some cases comprises a single RuvC nuclease domain. In other cases, a function Type V nuclease comprises a RuvC domain split between two or more polypeptides. In such cases, the target nucleic acid sequences can comprise a 5′ PAM or 3′ PAM. Guide RNAs (gRNA) can comprise a single gRNA or single crRNA, such as can be the case with Cpf1. In some cases, a tracrRNA is not needed. In other examples, such as when C2c1 is used, a gRNA can comprise a single chimeric gRNA, which contains both crRNA and tracrRNA sequences or the gRNA can comprise a set of two RNAs, for example a crRNA and a tracrRNA. The Type V CRISPR nuclease can generate a double strand break, which in some cases generates a 5′ overhang. In some cases, the Type V CRISPR nuclease is engineered to be a nickase such that the nuclease only generates a single strand break. In such cases, two distinct nucleic acid sequences can be targeted by gRNAs such that two single strand breaks are generated by the nickase. In some examples, the two single strand breaks effectively create a double strand break. In some cases where a Type V nickase is used to generate two single strand breaks, the resulting nucleic acid free ends can either be blunt, have a 3′ overhang, or a 5′ overhang. In some examples, a Type V nuclease may be catalytically dead such that it binds to a target sequence, but does not cleave. For example, a Type V nuclease could have mutations a RuvC domain, thereby rendering the nuclease domain non-functional.


A CRISPR system can be a Type VI CRISPR system, for example a C2c2 system. A Type VI nuclease can comprise a HEPN domain. In some examples, the Type VI nuclease comprises two or more polypeptides, each of which comprises a HEPN nuclease domain or fragment thereof. In such cases, the target nucleic acid sequences can by RNA, such as single stranded RNA. When using Type VI CRISPR system, a target nucleic acid can comprise a protospacer flanking site (PFS). The PFS may be 3′ or 5′ or the target or protospacer sequence. Guide RNAs (gRNA) can comprise a single gRNA or single crRNA. In some cases, a tracrRNA is not needed. In other examples, a gRNA can comprise a single chimeric gRNA, which contains both crRNA and tracrRNA sequences or the gRNA can comprise a set of two RNAs, for example a crRNA and a tracrRNA. In some examples, a Type VI nuclease may be catalytically dead such that it binds to a target sequence, but does not cleave. For example, a Type VI nuclease could have mutations in a HEPN domain, thereby rendering the nuclease domains non-functional.


Non-limiting examples of suitable nucleases, including nucleic acid-guided nucleases, for use in the present disclosure include C2c1, C2c2, C2c3, Cas1, Cas1B, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9 (also known as Csn1 and Csx12), Cas10, Cpf1, Csy1, Csy2, Csy3, Cse1, Cse2, Csc1, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, Cmr6, Csb1, Csb2, Csb3, Csx17, Csx14, Csx100, Csx16, CsaX, Csx3, Csx1, Csx15, Csf1, Csf2, Csf3, Csf4, homologues thereof, orthologues thereof, or modified versions thereof. Suitable nucleic acid-guided nucleases can be from an organism from a genus which includes but is not limited to Thiomicrospira, Succinivibrio, Candidatus, Porphyromonas, Acidomonococcus, Prevotella, Smithella, Moraxella, Synergistes, Francisella, Leptospira, Catenibacterium, Kandleria, Clostridium, Dorea, Coprococcus, Enterococcus, Fructobacillus, Weissella, Pediococcus, Corynebacter, Sutterella, Legionella, Treponema, Roseburia, Filifactor, Eubacterium, Streptococcus, Lactobacillus, Mycoplasma, Bacteroides, Flaviivola, Flavobacterium, Sphaerochaeta, Azospirillum, Gluconacetobacter, Neisseria, Roseburia, Parvibaculum, Staphylococcus, Nitratifractor, Mycoplasma, Alicyclobacillus, Brevibacilus, Bacillus, Bacteroidetes, Brevibacilus, Carnobacterium, Clostridiaridium, Clostridium, Desulfonatronum, Desulfovibrio, Helcococcus, Leptotrichia, Listeria, Methanomethyophilus, Methylobacterium, Opitutaceae, Paludibacter, Rhodobacter, Sphaerochaeta, Tuberibacillus, and Campylobacter. Species of organism of such a genus can be as otherwise herein discussed. Suitable nucleic acid-guided nucleases can be from an organism from a genus or unclassified genus within a kingdom, which includes but is not limited to Firmicute, Actinobacteria, Bacteroidetes, Proteobacteria, Spirochates, and Tenericutes. Suitable nucleic acid-guided nucleases can be from an organism from a genus or unclassified genus within a phylum which includes but is not limited to Erysipelotrichia, Clostridia, Bacilli, Actinobacteria, Bacteroidetes, Flavobacteria, Alphaproteobacteria, Betaproteobacteria, Gammaproteob acteria, Deltaproteob acteria, Epsilonproteobacteria, Spirochaetes, and Mollicutes. Suitable nucleic acid-guided nucleases can be from an organism from a genus or unclassified genus within an order which includes but is not limited to Clostridiales, Lactobacillales, Actinomycetales, Bacteroidales, Flavobacteriales, Rhizobiales, Rhodospirillales, Burkholderiales, Neisseriales, Legionellales, Nautiliales, Campylobacterales, Spirochaetales, Mycoplasmatales, and Thiotrichales. Suitable nucleic acid-guided nucleases can be from an organism from a genus or unclassified genus within a family which includes but is not limited to Lachnospiraceae, Enterococcaceae, Leuconostocaceae, Lactobacillaceae, Streptococcaceae, Peptostreptococcaceae, Staphylococcaceae, Eubacteriaceae, Corynebacterineae, Bacteroidaceae, Flavobacterium, Cryomoorphaceae, Rhodobiaceae, Rhodospirillaceae, Acetobacteraceae, Sutterellaceae, Neisseriaceae, Legionellaceae, Nautiliaceae, Campylobacteraceae, Spirochaetaceae, Mycoplasmataceae, Pisciririckettsiaceae, and Francisellaceae.


Other nucleic acid-guided nucleases suitable for use in the methods, systems, and compositions of the present disclosure include those derived from an organism such as, but not limited to, Thiomicrospira sp. XS5, Eubacterium rectale, Succinivibrio dextrinosolvens, Candidatus Methanoplasma termitum, Candidatus Methanomethylophilus alvus, Porphyromonas crevioricanis, Flavobacterium branchiophilum, Acidomonococcus sp., Lachnospiraceae bacterium COE1, Prevotella brevis ATCC 19188, Smithella sp. SCADC, Moraxella bovoculi, Synergistes jonesii, Bacteroidetes oral taxon 274, Francisella tularensis, Leptospira inadai serovar Lyme str. 10, Acidomonococcus sp. crystal structure (5B43) S. mutans, S. agalactiae, S. equisimilis, S. sanguinis, S. pneumonia; C. jejuni, C. coli; N. salsuginis, N. tergarcus; S. auricularis, S. carnosus; N. meningitides, N. gonorrhoeae; L. monocytogenes, L. ivanovii; C. botulinum, C. difficile, C. tetani, C. sordellii; Francisella tularensis 1, Prevotella albensis, Lachnospiraceae bacterium MC2017 1, Butyrivibrio proteoclasticus, Peregrinibacteria bacterium GW2011_GWA2_33_10, Parcubacteria bacterium GW2011_GWC2_44_17, Smithella sp. SCADC, Acidaminococcus sp. BV3L6, Lachnospiraceae bacterium MA2020, Candidatus Methanoplasma termitum, Eubacterium eligens, Moraxella bovoculi 237, Leptospira inadai, Lachnospiraceae bacterium ND2006, Porphyromonas crevioricanis 3, Prevotella disiens, Porphyromonas macacae, Catenibacterium sp. CAG:290, Kandleria vitulina, Clostridiales bacterium KA00274, Lachnospiraceae bacterium 3-2, Dorea longicatena, Coprococcus catus GD/7, Enterococcus columbae DSM 7374, Fructobacillus sp. EFB-N1, Weissella halotolerans, Pediococcus acidilactici, Lactobacillus curvatus, Streptococcus pyogenes, Lactobacillus versmoldensis, and Filifactor alocis ATCC 35896.


Suitable nucleases for use in any of the methods disclosed herein include, but are not limited to, nucleases having the sequences listed in Table 1, or homologues having at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% sequence identity to any of the nucleases listed in Table 1.












TABLE 1







MAD
Amino acid



nuclease
sequence









MAD1
SEQ ID NO: 1 



MAD2
SEQ ID NO: 2 



MAD3
SEQ ID NO: 3 



MAD4
SEQ ID NO: 4 



MAD5
SEQ ID NO: 5 



MAD6
SEQ ID NO: 6 



MAD7
SEQ ID NO: 7 



MAD8
SEQ ID NO: 8 



MAD9
SEQ ID NO: 9 



MAD10
SEQ ID NO: 10



MAD11
SEQ ID NO: 11



MAD12
SEQ ID NO: 12



MAD13
SEQ ID NO: 13



MAD14
SEQ ID NO: 14



MAD15
SEQ ID NO: 15



MAD16
SEQ ID NO: 16



MAD17
SEQ ID NO: 17



MAD18
SEQ ID NO: 18



MAD19
SEQ ID NO: 19



MAD20
SEQ ID NO: 20










In some methods disclosed herein, Argonaute (Ago) systems can be used to cleave target nucleic acid sequences. Ago protein can be derived from a prokaryote, eukaryote, or archaea. The target nucleic acid may be RNA or DNA. A DNA target may be single stranded or double stranded. In some examples, the target nucleic acid does not require a specific target flanking sequence, such as a sequence equivalent to a protospacer adjacent motif or protospacer flanking sequence. The Ago protein may create a double strand break or single strand break. In some examples, when a Ago protein forms a single strand break, two Ago proteins may be used in combination to generate a double strand break. In some examples, an Ago protein comprises one, two, or more nuclease domains. In some examples, an Ago protein comprises one, two, or more catalytic domains. One or more nuclease or catalytic domains may be mutated in the Ago protein, thereby generating a nickase protein capable of generating single strand breaks. In other examples, mutations in one or more nuclease or catalytic domains of an Ago protein generates a catalytically dead Ago protein that can bind but not cleave a target nucleic acid.


Ago proteins can be targeted to target nucleic acid sequences by a guiding nucleic acid. In many examples, the guiding nucleic acid is a guide DNA (gDNA). The gDNA can have a 5′ phosphorylated end. The gDNA can be single stranded or double stranded. Single stranded gDNA can be 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides in length. In some examples, the gDNA can be less than 10 nucleotides in length. In some examples, the gDNA can be more than 50 nucleotides in length.


Argonaute-mediated cleavage can generate blunt end, 5′ overhangs, or 3′ overhangs. In some examples, one or more nucleotides are removed from the target site during or following cleavage.


Argonaute protein can be endogenously or recombinantly expressed within a cell. Argonaute can be encoded on a chromosome, extrachromosomally, or on a plasmid, synthetic chromosome, or artificial chromosome. Additionally or alternatively, an Argonaute protein can be provided or delivered to the cell as a polypeptide or mRNA encoding the polypeptide. In such examples, polypeptide or mRNA can be delivered through standard mechanisms known in the art, such as through the use of cell permeable peptides, nanoparticles, or viral particles.


Guide DNAs can be provided by genetic or episomal DNA within a cell. In some examples, gDNA are reverse transcribed from RNA or mRNA within a cell. In some examples, gDNAs can be provided or delivered to a cell expressing an Ago protein. Guide DNAs can be provided or delivered concomitantly with an Ago protein or sequentially. Guide DNAs can be chemically synthesized, assembled, or otherwise generated using standard DNA generation techniques known in the art. Guide DNAs can be cleaved, released, or otherwise derived from genomic DNA, episomal DNA molecules, isolated nucleic acid molecules, or any other source of nucleic acid molecules.


In some instances, compositions are provided comprising a nuclease such as an nucleic acid-guided nuclease (e.g., Cas9, Cpf1, MAD2, or MAD7) or a DNA-guided nuclease (e.g., Ago), linked to a chromatin-remodeling enzyme. Without wishing to be bound by theory, a nuclease fusion protein as described herein may provide improved accessibility to regions of highly-structured DNA. Non-limiting examples of chromatin-remodeling enzymes that can be linked to a nucleic-acid guided nuclease may include: histone acetyl transferases (HATs), histone deacetylases (HDACs), histone methyltransferases (HMTs), chromatin remodeling complexes, and transcription activator-like (Tal) effector proteins. Histone deacetylases may include HDAC1, HDAC2, HDAC3, HDAC4, HDACS, HDAC6, HDAC7, HDAC8, HDAC9, HDAC10, HDAC11, sirtuin 1, sirtuin 2, sirtuin 3, sirtuin 4, sirtuin 5, sirtuin 6, and sirtuin 7. Histone acetyl transferases may include GCNS, PCAF, Hat1, Elp3, Hpa2, Hpa3, ATF-2, Nut1, Esa1, Sas2, Sas3, Tip60, MOF, MOZ, MORF, HBO1, p300, CBP, SRC-1, ACTR, TIF-2, SRC-3, TAFII250, TFIIIC, Rtt109, and CLOCK. Histone methyltransferases may include ASH1L, DOT1L, EHMT1, EHMT2, EZH1, EZH2, MLL, MLL2, MLL3, MLL4, MLL5, NSD1, PRDM2, SET, SETBP1, SETD1A, SETD1B, SETD2, SETD3, SETD4, SETD5, SETD6, SETD7, SETD8, SETD9, SETDB1, SETDB2, SETMAR, SMYD1, SMYD2, SMYD3, SMYD4, SMYD5, SUV39H1, SUV39H2, SUV420H1, and SUV420H2. Chromatin-remodeling complexes may include SWI/SNF, ISWI, NuRD/Mi-2/CHD, INO80 and SWR1.


In some instances, the nuclease is a wild-type nuclease. In other instances, the nuclease is a chimeric engineered nuclease. Chimeric engineered nucleases as disclosed herein can comprise one or more fragments or domains, and the fragments or domains can be of a nuclease, such as nucleic acid-guided nuclease, orthologs of organisms of genuses, species, or other phylogenetic groups disclosed herein; advantageously the fragments are from nuclease orthologs of different species. A chimeric engineered nuclease can be comprised of fragments or domains from at least two different nucleases. A chimeric engineered nuclease can be comprised of fragments or domains from at least two different species. A chimeric engineered nuclease can be comprised of fragments or domains from at least 2, 3, 4, 5, 6, 7, 8, 9, 10, or more different nucleases or different species. In some cases, more than one fragment or domain from one nuclease or species, wherein the more than one fragment or domain are separated by fragments or domains from a second nuclease or species. In some examples, a chimeric engineered nuclease comprises 2 fragments, each from a different protein or nuclease. In some examples, a chimeric engineered nuclease comprises 3 fragments, each from a different protein or nuclease. In some examples, a chimeric engineered nuclease comprises 4 fragments, each from a different protein or nuclease. In some examples, a chimeric engineered nuclease comprises 5 fragments, each from a different protein or nuclease.


Nuclease fusion proteins can be recombinantly expressed within a cell. A nuclease fusion protein can be encoded on a chromosome, extrachromosomally, or on a plasmid, synthetic chromosome, or artificial chromosome. A nuclease and a chromatin-remodeling enzyme may be engineered separately, and then covalently linked, prior to delivery to a cell. A nuclease fusion protein can be provided or delivered to the cell as a polypeptide or mRNA encoding the polypeptide. In such examples, polypeptide or mRNA can be delivered through standard mechanisms known in the art, such as through the use of cell permeable peptides, nanoparticles, or viral particles.


Cell-Cycle-Dependent Expression of Targeted Nucleases.

In some instances, compositions comprising a cell-cycle-dependent nuclease are provided. A cell-cycle dependent nuclease generally includes a targeted nuclease as described herein linked to an enzyme that leads to degradation of the targeted nuclease during G1 phase of the cell cycle, and expression of the targeted nuclease during G2/M phase of the cell cycle. Such cell-cycle dependent expression may, for example, bias the expression of the nuclease in cells where homology-directed repair (HDR) is most active (e.g., during G2/M phase). In some cases, the nuclease is covalently linked to cell-cycle regulated protein such as one that is actively degraded during G1 phase of the cell cycle and is actively expressed during G2/M phase of the cell cycle. In a non-limiting example, the cell-cycle regulated protein is Geminin. Other non-limiting examples of cell-cycle regulated proteins may include: Cyclin A, Cyclin B, Hsll, Cdc6, Finl, p21 and Skp2.


In some instances, the nuclease is a wild-type nuclease.


In other instances, the nuclease is a engineered nuclease. Engineered nucleases can be non-naturally occurring.


Non-naturally occurring targetable nucleases and non-naturally occurring targetable nuclease systems can address many of these challenges and limitations.


Disclosed herein are non-naturally targetable nuclease systems. Such targetable nuclease systems are engineered to address one or more of the challenges described above and can be referred to as engineered nuclease systems. Engineered nuclease systems can comprise one or more of an engineered nuclease, such as an engineered nucleic acid-guided nuclease, an engineered guide nucleic acid, an engineered polynucleotides encoding said nuclease, or an engineered polynucleotides encoding said guide nucleic acid. Engineered nucleases, engineered guide nucleic acids, and engineered polynucleotides encoding the engineered nuclease or engineered guide nucleic acid are not naturally occurring and are not found in nature. It follows that engineered nuclease systems including one or more of these elements are non-naturally occurring.


Non-limiting examples of types of engineering that can be done to obtain a non-naturally occurring nuclease system are as follows. Engineering can include codon optimization to facilitate expression or improve expression in a host cell, such as a heterologous host cell. Engineering can reduce the size or molecular weight of the nuclease in order to facilitate expression or delivery. Engineering can alter PAM selection in order to change PAM specificity or to broaden the range of recognized PAMs. Engineering can alter, increase, or decrease stability, processivity, specificity, or efficiency of a targetable nuclease system. Engineering can alter, increase, or decrease protein stability. Engineering can alter, increase, or decrease processivity of nucleic acid scanning. Engineering can alter, increase, or decrease target sequence specificity. Engineering can alter, increase, or decrease nuclease activity. Engineering can alter, increase, or decrease editing efficiency. Engineering can alter, increase, or decrease transformation efficiency. Engineering can alter, increase, or decrease nuclease or guide nucleic acid expression.


Examples of non-naturally occurring nucleic acid sequences which are disclosed herein include sequences codon optimized for expression in bacteria, such as E. coli (e.g., SEQ ID NO: 41-60), sequences codon optimized for expression in single cell eukaryotes, such as yeast (e.g., SEQ ID NO: 127-146), sequences codon optimized for expression in multi cell eukaryotes, such as human cells (e.g., SEQ ID NO: 147-166), polynucleotides used for cloning or expression of any sequences disclosed herein (e.g., SEQ ID NO: 61-80), plasmids comprising nucleic acid sequences (e.g., SEQ ID NO: 21-40) operably linked to a heterologous promoter or nuclear localization signal or other heterologous element, proteins generated from engineered or codon optimized nucleic acid sequences (e.g., SEQ ID NO: 1-20), or engineered guide nucleic acids comprising any one of SEQ ID NO: 84-107. Such non-naturally occurring nucleic acid sequences can be amplified, cloned, assembled, synthesized, generated from synthesized oligonucleotides or dNTPs, or otherwise obtained using methods known by those skilled in the art.


Additional examples of non-naturally occurring nucleic acid sequences which are disclosed herein include sequences codon optimized for expression in bacteria, such as E. coli (e.g., SEQ ID NO: 168), sequences codon optimized for expression in single cell eukaryotes, such as yeast (e.g., SEQ ID NO: 169), sequences codon optimized for expression in multi cell eukaryotes, such as human cells (e.g., SEQ ID NO: 170), polynucleotides used for cloning or expression of any sequences disclosed herein (e.g., SEQ ID NO: 171), plasmids comprising nucleic acid sequences (e.g., SEQ ID NO: 167) operably linked to a heterologous promoter or nuclear localization signal or other heterologous element, proteins generated from engineered or codon optimized nucleic acid sequences (e.g., SEQ ID NO: 108-110), or engineered guide nucleic acids compatible with any targetable nuclease disclosed herein. Such non-naturally occurring nucleic acid sequences can be amplified, cloned, assembled, synthesized, generated from synthesized oligonucleotides or dNTPs, or otherwise obtained using methods known by those skilled in the art.


A guide nucleic acid can be DNA. A guide nucleic acid can be RNA. A guide nucleic acid can comprise both DNA and RNA. A guide nucleic acid can comprise modified of non-naturally occurring nucleotides. In cases where the guide nucleic acid comprises RNA, the RNA guide nucleic acid can be encoded by a DNA sequence on a polynucleotide molecule such as a plasmid, linear construct, or editing cassette as disclosed herein.


Nucleic acid-guided nucleases can be compatible with guide nucleic acids that are not found within the nucleases endogenous host. Such orthogonal guide nucleic acids can be determined by empirical testing. Orthogonal guide nucleic acids can come from different bacterial species or be synthetic or otherwise engineered to be non-naturally occurring.


Orthogonal guide nucleic acids that are compatible with a common nucleic acid-guided nuclease can comprise one or more common features. Common features can include sequence outside a pseudoknot region. Common features can include a pseudoknot region (e.g., 172-181). Common features can include a primary sequence or secondary structure.


A guide nucleic acid can be engineered to target a desired target sequence by altering the guide sequence such that the guide sequence is complementary to the target sequence, thereby allowing hybridization between the guide sequence and the target sequence. A guide nucleic acid with an engineered guide sequence can be referred to as an engineered guide nucleic acid. Engineered guide nucleic acids are often non-naturally occurring and are not found in nature.


In other instances, the nuclease is a chimeric nuclease. Chimeric nucleases can be engineered nucleases. Chimeric nucleases as disclosed herein can comprise one or more fragments or domains, and the fragments or domains can be of a nuclease, such as nucleic acid-guided nuclease, orthologs of organisms of genuses, species, or other phylogenetic groups; advantageously the fragments are from nuclease orthologs of different species. A chimeric nuclease can be comprised of fragments or domains from at least two different nucleases. A chimeric nuclease can be comprised of fragments or domains from at least two different species. A chimeric nuclease can be comprised of fragments or domains from at least 2, 3, 4, 5, 6, 7, 8, 9, 10, or more different nucleases or different species. In some cases, more than one fragment or domain from one nuclease or species, wherein the more than one fragment or domain are separated by fragments or domains from a second nuclease or species. In some examples, a chimeric nuclease comprises 2 fragments, each from a different protein or nuclease. In some examples, a chimeric nuclease comprises 3 fragments, each from a different protein or nuclease. In some examples, a chimeric nuclease comprises 4 fragments, each from a different protein or nuclease. In some examples, a chimeric nuclease comprises 5 fragments, each from a different protein or nuclease.


EXAMPLES
Example 1— CREATE-Plasmids and Libraries


FIGS. 1A-C depict an example of an overview of CRISPR EnAbled Trackable genome Engineering (CREATE) design and workflow. FIG. 1A shows an example of the CREATE methodology which allows programmatic genome modifications to be focused on key amino acid residues or promoter targets across the genome. Such libraries thus enable systematic assessment of sequence/activity relationships for a wide variety of genomic targets in parallel. FIG. 1B depicts an example of CREATE cassettes designed to encode both homology arm (HA) and guide RNA (gRNA) sequences to target a specific locus in the E. coli genome. The 100 bp homology arm was designed to introduce a specific codon mutation (target codon) that can be selectively enriched by a synonymous PAM mutation to rescue the sequence from Cas9 cleavage and allow highly efficient mutagenesis. The P1 and P2 sites (black) serve as general priming sites allowing multiplexed amplification, cloning and sequencing of many libraries in parallel. The promoter (J23119, green) is a constitutive promoter that drives expression of the gRNA. Detailed example the HA design for introducing a stop codon at residue 145 in the galK locus is also depicted at the bottom of FIG. 1B. The top sequence shows the wildtype genome sequence with the PAM (CCG; the reverse complement of which is CGG, which is recognized by S. pyogenes Cas9) and target codon (TAT, encoding Y) highlighted. The HA design introduces a “silent scar” at the PAM site (CgG, the reverse complement of which is CCG, which is not recognized by S. pyogenes Cas9) and a single nucleotide TAT>TAA mutation at codon 145 (resulting in a STOP). This design strategy was implemented programmatically for coding regions across the genome. FIG. 1C depicts an overview of an example CREATE workflow. CREATE cassettes are synthesized on a microarray delivered as large oligo pools (104 to 106 individual library members). Parallel cloning and recombineering allowed processing of these pools into genomic libraries, in some cases in 23 days. Deep sequencing of the CREATE plasmids can be used to track the fitness of thousands of precision mutations genome wide following selection or screening of the mutant libraries.


Example 2— CREATE Plasmid Validation


FIG. 2A-D depicts an example of the effect of Cas9 activity on transformation and editing efficiencies. The galK 120/17 CREATE cassette (120 bp HA and 17 bp PAM/codon spacing) targeting codon 145 in galK gene or a control non-targeting gRNA vector was transformed in cells carrying pSIMS along with dCas9 (e.g. left set of bars in FIG. 2A) or Cas9 (e.g. right set of bars in FIG. 2A) plasmids. The pSIMS plasmid carries lambda red recombination machinery. The cas9 gene was cloned into the pBTBX-2 backbone under the control of a pBAD promoter to allow control of the cleavage activity by addition of arabinose. Transformation efficiencies of each vector are shown with dark grey bars. The total number of recombinant cells (light grey bars) were calculated based on red/white colony screening on MacConkey agar. In cases where white colonies were undetectable by plate based screening we assumed 104 editing efficiencies. A 102 fold reduction in transformation efficiency compared to the non-targeting gRNA control was also observed for CREATE cassettes transformed into the Cas9 background.



FIG. 2B depicts an example of the characterization of CREATE cassette HA length and PAM/codon spacing on editing efficiency. All cassettes were designed to introduce a TAA stop at codon 145 in the gene using PAMs at the indicated distance (PAM/codon bottom) from the target codon and variable homology arms lengths (HA, bottom). Dark grey and light grey bars correspond to uninduced or induced expression of Cas9 under the pBAD promoter using 0.2% arabinose. In the majority of cases the editing efficiency appears to be unaffected by induction suggesting that low amounts of Cas9 due to leaky expression are sufficient for high efficiency editing.



FIG. 2C shows example data from sequencing of the genomic loci from CREATE recombineering reactions. The galK cassettes from FIG. 2B are labeled according to the HA length and PAM codon spacing. The other loci shown were cassettes isolated from multiplexed library cloning reactions. The bar plot (FIG. 2C) indicates the number of times each genotype was observed by genomic colony sequencing following recombineering with each CREATE cassette. The + and labels at the bottom indicate the presence or absence of the designed mutation at the two relevant sites in each clone. The circular inset indicates the relative position of each gene on the E. coli genome.



FIG. 2D depicts an example of library coverage from multiplexed cloning of CREATE plasmids. Deep sequencing counts each variant are shown with respect to their position on the genome. The inset shows a histogram of these plasmid counts for the entire library. The distribution follows expected Poisson distribution for low average counts.


Example 3— CREATE-Recording Used to Engineer Trackable Episomal DNA Libraries


FIG. 3A depicts an example of an overview of the method used to generate a trackable episomal DNA library. Transformation of a CREATE recorder plasmid generates modifications of the target DNA at two sites. One edit occurs to the desired target gene (gray) introducing a codon or promoter mutation designed to test specific engineering objectives. The second edit targets a functionally neutral site and introduces a 15 nucleotide barcode (BC, black). By virtue of coupling these libraries on a single CREATE plasmid the target DNA is edited at both sites and each unique barcode can be used to track edits throughout the rest of the plasmid.



FIG. 2B depicts an example of the CREATE barcode design. A degenerate library is constructed from overlapping oligos and cloned in a separate site of the CREATE vector to make a library of CREATE recorder cassettes that can be coupled to the designer editing libraries.



FIG. 2C depicts an exemplary CREATE record mapping strategy. Deep sequencing of both the target DNA (left) and CREATE plasmids allows a simple sequence mapping strategy by allowing each editing cassette to be uniquely assigned by the barcode sequence. This allows the relative fitness of each barcode (and thus edit) to be tracked during selection or screening processes and can be shuttled between different organisms using standard vectors.


Example 4— CREATE-Mediated Editing of Episomal DNA

Methods and compositions disclosed herein were used to mutate a key residue of the cas9 gene used for the CREATE process (e.g. FIG. 4A-4B). A cassette was designed to make an R1335K mutation in the Cas9 protein. This cassette was cloned into a CREATE plasmid and transformed into MG1655 E. coli carrying the pSIM5 and X2-Cas9 vectors. The pSIM5 vector comprises lambda red recombination machinery. The X2-Cas9 vector comprises an arabinose-inducible Cas9 expression cassette. Following three hours recovery in LB supplemented with 0.4% arabinose to induce Cas9 expression, the cells were plated on agar containing antibiotics that maintain selective pressure for replication of both the X2-Cas9 and CREATE plasmids. Colony PCR of random clones revealed the designed edits from the CREATE plasmid were efficiently transferred into the X2-Cas9 plasmid (e.g. FIG. 4B). Of the clones that were sequenced, 100% contained the silent PAM mutation in X2Cas9 and 6/14 (43%) also containing desired coding edit. This is the first demonstration that plasmid based editing using CREATE is robust despite higher copy numbers associated with the plasmid target as compared to previous genome engineering efforts.


Example 5—CREATE-Mediated Editing and Tracking of E. coli Genome-Double Cassette

To test the performance of the recording strategy in a genomic context we tested the ability to edit two distal genomic loci in the E. coli genome (e.g. FIG. 5A). To do so we cloned CREATE recording cassette libraries designed to embed the 15 nucleotide barcodes into the galK locus. After cloning, we isolated a few unique barcodes and cloned a second editing cassette designed to incorporate an F153R mutation in the dihydrofolate reductase (DHFR)/folA gene that was identified by our previous CREATE studies as conferring tolerance to the antibiotic trimethoprim. Genotyping of E. coli strains following transformation of the dual CREATE recording vector according to previously described protocols yielded the data in FIG. 5A. The efficiency of barcoding (100%) was higher than the target genome edit (80-90%), ensuring that edited genomes can be tracked. Of the transformed population we observed >80% of colonies contained the barcode edit in the galK locus as determined by red white colony screening (e.g. FIG. 5B). From the barcoded colonies we found that 85% of the colonies also encoded the DHFR F153R mutation indicating that we have a strong tracking between the barcode and codon edits. FIG. 5B depicts the total number of colonies (CFUs) in duplicate experiments that are edited and/or barcoded. The edited CFUs numbers were calculated by extrapolation of the data in FIG. 5A to the total number of CFUs on the plate. The barcoded CFUs numbers were calculated by counting the number of white colonies in a galK screening (site in which barcode is integrated). These data show that the majority of barcoded colonies contained the designed genomic edit.


Example 6—Plasmid Curing for Combinatorial Engineering


FIG. 6 depicts an example of combinatorial genome engineering and tracking. Three recursive CREATE plasmids are used, each with a gRNA targeting one of the other markers in this series (indicated by T-lines). During each transformation, an edit and barcode are incorporated into the genome and the previous CREATE plasmid is cured. In this way rapid iterative transformations can be performed to construct either a defined combination of mutations or a combinatorial library to search for improved phenotypes. The recording site is compatible with short read sequencing technologies that allow the fitness of combinations to be tracked across a population. Such an approach allows rapid investigation of genetic epistasis and optimization of phenotypes relevant to basic research or for commercial biological applications.



FIG. 3D and FIG. 3E depict another example of combinatorial genome engineering. With each round of engineering, an editing cassette (blue rectangle in FIG. 3D) is incorporated into the target sequence in the genome (blue star) and a recorder cassette (green rectangle in FIG. 3D) is incorporated into a different target sequence of the genome (green dash in middle panel of FIG. 3D). In this example, each recorder sequence comprises a 15 nucleotide barcode. As shown in the right panel of FIG. 3D, the recorder sequences are each inserted adjacent to the last recorder sequence, despite where the editing cassette was inserted. Each recorder cassette can simultaneously delete a PAM site. After completion of each round of engineering, the engineered cells can be selected and then the inserted mutations can be tracked by sequencing the recorder region that comprises all of the inserted recorder cassettes. By sequencing the starting plasmid library, each editing cassette can be linked or associated with one or more unique barcodes within the recorder cassette. Since each recorder cassette corresponds to the associate editing cassette, then the mutations incorporated by the editing cassettes can be tracked or identified by the sequence of the recorder cassette, or the sequence of the barcodes within the recorder cassette. As is demonstrated in FIG. 3E, by sequencing all of the recorder cassettes or barcodes within the recorder cassettes, each of the inserted mutations can be identified and tracked. The inserted recorder sequences can be referred to as a recorder site, recorder array, or barcode array. As a result, after recursive rounds of engineering, sequencing the barcode array or recorder site allows tracking of the history of genomic editing events in the strain. When the recorder cassettes are inserted in order as depicted, for example, in FIG. 3D, then the barcode array or recorder site can identify the order in which the mutations were inserted as well as what the mutation is.


Example 7— Recursive Engineering Using Iterative CREATE-Recording Engineering Events

The example of recursive engineering depicted in FIG. 7A was used for plasmid curing to demonstrate that the design is extremely efficient at eliminating previous vectors (FIG. 7B). Each CREATE plasmid can be positively selected for based on the indicated antibiotics (Trimeth: trimethoprim, Carb: carbenicillin, Tet: tetracycline) and contains a gRNA targeting one of the other antibiotic markers. For example, the reCREATE1 plasmid can be selected for on carbenicillin and encodes a gRNA that will selectively target the trimethoprim resistance gene for destruction. One pass through the carb/tetracycline/trimethoprim antibiotic marker series allows selective incorporation of up to three targeted edits. The recording function would be implemented as illustrated in FIG. 5, but is omitted here for simplicity.



FIG. 7B depicts an example of data from iterative rounds of CREATE engineering. A serial transformation series began with cells transformed with X2cas9 (kan) and the reCREATE1 vector. The spot plating results indicate that curing is 99.99% effective at each transformation step, ensuring highly efficient engineering in each round of transformation. Simultaneous genome editing and plasmid curing in each transformation step with high efficiencies was achieved by introducing the requisite recording and editing CREATE cassettes into recursive vectors as disclosed herein (e.g. FIG. 7B).


Example 8—CREATE Design and Workflow

An example overview of CRISPR EnAbled Trackable genome Engineering (CREATE) design workflow is depicted in FIGS. 8A-8B. FIG. 8A shows example anatomy of a CREATE cassette designed for protein engineering. Cassettes encode a spacer (red) along with part of a guide RNA (gRNA) sequence and a designer homology arm (HA) that can template homologous recombination at the genomic cut site. For protein engineering purposes the HA is designed to systematically couple mutations to a specified codon or target site (TS, blue) to a nearby synonymous PAM mutation (SPM, red) to rescue the sequence from Cas9 cleavage and allow highly efficient mutagenesis. The priming sites (P1 and P2, black) are designed to allow multiplexed amplification and cloning of specific subpools from massively parallel array based synthesis. A constitutive promoter (green) drives expression of the gRNA. FIG. 8A further shows a detailed example of HA design for introducing a stop codon at residue 145 in the galK locus. The top sequence shows is of the wt genome with the PAM and TS codon highlighted. The translation sequences are shown to illustrate that the resulting mutant contains a single nonsynonymous mutation at the target site. FIG. 8B shows an example overview of the CREATE workflow. CREATE oligos are synthesized on a microarray and delivered as large pools (104-106 individual library members). These cassettes are amplified and cloned in multiplex with the ability to subpool designs. After introduction of the CREATE plasmids into cells expressing Cas9 mutations are transferred to the genome with high efficiencies. Measurement of the frequency of each plasmid before (fi, t1) and after selection (fi, t2) by deep sequencing provides enrichment scores (Ei) for each CREATE cassette. These scores allow rapid identification of adaptive variants at up to single nucleotide or amino acid resolution for thousands loci in parallel.


Example 9—CREATE Design Validation


FIG. 9A depicts an example of the effects of Cas9 activity on transformation and editing efficiencies were measured using no a cassette with a spacer and 120 bp HA targeted to the galK (galK_Y145*_120/17) The total transformants (TT white) produced by this CREATE vector are shown in white and the total number of recombinants (TR) in dark blue. TR is calculated as the product of the editing efficiency and Tt. Asterisks indicate experiments in which recombinants could not be observed by plate based screening. FIG. 9B shows an example of characterization of CREATE cassette HA length and PAM/codon spacing on editing efficiency. All cassettes were designed to introduce a TAA stop at codon 145 in the gene using PAMs at the indicated distance (PAM/codon bottom) from the target codon and variable homology arms lengths (HA, bottom). White and blue bars correspond to uninduced or induced expression of Cas9 under the pBAD promoter using 0.2% arabinose. In the majority of cases the editing efficiency appears to be unaffected by induction suggesting that low amounts of Cas9 due to leaky expression are sufficient for high efficiency editing. FIG. 9C depicts an example of determination of editing efficiency for oligo derived cassettes by sequencing of the genomic loci. The galK_Y145*_120/17 cassette from FIGS. 9A and 9B is shown in white for reference. The bar plot indicates the number of times each genotype was observed by genomic colony sequencing following recombineering with each CREATE cassette. The circular inset indicates the relative position of each gene on the E. coli genome. FIG. 9D depicts distance between SPM and the TS (as exemplified in FIG. 8A) is strongly correlated with editing efficiency (correct edits/total sequences sampled). The galK cassettes with 44 and 59 bp in FIG. 9B were omitted from this analysis. The depicted error bars are derived from N=3 independent replicates of the indicated experiment.


Example 10—Scanning Saturation Mutagenesis of an Essential Chromosomal Gene


FIG. 10A-10C depict an example where CREATE was used to generate a full scanning saturation mutagenesis library of the folA gene for identification of mutations that can confer resistance to TMP. The count weighted average enrichment score from two trials of selection is plotted as a function of residue position (right). Cassettes encoding nonsynonymous mutations are shown in gray, and those encoding synonymous mutations in black. Cassettes with enrichment scores greater than 1.8 are highlighted in red and mutations that affect previously reported sites are labeled for reference. The dashed lines indicate enrichment values that are significantly different (p<0.05) from the synonymous dataset as determined by bootstrapping of the confidence intervals. These values are shown as a histogram for reference (middle). Mutations that appear to significantly impact DHFR resistance are highlighted as red spheres to the far right. FIGS. 10D-10F depict example growth analysis of wt (left) F153W (middle) and F153R (right) variants in the indicated range of TMP concentrations (shown right).


Example 11—Reconstruction of ALE Mutation Set and Forward Engineering of Thermotolerant Genotypes


FIG. 11A depicts example genomic plots of enrichment scores for CREATE libraries grown at 42.2° C. in minimal media conditions. The innermost plot illustrates the counts of the plasmid library before selection with labels for the top 20 representatives. The outer ring shows the fitness of pooled library variants after growth in minimal media at elevated temperature (42.2° C.). The bars are colored according to log 2 enrichment. Blue bars represent detrimental mutations, red bars represent significantly enriched mutations and gray bars indicate mutations that appear neutral in this assay. The 20 most enriched variants are labeled for reference and labels corresponding to ALE-derived variants are colored red. FIG. 11B shows a histogram of enrichment scores of all library variants (gray), ALE-derived mutants (red) and synonymous mutants (black) under 42.2° C. growth conditions. The dotted gray line indicates significant enrichment scores compared to the synonymous population. The histograms are normalized as a fraction of the total number of variants passing the counting threshold (number indicated in parentheses). Note that 231 of 251 unique nonsynonmous ALE cassettes sampled by this experiment appear to provide significant growth benefits. FIG. 11C depicts enrichment of mutations based on mutational distance from wt. Mutations that require 2 and 3 nucleotide (nt) transitions are exceedingly rare or absent in ALE approaches however we note that the two most enriched clones from the pooled library selection (targeting the Crp regulator) require two nucleotide substitutions and are highlighted at the far right.


Example 12—Genome Scale Mapping of Amino Acid Substitutions for the Study of Antibiotic Resistance and Tolerance


FIG. 12A depicts example genomic plots of enrichment (log 2) of library variants in the presence of erythromycin (outer) and rifampicin (middle). The innermost plot illustrates the count distribution of the input plasmids for reference. Coloring and labeling are as in FIG. 11A-11C. FIG. 12B depicts CREATE mutation mapping at the individual amino acid level. CREATE cassettes that introduce bulky side chains to amino acids 1572, S531 and L533 (red) of the RNA polymerase β subunit (rpoB) are highly enriched in the presence of rifampicin from genome wide targeting libraries. FIG. 11C depicts a zoomed in region of the MarA transcription factor bound to its cognate DNA target is shown for reference (PDB ID 1BL0). The wt Q89 residue protrudes away from the DNA binding interface due to unfavorable steric and electrostatic interactions between this side chain and the DNA. The Q89N substitution identified by selection introduces a H-donor and shortens the side chain such that productive H-bonding can occur between this residue and the DNA backbone. Such an interaction likely favors stronger DNA binding and induction of downstream resistance genes. FIG. 12D depicts enrichment plot of genome wide targeting libraries with 10 g/L acetate or 2 g/L furfural respectively. Coloring is the same as in FIG. 11A. FIG. 12E depicts CREATE mapping at a gene level reveals trends at the gene level. Strong enrichment fis metA and fadR targeting mutations in acetate suggests important roles for these genes in acetate tolerance, as depicted in FIG. 12F, same as in the furfural selections depicted in FIG. 12E.


Example 13—CREATE-Enabled Flexible Design Strategies

Illustration of example designs compatible with CREATE strategy are depicted in FIGS. 13A-13D. FIG. 13A shows protein engineering applications a silent codon approach is taken (top, see also FIG. 8A-8B). This mutation strategy allows targeted mutagenesis of key protein regions to alter features such as DNA binding, protein-protein interactions, catalysis, or allosteric regulation. Above an illustration of a DNA binding saturation mutagenesis library designed for the global transcription factor Fis designed for this study is illustrated. FIG. 13B shows promoter mutations PAM sites in proximity to a specified transcription start site (TSS) can be disrupted through nucleotide replacement or integration cassettes. To simplify this design procedure used in this study consensus CAP or UP elements were designed for integration at a fixed location relative to the TSS without taking into account possible effects of these mutations may have on proximal genes. FIG. 13C shows an example cassette design for mutagenizing a ribosome binding site (RBS). FIG. 13D depicts an example of a simple deletion design. Points a and b are included to illustrate distance between two sites at the gene deletion locus. In all cases cassette designs disrupt a targeted PAM to allow selective enrichment of the designed mutant.


Example 14—Engineering the Lycopene Pathway


FIGS. 14A-14B depict edits made the DMAPP pathway in E. coli which is the precursor to lycopene. Edits were made to the ORF's for 11 genes. Eight edits were designed to improve activity and 3 edits were designed to reduce activity of competitive enzymes. Approximately 10,000 variants within the lycopene pathway were constructed and screened.


Example 15—Cas9 Editing Efficiency Controls


FIG. 15 depicts Cas9 editing control experiments. The CREATE galK_120/17 off cassette (relevant edits shown in red at bottom) was transformed into different backgrounds to assess the efficiency of homologous recombination between the CREATE plasmid and the target genome. Red colonies represent unedited (wt) genomic variants and white colonies represent edited variants. Transformation into cells containing only pSIM5 or pSIM5/X2 and dCas9 plasmids exhibited no detectable recombination as indicated by the lack of white colonies. In the presence of active Cas9 (X2-Cas9 far right) we observe high efficiency editing (>80%), indicating the requirements for dsDNA cleavage to achieve high efficiency editing and library coverage.


Example 16—Toxicity of gRNA dsDNA Cleavage in E. coli


FIGS. 16A-16C depict experiments testing the toxicity of generating double strand breaks in E. coli. The toxicity of a single gRNA cut in E. coli as observed in control experiments with a gRNA targeting galK (spacer sequence TTAACTTTGCGTAACAACGC (SEQ ID NO: 182)) or folA (spacer sequence GTAATTTTGTATAGAATTTA (SEQ ID NO: 183)). In the absence of a repair template we observe strong killing from the gRNA. Rescue efficiencies of 103-104 are observed upon co-transformation of a single stranded donor oligo indicating the need for a homologous repair template to alleviate this toxicity. b) Toxicity of multiple CREATE edits. The targeted sites are illustrated graphically on the left and at the bottom of the bar graph. A non-targeting gRNA control was used to estimate transformation efficiency based on no edits (far left, no target sites). A CREATE cassette targeting either folA (green) or galK (red) or a combination of the two. Note the multiplicative toxicity in E. coli of having additional gRNAs expressed from the same plasmid. In this scenario there is homologous repair for each site suggesting that off-target gRNA cleavage would be highly lethal. These data suggest that off target cleavage by a CREATE cassette would be selectively removed from the population early in the library construction phase.



FIGS. 16D-16E depicts data from another such cell survival assay. The editing cassette contained a F153R mutation, which leads to temperature sensitivity of the folA gene. The recorder cassette contained a 15 nucleotide barcode designed to disrupt the galK gene, which allows screening of colonies on MacConkey agar plates. In this example, generating two cuts decreased cell survival compared to generating zero or one cut.



FIG. 16F depicts data from a transformation and survival assay comparing a low copy number plasmid (Ec23) expressing Cas9 and a high copy number plasmid (MG) expressing Cas9. Different vectors with distinct editing cassettes were used to target different gene target sites (folA, lacZ, xylA, and rhaA). The recorder cassettes were designed to target different sequences within the galK gene, either site S1, S2, or S3. The recursive vector used had a different vector backbone compared to the others and is part of a 3-vector system designed for iterative engineering that cures the cell of the previous round vector. The data indicates that lower Cas9 expression (Ec23 vector) increases survival and/or transformation efficiency. The decreased Cas9 expression increased transformation efficiency by orders of magnitude in cells undergoing two genomic cuts (editing cassette and recording cassette).



FIG. 16G shows the correlation between editing efficiency and recording efficiency in cells transformed with the low copy number plasmid (Ec23) expressing Cas9 and the high copy number plasmid (MG) expressing Cas9. Editing and recording efficiencies were similar for high (MG) and lower (Ec23) expression of cas9. Ec23 yielded more colonies and had better survival (as shown in FIG. 16E), while maintaining a high efficiency of dual editing (editing cassette and recorder cassette incorporation).


Example 17—CREATE Strategy for Gene Deletion


FIG. 17A-D depict an example CREATE strategy for gene deletion. FIG. 17A depicts an example cassette design for deleting 100 bp from the galK ORF. The HA is designed to recombine with regions of homology with the designated spacing, with each 50 bp side of the CREATE HA designed to recombine at the designated site (blue). The PAM/spacer location (red) is proximal to one of the homology arms and is deleted during recombination, allowing selectable enrichment of the deleted segment. FIG. 17B depicts electrophoresis of chromosomal PCR amplicons from clones recombineered with this cassette. FIG. 17C depicts design for 700 bp deletion as in a). FIG. 17D depicts colony PCR of 700 bp deletion cassettes as in FIG. 17B). The asterisks in FIGS. 17B and 17D indicate colonies that appear to have the designed deletion. Note that some clones appear to have bands pertaining to both wt and deletion sizes indicating that chromosome segregation in some of the colonies is incomplete when plated 3 hrs post recombineering.


Example 18—Editing Efficiency Controls by Cotransformation of gRNA and Linear dsDNA Cassettes


FIG. 18 depicts effect of PAM distance on editing efficiency using linear dsDNA PCR amplicons and co-transformation with a gRNA. On the left is an illustration of the experiments using PCR amplicons containing a dual (TAATAA) stop codon on one side (asterisk) and a PAM mutation just downstream of the galK gene (gray box) on the other end were co-transformed with a gRNA targeting the downstream galK PAM site. The primers were designed such that the mutations were 40 nt from the end of the amplicon to ensure enough homology for recombination. Data was obtained from these experiments by red/white colony screening. A linear fit to the data is shown at the bottom. Cassettes in which only the PAM mutation is present were included as assay controls were observed to have very low rates of GalK inactivation. These experiments were performed in a BW25113 strain of E. coli in which the mutS gene was knocked out to allow high efficiency editing with double stranded DNA templates. This approach in MG1655 did not achieve high efficiency editing due to the active mutS allele.


Example 19—Library Cloning Analysis and Statistics


FIG. 19A depicts reads from an example plasmid library following cloning are shown according to the number of total mismatches between the read and the target design sequence. The majority of plasmids are matches to the correct design. However, there are a large number of 4 base pair indel/mismatch mutants that were observed in this cloned population. FIG. 19B depicts a plot of the mutation profile for the plasmid pool as a function of cassette position. An increase in the mutation frequency is observed near the center of the homology arm (HA) indicating a small error bias in the sequencing or synthesis of this region. We suspect that this is due to the presence of sequences complementary to the spacer element in the gRNA. FIG. 19C depicts a histogram of the distances between the PAM and codon for the CREATE cassettes designed in this study. Large majority (>95%) were within the design constraints tested in FIG. 9A-9D. The small fraction that are beyond 60 bp were made in cases where there was no synonymous PAM mutation within closer proximity. FIG. 19D depicts library coverage from multiplexed cloning of CREATE plasmids. Deep sequencing counts each variant are shown with respect to their position on the genome. The inset shows a histogram of the number of variants having the indicated plasmid counts in the cloned libraries.


Example 20—Precision of CREATE Cassette Tracking of Recombineered Populations


FIG. 20A depicts a correlation plot of CREATE cassette read frequencies in the plasmid population prior to Cas9 exposure (x-axis) and after 3 hours post transformation into a Cas9 background. FIG. 20B depicts a correlation plot between replicate recombineering reactions following overnight recovery. The gray lines indicate the line of perfect correlation for reference. R2 and p values were calculated from a linear fit to the data using the Python SciPy statistics package. A counting threshold of 5 for each replicate experiment was applied to the data to filter out noise from each data set.


Example 21—Growth Characteristics of folA Mutations in M9 Minimal Media


FIG. 21 depicts growth characteristics of folA mutations in M9 minimal media. While F153R appears to maintain normal growth characteristics the growth rate of the F153W mutation is significantly slower under these conditions, suggesting that these two amino acid substitutions at the same site have very different effects on organismal fitness presumably due to different changes invoked in the stability/dynamics of this protein.


Example 22—Enrichment Profiles for folA CREATE Cassettes in Minimal Media


FIG. 22 depicts enrichment profiles for folA CREATE cassettes in minimal media. Cassettes that encode synonymous HA are shown in black and non-synonymous cassettes in gray, the dashed lines indicate enrichment scores with p<0.05 significance compared to the synonymous population mean as estimated from a bootstrap analysis. The enrichment score observed for each mutant cassette at each position in the protein sequence is shown to the left and a histogram of these enrichment scores as a fraction of the total variants to the right. The two populations appear to be largely similar. Conserved residues that are highly deleterious are shown in blue for reference.


Example 23—Validation of Newly Identified acrB Mutations for Improved Solvent and Antibiotic Tolerance


FIG. 23A depicts on the left a global overview of AcrB efflux pump. Substrates enter the pump through the openings in the periplasmic space and are extruded via the AcrB/AcrA/TolC complex across the outer membrane and into the extracellular space. Library targeted residues are highlighted by blue spheres for reference and the red dot indicates the region where many of the enriched variants clustered. On the right is a blow up of the loop-helix motif abutting the central funnel where enriched mutations in isobutanol were identified (red and teal spheres), presumably affecting solute transport from the periplasmic space. Mutants targeting the T60 position (teal spheres) was also enriched in the presence of erythromycin. FIG. 23B depicts confirmation of N70D and D73L mutations for tolerance to isobutanol. The N70D mutation in particular appears to improve the final OD to a significant degree. Reconstructed strains were measured for final OD in capped 1.5 mL eppendorf tubes following 48 hours incubation. Error bars are derived from N=3 trials and p-values derived from a one-tailed T-test. FIG. 23C depicts improved growth of the AcrB T60N mutant was observed in inhibitory concentrations of erythromycin (200 μg/mL) and isobutanol (1.2%) in shaking 96 well plate, indicating that this mutation may enhance the efflux activity of this pump towards many compounds. For these experiments CREATE cassette designs were individually synthesized, cloned and sequence verified before recombineering into E. coli MG1655 to reconstruct the mutations and the genomic modifications were sequence verified by colony PCR to confirm the genotype-phenotype association.


Example 24—Benefits of Rational Mutagenesis for Sampling Novel Adaptive Genotypes


FIGS. 24A-24D depict the number of variants detected in CREATE experiments involving 500 μg/mL rifampicin (FIG. 24A), 500 μg/mL erythromycin (FIG. 24B), 10 g/L acetate (FIG. 24C), and 2 g/L furfural (FIG. 24D). While naturally evolving systems or error-prone PCR are highly biased towards sampling single nucleotide polymorphisms (e.g. 1 nt mutations, red) these histograms illustrate the potential advantages for rational design approaches that can identify rare or inaccessible mutations (2 and 3 nt, green and blue respectively). For example, the highest fitness solutions appear to be biased toward these rare mutations in rifampicin, erythromycin and furfural selections to varying degrees. These results indicate that procedures such as CREATE should allow more rapid and thorough analysis of fitness improving mutations, in much the same way that computational approaches are being used to improve directed evolution for protein engineering.


Example 25—Reconstruction of Mutations Identified by Erythromycin Selection


FIG. 25 depicts reconstructed strains grown in 0.5 mL in capped 1.5 mL eppendorf tubes following 48 hours incubation in the presence of 200 μg/mL erythromycin and final OD measurements assessed. Error bars are derived from N=3 trials. A one tailed T-test was performed on each set of measurements to determine p-values indicated for significance of growth benefit.


Example 26—Validation of Crp S28P Mutation for Furfural or Thermal Tolerance


FIG. 26A depicts a crystal structure of the Crp regulatory protein with variants identified by furfural selection highlighted in red (PDB ID 3N4M). A number of the CREATE designs targeting residues near the cyclic-AMP binding site (aa. 28-30, 65) of this regulator were highly enriched in minimal media selections for furfural or thermal tolerance suggesting that these mutations may enhance E. coli growth in minimal media under a variety of stress conditions. FIG. 26B depicts validation the Crp S28P mutant identified in 2 g/L furfural selections in M9 media. This mutant was reconstructed as described for AcrB T60S in Example 23.


Example 27—Genome-Scale Sequence to Activity Relationship Mapping at Single Nucleotide Resolution

Advances in DNA synthesis and sequencing have motivated increasingly complex efforts to rationally program genomic modifications on laboratory timescales. Realization of such efforts requires strategies that span the design-build-test forward-engineering cycle by not only precisely and efficiently generating large numbers of mutant designs but also by mapping the effects of these mutations at similar throughputs. CRISPR EnAbled Trackable genome Engineering (CREATE) couples highly efficient CRISPR editing with massively parallel oligomer synthesis to enable trackable precision editing on a genome wide scale. This can be accomplished using synthetic cassettes that link a targeting guide RNA with rationally programmable homologous repair cassettes that can be systematically designed to edit loci across a genome and track their phenotypic effects. We demonstrated the flexibility and ease of use of CREATE for genome engineering by parallel mapping of sequence-activity relationships for applications ranging from site saturation mutagenesis, rational protein engineering, complete residue substitution libraries and reconstruction of prior adaptive laboratory evolution experiments.


Validation of CREATE Cassette Design


In order to realize our engineering objectives we took into account a number of key design considerations to both maximize the editing efficiency as well as distill a complex design process into an easily executable workflow. For example, each CREATE cassette is designed to include both a targeting guide RNA (gRNA) and a homology arm (HA) that introduces rational mutations at the chromosomal cleavage site (e.g. FIG. 8A). The HA encodes both the genomic edit of interest coupled to a synonymous PAM mutation that is designed to abrogate Cas9 cleavage after repair (e.g. FIG. 8B). This arrangement not only ensures that the desired edit can be selectively enriched to high levels by Cas9 but also that the sequences required to guide cleavage and HR are covalently coupled during synthesis and thus delivered simultaneously to the same cell during transformation. The high efficiency editing of CRISPR based selection in E. coli should also ensure a strong correlation between the CREATE plasmid and genomic sequences and allow the plasmid sequence to serve as a trans-acting barcode or proxy for the genomic edit (e.g. FIG. 8C). Assuming that changes in the plasmid frequency under different selective pressures are correlated to their associated genomic edit thereby allows the impact of precise genomic modifications at many loci to be monitored in parallel using a simple downstream sequencing approach to map enriched genotypes on a population scale, analogous to previous genomic tracking methodologies.


To test this concept we first performed control experiments using a CREATE cassette designed to inactivate the galK gene by introducing a single point mutation to convert codon 145 from TAT to a TAA stop codon (e.g. FIG. 8B) using a 120 bp HA. The editing efficiency of this cassette using Cas9 and the nuclease deficient dCas9 control was evaluated using a red/white colony screening assay (e.g. FIG. 8A-B, FIG. 15A-15C). These experiments also indicated that HR between a circular double stranded plasmid and the chromosome is strongly dependent on the Cas9 cleavage as recombination is not observed in the absence of the active enzyme (e.g. FIG. 15A-15D). This is in contrast to single stranded recombineering approaches in which oligonucleotides anneal with high efficiency at the lagging strand of the replication fork. Cas9 also adversely impacts the overall transformation efficiency due to toxicity of dsDNA cleavage in E. coli (e.g. FIG. 9A-9D). This toxicity is further exacerbated when performing CREATE at two sites simultaneously in the same cell (e.g. FIG. 16A-16E); which when combined with the absence of an effective non-homologous end joining pathway strongly supports the fact that off target editing events should be rare within a recombineered library. Additionally, toxicity limits the size of library construction and coverage, however we note that the observed 104-105 variants/μg DNA (e.g. FIG. 9A) is on a scale compatible with current oligo synthesis capabilities (104-5 oligos per order). Thus, we anticipated that using the CREATE synthetic oligo design, we would be able to simultaneously generate ˜105 or more designer mutations at any location in the genome and precisely map such mutations onto a targeted phenotype.


To further characterize how changes in the CREATE cassette design influence the editing efficiency we varied the HA length (80-120 bp) and the distance between the PAM-codon/TS (17-59 bp) (e.g. FIG. 9B). Induction of Cas9 revealed that all of these cassette variants can support high efficiency HR. High efficiency conversion is also observed in the absence of Cas9 induction indicating that low level expression of Cas9, due to a leaky inducible promoter, is sufficient to drive cleavage and HR (e.g. FIG. 9B). To verify that the edits matched our intended design we sequenced the chromosome of randomly chosen clones and found that 71% (27/38) contained a perfect match to the CREATE design, while 26% (10/38) contained only the PAM edit and the remaining 3% (1/38) appeared to be wt escapers. As an additional test of design flexibility performed similar experiments using deletion cassettes that that introduce different sized deletions (e.g. FIG. 17A-17D) and observed similar efficiencies (>70%) indicating that the same design automation and tracking capabilities should readily extend to a variety of design objectives (e.g. FIG. 13A-13D).


High-Throughput Design and Multiplexed Library Construction


To scale the CREATE process for genome-wide applications we developed a custom software to automate cassette design that takes into account the above mentioned criteria to systematically identify a PAM sequence nearest to a target site (TS) of interest and modify it to create a synonymous PAM mutation. This design software is part of a suite of web-based design tools that can be implemented for E. coli and is under further development for other organisms as well as an expanded set of CRISPR-Cas systems. This software platform enables high-throughput rational design of genomic libraries in a format that is compatible with parallelized array based oligo synthesis and simple homology based cloning methods that can be performed in batch for library construction (e.g. FIG. 8B).


Using this design software we generated a total of 52,356 CREATE cassettes for a range of applications where sequence to activity mapping by traditional methods would be time-consuming and prohibitively expensive. Briefly, the library designs included: 1) a complete saturation of the folA gene to map the entire mutational landscape of an essential gene in its chromosomal context 2) saturation mutagenesis of functional residues in 35 global regulators, efflux pumps and metabolic enzymes implicated in a wide range of tolerance and production phenotypes in E. coli 3) a reconstruction of the complete set of nonsynonymous mutations identified by a recent adaptive laboratory evolution (ALE) study of thermotolerance, and 4) promoter engineering libraries designed to incorporate UP elements or CAP binding elements at transcription start sites annotated in RegulonDB (e.g. FIG. 13A-13D).


The pooled oligo libraries were amplified and cloned in parallel and a subset of single variants were isolated to further characterize editing efficiency at different loci (e.g. FIG. 9C). Amplification and sequencing of the genomic loci after transformation with the CREATE plasmids revealed editing efficiencies of 70% on average (106 of 144 clones sampled at seven different loci), with a range of 30% for the metA V20L cassette to 100% for the rpoH_V179H cassette. Interestingly, the differences in editing efficiency for each cassette were highly correlated with the distance between the PAM and target codon (e.g. FIG. 9D), a feature that also appears to affect the ability of linear DNA templates to effectively introduce targeted mutations (e.g. FIG. 18A-18B). This relationship suggests that subsequent CREATE designs should readily increase editing efficiency by optimizing PAM selection criteria. We also note that differences in editing efficiency may reflect detrimental effects of some mutations on organismal fitness (metA is considered an essential gene in most media conditions), and that there may be an upper bound on the number of mutations that can be observed for a particular protein. Finally, these data were obtained outside of any specific selective or screening steps that enrich for chromosomal mutants of interest, and as such demonstrate the ability of this approach to construct mutational libraries.


To further characterize the fidelity of the multiplexed synthesis and cloning procedures we performed deep sequencing on the pooled libraries (e.g. FIG. 19A-D). From 594,998 total reads of the cloned CREATE cassette libraries, 550,152 (92%) passed quality filtering and produced hits against the design database. Of these we observed a perfect match for 34,291 (65%) of the possible unique variants and note that many cassettes that were missing in this initial pool were observed in later selections, suggesting that at the cloning stage we can readily cover the majority of the intended design space. In depth analysis of these reads revealed that 46% of the reads passing quality filter were exact matches to their intended design, with the remainder containing 1-4 bp indels or mismatches, primarily in the HA region near the designed mutation site (e.g. FIG. 19A). The mutational bias in this region suggests that the repetitive spacer elements in the HA and gRNA portions of the cassette may form secondary structures that adversely affect sequencing or synthesis (e.g. FIG. 19B). We note that these variant designs are easily identified via the CREATE plasmid-barcoding strategy, and that in some cases it may be desired to have this added diversity in the generated library. We also observed significant (p<0.05) correlation between variant frequencies from the cloned pools and after overnight recovery following recombineering, as well as between replicate recombineering experiments (e.g. FIG. 20A-20B). These results suggest that well represented variants should be readily tracked by our methodology with a precision similar to previous CRISPR based saturation mutagenesis procedures performed at a single loci.


CREATE Based Protein Engineering


To test the robustness of the CREATE methodology for protein engineering at a single gene level we performed deep-scanning mutagenesis of the essential folA gene. This gene encodes the dihydrofolate reductase (DHFR) enzyme responsible for the production of tetrahydrofolate and the biosynthesis of pyrimidines, purines and nucleic acids. DHFR is also the primary target of the antibiotic trimethoprim (TMP) and other antifolates that are used as antibiotics or chemotherapeutics. The wealth of structural and biochemical data DHFR function and antibiotic resistance make it an ideal model for validation of the approach.


A CREATE library designed to saturate every codon from 2-158 of the DHFR enzyme was recombineered into E. coli MG1655 and allowed to recover overnight. Following recovery ˜109 cells (1 mL saturated culture) was transferred into media containing inhibitory TMP concentrations and allowed to grow for 48 hours. The resulting plasmid populations were then sequenced to assess our ability to capture information at the level of single amino acid substitutions that can confer TMP resistance (e.g. FIG. 10A-10B). Bootstrapped confidence intervals for mutational effect were derived using the enrichment data of the 158 synonymous mutations included in this experiment (e.g. FIG. 10A-10B). Using this criteria, we observed significant (P<0.05) levels of enrichment for 74 substitutions (2.3% of the design space) covering 49 aa positions in the protein. Although this degree of mutational flexibility of an essential enzyme may seem counterintuitive, it supports previous conclusions that this enzyme has not reached its evolutionary optimum and that many mutations that can improve TMP tolerance through enhancement of the endogenous enzymatic activity or alteration of the dynamic folding landscape of this enzyme.


These results also support the fact that we probe more deeply into the mutation space of improved fitness variants using rational mutagenesis strategies. For example, we observed 7 significantly enriched substitutions at position F153 (e.g. FIG. 10A-10B), none of which have been previously identified by error-prone PCR and adaptive laboratory evolution (ALE). To validate these specific mutations, we reconstructed F153R and F153W variants, which had not been previously reported in the literature and spanned a large range of the measured enrichment scale at this position (e.g. FIG. 10D-10F). We confirmed that the highly enriched F153R mutant grows rapidly under a large range of TMP concentrations while the F153W mutant demonstrates growth only at the moderate TMP concentration used in the selection, consistent with their respective enrichment scores (e.g. FIG. 10A-10F). Moreover, 6 of the 7 mutations we identified using CREATE require two nucleotide changes to convert the wt TTT codon to one of the observed amino acids (I: 1 nt,W: 2 nt,D: 2 nt,R: 2 nt,P: 2 nt,M: 2 nt,H: 2 nt). The F153R and F153W mutations also appear to impact the native enzyme activity in distinct ways (e.g. FIG. 21), implying that these substitutions may confer tolerance by altering the enzymatic cycle of this enzyme in distinct manners.


In addition to mapping substitutions that confer TMP resistance, we also attempted to identify substitutions that affect the native activity of DHFR. To do so, we compared the frequencies of each plasmid variant after overnight growth in M9 (e.g. FIG. 22A-22C). In this case, we observed similar overall enrichment profiles for both synonymous and nonsynonymous mutation sets, with very few mutations observed to have significant impact on growth. This unexpected result suggests a need for greater sequencing depth and/or alternate selection strategies to assign high confidence to low fitness variants.


As a separate validation of protein engineering applications, we generated a 4,240 variant library targeting the AcrB multidrug efflux pump in E. coli (e.g. FIG. 23A-23F). This protein acts as a proton exchange pump that exports a wide variety of chemicals including antibiotics, chemical mutagens, and short chain alcohols that are being pursued as next generation biofuels and motivating numerous engineering efforts. The library was designed to target the interior chamber, the exit funnel that channels substrates towards the outer-membrane component of the AcrB/AcrA/TolC complex, and key regions of the transmembrane domain where mutations conferring tolerance to isobutanol and longer chain alcohols have been identified (e.g. FIG. 23A-23C). We then constructed the AcrB CREATE library identically as for the FolA library and grew the library in the presence of 1.2% isobutanol. Sequencing identified multiple mutations to the loop-helix motif adjacent to the central efflux funnel that were significantly enriched, suggesting this substructure may provide a novel target for engineering enhanced efflux activity. Reconstruction of the AcrB N70D and D73L mutations also confirmed the ability of these mutations to enhance overall growth in the presence of this solvent stress (e.g. FIG. 23D).


Parallel Evaluation of Genotype Fitness from Large Scale Adaptation Studies


We next sought to expand our efforts from the single protein scale and validate the use of CREATE at the genome-scale. To do so we chose to reconstruct and map mutations resulting from a prior adaptive laboratory evolution study of E. coli thermal tolerance. ALE has been used extensively as a tool to study the bacterial adaptation in response to a broad range of environmental stressors. However, in the majority of cases the genome undergoes multiple mutations making it difficult to assess the contribution of each mutation to the phenotype in question. Here, we designed and constructed a CREATE library to include all 645 nonsynonymous mutants from the Tenaillon et al ALE experiment and then subjected this library to growth selection in minimal media at 42.2° C. To assess any possible effects that could arise from the synonymous PAM mutation we included redundancy in the design of this library such that each target codon was coupled to two different PAM mutations to provide a 4 fold design redundancy for each nonsynonymous mutation. For calibration purposes the ALE library was pooled with the protein targeting libraries to allow for relative enrichment comparisons from the non-ALE derived libraries as a benchmark (e.g. FIG. 11A-11C). Of the more than 50,000 cassettes in this experiment we observed 405 cassettes from the ALE derived library above the minimal counting threshold, pertaining to 252 unique variants (e.g. FIG. 11B). Of these 346 cassettes (encoding 231 nonsynonymous changes) were significantly enriched compared with the synonymous controls (e.g. FIG. 11B), suggesting that 92% (231/252) of the mutations sampled confer significant selective growth advantages as individual chromosomal mutations, consistent with their fixation during adaptive growth. Additionally we found that 141 mutations from the additional CREATE libraries were also significantly enriched, with 86 of these targeting residues in or around the cAMP binding site of Crp, a central regulator of carbon metabolism. The identification of such a large number of Crp mutants is highly suggestive of a role for Crp in thermal-tolerance in agreement with previous findings.


For each mutant we also calculated the number of mutations required to convert the wt codon to each of the other 19 amino acids (e.g. FIG. 11C). As with folA, we found that highly impactful mutations, such as the crp S28P and L30Y mutations, require more than a single nucleotide substitution and would therefore be inaccessible or exceedingly rare in naturally evolving systems under laboratory timescales. In fact, this seemed to be a recurrent theme across many of the selections we performed (e.g. FIG. 24A-24D) highlighting again the value of synthetic DNA driven search strategies for genomic engineering applications.


High-Throughput Mapping of Selectable Precision Edits on a Genome Wide Scale


To further validate the method for genome-scale mapping and exploration we challenged genome wide targeting libraries with antibiotics or solvents relevant to bioproduction (e.g. FIG. 12A-12F). In the case of selections performed with rifampicin, an antibiotic that inhibits transcription by the RNA polymerase (e.g. FIG. 12A, inner circle) we observed a number of enriched variants that highlighted the robustness of the CREATE approach for atomic resolution mapping. For example, 10 of the top 50 hits identified mutations to residues 1572, L533 and S531 of the RNA polymerase (3 subunit (encoded by rpoB) including variants that form part of the rifampicin binding site (e.g. FIG. 12B). In 6 of the 7 enriched variants the data suggest that a bulky substitution is necessary to sterically hinder 7 rifampicin binding. In addition to the (3-subunit mutations the rifampicin selections enriched a number mutations to the MarA transcriptional activator, whose over-expression due to marR knockout is a well studied aspect of multiple antibiotic resistance (MAR) phenotypes in E. coli. In the DNA bound crystal structure of MarA, Q89 is positioned near the DNA backbone but pointed into solution due to a steric clash between other possible rotamers and nearest phosphate group on the DNA backbone (e.g. FIG. 12C). Modeling of the MarA Q89N and Q89D mutations identified by this selection suggests that shortening the side chain by a single carbon unit may enable new protein-DNA H-bonding interactions and thereby improve the overall MAR induction response.


To compare these results to an antibiotic that interferes with translation we performed another round of selections in the presence of erythromycin (e.g. outer circle FIG. 12A). The enrichment profiles from this selection again highlighted loci previously implicated in resistance to this antibiotic. For example, we observed strong enrichment of 4 different mutations to the AcrB efflux pump which acts as the primary exporter of this drug from the periplasmic space (e.g. FIG. 12A). Interestingly, one of the variants (AcrB T60N) appears at the same residue identified from isobutanol selections (e.g. FIG. 23A-23F). As with the other mutations, reconstruction validated that at least two of these mutations (e.g. T60N in FIG. 23E-23F and D73L in FIG. 25) can significantly improve tolerance to both erythromycin as well as isobutanol isobutanol, further supporting the idea that this motif may provide a useful engineering target for broad range of tolerance phenotypes. In addition to AcrB we also observed enrichment of multiple soxR and rpoS mutants, both of which have been previously implicated in stress tolerance and general antibiotic resistance phenotypes. In total, we observed 136 of the 341 significantly enriched mutations (40%) were identified within the RpoB, MarA, MarR, SoxR, AcrB, or dxs proteins, each of which has extensive prior validation as antibiotic resistance genes.


Finally, we performed selections using furfural or acetate, common components of cellulosic hydrolysate that inhibit bacterial growth under industrial fermentation conditions and are thus the target of many strain engineering efforts (e.g. FIG. 12D-12F). In the presence of high acetate concentrations (10 g/L, e.g. inner plot FIG. 12D) the top 100 ranking mutations were predominated by cassettes targeting the fis, fadR, rho and fnr genes respectively (e.g. FIG. 12E). The Fis, Fnr and FadR regulators are all involved transcriptional regulation of the primary acetate utilization gene acs, and implicated in the so-called “acetate-switch” which allows the cell to effectively scavenge acetate. Knockout of these regulators leads to constitutive expression of the acetate utilization pathways and improved acetate growth phenotypes suggesting that the mutations identified in this study (e.g. FIG. 12E-12F) likely inhibit these regulatory functions by destabilizing their respective protein targets.


In contrast to the weak acid tolerance of acetate, the enrichment profiles obtained the presence of growth inhibiting concentrations of furfural (2 g/L) were significantly different with the most frequently observed mutations targeting the oxidative stress response regulator rpoS (e.g. FIG. 12F). Furfural growth inhibition is thought to occur through depletion of cellular NADPH pools, an important cofactor in the prevention of oxidative stress and anabolic pathways for cell growth. In line with our findings, previous studies of RpoS have demonstrated that inactive alleles are favored in such nutrient depleted scenarios. Interestingly, we also observed some of the same mutations in crp that were observed in the 42.2° C. selections (e.g. FIGS. 11A and 11C) and upon reconstruction confirmed that the Crp S28P mutant can substantially improve growth in the presence of furfural (e.g. FIG. 26A-26B). We also found that this selection uniquely enriched for variants of the PntA transhydrogenase, a membrane bound transhydrogenase that transfers hydride ions from NADH to NADP+ to maintain sufficient pools for anabolism. A mutation to I258A in close proximity to the substrate binding cleft may therefore impart enhanced NADPH production.


Collectively, these selections validate the CREATE strategy by demonstrating the ability to map known associations as well as highlight power of this method for rapid mapping of novel mutations to traits of interest. It is also important to note that in contrast to the most other functional genomics technologies that mainly identify loss of function mutations, the ability to perform such broad scale scanning mutagenesis opens the door for more general genomic searches that can also identify novel gain of function mutations.


In this work we have demonstrated that CREATE allows parallel mapping of tens of thousands of amino acid and promoter mutations in a single experiment. The construction, selection, and mapping of >50,000 genome-wide mutations (e.g. FIGS. 11A-11C and 12A-12F) can in some examples be accomplished in 1-2 weeks by a single researcher, offering orders of magnitude improvement in economics, throughput, and target scale over the current state of the art methods in synthetic biology. Importantly, the ability to track the enrichment of library variants allows multiplex sequence to activity mapping by a simple PCR based workflow using just a single set of primers as opposed to more complicated downstream sequencing approaches that are limited to a few dozen loci. In addition, the ability to map the effects of single nucleotide or amino acid level variation in coding regions or promoters allows CREATE to address a considerably more diverse set of design objectives than previous high-throughput genomic technologies such as trackable multiplexed recombineering (TRMR) or Tn-seq approaches that are limited to gene resolution analysis. Such capabilities enable new paradigms for deciphering gene function and engineering cellular traits including workflows in which iterative rounds of CREATE could be implemented to perform design-driven genome engineering and address a broad range of ambitions.


Notably, as a further distinction from prior approaches, the high efficiency mutagenesis (e.g. FIG. 9A-9D) reported in this work was not only an order of magnitude improved but was also achieved in a wild type MG1655 strain in which all of the native DNA repair pathways are intact. The majority of previously reported recombineering efforts in E. coli have used single-stranded oligo engineering which requires deletion of the mismatch repair genes or chemically modified oligonucleotides to achieve mutagenesis at 1-30% efficiency. The combination of plasmid based homologous recombination substrates and Cas9 dsDNA cleavage appears to circumvent these requirements (e.g. FIG. 13A-13D and FIG. 9A-9D), eliminating the need for specialized genetic modifications outside of the Cas9 and k-RED genes to perform efficient editing and tracking on a population scale (e.g. FIG. 9A-9D). This fact alongside the broad utility of CRISPR editing suggests that the CREATE approach will readily port to a wide range of microorganisms such as Saccharomyces cerevisiae and other recombinogenic bacteria for which high-efficiency transformation protocols are available. The CREATE strategy should also be compatible with a wide range of CRISPR/Cas systems using similar automation approaches to design and tracking. Extension of this methodology to higher eukaryotes however will require the development of strategies to overcome non-homologous end-joining as well as alternative tracking systems that can stably replicate.


The CREATE strategy provides a streamlined approach for sequence to activity mapping and directed evolution by integrating multiplexed oligo synthesis, CRISPR-CAS editing, and high-throughput sequencing.


Example 28—Genome-Scale Sequence to Activity Relationship Mapping at Single Nucleotide Resolution, Additional Examples

Possible Effects of Inconsistent Mapping of Plasmid Barcode to Genomic Edit


We note that the initial CREATE library included designs that we would expect to have low confidence mapping between the plasmid barcode and the genomic edit (as explained primarily by distance between the PAM and target mutation in the CREATE cassette, see FIG. 2d). We describe below the various scenarios that may arise in the fraction of cases where the plasmid tracking may lead to erroneous conclusions regarding a genomic variant. A few things to note in evaluating these scenarios include i) the plasmid cassette should have minimal or no functional influence relative to the genomic edit, ii) the genomic loci will only be either the WT sequence or the sequence from the editing cassette that we obtain via sequencing, and iii) offsite editing is highly unlikely given the toxicity of CRISPR-Cas editing of multiple sites (e.g. FIG. 16A-16E) or when performed in the absence of an added editing-repair template. Finally, we note that the use of replicate experiments and deeper sequencing can also address these issues.


Tracking of High Fitness Variants (Positive Enrichment Tracking)


In cases where there is a strong selective advantage for the genomic modification (and thus the associated plasmid) we will only observe cells with the edit in the chromosome post selection. Thus, this is almost always a true positive particularly when selection times are short, thus limiting the possibility of random mutations due to replication error sweeping the population. While this phenomenon may lead to a quantitative underestimation of the true fitness of a mutation due to an enrichment profile that represents the convolution of modified and wt fitness, it will not produce false positives. Moreover, the use of replicated experiments and/or longer selections can also address this potential issue and eliminate erroneous conclusions regarding a mutations impact on fitness.


Tracking of Low Fitness Variants (Negative Enrichment Tracking)


In cases where the encoded mutation has a negative fitness contribution but is linked to a PAM only or unmodified chromosome we would incorrectly overestimate the fitness of the mutant and assume that it is closer to wt, especially for longer selection times (e.g. see FIG. 22A-22C). However, any deep sequencing approach must deal with similar limitations due to the lack of information regarding such mutations following selection and the problems associated with counting statistics in these scenarios. Moreover, we would note that this scenario is only relevant to the subset of truly negative fitness mutants (which should be 10-20% based on historic directed evolution and ALE data) within the unedited fraction (˜30%) and that remain in the unedited fraction in multiple replicate transformations. In other words, it is a small percentage (4-5%) scenario that can be detected and/or addressed through replicate transformations where one would observe inconsistencies in the particular mutant showing up occasionally with WT fitness.


Incomplete Coverage


In cases where a variant is not present in the initial population (due to both low transformation efficiency and low editing efficiency) a couple of scenarios could arise. As implied by the points above, if the mutation is beneficial one could falsely conclude that it does not confer a fitness advantage, and if it is truly deleterious it also could be incorrectly assigned a neutral fitness score. This appears to be encountered sometimes in this work and impacts both the error associated with replicate measurements and our ability to distinguish low fitness variants from a synonymous control. However, our ability to identify beneficial mutants is robust despite these issues as evidenced by our ability to readily identify novel and previously validated mutations. Strategies to address this by overcoming Cas9 toxicity and improving recombineering efficiencies hold promise to largely eliminate such problems. Furthermore, increasing the number of replicates, increasing sequencing depth, and/or improving the library coverage by performing larger scale transformation also can help to address these issues.


Off Target gRNA Cleavage


Off target gRNA cleavage should be rare in E. coli due to the relatively small size of its genome (4 Mb), and thus lack of (non-targeted) regions of homology to the CREATE cassette. Moreover, the toxicity of gRNAs in the presence of Cas9 (e.g. FIG. 9A) ensures that cells survival is compromised in E. coli due to dsDNA breaks. Each additional cut introduced into E. coli appears to incur multiplicative toxicity effects, even when homologous repair templates are provided for each cut site (e.g. FIG. 16A-16E). This toxicity effect would be further exacerbated by the absence of a repair template to guide HR (e.g. FIG. 16A-16E), as would be the case for an off-target cleavage event from a single gRNA targeting two sites but containing only a single HA.


Random Off Target Mutagenesis (Evolution)


The probability that a CREATE variant is strongly enriched due to an off target mutation even is highly improbable due to 2 factors: 1) the toxicity effect for the reasons stated above and 2) the low mutation rates of MG1655 or other mutation repair proficient strains compared with the mutagenesis rates of CREATE, particularly in multiple replicates of selection. We also have validated that we can transfer the plasmid pool back into a naive parental background and rapidly verify the enrichment of fitness improving CREATE plasmids from the initial population. Like replicate data, this allows us to decouple each CREATE plasmid from the potential of background mutations that would interfere with our analysis. These factors simplify the assumptions made during our analysis, the validity of which is supported both by externally and internally validated genotypes that were identified during this work.


Possible Effects of Synonymous Mutations


Synonymous mutations (e.g. in the PAM region) can confer unexpected effects on phenotype. We have controlled for this in a number of manners. In every experiment we included an internal control that consists of a library of synonymous mutations ( 1/20 at each codon or 5% of total input), each of which samples different PAM and codon combinations and thus give us an idea of the range of possible effects we may have on a gene by measuring the enrichment profile of many synonymous changes. Using this population as a control we can accurately identify significant fitness changes at the resolution of single amino acids as the work suggests. We can also control for this effect by utilizing redundant sampling approaches where a site is coupled to multiple PAM mutations similar to what was done for the ALE study described herein.


CREATE Library Design Considerations


A variety of design principles were implemented in the gene targeting libraries described in some work disclosed herein. For example, the folA library (3140 cassettes) was designed to be an unbiased, exploratory library for full single site saturation mutagenesis and sequence activity. However, for the majority of the genes we sought to maximize the probability of interesting genotypes by choosing to focus the diversity of sites most likely to have a functional impact on the targeted protein (e.g. DNA binding sites, active sites, regions identified as mutational hotspots by previous selections). The sites that were included in these library designs were selected based on information deposited in databases including Ecocyc (biocyc.org/), Uniprot (uniprot.org/), and the PDB (rcsb.org/pdb) as well as relevant literature citations that identified residues or regions of interest using directed evolution approaches. The Uniprot and Ecocyc databases provide manually curated sequence features that indicate mutational effects and important domains of each protein. In cases where there was enough structural information to model ligand or DNA binding sites the relevant crystal structures were loaded into Pymol and manual residue selections were made and exported as numerical lists. For promoter libraries we took into account the spacing of these sites relative to the transcription start site and the canonical recognition sequence of either the CRP binding site (AAATGTGAtctagaTCACATTT located between −72 and −40 relative to the transcription start site) or the UP element (AAAATTTTTTTTCAAAAGTA (SEQ ID NO: 185) −60 from the transcription start site) that directly recruit the alpha subunit of the RNA polymerase. These sequences were designed to integrate at these positions relative to the publicly available transcriptional start site annotations in RegulonDB using a variation of the automated CREATE design software designed for protein targeting (e.g. FIG. 13A-13D). These cassettes were made with the intent of assessing the effects of gene dosage and regulation on fitness. Finally, we designed a library to reconstruct all of the 645 non-synonymous mutations targeting 197 genes that were identified by a comprehensive ALE experiment in which the complete genomes of 115 isolates were sequenced after a year of adaptation to growth at elevated temperature (e.g. 42.2° C.). In all, we designed 52,356 oligomers, with 48,080 intended to saturate 2404 codon positions across 35 genes, 2,550 oligos were made for regenerating the ALE mutations, 379 UP promoter mutants and 772 CAP promoter mutations in a manner that would allow simultaneous sequence to activity relationship mapping.


Cassette Design and Automation Principles


Based on the control experiments with galK (e.g. FIG. 9A-9D) and current maximal commercial synthesis length constraints (200 bp from Agilent) we developed a general design for each CREATE cassette (e.g. FIG. 8A-8B).


Design of the CREATE cassettes was automated using custom Python scripts. The basic algorithm takes a gene sequence, a list of target residues, and a list of codons as inputs. The gene sequence is searched for all available PAM sites with the corresponding spacer sequence. This list is then sorted according to relative proximity to the targeted codon position. For each PAM site in the initial list the algorithm checks for synonymous mutations that can be made in-frame that also directly disrupt the PAM site, in the event that this condition is met the algorithm proceeds to making the prescribed codon change and designing the full CREATE cassette with the accompanying spacer and iterates for each input codon and position respectively. For each PAM mutation, all possible synonymous codon substitutions are checked before proceeding to the next PAM site. For the codon saturation libraries in this study we chose the most frequent codons (genscript.com/cgi-bin/tools/codon_freq_table) for each designed amino acid substitution according to the E. coli usage statistics. The script can be run rapidly on a laptop computer and was used to generate the full design of these libraries in <10 minutes. The algorithm used in this study was designed to make the most conservative mutations possible by sometimes using only the PAM as the selectable mutation marker.


Plasmids


The X2-cas9 broad host range vector was constructed by amplifying the cas9 gene from genomic S. pyogenes DNA into the pBTBX2 backbone (Lucigen). A vector map and sequence of this vector and the galK_Y145*_120/17 CREATE cassette are provided at the following locations: benchling.com/s/3c941j/edit; benchling.com/s/xRBDwcMy/edit.


The editing experiments performed in some of this work employed the X2-cas9 vector in combination with the pSIM5 vector (redrecombineering.ncifcrf.gov/strains-plasmids.html) to achieve the reported efficiencies.


Recombineering of CREATE Libraries


Genomic libraries were prepared by transforming CREATE plasmid libraries into a wildtype E. coli MG1655 strain carrying the temperature sensitive pSIM5 plasmid (lambda RED) and a broad host range plasmid containing an inducible cas9 gene from cloned from S. pyogenes genomic DNA into the pBTBX-2 backbone (X2cas9, e.g. FIG. 15A-15D). pSIM5 was induced for 15 min at 42° C. followed by chilling on ice for 15 min. The cells were washed 3 times with ⅕ the initial culture volume of ddH2O (e.g. 10 mL washes for 50 mL culture). Following electroporation the cells were recovered in LB+0.4% arabinose to induce Cas9. The cells were recovered 1-2 hrs before spot plating to determine library coverage and transferred to a 10× volume for overnight recovery in LB+0.4% arabinose+50 μg/mL kanamycin+100 μg/mL carbenicillin. Saturated overnight cultures were pelleted and resuspended in 5 mL of LB. 1 mL was used to make glycerol stocks and the other 1 mL washed with the appropriate selection media before proceeding with selection.


For the control experiments with galK we used CREATE cassettes designed to convert Y145 (TAT) into a stop codon (TAA) with a single point mutation at this position and a second point mutation to make a synonymous mutation that abolishes the targeted PAM site (e.g. FIG. 8B and FIG. 13A-13D). Editing efficiencies (e.g. FIG. 13A-13D and FIG. 9A-9B) were estimated using red/white plate based screening on 1% galactose supplemented MacConkey agar as previously described.


Selection Procedures


Following overnight recovery, the cells were harvested by pelleting and resuspension in fresh selection media. All selections were performed in shake flask and inoculated at an initial OD600 of 0.1. Three serial dilutions (48-96 hrs depending on growth rates in the target condition) were carried out for each selection by transferring 1/100th the media volume after the cultures reached stationary phase. The 42° C. selections were performed in M9 media+0.2% glucose to mimic low carbon availability from the initial adaptation. Antibiotic selections were carried out in LB+500 μg/mL rifampicin or erythromycin to ensure stringent selection. The solvent selections were performed in M9+0.4% glucose and either 10 g/L acetate (unbuffered) or 2 g/L furfural. Selections were harvested by pelleting 1 mL of the final culture and the cell pellet was boiled in 100 μL TE buffer to preserve both the plasmid and the genomic DNA for further desired analyses.


Library Preparation and Sequencing


Custom Illumina compatible primers were designed to allow a single amplification step from the CREATE plasmid and assignment of experimental reads using barcodes. The CREATE cassettes were amplified directly from the plasmid sequences of boiled cell lysates using 20 cycles of PCR with the Phusion (NEB) polymerase using 60° C. annealing and 1:30 minute extension times. As in the cloning procedure a minimal number of PCR cycles was maintained to prevent accumulation of mutations and recombined CREATE cassettes that were observed when an excessive number of PCR cycles was implemented (e.g. >25-30). Amplified fragments were verified and quantified by 1% agarose gel electrophoresis and pooled according to the desired read depth for each sample. The pooled library was cleaned using Qiaquick PCR cleanup kit and processed for NGS using standard Illumina preparation kits. The Illumina sequencing and sample preparation were performed with the primers.


Preprocessing of High-Throughput Sequencing and Count Generation


Paired-end Illumina sequencing reads were sorted according to the golay barcode index with allowance of up to 3 mismatches then merged using the usearch-fastq_merge algorithm. Sorted reads were then matched against the database of designed CREATE cassettes using the usearch global algorithm at an identity threshold of 90% allowing up to 60 possible hits for each read. The resulting hits were further sorted according to percent identity and read assignment was made using the best matching CREATE cassette design at a final cutoff 98% identity to the initial design. It should be noted that this read assignment strategy attempts to identify correlations between the designed genotypes and may therefore miss other important features that arise due to mutations that could occur during the experimental procedure. This approach was taken both to simplify data analysis as well as evaluate the ‘forward’ design and annotation procedure and it's ability to accurately identify meaningful genetic phenomena.


Data Analysis and Fitness Calculation


Enrichment scores (or absolute fitness scores) were calculated as the log 2 enrichment score using the following equation:







W
=

log

2


(


F

x
,
f



F

x
,
i



)



,




where Fx,f is the frequency of cassette X at the final time point and Fx,i is the initial frequency of cassette X and W is the absolute fitness of each variant. Frequencies were determined by dividing the read counts for each variant by the total experimental counts including those that were lost to filtering. Each selection was performed in duplicate and the count weighted average of the two measurements was used to infer the average fitness score of each mutation as follows:







W
avg

=



Σ

i
=
1

N



counts
i

*

W
i




Σ

i
=
1

N



counts
i







These scores were used to rank and assess the fitness contributions of each mutation under the various selection pressures investigated. For all selections we took average absolute fitness scores for all of the synonymous mutants as a composite measure of the average growth rate. Absolute enrichment scores were considered significant if the mutant enrichment was at least +/−2*σ (e.g. p=0.05 assuming a normal distribution) of the wild-type value. We performed two replicates of each selection reported in this study to derive these figures and applied a cutoff threshold of 10 across the replicate experiments for inclusion in each analysis.


For every codon targeted our designs also included a synonymous variant to provide an internal experimental control. Thus 5% of the protein targeting cassettes encoded synonymous mutations that allow us to estimate confidence intervals for mutation effects using custom Python bootstrapping scripts. The enrichment data for each experiment was resampled with replacement 20000 to obtain 95% confidence interval estimations that were used to infer statistical significance of enrichment scores for each analysis presented in the manuscript.


Mutant Reconstructions and Growth Measurements


The AcrB T60N and Crp S28P and FolA F153R/W CREATE cassettes were ordered as separate gblocks from IDT, cloned and sequence verified. Each cassette was transformed into MG1655 and colony screened to identify a clone with the designed genomic edit. These strains (e.g. FIG. 21 and FIG. 22A-22C) were then subjected to the growth conditions from the pooled library selection as indicated. The growth curves were taken in triplicate for each condition in 100 μL in a 96 well plate reader set to measure absorbance at 600 nm. The plate was covered and water added to empty wells to reduce evaporation during the growth.


Software and Figure Generation


Circle plots were generated using Circos v0.67. Plots were generated in Python 2.7 using the matplotlib plotting libraries and figures were made using Adobe Illustrator CS5. Entropy scores for the FolA (FIG. 10A) were determined using the ProDy Python package and the Pfam accession PF00186 representative proteome alignment RP35.


Figures of the protein libraries and high fitness mutations were made using The PyMol Molecular Graphics System, Schrodinger, LLC. The following are the proteins and PDBs used in the figure generation: AcrB (3W9H, 4K7Q, 3AOC), Fis (3JR9), Ihf (1IHF), RNA polymerase (4KMU, 4IGC), Crp (3N4M), MarA (1BLO), and SoxR (2ZHG).


Example 29: Testing Edit-Barcode Correlation

A strain expressing a low copy number plasmid (Ec23) which is a Cas9-pSIM5 dual vector, was tested using different gene editing cassettes (lacZ, xylA, and rhaA) and recorder cassettes with different barcodes and insertion sites (galK site 1, galK site 2, and galK site 3) (Summarized in FIG. 27A). The possible outcomes are depicted in FIG. 27B. Pre-selection, all combinations of edit/barcode/WT are possible. After selection, edits cells could be enriched whether they are barcoded or not in this experimental design.


The transformations were plated on selective media that allowed for enrichment of cells containing the gene edits. 30 colonies from each combination transformation were sequenced to determine if they contained the desired barcode.



FIG. 27C shows the results from the sequencing data. Two of the edit/barcode combinations were found in 100% of the tested colonies (30/30 colonies), and the other edit/barcode combination transformation was found in approximately 97% of tested colonies (29/30 colonies). The single colony that was not properly engineered contained the gene edit, but not the barcode.


Overall, 89 out of 90 tested colonies has the designed gene edit and barcode.


Example 30: Selectable Recording

When a barcode is not selected for, it allows for enrichment of non-barcoded cells even if the corresponding gene edit is incorporated and selected for. FIG. 28 depicts an example strategy for selecting for the recording event (e.g., incorporation of the barcode by the recorder cassette), in addition to selecting for the editing cassette incorporation, thereby increasing the efficiency of recovering cells that have been both edited and barcoded.


As depicted in FIG. 28, sequences S0, S1, S2, etc. are designed to be targeted by the guide RNA associated with the recorder cassette of the next round. In the depicted example, in the first round of engineering, a PAM mutation, a barcode, S1 site, and regulatory elementary necessary to turn on a selectable marker are incorporated into the S0 site in the target region. This turns on the TetR selectable marker and allows for enrichment of barcoded mutants variants with the S1 site that have the first round PAM site deleted. In the second round of engineering, a new recorder cassette comprising a second PAM mutation, a second barcode, a S2 site, and a mutation that turns off the selectable marker is incorporated into the S1 site from the previous round. This allows for counter-selection of variants that have incorporated the second barcode and S2 site. The subsequent rounds continue to flip the selectable marker between an on and off state and using selection or counter-selection respectively to enrich the desired variants. The recorder cassette from each round is designed to incorporate into a unique sequence (e.g., S0, S1, etc.) that was incorporated in the previous round. This ensures that the last round of barcoding was successful so that all desired engineering steps are contained in the final product. The incorporation of PAM mutations at each step also helps ensure that the desired barcoded variants are selected for since cells having the unmodified PAM sequences will be killed as they can't escape CRISPR enzyme cleavage.


This strategy uses multiple methods to increase the efficiency of isolating desired variants that contain all of the engineered edits from each round of engineering. The PAM mutation, selectable marker switch, and unique landing site incorporated in each round separately increase efficiency and together increase efficiency as well. These tools allow for selection of each recording round and allow design of highly active recording guide RNAs. An array of equally spaced (or not equally spaced, depending on the design) barcodes is generated and facilitates downstream analysis such as sequencing the barcode array to determine which corresponding edits are incorporated throughout the genome.



FIG. 29 depicts an experimental design to test the selectable recorder strategy described above. A plasmid (pREC1) containing an editing cassette and a recorder cassette was transformed into cells. The editing cassette either contained a non-targeting editing cassette, or a mutation that incorporated a mutation (not TS) or a temperature sensitive mutation (TS) into a target gene. The recorder cassette was designed to incorporate into the S0 site in the target gene that originally had the tetR selectable marker turned off. The recorder cassette also contained a PAM mutation that deleted the S0 PAM site, first barcode (BC1), a unique S1 site for the subsequent engineering round recording cassette to incorporate into, and a corrective mutation that will turn on the TetR selectable marker. A guide RNA on the recorder cassette that targets a PAM site in the S0 site (S0-gRNA) allows a CRISPR enzyme, in this case Cas9, to cleave the S0 site. The recorder cassette recombines into the cleaved S0 site. The PAM mutation is incorporated, which means the S0-gRNA can no longer target the S0 site, thereby killing WT cells and enriching for cells that received the barcode. The TetR selectable marker was also turned on, allowing further selection of the barcoded variant.


The data in FIGS. 30A and 30B show the results from the experiment described above and depicted in FIG. 29. Of the Tet Resistant colonies that were recovered from the transformation and engineering round, 16 were sequence and determined to all contain the designed barcode (FIG. 30A). FIG. 30B shows that the control cells that did not contain the recorder target site (non-target) did not survive the presence of Tet, while cells that contained the target site were successfully barcoded as evidences by the turning on of TetR, allowing cells to be selected on Tet containing media. The Tet resistant colonies were confirmed at the genomic site to have TetR gene turned on. These data showed that selectable recording was successful.


Example 31: Expression of MAD Nucleases

Wild-type nucleic acid sequences for MAD1-MAD20 include SEQ ID NOs 21-40, respectively. These MAD nucleases were codon optimized for expression in E. coli and the codon optimized sequences are listed as SEQ ID NO: 41-60, respectively (summarized in Table 2). Codon optimized MAD1-MAD20 were cloned into an expression construct comprising a constitutive or inducible promoter (e.g., T7 promoter SEQ ID NO: 83, or pBAD promoter SEQ ID NO: 81 or SEQ ID NO: 82) and an optional 6×-His tag (SEQ ID NO: 186). The generated MAD1-MAD20 expression constructs are provided as SEQ ID NOs: 61-80, respectively.













TABLE 2






WT
Codon




MAD
nucleic
optimized




nu-
acid
nucleic acid
Amino acid
Expression


clease
sequence
sequence
sequence
constructs







MAD1
SEQ ID
SEQ ID NO: 41
SEQ ID NO: 1
SEQ ID NO: 61



NO: 21





MAD2
SEQ ID
SEQ ID NO: 42
SEQ ID NO: 2
SEQ ID NO: 62



NO: 22





MAD3
SEQ ID
SEQ ID NO: 43
SEQ ID NO: 3
SEQ ID NO: 63



NO: 23





MAD4
SEQ ID
SEQ ID NO: 44
SEQ ID NO: 4
SEQ ID NO: 64



NO: 24





MAD5
SEQ ID
SEQ ID NO: 45
SEQ ID NO: 5
SEQ ID NO: 65



NO: 25





MAD6
SEQ ID
SEQ ID NO: 46
SEQ ID NO: 6
SEQ ID NO: 66



NO: 26





MAD7
SEQ ID
SEQ ID NO: 47
SEQ ID NO: 7
SEQ ID NO: 67



NO: 27





MAD8
SEQ ID
SEQ ID NO: 48
SEQ ID NO: 8
SEQ ID NO: 68



NO: 28





MAD9
SEQ ID
SEQ ID NO: 49
SEQ ID NO: 9
SEQ ID NO: 69



NO: 29





MAD10
SEQ ID
SEQ ID NO: 50
SEQ ID NO: 10
SEQ ID NO: 70



NO: 30





MAD11
SEQ ID
SEQ ID NO: 51
SEQ ID NO: 11
SEQ ID NO: 71



NO: 31





MAD12
SEQ ID
SEQ ID NO: 52
SEQ ID NO: 12
SEQ ID NO: 72



NO: 32





MAD13
SEQ ID
SEQ ID NO: 53
SEQ ID NO: 13
SEQ ID NO: 73



NO: 33





MAD14
SEQ ID
SEQ ID NO: 54
SEQ ID NO: 14
SEQ ID NO: 74



NO: 34





MAD15
SEQ ID
SEQ ID NO: 55
SEQ ID NO: 15
SEQ ID NO: 75



NO: 35





MAD16
SEQ ID
SEQ ID NO: 56
SEQ ID NO: 16
SEQ ID NO: 76



NO: 36





MAD17
SEQ ID
SEQ ID NO: 57
SEQ ID NO: 17
SEQ ID NO: 77



NO: 37





MAD18
SEQ ID
SEQ ID NO: 58
SEQ ID NO: 18
SEQ ID NO: 78



NO: 38





MAD19
SEQ ID
SEQ ID NO: 59
SEQ ID NO: 19
SEQ ID NO: 79



NO: 39





MAD20
SEQ ID
SEQ ID NO: 60
SEQ ID NO: 20
SEQ ID NO: 80



NO: 40









Example 32: MAD2 and MAD7 Nucleases

MAD2 and MAD7 nucleases are nucleic acid-guided nuclease that can be used in the methods disclosed herein. Nucleases Mad2 (SEQ ID NO: 2) and Mad 7 (SEQ ID NO: 7) were cloned and transformed into cells. Editing cassettes designed to mutate a target site in a galK gene were designed with mutations, which allowed for white/red screening of successfully editing colonies. The editing cassettes also encoded a guide nucleic acid designed to target galK. The editing cassettes were transformed into E. coli cells expressing MAD2, MAD7, or Cas9. FIG. 31A shows the editing efficiency of Mad2 and Mad7 compared to Cas9 (SEQ ID NO: 110). FIG. 31B shows the transformation efficiency as evidenced by cell survival rates. In this example, the guide nucleic acid used with MAD2 and MAD7 comprised a scaffold-12 sequence and a guide sequence targeting galK. The guide nucleic acid used with Cas9 comprised a sequence compatible with the S. pyogenes Cas9.



FIG. 32 and Table 3 show more examples of gene editing using the MAD2 nuclease. In this experiment, different guide nucleic acid sequences were tested. The guide sequence of the guide nucleic acids targeted the galK gene as described above. The scaffold sequence of the guide nucleic acids were one of various sequences tested as indicated. Guide nucleic acids with scaffold-5, scaffold-10, scaffold-11, and scaffold-12 were able to form functional complexes with MAD2.



FIG. 33 and Table 4 show more examples of gene editing using the MAD7 nuclease. In this experiment, different guide nucleic acid sequences were tested. The guide sequence of the guide nucleic acids targeted the galK gene as described above. The scaffold sequence of the guide nucleic acids were one of various sequences tested as indicated. Guide nucleic acids with scaffold-10, scaffold-11, and scaffold-12 (e.g., FIG. 31A) were able to form functional complexes with MAD7. Amino acid sequences are provided in Table 2 and scaffolding sequences are provided in Table 3 and Table 4. Table 3 and Table 4 also provided the designed mutations in the editing cassettes that were used to mutate the galK target gene.


Further details and characterization of MAD2, MAD7, and other MAD nucleases are described in U.S. application Ser. No. 15/631,989, filed Jun. 23, 2017, and U.S. application Ser. No. 15/632,001, filed Jun. 23, 2017, each of which are incorporated herein in their entirety.













TABLE 3






Nucleic

Editing




acid-guided
Guide nucleic acid
sequence
Target


#
nuclease
scaffold sequence
mutation
gene







 1
MAD2
Scaffold-12; SEQ ID NO: 95
N89KpnI
galK


 2
MAD2
Scaffold-10; SEQ ID NO: 93
L80**
galK


 3
MAD2
Scaffold-5; SEQ ID NO: 88
L80**
galK


 4
MAD2
Scaffold-12; SEQ ID NO: 95
D70KpnI
galK


 5
MAD2
Scaffold-12; SEQ ID NO: 95
Y145**
galK


 6
MAD2
Scaffold-11; SEQ ID NO: 94
Y145**
galK


 7
MAD2
Scaffold-10; SEQ ID NO: 93
Y145**
galK


 8
MAD2
Scaffold-12; SEQ ID NO: 95
L10KpnI
galK


 9
MAD2
Scaffold-11; SEQ ID NO: 94
L80**
galK


10
SpCas9

S. pyogenese gRNA

Y145**
galK


11
MAD2
Scaffold-2; SEQ ID NO: 85
Y145**
galK


12
MAD2
Scaffold-4; SEQ ID NO: 87
Y145**
galK


13
MAD2
Scaffold-1; SEQ ID NO: 84
L80**
galK


14
MAD2
Scaffold-13; SEQ ID NO: 96
Y145**
galK




















TABLE 4






Nucleic

Editing




acid-guided
Guide nucleic acid
sequence
Target


#
nuclease
scaffold sequence
mutation
gene







1
MAD7
Scaffold-1; SEQ ID NO: 84
L80**
galK


2
MAD7
Scaffold-2; SEQ ID NO: 85
Y145**
galK


3
MAD7
Scaffold-4; SEQ ID NO: 87
Y145**
galK


4
MAD7
Scaffold-10; SEQ ID NO: 93
Y145**
galK


5
MAD7
Scaffold-11; SEQ ID NO: 95
L80**
galK









While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.


SEQUENCE LISTING










TABLE 5





SEQ



ID



NO:
Sequence







SEQ
MGKMYYLGLDIGTNSVGYAVTDPSYHLLKFKGEPMWGAHVFAAGNQSAERRSFRTSRRRL


ID
DRRQQRVKLVQEIFAPVISPIDPRFFIRLHESALWRDDVAETDKHIFFNDPTYTDKEYYS


NO:
DYPTIHHLIVDLMESSEKHDPRLVYLAVAWLVAHRGHFLNEVDKDNIGDVLSFDAFYPEF


1
LAFLSDNGVSPWVCESKALQATLLSRNSVNDKYKALKSLIFGSQKPEDNFDANISEDGLI



QLLAGKKVKVNKLFPQESNDASFTLNDKEDAIEEILGTLTPDECEWIAHIRRLFDWAIMK



HALKDGRTISESKVKLYEQHHHDLTQLKYFVKTYLAKEYDDIFRNVDSETTKNYVAYSYH



VKEVKGTLPKNKATQEEFCKYVLGKVKNIECSEADKVDFDEMIQRLTDNSFMPKQVSGEN



RVIPYQLYYYELKTILNKAASYLPFLTQCGKDAISNQDKLLSIMTFRIPYFVGPLRKDNS



EHAWLERKAGKIYPWNFNDKVDLDKSEEAFIRRMTNTCTYYPGEDVLPLDSLIYEKFMIL



NEINNIRIDGYPISVDVKQQVFGLFEKKRRVTVKDIQNLLLSLGALDKHGKLTGIDTTIH



SNYNTYHHFKSLMERGVLTRDDVERIVERMTYSDDTKRVRLWLNNNYGTLTADDVKHISR



LRKHDFGRLSKMFLTGLKGVHKETGERASILDFMWNTNDNLMQLLSECYTFSDEITKLQE



AYYAKAQLSLNDFLDSMYISNAVKRPIYRTLAVVNDIRKACGTAPKRIFIEMARDGESKK



KRSVTRREQIKNLYRSIRKDFQQEVDFLEKILENKSDGQLQSDALYLYFAQLGRDMYTGD



PIKLEHIKDQSFYNIDHIYPQSMVKDDSLDNKVLVQSEINGEKSSRYPLDAAIRNKMKPL



WDAYYNHGLISLKKYQRLTRSTPFTDDEKWDFINRQLVETRQSTKALAILLKRKFPDTEI



VYSKAGLSSDFRHEFGLVKSRNINDLHHAKDAFLAIVTGNVYHERFNRRWFMVNQPYSVK



TKTLFTHSIKNGNFVAWNGEEDLGRIVKMLKQNKNTIHFTRFSFDRKEGLFDIQPLKAST



GLVPRKAGLDVVKYGGYDKSTAAYYLLVRFTLEDKKTQHKLMMIPVEGLYKARIDHDKEF



LTDYAQTTISEILQKDKQKVINIMFPMGTRHIKLNSMISIDGFYLSIGGKSSKGKSVLCH



AMVPLIVPHKIECYIKAMESFARKFKENNKLRIVEKFDKITVEDNLNLYELFLQKLQHNP



YNKFFSTQFDVLTNGRSTFTKLSPEEQVQTLLNILSIFKTCRSSGCDLKSINGSAQAARI



MISADLTGLSKKYSDIRLVEQSASGLFVSKSQNLLEYL*





SEQ
MSSLTKFTNKYSKQLTIKNELIPVGKTLENIKENGLIDGDEQLNENYQKAKIIVDDFLRD


ID
FINKALNNTQIGNWRELADALNKEDEDNIEKLQDKIRGIIVSKFETFDLFSSYSIKKDEK


NO:
IIDDDNDVEEEELDLGKKTSSFKYIFKKNLFKLVLPSYLKTTNQDKLKIISSFDNFSTYF


2
RGFFENRKNIFTKKPISTSIAYRIVHDNFPKFLDNIRCFNVWQTECPQLIVKADNYLKSK



NVIAKDKSLANYFTVGAYDYFLSQNGIDFYNNIIGGLPAFAGHEKIQGLNEFINQECQKD



SELKSKLKNRHAFKMAVLFKQILSDREKSFVIDEFESDAQVIDAVKNFYAEQCKDNNVIF



NLLNLIKNIAFLSDDELDGIFIEGKYLSSVSQKLYSDWSKLRNDIEDSANSKQGNKELAK



KIKTNKGDVEKAISKYEFSLSELNSIVHDNTKFSDLLSCTLHKVASEKLVKVNEGDWPKH



LKNNEEKQKIKEPLDALLEIYNTLLIFNCKSFNKNGNFYVDYDRCINELSSVVYLYNKTR



NYCTKKPYNTDKFKLNFNSPQLGEGFSKSKENDCLTLLFKKDDNYYVGIIRKGAKINFDD



TQAIADNTDNCIFKMNYFLLKDAKKFIPKCSIQLKEVKAHFKKSEDDYILSDKEKFASPL



VIKKSTFLLATAHVKGKKGNIKKFQKEYSKENPTEYRNSLNEWIAFCKEFLKTYKAATIF



DITTLKKAEEYADIVEFYKDVDNLCYKLEFCPIKTSFIENLIDNGDLYLFRINNKDFSSK



STGTKNLHTLYLQAIFDERNLNNPTIMLNGGAELFYRKESIEQKNRITHKAGSILVNKVC



KDGTSLDDKIRNEIYQYENKFIDTLSDEAKKVLPNVIKKEATHDITKDKRFTSDKFFFHC



PLTINYKEGDTKQFNNEVLSFLRGNPDINIIGIDRGERNLIYVTVINQKGEILDSVSFNT



VTNKSSKIEQTVDYEEKLAVREKERIEAKRSWDSISKIATLKEGYLSAIVHEICLLMIKH



NAIVVLENLNAGFKRIRGGLSEKSVYQKFEKMLINKLNYFVSKKESDWNKPSGLLNGLQL



SDQFESFEKLGIQSGFIFYVPAAYTSKIDPTTGFANVLNLSKVRNVDAIKSFFSNFNEIS



YSKKEALFKFSFDLDSLSKKGFSSFVKFSKSKWNVYTFGERIIKPKNKQGYREDKRINLT



FEMKKLLNEYKVSFDLENNLIPNLTSANLKDTFWKELFFIFKTTLQLRNSVTNGKEDVLI



SPVKNAKGEFFVSGTHNKTLPQDCDANGAYHIALKGLMILERNNLVREEKDTKKIMAISN



VDWFEYVQKRRGVL*





SEQ
MNNYDEFTKLYPIQKTIRFELKPQGRTMEHLETFNFFEEDRDRAEKYKILKEAIDEYHKK


ID
FIDEHLTNMSLDWNSLKQISEKYYKSREEKDKKVFLSEQKRMRQEIVSEFKKDDRFKDLF


NO:
SKKLFSELLKEEIYKKGNHQEIDALKSFDKFSGYFIGLHENRKNMYSDGDEITAISNRIV


3
NENFPKFLDNLQKYQEARKKYPEWIIKAESALVAHNIKMDEVFSLEYFNKVLNQEGIQRY



NLALGGYVTKSGEKMMGLNDALNLAHQSEKSSKGRIHMTPLFKQILSEKESFSYIPDVFT



EDSQLLPSIGGFFAQIENDKDGNIFDRALELISSYAEYDTERIYIRQADINRVSNVIFGE



WGTLGGLMREYKADSINDINLERTCKKVDKWLDSKEFALSDVLEAIKRTGNNDAFNEYIS



KMRTAREKIDAARKEMKFISEKISGDEESIHIIKTLLDSVQQFLHFFNLFKARQDIPLDG



AFYAEFDEVHSKLFAIVPLYNKVRNYLTKNNLNTKKIKLNFKNPTLANGWDQNKVYDYAS



LIFLRDGNYYLGIINPKRKKNIKFEQGSGNGPFYRKMVYKQIPGPNKNLPRVFLTSTKGK



KEYKPSKEIIEGYEADKHIRGDKFDLDFCHKLIDFFKESIEKHKDWSKFNFYFSPTESYG



DISEFYLDVEKQGYRMHFENISAETIDEYVEKGDLFLFQIYNKDFVKAATGKKDMHTIYW



NAAFSPENLQDVVVKLNGEAELFYRDKSDIKEIVHREGEILVNRTYNGRTPVPDKIHKKL



TDYHNGRTKDLGEAKEYLDKVRYFKAHYDITKDRRYLNDKIYFHVPLTLNFKANGKKNLN



KMVIEKFLSDEKAHIIGIDRGERNLLYYSIIDRSGKIIDQQSLNVIDGFDYREKLNQREI



EMKDARQSWNAIGKIKDLKEGYLSKAVHEITKMAIQYNAIVVMEELNYGFKRGRFKVEKQ



IYQKFENMLIDKMNYLVFKDAPDESPGGVLNAYQLTNPLESFAKLGKQTGILFYVPAAYT



SKIDPTTGFVNLFNTSSKTNAQERKEFLQKFESISYSAKDGGIFAFAFDYRKFGTSKTDH



KNVWTAYTNGERMRYIKEKKRNELFDPSKEIKEALTSSGIKYDGGQNILPDILRSNNNGL



IYTMYSSFIAAIQMRVYDGKEDYIISPIKNSKGEFFRTDPKRRELPIDADANGAYNIALR



GELTMRAIAEKFDPDSEKMAKLELKHKDWFEFMQTRGD*





SEQ
MTKTFDSEFFNLYSLQKTVRFELKPVGETASFVEDFKNEGLKRVVSEDERRAVDYQKVKE


ID
IIDDYHRDFIEESLNYFPEQVSKDALEQAFHLYQKLKAAKVEEREKALKEWEALQKKLRE


NO:
KVVKCFSDSNKARFSRIDKKELIKEDLINWLVAQNREDDIPTVETFNNFTTYFTGFHENR


4
KNIYSKDDHATAISFRLIHENLPKFFDNVISFNKLKEGFPELKFDKVKEDLEVDYDLKHA



FEIEYFVNFVTQAGIDQYNYLLGGKTLEDGTKKQGMNEQINLFKQQQTRDKARQIPKLIP



LFKQILSERTESQSFIPKQFESDQELFDSLQKLHNNCQDKFTVLQQAILGLAEADLKKVF



IKTSDLNALSNTIFGNYSVFSDALNLYKESLKTKKAQEAFEKLPAHSIHDLIQYLEQFNS



SLDAEKQQSTDTVLNYFIKTDELYSRFIKSTSEAFTQVQPLFELEALSSKRRPPESEDEG



AKGQEGFEQIKRIKAYLDTLMEAVHFAKPLYLVKGRKMIEGLDKDQSFYEAFEMAYQELE



SLIIPIYNKARSYLSRKPFKADKFKINFDNNTLLSGWDANKETANASILFKKDGLYYLGI



MPKGKTFLFDYFVSSEDSEKLKQRRQKTAEEALAQDGESYFEKIRYKLLPGASKMLPKVF



FSNKNIGFYNPSDDILRIRNTASHTKNGTPQKGHSKVEFNLNDCHKMIDFFKSSIQKHPE



WGSFGFTFSDTSDFEDMSAFYREVENQGYVISFDKIKETYIQSQVEQGNLYLFQIYNKDF



SPYSKGKPNLHTLYWKALFEEANLNNVVAKLNGEAEIFFRRHSIKASDKVVHPANQAIDN



KNPHTEKTQSTFEYDLVKDKRYTQDKFFFHVPISLNFKAQGVSKFNDKVNGFLKGNPDVN



IIGIDRGERHLLYFTVVNQKGEILVQESLNTLMSDKGHVNDYQQKLDKKEQERDAARKSW



TTVENIKELKEGYLSHVVHKLAHLIIKYNAIVCLEDLNFGFKRGRFKVEKQVYQKFEKAL



IDKLNYLVFKEKELGEVGHYLTAYQLTAPFESFKKLGKQSGILFYVPADYTSKIDPTTGF



VNFLDLRYQSVEKAKQLLSDFNAIRFNSVQNYFEFEIDYKKLTPKRKVGTQSKWVICTYG



DVRYQNRRNQKGHWETEEVNVTEKLKALFASDSKTTTVIDYANDDNLIDVILEQDKASFF



KELLWLLKLTMTLRHSKIKSEDDFILSPVKNEQGEFYDSRKAGEVWPKDADANGAYHIAL



KGLWNLQQINQWEKGKTLNLAIKNQDWFSFIQEKPYQE*





SEQ
MHTGGLLSMDAKEFTGQYPLSKTLRFELRPIGRTWDNLEASGYLAEDRHRAECYPRAKEL


ID
LDDNHRAFLNRVLPQIDMDWHPIAEAFCKVHKNPGNKELAQDYNLQLSKRRKEISAYLQD


NO:
ADGYKGLFAKPALDEAMKIAKENGNESDIEVLEAFNGFSVYFTGYHESRENIYSDEDMVS


5
VAYRITEDNFPRFVSNALIFDKLNESHPDIISEVSGNLGVDDIGKYFDVSNYNNFLSQAG



IDDYNHIIGGHTTEDGLIQAFNVVLNLRHQKDPGFEKIQFKQLYKQILSVRTSKSYIPKQ



FDNSKEMVDCICDYVSKIEKSETVERALKLVRNISSFDLRGIFVNKKNLRILSNKLIGDW



DAIETALMHSSSSENDKKSVYDSAEAFTLDDIFSSVKKFSDASAEDIGNRAEDICRVISE



TAPFINDLRAVDLDSLNDDGYEAAVSKIRESLEPYMDLFHELEIFSVGDEFPKCAAFYSE



LEEVSEQLIEIIPLFNKARSFCTRKRYSTDKIKVNLKFPTLADGWDLNKERDNKAAILRK



DGKYYLAILDMKKDLSSIRTSDEDESSFEKMEYKLLPSPVKMLPKIFVKSKAAKEKYGLT



DRMLECYDKGMHKSGSAFDLGFCHELIDYYKRCIAEYPGWDVFDFKFRETSDYGSMKEFN



EDVAGAGYYMSLRKIPCSEVYRLLDEKSIYLFQIYNKDYSENAHGNKNMHTMYWEGLFSP



QNLESPVFKLSGGAELFFRKSSIPNDAKTVHPKGSVLVPRNDVNGRRIPDSIYRELTRYF



NRGDCRISDEAKSYLDKVKTKKADHDIVKDRRFTVDKMMFHVPIAMNFKAISKPNLNKKV



IDGIIDDQDLKIIGIDRGERNLIYVTMVDRKGNILYQDSLNILNGYDYRKALDVREYDNK



EARRNWTKVEGIRKMKEGYLSLAVSKLADMIIENNAIIVMEDLNHGFKAGRSKIEKQVYQ



KFESMLINKLGYMVLKDKSIDQSGGALHGYQLANHVTTLASVGKQCGVIFYIPAAFTSKI



DPTTGFADLFALSNVKNVASMREFFSKMKSVIYDKAEGKFAFTFDYLDYNVKSECGRTLW



TVYTVGERFTYSRVNREYVRKVPTDIIYDALQKAGISVEGDLRDRIAESDGDTLKSIFYA



FKYALDMRVENREEDYIQSPVKNASGEFFCSKNAGKSLPQDSDANGAYNIALKGILQLRM



LSEQYDPNAESIRLPLITNKAWLTFMQSGMKTWKN*





SEQ
MDSLKDFTNLYPVSKTLRFELKPVGKTLENIEKAGILKEDEHRAESYRRVKKIIDTYHKV


ID
FIDSSLENMAKMGIENEIKAMLQSFCELYKKDHRTEGEDKALDKIRAVLRGLIVGAFTGV


NO:
CGRRENTVQNEKYESLFKEKLIKEILPDFVLSTEAESLPFSVEEATRSLKEFDSFTSYFA


6
GFYENRKNIYSTKPQSTAIAYRLIHENLPKFIDNILVFQKIKEPIAKELEHIRADFSAGG



YIKKDERLEDIFSLNYYIHVLSQAGIEKYNALIGKIVTEGDGEMKGLNEHINLYNQQRGR



EDRLPLFRPLYKQILSDREQLSYLPESFEKDEELLRALKEFYDHIAEDILGRTQQLMTSI



SEYDLSRIYVRNDSQLTDISKKMLGDWNAIYMARERAYDHEQAPKRITAKYERDRIKALK



GEESISLANLNSCIAFLDNVRDCRVDTYLSTLGQKEGPHGLSNLVENVFASYHEAEQLLS



FPYPEENNLIQDKDNVVLIKNLLDNISDLQRFLKPLWGMGDEPDKDERFYGEYNYIRGAL



DQVIPLYNKVRNYLTRKPYSTRKVKLNFGNSQLLSGWDRNKEKDNSCVILRKGQNFYLAI



MNNRHKRSFENKVLPEYKEGEPYFEKMDYKFLPDPNKMLPKVFLSKKGIEIYKPSPKLLE



QYGHGTHKKGDTFSMDDLHELIDFFKHSIEAHEDWKQFGFKFSDTATYENVSSFYREVED



QGYKLSFRKVSESYVYSLIDQGKLYLFQIYNKDFSPCSKGTPNLHTLYWRMLFDERNLAD



VIYKLDGKAEIFFREKSLKNDHPTHPAGKPIKKKSRQKKGEESLFEYDLVKDRHYTMDKF



QFHVPITMNFKCSAGSKVNDMVNAHIREAKDMHVIGIDRGERNLLYICVIDSRGTILDQI



SLNTINDIDYHDLLESRDKDRQQERRNWQTIEGIKELKQGYLSQAVHRIAELMVAYKAVV



ALEDLNMGFKRGRQKVESSVYQQFEKQLIDKLNYLVDKKKRPEDIGGLLRAYQFTAPFKS



FKEMGKQNGFLFYIPAWNTSNIDPTTGFVNLFHAQYENVDKAKSFFQKFDSISYNPKKDW



FEFAFDYKNFTKKAEGSRSMWILCTHGSRIKNFRNSQKNGQWDSEEFALTEAFKSLFVRY



EIDYTADLKTAIVDEKQKDFFVDLLKLFKLTVQMRNSWKEKDLDYLISPVAGADGRFFDT



REGNKSLPKDADANGAYNIALKGLWALRQIRQTSEGGKLKLAISNKEWLQFVQERSYEKD



*





SEQ
MNNGTNNFQNFIGISSLQKTLRNALIPTETTQQFIVKNGIIKEDELRGENRQILKDIMDD


ID
YYRGFISETLSSIDDIDWTSLFEKMEIQLKNGDNKDTLIKEQTEYRKAIHKKFANDDRFK


NO:
NMFSAKLISDILPEFVIHNNNYSASEKEEKTQVIKLFSRFATSFKDYFKNRANCFSADDI


7
SSSSCHRIVNDNAEIFFSNALVYRRIVKSLSNDDINKISGDMKDSLKEMSLEEIYSYEKY



GEFITQEGISFYNDICGKVNSFMNLYCQKNKENKNLYKLQKLHKQILCIADTSYEVPYKF



ESDEEVYQSVNGFLDNISSKHIVERLRKIGDNYNGYNLDKIYIVSKFYESVSQKTYRDWE



TINTALEIHYNNILPGNGKSKADKVKKAVKNDLQKSITEINELVSNYKLCSDDNIKAETY



IHEISHILNNFEAQELKYNPEIHLVESELKASELKNVLDVIMNAFHWCSVFMTEELVDKD



NNFYAELEEIYDEIYPVISLYNLVRNYVTQKPYSTKKIKLNFGIPTLADGWSKSKEYSNN



AIILMRDNLYYLGIFNAKNKPDKKIIEGNTSENKGDYKKMIYNLLPGPNKMIPKVFLSSK



TGVETYKPSAYILEGYKQNKHIKSSKDFDITFCHDLIDYFKNCIAIHPEWKNFGFDFSDT



STYEDISGFYREVELQGYKIDWTYISEKDIDLLQEKGQLYLFQIYNKDFSKKSTGNDNLH



TMYLKNLFSEENLKDIVLKLNGEAEIFFRKSSIKNPIIHKKGSILVNRTYEAEEKDQFGN



IQIVRKNIPENIYQELYKYFNDKSDKELSDEAAKLKNVVGHHEAATNIVKDYRYTYDKYF



LHMPITINFKANKTGFINDRILQYIAKEKDLHVIGIDRGERNLIYVSVIDTCGNIVEQKS



FNIVNGYDYQIKLKQQEGARQIARKEWKEIGKIKEIKEGYLSLVIHEISKMVIKYNAIIA



MEDLSYGFKKGRFKVERQVYQKFETMLINKLNYLVFKDISITENGGLLKGYQLTYIPDKL



KNVGHQCGCIFYVPAAYTSKIDPTTGFVNIFKFKDLTVDAKREFIKKFDSIRYDSEKNLF



CFTFDYNNFITQNTVMSKSSWSVYTYGVRIKRRFVNGRFSNESDTIDITKDMEKTLEMTD



INWRDGHDLRQDIIDYEIVQHIFEIFRLTVQMRNSLSELEDRDYDRLISPVLNENNIFYD



SAKAGDALPKDADANGAYCIALKGLYEIKQITENWKEDGKFSRDKLKISNKDWFDFIQNK



RYL*





SEQ
MTNKFTNQYSLSKTLRFELIPQGKTLEFIQEKGLLSQDKQRAESYQEMKKTIDKFHKYFI


ID
DLALSNAKLTHLETYLELYNKSAETKKEQKFKDDLKKVQDNLRKEIVKSFSDGDAKSIFA


NO:
ILDKKELITVELEKWFENNEQKDIYFDEKFKTFTTYFTGFHQNRKNMYSVEPNSTAIAYR


8
LIHENLPKFLENAKAFEKIKQVESLQVNFRELMGEFGDEGLIFVNELEEMFQINYYNDVL



SQNGITIYNSIISGFTKNDIKYKGLNEYINNYNQTKDKKDRLPKLKQLYKQILSDRISLS



FLPDAFTDGKQVLKAIFDFYKINLLSYTIEGQEESQNLLLLIRQTIENLSSFDTQKIYLK



NDTHLTTISQQVFGDFSVFSTALNYWYETKVNPKFETEYSKANEKKREILDKAKAVFTKQ



DYFSIAFLQEVLSEYILTLDHTSDIVKKHSSNCIADYFKNHFVAKKENETDKTFDFIANI



TAKYQCIQGILENADQYEDELKQDQKLIDNLKFFLDAILELLHFIKPLHLKSESITEKDT



AFYDVFENYYEALSLLTPLYNMVRNYVTQKPYSTEKIKLNFENAQLLNGWDANKEGDYLT



TILKKDGNYFLAIMDKKHNKAFQKFPEGKENYEKMVYKLLPGVNKMLPKVFFSNKNIAYF



NPSKELLENYKKETHKKGDTFNLEHCHTLIDFFKDSLNKHEDWKYFDFQFSETKSYQDLS



GFYREVEHQGYKINFKNIDSEYIDGLVNEGKLFLFQIYSKDFSPFSKGKPNMHTLYWKAL



FEEQNLQNVIYKLNGQAEIFFRKASIKPKNIILHKKKIKIAKKHFIDKKTKTSEIVPVQT



IKNLNMYYQGKISEKELTQDDLRYIDNFSIFNEKNKTIDIIKDKRFTVDKFQFHVPITMN



FKATGGSYINQTVLEYLQNNPEVKIIGLDRGERHLVYLTLIDQQGNILKQESLNTITDSK



ISTPYHKLLDNKENERDLARKNWGTVENIKELKEGYISQVVHKIATLMLEENAIVVMEDL



NFGFKRGRFKVEKQIYQKLEKMLIDKLNYLVLKDKQPQELGGLYNALQLTNKFESFQKMG



KQSGFLFYVPAWNTSKIDPTTGFVNYFYTKYENVDKAKAFFEKFEAIRFNAEKKYFEFEV



KKYSDFNPKAEGTQQAWTICTYGERIETKRQKDQNNKFVSTPINLTEKIEDFLGKNQIVY



GDGNCIKSQIASKDDKAFFETLLYWFKMTLQMRNSETRTDIDYLISPVMNDNGTFYNSRD



YEKLENPTLPKDADANGAYHIAKKGLMLLNKIDQADLTKKVDLSISNRDWLQFVQKNK*





SEQ
MEQEYYLGLDMGTGSVGWAVTDSEYHVLRKHGKALWGVRLFESASTAEERRMFRTSRRRL


ID
DRRNWRIEILQEIFAEEISKKDPGFFLRMKESKYYPEDKRDINGNCPELPYALFVDDDFT


NO:
DKDYHKKFPTIYHLRKMLMNTEETPDIRLVYLAIHHMMKHRGHFLLSGDINEIKEFGTTF


9
SKLLENIKNEELDWNLELGKEEYAVVESILKDNMLNRSTKKTRLIKALKAKSICEKAVLN



LLAGGTVKLSDIFGLEELNETERPKISFADNGYDDYIGEVENELGEQFYIIETAKAVYDW



AVLVEILGKYTSISEAKVATYEKHKSDLQFLKKIVRKYLTKEEYKDIFVSTSDKLKNYSA



YIGMTKINGKKVDLQSKRCSKEEFYDFIKKNVLKKLEGQPEYEYLKEELERETFLPKQVN



RDNGVIPYQIHLYELKKILGNLRDKIDLIKENEDKLVQLFEFRIPYYVGPLNKIDDGKEG



KFTWAVRKSNEKIYPWNFENVVDIEASAEKFIRRMTNKCTYLMGEDVLPKDSLLYSKYMV



LNELNNVKLDGEKLSVELKQRLYTDVFCKYRKVTVKKIKNYLKCEGIISGNVEITGIDGD



FKASLTAYHDFKEILTGTELAKKDKENIITNIVLFGDDKKLLKKRLNRLYPQITPNQLKK



ICALSYTGWGRFSKKFLEEITAPDPETGEVWNIITALWESNNNLMQLLSNEYRFMEEVET



YNMGKQTKTLSYETVENMYVSPSVKRQIWQTLKIVKELEKVMKESPKRVFIEMAREKQES



KRTESRKKQLIDLYKACKNEEKDWVKELGDQEEQKLRSDKLYLYYTQKGRCMYSGEVIEL



KDLWDNTKYDIDHIYPQSKTMDDSLNNRVLVKKKYNATKSDKYPLNENIRHERKGFWKSL



LDGGFISKEKYERLIRNTELSPEELAGFIERQIVETRQSTKAVAEILKQVFPESEIVYVK



AGTVSRFRKDFELLKVREVNDLHHAKDAYLNIVVGNSYYVKFTKNASWFIKENPGRTYNL



KKMFTSGWNIERNGEVAWEVGKKGTIVTVKQIMNKNNILVTRQVHEAKGGLFDQQIMKKG



KGQIAIKETDERLASIEKYGGYNKAAGAYFMLVESKDKKGKTIRTIEFIPLYLKNKIESD



ESIALNFLEKGRGLKEPKILLKKIKIDTLFDVDGFKMWLSGRTGDRLLFKCANQLILDEK



IIVTMKKIVKFIQRRQENRELKLSDKDGIDNEVLMEIYNTFVDKLENTVYRIRLSEQAKT



LIDKQKEFERLSLEDKSSTLFEILHIFQCQSSAANLKMIGGPGKAGILVMNNNISKCNKI



SIINQSPTGIFENEIDLLK





SEQ
MNKFENFTGLYPISKTLRFELIPQGKTLEYIEKSEILENDNYRAEKYEEVKDIIDGYHKW


ID
FINETLHDLHINWSELKVALENNRIEKSDASKKELQRVQKIKREEIYNAFIEHEAFQYLF


NO:
KENLLSDLLPIQIEQSEDLDAEKKKQAVETFNRFSTYFTGFHENRKNIYSKEGISTSVTY


10
RIVHDNFPKFLENMKVFEILRNECPEVISDTANELAPFIDGVRIEDIFLIDFFNSTFSQN



GIDYYNRILGGVTTETGEKYRGINEFTNLYRQQHPEFGKSKKATKMVVLFKQILSDRDTL



SFIPEMFGNDKQVQNSIQLFYNREISQFENEGVKTDVCTALATLTSKIAEFDTEKIYIQQ



PELPNVSQRLFGSWNELNACLFKYAELKFGTAEKVANRKKIDKWLKSDLFSFTELNKALE



FSGKDERIENYFSETGIFAQLVKTGFDEAQSILETEYTSEVHLKDQQTDIEKIKTFLDAL



QNLMHLLKSLCVSEEADRDAAFYNEFDMLYNQLKLVVPLYNKVRNYITQKLFRSDKIKIY



FENKGQFLGGWVDSQTENSDNGTQAGGYIFRKENVINEYDYYLGICSDPKLFRRTTIVSE



NDRSSFERLDYYQLKTASVYGNSYCGKHPYTEDKNELVNSIDRFVHLSGNNILIEKIAKD



KVKSNPTTNTPSGYLNFIHREAPNTYECLLQDENFVSLNQRVVSALKATLATLVRVPKAL



VYAKKDYHLFSEIINDIDELSYEKAFSYFPVSQTEFENSSNRTIKPLLLFKISNKDLSFA



ENFEKGNRQKIGKKNLHTLYFEALMKGNQDTIDIGTGMVFHRVKSLNYNEKTLKYGHHST



QLNEKFSYPIIKDKRFASDKFLFHLSTEINYKEKRKPLNNSIIEFLTNNPDINIIGLDRG



ERHLIYLTLINQKGEILRQKTFNIVGNTNYHEKLNQREKERDNARKSWATIGKIKELKEG



FLSLVIHEIAKIMVENNAIVVLEDLNFGFKRGRFKVEKQIYQKFEKMLIDKLNYLVFKDK



KANEAGGVLKGYQLAEKFESFQKMGKQSGFLFYVPAAYTSKIDPTTGFVNMLNLNYTNMK



DAQTLLSGMDKISFNADANYFEFELDYEKFKTNQTDHTNKWTICTVGEKRFTYNSATKET



TTVNVTEDLKKLLDKFEVKYSNGDNIKDEICRQTDAKFFEIILWLLKLTMQMRNSNTKTE



EDFILSPVKNSNGEFFRSNDDANGIWPADADANGAYHIALKGLYLVKECFNKNEKSLKIE



HKNWFKFAQTRFNGSLTKNG*





SEQ
MENFKNLYPINKTLRFELRPYGKTLENFKKSGLLEKDAFKANSRRSMQAIIDEKFKETIE


ID
ERLKYTEFSECDLGNMTSKDKKITDKAATNLKKQVILSFDDEIFNNYLKPDKNIDALFKN


NO:
DPSNPVISTFKGFTTYFVNFFEIRKHIFKGESSGSMAYRIIDENLTTYLNNIEKIKKLPE


11
ELKSQLEGIDQIDKLNNYNEFITQSGITHYNEIIGGISKSENVKIQGINEGINLYCQKNK



VKLPRLTPLYKMILSDRVSNSFVLDTIENDTELIEMISDLINKTEISQDVIMSDIQNIFI



KYKQLGNLPGISYSSIVNAICSDYDNNFGDGKRKKSYENDRKKHLETNVYSINYISELLT



DTDVSSNIKMRYKELEQNYQVCKENFNATNWMNIKNIKQSEKTNLIKDLLDILKSIQRFY



DLFDIVDEDKNPSAEFYTWLSKNAEKLDFEFNSVYNKSRNYLTRKQYSDKKIKLNFDSPT



LAKGWDANKEIDNSTIIMRKFNNDRGDYDYFLGIWNKSTPANEKIIPLEDNGLFEKMQYK



LYPDPSKMLPKQFLSKIWKAKHPTTPEFDKKYKEGRHKKGPDFEKEFLHELIDCFKHGLV



NHDEKYQDVFGFNLRNTEDYNSYTEFLEDVERCNYNLSFNKIADTSNLINDGKLYVFQIW



SKDFSIDSKGTKNLNTIYFESLFSEENMIEKMFKLSGEAEIFYRPASLNYCEDIIKKGHH



HAELKDKFDYPIIKDKRYSQDKFFFHVPMVINYKSEKLNSKSLNNRTNENLGQFTHIIGI



DRGERHLIYLTVVDVSTGEIVEQKHLDEIINTDTKGVEHKTHYLNKLEEKSKTRDNERKS



WEAIETIKELKEGYISHVINEIQKLQEKYNALIVMENLNYGFKNSRIKVEKQVYQKFETA



LIKKFNYIIDKKDPETYIHGYQLTNPITTLDKIGNQSGIVLYIPAWNTSKIDPVTGFVNL



LYADDLKYKNQEQAKSFIQKIDNIYFENGEFKFDIDFSKWNNRYSISKTKWTLTSYGTRI



QTFRNPQKNNKWDSAEYDLTEEFKLILNIDGTLKSQDVETYKKFMSLFKLMLQLRNSVTG



TDIDYMISPVTDKTGTHFDSRENIKNLPADADANGAYNIARKGIMAIENIMNGISDPLKI



SNEDYLKYIQNQQE





SEQ
MTQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELKPIIDRIYKT


ID
YADQCLQLVQLDWENLSAAIDSYRKEKTEETRNALIEEQATYRNAIHDYFIGRTDNLTDA


NO:
INKRHAEIYKGLFKAELFNGKVLKQLGTVTTTEHENALLRSFDKFTTYFSGFYENRKNVF


12
SAEDISTAIPHRIVQDNFPKFKENCHIFTRLITAVPSLREHFENVKKAIGIFVSTSIEEV



FSFPFYNQLLTQTQIDLYNQLLGGISREAGTEKIKGLNEVLNLAIQKNDETAHIIASLPH



RFIPLFKQILSDRNTLSFILEEFKSDEEVIQSFCKYKTLLRNENVLETAEALFNELNSID



LTHIFISHKKLETISSALCDHWDTLRNALYERRISELTGKITKSAKEKVQRSLKHEDINL



QEIISAAGKELSEAFKQKTSEILSHAHAALDQPLPTTLKKQEEKEILKSQLDSLLGLYHL



LDWFAVDESNEVDPEFSARLTGIKLEMEPSLSFYNKARNYATKKPYSVEKFKLNFQMPTL



ASGWDVNKEKNNGAILFVKNGLYYLGIMPKQKGRYKALSFEPTEKTSEGFDKMYYDYFPD



AAKMIPKCSTQLKAVTAHFQTHTTPILLSNNFIEPLEITKEIYDLNNPEKEPKKFQTAYA



KKTGDQKGYREALCKWIDFTRDFLSKYTKTTSIDLSSLRPSSQYKDLGEYYAELNPLLYH



ISFQRIAEKEIMDAVETGKLYLFQIYNKDFAKGHHGKPNLHTLYWTGLFSPENLAKTSIK



LNGQAELFYRPKSRMKRMAHRLGEKMLNKKLKDQKTPIPDTLYQELYDYVNHRLSHDLSD



EARALLPNVITKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPSKFNQRVNAYLKEHP



ETPIIGIDRGERNLIYITVIDSTGKILEQRSLNTIQQFDYQKKLDNREKERVAARQAWSV



VGTIKDLKQGYLSQVIHEIVDLMIHYQAVVVLENLNFGFKSKRTGIAEKAVYQQFEKMLI



DKLNCLVLKDYPAEKVGGVLNPYQLTDQFTSFAKMGTQSGFLFYVPAPYTSKIDPLTGFV



DPFVWKTIKNHESRKHFLEGFDFLHYDVKTGDFILHFKMNRNLSFQRGLPGFMPAWDIVF



EKNETQFDAKGTPFIAGKRIVPVIENHRFTGRYRDLYPANELIALLEEKGIVFRDGSNIL



PKLLENDDSHAIDTMVALIRSVLQMRNSNAATGEDYINSPVRDLNGVCFDSRFQNPEWPM



DADANGAYHIALKGQLLLNHLKESKDLKLQNGISNQDWLAYIQELRN*





SEQ
MAVKSIKVKLRLDDMPEIRAGLWKLHKEVNAGVRYYTEWLSLLRQENLYRRSPNGDGEQE


ID
CDKTAEECKAELLERLRARQVENGHRGPAGSDDELLQLARQLYELLVPQAIGAKGDAQQI


NO:
ARKFLSPLADKDAVGGLGIAKAGNKPRWVRMREAGEPGWEEEKEKAETRKSADRTADVLR


13
ALADFGLKPLMRVYTDSEMSSVEWKPLRKGQAVRTWDRDMFQQAIERMMSWESWNQRVGQ



EYAKLVEQKNRFEQKNFVGQEHLVHLVNQLQQDMKEASPGLESKEQTAHYVTGRALRGSD



KVFEKWGKLAPDAPFDLYDAEIKNVQRRNTRRFGSHDLFAKLAEPEYQALWREDASFLTR



YAVYNSILRKLNHAKMFATFTLPDATAHPIWTRFDKLGGNLHQYTFLFNEFGERRHAIRF



HKLLKVENGVAREVDDVTVPISMS



EQLDNLLPRDPNEPIALYFRDYGAEQHFTGEFGGAKIQCRRDQLAHMHRRRGARDVYLNV



SVRVQSQSEARGERRPPYAAVFRLVGDNHRAFVHFDKLSDYLAEHPDDGKLGSEGLLSGL



RVMSVDLGLRTSASISVFRVARKDELKPNSKGRVPFFFPIKGNDNLVAVHERSQLLKLPG



ETESKDLRAIREERQRTLRQLRTQLAYLRLLVRCGSEDVGRRERSWAKLIEQPVDAANHM



TPDWREAFENELQKLKSLHGICSDKEWMDAVYESVRRVWRHMGKQVRDWRKDVRSGERPK



IRGYAKDVVGGNSIEQIEYLERQYKFLKSWSFFGKVSGQVIRAEKGSRFAITLREHIDHA



KEDRLKKLADRIIMEALGYVYALDERGKGKWVAKYPPCQLILLEELSEYQFNNDRPPSEN



NQLMQWSHRGVFQELINQAQVHDLLVGTMYAAFSSRFDARTGAPGIRCRRVPARCTQEHN



PEPFPWWLNKFVVEHTLDACPLRADDLIPTGEGEIFVSPFSAEEGDFHQIHADLNAAQNL



QQRLWSDFDISQIRLRCDWGEVDGELVLIPRLTGKRTADSYSNKVFYTNTGVTYYERERG



KKRRKVFAQEKLSEEEAELLVEADEAREKSVVLMRDPSGIINRGNWTRQKEFWSMVNQRI



EGYLVKQIRSRVPLQDSACENTGDI*





SEQ
MATRSFILKIEPNEEVKKGLWKTHEVLNHGIAYYMNILKLIRQEAIYEHHEQDPKNPKKV


ID
SKAEIQAELWDFVLKMQKCNSFTHEVDKDVVFNILRELYEELVPSSVEKKGEANQLSNKF


NO:
LYPLVDPNSQSGKGTASSGRKPRWYNLKIAGDPSWEEEKKKWEEDKKKDPLAKILGKLAE


14
YGLIPLFIPFTDSNEPIVKEIKWMEKSRNQSVRRLDKDMFIQALERFLSWESWNLKVKEE



YEKVEKEHKTLEERIKEDIQAFKSLEQYEKERQEQLLRDTLNTNEYRLSKRGLRGWREII



QKWLKMDENEPSEKYLEVFKDYQRKHPREAGDYSVYEFLSKKENHFIWRNHPEYPYLYAT



FCEIDKKKKDAKQQATFTLADPINHPLWVRFEERSGSNLNKYRILTEQLHTEKLKKKLTV



QLDRLIYPTESGGWEEKGKVDIVLLPSRQFYNQIFLDIEEKGKHAFTYKDESIKFPLKGT



LGGARVQFDRDHLRRYPHKVESGNVGRIYFNMTVNIEPTESPVSKSLKIHRDDFPKFVNF



KPKELTEWIKDSKGKKLKSGIESLEIGLRVMSIDLGQRQAAAASIFEVVDQKPDIEGKLF



FPIKGTELYAVHRASFNIKLPGETLVKSREVLRKAREDNLKLMNQKLNFLRNVLHFQQFE



DITEREKRVTKWISRQENSDVPLVYQDELIQIRELMYKPYKDWVAFLKQLHKRLEVEIGK



EVKHWRKSLSDGRKGLYGISLKNIDEIDRTRKFLLRWSLRPTEPGEVRRLEPGQRFAIDQ



LNHLNALKEDRLKKMANTIIMHALGYCYDVRKKKWQAKNPACQIILFEDLSNYNPYEERS



RFENSKLMKWSRREIPRQVALQGEIYGLQVGEVGAQFSSRFHAKTGSPGIRCSVVTKEKL



QDNRFFKNLQREGRLTLDKIAVLKEGDLYPDKGGEKFISLSKDRKLVTTHADINAAQNLQ



KRFWTRTHGFYKVYCKAYQVDGQTVYIPESKDQKQKIIEEFGEGYFILKDGVYEWGNAGK



LKIKKGSSKQSSSELVDSDILKDSFDLASELKGEKLMLYRDPSGNVFPSDKWMAAGVFFG



KLERILISKLTNQYSISTIEDDSSKQSM*





SEQ
MPTRTINLKLVLGKNPENATLRRALFSTHRLVNQATKRIEEFLLLCRGEAYRTVDNEGKE


ID
AEIPRHAVQEEALAFAKAAQRHNGCISTYEDQEILDVLRQLYERLVPSVNENNEAGDAQA


NO:
ANAWVSPLMSAESEGGLSVYDKVLDPPPVWMKLKEEKAPGWEAASQIWIQSDEGQSLLNK


15
PGSPPRWIRKLRSGQPWQDDFVSDQKKKQDELTKGNAPLIKQLKEMGLLPLVNPFFRHLL



DPEGKGVSPWDRLAVRAAVAHFISWESWNHRTRAEYNSLKLRRDEFEAASDEFKDDFTLL



RQYEAKRHSTLKSIALADDSNPYRIGVRSLRAWNRVREEWIDKGATEEQRVTILSKLQTQ



LRGKFGDPDLFNWLAQDRHVHLWSPRDSVTPLVRINAVDKVLRRRKPYALMTFAHPRFHP



RWILYEAPGGSNLRQYALDCTENALHITLPLLVDDAHGTWIEKKIRVPLAPSGQIQDLTL



EKLEKKKNRLYYRSGFQQFAGLAGGAEVLFHRPYMEHDERSEESLLERPGAVWFKLTLDV



ATQAPPNWLDGKGRVRTPPEVHHFKTALSNKSKHTRTLQPGLRVLSVDLGMRTFASCSVF



ELIEGKPETGRAFPVADERSMDSPNKLWAKHERSFKLTLPGETPSRKEEEERSIARAEIY



ALKRDIQRLKSLLRLGEEDNDNRRDALLEQFFKGWGEEDVVPGQAFPRSLFQGLGAAPFR



STPELWRQHCQTYYDKAEACLAKHISDWRKRTRPRPTSREMWYKTRSYHGGKSIWMLEYL



DAVRKLLLSWSLRGRTYGAINRQDTARFGSLASRLLHHINSLKEDRIKTGADSIVQAARG



YIPL



PHGKGWEQRYEPCQLILFEDLARYRFRVDRPRRENSQLMQWNHRAIVAETTMQAELYGQI



VENTAAGFSSRFHAATGAPGVRCRFLLERDFDNDLPKPYLLRELSWMLGNTKVESEEEKL



RLLSEKIRPGSLVPWDGGEQFATLHPKRQTLCVIHADMNAAQNLQRRFFGRCGEAFRLVC



QPHGDDVLRLASTPGARLLGALQQLENGQGAFELVRDMGSTSQMNRFVMKSLGKKKIKPL



QDNNGDDELEDVLSVLPEEDDTGRITVFRDSSGIFFPCNVWIPAKQFWPAVRAMIWKVMA



SHSLG*





SEQ
MTKLRHRQKKLTHDWAGSKKREVLGSNGKLQNPLLMPVKKGQVTEFRKAFSAYARATKGE


ID
MTDGRKNMFTHSFEPFKTKPSLHQCELADKAYQSLHSYLPGSLAHFLLSAHALGFRIFSK


NO:
SGEATAFQASSKIEAYESKLASELACVDLSIQNLTISTLFNALTTSVRGKGEETSADPLI


16
ARFYTLLTGKPLSRDTQGPERDLAEVISRKIASSFGTWKEMTANPLQSLQFFEEELHALD



ANVSLSPAFDVLIKMNDLQGDLKNRTIVFDPDAPVFEYNAEDPADIIIKLTARYAKEAVI



KNQNVGNYVKNAITTTNANGLGWLLNKGLSLLPVSTDDELLEFIGVERSHPSCHALIELI



AQLEAPELFEKNVFSDTRSEVQGMIDSAVSNHIARLSSSRNSLSMDSEELERLIKSFQIH



TPHCSLFIGAQSLSQQLESLPEALQSGVNSADILLGSTQYMLTNSLVEESIATYQRTLNR



INYLSGVAGQINGAIKRKAIDGEKIHLPAAWSELISLPFIGQPVIDVESDLAHLKNQYQT



LSNEFDTLISALQKNFDLNFNKALLNRTQHFEAMCRSTKKNALSKPEIVSYRDLLARLTS



CLYRGSLVLRRAGIEVLKKHKIFESNSELREHVHERKHFVFVSPLDRKAKKLLRLTDSRP



DLLHVIDEILQHDNLENKDRESLWLVRSGYLLAGLPDQLSSSFINLPIITQKGDRRLIDL



IQYDQINRDAFVMLVTSAFKSNLSGLQYRANKQSFVVTRTLSPYLGSKLVYVPKDKDWLV



PSQMFEGRFADILQSDYMVWKDAGRLCVIDTAKHLSNIKKSVFSSEEVLAFLRELPHRTF



IQTEVRGLGVNVDGIAFNNGDIPSLKTFSNCVQVKVSRTNTSLVQTLNRWFEGGKVSPPS



IQFERAYYKKDDQIHEDAAKRKIRFQMPATELVHASDDAGWTPSYLLGIDPGEYGMGLSL



VSINNGEVLDSGFIHINSLINFASKKSNHQTKVVPRQQYKSPYANYLEQSKDSAAGDIAH



ILDRLIYKLNALPVFEALSGNSQSAADQVWTKVLSFYTWGDNDAQNSIRKQHWFGASHWD



IKGMLRQPPTEKKPKPYIAFPGSQVSSYGNSQRCSCCGRNPIEQLREMAKDTSIKELKIR



NSEIQLFDGTIKLFNPDPSTVIERRRHNLGPSRIPVADRTFKNISPSSLEFKELITIVSR



SIRHSPEFIAKKRGIGSEYFCAYSDCNSSLNSEANAAANVAQKFQKQLFFEL*





SEQ
MKRILNSLKVAALRLLFRGKGSELVKTVKYPLVSPVQGAVEELAEAIRHDNLHLFGQKEI


ID
VDLMEKDEGTQVYSVVDFWLDTLRLGMFFSPSANALKITLGKFNSDQVSPFRKVLEQSPF


NO:
FLAGRLKVEPAERILSVEIRKIGKRENRVENYAADVETCFIGQLSSDEKQSIQKLANDIW


17
DSKDHEEQRMLKADFFAIPLIKDPKAVTEEDPENETAGKQKPLELCVCLVPELYTRGFGS



IADFLVQRLTLLRDKMSTDTAEDCLEYVGIEEEKGNGMNSLLGTFLKNLQGDGFEQIFQF



MLGSYVGWQGKEDVLRERLDLLAEKVKRLPKPKFAGEWSGHRMFLHGQLKSWSSNFFRLF



NETRELLESIKSDIQHATMLISYVEEKGGYHPQLLSQYRKLMEQLPALRTKVLDPEIEMT



HMSEAVRSYIMIHKSVAGFLPDLLESLDRDKDREFLLSIFPRIPKIDKKTKEIVAWELPG



EPEEGYLFTANNLFRNFLENPKHVPRFMAERIPEDWTRLRSAPVWFDGMVKQWQKVVNQL



VESPGALYQFNESFLRQRLQAMLTVYKRDLQTEKFLKLLADVCRPLVDFFGLGGNDIIFK



SCQDPRKQWQTVIPLSVPADVYTACEGLAIRLRETLGFEWKNLKGHEREDFLRLHQLLGN



LLFWIRDAKLVVKLEDWMNNPCVQEYVEARKAIDLPLEIFGFEVPIFLNGYLFSELRQLE



LLLRRKSVMTSYSVKTTGSPNRLFQLVYLPLNPSDPEKKNSNNFQERLDTPTGLSRRFLD



LTLDAFAGKLLTDPVTQELKTMAGFYDHLFGFKLPCKLAAMSNHPGSSSKMVVLAKPKKG



VASNIGFEPIPDPAHPVFRVRSSWPELKYLEGLLYLPEDTPLTIELAETSVSCQSVSSVA



FDLKNLTTILGRVGEFRVTADQPFKLTPIIPEKEESFIGKTYLGLDAGERSGVGFAIVTV



DGDGYEVQRLGVHEDTQLMALQQVASKSLKEPVFQPLRKGTFRQQERIRKSLRGCYWNFY



HALMIKYRAKVVHEESVGSSGLVGQWLRAFQKDLKKADVLPKKGGKNGVDKKKRESSAQD



TLWGGAFSKKEEQQIAFEVQAAGSSQFCLKCGWWFQLGMREVNRVQESGVVLDWNRSIVT



FLIESSGEKVYGFSPQQLEKGFRPDIETFKKMVRDFMRPPMFDRKGRPAAAYERFVLGRR



HRRYRFDKVFEERFGRSALFICPRVGCGNFDHSSEQSAVVLALIGYIADKEGMSGKKLVY



VRLAELMAEWKLKKLERSRVEEQSSAQ*





SEQ
MAESKQMQCRKCGASMKYEVIGLGKKSCRYMCPDCGNHTSARKIQNKKKRDKKYGSASKA


ID
QSQRIAVAGALYPDKKVQTIKTYKYPADLNGEVHDSGVAEKIAQAIQEDEIGLLGPSSEY


NO:
ACWIASQKQSEPYSVVDFWFDAVCAGGVFAYSGARLLSTVLQLSGEESVLRAALASSPFV


18
DDINLAQAEKFLAVSRRTGQDKLGKRIGECFAEGRLEALGIKDRMREFVQAIDVAQTAGQ



RFAAKLKIFGISQMPEAKQWNNDSGLTVCILPDYYVPEENRADQLVVLLRRLREIAYCMG



IEDEAGFEHLGIDPGALSNFSNGNPKRGFLGRLLNNDIIALANNMSAMTPYWEGRKGELI



ERLAWLKHRAEGLYLKEPHFGNSWADHRSRIFSRIAGWLSGCAGKLKIAKDQISGVRTDL



FLLKRLLDAVPQSAPSPDFIASISALDRFLEAAESSQDPAEQVRALYAFHLNAPAVRSIA



NKAVQRSDSQEWLIKELDAVDHLEFNKAFPFFSDTGKKKKKGANSNGAPSEEEYTETESI



QQPEDAEQEVNGQEGNGASKNQKKFQRIPRFFGEGSRSEYRILTEAPQYFDMFCNNMRAI



FMQLESQPRKAPRDFKCFLQNRLQKLYKQTFLNARSNKCRALLESVLISWGEFYTYGANE



KKFRLRHEASERSSDPDYVVQQALEIARRLFLFGFEWRDCSAGERVDLVEIHKKAISFLL



AITQAEVSVGSYNWLGNSTVSRYLSVAGTDTLYGTQLEEFLNATVLSQMRGLAIRLSSQE



LKDGFDVQLESSCQDNLQHLLVYRASRDLAACKRATCPAELDPKILVLPVGAFIASVMKM



IERGDEPLAGAYLRHRPHSFGWQIRVRGVAEVGMDQGTALAFQKPTESEPFKIKPFSAQY



GPVLWLNSSSYSQSQYLDGFLSQPKNWSMRVLPQAGSVRVEQRVALIWNLQAGKMRLERS



GARAFFMPVPFSFRPSGSGDEAVLAPNRYLGLFPHSGGIEYAVVDVLDSAGFKILERGTI



AVNGFSQKRGERQEEAHREKQRRGISDIGRKKPVQAEVDAANELHRKYTDVATRLGCRIV



VQWAPQPKPGTAPTAQTVYARAVRTEAPRSGNQEDHARMKSSWGYTWGTYWEKRKPEDIL



GISTQVYWTGGIGESCPAVAVALLGHIRATSTQTEWEKEEVVFGRLKKFFPS*





SEQ
MEKRINKIRKKLSADNATKPVSRSGPMKTLLVRVMTDDLKKRLEKRRKKPEVMPQVISNN


ID
AANNLRMLLDDYTKMKEAILQVYWQEFKDDHVGLMCKFAQPASKKIDQNKLKPEMDEKGN


NO:
LTTAGFACSQCGQPLFVYKLEQVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEA


19
VTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQIAGNRYASGPVGKALSDACMGTIASFL



SKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHTKEGVDAYNEVIARV



RMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPVVERRENEVDWWNTINEVKKLIDAKRDM



GRVFWSGVTAEKRNTILEGYNYLPNENDHKKREGSLENPKKPAKRQFGDLLLYLEKKYAG



DWGKVFDEAWERIDKKIAGLTSHIEREEARNAEDAQSKAVLTDWLRAKASFVLERLKEMD



EKEFYACEIQLQKWYGDLRGNPFAVEAENRVVDISGFSIGSDGHSIQYRNLLAWKYLENG



KREFYLLMNYGKKGRIRFTDGTDIKKSGKWQGLLYGGGKAKVIDLTFDPDDEQLIILPLA



FGTRQGREFIWNDLLSLETGLIKLANGRVIEKTIYNKKIGRDEPALFVALTFERREVVDP



SNIKPVNLIGVDRGENIPAVIALTDPEGCPLPEFKDSSGGPTDILRIGEGYKEKQRAIQA



AKEVEQRRAGGYSRKFASKSRNLADDMVRNSARDLFYHAVTHDAVLVFENLSRGFGRQGK



RTFMTERQYTKMEDWLTAKLAYEGLTSKTYLSKTLAQYTSKTCSNCGFTITTADYDGMLV



RLKKTSDGWATTLNNKELKAEGQITYYNRYKRQTVEKELSAELDRLSEESGNNDISKWTK



GRRDEALFLLKKRFSHRPVQEQFVCLDCGHEVHADEQAALNIARSWLFLNSNSTEFKSYK



SGKQPFVGAWQAFYKRRLKEVWKPNA





SEQ
MKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTS


ID
RANLNKLLTDYTEMKKAILHVYWEEFQKDPVGLMSRVAQPAPKNIDQRKLIPVKDGNERL


NO:
TSSGFACSQCCQPLYVYKLEQVNDKGKPHTNYFGRCNVSEHERLILLSPHKPEANDELVT


20
YSLGKFGQRALDFYSIHVTRESNHPVKPLEQIGGNSCASGPVGKALSDACMGAVASFLTK



YQDIILEHQKVIKKNEKRLANLKDIASANGLAFPKITLPPQPHTKEGIEAYNNVVAQIVI



WVNLNLWQKLKIGRDEAKPLQRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGK



VFWQNLAGYKRQEALLPYLSSEEDRKKGKKFARYQFGDLLLHLEKKHGEDWGKVYDEAWE



RIDKKVEGLSKHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKL



QKWYGDLRGKPFAIEAENSILDISGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRF



KKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDPNLIILPLAFGKRQGREFIWNDLLS



LETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPMNLIGIDRGEN



IPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAAKEVEQRRAGGYSRKY



ASKAKNLADDMVRNTARDLLYYAVTQDAMLIFENLSRGFGRQGKRTFMAERQYTRMEDWL



TAKLAYEGLPSKTYLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGK



ELKVEGQITYYNRYKRQNVVKDLSVELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSH



RPVQEKFVCLNCGFETHADEQAALNIARSWLFLRSQEYKKYQTNKTTGNTDKRAFVETWQ



SFYRKKLKEVWKP





SEQ
atgGGAAAAATGTATTATCTTGGTCTGGATATAGGAACAAATTCTGTTGGATATGCCGTA


ID
ACCGACCCATCGTACCATTTGCTCAAATTTAAAGGCGAACCGATGTGGGGTGCCCACGTG


NO:
TTTGCTGCGGGGAATCAATCAGCTGAACGGAGAAGCTTTCGTACGAGCCGCAGACGCCTT


21
GACCGCAGGCAACAGCGTGTCAAACTGGTTCAAGAAATCTTTGCTCCCGTGATTAGTCCC



ATTGATCCACGTTTTTTTATCAGACTTCATGAGAGCGCTTTATGGCGGGATGATGTGGCT



GAAACGGATAAACATATTTTCTTTAATGACCCGACCTATACGGATAAGGAATATTATTCT



GACTATCCAACCATCCATCATCTCATTGTGGACCTTATGGAAAGCAGTGAAAAGCATGAC



CCGCGGCTTGTTTATTTGGCTGTTGCCTGGCTGGTTGCTCATCGTGGTCATTTCCTCAAT



GAAGTGGATAAGGATAATATTGGGGATGTCCTGAGTTTTGACGCCTTTTATCCTGAGTTT



CTGGCATTTCTTTCCGATAATGGGGTGTCACCTTGGGTATGTGAGTCAAAAGCACTCCAA



GCGACCCTGCTTTCACGAAACTCCGTCAACGATAAGTATAAAGCCTTGAAGTCTCTGATC



TTTGGCAGCCAAAAGCCGGAGGATAATTTTGATGCCAATATCAGTGAAGATGGACTTATC



CAACTTTTAGCAGGAAAAAAGGTCAAGGTCAATAAACTTTTTCCTCAAGAAAGTAATGAT



GCTTCCTTTACACTCAATGATAAGGAAGATGCAATTGAGGAAATCTTAGGAACGCTTACA



CCGGATGAGTGTGAATGGATTGCGCATATTAGGAGGCTGTTTGATTGGGCCATCATGAAA



CATGCTCTCAAAGATGGCAGAACAATCTCCGAATCGAAAGTAAAGCTCTATGAACAGCAT



CACCATGACTTGACACAGCTCAAGTATTTTGTGAAGACCTATCTAGCAAAGGAATATGAT



GACATTTTTCGAAACGTAGATAGTGAAACAACCAAAAACTATGTCGCATATTCCTATCAT



GTAAAAGAAGTCAAGGGTACATTGCCCAAAAATAAGGCAACCCAAGAAGAATTTTGCAAG



TATGTCCTTGGAAAGGTAAAGAACATCGAATGCAGTGAAGCTGATAAGGTTGATTTTGAT



GAAATGATTCAGCGTCTTACAGACAATTCCTTTATGCCGAAACAAGTATCAGGTGAAAAC



AGGGTTATCCCTTACCAGCTTTACTATTATGAACTAAAGACTATTTTGAATAAAGCCGCT



TCTTATCTGCCTTTTTTGACCCAATGCGGAAAAGATGCCATCTCCAATCAAGATAAGCTC



CTTTCCATCATGACCTTTCGGATTCCGTATTTCGTTGGGCCCTTGCGCAAGGACAATTCA



GAGCATGCCTGGCTGGAACGAAAAGCAGGGAAAATCTATCCGTGGAATTTTAACGACAAA



GTTGACCTTGATAAAAGTGAAGAAGCGTTCATTCGGAGAATGACGAATACCTGCACTTAT



TATCCCGGTGAAGATGTTTTGCCACTTGACTCCCTTATTTATGAAAAATTCATGATCCTC



AATGAAATCAATAATATCCGAATTGATGGTTATCCTATTTCTGTAGATGTAAAACAGCAG



GTTTTTGGCCTCTTTGAAAAGAAGAGAAGAGTGACCGTAAAGGATATCCAGAATCTCCTG



CTTTCCTTGGGTGCCTTGGATAAGCATGGTAAATTGACGGGAATCGATACTACCATCCAT



AGCAATTACAATACATACCATCATTTTAAATCGCTCATGGAGCGTGGCGTTCTTACTCGT



GATGATGTGGAACGCATTGTGGAGCGTATGACCTATAGTGATGATACAAAACGCGTCCGT



CTTTGGCTGAACAATAATTATGGAACGCTCACTGCTGACGACGTAAAGCATATTTCAAGG



CTCCGAAAGCATGATTTTGGCCGGCTTTCCAAAATGTTCCTCACAGGCCTAAAGGGAGTT



CATAAGGAAACGGGGGAACGAGCTTCCATTTTGGATTTTATGTGGAATACCAATGATAAC



TTGATGCAGCTTTTATCTGAATGTTATACTTTTTCGGATGAAATTACCAAGCTGCAGGAA



GCATACTATGCCAAGGCGCAGCTTTCCCTGAATGATTTTCTGGACTCCATGTATATTTCA



AATGCTGTCAAACGTCCTATCTATCGAACTCTTGCCGTTGTAAATGACATACGCAAAGCC



TGTGGGACGGCGCCAAAACGCATTTTTATCGAAATGGCAAGAGATGGGGAAAGCAAAAAG



AAAAGGAGCGTAACAAGAAGAGAACAAATCAAGAATCTTTATAGGTCCATCCGCAAGGAT



TTTCAGCAGGAGGTAGATTTCCTTGAAAAAATCCTTGAAAACAAAAGCGATGGACAGCTG



CAAAGCGATGCGCTCTATCTATACTTTGCGCAGCTTGGAAGGGATATGTATACCGGGGAC



CCTATCAAGTTGGAGCATATCAAGGACCAGTCCTTCTATAATATTGATCATATCTATCCC



CAAAGCATGGTCAAGGACGATAGTCTTGATAACAAGGTGTTGGTTCAATCGGAAATTAAT



GGAGAGAAGAGCAGTCGATATCCTCTTGATGCTGCTATCCGTAATAAAATGAAGCCTCTT



TGGGATGCTTATTATAACCATGGCCTGATTTCCCTCAAGAAGTATCAGCGTTTGACGCGG



AGCACTCCCTTTACAGATGATGAAAAGTGGGATTTCATCAATCGGCAGCTTGTTGAGACA



AGACAATCCACGAAGGCCTTGGCAATCTTACTAAAAAGGAAGTTCCCTGATACGGAGATT



GTCTACTCCAAGGCAGGGCTTTCTTCTGATTTTCGGCATGAGTTTGGTCTCGTAAAATCG



AGGAATATCAATGACCTGCACCATGCAAAGGACGCATTTCTTGCGATTGTAACAGGAAAT



GTCTATCATGAACGCTTTAATCGCCGGTGGTTTATGGTGAACCAGCCCTATTCCGTCAAG



ACCAAGACGTTGTTTACGCATTCTATTAAAAATGGTAATTTTGTAGCTTGGAATGGAGAA



GAGGATCTTGGCCGCATTGTTAAAATGTTAAAGCAAAATAAGAACACTATTCATTTCACG



CGGTTCTCTTTTGATCGAAAGGAAGGCCTGTTTGATATTCAGCCACTAAAAGCGTCAACC



GGTCTTGTACCAAGAAAAGCCGGACTAGACGTGGTAAAATATGGTGGCTATGACAAATCG



ACAGCAGCTTATTATCTCCTTGTTCGATTTACACTAGAAGATAAAAAGACTCAACATAAA



TTGATGATGATTCCTGTAGAAGGCTTGTATAAAGCTCGAATTGACCATGATAAGGAATTC



TTAACGGACTATGCACAAACTACAATCAGTGAAATCCTACAAAAAGATAAACAAAAGGTG



ATAAATATAATGTTTCCAATGGGAACAAGGCACATTAAACTGAATTCCATGATTTCAATC



GATGGTTTTTATCTTTCCATTGGAGGAAAGTCTAGTAAGGGAAAATCGGTGTTGTGTCAT



GCTATGGTACCTCTTATTGTACCTCATAAGATAGAATGTTATATTAAGGCGATGGAGTCT



TTTGCACGTAAATTTAAAGAAAATAATAAATTAAGGATTGTGGAAAAGTTTGATAAGATT



ACGGTGGAAGATAACTTGAACCTATACGAACTATTTTTACAAAAACTTCAACATAACCCA



TATAATAAGTTCTTCTCCACACAATTTGATGTGCTGACTAATGGAAGAAGTACATTTACT



AAATTATCTCCAGAGGAACAAGTTCAAACGTTATTGAATATCTTATCAATTTTTAAAACT



TGTCGGAGCTCTGGCTGCGATTTAAAATCCATTAACGGTTCTGCTCAAGCTGCCAGAATT



ATGATCAGCGCAGATTTAACTGGACTCTCAAAAAAATATTCCGATATTCGGCTTGTTGAG



CAATCAGCATCTGGACTTTTTGTTAGTAAATCACAAAATCTTTTGGAGTATTTAtga





SEQ
atgtcttcattaacaaaatttacaaataaatacagtaagcagctaaccataaaaaatgaa


ID
ctcatcccagtaggaaagactctcgagaacattaaggaaaacggtctcatagatggagat


NO:
gaacagctaaacgagaattatcaaaaagcaaagataatcgttgatgattttctacgagat


22
ttcataaataaagctttaaataatacccaaataggaaattggagagaattagcagatgct



ttaaataaagaagatgaagataacatagaaaagctccaagacaaaatcagaggaataatt



gtaagtaaattcgagacatttgatttgttttcttcttactcgataaagaaagacgaaaag



ataatagatgatgataatgatgttgaagaagaggagctagatctaggaaaaaaaacttcc



tcatttaaatatatttttaagaaaaacctttttaaattagtacttccttcttatttaaag



acaacaaatcaggataaactgaaaataatctcttcttttgataatttttctacctatttc



agaggattctttgagaacagaaaaaatattttcactaagaagcctatatctacgtcaatt



gcctacagaattgtccatgataactttccaaagtttctagataacatcagatgttttaat



gtgtggcaaacagaatgcccacagttaattgtaaaggctgataattatttaaaatcaaag



aacgtcatagctaaagataaatctttagcaaactattttactgtaggagcatatgattac



ttcttatcccagaatggcattgatttctacaacaacattatcggcggtctaccagcattt



gctggtcatgagaaaatccaaggacttaatgaatttataaatcaagaatgccaaaaggac



agcgaactaaaatctaaactgaaaaacagacatgctttcaaaatggctgttctatttaag



caaattctttcagatagagaaaaaagttttgttatagacgagttcgaatctgatgctcag



gtcatagatgcggttaagaacttctatgcagaacaatgtaaggataataatgttattttt



aaccttctaaatcttatcaagaatatagcgttcttatctgatgatgaattagatggaatt



tttatagaaggcaagtatttaagctctgtttcccaaaagctatattcagattggtcgaag



cttcgaaatgatattgaagatagtgcaaacagtaaacaaggaaataaagagttagcaaag



aaaattaaaacaaataaaggcgatgttgaaaaggccataagtaaatatgagttttcttta



tcagaacttaactcaattgtacatgataatacaaaattcagtgaccttctttcttgtacg



ttacataaagtggctagcgaaaaactagtgaaagttaatgaaggggactggccaaaacac



ctgaaaaataatgaagaaaaacaaaagataaaagagcctttagatgcattgttagaaatt



tataatacattgctgatattcaactgcaagtcatttaataagaacggtaatttctatgtt



gattatgacagatgcataaatgagctttctagtgttgtttatttatataacaaaacaaga



aattactgtacaaagaaaccttataacacagacaaattcaaattaaactttaacagtcct



caattaggagagggctttagtaagtcgaaagaaaatgactgtctgacattattatttaaa



aaagacgacaattactatgttggaattatcagaaaaggggcaaaaattaactttgatgat



acacaagccattgcagacaatacagataactgtatatttaagatgaattatttcctatta



aaagatgctaaaaagtttattcctaaatgttcaattcagttaaaagaagtaaaagcacat



tttaaaaaatcagaggatgattatatcctgagtgacaaagaaaaatttgcctctcccctt



gttattaagaaatcaacatttttattagcaacagcacatgtaaaaggaaagaaaggaaac



ataaaaaaattccaaaaggaatattctaaggaaaatccaacagaatatagaaattctctg



aatgaatggattgcattttgtaaagaatttctaaaaacatataaggcggcaacaatcttt



gacattacaacgttaaaaaaagctgaagaatatgctgatattgttgagttttataaggat



gtagataatctttgttataaactagagttttgccctattaaaacatctttcattgagaat



cttattgataatggggacttatatttattcagaatcaataataaagatttcagttcaaaa



tctactggtacaaagaatcttcatacgctctatcttcaggcaatctttgatgaaagaaac



ctcaataatcctactattatgttaaatggcggagcagagttattttatcgaaaagaaagc



attgaacagaaaaataggataactcataaggcaggatcaattcttgtaaacaaggtttgt



aaggatggaacaagtctagatgacaaaatcagaaacgaaatatatcaatatgaaaacaag



tttattgatacattgtctgatgaagctaaaaaagttttacctaatgtaataaaaaaagaa



gcaactcacgacataacaaaagataagcgatttacatcagataagttctttttccattgc



ccattaacaattaactataaggaaggagatacaaaacaatttaacaatgaggttttatct



ttccttagaggtaatccagacattaatatcatcggaattgacagaggagaaagaaacctt



atatacgtaactgttattaatcagaaaggcgaaatacttgacagcgtttcgtttaacaca



gtaacaaacaagtcgagcaaaattgaacaaactgttgattatgaggaaaagcttgctgtt



agggaaaaagaaagaatagaagcaaaaagatcctgggattcaatatcaaagatagcaacc



ttaaaagaaggttatctatcagctattgttcatgagatatgcctactgatgatcaaacac



aacgcaatcgttgtacttgagaatctaaatgcaggatttaagagaattagaggaggatta



tcagaaaagtctgtttatcagaaattcgagaagatgcttattaacaaactaaattacttt



gtatctaaaaaagaatcagactggaataaacctagtggacttttaaatggtttacaactt



tcagaccagttcgagtcatttgagaaattaggaattcaatctgggttcatcttctatgtt



cctgcagcatatacatctaagattgatcctacaacaggatttgcaaatgttcttaactta



tccaaggtaagaaatgttgatgcaataaagagttttttcagtaatttcaatgaaatttca



tatagcaaaaaagaagctctctttaaattctcttttgatttagattccttatcaaagaag



ggcttcagctcatttgtaaaattcagtaaatctaaatggaatgtatatacatttggagag



agaataataaaaccaaagaataagcaagggtatcgtgaagataagagaattaatttaaca



tttgaaatgaaaaaacttctgaatgaatataaagtaagttttgatcttgaaaacaactta



attccaaatctaacctctgcaaatctgaaagataccttctggaaagaactattctttatt



tttaaaacaactctgcagcttagaaacagtgtaacaaatggcaaagaagatgtactgatt



tctccagtaaagaacgctaaaggagagttctttgtatcaggaactcataacaagacatta



cctcaagactgtgatgcaaatggagcatatcatatcgccctaaaaggtctgatgattctt



gaacgtaacaatcttgttagagaagaaaaagacacaaagaagataatggcaatttctaat



gttgactggtttgagtatgttcaaaaaaggagaggtgtcctgtaa





SEQ
ATGAACAACTATGATGAGTTTACCAAACTGTACCCAATACAGAAAACGATAAGGTTCGAA


ID
TTGAAGCCGCAGGGAAGAACGATGGAACACCTCGAAACATTCAACTTTTTCGAAGAGGAC


NO:
AGGGATAGAGCGGAGAAATATAAGATTTTAAAGGAAGCAATCGACGAGTATCATAAGAAG


23
TTTATAGACGAACATCTAACAAATATGTCTCTTGACTGGAATTCTTTAAAACAGATTTCA



GAGAAATACTATAAGAGTAGAGAGGAAAAAGACAAGAAAGTTTTTCTGTCAGAACAGAAA



CGCATGAGGCAAGAGATAGTTTCTGAGTTCAAAAAAGACGATCGGTTTAAAGATCTTTTT



TCAAAAAAATTGTTTTCTGAACTTCTCAAGGAAGAGATTTACAAAAAAGGAAACCATCAG



GAAATTGACGCATTGAAAAGTTTTGATAAATTCTCAGGCTATTTTATTGGGTTGCATGAG



AACCGAAAAAATATGTATTCTGACGGAGACGAGATCACGGCTATCTCTAACCGTATTGTA



AATGAGAATTTCCCGAAGTTCCTCGACAACCTTCAGAAATATCAGGAAGCTCGTAAAAAA



TATCCAGAGTGGATCATTAAGGCAGAATCTGCTTTAGTTGCACATAATATCAAGATGGAT



GAAGTCTTTTCCTTAGAGTATTTCAACAAAGTCCTGAATCAAGAAGGAATACAGAGATAC



AATCTCGCCCTAGGTGGCTATGTGACCAAAAGTGGTGAGAAAATGATGGGGCTTAATGAT



GCACTTAATCTTGCCCATCAAAGTGAAAAAAGCAGCAAGGGAAGGATACACATGACTCCA



CTCTTCAAACAGATTCTGAGTGAAAAAGAGTCCTTTTCTTATATACCAGATGTTTTTACA



GAAGACTCTCAACTTTTACCATCCATTGGTGGGTTCTTTGCACAAATAGAAAATGATAAG



GACGGGAATATTTTTGACAGAGCATTAGAATTGATATCTTCTTATGCAGAATACGATACA



GAAAGGATATATATCAGGCAAGCGGACATAAACAGAGTTTCTAATGTTATTTTCGGGGAG



TGGGGAACACTGGGGGGGTTAATGAGGGAATACAAAGCAGACTCTATCAACGACATCAAT



TTGGAGAGAACATGCAAGAAGGTAGACAAGTGGCTCGACTCAAAGGAGTTTGCGTTATCA



GATGTATTAGAGGCAATAAAAAGAACCGGCAATAATGATGCTTTTAATGAATATATCTCA



AAGATGCGCACTGCCAGGGAAAAGATTGACGCTGCAAGAAAGGAAATGAAATTCATTTCG



GAAAAAATATCTGGAGACGAAGAATCGATCCATATTATCAAAACCTTATTGGACTCGGTG



CAACAGTTTTTACATTTTTTCAATTTATTCAAAGCGCGTCAGGACATTCCTCTTGATGGA



GCATTCTATGCGGAGTTCGATGAAGTCCATAGCAAACTGTTTGCTATTGTTCCGTTGTAT



AATAAGGTTAGGAACTATCTTACGAAAAATAACCTTAACACGAAAAAGATAAAGCTAAAC



TTCAAGAATCCAACTCTGGCAAACGGATGGGATCAAAACAAGGTATATGACTACGCCTCC



TTAATCTTTCTCCGCGATGGTAATTATTATCTCGGAATAATAAATCCAAAAAGGAAAAAG



AATATTAAATTCGAACAAGGGTCTGGAAATGGCCCATTCTACCGGAAGATGGTGTACAAA



CAAATTCCAGGGCCGAACAAGAACTTACCAAGAGTCTTCCTCACATCTACGAAAGGCAAA



AAAGAGTACAAGCCGTCAAAGGAGATAATAGAAGGATATGAAGCGGACAAACACATAAGA



GGAGATAAATTCGATCTGGATTTCTGTCATAAGCTGATAGACTTCTTCAAGGAATCCATC



GAGAAGCACAAGGACTGGAGTAAGTTCAACTTCTATTTCTCTCCAACTGAATCATATGGA



GACATCAGCGAATTCTATCTGGATGTAGAAAAACAGGGATACCGGATGCATTTTGAGAAT



ATTTCTGCCGAGACGATTGATGAGTATGTCGAAAAGGGGGACTTATTCCTCTTCCAGATA



TACAACAAAGACTTTGTGAAAGCGGCAACCGGAAAAAAAGATATGCACACCATTTATTGG



AACGCGGCATTCTCGCCCGAGAACCTTCAGGATGTGGTAGTGAAACTGAACGGTGAAGCA



GAACTTTTCTACAGAGACAAGAGCGACATCAAGGAGATAGTTCACAGGGAGGGAGAGATA



CTGGTCAATCGTACCTACAACGGCAGGACACCTGTGCCTGACAAGATCCACAAAAAATTA



ACAGATTATCATAATGGCCGTACCAAAGATCTCGGAGAAGCAAAAGAATACCTCGATAAG



GTCAGATATTTCAAAGCGCACTACGACATCACAAAGGATCGCAGATACCTGAATGATAAA



ATATACTTCCATGTGCCTCTGACATTGAATTTCAAAGCAAACGGGAAGAAGAATCTCAAT



AAGATGGTAATTGAAAAGTTCCTCTCGGACGAAAAAGCGCATATTATTGGGATTGATCGC



GGGGAAAGGAATCTTCTTTACTATTCTATCATTGACAGGTCAGGTAAAATAATCGATCAA



CAGAGCCTCAACGTCATCGATGGATTCGATTACCGAGAGAAACTGAATCAGAGGGAGATC



GAGATGAAGGATGCCAGACAAAGCTGGAATGCTATCGGGAAGATAAAGGACCTCAAGGAA



GGGTATCTTTCAAAAGCGGTCCACGAAATTACCAAGATGGCGATACAATACAATGCCATT



GTTGTCATGGAGGAACTCAATTATGGGTTCAAACGCGGACGTTTCAAAGTTGAGAAGCAG



ATATATCAGAAATTCGAGAATATGCTGATTGACAAGATGAATTATCTGGTATTCAAGGAT



GCTCCGGATGAAAGTCCGGGAGGAGTCCTCAATGCATATCAGCTTACTAATCCGCTTGAA



AGTTTCGCTAAACTTGGGAAACAGACAGGAATTCTTTTCTATGTTCCGGCAGCCTATACT



TCGAAGATAGATCCGACGACCGGGTTTGTCAATCTTTTCAATACTTCAAGTAAAACGAAC



GCACAGGAAAGAAAAGAATTCTTGCAAAAATTCGAGTCGATCTCCTATTCCGCTAAAGAC



GGAGGAATATTCGCATTCGCGTTCGATTATCGGAAGTTCGGAACGTCAAAAACAGACCAC



AAAAATGTATGGACCGCATACACGAACGGGGAAAGGATGAGGTACATAAAAGAGAAAAAA



CGCAACGAACTGTTCGACCCCTCGAAGGAGATCAAAGAGGCTCTCACTTCATCAGGAATC



AAATATGACGGCGGACAGAACATATTGCCAGATATCCTGAGGAGCAACAATAACGGTCTG



ATCTACACAATGTATTCCTCTTTCATAGCGGCCATTCAAATGAGGGTCTATGACGGGAAA



GAAGACTATATCATCTCGCCGATAAAGAACAGCAAGGGAGAGTTCTTCAGGACCGATCCG



AAAAGAAGGGAACTTCCGATAGACGCGGATGCGAACGGCGCGTATAACATTGCTCTCAGG



GGCGAATTGACGATGCGTGCGATAGCGGAGAAGTTCGATCCGGACTCGGAAAAGATGGCG



AAGCTAGAACTGAAACATAAGGACTGGTTCGAATTCATGCAGACAAGGGGGGATTGA





SEQ
ATGACAAAAACATTTGATTCAGAATTTTTTAATTTATATTCTCTTCAAAAAACAGTTCGT


ID
TTTGAACTCAAGCCGGTTGGTGAAACAGCCTCGTTTGTTGAAGATTTTAAAAACGAAGGT


NO:
TTGAAACGAGTTGTTTCAGAGGATGAACGGCGTGCGGTTGATTACCAAAAAGTGAAAGAA


24
ATTATTGATGACTACCACCGAGATTTTATTGAAGAATCGCTGAACTATTTTCCTGAGCAG



GTCTCAAAAGACGCTTTGGAACAAGCTTTTCACCTTTATCAAAAACTAAAAGCCGCTAAG



GTTGAAGAGCGTGAAAAAGCATTGAAAGAATGGGAAGCCCTTCAGAAAAAACTGCGCGAA



AAAGTTGTTAAATGTTTTTCAGATTCAAACAAAGCACGCTTTTCCCGCATTGATAAAAAA



GAACTGATTAAAGAAGATTTAATTAACTGGTTGGTTGCACAAAATCGCGAAGATGACATT



CCAACCGTTGAAACCTTTAACAACTTTACGACTTATTTTACGGGGTTTCATGAAAACCGA



AAAAACATTTATTCAAAAGACGATCATGCCACAGCCATTTCATTTCGACTCATTCATGAA



AACCTGCCTAAGTTTTTTGATAATGTGATCAGCTTTAATAAATTGAAGGAAGGATTTCCA



GAGCTGAAATTTGATAAGGTTAAGGAAGATTTAGAAGTTGATTATGACTTGAAACATGCC



TTTGAAATCGAATACTTTGTCAATTTTGTTACCCAAGCCGGAATTGACCAATATAACTAT



CTTTTGGGGGGTAAAACCTTAGAAGACGGCACCAAAAAGCAAGGCATGAATGAACAAATC



AATCTGTTCAAGCAACAGCAAACCCGAGACAAAGCCCGACAAATTCCCAAACTCATACCA



TTGTTTAAACAAATTCTAAGCGAACGAACGGAAAGCCAATCGTTTATTCCAAAACAATTT



GAATCAGACCAAGAGCTATTTGACTCACTGCAAAAACTGCATAACAACTGCCAAGATAAA



TTTACCGTACTGCAACAAGCCATTTTAGGCTTAGCCGAAGCAGATCTGAAAAAAGTATTC



ATTAAAACATCTGATCTTAATGCGCTATCAAATACCATTTTTGGAAATTACAGTGTGTTT



TCGGATGCGTTGAATTTATACAAAGAATCGCTCAAAACAAAAAAGGCGCAAGAAGCGTTT



GAAAAACTACCCGCTCACAGCATTCATGACTTGATTCAATATTTGGAGCAATTTAATAGC



TCTTTGGATGCAGAAAAACAGCAATCAACTGACACCGTACTGAATTACTTTATTAAAACA



GACGAGCTGTATTCTCGGTTCATAAAATCAACGAGCGAAGCCTTCACACAAGTACAACCA



CTCTTTGAATTGGAAGCATTAAGCTCAAAACGTCGTCCACCGGAAAGTGAAGACGAAGGC



GCAAAAGGTCAGGAAGGGTTTGAGCAAATTAAACGCATAAAAGCCTATTTGGATACCTTG



ATGGAGGCGGTGCATTTTGCAAAACCACTTTATCTGGTGAAGGGGCGCAAAATGATTGAA



GGTCTGGACAAAGACCAAAGTTTCTATGAAGCCTTTGAAATGGCTTACCAAGAACTAGAA



AGTCTGATTATTCCAATCTACAACAAAGCTCGTAGTTATTTAAGTCGTAAACCGTTTAAA



GCGGACAAATTCAAAATTAATTTTGATAATAATACATTGCTTTCCGGTTGGGATGCTAAT



AAAGAAACGGCTAACGCTTCAATTTTGTTTAAGAAGGATGGTTTGTATTATTTAGGAATC



ATGCCTAAAGGAAAAACGTTTTTGTTCGATTACTTCGTTTCATCGGAAGATTCTGAAAAG



TTAAAACAAAGAAGACAAAAAACCGCCGAAGAAGCGCTTGCGCAAGATGGCGAAAGCTAC



TTTGAAAAAATTCGTTACAAGCTGTTACCTGGCGCCAGCAAAATGTTGCCGAAAGTATTT



TTTTCCAACAAAAACATAGGGTTTTACAACCCAAGTGATGACATACTTCGTATCAGGAAT



ACAGCCTCTCACACTAAAAACGGAACACCGCAAAAAGGGCACTCTAAAGTAGAGTTTAAT



TTGAATGATTGTCATAAGATGATTGATTTCTTTAAATCAAGCATTCAAAAGCATCCAGAG



TGGGGAAGTTTTGGATTCACCTTTTCAGATACATCAGATTTTGAAGATATGAGCGCCTTT



TATCGAGAAGTCGAAAACCAAGGTTATGTCATTAGTTTCGATAAAATAAAAGAAACTTAC



ATTCAGAGTCAAGTTGAACAGGGGAACCTATATTTATTCCAAATCTACAATAAAGACTTC



TCGCCCTACAGCAAAGGCAAACCAAATTTACACACGCTTTACTGGAAAGCGTTGTTTGAG



GAAGCCAACCTAAATAATGTGGTGGCAAAACTCAATGGTGAAGCTGAAATTTTCTTTAGG



CGACACTCAATCAAAGCATCTGATAAAGTGGTGCACCCAGCGAATCAAGCCATTGACAAT



AAAAACCCGCATACCGAAAAAACGCAAAGCACCTTTGAATATGATCTTGTAAAAGACAAG



CGCTATACCCAAGACAAATTCTTCTTCCATGTACCGATTTCATTGAACTTTAAGGCACAA



GGTGTTTCAAAATTTAACGATAAAGTGAATGGATTTTTAAAGGGTAACCCAGATGTCAAT



ATTATTGGCATTGACCGAGGCGAACGACACCTTCTGTATTTCACTGTGGTGAATCAGAAA



GGTGAAATTTTGGTTCAAGAGTCGCTTAATACCCTAATGAGTGATAAAGGGCATGTGAAT



GACTACCAGCAAAAACTCGACAAAAAAGAACAAGAACGCGATGCCGCTCGCAAAAGCTGG



ACGACGGTTGAAAATATCAAAGAATTAAAAGAAGGCTATTTATCTCATGTTGTTCATAAG



TTGGCACACCTGATTATTAAATACAATGCCATTGTTTGCTTGGAAGACCTGAATTTTGGT



TTCAAACGCGGGCGTTTTAAAGTGGAAAAACAAGTTTATCAGAAATTTGAAAAAGCGCTT



ATTGATAAGCTTAACTACTTGGTATTTAAAGAAAAAGAGTTAGGCGAGGTGGGCCATTAT



CTAACCGCCTATCAGTTGACCGCACCGTTTGAAAGTTTCAAGAAGTTAGGCAAGCAAAGT



GGCATATTGTTTTATGTTCCGGCGGATTACACCTCCAAAATTGACCCAACCACCGGGTTT



GTCAACTTTCTTGATCTGCGTTATCAGAGTGTCGAAAAAGCCAAACAGCTCTTAAGCGAC



TTTAATGCCATTCGTTTTAATTCAGTACAAAACTATTTTGAGTTCGAAATAGATTACAAA



AAACTCACACCCAAACGTAAAGTTGGTACTCAGAGTAAATGGGTGATTTGTACCTATGGA



GATGTCCGCTATCAAAATCGGCGTAATCAAAAAGGTCACTGGGAAACGGAAGAAGTCAAT



GTGACTGAAAAACTAAAAGCCCTTTTCGCCAGTGATTCCAAAACTACAACCGTAATCGAT



TACGCCAATGACGACAACCTAATTGACGTCATTCTGGAACAGGACAAAGCCAGCTTCTTC



AAAGAACTGTTATGGTTATTAAAACTCACCATGACGCTCCGCCACAGCAAAATCAAAAGT



GAAGACGACTTTATTCTTTCACCCGTTAAAAACGAACAAGGCGAGTTTTACGATAGTCGA



AAAGCGGGCGAGGTGTGGCCTAAAGATGCAGACGCCAATGGCGCTTATCACATAGCGTTG



AAAGGCTTGTGGAATCTGCAACAGATCAATCAGTGGGAAAAGGGTAAAACACTTAATCTG



GCGATTAAAAACCAGGATTGGTTCAGTTTTATTCAAGAAAAGCCCTATCAAGAATAA





SEQ
ATGCACACAGGCGGATTACTTAGCATGGATGCCAAGGAGTTTACCGGACAGTACCCCCTT


ID
TCGAAGACTCTGCGTTTTGAACTGAGACCGATAGGCAGAACGTGGGACAATCTCGAAGCA


NO:
TCGGGGTATCTTGCGGAGGACAGACACCGTGCAGAATGCTATCCCAGGGCAAAAGAGCTC


25
TTGGACGACAACCATCGTGCATTCCTCAACCGTGTCCTGCCTCAGATCGATATGGATTGG



CACCCGATCGCAGAGGCATTCTGCAAAGTCCACAAGAATCCGGGAAACAAGGAATTGGCT



CAGGATTACAATCTTCAGCTGTCCAAACGCAGAAAGGAGATTTCGGCCTATCTGCAGGAT



GCGGACGGCTATAAAGGTCTGTTTGCCAAACCTGCATTGGATGAAGCAATGAAGATCGCG



AAAGAAAACGGAAATGAATCGGACATAGAGGTTCTTGAGGCATTCAACGGTTTCTCCGTA



TACTTCACCGGATATCATGAGAGCAGGGAGAACATCTATTCGGACGAGGATATGGTGTCG



GTAGCTTATCGCATCACCGAAGACAATTTCCCGAGATTCGTTTCCAATGCGCTTATATTC



GATAAGCTGAATGAGTCGCACCCCGATATAATCTCGGAAGTATCCGGAAATCTGGGCGTA



GACGACATCGGAAAATATTTTGATGTGTCTAACTACAATAATTTCCTGTCGCAGGCCGGT



ATAGATGACTACAATCACATCATCGGCGGCCATACGACGGAGGACGGTCTGATCCAGGCA



TTCAATGTTGTTCTGAATCTCAGGCATCAGAAAGACCCCGGATTCGAAAAAATCCAATTC



AAACAGCTGTACAAACAGATACTCAGCGTCCGTACATCCAAATCCTATATCCCGAAACAG



TTCGATAATTCGAAGGAGATGGTGGACTGCATCTGCGACTATGTGTCCAAGATCGAAAAA



TCCGAAACGGTCGAGAGAGCATTGAAGCTGGTAAGGAACATATCTTCTTTTGATTTGCGC



GGAATATTCGTAAACAAGAAGAATCTCCGCATTCTTTCCAACAAACTGATTGGTGATTGG



GACGCGATCGAAACCGCGCTGATGCACTCCTCCTCTTCGGAAAATGATAAGAAATCCGTC



TACGACAGCGCCGAGGCATTTACGCTGGATGATATCTTTTCGTCCGTTAAAAAATTCTCA



GATGCATCTGCAGAGGATATCGGAAACCGGGCGGAGGACATATGCAGAGTCATATCTGAG



ACCGCTCCGTTCATAAACGATCTGAGGGCTGTCGATTTGGACAGTTTGAATGACGACGGT



TACGAGGCGGCGGTTTCCAAGATAAGGGAATCTCTGGAACCATATATGGATCTGTTTCAT



GAACTGGAGATATTCTCCGTAGGCGATGAATTCCCGAAATGTGCAGCTTTCTACAGTGAA



CTTGAAGAAGTCTCCGAACAGCTAATCGAGATTATACCGTTATTCAACAAGGCCCGTTCG



TTCTGTACGCGCAAGAGATACAGTACGGACAAGATAAAGGTCAATTTGAAATTCCCGACA



CTCGCCGACGGATGGGATCTCAACAAAGAACGCGACAACAAAGCCGCAATACTCAGGAAA



GACGGAAAGTACTACCTGGCCATACTGGATATGAAGAAAGATCTTTCTTCGATCAGAACT



TCGGATGAAGACGAATCCAGTTTTGAGAAAATGGAGTACAAGCTTCTTCCGAGTCCGGTA



AAGATGCTGCCAAAGATCTTCGTAAAATCGAAGGCGGCCAAGGAGAAGTACGGTCTGACC



GACCGTATGCTGGAGTGCTACGATAAAGGGATGCACAAGAGCGGCAGTGCATTCGATCTC



GGATTTTGTCACGAATTGATCGATTACTACAAGAGGTGCATCGCAGAATATCCCGGCTGG



GACGTCTTCGATTTCAAGTTCAGGGAAACATCGGATTATGGCAGCATGAAGGAGTTCAAT



GAGGATGTTGCAGGGGCCGGATACTATATGTCCCTCAGAAAGATCCCTTGTTCGGAGGTC



TACAGGCTTCTTGATGAGAAATCGATATATCTTTTCCAGATCTACAACAAAGATTATTCG



GAAAACGCTCATGGGAATAAGAACATGCATACCATGTATTGGGAAGGGCTCTTTTCCCCC



CAGAATCTGGAATCCCCTGTGTTTAAACTCAGCGGCGGTGCGGAGCTTTTCTTCCGTAAA



TCCTCCATACCCAATGACGCCAAAACGGTCCATCCGAAGGGAAGCGTCCTGGTTCCGCGC



AATGATGTAAACGGCCGCAGGATACCTGACAGCATATATCGGGAGCTCACCAGATATTTC



AACCGCGGAGATTGCCGCATAAGCGACGAGGCAAAGAGTTATCTGGACAAGGTGAAAACC



AAGAAAGCTGACCACGATATCGTGAAAGACAGGAGGTTCACGGTGGACAAGATGATGTTC



CACGTCCCTATCGCCATGAATTTCAAAGCGATTTCGAAGCCGAATCTCAATAAAAAGGTG



ATTGACGGCATAATCGACGACCAAGATCTGAAGATCATCGGCATAGACCGCGGAGAGCGC



AACCTCATCTACGTAACCATGGTGGATCGCAAAGGGAACATCCTCTATCAGGATAGCCTC



AATATTCTGAACGGATACGATTACCGTAAGGCCCTCGACGTCCGCGAATATGACAATAAA



GAGGCTCGGAGGAACTGGACGAAGGTCGAAGGCATCCGTAAGATGAAAGAGGGGTATCTG



TCGCTTGCAGTCAGCAAATTGGCAGATATGATCATAGAGAACAATGCGATTATCGTCATG



GAGGATCTCAATCACGGATTCAAGGCAGGGCGTTCGAAGATAGAGAAACAGGTCTATCAG



AAGTTCGAATCCATGCTCATAAACAAACTCGGTTACATGGTCCTCAAGGATAAGTCTATC



GATCAGAGCGGCGGAGCTCTCCACGGATACCAGCTTGCCAACCATGTGACAACATTGGCA



TCTGTAGGTAAACAATGTGGAGTGATATTCTACATCCCTGCTGCATTTACATCCAAGATA



GATCCGACAACAGGATTTGCAGATCTGTTCGCCCTCAGCAATGTTAAAAACGTGGCATCT



ATGAGAGAATTTTTCTCCAAGATGAAGTCTGTAATCTATGATAAGGCGGAGGGAAAATTC



GCATTTACCTTCGACTATCTTGATTATAATGTGAAATCCGAGTGCGGAAGGACCCTTTGG



ACCGTGTATACGGTCGGAGAGAGATTCACATACAGCAGGGTCAATAGAGAATATGTCAGA



AAAGTTCCGACAGACATAATCTACGACGCATTGCAAAAGGCAGGAATATCTGTTGAAGGG



GATCTCAGGGACAGGATTGCTGAATCGGATGGCGACACTCTGAAGAGCATATTCTATGCA



TTCAAGTATGCATTGGATATGAGAGTAGAGAACCGCGAAGAGGATTACATACAGTCTCCT



GTCAAAAATGCCTCCGGAGAATTCTTCTGTTCCAAGAACGCAGGCAAATCGCTCCCTCAG



GATTCCGATGCGAACGGTGCATACAATATCGCACTCAAGGGGATCCTGCAGCTACGTATG



CTTTCCGAGCAGTATGATCCGAATGCAGAGAGCATACGGTTGCCACTGATAACCAACAAG



GCCTGGCTGACCTTTATGCAGTCCGGTATGAAGACATGGAAGAACTGA





SEQ
atgGATAGTTTGAAAGATTTCACCAATCTGTACCCTGTCAGTAAGACATTGAGATTTGAA


ID
TTAAAGCCCGTTGGAAAGACTTTAGAAAATATCGAGAAAGCAGGTATTTTGAAAGAGGAT


NO:
GAGCATCGTGCAGAAAGTTATCGGAGGGTGAAGAAAATAATTGATACTTATCATAAGGTA


26
TTTATCGATTCTTCTCTTGAAAATATGGCTAAAATGGGTATTGAGAATGAAATAAAAGCA



ATGCTCCAAAGTTTCTGCGAATTGTATAAAAAAGATCATCGCACTGAGGGTGAAGACAAG



GCATTAGATAAAATTCGAGCAGTACTTCGTGGCCTGATTGTTGGGGCTTTCACTGGTGTT



TGCGGAAGACGGGAAAATACAGTCCAAAACGAGAAGTACGAGAGTTTGTTCAAAGAAAAG



TTGATAAAAGAAATTTTACCTGATTTTGTGCTCTCTACTGAGGCTGAAAGCTTGCCTTTC



TCTGTTGAAGAAGCTACGAGGTCACTGAAGGAGTTTGATAGCTTTACATCCTACTTTGCT



GGTTTTTACGAGAATAGAAAGAATATATACTCGACGAAACCTCAATCCACTGCCATTGCT



TATCGTCTTATTCATGAGAACTTGCCGAAGTTCATTGATAATATTCTTGTTTTTCAGAAG



ATCAAAGAGCCTATAGCCAAAGAGCTGGAACATATTCGTGCGGACTTTTCTGCCGGGGGG



TACATAAAAAAGGATGAGAGATTGGAGGATATTTTTTCGTTGAACTATTATATCCACGTG



TTATCTCAGGCTGGGATCGAAAAATATAACGCATTGATTGGGAAGATTGTGACAGAAGGA



GATGGAGAGATGAAAGGGCTCAATGAACACATCAACCTTTACAACCAACAAAGAGGCAGA



GAGGATCGGCTCCCTCTTTTTAGGCCTCTTTATAAACAGATATTGAGTGACAGAGAGCAA



TTATCATACTTGCCTGAGAGTTTTGAAAAAGATGAGGAGCTCCTCAGGGCTCTAAAAGAG



TTCTATGATCATATCGCAGAAGACATTCTCGGACGTACTCAACAGTTGATGACTTCTATT



TCAGAATATGATTTATCTCGGATATACGTAAGGAACGATAGCCAATTGACTGATATATCA



AAAAAAATGTTGGGAGATTGGAATGCTATCTACATGGCTAGAGAACGAGCATATGACCAC



GAGCAGGCTCCCAAAAGAATCACGGCGAAATACGAGAGGGACAGGATTAAAGCTCTTAAA



GGAGAAGAGAGTATAAGTCTGGCAAATCTTAATAGTTGTATTGCCTTTCTGGACAATGTT



AGAGATTGCCGTGTAGATACTTATCTTTCCACACTGGGCCAGAAGGAAGGACCACATGGT



CTATCTAATCTCGTTGAGAACGTTTTTGCCTCATACCATGAAGCAGAGCAATTGTTGAGC



TTTCCATACCCCGAAGAGAATAATCTGATTCAGGACAAGGACAATGTGGTGTTAATTAAG



AATCTTCTCGACAATATCAGTGATCTGCAGAGGTTCTTGAAACCTCTTTGGGGTATGGGA



GACGAACCCGATAAAGATGAAAGATTTTATGGAGAGTATAATTATATCCGAGGAGCTCTA



GATCAGGTGATCCCTCTGTACAATAAGGTAAGGAACTACCTCACTCGGAAGCCTTATTCG



ACCAGAAAAGTAAAACTCAATTTTGGGAATTCTCAATTGCTTAGTGGTTGGGATAGAAAT



AAGGAAAAGGATAATAGCTGTGTGATTTTGCGTAAGGGGCAGAACTTCTATTTGGCTATT



ATGAACAATAGGCACAAAAGAAGTTTCGAAAACAAGGTGTTGCCCGAGTATAAGGAGGGA



GAACCTTACTTCGAAAAGATGGATTATAAATTTTTGCCTGATCCTAATAAAATGCTTCCT



AAGGTTTTTCTTTCGAAAAAAGGAATAGAGATATACAAACCAAGTCCGAAGCTTTTAGAA



CAATATGGACATGGAACTCACAAAAAGGGAGATACCTTTAGTATGGATGATTTGCACGAA



CTGATCGATTTCTTCAAACACTCAATCGAGGCTCATGAAGATTGGAAGCAATTCGGATTC



AAATTTTCTGATACGGCTACTTATGAGAATGTATCTAGTTTCTATAGAGAAGTTGAGGAT



CAGGGGTATAAGCTCTCTTTCCGAAAAGTTTCGGAATCTTATGTCTATTCATTAATAGAT



CAAGGCAAGTTGTATTTATTTCAGATATACAACAAGGACTTTTCTCCCTGCAGCAAAGGG



ACACCTAATCTGCATACCTTGTATTGGAGAATGCTTTTTGACGAGCGCAATTTGGCAGAT



GTCATATACAAACTGGATGGGAAGGCTGAAATCTTTTTCCGAGAGAAGAGTTTGAAAAAT



GATCATCCCACGCATCCGGCTGGTAAGCCTATCAAAAAGAAAAGTCGACAAAAAAAAGGA



GAGGAGAGTCTGTTTGAGTATGATTTAGTCAAGGATAGGCACTATACGATGGATAAGTTC



CAGTTTCATGTGCCTATTACTATGAATTTTAAATGTTCTGCAGGAAGCAAAGTCAATGAT



ATGGTTAATGCTCATATTCGAGAGGCAAAGGATATGCATGTCATTGGAATTGATCGTGGA



GAACGCAATCTGCTGTATATATGCGTGATAGATAGTCGAGGGACGATTTTGGATCAAATT



TCTCTGAATACGATTAACGATATAGACTATCATGATTTATTGGAGAGTCGAGACAAAGAC



CGTCAGCAGGAGCGCCGAAACTGGCAAACTATCGAAGGGATCAAGGAGCTAAAACAAGGC



TACCTTAGTCAGGCGGTTCATCGGATAGCCGAACTGATGGTGGCTTATAAGGCTGTAGTT



GCTTTGGAGGATTTGAATATGGGGTTCAAACGTGGGCGGCAGAAAGTAGAAAGTTCTGTT



TATCAGCAGTTTGAGAAACAGCTGATAGATAAGCTCAACTATCTTGTGGACAAGAAGAAA



AGGCCTGAAGATATTGGAGGATTGTTGAGAGCCTATCAATTTACGGCCCCATTTAAGAGT



TTTAAGGAAATGGGAAAGCAAAACGGCTTCTTGTTTTATATCCCGGCTTGGAACACGAGC



AACATAGATCCGACTACTGGATTTGTTAATTTATTTCATGCCCAGTATGAAAATGTAGAT



AAAGCGAAGAGCTTCTTTCAAAAGTTTGATTCAATTAGTTACAACCCGAAGAAAGACTGG



TTTGAGTTTGCATTCGATTATAAAAACTTTACTAAAAAGGCTGAAGGAAGTCGTTCTATG



TGGATATTATGCACACATGGTTCCCGAATAAAGAATTTTAGAAATTCCCAGAAGAATGGT



CAATGGGATTCCGAAGAATTCGCCTTGACGGAGGCTTTTAAGTCTCTTTTTGTGCGATAT



GAGATAGATTATACCGCTGATTTGAAAACAGCTATTGTGGACGAAAAGCAAAAAGACTTC



TTCGTGGATCTTCTGAAGCTATTCAAATTGACAGTACAGATGCGCAACAGCTGGAAAGAG



AAGGATTTGGATTATCTAATCTCTCCTGTAGCAGGGGCTGATGGCCGTTTCTTCGATACA



AGAGAGGGAAATAAAAGTCTGCCTAAGGATGCAGATGCCAATGGAGCTTATAATATTGCC



CTAAAAGGACTTTGGGCTCTACGCCAGATTCGGCAAACTTCAGAAGGCGGTAAACTCAAA



TTGGCGATTTCCAATAAGGAATGGCTACAGTTTGTGCAAGAGAGATCTTACGAGAAAGAC



tga





SEQ
atgaataatggaacaaataactttcagaattttatcggaatttcttctttgcagaagact


ID
cttaggaatgctctcattccaaccgaaacaacacagcaatttattgttaaaaacggaata


NO:
attaaagaagatgagctaagaggagaaaatcgtcagatacttaaagatatcatggatgat


27
tattacagaggtttcatttcagaaactttatcgtcaattgatgatattgactggacttct



ttatttgagaaaatggaaattcagttaaaaaatggagataacaaagacactcttataaaa



gaacagactgaataccgtaaggcaattcataaaaaatttgcaaatgatgatagatttaaa



aatatgttcagtgcaaaattaatctcagatattcttcctgaatttgtcattcataacaat



aattattctgcatcagaaaaggaagaaaaaacacaggtaattaaattattttccagattt



gcaacgtcattcaaggactattttaaaaacagggctaattgtttttcggctgatgatata



tcttcatcttcttgtcatagaatagttaatgataatgcagagatattttttagtaatgca



ttggtgtataggagaattgtaaaaagtctttcaaatgatgatataaataaaatatccgga



gatatgaaggattcattaaaggaaatgtctctggaagaaatttattcttatgaaaaatat



ggggaatttattacacaggaaggtatatctttttataatgatatatgtggtaaagtaaat



tcatttatgaatttatattgccagaaaaataaagaaaacaaaaatctctataagctgcaa



aagcttcataaacagatactgtgcatagcagatacttcttatgaggtgccgtataaattt



gaatcagatgaagaggtttatcaatcagtgaatggatttttggacaatattagttcgaaa



catatcgttgaaagattgcgtaagattggagacaactataacggctacaatcttgataag



atttatattgttagtaaattctatgaatcagtttcacaaaagacatatagagattgggaa



acaataaatactgcattagaaattcattacaacaatatattacccggaaatggtaaatct



aaagctgacaaggtaaaaaaagcggtaaagaatgatctgcaaaaaagcattactgaaatc



aatgagcttgttagcaattataaattatgttcggatgataatattaaagctgagacatat



atacatgaaatatcacatattttgaataattttgaagcacaggagcttaagtataatcct



gaaattcatctggtggaaagtgaattgaaagcatctgaattaaaaaatgttctcgatgta



ataatgaatgcttttcattggtgttcggttttcatgacagaggagctggtagataaagat



aataatttttatgccgagttagaagagatatatgacgaaatatatccggtaatttcattg



tataatcttgtgcgtaattatgtaacgcagaagccatatagtacaaaaaaaattaaattg



aattttggtattcctacactagcggatggatggagtaaaagtaaagaatatagtaataat



gcaattattctcatgcgtgataatttgtactatttaggaatatttaatgcaaaaaataag



cctgacaaaaagataattgaaggtaatacatcagaaaataaaggggattataagaagatg



atttataatcttctgccaggaccaaataaaatgatccccaaggtattcctctcttcaaaa



accggagtggaaacatataagccgtctgcctatatattggagggctataaacaaaacaag



catattaaatcctctaaggattttgatataacattttgtcacgatttgattgattatttt



aagaactgtatagcaatacatcctgaatggaagaattttggctttgatttttctgacacc



tccacatatgaagatatcagcggattttacagagaagtcgaattacaaggttataaaatc



gactggacatatatcagcgaaaaggatattgatttgttgcaggaaaaaggacagttatat



ttattccaaatatataacaaagatttttccaagaaaagtaccggaaatgataatcttcat



actatgtatttgaagaatttgtttagtgaagagaatttaaaggatattgtactgaaatta



aacggtgaggcggaaatcttctttagaaaatcaagcataaagaatccaataattcataaa



aaaggctctattcttgttaatagaacatatgaagcagaggaaaaagatcaatttggaaat



atccagatagtcagaaaaaacataccggaaaatatatatcaggagctttataaatatttc



aatgataaaagtgataaagaactttcggatgaagcagctaagcttaagaatgtagtaggt



catcatgaggctgctacaaacatagtaaaagattatagatatacatatgataaatatttt



cttcatatgcctattacaatcaattttaaagccaataagacaggctttattaatgacaga



atattacaatatattgctaaagaaaaggatttgcatgtaataggcattgatcgtggtgaa



agaaacctgatatatgtttcagtaattgatacttgtggaaatattgttgaacaaaaatcg



tttaacattgttaatggatatgattatcagattaagctcaagcagcaggagggggcgcga



caaatcgcacgaaaagaatggaaagaaatcggcaaaataaaagaaattaaagaaggctat



ttatctcttgtaattcatgaaatttcaaagatggttattaaatataatgccataattgca



atggaggatttaagctacggatttaaaaaaggtcgtttcaaggttgagcgacaggtttac



cagaagtttgagacaatgcttatcaacaaactcaactatctggtatttaaagatatatcc



ataacggaaaacggtggtcttctaaagggataccagcttacatatattccagataaactg



aaaaatgtgggtcatcaatgtggctgtatattttatgtacctgctgcctatacatcaaaa



atagatcctacaaccggatttgtaaatatattcaaatttaaagatttaacagttgatgcg



aagagagaatttataaaaaaatttgacagtatcagatatgattcagaaaaaaatctgttt



tgttttacattcgattataataactttattacgcaaaatactgttatgtcaaagtcaagc



tggagtgtatatacgtacggagttaggataaaaagaagatttgtcaatggcaggttctca



aatgaatcggatacaattgatataacaaaagatatggaaaaaacactcgaaatgacagat



ataaattggagagatggtcatgatctgaggcaggatattattgattatgaaatcgtacaa



cacatatttgagatttttagattgactgtacaaatgagaaacagtttaagtgaattagaa



gacagggattatgaccgtttgatttctccggtgctcaatgaaaataatatattttatgat



tcagctaaagcaggagatgcgttacctaaagacgcagatgctaatggtgcatattgtata



gctctaaaaggcttgtatgaaatcaaacaaattacagagaattggaaagaagacggtaag



ttttcaagagataaacttaaaatttccaataaggactggtttgactttattcaaaataaa



aggtatttataa





SEQ
atgacaaacaaatttacaaaccagtactcgctttccaaaacacttcgatttgagttgatt


ID
ccacaaggaaaaacattggaatttattcaagaaaaaggattgctctctcaagataaacaa


NO:
cgagcggagagttatcaagaaatgaaaaaaactattgataaatttcataaatactttatc


28
gatttagctttaagcaatgctaaactaactcatttagaaacttacttggaattatacaat



aaaagtgctgaaacaaaaaaagaacaaaaatttaaagacgatttaaagaaagtacaagac



aatttacgaaaagaaatcgttaaatctttttcagatggtgatgcaaaatcaatttttgca



attttggataaaaaagaactgattaccgtagaacttgaaaaatggtttgaaaacaacgaa



caaaaagacatttattttgacgaaaaattcaaaacgtttactacttattttactggtttt



catcaaaacagaaaaaacatgtattcggttgaacccaattctacagcaattgcttatcga



ttgattcatgaaaatttacctaaatttttagaaaatgctaaagcatttgaaaaaataaaa



caagtagaaagtttgcaagttaattttagagaattaatgggggaatttggagatgaaggg



ctaattttcgtaaatgaattagaagaaatgtttcaaatcaattattataatgatgtgctt



tcacaaaatggaattacaatttataatagtataatttcaggatttaccaaaaatgatata



aaatataaaggtctaaatgaatacataaataattacaatcaaaccaaagacaaaaaagac



cgtttgccaaaattaaaacaattgtataaacagattttgagtgataggatttcactttcg



tttttgcccgatgcttttacggatgggaaacaagttttgaaagccatatttgacttttat



aaaatcaacttactttcttataccattgaaggacaggaagaaagccaaaatcttttacta



ttaattcgtcagacaattgaaaacctttctagttttgatacccaaaaaatttatctaaaa



aatgatacccatttaaccactatttcacaacaagtatttggcgatttttcggtgttttca



actgctttaaattattggtatgaaactaaagtaaatccaaaatttgaaacggaatatagc



aaagccaacgaaaaaaaacgagaaattttagataaagccaaagcggtatttacaaaacaa



gattatttttcaattgcttttttacaagaagtactttcggaatacattcttaccttagat



cacacttctgatattgtaaaaaagcattcctccaactgtattgcggattattttaaaaat



cattttgtagccaaaaaagaaaatgaaaccgacaaaacctttgattttattgctaatatt



actgcaaaataccaatgtattcaaggtattttagaaaatgcagaccaatacgaagacgaa



ctcaaacaagaccaaaaattaattgataatttgaaattctttttagatgctattttagaa



ttgttgcattttattaaacctttgcatttaaaatcagaaagcattaccgaaaaagacact



gctttttatgatgtgtttgaaaattattacgaagcattgagtttgttgaccccattatat



aatatggtgcgaaactatgtaacgcaaaagccgtacagcaccgaaaaaataaaattaaat



tttgaaaatgcacaattattgaatggttgggatgccaataaagaaggtgattacctaact



accattttgaaaaaagacggtaattattttttagccataatggataaaaagcataacaaa



gcgtttcaaaagtttccagaaggaaaagaaaattatgaaaaaatggtgtataaactattg



cctggagtaaataagatgttgccaaaagtatttttttccaataaaaatattgcttacttc



aacccatcaaaagagttattagaaaactataaaaaagagacgcacaaaaaaggagacaca



ttcaatttagaacattgtcatacgttgatcgattttttcaaggactctttaaacaaacat



gaagactggaaatactttgattttcaattttctgaaacaaaatcgtatcaagatttgagt



ggtttttatagagaagtagaacatcaaggctacaaaatcaattttaaaaatatcgattca



gaatatattgatggtttggtgaacgaaggtaaattgtttctatttcaaatttacagcaaa



gatttttcgcctttttccaaagggaaaccgaacatgcacactttgtattggaaagcctta



tttgaagaacaaaatttgcaaaatgtaatctataaattgaatggacaagccgaaatattt



tttagaaaagcctctataaaacctaaaaatataatattgcacaaaaagaaaattaaaatt



gccaaaaagcattttattgataaaaaaacaaaaacatctgaaattgttcctgttcaaaca



ataaaaaacctcaatatgtactaccaaggaaaaataagtgaaaaagaattaacacaagat



gatttaaggtatattgataattttagcattttcaatgaaaaaaataaaacaattgatatt



ataaaagacaaacgatttacggttgataaatttcagtttcatgtgccgattaccatgaac



tttaaagcaacgggcggaagttatatcaatcaaaccgtattagaatatttgcaaaacaat



cccgaagttaagattattggattggatagaggcgaacgccatttggtatatctgacactg



atagaccagcaaggaaacatcttgaaacaagaaagtttgaatacaatcaccgattctaaa



atctcgacaccttatcataagttgttggataacaaggaaaacgagcgtgacttggctcga



aaaaattggggaacggtggaaaacatcaaagaactcaaagaaggctacatcagtcaagtg



gtgcataaaattgctacgttgatgctggaagaaaatgccattgtggtaatggaagatttg



aattttggatttaaacgtggacgttttaaagtggaaaaacaaatttatcaaaagctggaa



aaaatgttgattgacaaattgaattatttggttttaaaagacaaacaacctcaggaatta



ggcggattgtacaacgcattacaactcaccaataaatttgaaagtttccaaaaaatgggt



aaacaatcgggctttttgttttatgtacccgcttggaacacctccaaaatagacccaacc



acagggtttgtcaattatttttataccaaatatgaaaatgttgacaaagccaaagccttt



tttgaaaaatttgaggcgattcgtttcaatgcagaaaagaagtattttgaatttgaagta



aaaaaatatagcgattttaacccaaaagccgaaggcactcaacaagcctggaccatttgc



acgtatggcgaacgaatagaaaccaaacgacaaaaagaccaaaacaacaaatttgtaagc



actccaattaatctaaccgaaaagatagaagactttttgggtaaaaaccaaattgtttat



ggtgatggtaattgcatcaaatctcaaattgctagcaaagacgacaaggctttttttgaa



accttattgtattggttcaaaatgactttacaaatgcgaaacagcgaaacaagaacagat



atagattatctaatttcgcccgtgatgaatgacaacggaacattttacaacagccgagat



tatgaaaaattagaaaatccaactttgcccaaagatgccgatgccaacggagcgtatcat



attgccaaaaaaggattgatgcttttgaataaaatagaccaagccgacttgacaaaaaaa



gtggatttatctattagtaacagagattggttgcaatttgtacaaaaaaataaataa





SEQ
atggaacaggagtactatttaggactggatatgggaaccggatctgtaggatgggctgtt


ID
acagattcggaatatcatgtcttgcgtaaacatggaaaagcactatggggagtccgatta


NO:
tttgaaagtgcatcgacagcagaagaacgaagaatgttccgaacatcaagaagaagacta


29
gatcgaagaaactggagaattgaaattttacaggaaatttttgcagaggaaataagtaag



aaagatccaggatttttcttgcgaatgaaagaaagcaaatattatccagaagataagcga



gatatcaatggaaattgtccggaactgccatatgcattatttgttgatgacgattttaca



gataaagattatcataaaaaatttccgacaatttatcatctcaggaaaatgttgatgaat



acagaggagacaccggatatccggttggtgtatctggcaattcatcatatgatgaagcat



aggggccatttcttgttatctggtgacattaatgagattaaggagttcggaacgacattt



tcaaaattgttggagaatatcaaaaatgaggaattggattggaatcttgaactgggaaaa



gaagaatatgctgttgtagaaagtattttaaaagataacatgttaaaccgatccacaaag



aaaaccagattaataaaagcattaaaagcaaaatcaatatgtgaaaaggctgtactgaat



ttattggctggtggaacggtgaaattgagtgatatatttggtcttgaagaattaaatgag



acagaaagaccgaagatttcctttgctgataatggatacgatgattatatcggagaagtt



gaaaatgagctgggagaacaattctatattatagagacggcaaaagcagtgtatgactgg



gcggtattagttgaaatattgggaaaatatacgtcaatttcagaagcgaaagtagcaacg



tatgaaaaacataaatcggatttacaatttttgaaaaagatagttcggaaatatctgaca



aaggaggaatataaagatatttttgtaagtacgagtgacaaattgaaaaattactctgct



tatataggaatgacgaaaataaatggaaaaaaggttgatttgcagagcaaacggtgcagt



aaagaagaattctatgattttattaagaaaaacgtacttaaaaagctagaaggacaacct



gaatatgaatatttgaaagaagagctagaaagagaaacatttctaccaaaacaggtgaac



agggataatggtgtaataccgtatcagattcatttgtacgagttgaaaaagatattagga



aatttacgggataaaatagacctcattaaagagaacgaagataaactggttcaattattt



gaattcagaattccgtattatgttggtccgctgaataagatagatgacggaaaagaggga



aaatttacatgggctgtacggaaaagtaatgaaaagatatatccatggaattttgaaaat



gtagttgatatagaagcaagtgcagaaaaatttatccggagaatgacaaataagtgtaca



tatctgatgggcgaagatgtattgccgaaggattcattgctttacagtaaatatatggtt



ttaaatgaattaaataatgtaaagttggatggcgaaaaattatctgtagaattgaaacaa



cggttgtatacagatgtattttgtaagtatcggaaagtaactgtaaagaagataaaaaat



tacttgaaatgtgaaggtatcatatccggcaatgtcgaaataactggaattgatggtgat



tttaaggcatcgttaacggcatatcatgattttaaagaaatcttgacaggaacagaattg



gctaaaaagga



caaagaaaatattattaccaatatagtattgtttggagatgataaaaagctgctgaaaaa



gagactgaatcgattatatcctcagattacgccgaatcagttgaagaaaatatgtgcgct



atcctatacaggctggggaagattttctaaaaagttcttagaagaaataacagctccaga



tccggaaacgggagaggtatggaatatcattacggcattgtgggaatcgaataataatct



gatgcaattattaagtaatgaatatcggtttatggaagaagtcgaaacatacaatatggg



aaaacagactaaaacattgtcgtacgaaacagtagagaatatgtatgtttctccatctgt



gaaaagacagatatggcagacgctgaaaatcgtgaaagaattagaaaaagtaatgaaaga



atctccgaaacgtgtatttattgagatggcgagagaaaagcaagaaagtaagagaaccga



atcgcgtaaaaaacaactaatagatttgtataaggcttgtaaaaatgaagaaaaagattg



ggtaaaagaactgggagatcaggaagaacagaaattacgaagcgataagttgtacctata



ttatacgcaaaagggtcgttgtatgtattctggcgaggtaatagaactgaaagacttatg



ggataatacaaaatatgatattgatcatatatatccacaatctaaaacgatggatgacag



tcttaataatcgcgtattggtaaaaaagaaatataatgcaacaaaatcagataagtatcc



attaaatgaaaatatacgacatgagagaaaaggcttttggaagtcactgttagatggagg



gtttataagtaaagaaaaatatgaacgcttaataagaaatacagaattgagtccggaaga



attagcaggatttattgaaaggcagattgttgaaacgaggcagagtacaaaagctgtagc



ggaaatattaaagcaagtgtttccggaaagtgaaattgtatatgtcaaagcaggtacggt



ttcaagattcagaaaagattttgaattactgaaagttcgagaagtgaatgatttgcatca



cgcaaaggatgcgtatttaaatattgtagttggtaatagttattatgtgaaatttactaa



gaatgcatcatggtttataaaagaaaatccgggacgtacttacaacttaaaaaagatgtt



tacatcaggttggaatattgaacgaaatggagaagttgcatgggaagtcgggaaaaaagg



aacaattgtaacggtaaaacaaataatgaataaaaataatatattggtgacaagacaggt



tcatgaagcgaaaggtgggctgtttgatcagcagattatgaaaaaaggaaaaggtcagat



tgctataaaggaaactgatgaacgtcttgcatcaatagaaaagtatggaggctataataa



agctgccggggcatattttatgctggtagaatctaaagataaaaaaggaaaaacaattcg



aacgatagaatttataccattatatttaaagaataaaatcgagtcggatgaatcaatagc



attgaactttttagaaaaaggcagaggtttgaaagaaccaaagatactattgaaaaaaat



taagattgatacattatttgatgtggacggattcaaaatgtggttgtctggaagaacagg



ggacagactactatttaaatgtgcaaatcaattgattttggatgagaaaataattgtaac



aatgaaaaaaattgtaaagtttattcaaaggagacaagaaaatagagaattaaaattatc



tgataaagatggaattgataatgaagtacttatggaaatatataacacttttgtggataa



gttagaaaacacagtgtatagaatacgattatccgaacaggcaaaaacgcttatagataa



acaaaaagaatttgaaaggttatcactagaggataaaagtagtactttgtttgaaatttt



acatatttttcagtgtcaaagtagtgcggccaatttaaaaatgataggcggacctggaaa



agcaggaatattagttatgaataataatataagtaagtgtaacaaaatttctattataaa



tcagtctccaacaggaattttcgaaaatgagattgatttgttaaagat





SEQ
ATGAAATCTTTCGATTCATTCACAAATCTTTATTCTCTTTCAAAAACCTTGAAATTTGAG


ID
ATGAGACCTGTCGGAAATACCCAAAAAATGCTCGACAATGCAGGAGTATTTGAAAAAGAC


NO:
AAACTAATTCAAAAAAAGTACGGAAAAACAAAGCCGTATTTCGACAGACTCCACAGAGAA


30
TTTATAGAAGAAGCGCTCACGGGGGTAGAGCTAATAGGACTAGATGAGAACTTTAGGACA



CTTGTTGACTGGCAAAAAGATAAGAAAAATAATGTCGCAATGAAAGCGTATGAAAATAGT



TTGCAGCGGCTGAGAACGGAAATAGGTAAAATATTTAACCTAAAGGCTGAGGATTGGGTA



AAGAACAAATATCCAATATTAGGGCTGAAAAATAAAAATACCGATATTTTATTCGAAGAG



GCTGTATTCGGGATATTGAAAGCCCGATATGGAGAAGAAAAAGATACTTTTATAGAAGTA



GAGGAAATAGATAAAACCGGCAAATCAAAGATCAATCAAATATCAATTTTCGATAGTTGG



AAAGGATTTACAGGATATTTCAAAAAATTTTTTGAAACCAGAAAGAATTTTTACAAAAAC



GACGGAACTTCTACAGCAATTGCTACAAGGATCATTGATCAAAATCTGAAAAGATTCATA



GATAATCTGTCAATAGTTGAAAGTGTGAGACAAAAGGTTGATCTCGCCGAGACAGAAAAA



TCTTTCAGCATATCTCTATCGCAATTCTTCTCAATAGACTTTTATAACAAGTGTCTCCTT



CAAGATGGTATTGATTACTACAACAAGATAATCGGTGGAGAAACTCTCAAAAATGGCGAA



AAACTAATAGGTCTCAATGAACTAATAAATCAATATAGGCAGAATAATAAGGATCAGAAA



ATCCCATTTTTCAAACTTCTTGATAAACAAATTTTGAGTGAAAAGATATTATTTTTGGAT



GAAATAAAAAATGACACAGAACTGATCGAGGCGCTGAGTCAGTTCGCAAAAACAGCCGAA



GAAAAAACAAAAATTGTCAAAAAGCTTTTTGCCGATTTTGTAGAAAATAATTCCAAATAC



GATCTTGCACAGATTTATATTTCCCAAGAAGCATTCAATACTATATCAAACAAGTGGACA



AGCGAAACTGAGACGTTCGCTAAATATCTATTCGAAGCAATGAAGAGTGGAAAACTTGCA



AAGTATGAGAAAAAAGATAATAGCTATAAATTTCCTGATTTTATTGCCCTTTCACAGATG



AAGAGTGCTTTATTAAGTATCAGCCTTGAGGGACATTTTTGGAAAGAGAAATACTACAAA



ATTTCAAAATTCCAAGAGAAGACCAATTGGGAGCAGTTTCTTGCAATTTTTCTATACGAG



TTTAACTCTCTTTTCAGCGACAAAATAAATACAAAAGATGGAGAAACAAAGCAAGTTGGA



TACTATCTATTTGCCAAAGACCTGCATAATCTTATCTTAAGTGAGCAGATTGATATTCCA



AAAGATTCAAAAGTCACAATAAAAGATTTTGCCGATTCTGTACTCACAATCTACCAAATG



GCAAAATATTTTGCGGTAGAAAAAAAACGAGCGTGGCTTGCCGAGTATGAACTAGATTCA



TTTTATACCCAGCCAGACACAGGCTATTTACAGTTTTATGATAACGCCTACGAGGATATT



GTGCAGGTATACAACAAGCTTCGAAACTATCTGACCAAAAAGCCATATAGCGAGGAGAAA



TGGAAGTTGAATTTTGAAAATTCTACGCTGGCAAATGGATGGGATAAGAACAAAGAATCT



GATAATTCAGCAGTTATTCTACAAAAAGGTGGAAAATATTATTTGGGACTGATTACTAAA



GGACACAACAAAATTTTTGATGACCGTTTTCAAGAAAAATTTATTGTGGGAATTGAAGGT



GGAAAATATGAAAAAATAGTCTATAAATTTTTCCCCGACCAGGCAAAAATGTTTCCCAAA



GTGTGCTTTTCTGCAAAAGGACTCGAATTTTTTAGACCGTCTGAAGAAATTTTAAGAATT



TATAACAATGCAGAGTTTAAAAAAGGAGAAACTTATTCAATAGATAGTATGCAGAAGTTG



ATTGATTTTTATAAAGATTGCTTGACTAAATATGAAGGCTGGGCATGTTATACCTTTCGG



CATCTAAAACCCACAGAAGAATACCAAAACAATATTGGAGAGTTTTTTCGAGATGTTGCA



GAGGACGGATACAGGATTGATTTTCAAGGCATTTCAGATCAATATATTCATGAAAAAAAC



GAGAAAGGCGAACTTCACCTTTTTGAAATCCACAATAAAGATTGGAATTTGGATAAGGCA



CGAGACGGAAAGTCAAAAACAACACAAAAAAACCTTCATACACTCTATTTCGAATCGCTC



TTTTCAAACGATAATGTTGTTCAAAACTTTCCAATAAAACTCAATGGTCAAGCTGAAATT



TTTTATAGACCGAAAACGGAAAAAGACAAATTAGAATCAAAAAAAGATAAGAAAGGGAAT



AAAGTGATTGACCATAAACGCTATAGTGAGAATAAGATTTTTTTTCATGTTCCTCTCACA



CTAAACCGCACTAAAAATGACTCATATCGCTTTAATGCTCAAATCAACAACTTTCTCGCA



AATAATAAAGATATCAACATCATCGGTGTAGATAGGGGAGAAAAGCATTTAGTCTATTAT



TCGGTGATTACACAAGCTAGTGACATCTTAGAAAGTGGCTCACTAAATGAGCTAAATGGC



GTGAATTATGCTGAAAAACTGGGAAAAAAGGCAGAAAATCGAGAACAAGCACGCAGAGAC



TGGCAAGACGTACAAGGGATCAAAGACCTCAAGAAAGGATATATTTCACAGGTGGTGCGA



AAGCTTGCTGATTTAGCAATTAAACACAATGCCATTATCATTCTTGAAGATTTGAATATG



AGATTTAAACAAGTTCGGGGCGGTATCGAAAAATCCATTTATCAACAGTTAGAAAAAGCA



CTGATAGATAAATTAAGCTTTCTTGTAGACAAAGGTGAAAAAAATCCCGAGCAAGCAGGA



CATCTTCTGAAAGCATATCAGCTTTCGGCCCCATTTGAGACATTTCAAAAAATGGGCAAA



CAGACGGGTATAATCTTTTATACACAAGCTTCGTATACCTCAAAAAGTGACCCTGTAACA



GGTTGGCGACCACACCTGTATCTCAAATATTTCAGTGCCAAAAAAGCAAAAGACGATATT



GCAAAGTTTACAAAAATAGAATTTGTAAACGATAGGTTTGAGCTTACCTATGATATAAAG



GACTTTCAGCAAGCAAAAGAATATCCAAATAAAACTGTTTGGAAAGTTTGCTCAAATGTA



GAGAGATTCAGGTGGGACAAAAACCTCAATCAAAACAAAGGCGGATATACTCACTACACA



AATATAACTGAGAATATCCAAGAGCTTTTTACAAAATATGGAATTGATATCACAAAAGAT



TTGCTCACACAGATTTCTACAATTGATGAAAAACAAAATACCTCATTTTTTAGAGATTTT



ATTTTTTATTTCAACCTTATTTGCCAAATCAGAAATACCGATGATTCTGAGATTGCTAAA



AAGAATGGGAAAGATGATTTTATACTGTCACCTGTTGAGCCGTTTTTCGATAGCCGAAAA



GACAATGGAAATAAACTTCCTGAGAATGGAGATGATAACGGCGCGTATAACATAGCAAGA



AAAGGGATTGTCATACTCAACAAA



ATCTCACAATATTCAGAGAAAAACGAAAATTGCGAGAAAATGAAATGGGGGGATTTGTAT



GTATCAAACATTGACTGGGACAATTTTGTAACCCAAGCTAATGCACGGCATTAA





SEQ
ATGATTATCTTATATATTAGTACCTCGAATATGAACATGGAAGGAGTATTTATGGAAAAT


ID
TTTAAAAACTTGTATCCAATAAACAAAACACTTCGATTTGAATTAAGACCCTATGGAAAA


NO:
ACATTGGAAAATTTTAAAAAATCCGGACTTTTAGAAAAAGATGCCTTTAAGGCAAATAGT


31
AGACGAAGTATGCAAGCTATAATCGATGAAAAATTCAAAGAGACTATCGAAGAACGCTTA



AAGTACACTGAATTCAGTGAATGTGATCTTGGAAACATGACATCAAAAGATAAAAAAATA



ACTGATAAAGCAGCTACAAATTTAAAAAAGCAAGTTATCTTATCTTTTGACGATGAAATA



TTTAATAATTACCTAAAACCTGATAAAAATATTGACGCATTATTTAAAAATGATCCTTCA



AATCCTGTAATCTCTACATTTAAAGGTTTTACGACATATTTTGTGAATTTTTTTGAAATT



CGAAAACATATTTTCAAGGGAGAATCATCAGGCTCAATGGCATACCGAATTATAGATGAA



AACCTGACAACATACTTGAATAATATTGAAAAAATAAAAAAACTGCCAGAAGAATTAAAA



TCACAGCTAGAAGGCATTGATCAGATTGATAAACTTAATAATTATAATGAGTTCATTACA



CAGTCAGGTATAACACACTATAATGAAATCATCGGCGGTATATCAAAATCAGAGAATGTC



AAAATACAGGGAATTAATGAAGGAATTAATCTATACTGTCAGAAGAACAAAGTTAAACTT



CCTCGACTGACTCCGCTATACAAAATGATATTATCAGACAGAGTTTCCAACTCTTTTGTA



TTAGACACTATTGAAAATGACACAGAATTAATTGAAATGATAAGTGATTTGATTAATAAG



ACTGAGATTTCGCAAGATGTTATAATGTCAGATATTCAAAATATTTTCATAAAATACAAA



CAACTTGGTAATTTGCCGGGTATCTCATATTCTTCAATAGTTAATGCTATTTGCTCGGAT



TATGACAACAATTTCGGAGATGGGAAGCGAAAAAAATCTTACGAAAATGATCGCAAAAAG



CATTTGGAGACTAATGTATACTCCATAAATTATATTTCTGAATTGCTTACAGATACCGAT



GTTTCATCAAATATCAAGATGAGATATAAAGAGCTTGAGCAAAATTATCAGGTTTGCAAA



GAAAATTTTAATGCCACAAACTGGATGAATATTAAAAATATAAAACAATCTGAAAAAACA



AACCTTATTAAAGATTTGTTAGATATACTTAAATCGATTCAACGTTTCTATGATTTGTTT



GATATTGTTGACGAAGATAAAAATCCAAGTGCTGAATTTTATACCTGGTTATCAAAAAAT



GCTGAAAAGCTTGACTTTGAATTCAATTCTGTATATAACAAGTCACGAAACTATCTCACC



AGGAAACAATACTCTGATAAAAAAATCAAGCTGAATTTTGATTCTCCAACATTGGCCAAA



GGGTGGGATGCTAACAAAGAAATAGATAACTCCACGATTATAATGCGTAAATTTAATAAT



GACAGAGGCGATTATGATTACTTCCTTGGCATATGGAATAAATCCACACCTGCAAATGAA



AAAATAATCCCACTGGAGGATAATGGATTATTCGAAAAAATGCAATATAAGCTGTATCCA



GATCCTAGTAAGATGTTACCGAAACAATTTCTATCAAAAATATGGAAGGCAAAGCATCCT



ACGACACCTGAATTTGATAAAAAATATAAAGAGGGAAGACATAAAAAAGGTCCTGATTTC



GAAAAAGAATTCCTGCATGAATTGATTGATTGCTTCAAACATGGTCTTGTTAATCACGAT



GAAAAATATCAGGATGTTTTTGGCTTCAATCTCCGTAACACTGAAGATTATAATTCATAT



ACAGAGTTTCTCGAAGATGTGGAAAGATGCAATTACAATCTTTCATTTAACAAAATTGCT



GATACTTCAAACCTTATTAATGATGGGAAATTGTATGTATTTCAGATATGGTCAAAAGAC



TTTTCTATTGATTCAAAAGGTACTAAAAACTTGAATACAATCTATTTTGAATCACTATTT



TCAGAAGAAAACATGATAGAAAAAATGTTCAAGCTTTCTGGAGAGGCTGAGATATTCTAT



CGACCAGCATCGTTGAATTATTGTGAAGATATCATAAAAAAAGGTCATCACCATGCAGAA



TTAAAAGATAAGTTTGACTATCCTATAATAAAAGATAAGCGATATTCACAAGATAAGTTT



TTCTTTCATGTGCCAATGGTTATAAATTATAAATCTGAGAAACTGAATTCCAAAAGCCTT



AACAACCGAACAAATGAAAACCTGGGACAGTTTACACATATTATAGGTATAGACAGGGGC



GAGCGGCACTTGATTTATTTAACTGTTGTTGATGTTTCCACTGGTGAAATCGTTGAACAG



AAACATCTGGACGAAATTATCAATACTGATACCAAGGGAGTTGAACACAAAACCCATTAT



TTGAATAAATTGGAAGAAAAATCTAAAACAAGAGATAACGAGCGTAAATCATGGGAAGCT



ATTGAAACTATCAAAGAATTAAAAGAAGGCTATATTTCTCATGTAATTAATGAAATACAA



AAGCTGCAAGAAAAATATAATGCCTTAATCGTAATGGAAAATCTTAACTATGGGTTCAAA



AACTCACGAATCAAAGTTGAAAAACAGGTTTATCAAAAATTCGAGACAGCATTGATTAAA



AAGTTCAATTATATTATTGATAAAAAAGATCCAGAAACCTATATACATGGTTACCAGCTT



ACAAATCCTATTACCACTCTGGATAAGATTGGAAATCAATCTGGAATAGTGCTGTATATT



CCTGCGTGGAATACTTCTAAGATAGATCCCGTCACAGGATTTGTAAACCTTCTGTACGCA



GATGATTTGAAGTATAAAAATCAGGAGCAGGCCAAATCATTCATTCAGAAAATAGACAAC



ATATATTTTGAAAATGGAGAGTTTAAATTTGATATTGATTTTTCCAAATGGAATAATCGC



TACTCAATAAGTAAAACTAAATGGACGTTAACAAGTTATGGGACTCGCATCCAGACATTT



AGAAATCCCCAGAAAAACAATAAGTGGGATTCTGCTGAATATGATTTGACAGAAGAGTTT



AAATTAATTTTAAATATAGACGGAACGTTAAAGTCACAGGACGTAGAAACATACAAAAAA



TTCATGTCTTTATTTAAACTAATGCTACAGCTTCGAAACTCTGTTACAGGAACCGACATT



GATTATATGATCTCTCCTGTCACTGATAAAACAGGAACACATTTCGATTCAAGAGAAAAT



ATTAAAAATCTTCCTGCCGATGCAGATGCCAATGGTGCCTACAACATTGCGCGCAAAGGA



ATAATGGCTATTGAAAATATAATGAACGGTATAAGCGATCCACTAAAAATAAGCAACGAA



GACTATTTAAAGTATATTCAGAATCAACAGGAATAA





SEQ
ATGACCCAATTTGAAGGTTTTACCAATTTATACCAAGTTTCGAAGACCCTTCGTTTTGAA


ID
CTGATTCCCCAAGGAAAAACACTCAAACATATCCAGGAGCAAGGGTTCATTGAGGAGGAT


NO:
AAAGCTCGCAATGACCATTACAAAGAGTTAAAACCAATCATTGACCGCATCTATAAGACT


32
TATGCTGATCAATGTCTCCAACTGGTACAGCTTGACTGGGAGAATCTATCTGCAGCCATA



GACTCCTATCGTAAGGAAAAAACCGAAGAAACACGAAATGCGCTGATTGAGGAGCAAGCA



ACATATAGAAATGCGATTCATGACTACTTTATAGGTCGGACGGATAATCTGACAGATGCC



ATAAATAAGCGCCATGCTGAAATCTATAAAGGACTTTTTAAAGCTGAACTTTTCAATGGA



AAAGTTTTAAAGCAATTAGGGACCGTAACCACGACAGAACATGAAAATGCTCTACTCCGT



TCGTTTGACAAATTTACGACCTATTTTTCCGGCTTTTATGAAAACCGAAAAAATGTCTTT



AGCGCTGAAGATATCAGCACGGCAATTCCCCATCGAATCGTCCAGGACAATTTCCCTAAA



TTTAAGGAAAACTGCCATATTTTTACAAGATTGATAACCGCAGTTCCTTCTTTGCGGGAG



CATTTTGAAAATGTCAAAAAGGCCATTGGAATCTTTGTTAGTACGTCTATTGAAGAAGTC



TTTTCCTTTCCCTTTTATAATCAACTTCTAACCCAAACGCAAATTGATCTTTATAATCAA



CTTCTCGGCGGCATATCTAGGGAAGCAGGCACAGAAAAAATCAAGGGACTTAATGAAGTT



CTCAATCTGGCTATCCAAAAAAATGATGAAACAGCCCATATAATCGCGTCCCTGCCGCAT



CGTTTTATTCCTCTTTTTAAACAAATTCTTTCCGATCGAAATACGTTATCCTTTATTTTG



GAAGAATTCAAAAGCGATGAGGAAGTCATCCAATCCTTCTGCAAATATAAAACCCTCTTG



AGAAACGAAAATGTACTGGAGACTGCAGAAGCCCTTTTCAATGAATTAAATTCCATTGAT



TTGACTCATATCTTTATTTCCCATAAAAAGTTAGAAACCATCTCTTCAGCGCTTTGTGAC



CATTGGGATACCTTGCGCAATGCACTTTACGAAAGACGGATTTCTGAACTCACTGGCAAA



ATAACAAAAAGTGCCAAAGAAAAAGTTCAAAGGTCATTAAAACATGAGGATATAAATCTC



CAAGAAATTATTTCTGCTGCAGGAAAAGAACTATCAGAAGCATTCAAACAAAAAACAAGT



GAAATTCTTTCCCATGCCCATGCTGCACTTGACCAGCCTCTTCCCACAACATTAAAAAAA



CAGGAAGAAAAAGAAATCCTCAAATCACAGCTCGATTCGCTTTTAGGCCTTTATCATCTT



CTTGATTGGTTTGCTGTCGATGAAAGCAATGAAGTCGACCCAGAATTCTCAGCACGGCTG



ACAGGCATTAAACTAGAAATGGAACCAAGCCTTTCGTTTTATAATAAAGCAAGAAATTAT



GCGACAAAAAAGCCCTATTCGGTGGAAAAATTTAAATTGAATTTTCAAATGCCAACCCTT



GCCTCTGGTTGGGATGTCAATAAAGAAAAAAATAATGGAGCTATTTTATTCGTAAAAAAT



GGTCTCTATTACCTTGGTATCATGCCTAAACAGAAGGGGCGCTATAAAGCCCTGTCTTTT



GAGCCGACAGAAAAAACATCAGAAGGATTCGATAAGATGTACTATGACTACTTCCCAGAT



GCCGCAAAAATGATTCCTAAGTGTTCCACTCAGCTAAAGGCTGTAACCGCTCATTTTCAA



ACTCATACCACCCCCATTCTTCTCTCAAATAATTTCATTGAACCTCTTGAAATCACAAAA



GAAATTTATGACCTGAACAATCCTGAAAAGGAGCCTAAAAAGTTTCAAACGGCTTATGCA



AAGAAGACAGGCGATCAAAAAGGCTATAGAGAAGCGCTTTGCAAATGGATTGACTTTACG



CGGGATTTTCTCTCTAAATATACGAAAACAACTTCAATCGATTTATCTTCACTCCGCCCT



TCTTCGCAATATAAAGATTTAGGGGAATATTACGCCGAACTGAATCCGCTTCTCTATCAT



ATCTCCTTCCAACGAATTGCTGAAAAGGAAATCATGGATGCTGTAGAAACGGGAAAATTG



TATCTGTTCCAAATCTACAATAAGGATTTTGCGAAGGGCCATCACGGGAAACCAAATCTC



CACACCCTGTATTGGACAGGTCTCTTCAGTCCTGAAAACCTTGCGAAAACCAGCATCAAA



CTTAATGGTCAAGCAGAATTGTTCTATCGACCTAAAAGCCGCATGAAGCGGATGGCCCAT



CGTCTTGGGGAAAAAATGCTGAACAAAAAACTAAAGGACCAGAAGACACCGATTCCAGAT



ACCCTCTACCAAGAACTGTACGATTATGTCAACCACCGGCTAAGCCATGATCTTTCCGAT



GAAGCAAGGGCCCTGCTTCCAAATGTTATCACCAAAGAAGTCTCCCATGAAATTATAAAG



GATCGGCGGTTTACTTCCGATAAATTTTTCTTCCATGTTCCCATTACACTGAATTATCAA



GCAGCCAATAGTCCCAGTAAATTCAACCAGCGTGTCAATGCCTACCTTAAGGAGCATCCG



GAAACGCCCATCATTGGTATCGATCGTGGAGAACGCAATCTAATCTATATTACCGTCATT



GACAGTACTGGGAAAATTTTGGAGCAGCGTTCCCTGAATACCATCCAGCAATTTGACTAC



CAAAAAAAATTGGACAACAGGGAAAAAGAGCGTGTTGCCGCCCGTCAAGCCTGGTCCGTC



GTCGGAACGATCAAAGACCTTAAACAAGGCTACTTGTCACAGGTCATCCATGAAATTGTA



GACCTGATGATTCATTACCAAGCTGTTGTCGTCCTTGAAAACCTCAACTTCGGATTTAAA



TCAAAACGGACAGGCATTGCCGAAAAAGCAGTCTACCAACAATTTGAAAAGATGCTAATA



GATAAACTCAACTGTTTGGTTCTCAAAGATTATCCTGCTGAGAAAGTGGGAGGCGTCTTA



AACCCGTATCAACTTACAGATCAGTTCACGAGCTTTGCAAAAATGGGCACGCAAAGCGGC



TTCCTTTTCTATGTACCGGCCCCTTATACCTCAAAGATTGATCCCCTGACTGGTTTTGTC



GATCCCTTTGTATGGAAGACCATTAAAAATCATGAAAGTCGGAAGCATTTCCTAGAAGGA



TTTGATTTCCTGCATTATGATGTCAAAACAGGTGATTTTATCCTCCATTTTAAAATGAAT



CGGAATCTCTCTTTCCAGAGAGGGCTTCCTGGCTTCATGCCAGCTTGGGATATTGTTTTC



GAAAAGAATGAAACCCAATTTGATGCAAAAGGGACGCCCTTCATTGCAGGAAAACGAATT



GTTCCTGTAATCGAAAATCATCGTTTTACGGGTCGTTACAGAGACCTCTATCCCGCTAAT



GAACTCATTGCCCTTCTGGAAGAAAAAGGCATTGTCTTTAGAGACGGAAGTAATATATTA



CCCAAACTTTTAGAAAATGATGATTCTCATGCAATTGATACGATGGTCGCCTTGATTCGC



AGTGTACTCCAAATGAGAAACAGCAATGCCGCAACGGGGGAAGACTACATCAACTCTCCC



GTTAGGGATCTGAACGGGGTGTGTTTCGACAGTCGATTCCAAAATCCAGAATGGCCAATG



GATGCGGATGCCAACGGAGCTTATCATATTGCCTTAAAAGGGCAGCTTCTTCTGAACCAC



CTCAAAGAAAGCAAAGATCTGAAATTACAAAACGGCATCAGCAACCAAGATTGGCTGGCC



TACATTCAGGAACTGAGAAACTGA





SEQ
ATGGCCGTCAAATCCATCAAAGTGAAACTTCGTCTCGACGATATGCCGGAGATTCGGGCC


ID
GGTCTATGGAAACTTCATAAGGAAGTCAATGCGGGGGTTCGATATTACACGGAATGGCTC


NO:
AGTCTTCTCCGTCAAGAGAACTTGTATCGAAGAAGTCCGAATGGGGACGGAGAGCAAGAA


33
TGTGATAAGACTGCAGAAGAATGCAAAGCCGAATTGTTGGAGCGGCTGCGCGCGCGTCAA



GTGGAGAATGGACACCGTGGTCCGGCGGGATCGGACGATGAATTGCTGCAGTTGGCGCGT



CAACTCTATGAGTTGTTGGTTCCGCAGGCGATAGGTGCGAAAGGCGACGCGCAGCAAATT



GCCCGCAAATTTTTGAGCCCCTTGGCCGACAAGGACGCAGTTGGTGGGCTTGGAATCGCG



AAGGCGGGGAACAAACCGCGGTGGGTTCGCATGCGCGAAGCGGGGGAACCAGGCTGGGAA



GAGGAGAAGGAGAAGGCTGAGACGAGGAAATCTGCGGATCGGACTGCGGATGTTTTGCGC



GCGCTCGCGGATTTTGGGTTAAAGCCACTGATGCGCGTATACACCGATTCTGAGATGTCA



TCGGTGGAGTGGAAACCGCTTCGGAAGGGACAAGCCGTTCGGACGTGGGATAGGGACATG



TTCCAACAAGCTATCGAACGGATGATGTCGTGGGAGTCGTGGAATCAGCGCGTTGGGCAA



GAGTACGCGAAACTCGTAGAACAAAAAAATCGATTTGAGCAGAAGAATTTCGTCGGCCAG



GAACATCTGGTCCATCTCGTCAATCAGTTGCAACAAGATATGAAAGAAGCATCGCCCGGA



CTCGAATCGAAAGAGCAAACCGCGCACTATGTGACGGGACGGGCATTGCGCGGATCGGAC



AAGGTATTTGAGAAGTGGGGGAAACTCGCCCCCGATGCACCTTTCGATTTGTACGACGCC



GAAATCAAGAATGTGCAGAGACGTAACACGAGACGATTCGGATCACATGACTTGTTCGCA



AAATTGGCAGAGCCAGAGTATCAGGCCCTGTGGCGCGAAGATGCTTCGTTTCTCACGCGT



TACGCGGTGTACAACAGCATCCTTCGCAAACTGAATCACGCCAAAATGTTCGCGACGTTT



ACTTTGCCGGATGCAACGGCGCACCCGATTTGGACTCGCTTCGATAAATTGGGTGGGAAT



TTGCACCAGTACACCTTTTTGTTCAACGAATTTGGAGAACGCAGGCACGCGATTCGTTTT



CACAAGCTATTGAAAGTCGAGAATGGTGTCGCAAGAGAAGTTGATGATGTCACCGTGCCC



ATTTCAATGTCAGAGCAATTGGATAATCTGCTTCCCAGAGATCCCAATGAACCGATTGCG



CTATATTTTCGAGATTACGGAGCCGAACAGCATTTCACAGGTGAATTTGGTGGCGCGAAG



ATCCAGTGCCGCCGGGATCAGCTGGCTCATATGCACCGACGCAGAGGGGCGAGGGATGTT



TATCTCAATGTCAGCGTACGTGTGCAGAGTCAGTCTGAGGCGCGGGGAGAACGTCGCCCG



CCGTATGCGGCAGTATTTCGTCTGGTCGGGGACAACCATCGCGCGTTTGTCCATTTCGAT



AAACTATCGGATTATCTTGCGGAACATCCGGATGATGGGAAGCTCGGGTCGGAGGGGTTG



CTTTCCGGGCTGCGGGTGATGAGTGTCGATCTCGGCCTTCGCACATCTGCATCGATTTCC



GTTTTTCGCGTTGCCCGGAAGGACGAGTTGAAGCCGAACTCAAAAGGTCGTGTACCGTTT



TTCTTTCCGATAAAAGGGAATGACAATCTCGTCGCGGTTCATGAGCGATCACAACTCTTG



AAGCTGCCTGGCGAAACGGAGTCGAAGGACCTGCGTGCTATCCGAGAAGAACGCCAACGG



ACATTGCGGCAGTTGCGGACGCAACTGGCGTATTTGCGGCTGCTCGTGCGGTGTGGGTCG



GAAGATGTGGGGCGGCGTGAACGGAGTTGGGCAAAGCTTATCGAGCAGCCGGTGGATGCG



GCCAATCACATGACACCGGATTGGCGCGAGGCTTTTGAAAACGAACTTCAGAAGCTTAAG



TCACTCCATGGTATCTGTAGCGACAAGGAATGGATGGATGCTGTCTACGAGAGCGTTCGC



CGCGTGTGGCGTCACATGGGCAAACAGGTTCGCGATTGGCGAAAGGACGTACGAAGCGGA



GAGCGGCCCAAGATTCGCGGCTATGCGAAAGACGTGGTCGGTGGAAACTCGATTGAGCAA



ATCGAGTATCTGGAACGTCAGTACAAGTTCCTCAAGAGTTGGAGCTTCTTTGGTAAGGTG



TCGGGACAAGTGATTCGTGCGGAGAAGGGATCTCGTTTTGCGATCACGCTGCGCGAACAC



ATTGATCACGCGAAGGAAGATCGGCTGAAGAAATTGGCGGATCGCATCATTATGGAGGCT



CTCGGCTATGTGTACGCGTTGGATGAGCGCGGCAAAGGAAAGTGGGTTGCGAAGTATCCG



CCGTGCCAGCTCATCCTGCTGGAGGAATTGAGCGAGTACCAGTTCAATAACGACAGGCCT



CCGAGCGAAAACAACCAGTTGATGCAATGGAGTCATCGCGGCGTGTTCCAGGAGTTGATA



AATCAGGCCCAAGTCCATGATTTACTCGTTGGGACGATGTATGCAGCGTTCTCGTCGCGA



TTCGACGCGCGAACTGGGGCACCGGGTATCCGCTGTCGCCGGGTTCCGGCGCGTTGCACC



CAGGAGCACAATCCAGAACCATTTCCTTGGTGGCTGAACAAGTTTGTGGTGGAACATACG



TTGGATGCTTGTCCCCTACGCGCAGACGACCTCATCCCAACGGGTGAAGGAGAGATTTTT



GTCTCGCCGTTCAGCGCGGAGGAGGGGGACTTTCATCAGATTCACGCCGACCTGAATGCG



GCGCAAAATCTGCAGCAGCGACTCTGGTCTGATTTTGATATCAGTCAAATTCGGTTGCGG



TGTGATTGGGGTGAAGTGGACGGTGAACTCGTTCTGATCCCAAGGCTTACAGGAAAACGA



ACGGCGGATTCATATAGCAACAAGGTGTTTTATACCAATACAGGTGTCACCTATTATGAG



CGAGAGCGGGGGAAGAAGCGGAGAAAGGTTTTCGCGCAAGAGAAATTGTCGGAGGAAGAG



GCGGAGTTGCTCGTGGAAGCAGACGAGGCGAGGGAGAAATCGGTCGTTTTGATGCGTGAT



CCGTCTGGCATCATCAATCGGGGAAATTGGACCAGGCAAAAGGAATTTTGGTCGATGGTG



AACCAGCGGATCGAAGGATACTTGGTCAAGCAGATTCGCTCGCGCGTTCCATTACAAGAT



AGTGCGTGTGAAAACACGGGGGATATTTAA





SEQ
ATGGCGACACGCAGTTTTATTTTAAAAATTGAACCAAATGAAGAAGTTAAAAAGGGATTA


ID
TGGAAGACGCATGAGGTATTGAATCATGGAATTGCCTACTACATGAATATTCTGAAACTA


NO:
ATTAGACAGGAAGCTATTTATGAACATCATGAACAAGATCCTAAAAATCCGAAAAAAGTT


34
TCAAAAGCAGAAATACAAGCCGAGTTATGGGATTTTGTTTTAAAAATGCAAAAATGTAAT



AGTTTTACACATGAAGTTGACAAAGATGTTGTTTTTAACATCCTGCGTGAACTATATGAA



GAGTTGGTCCCTAGTTCAGTCGAGAAAAAGGGTGAAGCCAATCAATTATCGAATAAGTTT



CTGTACCCGCTAGTTGATCCGAACAGTCAAAGTGGGAAAGGGACGGCATCATCCGGACGT



AAACCTCGGTGGTATAATTTAAAAATAGCAGGCGACCCATCGTGGGAGGAAGAAAAGAAA



AAATGGGAAGAGGATAAAAAGAAAGATCCCCTTGCTAAAATCTTAGGTAAGTTAGCAGAA



TATGGGCTTATTCCGCTATTTATTCCATTTACTGACAGCAACGAACCAATTGTAAAAGAA



ATTAAATGGATGGAAAAAAGTCGTAATCAAAGTGTCCGGCGACTTGATAAGGATATGTTT



ATCCAAGCATTAGAGCGTTTTCTTTCATGGGAAAGCTGGAACCTTAAAGTAAAGGAAGAG



TATGAAAAAGTTGAAAAGGAACACAAAACACTAGAGGAAAGGATAAAAGAGGACATTCAA



GCATTTAAATCCCTTGAACAATATGAAAAAGAACGGCAGGAGCAACTTCTTAGAGATACA



TTGAATACAAATGAATACCGATTAAGCAAAAGAGGATTACGTGGTTGGCGTGAAATTATC



CAAAAATGGCTAAAGATGGATGAAAATGAACCATCAGAAAAATATTTAGAAGTATTTAAA



GATTATCAACGGAAACATCCACGAGAAGCCGGGGACTATTCTGTCTATGAATTTTTAAGC



AAGAAAGAAAATCATTTTATTTGGCGAAATCATCCTGAATATCCTTATTTGTATGCTACA



TTTTGTGAAATTGACAAAAAAAAGAAAGACGCTAAGCAACAGGCAACTTTTACTTTGGCT



GACCCGATTAACCATCCGTTATGGGTACGATTTGAAGAAAGAAGCGGTTCGAACTTAAAC



AAATATCGAATTTTAACAGAGCAATTACACACTGAAAAGTTAAAAAAGAAATTAACAGTT



CAACTTGATCGTTTAATTTATCCAACTGAATCCGGCGGTTGGGAGGAAAAAGGTAAAGTA



GATATCGTTTTGTTGCCGTCAAGACAATTTTATAATCAAATCTTCCTTGATATAGAAGAA



AAGGGGAAACATGCTTTTACTTATAAGGATGAAAGTATTAAATTCCCCCTTAAAGGTACA



CTTGGTGGTGCAAGAGTGCAGTTTGACCGTGACCATTTGCGGAGATATCCGCATAAAGTA



GAATCAGGAAATGTTGGACGGATTTATTTTAACATGACAGTAAATATTGAACCAACTGAG



AGCCCTGTTAGTAAGTCTTTGAAAATACATAGGGACGATTTCCCCAAGTTCGTTAATTTT



AAACCGAAAGAGCTCACCGAATGGATAAAAGATAGTAAAGGGAAAAAATTAAAAAGTGGT



ATAGAATCCCTTGAAATTGGTCTACGGGTGATGAGTATCGACTTAGGTCAACGTCAAGCG



GCTGCTGCATCGATTTTTGAAGTAGTTGATCAGAAACCGGATATTGAAGGGAAGTTATTT



TTTCCAATCAAAGGAACTGAGCTTTATGCTGTTCACCGGGCAAGTTTTAACATTAAATTA



CCGGGTGAAACATTAGTAAAATCACGGGAAGTATTGCGGAAAGCTCGGGAGGACAACTTA



AAATTAATGAATCAAAAGTTAAACTTTCTAAGAAATGTTCTACATTTCCAACAGTTTGAA



GATATCACAGAAAGAGAGAAGCGTGTAACTAAATGGATTTCTAGACAAGAAAATAGTGAT



GTTCCTCTTGTATATCAAGATGAGCTAATTCAAATTCGTGAATTAATGTATAAACCCTAT



AAAGATTGGGTTGCCTTTTTAAAACAACTCCATAAACGGCTAGAAGTCGAGATTGGCAAA



GAGGTTAAGCATTGGCGAAAATCATTAAGTGACGGGAGAAAAGGTCTTTACGGAATCTCC



CTAAAAAATATTGATGAAATTGATCGAACAAGGAAATTCCTTTTAAGATGGAGCTTACGT



CCAACAGAACCTGGGGAAGTAAGACGCTTGGAACCAGGACAGCGTTTTGCGATTGATCAA



TTAAACCACCTAAATGCATTAAAAGAAGATCGATTAAAAAAGATGGCAAATACGATTATC



ATGCATGCCTTAGGTTACTGTTATGATGTAAGAAAGAAAAAGTGGCAGGCAAAAAATCCA



GCATGTCAAATTATTTTATTTGAAGATTTATCTAACTACAATCCTTACGAGGAAAGGTCC



CGTTTTGAAAACTCAAAACTGATGAAGTGGTCACGGAGAGAAATTCCACGACAAGTCGCC



TTACAAGGTGAAATTTACGGATTACAAGTTGGGGAAGTAGGTGCCCAATTCAGTTCAAGA



TTCCATGCGAAAACCGGGTCGCCGGGAATTCGTTGCAGTGTTGTAACGAAAGAAAAATTG



CAGGATAATCGCTTTTTTAAAAATTTACAAAGAGAAGGACGACTTACTCTTGATAAAATC



GCAGTTTTAAAAGAAGGAGACTTATATCCAGATAAAGGTGGAGAAAAGTTTATTTCTTTA



TCAAAGGATCGAAAGTTGGTAACTACGCATGCTGATATTAACGCGGCCCAAAATTTACAG



AAGCGTTTTTGGACAAGAACACATGGATTTTATAAAGTTTACTGCAAAGCCTATCAGGTT



GATGGACAAACTGTTTATATTCCGGAGAGCAAGGACCAAAAACAAAAAATAATTGAAGAA



TTTGGGGAAGGCTATTTTATTTTAAAAGATGGTGTATATGAATGGGGTAATGCGGGGAAA



CTAAAAATTAAAAAAGGTTCCTCTAAACAATCATCGAGTGAATTAGTAGATTCGGACATA



CTGAAAGATTCATTTGATTTAGCAAGTGAACTTAAGGGAGAGAAACTCATGTTATATCGA



GATCCGAGTGGAAACGTATTTCCTTCCGACAAGTGGATGGCAGCAGGAGTATTTTTTGGC



AAATTAGAAAGAATATTGATTTCTAAGTTAACAAATCAATACTCAATATCAACAATAGAA



GATGATTCTTCAAAACAATCAATGTAA





SEQ
ATGCCCACCCGCACCATCAATCTGAAACTTGTTCTTGGGAAAAATCCTGAAAACGCAACA


ID
TTGCGACGCGCCCTATTTTCGACACACCGTTTGGTTAACCAAGCGACGAAACGTATTGAG


NO:
GAATTCTTGTTGCTGTGTCGTGGAGAAGCCTACAGAACAGTGGATAATGAGGGGAAGGAA


35
GCCGAGATTCCACGTCATGCAGTCCAAGAAGAAGCTCTTGCCTTTGCCAAAGCTGCTCAA



CGCCACAACGGCTGTATATCCACCTATGAAGACCAAGAGATTCTTGATGTACTGCGGCAA



CTGTACGAACGTCTTGTTCCTTCGGTCAACGAAAACAACGAGGCAGGCGATGCTCAAGCT



GCTAACGCCTGGGTCAGTCCGCTCATGTCGGCAGAAAGCGAAGGAGGCTTGTCGGTCTAC



GACAAGGTGCTTGATCCACCGCCGGTTTGGATGAAGCTTAAAGAAGAAAAGGCTCCAGGA



TGGGAAGCCGCTTCTCAAATTTGGATTCAGAGTGATGAGGGACAGTCGTTACTTAATAAG



CCAGGTAGCCCTCCCCGCTGGATTCGAAAACTGCGATCTGGGCAACCGTGGCAAGATGAT



TTCGTCAGTGACCAAAAGAAAAAGCAAGATGAGCTGACCAAAGGGAACGCACCACTTATA



AAACAACTCAAAGAAATGGGGTTGTTGCCTCTTGTTAACCCATTTTTTAGACATCTTCTT



GACCCTGAAGGTAAAGGCGTGAGTCCATGGGACCGTCTTGCTGTACGCGCTGCAGTGGCT



CACTTTATCTCCTGGGAAAGTTGGAATCATAGAACACGTGCAGAATACAATTCCTTGAAA



CTACGGCGAGACGAGTTTGAGGCAGCATCCGACGAATTCAAAGACGATTTTACTTTGCTC



CGACAATATGAAGCCAAACGCCATAGTACATTGAAAAGCATCGCGCTGGCCGACGATTCG



AACCCTTACCGGATTGGAGTACGTTCTCTGCGTGCCTGGAACCGCGTTCGTGAAGAATGG



ATAGACAAGGGTGCAACAGAAGAACAACGCGTGACCATATTGTCAAAGCTTCAAACACAA



CTTCGGGGAAAATTCGGCGATCCCGATCTGTTCAACTGGCTAGCTCAGGATAGGCATGTC



CATTTGTGGTCTCCTCGGGACAGCGTGACACCATTGGTTCGCATCAATGCGGTAGATAAA



GTTCTGCGTCGACGAAAACCGTATGCATTGATGACCTTTGCCCATCCCCGCTTCCACCCT



CGATGGATACTGTACGAGGCTCCAGGAGGAAGCAATCTCCGTCAATATGCATTGGATTGT



ACAGAAAACGCTCTACACATCACGTTGCCTTTGCTTGTCGACGATGCGCACGGAACCTGG



ATTGAAAAAAAGATCAGGGTGCCGCTGGCACCATCCGGACAAATTCAAGATTTAACTCTG



GAAAAACTTGAGAAGAAAAAAAATCGTTTATACTACCGTTCCGGTTTTCAGCAGTTTGCC



GGCTTGGCTGGCGGAGCTGAGGTTCTTTTCCACAGACCCTATATGGAACACGACGAACGC



AGCGAGGAGTCTCTTTTGGAACGTCCGGGAGCCGTTTGGTTCAAATTGACCCTGGATGTG



GCAACACAGGCTCCCCCGAACTGGCTTGATGGTAAGGGCCGTGTCCGTACACCGCCGGAG



GTACATCATTTTAAAACCGCATTGTCGAATAAAAGCAAACATACACGTACGCTGCAGCCG



GGTCTCCGTGTCTTGTCAGTAGACTTGGGCATGCGAACATTCGCCTCCTGCTCAGTATTT



GAACTCATCGAGGGAAAGCCTGAGACAGGCCGTGCCTTCCCTGTTGCCGATGAGAGATCA



ATGGACAGCCCGAATAAACTGTGGGCCAAGCATGAACGTAGTTTTAAACTGACGCTCCCC



GGCGAAACCCCTTCTCGAAAGGAAGAGGAAGAGCGTAGCATAGCAAGAGCGGAAATTTAT



GCACTGAAACGCGACATACAACGCCTCAAAAGCCTACTCCGCTTAGGTGAAGAAGATAAC



GATAACCGTCGTGATGCATTGCTTGAACAGTTCTTTAAAGGATGGGGAGAAGAAGACGTT



GTGCCTGGACAAGCGTTTCCACGCTCTCTTTTCCAAGGGTTGGGAGCTGCCCCGTTTCGC



TCAACTCCAGAGTTATGGCGTCAGCATTGCCAAACATATTATGACAAAGCGGAAGCCTGT



CTGGCTAAACATATCAGTGATTGGCGCAAGCGAACTCGTCCCCGTCCGACATCGCGGGAG



ATGTGGTACAAAACACGTTCCTATCATGGCGGCAAGTCCATTTGGATGTTGGAATATCTT



GATGCCGTTCGAAAACTGCTTCTCAGTTGGAGCTTACGTGGTCGTACTTACGGTGCCATT



AATCGCCAGGATACAGCCCGGTTTGGTTCTTTGGCATCACGGCTGCTCCACCATATCAAT



TCCCTAAAGGAAGACCGCATCAAAACAGGAGCCGACTCTATCGTTCAGGCTGCTCGCGGG



TATATTCCTCTCCCTCATGGCAAGGGTTGGGAACAAAGATATGAGCCTTGTCAGCTCATA



TTATTTGAAGACCTCGCACGATATCGCTTTCGCGTGGATCGACCTCGTCGAGAGAACAGC



CAACTCATGCAGTGGAACCATCGAGCCATCGTGGCAGAAACAACGATGCAAGCCGAACTC



TACGGACAAATTGTCGAAAATACTGCAGCGGGGTTCAGCAGTCGTTTTCACGCGGCGACA



GGTGCCCCCGGTGTACGTTGTCGTTTTCTTCTAGAAAGAGACTTTGATAACGATTTGCCC



AAACCGTACCTTCTCAGGGAACTTTCTTGGATGCTCGGCAATACAAAAGTCGAGTCTGAA



GAAGAAAAGCTTCGATTGCTGTCTGAAAAAATCAGGCCAGGCAGTCTTGTTCCTTGGGAT



GGAGGCGAACAGTTCGCTACCCTGCATCCCAAAAGACAAACACTTTGCGTCATTCATGCC



GATATGAATGCTGCCCAAAATTTACAACGCCGGTTTTTCGGTCGATGCGGCGAGGCCTTT



CGGCTTGTTTGTCAACCCCACGGTGACGACGTGTTACGACTCGCATCCACCCCAGGAGCT



CGTCTTCTTGGAGCCCTGCAGCAGCTTGAAAATGGACAAGGAGCTTTCGAGTTGGTTCGA



GACATGGGGTCAACAAGTCAAATGAACCGGTTCGTCATGAAGTCTTTGGGAAAAAAGAAA



ATAAAACCCCTTCAGGACAACAATGGAGACGACGAGCTTGAAGACGTGTTGTCCGTACTC



CCGGAGGAAGACGACACAGGACGTATCACAGTCTTCCGCGATTCATCAGGAATCTTTTTT



CCTTGCAACGTCTGGATACCGGCCAAACAGTTTTGGCCAGCAGTACGCGCCATGATTTGG



AAGGTCATGGCTTCCCATTCTTTGGGGTGA





SEQ
ATGACAAAGTTAAGACACCGACAGAAAAAATTAACACACGACTGGGCTGGCTCCAAAAAG


ID
AGGGAAGTATTAGGCTCAAATGGCAAGCTTCAGAATCCGTTGTTAATGCCGGTTAAAAAA


NO:
GGTCAGGTTACTGAGTTCCGGAAAGCGTTTTCTGCGTATGCTCGCGCAACGAAAGGAGAA


36
ATGACTGACGGCCGAAAGAATATGTTTACGCATAGTTTCGAGCCATTTAAGACAAAGCCC



TCGCTTCATCAGTGTGAATTGGCAGATAAAGCATATCAATCTTTACATTCGTATCTGCCT



GGTTCTCTTGCTCATTTTCTATTATCTGCTCACGCATTAGGTTTTCGTATTTTTTCAAAA



TCTGGTGAAGCAACTGCATTCCAGGCATCCTCTAAAATTGAAGCTTACGAATCAAAATTG



GCAAGCGAATTAGCTTGTGTAGATTTATCTATTCAAAACTTGACTATTTCAACGCTTTTT



AATGCGCTTACAACGTCTGTAAGAGGGAAGGGCGAAGAAACTAGCGCTGACCCCTTAATT



GCACGATTTTACACCTTACTTACTGGCAAGCCTCTGTCTCGAGACACTCAAGGGCCTGAA



CGTGATTTAGCAGAAGTTATCTCGCGTAAGATAGCTAGTTCTTTTGGCACATGGAAAGAA



ATGACGGCAAACCCTCTTCAGTCATTACAATTTTTTGAAGAGGAACTCCATGCGCTGGAT



GCCAATGTCTCGCTCTCACCCGCCTTCGACGTTTTAATTAAAATGAATGATTTGCAGGGC



GATTTAAAAAATCGAACCATTGTTTTTGATCCTGACGCCCCTGTTTTTGAATATAACGCA



GAAGACCCTGCCGACATAATTATTAAACTTACAGCTCGTTACGCTAAAGAAGCTGTCATC



AAAAATCAAAACGTAGGAAATTACGTTAAAAACGCTATTACTACCACAAATGCCAATGGT



CTTGGTTGGCTTTTGAACAAAGGTTTGTCGTTACTCCCTGTCTCGACCGATGACGAATTG



CTAGAGTTTATTGGCGTTGAACGATCTCATCCCTCATGCCATGCCTTAATTGAATTGATT



GCACAATTAGAAGCCCCCGAGCTCTTTGAGAAGAACGTATTTTCAGATACTCGTTCTGAA



GTTCAAGGTATGATTGATTCAGCTGTTTCTAATCATATTGCTCGTCTTTCCAGCTCTAGA



AATAGCTTGTCAATGGATAGTGAAGAATTAGAACGTTTAATCAAAAGCTTTCAGATACAC



ACACCTCATTGCTCACTTTTTATTGGCGCCCAATCACTTTCACAGCAGTTAGAATCTTTG



CCTGAAGCCCTTCAATCGGGCGTTAATTCAGCCGATATTTTACTAGGCTCTACTCAATAT



ATGCTCACCAATTCTTTGGTTGAAGAGTCAATTGCAACTTATCAAAGAACACTTAATCGC



ATCAATTACTTGTCAGGTGTTGCAGGTCAGATTAACGGCGCAATAAAGCGAAAAGCGATA



GATGGAGAAAAAATTCACTTGCCTGCAGCTTGGTCAGAGTTGATATCTTTACCATTTATA



GGCCAGCCTGTTATAGATGTTGAAAGCGATTTAGCTCATCTAAAAAATCAATACCAAACA



CTTTCAAATGAGTTTGATACTCTTATATCTGCTTTGCAAAAGAATTTTGATTTGAACTTT



AATAAAGCGCTCCTTAATCGTACTCAGCATTTTGAAGCCATGTGTAGAAGCACTAAGAAA



AACGCTTTATCCAAACCAGAGATCGTTTCCTATCGCGACCTGCTTGCTCGATTAACTTCT



TGTTTGTATCGAGGCTCTTTAGTTTTGCGTCGTGCCGGCATTGAAGTGTTAAAAAAACAT



AAAATATTTGAGTCAAACAGCGAACTTCGTGAACATGTTCATGAAAGAAAGCATTTCGTG



TTTGTTAGTCCTCTAGATCGCAAAGCCAAGAAACTCCTTCGATTAACTGATTCGCGTCCA



GACTTGTTACATGTTATTGATGAAATATTGCAGCACGATAATCTTGAAAACAAAGACCGC



GAGTCACTTTGGCTAGTTCGCTCTGGTTATTTGCTTGCAGGACTTCCAGATCAACTTTCT



TCATCTTTTATTAACTTGCCTATCATTACTCAAAAAGGAGATAGACGCCTTATAGACCTG



ATTCAGTATGATCAAATTAATCGTGATGCTTTTGTTATGTTAGTGACCTCTGCATTCAAG



TCTAATTTGTCTGGTCTGCAGTATCGTGCCAATAAGCAATCGTTCGTTGTTACTCGCACG



CTAAGCCCTTATCTCGGCTCAAAACTTGTCTACGTACCCAAGGATAAAGATTGGTTAGTT



CCTTCTCAAATGTTTGAAGGACGATTTGCTGACATTCTTCAATCAGATTATATGGTCTGG



AAAGATGCCGGTCGTCTTTGTGTTATTGATACTGCAAAACACCTTTCTAATATAAAGAAG



TCTGTATTTTCATCCGAAGAAGTTCTCGCTTTTTTAAGAGAACTCCCTCACCGCACATTT



ATCCAGACCGAAGTTCGCGGCCTTGGCGTTAATGTCGATGGAATTGCATTTAATAATGGT



GATATTCCGTCATTAAAAACCTTTTCAAATTGCGTTCAGGTAAAAGTTTCTCGGACTAAT



ACATCCCTAGTTCAAACACTTAATCGTTGGTTTGAAGGAGGAAAAGTTTCTCCTCCGAGC



ATTCAATTTGAACGGGCGTATTATAAAAAAGACGATCAAATTCATGAAGACGCAGCGAAA



AGAAAGATACGATTCCAGATGCCCGCAACTGAGTTGGTTCATGCTTCTGACGATGCGGGG



TGGACACCAAGTTATTTGCTCGGCATTGATCCTGGCGAGTATGGAATGGGTCTTTCATTG



GTTTCGATTAATAACGGAGAAGTCTTAGATTCAGGCTTTATTCATATTAATTCTCTGATC



AATTTTGCCTCTAAAAAGAGCAACCATCAAACTAAGGTTGTTCCGCGTCAGCAGTACAAA



TCTCCTTATGCAAATTATTTAGAACAATCTAAAGATTCTGCTGCTGGTGATATTGCGCAT



ATACTCGATCGACTTATATACAAATTAAATGCGTTGCCTGTTTTTGAGGCTCTTTCAGGT



AATTCTCAGAGTGCTGCTGATCAAGTTTGGACGAAAGTCTTATCGTTTTACACTTGGGGT



GATAATGACGCTCAGAATTCTATTAGAAAGCAGCATTGGTTTGGAGCCAGTCATTGGGAT



ATCAAAGGTATGTTAAGGCAACCCCCTACGGAGAAGAAGCCTAAACCGTATATTGCTTTT



CCTGGCTCTCAGGTTTCTTCGTATGGTAATTCCCAACGTTGCTCTTGCTGCGGTCGCAAT



CCTATTGAACAACTTCGAGAAATGGCAAAGGATACCTCTATTAAAGAGCTAAAAATTCGC



AATTCTGAGATACAGCTTTTTGACGGAACCATTAAATTATTTAATCCAGACCCATCCACT



GTGATAGAGAGAAGGCGACATAATCTTGGTCCATCAAGAATTCCTGTTGCTGACCGTACT



TTCAAAAACATCAGTCCATCAAGTCTAGAATTTAAAGAATTGATTACTATCGTGTCTCGA



TCTATCCGTCATTCACCTGAGTTTATCGCTAAAAAACGCGGCATAGGGTCTGAGTATTTT



TGCGCTTATTCCGATTGCAACTCATCCTTAAATTCTGAAGCTAACGCAGCTGCTAACGTA



GCGCAAAAATTTCAAAAACAGTTATTTTTTGAGTTATAA





SEQ
ATGAAGAGAATTCTGAACAGTCTGAAAGTTGCTGCCTTGAGACTTCTGTTTCGAGGCAAA


ID
GGTTCTGAATTAGTGAAGACAGTCAAATATCCATTGGTTTCCCCGGTTCAAGGCGCGGTT


NO:
GAAGAACTTGCTGAAGCAATTCGGCACGACAACCTGCACCTTTTTGGGCAGAAGGAAATA


37
GTGGATCTTATGGAGAAAGACGAAGGAACCCAGGTGTATTCGGTTGTGGATTTTTGGTTG



GATACCCTGCGTTTAGGGATGTTTTTCTCACCATCAGCGAATGCGTTGAAAATCACGCTG



GGAAAATTCAATTCTGATCAGGTTTCACCTTTTCGTAAGGTTTTGGAGCAGTCACCTTTT



TTTCTTGCGGGTCGCTTGAAGGTTGAACCTGCGGAAAGGATACTTTCTGTTGAAATCAGA



AAGATTGGTAAAAGAGAAAACAGAGTTGAGAACTATGCCGCCGATGTGGAGACATGCTTC



ATTGGTCAGCTTTCTTCAGATGAGAAACAGAGTATCCAGAAGCTGGCAAATGATATCTGG



GATAGCAAGGATCATGAGGAACAGAGAATGTTGAAGGCGGATTTTTTTGCTATACCTCTT



ATAAAAGACCCCAAAGCTGTCACAGAAGAAGATCCTGAAAATGAAACGGCGGGAAAACAG



AAACCGCTTGAATTATGTGTTTGTCTTGTTCCTGAGTTGTATACCCGAGGTTTCGGCTCC



ATTGCTGATTTTCTGGTTCAGCGACTTACCTTGCTGCGTGACAAAATGAGTACCGACACG



GCGGAAGATTGCCTCGAGTATGTTGGCATTGAGGAAGAAAAAGGCAATGGAATGAATTCC



TTGCTCGGCACTTTTTTGAAGAACCTGCAGGGTGATGGTTTTGAACAGATTTTTCAGTTT



ATGCTTGGGTCTTATGTTGGCTGGCAGGGGAAGGAAGATGTACTGCGCGAACGATTGGAT



TTGCTGGCCGAAAAAGTCAAAAGATTACCAAAGCCAAAATTTGCCGGAGAATGGAGTGGT



CATCGTATGTTTCTCCATGGTCAGCTGAAAAGCTGGTCGTCGAATTTCTTCCGTCTTTTT



AATGAGACGCGGGAACTTCTGGAAAGTATCAAGAGTGATATTCAACATGCCACCATGCTC



ATTAGCTATGTGGAAGAGAAAGGAGGCTATCATCCACAGCTGTTGAGTCAGTATCGGAAG



TTAATGGAACAATTACCGGCGTTGCGGACTAAGGTTTTGGATCCTGAGATTGAGATGACG



CATATGTCCGAGGCTGTTCGAAGTTACATTATGATACACAAGTCTGTAGCGGGATTTCTG



CCGGATTTACTCGAGTCTTTGGATCGAGATAAGGATAGGGAATTTTTGCTTTCCATCTTT



CCTCGTATTCCAAAGATAGATAAGAAGACGAAAGAGATCGTTGCATGGGAGCTACCGGGC



GAGCCAGAGGAAGGCTATTTGTTCACAGCAAACAACCTTTTCCGGAATTTTCTTGAGAAT



CCGAAACATGTGCCACGATTTATGGCAGAGAGGATTCCCGAGGATTGGACGCGTTTGCGC



TCGGCCCCTGTGTGGTTTGATGGGATGGTGAAGCAATGGCAGAAGGTGGTGAATCAGTTG



GTTGAATCTCCAGGCGCCCTTTATCAGTTCAATGAAAGTTTTTTGCGTCAAAGACTGCAA



GCAATGCTTACGGTCTATAAGCGGGATCTCCAGACTGAGAAGTTTCTGAAGCTGCTGGCT



GATGTCTGTCGTCCACTCGTTGATTTTTTCGGACTTGGAGGAAATGATATTATCTTCAAG



TCATGTCAGGATCCAAGAAAGCAATGGCAGACTGTTATTCCACTCAGTGTCCCAGCGGAT



GTTTATACAGCATGTGAAGGCTTGGCTATTCGTCTCCGCGAAACTCTTGGATTCGAATGG



AAAAATCTGAAAGGACACGAGCGGGAAGATTTTTTACGGCTGCATCAGTTGCTGGGAAAT



CTGCTGTTCTGGATCAGGGATGCGAAACTTGTCGTGAAGCTGGAAGACTGGATGAACAAT



CCTTGTGTTCAGGAGTATGTGGAAGCACGAAAAGCCATTGATCTTCCCTTGGAGATTTTC



GGATTTGAGGTGCCGATTTTTCTCAATGGCTATCTCTTTTCGGAACTGCGCCAGCTGGAA



TTGTTGCTGAGGCGTAAGTCGGTGATGACGTCTTACAGCGTCAAAACGACAGGCTCGCCA



AATAGGCTCTTCCAGTTGGTTTACCTACCTCTAAACCCTTCAGATCCGGAAAAGAAAAAT



TCCAACAACTTTCAGGAGCGCCTCGATACACCTACCGGTTTGTCGCGTCGTTTTCTGGAT



CTTACGCTGGATGCATTTGCTGGCAAACTCTTGACGGATCCGGTAACTCAGGAACTGAAG



ACGATGGCCGGTTTTTACGATCATCTCTTTGGCTTCAAGTTGCCGTGTAAACTGGCGGCG



ATGAGTAACCATCCAGGATCCTCTTCCAAAATGGTGGTTCTGGCAAAACCAAAGAAGGGT



GTTGCTAGTAACATCGGCTTTGAACCTATTCCCGATCCTGCTCATCCTGTGTTCCGGGTG



AGAAGTTCCTGGCCGGAGTTGAAGTACCTGGAGGGGTTGTTGTATCTTCCCGAAGATACA



CCACTGACCATTGAACTGGCGGAAACGTCGGTCAGTTGTCAGTCTGTGAGTTCAGTCGCT



TTCGATTTGAAGAATCTGACGACTATCTTGGGTCGTGTTGGTGAATTCAGGGTGACGGCA



GATCAACCTTTCAAGCTGACGCCCATTATTCCTGAGAAAGAGGAATCCTTCATCGGGAAG



ACCTACCTCGGTCTTGATGCTGGAGAGCGATCTGGCGTTGGTTTCGCGATTGTGACGGTT



GACGGCGATGGGTATGAGGTGCAGAGGTTGGGTGTGCATGAAGATACTCAGCTTATGGCG



CTTCAGCAAGTCGCCAGCAAGTCTCTTAAGGAGCCGGTTTTCCAGCCACTCCGTAAGGGC



ACATTTCGTCAGCAGGAGCGCATTCGCAAAAGCCTCCGCGGTTGCTACTGGAATTTCTAT



CATGCATTGATGATCAAGTACCGAGCTAAAGTTGTGCATGAGGAATCGGTGGGTTCATCC



GGTCTGGTGGGGCAGTGGCTGCGTGCATTTCAGAAGGATCTCAAAAAGGCTGATGTTCTG



CCCAAGAAGGGTGGAAAAAATGGTGTAGACAAAAAAAAGAGAGAAAGCAGCGCTCAGGAT



ACCTTATGGGGAGGAGCTTTCTCGAAGAAGGAAGAGCAGCAGATAGCCTTTGAGGTTCAG



GCAGCTGGATCAAGCCAGTTTTGTCTGAAGTGTGGTTGGTGGTTTCAGTTGGGGATGCGG



GAAGTAAATCGTGTGCAGGAGAGTGGCGTGGTGCTGGACTGGAACCGGTCCATTGTAACC



TTCCTCATCGAATCCTCAGGAGAAAAGGTATATGGTTTCAGTCCTCAGCAACTGGAAAAA



GGCTTTCGTCCTGACATCGAAACGTTCAAAAAAATGGTAAGGGATTTTATGAGACCCCCC



ATGTTTGATCGCAAAGGTCGGCCGGCCGCGGCGTATGAAAGATTCGTACTGGGACGTCGT



CACCGTCGTTATCGCTTTGATAAAGTTTTTGAAGAGAGATTTGGTCGCAGTGCTCTTTTC



ATCTGCCCGCGGGTCGGGTGTGGGAATTTCGATCACTCCAGTGAGCAGTCAGCCGTTGTC



CTTGCCCTTATTGGTTACATTGCTGATAAGGAAGGGATGAGTGGTAAGAAGCTTGTTTAT



GTGAGGCTGGCTGAACTTATGGCTGAGTGGAAGCTGAAGAAACTGGAGAGATCAAGGGTG



GAAGAACAGAGCTCGGCACAATAA





SEQ
ATGGCAGAAAGCAAGCAGATGCAATGCCGCAAGTGCGGCGCAAGCATGAAGTATGAAGTA


ID
ATTGGATTGGGCAAGAAGTCATGCAGATATATGTGCCCAGATTGCGGCAATCACACCAGC


NO:
GCGCGCAAGATTCAGAACAAGAAAAAGCGCGACAAAAAGTATGGATCCGCAAGCAAAGCG


38
CAGAGCCAGAGGATAGCTGTGGCTGGCGCGCTTTATCCAGACAAAAAAGTGCAGACCATA



AAGACCTACAAATACCCAGCGGATCTTAATGGCGAAGTTCATGACAGCGGCGTCGCAGAG



AAGATTGCGCAGGCGATTCAGGAAGATGAGATCGGCCTGCTTGGCCCGTCCAGCGAATAC



GCTTGCTGGATTGCTTCACAAAAACAGAGCGAGCCGTATTCAGTTGTAGATTTTTGGTTT



GACGCGGTGTGCGCAGGCGGAGTATTCGCGTATTCTGGCGCGCGCCTGCTTTCCACAGTC



CTCCAGTTGAGTGGCGAGGAAAGCGTTTTGCGCGCTGCTTTAGCATCTAGCCCGTTTGTA



GATGACATTAATTTGGCGCAAGCGGAAAAGTTCCTAGCCGTTAGCCGGCGCACAGGCCAA



GATAAGCTAGGCAAGCGCATTGGAGAATGTTTTGCGGAAGGCCGGCTTGAAGCGCTTGGC



ATCAAAGATCGCATGCGCGAATTCGTGCAAGCGATTGATGTGGCCCAAACCGCGGGCCAG



CGGTTCGCGGCCAAGCTAAAGATATTCGGCATCAGTCAGATGCCTGAAGCCAAGCAATGG



AACAATGATTCCGGGCTCACTGTATGTATTTTGCCGGATTATTATGTCCCGGAAGAAAAC



CGCGCGGACCAGCTGGTTGTTTTGCTTCGGCGCTTACGCGAGATCGCGTATTGCATGGGA



ATTGAGGATGAAGCAGGATTTGAGCATCTAGGCATTGACCCTGGTGCTCTTTCCAATTTT



TCCAATGGCAATCCAAAGCGAGGATTTCTCGGCCGCCTGCTCAATAATGACATTATAGCG



CTGGCAAACAACATGTCAGCCATGACGCCGTATTGGGAAGGCAGAAAAGGCGAGTTGATT



GAGCGCCTTGCATGGCTTAAACATCGCGCTGAAGGATTGTATTTGAAAGAGCCACATTTC



GGCAACTCCTGGGCAGACCACCGCAGCAGGATTTTCAGTCGCATTGCGGGCTGGCTTTCC



GGATGCGCGGGCAAGCTCAAGATTGCCAAGGATCAGATTTCAGGCGTGCGTACGGATTTG



TTTCTGCTCAAGCGCCTTCTGGATGCGGTACCGCAAAGCGCGCCGTCGCCGGACTTTATT



GCTTCCATCAGCGCGCTGGATCGGTTTTTGGAAGCGGCAGAAAGCAGCCAGGATCCGGCA



GAACAGGTACGCGCTTTGTACGCGTTTCATCTGAACGCGCCTGCGGTCCGATCCATCGCC



AACAAGGCGGTACAGAGGTCTGATTCCCAGGAGTGGCTTATCAAGGAACTGGATGCTGTA



GATCACCTTGAATTCAACAAAGCATTTCCGTTTTTTTCGGATACAGGAAAGAAAAAGAAG



AAAGGAGCGAATAGCAACGGAGCGCCTTCTGAAGAAGAATACACGGAAACAGAATCCATT



CAACAACCAGAAGATGCAGAGCAGGAAGTGAATGGTCAAGAAGGAAATGGCGCTTCAAAG



AACCAGAAAAAGTTTCAGCGCATTCCTCGATTTTTCGGGGAAGGGTCAAGGAGTGAGTAT



CGAATTTTAACAGAAGCGCCGCAATATTTTGACATGTTCTGCAATAATATGCGCGCGATC



TTTATGCAGCTAGAGAGTCAGCCGCGCAAGGCGCCTCGTGATTTCAAATGCTTTCTGCAG



AATCGTTTGCAGAAGCTTTACAAGCAAACCTTTCTCAATGCTCGCAGTAATAAATGCCGC



GCGCTTCTGGAATCCGTCCTTATTTCATGGGGAGAATTTTATACTTATGGCGCGAATGAA



AAGAAGTTTCGTCTGCGCCATGAAGCGAGCGAGCGCAGCTCGGATCCGGACTATGTGGTT



CAGCAGGCATTGGAAATCGCGCGCCGGCTTTTCTTGTTCGGATTTGAGTGGCGCGATTGC



TCTGCTGGAGAGCGCGTGGATTTGGTTGAAATCCACAAAAAAGCAATCTCATTTTTGCTT



GCAATCACTCAGGCCGAGGTTTCAGTTGGTTCCTATAACTGGCTTGGGAATAGCACCGTG



AGCCGGTATCTTTCGGTTGCTGGCACAGACACATTGTACGGCACTCAACTGGAGGAGTTT



TTGAACGCCACAGTGCTTTCACAGATGCGTGGGCTGGCGATTCGGCTTTCATCTCAGGAG



TTAAAAGACGGATTTGATGTTCAGTTGGAGAGTTCGTGCCAGGACAATCTCCAGCATCTG



CTGGTGTATCGCGCTTCGCGCGACTTGGCTGCGTGCAAACGCGCTACATGCCCGGCTGAA



TTGGATCCGAAAATTCTTGTTCTGCCGGTTGGTGCGTTTATCGCGAGCGTAATGAAAATG



ATTGAGCGTGGCGATGAACCATTAGCAGGCGCGTATTTGCGTCATCGGCCGCATTCATTC



GGCTGGCAGATACGGGTTCGTGGAGTGGCGGAAGTAGGCATGGATCAGGGCACAGCGCTA



GCATTCCAGAAGCCGACTGAATCAGAGCCGTTTAAAATAAAGCCGTTTTCCGCTCAATAC



GGCCCAGTACTTTGGCTTAATTCTTCATCCTATAGCCAGAGCCAGTATCTGGATGGATTT



TTAAGCCAGCCAAAGAATTGGTCTATGCGGGTGCTACCTCAAGCCGGATCAGTGCGCGTG



GAACAGCGCGTTGCTCTGATATGGAATTTGCAGGCAGGCAAGATGCGGCTGGAGCGCTCT



GGAGCGCGCGCGTTTTTCATGCCAGTGCCATTCAGCTTCAGGCCGTCTGGTTCAGGAGAT



GAAGCAGTATTGGCGCCGAATCGGTACTTGGGACTTTTTCCGCATTCCGGAGGAATAGAA



TACGCGGTGGTGGATGTATTAGATTCCGCGGGTTTCAAAATTCTTGAGCGCGGTACGATT



GCGGTAAATGGCTTTTCCCAGAAGCGCGGCGAACGCCAAGAGGAGGCACACAGAGAAAAA



CAGAGACGCGGAATTTCTGATATAGGCCGCAAGAAGCCGGTGCAAGCTGAAGTTGACGCA



GCCAATGAATTGCACCGCAAATACACCGATGTTGCCACTCGTTTAGGGTGCAGAATTGTG



GTTCAGTGGGCGCCCCAGCCAAAGCCGGGCACAGCGCCGACCGCGCAAACAGTATACGCG



CGCGCAGTGCGGACCGAAGCGCCGCGATCTGGAAATCAAGAGGATCATGCTCGTATGAAA



TCCTCTTGGGGATATACCTGGGGCACCTATTGGGAGAAGCGCAAACCAGAGGATATTTTG



GGCATCTCAACCCAAGTATACTGGACCGGCGGTATAGGCGAGTCATGTCCCGCAGTCGCG



GTTGCGCTTTTGGGGCACATTAGGGCAACATCCACTCAAACTGAATGGGAAAAAGAGGAG



GTTGTATTCGGTCGACTGAAGAAGTTCTTTCCAAGCTAG





SEQ
ATGGAAAAGAGAATAAACAAGATACGAAAGAAACTATCGGCCGATAATGCCACAAAGCCT


ID
GTGAGCAGGAGCGGCCCCATGAAAACACTCCTTGTCCGGGTCATGACGGACGACTTGAAA


NO:
AAAAGACTGGAGAAGCGTCGGAAAAAGCCGGAAGTTATGCCGCAGGTTATTTCAAATAAC


39
GCAGCAAACAATCTTAGAATGCTCCTTGATGACTATACAAAGATGAAGGAGGCGATACTA



CAAGTTTACTGGCAGGAATTTAAGGACGACCATGTGGGCTTGATGTGCAAATTTGCCCAG



CCTGCTTCCAAAAAAATTGACCAGAACAAACTAAAACCGGAAATGGATGAAAAAGGAAAT



CTAACAACTGCCGGTTTTGCATGTTCTCAATGCGGTCAGCCGCTATTTGTTTATAAGCTT



GAACAGGTGAGTGAAAAAGGCAAGGCTTATACAAATTACTTCGGCCGGTGTAATGTGGCC



GAGCATGAGAAATTGATTCTTCTTGCTCAATTAAAACCTGAAAAAGACAGTGACGAAGCA



GTGACATACTCCCTTGGCAAATTCGGCCAGAGGGCATTGGACTTTTATTCAATCCACGTA



ACAAAAGAATCCACCCATCCAGTAAAGCCCCTGGCACAGATTGCGGGCAACCGCTATGCA



AGCGGACCTGTTGGCAAGGCCCTTTCCGATGCCTGTATGGGCACTATAGCCAGTTTTCTT



TCGAAATATCAAGACATCATCATAGAACATCAAAAGGTTGTGAAGGGTAATCAAAAGAGG



TTAGAGAGTCTCAGGGAATTGGCAGGGAAAGAAAATCTTGAGTACCCATCGGTTACACTG



CCGCCGCAGCCGCATACGAAAGAAGGGGTTGACGCTTATAACGAAGTTATTGCAAGGGTA



CGTATGTGGGTTAATCTTAATCTGTGGCAAAAGCTGAAGCTCAGCCGTGATGACGCAAAA



CCGCTACTGCGGCTAAAAGGATTCCCATCTTTCCCTGTTGTGGAGCGGCGTGAAAACGAA



GTTGACTGGTGGAATACGATTAATGAAGTAAAAAAACTGATTGACGCTAAACGAGATATG



GGACGGGTATTCTGGAGCGGCGTTACCGCAGAAAAGAGAAATACCATCCTTGAAGGATAC



AACTATCTGCCAAATGAGAATGACCATAAAAAGAGAGAGGGCAGTTTGGAAAACCCTAAG



AAGCCTGCCAAACGCCAGTTTGGAGACCTCTTGCTGTATCTTGAAAAGAAATATGCCGGA



GACTGGGGAAAGGTCTTCGATGAGGCATGGGAGAGGATAGATAAGAAAATAGCCGGACTC



ACAAGCCATATAGAGCGCGAAGAAGCAAGAAACGCGGAAGACGCTCAATCCAAAGCCGTA



CTTACAGACTGGCTAAGGGCAAAGGCATCATTTGTTCTTGAAAGACTGAAGGAAATGGAT



GAAAAGGAATTCTATGCGTGTGAAATCCAACTTCAAAAATGGTATGGCGATCTTCGAGGC



AACCCGTTTGCCGTTGAAGCTGAGAATAGAGTTGTTGATATAAGCGGGTTTTCTATCGGA



AGCGATGGCCATTCAATCCAATACAGAAATCTCCTTGCCTGGAAATATCTGGAGAACGGC



AAGCGTGAATTCTATCTGTTAATGAATTATGGCAAGAAAGGGCGCATCAGATTTACAGAT



GGAACAGATATTAAAAAGAGCGGCAAATGGCAGGGACTATTATATGGCGGTGGCAAGGCA



AAGGTTATTGATCTGACTTTCGACCCCGATGATGAACAGTTGATAATCCTGCCGCTGGCC



TTTGGCACAAGGCAAGGCCGCGAGTTTATCTGGAACGATTTGCTGAGTCTTGAAACAGGC



CTGATAAAGCTCGCAAACGGAAGAGTTATCGAAAAAACAATCTATAACAAAAAAATAGGG



CGGGATGAACCGGCTCTATTCGTTGCCTTAACATTTGAGCGCCGGGAAGTTGTTGATCCA



TCAAATATAAAGCCTGTAAACCTTATAGGCGTTGACCGCGGCGAAAACATCCCGGCGGTT



ATTGCATTGACAGACCCTGAAGGTTGTCCTTTACCGGAATTCAAGGATTCATCAGGGGGC



CCAACAGACATCCTGCGAATAGGAGAAGGATATAAGGAAAAGCAGAGGGCTATTCAGGCA



GCAAAGGAGGTAGAGCAAAGGCGGGCTGGCGGTTATTCACGGAAGTTTGCATCCAAGTCG



AGGAACCTGGCGGACGACATGGTGAGAAATTCAGCGCGAGACCTTTTTTACCATGCCGTT



ACCCACGATGCCGTCCTTGTCTTTGAAAACCTGAGCAGGGGTTTTGGAAGGCAGGGCAAA



AGGACCTTCATGACGGAAAGACAATATACAAAGATGGAAGACTGGCTGACAGCGAAGCTC



GCATACGAAGGTCTTACGTCAAAAACCTACCTTTCAAAGACGCTGGCGCAATATACGTCA



AAAACATGCTCCAACTGCGGGTTTACTATAACGACTGCCGATTATGACGGGATGTTGGTA



AGGCTTAAAAAGACTTCTGATGGATGGGCAACTACCCTCAACAACAAAGAATTAAAAGCC



GAAGGCCAGATAACGTATTATAACCGGTATAAAAGGCAAACCGTGGAAAAAGAACTCTCC



GCAGAGCTTGACAGGCTTTCAGAAGAGTCGGGCAATAATGATATTTCTAAGTGGACCAAG



GGTCGCCGGGACGAGGCATTATTTTTGTTAAAGAAAAGATTCAGCCATCGGCCTGTTCAG



GAACAGTTTGTTTGCCTCGATTGCGGCCATGAAGTCCACGCCGATGAACAGGCAGCCTTG



AATATTGCAAGGTCATGGCTTTTTCTAAACTCAAATTCAACAGAATTCAAAAGTTATAAA



TCGGGTAAACAGCCCTTCGTTGGTGCTTGGCAGGCCTTTTACAAAAGGAGGCTTAAAGAG



GTATGGAAGCCCAACGCC





SEQ
ATGAAAAGGATAAATAAAATACGAAGGAGATTGGTAAAGGATAGCAACACGAAAAAAGCC


ID
GGCAAAACCGGCCCTATGAAAACCTTGCTCGTTCGGGTTATGACACCTGACCTGAGAGAA


NO:
AGGTTAGAGAATCTTCGCAAAAAGCCGGAAAACATTCCTCAGCCCATTTCAAATACTTCA


40
CGTGCAAATTTAAATAAACTCCTCACTGACTATACGGAAATGAAGAAAGCAATCCTGCAT



GTTTATTGGGAAGAGTTCCAAAAAGACCCTGTCGGATTGATGAGCAGGGTTGCACAACCA



GCGCCCAAGAATATTGATCAGAGAAAATTGATTCCGGTGAAGGACGGAAATGAGAGACTA



ACAAGTTCTGGATTTGCCTGTTCTCAGTGCTGTCAACCCCTCTATGTTTATAAGCTTGAA



CAAGTGAATGACAAGGGTAAGCCCCATACAAATTACTTTGGCCGTTGTAATGTCTCCGAG



CATGAACGTTTGATATTGCTCTCGCCGCATAAACCGGAGGCAAATGACGAGCTAGTAACG



TATTCGTTGGGGAAGTTCGGTCAAAGGGCATTGGACTTTTATTCAATCCACGTAACAAGA



GAATCGAACCATCCTGTAAAGCCGCTAGAACAGATCGGTGGCAATAGCTGCGCAAGTGGT



CCCGTTGGTAAGGCTTTATCTGATGCCTGTATGGGAGCAGTAGCCAGTTTCCTTACAAAG



TACCAGGACATCATCCTCGAACACCAAAAGGTTATAAAAAAAAACGAAAAGAGATTGGCA



AATCTAAAGGATATAGCAAGTGCAAACGGGCTTGCATTTCCTAAAATCACTCTTCCACCG



CAACCGCATACAAAAGAAGGGATTGAAGCTTATAACAATGTTGTTGCTCAGATAGTGATC



TGGGTAAACCTGAATCTTTGGCAGAAACTCAAAATTGGCAGGGATGAGGCAAAGCCCTTA



CAGCGGCTTAAGGGTTTTCCGTCCTTCCCTCTTGTTGAACGCCAGGCGAATGAGGTTGAT



TGGTGGGATATGGTCTGTAATGTCAAAAAGTTGATTAACGAAAAGAAAGAGGACGGGAAG



GTCTTCTGGCAAAATCTTGCTGGATATAAAAGGCAGGAAGCCTTGCTTCCATATCTTTCG



TCTGAAGAAGACCGTAAAAAAGGAAAAAAGTTTGCGCGTTATCAGTTTGGTGACCTTTTG



CTTCACCTTGAAAAGAAACACGGTGAAGATTGGGGCAAAGTTTATGATGAGGCATGGGAA



AGAATAGATAAAAAAGTTGAAGGTCTGAGTAAGCACATAAAGTTGGAGGAAGAAAGAAGG



TCTGAAGATGCTCAATCAAAGGCTGCCCTCACTGATTGGCTCAGGGCAAAGGCCTCTTTT



GTTATTGAAGGGCTCAAAGAAGCTGATAAGGATGAGTTTTGCAGGTGTGAGTTAAAGCTT



CAAAAGTGGTATGGAGATTTGAGAGGAAAACCATTTGCTATAGAAGCAGAGAACAGCATT



TTAGATATAAGCGGATTTTCTAAACAGTATAATTGTGCATTTATATGGCAGAAAGACGGC



GTAAAGAAGTTAAATCTTTATTTAATAATAAATTACTTCAAAGGTGGTAAGCTACGCTTC



AAAAAAATCAAGCCAGAAGCTTTTGAAGCAAATAGGTTTTATACAGTAATTAATAAAAAA



AGCGGTGAGATTGTGCCTATGGAGGTCAACTTCAATTTTGATGACCCGAATTTGATAATT



CTGCCTTTGGCCTTTGGAAAAAGGCAGGGGAGGGAGTTTATCTGGAACGACCTATTGAGC



CTTGAGACGGGTTCATTGAAACTCGCCAATGGCAGGGTTATTGAAAAAACGCTCTATAAC



AGAAGGACGAGACAGGATGAACCAGCACTTTTTGTTGCCCTGACATTTGAAAGAAGAGAG



GTGCTTGACTCATCGAATATAAAACCGATGAATCTGATAGGAATAGACCGGGGAGAAAAT



ATCCCGGCAGTCATAGCATTAACAGACCCGGAAGGATGCCCCTTGTCAAGATTCAAAGAT



TCATTGGGCAATCCAACGCATATTTTGCGAATAGGAGAAAGTTATAAGGAAAAACAACGG



ACTATTCAGGCTGCTAAAGAAGTTGAACAAAGGCGGGCAGGCGGATATTCGAGAAAATAT



GCATCAAAGGCGAAGAATCTGGCGGACGATATGGTAAGAAATACAGCTCGTGACCTCTTA



TATTATGCTGTTACTCAAGATGCAATGCTCATTTTTGAAAATCTTTCCCGCGGTTTTGGT



AGACAAGGCAAGAGGACTTTTATGGCGGAAAGGCAGTACACGAGGATGGAAGACTGGCTG



ACTGCAAAGCTTGCCTATGAAGGTCTGCCATCAAAAACCTATCTTTCAAAGACTCTGGCA



CAGTATACCTCAAAGACATGTTCTAATTGTGGTTTTACAATCACAAGTGCAGATTATGAC



AGGGTGCTCGAAAAGCTCAAGAAGACGGCTACTGGATGGATGACTACAATCAATGGAAAA



GAGTTAAAAGTTGAAGGACAGATAACATACTATAACCGGTATAAAAGGCAGAATGTGGTA



AAAGACCTCTCTGTAGAGCTGGATAGACTTTCGGAAGAGTCGGTAAATAATGATATTTCT



AGTTGGACAAAAGGCCGCAGTGGTGAAGCTTTATCTCTGCTAAAAAAGAGATTTAGTCAC



AGGCCGGTGCAGGAAAAGTTTGTTTGCCTGAACTGTGGTTTTGAAACCCATGCAGACGAA



CAAGCAGCACTGAATATTGCAAGGTCGTGGCTCTTTCTCCGTTCTCAAGAATATAAGAAG



TATCAAACCAATAAAACGACCGGAAATACTGACAAAAGGGCATTTGTTGAAACATGGCAA



TCCTTTTACAGAAAGAAGCTCAAAGAAGTATGGAAACCA





SEQ
ATGGGTAAAATGTATTACCTTGGTTTAGACATTGGCACGAATTCCGTGGGCTACGCGGTG


ID
ACCGACCCCTCATACCACCTGCTGAAGTTTAAGGGGGAACCAATGTGGGGTGCGCACGTA


NO:
TTTGCCGCCGGTAATCAGAGCGCGGAACGACGCTCGTTCCGCACATCGCGTCGTCGTTTG


41
GACCGACGCCAACAGCGCGTTAAACTGGTACAGGAGATTTTTGCCCCGGTGATTAGTCCG



ATCGACCCACGCTTCTTCATTCGTCTGCATGAATCCGCCCTGTGGCGCGATGACGTCGCG



GAGACGGATAAACATATCTTTTTCAATGATCCTACCTATACCGATAAGGAATATTATAGC



GATTACCCGACTATCCATCACCTGATCGTTGATCTGATGGAAAGCTCTGAGAAACACGAT



CCGCGGCTGGTGTACCTTGCAGTGGCGTGGTTAGTGGCACACCGTGGTCATTTTCTGAAC



GAGGTGGACAAGGATAATATTGGAGATGTGTTGTCGTTCGACGCATTTTATCCGGAGTTT



CTCGCGTTCCTGTCGGACAACGGTGTATCACCGTGGGTGTGCGAAAGCAAAGCGCTGCAG



GCGACCTTGCTGAGCCGTAACTCAGTGAACGACAAATATAAAGCCCTTAAGTCTCTGATC



TTCGGATCCCAGAAACCTGAAGATAACTTCGATGCCAATATTTCGGAAGATGGACTCATT



CAACTGCTGGCCGGCAAAAAGGTAAAAGTTAACAAACTGTTCCCTCAGGAATCGAACGAT



GCATCCTTCACATTGAATGATAAAGAAGACGCGATAGAAGAAATCCTGGGTACGCTTACA



CCAGATGAATGTGAATGGATTGCGCATATACGCCGCCTTTTTGACTGGGCTATCATGAAA



CATGCTCTGAAAGATGGCAGGACTATTAGCGAGTCAAAAGTCAAACTGTATGAGCAGCAC



CATCACGATCTGACCCAACTTAAATACTTCGTGAAAACCTACCTTGCAAAAGAATACGAC



GATATTTTCCGCAACGTGGATAGCGAAACAACGAAAAACTATGTAGCGTATTCCTATCAT



GTGAAAGAGGTGAAAGGCACTCTGCCTAAAAATAAGGCAACGCAAGAAGAGTTTTGTAAG



TATGTCCTGGGCAAGGTTAAAAACATTGAATGCTCTGAAGCAGACAAGGTTGACTTTGAT



GAGATGATTCAGCGTCTTACCGACAACTCTTTTATGCCTAAGCAGGTTTCGGGCGAAAAC



CGCGTTATTCCTTATCAGTTATATTATTATGAACTGAAGACAATTCTGAATAAAGCAGCC



TCGTACCTGCCTTTCCTGACGCAGTGTGGAAAAGATGCAATTTCGAACCAGGACAAACTA



CTGTCGATCATGACGTTCCGTATTCCTTACTTCGTCGGACCCTTGCGAAAAGATAATTCG



GAACATGCATGGCTCGAACGAAAGGCCGGTAAGATTTATCCGTGGAACTTTAACGACAAA



GTGGACTTGGATAAATCAGAAGAAGCGTTCATTCGCCGAATGACCAATACCTGTACCTAT



TATCCCGGCGAAGATGTTTTACCGTTGGATTCGCTGATCTATGAGAAATTTATGATTTTA



AATGAAATCAATAATATTCGTATTGACGGCTACCCGATTAGTGTTGACGTTAAACAGCAG



GTTTTTGGCTTGTTCGAAAAAAAACGACGCGTAACCGTGAAAGATATTCAGAACCTGCTG



CTGTCTCTCGGAGCTCTGGACAAACACGGGAAGCTGACAGGCATCGATACCACTATCCAC



TCAAACTATAATACGTATCACCATTTTAAATCTCTCATGGAACGCGGCGTCCTGACCCGG



GATGACGTGGAACGCATCGTTGAAAGGATGACCTACAGCGACGATACTAAGCGTGTGCGT



CTGTGGCTGAATAACAACTATGGTACTTTAACCGCCGACGATGTGAAACACATTTCGCGT



CTGCGCAAACACGATTTTGGCCGTTTATCCAAAATGTTCTTAACAGGTCTGAAGGGTGTC



CATAAGGAGACCGGTGAACGTGCCTCCATACTGGATTTCATGTGGAACACGAACGATAAC



CTGATGCAGCTCCTTTCCGAATGCTACACGTTCAGTGATGAAATCACAAAGCTGCAAGAG



GCGTATTATGCAAAAGCCCAGTTGTCTTTAAACGATTTTTTAGACTCGATGTACATCTCT



AACGCGGTGAAACGTCCGATTTACAGAACTCTGGCAGTGGTGAACGATATTCGAAAAGCA



TGTGGGACGGCCCCTAAACGCATTTTCATCGAAATGGCTCGTGATGGTGAATCAAAAAAA



AAGAGAAGTGTTACACGTCGCGAGCAGATCAAAAACCTGTACCGCTCGATTCGTAAAGAT



TTCCAGCAGGAAGTTGATTTTCTGGAAAAGATCCTGGAAAATAAATCTGATGGTCAACTT



CAGTCAGATGCTTTGTATCTTTACTTTGCACAATTAGGGCGCGATATGTACACGGGCGAT



CCAATAAAGCTGGAGCACATCAAAGATCAGAGTTTCTATAACATAGACCATATTTACCCG



CAGTCTATGGTGAAAGACGATTCCCTAGATAACAAAGTGCTGGTGCAAAGCGAAATTAAC



GGCGAGAAAAGCTCGCGATACCCTTTGGACGCCGCGATCCGCAATAAAATGAAGCCCCTT



TGGGACGCTTACTATAATCATGGCCTGATCTCCTTAAAGAAATACCAGCGTCTAACGCGC



TCGACCCCGTTTACCGATGATGAAAAATGGGACTTTATTAATCGCCAGTTAGTGGAAACC



CGTCAATCTACCAAAGCGCTGGCCATTTTGTTGAAGCGTAAGTTTCCAGACACCGAAATT



GTGTATTCGAAGGCGGGGTTATCGTCCGACTTCAGACATGAATTCGGCCTTGTAAAAAGT



CGCAATATTAATGATTTGCACCACGCTAAAGACGCATTCTTGGCTATCGTTACCGGCAAT



GTGTACCATGAAAGATTCAATCGCAGATGGTTTATGGTGAACCAGCCGTACTCAGTTAAA



ACTAAAACTCTTTTTACCCACAGCATAAAGAATGGCAACTTCGTTGCCTGGAACGGCGAA



GAAGATCTCGGTCGTATTGTAAAAATGCTGAAGCAAAACAAAAATACCATTCACTTCACG



CGCTTCTCCTTCGATCGCAAAGAAGGATTATTTGATATCCAACCTCTGAAAGCCAGCACC



GGCTTAGTCCCACGAAAAGCCGGTCTGGATGTCGTTAAATACGGCGGATATGACAAATCT



ACCGCGGCCTATTACCTGCTGGTGAGGTTCACGCTCGAGGACAAGAAAACCCAGCACAAG



CTGATGATGATTCCTGTAGAAGGCCTGTACAAGGCTCGCATTGATCATGACAAGGAATTT



CTTACCGATTATGCGCAAACGACTATAAGCGAAATCCTACAGAAAGATAAACAGAAAGTG



ATCAATATTATGTTTCCAATGGGTACGAGGCATATAAAACTCAATTCAATGATTAGTATC



GATGGCTTCTATCTTAGTATCGGCGGAAAGTCCTCTAAAGGTAAGTCAGTTCTATGTCAC



GCAATGGTTCCACTGATCGTCCCTCACAAAATCGAATGTTACATTAAAGCAATGGAAAGC



TTCGCCCGGAAGTTTAAAGAAAACAACAAGCTGCGCATCGTAGAAAAATTCGATAAAATC



ACCGTTGAAGACAACCTGAATCTCTACGAGCTCTTTCTCCAAAAACTGCAGCATAATCCC



TATAATAAGTTTTTTTCGACACAGTTTGACGTACTGACGAACGGCCGTTCTACTTTCACA



AAACTGTCGCCGGAGGAACAGGTACAGACGCTCTTGAACATTTTAAGTATCTTTAAAACA



TGCCGCAGTTCGGGTTGCGACCTGAAATCCATCAACGGCAGTGCCCAGGCAGCGCGCATC



ATGATTAGCGCTGACTTAACTGGACTGTCGAAAAAATATTCAGATATTAGGTTGGTTGAA



CAGTCAGCTTCTGGTTTGTTCGTATCCAAAAGTCAGAACTTACTGGAGTATCTCTAA





SEQ
ATGTCATCGCTCACGAAATTCACTAACAAATACTCTAAACAGCTCACCATTAAGAATGAA


ID
CTCATCCCAGTTGGCAAAACACTGGAGAACATCAAAGAGAATGGTCTGATAGATGGCGAC


NO:
GAACAGCTGAATGAGAATTATCAGAAGGCGAAAATTATTGTGGATGATTTTCTGCGGGAC


42
TTCATTAATAAAGCACTGAATAATACGCAGATCGGGAACTGGCGCGAACTGGCGGATGCC



CTTAATAAAGAGGATGAAGATAACATCGAGAAATTGCAGGATAAAATTCGGGGAATCATT



GTATCCAAATTTGAAACGTTTGATCTGTTTAGCAGCTATTCTATTAAGAAAGATGAAAAG



ATTATTGACGACGACAATGATGTTGAAGAAGAGGAACTGGATCTGGGCAAGAAGACCAGC



TCATTTAAATACATATTTAAAAAAAACCTGTTTAAGTTAGTGTTGCCATCCTACCTGAAA



ACCACAAACCAGGACAAGCTGAAGATTATTAGCTCGTTTGATAATTTTTCAACGTACTTC



CGCGGGTTCTTTGAAAACCGGAAAAACATTTTTACCAAGAAACCGATCTCCACAAGTATT



GCGTATCGCATTGTTCATGATAACTTCCCGAAATTCCTTGATAACATTCGTTGTTTTAAT



GTGTGGCAGACGGAATGCCCGCAACTAATCGTGAAAGCAGATAACTATCTGAAAAGCAAA



AATGTTATAGCGAAAGATAAAAGTTTGGCAAACTATTTTACCGTGGGCGCGTATGACTAT



TTCCTGTCTCAGAATGGTATAGATTTTTACAACAATATTATAGGTGGACTGCCAGCGTTC



GCCGGCCATGAGAAAATCCAAGGTCTCAATGAATTCATCAATCAAGAGTGCCAAAAAGAC



AGCGAGCTGAAAAGTAAGCTGAAAAACCGTCACGCGTTCAAAATGGCGGTACTGTTCAAA



CAGATACTCAGCGATCGTGAAAAAAGTTTTGTAATTGATGAGTTCGAGTCGGATGCTCAA



GTTATTGACGCCGTTAAAAACTTTTACGCCGAACAGTGCAAAGATAACAATGTTATTTTT



AACTTATTAAATCTTATCAAGAATATCGCTTTCTTAAGTGATGACGAACTGGACGGCATA



TTCATTGAAGGGAAATACCTGTCGAGCGTTAGTCAAAAACTCTATAGCGATTGGTCAAAA



TTACGTAACGACATTGAGGATTCGGCTAACTCTAAACAAGGCAATAAAGAGCTGGCCAAG



AAGATCAAAACCAACAAAGGGGATGTAGAAAAAGCGATCTCGAAATATGAGTTCTCGCTG



TCGGAACTGAACTCGATTGTACATGATAACACCAAGTTTTCTGACCTCCTTAGTTGTACA



CTGCATAAGGTGGCTTCTGAGAAACTGGTGAAGGTCAATGAAGGCGACTGGCCGAAACAT



CTCAAGAATAATGAAGAGAAACAAAAAATCAAAGAGCCGCTTGATGCTCTGCTGGAGATC



TATAATACACTTCTGATTTTTAACTGCAAAAGCTTCAATAAAAACGGCAACTTCTATGTC



GACTATGATCGTTGCATCAATGAACTGAGTTCGGTCGTGTATCTGTATAATAAAACACGT



AACTATTGCACTAAAAAACCCTATAACACGGACAAGTTCAAACTCAATTTTAACAGTCCG



CAGCTCGGTGAAGGCTTTTCCAAGTCGAAAGAAAATGACTGTCTGACTCTTTTGTTTAAA



AAAGACGACAACTATTATGTAGGCATTATCCGCAAAGGTGCAAAAATCAATTTTGATGAT



ACACAAGCAATCGCCGATAACACCGACAATTGCATCTTTAAAATGAATTATTTCCTACTT



AAAGACGCAAAAAAATTTATCCCGAAATGTAGCATTCAGCTGAAAGAAGTCAAGGCCCAT



TTTAAGAAATCTGAAGATGATTACATTTTGTCTGATAAAGAGAAATTTGCTAGCCCGCTG



GTCATTAAAAAGAGCACATTTTTGCTGGCAACTGCACATGTGAAAGGGAAAAAAGGCAAT



ATCAAGAAATTTCAGAAAGAATATTCGAAAGAAAACCCCACTGAGTATCGCAATTCTTTA



AACGAATGGATTGCTTTTTGTAAAGAGTTCTTAAAAACTTATAAAGCGGCTACCATTTTT



GATATAACCACATTGAAAAAGGCAGAGGAATATGCTGATATTGTAGAATTCTACAAGGAT



GTCGATAATCTGTGCTACAAACTGGAGTTCTGCCCGATTAAAACCTCGTTTATAGAAAAC



CTGATAGATAACGGCGACCTGTATCTGTTTCGCATCAATAACAAAGACTTCAGCAGTAAA



TCGACCGGCACCAAGAACCTTCATACGTTATATTTACAAGCTATATTCGATGAACGTAAT



CTGAACAATCCGACAATTATGCTGAATGGGGGAGCAGAACTGTTCTATCGTAAAGAAAGT



ATTGAGCAGAAAAACCGTATCACACACAAAGCCGGTTCAATTCTCGTGAATAAGGTGTGT



AAAGACGGTACAAGCCTGGATGATAAGATACGTAATGAAATTTATCAATATGAGAATAAA



TTTATTGATACCCTGTCTGATGAAGCTAAAAAGGTGTTACCGAATGTCATTAAAAAGGAA



GCTACCCATGACATTACAAAAGATAAACGTTTCACTAGTGACAAATTCTTCTTTCACTGC



CCCCTGACAATTAATTATAAGGAAGGCGATACCAAGCAGTTCAATAACGAAGTGCTGAGT



TTTCTGCGTGGAAATCCTGACATCAACATTATCGGCATTGACCGCGGAGAGCGTAATTTA



ATCTATGTAACGGTTATAAACCAGAAAGGCGAGATTCTGGATTCGGTTTCATTCAATACC



GTGACCAACAAGAGTTCAAAAATCGAGCAGACAGTCGATTATGAAGAGAAATTGGCAGTC



CGCGAGAAAGAGAGGATTGAAGCAAAACGTTCCTGGGACTCTATCTCAAAAATTGCGACA



CTAAAGGAAGGTTATCTGAGCGCAATAGTTCACGAGATCTGTCTGTTAATGATTAAACAC



AACGCGATCGTTGTCTTAGAGAATCTTAATGCAGGCTTTAAGCGTATTCGTGGCGGTTTA



TCAGAAAAAAGTGTTTATCAAAAATTCGAAAAAATGTTGATTAACAAACTGAACTATTTT



GTCAGCAAGAAGGAATCCGACTGGAATAAACCGTCTGGTCTGCTGAATGGACTGCAGCTT



TCGGATCAGTTTGAAAGCTTCGAAAAACTGGGTATTCAGTCTGGTTTTATTTTTTACGTG



CCGGCTGCATATACCTCAAAGATTGATCCGACCACGGGCTTCGCCAATGTTCTGAATCTG



TCGAAGGTACGCAATGTTGATGCGATCAAAAGCTTTTTTTCTAACTTCAACGAAATTAGT



TATAGCAAGAAAGAAGCCCTTTTCAAATTCTCATTCGATCTGGATTCACTGAGTAAGAAA



GGCTTTAGTAGCTTTGTGAAATTTAGTAAGAGTAAATGGAACGTCTACACCTTTGGAGAA



CGTATCATAAAGCCAAAGAATAAGCAAGGTTATCGGGAGGACAAAAGAATCAACTTGACC



TTCGAGATGAAGAAGTTACTTAACGAGTATAAGGTTTCTTTTGATCTTGAAAATAACTTG



ATTCCGAATCTCACGAGTGCCAACCTGAAGGATACTTTTTGGAAAGAGCTATTCTTTATC



TTCAAGACTACGCTGCAGCTCCGTAACAGCGTTACTAACGGTAAAGAAGATGTGCTCATC



TCTCCGGTCAAAAATGCGAAGGGTGAATTCTTCGTTTCGGGAACGCATAACAAGACTCTT



CCGCAAGATTGCGATGCGAACGGTGCATACCATATTGCGTTGAAAGGTCTGATGATACTC



GAACGTAACAACCTTGTACGTGAGGAGAAAGATACGAAAAAGATTATGGCGATTTCAAAC



GTGGATTGGTTCGAGTACGTGCAGAAACGTAGAGGCGTTCTGTAA





SEQ
ATGAACAACTACGACGAATTCACCAAACTGTACCCGATCCAGAAAACCATCCGTTTCGAA


ID
CTGAAACCGCAGGGTCGTACCATGGAACACCTGGAAACCTTCAACTTCTTCGAAGAAGAC


NO:
CGTGACCGTGCGGAAAAATACAAAATCCTGAAAGAAGCGATCGACGAATACCACAAAAAA


43
TTCATCGACGAACACCTGACCAACATGTCTCTGGACTGGAACTCTCTGAAACAGATCTCT



GAAAAATACTACAAATCTCGTGAAGAAAAAGACAAAAAAGTTTTCCTGTCTGAACAGAAA



CGTATGCGTCAGGAAATCGTTTCTGAATTCAAAAAAGACGACCGTTTCAAAGACCTGTTC



TCTAAAAAACTGTTCTCTGAACTGCTGAAAGAAGAAATCTACAAAAAAGGTAACCACCAG



GAAATCGACGCGCTGAAATCTTTCGACAAATTCTCTGGTTACTTCATCGGTCTGCACGAA



AACCGTAAAAACATGTACTCTGACGGTGACGAAATCACCGCGATCTCTAACCGTATCGTT



AACGAAAACTTCCCGAAATTCCTGGACAACCTGCAGAAATACCAGGAAGCGCGTAAAAAA



TACCCGGAATGGATCATCAAAGCGGAATCTGCGCTGGTTGCGCACAACATCAAAATGGAC



GAAGTTTTCTCTCTGGAATACTTCAACAAAGTTCTGAACCAGGAAGGTATCCAGCGTTAC



AACCTGGCGCTGGGTGGTTACGTTACCAAATCTGGTGAAAAAATGATGGGTCTGAACGAC



GCGCTGAACCTGGCGCACCAGTCTGAAAAATCTTCTAAAGGTCGTATCCACATGACCCCG



CTGTTCAAACAGATCCTGTCTGAAAAAGAATCTTTCTCTTACATCCCGGACGTTTTCACC



GAAGACTCTCAGCTGCTGCCGTCTATCGGTGGTTTCTTCGCGCAGATCGAAAACGACAAA



GACGGTAACATCTTCGACCGTGCGCTGGAACTGATCTCTTCTTACGCGGAATACGACACC



GAACGTATCTACATCCGTCAGGCGGACATCAACCGTGTTTCTAACGTTATCTTCGGTGAA



TGGGGTACCCTGGGTGGTCTGATGCGTGAATACAAAGCGGACTCTATCAACGACATCAAC



CTGGAACGTACCTGCAAAAAAGTTGACAAATGGCTGGACTCTAAAGAATTCGCGCTGTCT



GACGTTCTGGAAGCGATCAAACGTACCGGTAACAACGACGCGTTCAACGAATACATCTCT



AAAATGCGTACCGCGCGTGAAAAAATCGACGCGGCGCGTAAAGAAATGAAATTCATCTCT



GAAAAAATCTCTGGTGACGAAGAATCTATCCACATCATCAAAACCCTGCTGGACTCTGTT



CAGCAGTTCCTGCACTTCTTCAACCTGTTCAAAGCGCGTCAGGACATCCCGCTGGACGGT



GCGTTCTACGCGGAATTCGACGAAGTTCACTCTAAACTGTTCGCGATCGTTCCGCTGTAC



AACAAAGTTCGTAACTACCTGACCAAAAACAACCTGAACACCAAAAAAATCAAACTGAAC



TTCAAAAACCCGACCCTGGCGAACGGTTGGGACCAGAACAAAGTTTACGACTACGCGTCT



CTGATCTTCCTGCGTGACGGTAACTACTACCTGGGTATCATCAACCCGAAACGTAAAAAA



AACATCAAATTCGAACAGGGTTCTGGTAACGGTCCGTTCTACCGTAAAATGGTTTACAAA



CAGATCCCGGGTCCGAACAAAAACCTGCCGCGTGTTTTCCTGACCTCTACCAAAGGTAAA



AAAGAATACAAACCGTCTAAAGAAATCATCGAAGGTTACGAAGCGGACAAACACATCCGT



GGTGACAAATTCGACCTGGACTTCTGCCACAAACTGATCGACTTCTTCAAAGAATCTATC



GAAAAACACAAAGACTGGTCTAAATTCAACTTCTACTTCTCTCCGACCGAATCTTACGGT



GACATCTCTGAATTCTACCTGGACGTTGAAAAACAGGGTTACCGTATGCACTTCGAAAAC



ATCTCTGCGGAAACCATCGACGAATACGTTGAAAAAGGTGACCTGTTCCTGTTCCAGATC



TACAACAAAGACTTCGTTAAAGCGGCGACCGGTAAAAAAGACATGCACACCATCTACTGG



AACGCGGCGTTCTCTCCGGAAAACCTGCAGGACGTTGTTGTTAAACTGAACGGTGAAGCG



GAACTGTTCTACCGTGACAAATCTGACATCAAAGAAATCGTTCACCGTGAAGGTGAAATC



CTGGTTAACCGTACCTACAACGGTCGTACCCCGGTTCCGGACAAAATCCACAAAAAACTG



ACCGACTACCACAACGGTCGTACCAAAGACCTGGGTGAAGCGAAAGAATACCTGGACAAA



GTTCGTTACTTCAAAGCGCACTACGACATCACCAAAGACCGTCGTTACCTGAACGACAAA



ATCTACTTCCACGTTCCGCTGACCCTGAACTTCAAAGCGAACGGTAAAAAAAACCTGAAC



AAAATGGTTATCGAAAAATTCCTGTCTGACGAAAAAGCGCACATCATCGGTATCGACCGT



GGTGAACGTAACCTGCTGTACTACTCTATCATCGACCGTTCTGGTAAAATCATCGACCAG



CAGTCTCTGAACGTTATCGACGGTTTCGACTACCGTGAAAAACTGAACCAGCGTGAAATC



GAAATGAAAGACGCGCGTCAGTCTTGGAACGCGATCGGTAAAATCAAAGACCTGAAAGAA



GGTTACCTGTCTAAAGCGGTTCACGAAATCACCAAAATGGCGATCCAGTACAACGCGATC



GTTGTTATGGAAGAACTGAACTACGGTTTCAAACGTGGTCGTTTCAAAGTTGAAAAACAG



ATCTACCAGAAATTCGAAAACATGCTGATCGACAAAATGAACTACCTGGTTTTCAAAGAC



GCGCCGGACGAATCTCCGGGTGGTGTTCTGAACGCGTACCAGCTGACCAACCCGCTGGAA



TCTTTCGCGAAACTGGGTAAACAGACCGGTATCCTGTTCTACGTTCCGGCGGCGTACACC



TCTAAAATCGACCCGACCACCGGTTTCGTTAACCTGTTCAACACCTCTTCTAAAACCAAC



GCGCAGGAACGTAAAGAATTCCTGCAGAAATTCGAATCTATCTCTTACTCTGCGAAAGAC



GGTGGTATCTTCGCGTTCGCGTTCGACTACCGTAAATTCGGTACCTCTAAAACCGACCAC



AAAAACGTTTGGACCGCGTACACCAACGGTGAACGTATGCGTTACATCAAAGAAAAAAAA



CGTAACGAACTGTTCGACCCGTCTAAAGAAATCAAAGAAGCGCTGACCTCTTCTGGTATC



AAATACGACGGTGGTCAGAACATCCTGCCGGACATCCTGCGTTCTAACAACAACGGTCTG



ATCTACACCATGTACTCTTCTTTCATCGCGGCGATCCAGATGCGTGTTTACGACGGTAAA



GAAGACTACATCATCTCTCCGATCAAAAACTCTAAAGGTGAATTCTTCCGTACCGACCCG



AAACGTCGTGAACTGCCGATCGACGCGGACGCGAACGGTGCGTACAACATCGCGCTGCGT



GGTGAACTGACCATGCGTGCGATCGCGGAAAAATTCGACCCGGACTCTGAAAAAATGGCG



AAACTGGAACTGAAACACAAAGACTGGTTCGAATTCATGCAGACCCGTGGTGACTAA





SEQ
ATGACTAAAACATTTGATTCAGAGTTTTTTAATTTGTACTCGCTGCAAAAAACGGTACGC


ID
TTTGAGTTAAAACCCGTGGGAGAAACCGCGTCATTTGTGGAAGACTTTAAAAACGAGGGC


NO:
TTGAAACGTGTTGTGAGCGAAGATGAAAGGCGAGCCGTCGATTACCAGAAAGTTAAGGAA


44
ATAATTGACGATTACCATCGGGATTTCATTGAAGAAAGTTTAAATTATTTTCCGGAACAG



GTGAGTAAAGATGCTCTTGAGCAGGCGTTTCATCTTTATCAGAAACTGAAGGCAGCAAAA



GTTGAGGAAAGGGAAAAAGCGCTGAAAGAATGGGAAGCGCTGCAGAAAAAGCTACGTGAA



AAAGTGGTGAAATGCTTCTCGGACTCGAATAAAGCCCGCTTCTCAAGGATTGATAAAAAG



GAACTGATTAAGGAAGACCTGATAAATTGGTTGGTCGCCCAGAATCGCGAGGATGATATC



CCTACGGTCGAAACGTTTAACAACTTCACCACATATTTTACCGGCTTCCATGAGAATCGT



AAAAATATTTACTCCAAAGATGATCACGCCACCGCTATTAGCTTTCGCCTTATTCATGAA



AATCTTCCAAAGTTTTTTGACAACGTGATTAGCTTCAATAAGTTGAAAGAGGGTTTCCCT



GAATTAAAATTTGATAAAGTGAAAGAGGATTTAGAAGTAGATTATGATCTGAAGCATGCG



TTTGAAATAGAATATTTCGTTAACTTCGTGACCCAAGCGGGCATAGATCAGTATAATTAT



CTGTTAGGAGGGAAAACCCTGGAGGACGGGACGAAAAAACAAGGGATGAATGAGCAAATT



AATCTGTTCAAACAACAGCAAACGCGAGATAAAGCGCGTCAGATTCCCAAACTGATCCCC



CTGTTCAAACAGATTCTTAGCGAAAGGACTGAAAGCCAGTCCTTTATTCCTAAACAATTT



GAAAGTGATCAGGAGTTGTTCGATTCACTGCAGAAGTTACATAATAACTGCCAGGATAAA



TTCACCGTGCTGCAACAAGCCATTCTCGGTCTGGCAGAGGCGGATCTTAAGAAGGTCTTC



ATCAAAACCTCTGATTTAAATGCCTTATCTAACACCATTTTCGGGAATTACAGCGTCTTT



TCCGATGCACTGAACCTGTATAAAGAAAGCCTGAAAACGAAAAAAGCGCAGGAGGCTTTT



GAGAAACTACCGGCCCATTCTATTCACGACCTCATTCAATACTTGGAACAGTTCAATTCC



AGCCTGGACGCGGAAAAACAACAGAGCACCGACACCGTCCTGAACTACTTCATCAAGACC



GATGAATTATATTCTCGCTTCATTAAATCCACTAGCGAGGCTTTCACTCAGGTGCAGCCT



TTGTTCGAACTGGAAGCCCTGTCATCTAAGCGCCGCCCACCGGAATCGGAAGATGAAGGG



GCAAAAGGGCAGGAAGGCTTCGAGCAGATCAAGCGTATTAAAGCTTACCTGGATACGCTT



ATGGAAGCGGTACACTTTGCAAAGCCGTTGTATCTTGTTAAGGGTCGTAAAATGATCGAA



GGGCTCGATAAAGACCAGTCCTTTTATGAAGCGTTTGAAATGGCGTACCAAGAACTTGAA



TCGTTAATCATTCCTATCTATAACAAAGCGCGGAGCTATCTGTCGCGGAAACCTTTCAAG



GCCGATAAATTCAAGATTAATTTTGACAACAACACGCTACTGAGCGGATGGGATGCGAAC



AAGGAAACTGCTAACGCGTCCATTCTGTTTAAGAAAGACGGGTTATATTACCTTGGAATT



ATGCCGAAAGGTAAGACCTTTCTCTTTGACTACTTTGTATCGAGCGAGGATTCAGAGAAA



CTGAAACAGCGTCGCCAGAAGACCGCCGAAGAAGCTCTGGCGCAGGATGGTGAAAGTTAC



TTCGAAAAAATTCGTTATAAACTGTTACCAGGGGCTTCAAAGATGTTACCGAAAGTCTTT



TTTAGCAACAAAAATATTGGCTTTTACAACCCGTCGGATGACATTTTACGCATTCGCAAC



ACAGCCTCTCACACCAAAAACGGGACCCCTCAGAAAGGCCACTCAAAAGTTGAGTTTAAC



CTGAATGATTGTCATAAGATGATTGATTTCTTCAAATCATCAATTCAGAAACACCCGGAA



TGGGGGTCTTTTGGCTTTACGTTTTCTGATACCAGTGATTTTGAAGACATGAGTGCCTTC



TACCGGGAAGTAGAAAACCAGGGTTACGTAATTAGCTTTGACAAAATCAAAGAGACCTAT



ATACAGAGCCAGGTGGAACAGGGTAATCTCTACTTATTCCAGATTTATAACAAGGATTTC



TCGCCCTACAGCAAAGGCAAACCAAACCTGCATACTCTGTACTGGAAAGCCCTGTTTGAA



GAAGCGAACCTGAATAACGTAGTGGCGAAGTTGAACGGTGAAGCGGAAATCTTCTTCCGT



CGTCACTCCATTAAGGCCTCTGATAAAGTTGTCCATCCGGCAAATCAGGCCATTGATAAT



AAGAATCCACACACGGAAAAAACGCAGTCAACCTTTGAATATGACCTCGTTAAAGACAAA



CGCTACACGCAAGATAAGTTCTTTTTCCACGTCCCAATCAGCCTCAACTTTAAAGCACAA



GGGGTTTCAAAGTTTAATGATAAAGTCAATGGGTTCCTCAAGGGCAACCCGGATGTCAAC



ATTATAGGTATAGACAGGGGCGAACGCCATCTGCTTTACTTTACCGTAGTGAATCAGAAA



GGTGAAATACTGGTTCAGGAATCATTAAATACCTTGATGTCGGACAAAGGGCACGTTAAT



GATTACCAGCAGAAACTGGATAAAAAAGAACAGGAACGTGATGCTGCGCGTAAATCGTGG



ACCACGGTTGAGAACATTAAAGAGCTGAAAGAGGGGTATCTAAGCCATGTGGTACACAAA



CTGGCGCACCTCATCATTAAATATAACGCAATAGTCTGCCTAGAAGACTTGAATTTTGGC



TTTAAACGCGGCCGCTTCAAAGTGGAAAAACAAGTTTATCAAAAATTTGAAAAGGCGCTT



ATAGATAAACTGAATTATCTGGTTTTTAAAGAAAAGGAACTTGGTGAGGTAGGGCACTAC



TTGACAGCTTATCAACTGACGGCCCCGTTCGAATCATTCAAAAAACTGGGCAAACAGTCT



GGCATTCTGTTTTACGTGCCGGCAGATTATACTTCAAAAATCGATCCAACAACTGGCTTT



GTGAACTTCCTGGACCTGAGATATCAGTCTGTAGAAAAAGCTAAACAACTTCTTAGCGAT



TTTAATGCCATTCGTTTTAACAGCGTTCAGAATTACTTTGAATTCGAAATTGACTATAAA



AAACTTACTCCGAAACGTAAAGTCGGAACCCAAAGTAAATGGGTAATTTGTACGTATGGC



GATGTCAGGTATCAGAACCGTCGGAATCAAAAAGGTCATTGGGAGACCGAAGAAGTGAAC



GTGACCGAAAAGCTGAAGGCTCTGTTCGCCAGCGATTCAAAAACTACAACTGTGATCGAT



TACGCAAATGATGATAACCTGATAGATGTGATTTTAGAGCAGGATAAAGCCAGCTTTTTT



AAAGAACTGTTGTGGCTCCTGAAACTTACGATGACCTTACGACATTCCAAGATCAAATCG



GAAGATGATTTTATTCTGTCACCGGTCAAGAATGAGCAGGGTGAATTCTATGATAGTAGG



AAAGCCGGCGAAGTGTGGCCGAAAGACGCCGACGCCAATGGCGCCTATCATATCGCGCTC



AAAGGGCTTTGGAATTTGCAGCAGATTAACCAGTGGGAAAAAGGTAAAACCCTGAATCTG



GCTATCAAAAACCAGGATTGGTTTAGCTTTATCCAAGAGAAACCGTATCAGGAATGA





SEQ
ATGCATACAGGCGGTCTTCTTAGTATGGACGCGAAAGAGTTCACAGGTCAGTATCCGTTG


ID
TCGAAAACATTACGATTCGAACTTCGGCCCATCGGCCGCACGTGGGATAACCTGGAGGCC


NO:
TCAGGCTACTTAGCGGAAGACCGCCATCGTGCCGAATGTTATCCTCGTGCGAAAGAGTTA


45
TTGGATGACAACCATCGTGCCTTCCTGAATCGTGTGTTGCCACAAATCGATATGGATTGG



CACCCGATTGCGGAGGCCTTTTGTAAGGTACATAAAAACCCTGGTAATAAAGAACTTGCC



CAGGATTACAACCTTCAGTTGTCAAAGCGCCGTAAGGAGATCAGCGCATATCTTCAGGAT



GCAGATGGCTATAAAGGCCTGTTCGCGAAGCCCGCCTTAGACGAAGCTATGAAAATTGCG



AAAGAAAACGGGAACGAAAGTGATATTGAGGTTCTCGAAGCGTTTAACGGTTTTAGCGTA



TACTTCACCGGTTATCATGAGTCACGCGAGAACATTTATAGCGATGAGGATATGGTGAGC



GTAGCCTACCGAATTACTGAGGATAATTTCCCGCGCTTTGTCTCAAACGCTTTGATCTTT



GATAAATTAAACGAAAGCCATCCGGATATTATCTCTGAAGTATCGGGCAATCTTGGAGTT



GATGACATTGGTAAGTACTTTGACGTGTCGAACTATAACAATTTTCTTTCCCAGGCCGGT



ATAGATGACTACAATCACATTATTGGCGGCCATACAACCGAAGACGGACTGATACAAGCG



TTTAATGTCGTATTGAACTTACGTCACCAAAAAGACCCTGGCTTTGAAAAAATTCAGTTC



AAACAGCTCTACAAACAAATCCTGAGCGTGCGTACCAGCAAAAGCTACATCCCGAAACAG



TTTGACAACTCTAAGGAGATGGTTGACTGCATTTGCGATTATGTCAGCAAAATAGAGAAA



TCCGAAACAGTAGAACGGGCCCTGAAACTAGTCCGTAATATCAGTTCTTTCGACTTGCGC



GGGATCTTTGTCAATAAAAAGAACTTGCGCATACTGAGCAACAAACTGATAGGAGATTGG



GACGCGATCGAAACCGCATTGATGCATAGTTCTTCATCAGAAAACGATAAGAAAAGCGTA



TATGATAGCGCGGAGGCTTTTACGTTGGATGACATCTTTTCAAGCGTGAAAAAATTTTCT



GATGCCTCTGCCGAAGATATTGGCAACAGGGCGGAAGACATCTGTAGAGTGATAAGTGAG



ACGGCCCCTTTTATCAACGATCTGCGAGCGGTGGACCTGGATAGCCTGAACGACGATGGT



TATGAAGCGGCCGTCTCAAAAATTCGGGAGTCGCTGGAGCCTTATATGGATCTTTTCCAT



GAACTGGAAATTTTCTCGGTTGGCGATGAGTTCCCAAAATGCGCAGCATTTTACAGCGAA



CTGGAGGAAGTCAGCGAACAGCTGATCGAAATTATTCCGTTATTCAACAAGGCGCGTTCG



TTCTGCACCCGGAAACGCTATAGCACCGATAAGATTAAAGTGAACTTAAAATTCCCGACC



TTGGCGGACGGGTGGGACCTGAACAAAGAGAGAGACAACAAAGCCGCGATTCTGCGGAAA



GACGGTAAGTATTATCTGGCAATTCTGGATATGAAGAAAGATCTGTCAAGCATTAGGACC



AGCGACGAAGATGAATCCAGCTTCGAAAAGATGGAGTATAAACTGTTACCGAGTCCAGTA



AAAATGCTGCCAAAGATATTCGTAAAATCGAAAGCCGCTAAGGAAAAATATGGCCTGACA



GATCGTATGCTTGAATGCTACGATAAAGGTATGCATAAGTCGGGTAGTGCGTTTGATCTT



GGCTTTTGCCATGAACTCATTGATTATTACAAGCGTTGTATCGCGGAGTACCCAGGCTGG



GATGTGTTCGATTTCAAGTTTCGCGAAACTTCCGATTATGGGTCCATGAAAGAGTTCAAT



GAAGATGTGGCCGGAGCCGGTTACTATATGAGTCTGAGAAAAATTCCGTGCAGCGAAGTG



TACCGTCTGTTAGACGAGAAATCGATTTATCTATTTCAAATTTATAACAAAGATTACTCT



GAAAATGCACATGGTAATAAGAACATGCATACCATGTACTGGGAGGGTCTCTTTTCCCCG



CAAAACCTGGAGTCGCCCGTTTTCAAGTTGTCGGGTGGGGCAGAACTTTTCTTTCGAAAA



TCCTCAATCCCTAACGATGCCAAAACAGTACACCCGAAAGGCTCAGTGCTGGTTCCACGT



AATGATGTTAACGGTCGGCGTATTCCAGATTCAATCTACCGCGAACTGACACGCTATTTT



AACCGTGGCGATTGCCGAATCAGTGACGAAGCCAAAAGTTATCTTGACAAGGTTAAGACT



AAAAAAGCGGACCATGACATTGTGAAAGATCGCCGCTTTACCGTGGATAAAATGATGTTC



CACGTCCCGATTGCGATGAACTTTAAGGCGATCAGTAAACCGAACTTAAACAAAAAAGTC



ATTGATGGCATCATTGATGATCAGGATCTGAAAATCATTGGTATTGATCGTGGCGAGCGG



AACTTAATTTACGTCACGATGGTTGACAGAAAAGGGAATATCTTATATCAGGATTCTCTT



AACATCCTCAATGGCTACGACTATCGTAAAGCTCTGGATGTGCGCGAATATGACAACAAG



GAAGCGCGTCGTAACTGGACTAAAGTGGAGGGCATTCGCAAAATGAAGGAAGGCTATCTG



TCATTAGCGGTCTCGAAATTAGCGGATATGATTATCGAAAATAACGCCATCATCGTTATG



GAGGACCTGAACCACGGATTCAAAGCGGGCCGCTCAAAGATTGAAAAACAAGTTTATCAG



AAATTTGAGAGTATGCTGATTAACAAACTGGGCTATATGGTGTTAAAAGACAAGTCAATT



GACCAATCAGGTGGCGCGCTGCATGGATACCAGCTGGCGAACCATGTTACCACCTTAGCA



TCAGTTGGAAAGCAGTGTGGGGTTATCTTTTATATACCGGCAGCGTTCACTAGTAAAATA



GATCCGACCACTGGTTTCGCCGATCTCTTTGCCCTGAGTAACGTTAAAAACGTAGCGAGC



ATGCGTGAATTCTTTTCCAAAATGAAATCTGTCATTTATGATAAAGCTGAAGGCAAATTC



GCATTCACCTTTGATTACTTGGATTACAACGTGAAGAGCGAATGTGGTCGTACGCTGTGG



ACCGTTTACACCGTTGGTGAGCGCTTCACCTATTCCCGTGTGAACCGCGAATATGTACGT



AAAGTCCCCACCGATATTATCTATGATGCCCTCCAGAAAGCAGGCATTAGCGTCGAAGGA



GACTTAAGGGACAGAATTGCCGAAAGCGATGGCGATACGCTGAAGTCTATTTTTTACGCA



TTCAAATACGCGCTAGATATGCGCGTTGAGAATCGCGAGGAAGACTACATTCAATCACCT



GTGAAAAATGCCTCTGGGGAATTTTTTTGTTCAAAAAATGCTGGTAAAAGCCTCCCACAA



GATAGCGATGCAAACGGTGCATATAACATTGCCCTGAAAGGTATTCTTCAATTACGCATG



CTGTCTGAGCAGTACGACCCCAACGCGGAATCTATTAGACTTCCGCTGATAACCAATAAA



GCCTGGCTGACATTCATGCAGTCTGGCATGAAGACCTGGAAAAATTAG





SEQ
ATGGATAGTTTAAAAGATTTTACGAATCTATATCCCGTAAGCAAAACTCTTCGTTTTGAA


ID
CTGAAACCTGTTGGAAAAACGTTGGAGAATATCGAGAAAGCGGGCATCCTGAAAGAAGAC


NO:
GAGCACCGTGCCGAAAGCTACAGGCGTGTCAAAAAGATTATCGATACTTATCACAAAGTG


46
TTCATTGATAGCAGTCTGGAGAACATGGCAAAAATGGGCATAGAAAATGAAATCAAAGCA



ATGCTGCAGAGCTTTTGCGAGCTCTACAAGAAAGATCACCGAACGGAAGGTGAAGATAAA



GCACTGGACAAAATTCGCGCCGTTCTTCGCGGTCTGATTGTTGGCGCGTTCACCGGCGTG



TGCGGCCGCCGTGAAAACACCGTGCAGAACGAAAAGTACGAGTCGCTGTTCAAAGAAAAA



CTGATAAAAGAAATTTTGCCTGACTTTGTGCTTTCGACCGAAGCGGAATCCCTGCCATTT



TCTGTCGAAGAAGCGACCCGCAGCCTGAAAGAATTTGACTCATTCACAAGTTACTTTGCA



GGCTTCTACGAAAACCGTAAAAACATCTACAGCACGAAGCCACAGAGCACGGCTATTGCT



TATCGCCTGATTCATGAGAACCTGCCGAAGTTCATCGATAACATCCTTGTTTTTCAAAAA



ATTAAAGAGCCGATTGCGAAAGAGTTAGAACATATTCGAGCTGACTTTTCTGCGGGTGGG



TACATTAAAAAAGATGAGCGGCTGGAAGACATCTTCAGTCTAAACTATTATATCCACGTT



CTGTCGCAGGCAGGCATTGAGAAATATAATGCGCTGATTGGTAAGATTGTCACAGAAGGC



GATGGTGAGATGAAAGGTCTTAATGAACATATCAATCTGTATAACCAGCAGCGTGGTCGC



GAAGACCGTCTTCCACTGTTCCGCCCACTGTATAAACAGATCCTGTCTGACCGGGAACAG



CTGTCCTACCTGCCGGAAAGCTTTGAAAAGGATGAAGAGCTACTTCGCGCATTAAAGGAG



TTTTACGACCATATTGCGGAAGACATTTTGGGTAGAACGCAGCAACTGATGACGTCAATT



TCTGAATACGATCTGAGTAGAATCTACGTTAGGAATGATAGCCAGCTGACCGATATTAGC



AAAAAAATGCTGGGCGACTGGAACGCTATCTATATGGCACGTGAACGTGCATATGATCAT



GAACAAGCACCGAAACGTATAACCGCGAAATATGAGCGTGATCGCATTAAGGCGCTAAAG



GGAGAAGAAAGCATCTCACTCGCAAACCTGAACTCCTGTATCGCTTTCTTAGATAACGTG



CGCGATTGTCGCGTCGACACGTATCTGTCAACCCTTGGGCAGAAAGAGGGTCCACATGGT



CTGTCTAACCTGGTGGAAAATGTCTTTGCGAGTTACCATGAAGCGGAACAACTGCTGTCT



TTTCCATACCCCGAAGAAAACAATCTAATACAGGATAAAGATAACGTGGTGTTAATCAAA



AACCTGCTGGACAACATCAGCGATCTGCAACGTTTCCTGAAACCTTTGTGGGGTATGGGT



GACGAGCCAGACAAAGACGAACGTTTTTATGGTGAGTATAATTATATACGTGGCGCCCTT



GACCAAGTTATTCCGCTGTATAACAAAGTACGGAACTATCTGACCCGTAAGCCATATTCT



ACCCGTAAAGTGAAACTGAACTTTGGCAACTCGCAACTGCTGTCGGGTTGGGATCGTAAC



AAAGAAAAAGATAATAGTTGTGTTATCCTGCGTAAGGGACAAAATTTTTACCTCGCGATT



ATGAACAACAGACACAAGCGTTCATTTGAAAATAAGGTTCTGCCGGAGTATAAAGAGGGC



GAACCGTACTTCGAGAAAATGGATTATAAGTTCTTACCAGACCCTAATAAGATGTTACCG



AAAGTCTTTCTTTCGAAAAAAGGCATAGAAATCTATAAGCCGTCCCCGAAATTACTCGAA



CAGTATGGGCACGGGACCCACAAGAAAGGGGATACTTTTAGCATGGACGATCTGCACGAA



CTGATCGATTTTTTTAAACACTCCATCGAAGCCCATGAAGACTGGAAACAGTTTGGGTTC



AAGTTCTCTGATACAGCCACATACGAGAATGTGTCTAGTTTTTATCGGGAAGTGGAGGAT



CAGGGCTACAAACTTAGTTTTCGTAAAGTTTCAGAGAGTTATGTTTATAGTTTAATTGAT



CAGGGAAAACTTTACCTGTTCCAGATCTACAACAAAGATTTCTCGCCATGTAGTAAGGGT



ACCCCGAATCTGCATACACTCTATTGGAGAATGTTATTCGATGAGCGTAACTTAGCGGAT



GTCATTTATAAATTGGACGGGAAAGCAGAGATCTTTTTTCGTGAAAAATCACTGAAGAAT



GACCACCCGACTCATCCGGCCGGGAAACCGATCAAAAAAAAATCCCGCCAGAAAAAAGGA



GAAGAGTCTCTGTTTGAATATGATCTGGTGAAAGACCGTCATTACACTATGGATAAATTT



CAATTTCATGTTCCAATTACAATGAACTTCAAATGTTCGGCGGGTTCCAAAGTAAATGAT



ATGGTAAACGCCCATATTCGCGAAGCGAAAGATATGCATGTTATTGGCATCGATAGAGGC



GAAAGAAACCTGCTTTATATTTGCGTAATTGACAGCCGTGGTACCATTCTGGACCAGATC



TCTTTAAACACCATCAATGACATCGATTATCACGACCTGTTGGAGTCTCGGGACAAGGAC



CGCCAGCAGGAGCGCCGTAATTGGCAGACAATTGAAGGCATAAAAGAATTAAAACAGGGT



TACCTTTCCCAGGCCGTACACCGCATAGCGGAACTGATGGTGGCCTACAAAGCCGTAGTT



GCCCTGGAAGACTTGAATATGGGGTTTAAACGTGGCCGTCAAAAAGTCGAGAGCAGCGTG



TATCAGCAATTTGAAAAACAGTTGATTGACAAGTTGAATTATTTGGTTGATAAAAAGAAA



CGTCCAGAAGATATTGGTGGCTTACTGCGTGCATACCAGTTTACGGCACCTTTTAAGTCC



TTCAAAGAAATGGGTAAACAGAACGGGTTTCTGTTTTACATCCCGGCCTGGAATACATCC



AACATCGATCCTACCACCGGGTTTGTCAACCTGTTTCATGCACAATATGAAAACGTGGAT



AAAGCGAAGAGTTTTTTCCAAAAATTCGATAGTATTTCGTATAACCCAAAAAAAGATTGG



TTTGAGTTTGCGTTCGATTATAAAAATTTTACTAAAAAGGCTGAGGGATCCCGCAGTATG



TGGATCCTCTGCACCCATGGCAGTCGTATTAAAAATTTTCGTAATTCGCAAAAGAATGGC



CAGTGGGACTCGGAAGAGTTTGCCCTGACCGAAGCGTTCAAATCGCTGTTTGTACGCTAC



GAAATTGACTACACAGCAGATCTGAAAACAGCCATCGTCGATGAAAAACAGAAAGATTTT



TTTGTAGATCTCCTAAAACTGTTCAAACTGACTGTTCAGATGCGCAATTCCTGGAAAGAG



AAAGACCTGGATTATCTGATTAGCCCGGTAGCCGGTGCTGATGGACGATTTTTCGATACT



CGTGAAGGTAACAAAAGTCTCCCGAAAGATGCTGATGCCAATGGTGCATACAATATTGCA



TTAAAGGGGCTATGGGCCTTGCGACAGATCCGCCAGACCAGCGAAGGCGGCAAGCTGAAA



TTGGCCATATCGAATAAGGAATGGTTACAATTTGTTCAGGAACGTAGCTATGAAAAAGAT



TGA





SEQ
ATGAACAACGGCACAAATAATTTTCAGAACTTCATCGGGATCTCAAGTTTGCAGAAAACG


ID
CTGCGCAATGCTCTGATCCCCACGGAAACCACGCAACAGTTCATCGTCAAGAACGGAATA


NO:
ATTAAAGAAGATGAGTTACGTGGCGAGAACCGCCAGATTCTGAAAGATATCATGGATGAC


47
TACTACCGCGGATTCATCTCTGAGACTCTGAGTTCTATTGATGACATAGATTGGACTAGC



CTGTTCGAAAAAATGGAAATTCAGCTGAAAAATGGTGATAATAAAGATACCTTAATTAAG



GAACAGACAGAGTATCGGAAAGCAATCCATAAAAAATTTGCGAACGACGATCGGTTTAAG



AACATGTTTAGCGCCAAACTGATTAGTGACATATTACCTGAATTTGTCATCCACAACAAT



AATTATTCGGCATCAGAGAAAGAGGAAAAAACCCAGGTGATAAAATTGTTTTCGCGCTTT



GCGACTAGCTTTAAAGATTACTTCAAGAACCGTGCAAATTGCTTTTCAGCGGACGATATT



TCATCAAGCAGCTGCCATCGCATCGTCAACGACAATGCAGAGATATTCTTTTCAAATGCG



CTGGTCTACCGCCGGATCGTAAAATCGCTGAGCAATGACGATATCAACAAAATTTCGGGC



GATATGAAAGATTCATTAAAAGAAATGAGTCTGGAAGAAATATATTCTTACGAGAAGTAT



GGGGAATTTATTACCCAGGAAGGCATTAGCTTCTATAATGATATCTGTGGGAAAGTGAAT



TCTTTTATGAACCTGTATTGTCAGAAAAATAAAGAAAACAAAAATTTATACAAACTTCAG



AAACTTCACAAACAGATTCTATGCATTGCGGACACTAGCTATGAGGTCCCGTATAAATTT



GAAAGTGACGAGGAAGTGTACCAATCAGTTAACGGCTTCCTTGATAACATTAGCAGCAAA



CATATAGTCGAAAGATTACGCAAAATCGGCGATAACTATAACGGCTACAACCTGGATAAA



ATTTATATCGTGTCCAAATTTTACGAGAGCGTTAGCCAAAAAACCTACCGCGACTGGGAA



ACAATTAATACCGCCCTCGAAATTCATTACAATAATATCTTGCCGGGTAACGGTAAAAGT



AAAGCCGACAAAGTAAAAAAAGCGGTTAAGAATGATTTACAGAAATCCATCACCGAAATA



AATGAACTAGTGTCAAACTATAAGCTGTGCAGTGACGACAACATCAAAGCGGAGACTTAT



ATACATGAGATTAGCCATATCTTGAATAACTTTGAAGCACAGGAATTGAAATACAATCCG



GAAATTCACCTAGTTGAATCCGAGCTCAAAGCGAGTGAGCTTAAAAACGTGCTGGACGTG



ATCATGAATGCGTTTCATTGGTGTTCGGTTTTTATGACTGAGGAACTTGTTGATAAAGAC



AACAATTTTTATGCGGAACTGGAGGAGATTTACGATGAAATTTATCCAGTAATTAGTCTG



TACAACCTGGTTCGTAACTACGTTACCCAGAAACCGTACAGCACGAAAAAGATTAAATTG



AACTTTGGAATACCGACGTTAGCAGACGGTTGGTCAAAGTCCAAAGAGTATTCTAATAAC



GCTATCATACTGATGCGCGACAATCTGTATTATCTGGGCATCTTTAATGCGAAGAATAAA



CCGGACAAGAAGATTATCGAGGGTAATACGTCAGAAAATAAGGGTGACTACAAAAAGATG



ATTTATAATTTGCTCCCGGGTCCCAACAAAATGATCCCGAAAGTTTTCTTGAGCAGCAAG



ACGGGGGTGGAAACGTATAAACCGAGCGCCTATATCCTAGAGGGGTATAAACAGAATAAA



CATATCAAGTCTTCAAAAGACTTTGATATCACTTTCTGTCATGATCTGATCGACTACTTC



AAAAACTGTATTGCAATTCATCCCGAGTGGAAAAACTTCGGTTTTGATTTTAGCGACACC



AGTACTTATGAAGACATTTCCGGGTTTTATCGTGAGGTAGAGTTACAAGGTTACAAGATT



GATTGGACATACATTAGCGAAAAAGACATTGATCTGCTGCAGGAAAAAGGTCAACTGTAT



CTGTTCCAGATATATAACAAAGATTTTTCGAAAAAATCAACCGGGAATGACAACCTTCAC



ACCATGTACCTGAAAAATCTTTTCTCAGAAGAAAATCTTAAGGATATCGTCCTGAAACTT



AACGGCGAAGCGGAAATCTTCTTCAGGAAGAGCAGCATAAAGAACCCAATCATTCATAAA



AAAGGCTCGATTTTAGTCAACCGTACCTACGAAGCAGAAGAAAAAGACCAGTTTGGCAAC



ATTCAAATTGTGCGTAAAAATATTCCGGAAAACATTTATCAGGAGCTGTACAAATACTTC



AACGATAAAAGCGACAAAGAGCTGTCTGATGAAGCAGCCAAACTGAAGAATGTAGTGGGA



CACCACGAGGCAGCGACGAATATAGTCAAGGACTATCGCTACACGTATGATAAATACTTC



CTTCATATGCCTATTACGATCAATTTCAAAGCCAATAAAACGGGTTTTATTAATGATAGG



ATCTTACAGTATATCGCTAAAGAAAAAGACTTACATGTGATCGGCATTGATCGGGGCGAG



CGTAACCTGATCTACGTGTCCGTGATTGATACTTGTGGTAATATAGTTGAACAGAAAAGC



TTTAACATTGTAAACGGCTACGACTATCAGATAAAACTGAAACAACAGGAGGGCGCTAGA



CAGATTGCGCGGAAAGAATGGAAAGAAATTGGTAAAATTAAAGAGATCAAAGAGGGCTAC



CTGAGCTTAGTAATCCACGAGATCTCTAAAATGGTAATCAAATACAATGCAATTATAGCG



ATGGAGGATTTGTCTTATGGTTTTAAAAAAGGGCGCTTTAAGGTCGAACGGCAAGTTTAC



CAGAAATTTGAAACCATGCTCATCAATAAACTCAACTATCTGGTATTTAAAGATATTTCG



ATTACCGAGAATGGCGGTCTCCTGAAAGGTTATCAGCTGACATACATTCCTGATAAACTT



AAAAACGTGGGTCATCAGTGCGGCTGCATTTTTTATGTGCCTGCTGCATACACGAGCAAA



ATTGATCCGACCACCGGCTTTGTGAATATCTTTAAATTTAAAGACCTGACAGTGGACGCA



AAACGTGAATTCATTAAAAAATTTGACTCAATTCGTTATGACAGTGAAAAAAATCTGTTC



TGCTTTACATTTGACTACAATAACTTTATTACGCAAAACACGGTCATGAGCAAATCATCG



TGGAGTGTGTATACATACGGCGTGCGCATCAAACGTCGCTTTGTGAACGGCCGCTTCTCA



AACGAAAGTGATACCATTGACATAACCAAAGATATGGAGAAAACGTTGGAAATGACGGAC



ATTAACTGGCGCGATGGCCACGATCTTCGTCAAGACATTATAGATTATGAAATTGTTCAG



CACATATTCGAAATTTTCCGTTTAACAGTGCAAATGCGTAACTCCTTGTCTGAACTGGAG



GACCGTGATTACGATCGTCTCATTTCACCTGTACTGAACGAAAATAACATTTTTTATGAC



AGCGCGAAAGCGGGGGATGCACTTCCTAAGGATGCCGATGCAAATGGTGCGTATTGTATT



GCATTAAAAGGGTTATATGAAATTAAACAAATTACCGAAAATTGGAAAGAAGATGGTAAA



TTTTCGCGCGATAAACTCAAAATCAGCAATAAAGATTGGTTCGACTTTATCCAGAATAAG



CGCTATCTCTAA





SEQ
ATGACCAATAAATTCACTAACCAGTATTCTCTCTCTAAGACCCTGCGCTTTGAACTGATT


ID
CCGCAGGGGAAAACCTTGGAGTTCATTCAAGAAAAAGGCCTCTTGTCTCAGGATAAACAG


NO:
AGGGCTGAATCTTACCAAGAAATGAAGAAAACTATTGATAAGTTTCATAAATATTTCATT


48
GATTTAGCCTTGTCTAACGCCAAATTAACTCACTTGGAAACGTATCTGGAGTTATACAAC



AAATCTGCCGAAACTAAGAAAGAACAGAAATTTAAAGACGATTTGAAAAAAGTACAGGAC



AATCTGCGTAAAGAAATTGTCAAATCCTTCAGTGACGGCGATGCTAAAAGCATTTTTGCC



ATTCTGGACAAAAAAGAGTTGATTACTGTGGAATTAGAAAAGTGGTTTGAAAACAATGAG



CAGAAAGACATCTACTTCGATGAGAAATTCAAAACTTTCACCACCTATTTTACAGGATTT



CATCAAAACCGGAAGAACATGTACTCAGTAGAACCGAACTCCACGGCCATTGCGTATCGT



TTGATCCATGAGAATCTGCCTAAATTTCTGGAGAATGCGAAAGCCTTTGAAAAGATTAAG



CAGGTCGAATCGCTGCAAGTGAATTTTCGTGAACTCATGGGCGAATTTGGTGACGAAGGT



CTAATCTTCGTTAACGAACTGGAAGAAATGTTTCAGATTAATTACTACAATGACGTGCTA



TCGCAGAACGGTATCACAATCTACAATAGTATTATCTCAGGGTTCACAAAAAACGATATA



AAATACAAAGGCCTGAACGAGTATATCAATAACTACAACCAAACAAAGGACAAAAAGGAT



AGGCTTCCGAAACTGAAGCAGTTATACAAACAGATTTTATCTGACAGAATCTCCCTGAGC



TTTCTGCCGGATGCTTTCACTGATGGGAAGCAGGTTCTGAAAGCGATTTTCGATTTTTAT



AAGATTAACTTACTGAGCTACACGATTGAAGGTCAAGAAGAATCTCAAAACTTACTGCTC



TTGATCCGTCAAACCATTGAAAATCTATCATCGTTCGATACGCAGAAAATCTACCTCAAA



AACGATACTCACCTGACTACGATCTCTCAGCAGGTTTTCGGGGATTTTAGTGTATTTTCA



ACAGCTCTGAACTACTGGTATGAAACCAAAGTCAATCCGAAATTCGAGACGGAATATTCT



AAGGCCAACGAAAAAAAACGTGAGATTCTTGATAAAGCTAAAGCCGTATTTACTAAACAG



GATTACTTTTCTATTGCTTTCCTGCAGGAAGTTTTATCGGAGTATATCCTGACCCTGGAT



CATACATCTGATATCGTTAAAAAACACAGCAGCAATTGCATCGCTGACTATTTCAAAAAC



CACTTTGTCGCCAAAAAAGAAAACGAAACAGACAAGACTTTCGATTTCATTGCTAACATC



ACCGCAAAATACCAGTGTATTCAGGGTATCTTGGAAAACGCCGACCAATACGAAGACGAA



CTGAAACAAGATCAGAAGCTGATCGATAATTTAAAATTCTTCTTAGATGCAATCCTGGAG



CTGCTGCACTTCATCAAACCGCTTCATTTAAAGAGCGAGTCCATTACCGAAAAGGACACC



GCCTTCTATGACGTTTTTGAAAATTATTATGAAGCCCTCTCCTTGCTGACTCCGCTGTAT



AATATGGTACGCAATTACGTAACCCAGAAACCATATTCTACCGAAAAAATTAAACTGAAC



TTTGAAAACGCACAGCTGCTCAACGGTTGGGACGCGAATAAAGAAGGTGACTACCTCACC



ACCATCCTGAAAAAAGATGGTAACTATTTTCTGGCAATTATGGATAAGAAACATAATAAA



GCATTCCAGAAATTTCCTGAAGGGAAAGAAAATTACGAAAAGATGGTGTACAAACTCTTA



CCTGGAGTTAACAAAATGTTGCCGAAAGTATTTTTTAGTAATAAGAACATCGCGTACTTT



AACCCGTCCAAAGAACTGCTGGAAAATTATAAAAAGGAGACGCATAAGAAAGGGGATACC



TTTAACCTGGAACATTGCCATACCTTAATAGACTTCTTCAAGGATTCCCTGAATAAACAC



GAGGATTGGAAATATTTCGATTTTCAGTTTAGTGAGACCAAGTCATACCAGGATCTTAGC



GGCTTTTATCGCGAAGTAGAACACCAAGGCTATAAAATTAACTTCAAAAACATCGACAGC



GAATACATCGACGGTTTAGTTAACGAGGGCAAACTGTTTCTGTTCCAGATCTATTCAAAG



GATTTTAGCCCGTTCTCTAAAGGCAAACCAAATATGCATACGTTGTACTGGAAAGCACTG



TTTGAAGAGCAAAACCTGCAGAATGTGATTTATAAACTGAACGGCCAAGCTGAGATTTTT



TTCCGTAAAGCCTCGATTAAACCGAAAAATATCATCCTTCATAAGAAGAAAATAAAGATC



GCTAAAAAACACTTCATAGATAAAAAAACCAAAACCTCCGAAATAGTGCCTGTTCAAACA



ATTAAGAACTTGAATATGTACTACCAGGGCAAGATATCGGAAAAGGAGTTGACTCAAGAC



GATCTTCGCTATATCGATAACTTTTCGATTTTTAACGAAAAAAACAAGACGATCGACATC



ATCAAAGATAAACGCTTCACTGTAGATAAGTTCCAGTTTCATGTGCCGATTACTATGAAC



TTCAAAGCTACCGGGGGTAGCTATATCAACCAAACGGTGTTGGAATACCTGCAGAATAAC



CCGGAAGTCAAAATCATTGGGCTGGACCGCGGAGAACGTCACCTTGTGTACTTGACCTTA



ATCGATCAGCAAGGCAACATCTTAAAACAAGAATCGCTGAATACCATTACGGATTCAAAG



ATTAGCACCCCGTATCATAAGCTGCTCGATAACAAGGAGAATGAGCGCGACCTGGCCCGT



AAAAACTGGGGCACGGTGGAAAACATTAAGGAGTTAAAGGAGGGTTATATTTCCCAGGTA



GTGCATAAGATCGCCACTCTCATGCTCGAGGAAAATGCGATCGTTGTCATGGAAGACTTA



AACTTCGGATTTAAACGTGGGCGATTTAAAGTAGAGAAACAAATCTACCAGAAGTTAGAA



AAAATGCTGATTGACAAATTAAATTACTTGGTCCTAAAAGACAAACAGCCGCAAGAATTG



GGTGGATTATACAACGCCCTCCAACTTACCAATAAATTCGAAAGTTTTCAGAAAATGGGT



AAACAGTCAGGCTTTCTTTTTTATGTTCCTGCGTGGAACACATCCAAAATCGACCCTACA



ACCGGCTTCGTCAATTACTTCTATACTAAATATGAAAACGTCGACAAAGCAAAAGCATTC



TTTGAAAAGTTCGAAGCAATACGTTTTAACGCTGAGAAAAAATATTTCGAGTTCGAAGTC



AAGAAATACTCAGACTTTAACCCCAAAGCTGAGGGCACACAGCAAGCGTGGACAATCTGC



ACCTACGGCGAGCGCATCGAAACGAAGCGTCAAAAAGATCAGAATAACAAATTTGTTTCA



ACACCTATCAACCTGACCGAGAAGATTGAAGACTTCTTAGGTAAAAATCAGATTGTTTAT



GGCGACGGTAACTGTATAAAATCTCAAATAGCCTCAAAGGATGATAAAGCATTTTTCGAA



ACATTATTATATTGGTTCAAAATGACACTGCAGATGCGCAATAGTGAGACGCGTACAGAT



ATTGATTATCTTATCAGCCCGGTCATGAACGACAACGGTACTTTTTACAACTCCAGAGAC



TATGAAAAACTTGAGAATCCAACTCTCCCCAAAGATGCTGATGCGAACGGTGCTTATCAC



ATCGCGAAAAAAGGTCTGATGCTGCTGAACAAAATCGACCAAGCCGATCTGACTAAGAAA



GTTGACCTAAGCATTTCAAATCGGGACTGGTTACAGTTTGTTCAAAAGAACAAATGA





SEQ
ATGGAACAGGAATATTATCTGGGCTTGGACATGGGCACCGGTTCCGTCGGCTGGGCTGTT


ID
ACTGACAGTGAATATCACGTTCTAAGAAAGCATGGTAAGGCATTGTGGGGTGTAAGACTT


NO:
TTCGAATCTGCTTCCACTGCTGAAGAGCGTAGAATGTTTAGAACGAGTCGACGTAGGCTA


49
GACAGGCGCAATTGGAGAATCGAAATTTTACAAGAAATTTTTGCGGAAGAGATATCTAAG



AAAGACCCAGGCTTTTTCCTGAGAATGAAGGAATCTAAGTATTACCCTGAGGATAAAAGA



GATATAAATGGTAACTGTCCCGAATTGCCTTACGCATTATTTGTGGACGATGATTTTACC



GATAAGGATTACCATAAAAAGTTCCCAACTATCTACCATTTACGCAAAATGTTAATGAAT



ACAGAGGAAACCCCAGACATAAGACTAGTTTATCTGGCAATACACCATATGATGAAACAT



AGAGGCCATTTCTTACTTTCCGGGGATATCAACGAAATCAAAGAGTTTGGTACCACATTT



AGTAAGTTACTGGAAAACATAAAGAATGAAGAATTGGATTGGAACTTAGAACTCGGAAAA



GAAGAATACGCGGTTGTCGAATCTATCCTGAAGGATAATATGCTGAATAGGTCGACCAAA



AAAACTAGGCTGATCAAAGCACTGAAAGCCAAATCTATCTGCGAAAAAGCTGTTTTAAAT



TTACTTGCTGGTGGCACTGTTAAGTTATCAGACATTTTTGGTTTGGAAGAATTGAACGAA



ACCGAGCGTCCAAAAATTAGTTTCGCTGATAATGGCTACGATGATTACATTGGTGAGGTG



GAAAACGAGTTGGGCGAACAATTTTATATTATAGAGACAGCTAAGGCAGTCTATGACTGG



GCTGTTTTAGTAGAAATCCTTGGTAAATACACATCTATCTCCGAAGCGAAAGTTGCTACT



TACGAAAAGCACAAGTCCGATCTCCAGTTTTTGAAGAAAATTGTCAGGAAATATCTGACT



AAGGAAGAATATAAAGATATTTTCGTTAGTACCTCTGACAAACTGAAAAATTACTCCGCT



TACATCGGGATGACCAAGATTAATGGCAAAAAAGTTGATCTGCAAAGCAAAAGGTGTTCG



AAGGAAGAATTTTATGATTTCATTAAAAAGAATGTCTTAAAAAAATTAGAAGGTCAGCCA



GAATACGAATATTTGAAAGAAGAACTGGAAAGAGAGACATTCTTACCAAAACAAGTCAAC



AGAGATAATGGGGTAATTCCATATCAAATTCACCTCTACGAATTAAAAAAAATTTTAGGC



AATTTACGCGATAAAATTGACCTTATCAAAGAAAATGAGGATAAGCTGGTTCAACTCTTT



GAATTCAGAATACCCTATTATGTGGGCCCACTGAACAAGATTGATGACGGCAAAGAAGGT



AAATTCACATGGGCCGTCCGCAAATCCAATGAAAAAATTTACCCATGGAACTTTGAAAAT



GTAGTAGATATTGAAGCGTCTGCGGAGAAATTTATTCGAAGAATGACTAATAAATGCACT



TACTTGATGGGAGAGGATGTTCTGCCTAAAGACAGCTTATTATACAGCAAGTACATGGTT



CTAAACGAACTTAACAACGTTAAGTTGGACGGTGAGAAATTAAGTGTAGAATTGAAACAA



AGATTGTATACTGACGTCTTCTGCAAGTACAGAAAAGTGACAGTTAAAAAAATTAAGAAT



TACTTGAAGTGCGAAGGTATAATTTCTGGAAACGTAGAGATTACTGGTATTGATGGTGAT



TTCAAAGCATCCCTAACAGCTTACCACGATTTCAAGGAAATCCTGACAGGAACTGAACTC



GCAAAAAAAGATAAAGAAAACATTATTACTAATATTGTTCTTTTCGGTGATGACAAGAAA



TTGTTGAAGAAAAGACTGAATAGACTTTACCCCCAGATTACTCCCAATCAACTTAAGAAA



ATTTGTGCTTTGTCTTACACAGGATGGGGTCGTTTTTCAAAAAAGTTCTTAGAAGAGATT



ACCGCACCTGATCCAGAAACAGGCGAAGTATGGAATATAATTACCGCCTTATGGGAATCG



AACAATAATCTTATGCAACTTCTGAGCAATGAATATCGTTTCATGGAAGAAGTTGAGACT



TACAACATGGGCAAACAGACGAAGACTTTATCCTATGAAACTGTGGAAAATATGTATGTA



TCACCTTCTGTCAAGAGACAAATTTGGCAAACCTTAAAAATTGTCAAAGAATTAGAAAAG



GTAATGAAGGAGTCTCCTAAACGTGTGTTTATTGAAATGGCTAGAGAAAAACAAGAGTCA



AAAAGAACCGAGTCAAGAAAGAAGCAGTTAATCGATTTATATAAGGCTTGTAAAAACGAA



GAGAAAGATTGGGTTAAAGAATTGGGGGACCAAGAGGAACAAAAACTACGGTCGGATAAG



TTGTATTTATACTATACGCAAAAGGGACGATGTATGTATTCCGGCGAGGTAATAGAATTG



AAGGATTTATGGGACAATACAAAATATGACATAGACCATATATATCCCCAATCAAAAACG



ATGGACGATAGCTTGAACAATAGAGTACTCGTGAAAAAAAAATATAATGCGACCAAATCT



GATAAGTATCCTCTGAATGAAAATATCAGACATGAAAGAAAGGGGTTCTGGAAGTCCTTG



TTAGATGGTGGGTTTATAAGCAAAGAAAAGTACGAGCGTCTAATAAGAAACACGGAGTTA



TCGCCAGAAGAACTCGCTGGTTTTATTGAGAGGCAAATCGTGGAAACGAGACAATCTACC



AAAGCCGTTGCTGAGATCCTAAAGCAAGTTTTCCCAGAGTCGGAGATTGTCTATGTCAAA



GCTGGCACAGTGAGCAGGTTTAGGAAAGACTTCGAACTATTAAAGGTAAGAGAAGTGAAC



GATTTACATCACGCAAAGGACGCTTACCTAAATATCGTTGTAGGTAACTCATATTATGTT



AAATTTACCAAGAACGCCTCTTGGTTTATAAAGGAGAACCCAGGTAGAACATATAACCTG



AAAAAGATGTTCACCTCTGGTTGGAATATTGAGAGAAACGGAGAAGTCGCATGGGAAGTT



GGTAAGAAAGGGACTATAGTGACAGTAAAGCAAATTATGAACAAAAATAATATCCTCGTT



ACAAGGCAGGTTCATGAAGCAAAGGGCGGCCTTTTTGACCAACAAATTATGAAGAAAGGG



AAAGGTCAAATTGCAATAAAAGAAACCGATGAGAGACTAGCGTCAATAGAAAAGTATGGT



GGCTATAATAAAGCTGCGGGTGCATACTTTATGCTTGTTGAATCAAAAGACAAGAAAGGT



AAGACTATTAGAACTATAGAATTTATACCCCTGTACCTTAAAAACAAAATTGAATCGGAT



GAGTCAATCGCGTTAAATTTTCTAGAGAAAGGAAGGGGTTTAAAAGAACCAAAGATCCTG



TTAAAAAAGATTAAGATTGACACCTTGTTCGATGTAGATGGATTTAAAATGTGGTTATCT



GGCAGAACAGGCGATAGACTTTTGTTTAAGTGCGCTAATCAATTAATTTTGGATGAGAAA



ATCATTGTCACAATGAAAAAAATAGTTAAGTTTATTCAGAGAAGACAAGAAAACAGGGAG



TTGAAATTATCTGATAAAGATGGTATCGACAATGAAGTTTTAATGGAAATCTACAATACA



TTCGTTGATAAACTTGAAAATACCGTATATCGAATCAGGTTAAGTGAACAAGCCAAAACA



TTAATTGATAAACAAAAAGAATTTGAAAGGCTATCACTGGAAGACAAATCCTCCACCCTA



TTTGAAATTTTGCATATATTCCAGTGCCAATCTTCAGCAGCTAATTTAAAAATGATTGGC



GGACCTGGGAAAGCCGGCATCCTAGTGATGAACAATAATATCTCCAAGTGTAACAAAATA



TCAATTATTAACCAATCTCCGACAGGTATTTTTGAAAATGAAATAGACTTGCTTAAGATA



TAA





SEQ
ATGTCTTTCGACTCTTTCACCAACCTGTACTCTCTGTCTAAAACCCTGAAATTCGAAATG


ID
CGTCCGGTTGGTAACACCCAGAAAATGCTGGACAACGCGGGTGTTTTCGAAAAAGACAAA


NO:
CTGATCCAGAAAAAATACGGTAAAACCAAACCGTACTTCGACCGTCTGCACCGTGAATTC


50
ATCGAAGAAGCGCTGACCGGTGTTGAACTGATCGGTCTGGACGAAAACTTCCGTACCCTG



GTTGACTGGCAGAAAGACAAAAAAAACAACGTTGCGATGAAAGCGTACGAAAACTCTCTG



CAGCGTCTGCGTACCGAAATCGGTAAAATCTTCAACCTGAAAGCGGAAGACTGGGTTAAA



AACAAATACCCGATCCTGGGTCTGAAAAACAAAAACACCGACATCCTGTTCGAAGAAGCG



GTTTTCGGTATCCTGAAAGCGCGTTACGGTGAAGAAAAAGACACCTTCATCGAAGTTGAA



GAAATCGACAAAACCGGTAAATCTAAAATCAACCAGATCTCTATCTTCGACTCTTGGAAA



GGTTTCACCGGTTACTTCAAAAAATTCTTCGAAACCCGTAAAAACTTCTACAAAAACGAC



GGTACCTCTACCGCGATCGCGACCCGTATCATCGACCAGAACCTGAAACGTTTCATCGAC



AACCTGTCTATCGTTGAATCTGTTCGTCAGAAAGTTGACCTGGCGGAAACCGAAAAATCT



TTCTCTATCTCTCTGTCTCAGTTCTTCTCTATCGACTTCTACAACAAATGCCTGCTGCAG



GACGGTATCGACTACTACAACAAAATCATCGGTGGTGAAACCCTGAAAAACGGTGAAAAA



CTGATCGGTCTGAACGAACTGATCAACCAGTACCGTCAGAACAACAAAGACCAGAAAATC



CCGTTCTTCAAACTGCTGGACAAACAGATCCTGTCTGAAAAAATCCTGTTCCTGGACGAA



ATCAAAAACGACACCGAACTGATCGAAGCGCTGTCTCAGTTCGCGAAAACCGCGGAAGAA



AAAACCAAAATCGTTAAAAAACTGTTCGCGGACTTCGTTGAAAACAACTCTAAATACGAC



CTGGCGCAGATCTACATCTCTCAGGAAGCGTTCAACACCATCTCTAACAAATGGACCTCT



GAAACCGAAACCTTCGCGAAATACCTGTTCGAAGCGATGAAATCTGGTAAACTGGCGAAA



TACGAAAAAAAAGACAACTCTTACAAATTCCCGGACTTCATCGCGCTGTCTCAGATGAAA



TCTGCGCTGCTGTCTATCTCTCTGGAAGGTCACTTCTGGAAAGAAAAATACTACAAAATC



TCTAAATTCCAGGAAAAAACCAACTGGGAACAGTTCCTGGCGATCTTCCTGTACGAATTC



AACTCTCTGTTCTCTGACAAAATCAACACCAAAGACGGTGAAACCAAACAGGTTGGTTAC



TACCTGTTCGCGAAAGACCTGCACAACCTGATCCTGTCTGAACAGATCGACATCCCGAAA



GACTCTAAAGTTACCATCAAAGACTTCGCGGACTCTGTTCTGACCATCTACCAGATGGCG



AAATACTTCGCGGTTGAAAAAAAACGTGCGTGGCTGGCGGAATACGAACTGGACTCTTTC



TACACCCAGCCGGACACCGGTTACCTGCAGTTCTACGACAACGCGTACGAAGACATCGTT



CAGGTTTACAACAAACTGCGTAACTACCTGACCAAAAAACCGTACTCTGAAGAAAAATGG



AAACTGAACTTCGAAAACTCTACCCTGGCGAACGGTTGGGACAAAAACAAAGAATCTGAC



AACTCTGCGGTTATCCTGCAGAAAGGTGGTAAATACTACCTGGGTCTGATCACCAAAGGT



CACAACAAAATCTTCGACGACCGTTTCCAGGAAAAATTCATCGTTGGTATCGAAGGTGGT



AAATACGAAAAAATCGTTTACAAATTCTTCCCGGACCAGGCGAAAATGTTCCCGAAAGTT



TGCTTCTCTGCGAAAGGTCTGGAATTCTTCCGTCCGTCTGAAGAAATCCTGCGTATCTAC



AACAACGCGGAATTCAAAAAAGGTGAAACCTACTCTATCGACTCTATGCAGAAACTGATC



GACTTCTACAAAGACTGCCTGACCAAATACGAAGGTTGGGCGTGCTACACCTTCCGTCAC



CTGAAACCGACCGAAGAATACCAGAACAACATCGGTGAATTCTTCCGTGACGTTGCGGAA



GACGGTTACCGTATCGACTTCCAGGGTATCTCTGACCAGTACATCCACGAAAAAAACGAA



AAAGGTGAACTGCACCTGTTCGAAATCCACAACAAAGACTGGAACCTGGACAAAGCGCGT



GACGGTAAATCTAAAACCACCCAGAAAAACCTGCACACCCTGTACTTCGAATCTCTGTTC



TCTAACGACAACGTTGTTCAGAACTTCCCGATCAAACTGAACGGTCAGGCGGAAATCTTC



TACCGTCCGAAAACCGAAAAAGACAAACTGGAATCTAAAAAAGACAAAAAAGGTAACAAA



GTTATCGACCACAAACGTTACTCTGAAAACAAAATCTTCTTCCACGTTCCGCTGACCCTG



AACCGTACCAAAAACGACTCTTACCGTTTCAACGCGCAGATCAACAACTTCCTGGCGAAC



AACAAAGACATCAACATCATCGGTGTTGACCGTGGTGAAAAACACCTGGTTTACTACTCT



GTTATCACCCAGGCGTCTGACATCCTGGAATCTGGTTCTCTGAACGAACTGAACGGTGTT



AACTACGCGGAAAAACTGGGTAAAAAAGCGGAAAACCGTGAACAGGCGCGTCGTGACTGG



CAGGACGTTCAGGGTATCAAAGACCTGAAAAAAGGTTACATCTCTCAGGTTGTTCGTAAA



CTGGCGGACCTGGCGATCAAACACAACGCGATCATCATCCTGGAAGACCTGAACATGCGT



TTCAAACAGGTTCGTGGTGGTATCGAAAAATCTATCTACCAGCAGCTGGAAAAAGCGCTG



ATCGACAAACTGTCTTTCCTGGTTGACAAAGGTGAAAAAAACCCGGAACAGGCGGGTCAC



CTGCTGAAAGCGTACCAGCTGTCTGCGCCGTTCGAAACCTTCCAGAAAATGGGTAAACAG



ACCGGTATCATCTTCTACACCCAGGCGTCTTACACCTCTAAATCTGACCCGGTTACCGGT



TGGCGTCCGCACCTGTACCTGAAATACTTCTCTGCGAAAAAAGCGAAAGACGACATCGCG



AAATTCACCAAAATCGAATTCGTTAACGACCGTTTCGAACTGACCTACGACATCAAAGAC



TTCCAGCAGGCGAAAGAATACCCGAACAAAACCGTTTGGAAAGTTTGCTCTAACGTTGAA



CGTTTCCGTTGGGACAAAAACCTGAACCAGAACAAAGGTGGTTACACCCACTACACCAAC



ATCACCGAAAACATCCAGGAACTGTTCACCAAATACGGTATCGACATCACCAAAGACCTG



CTGACCCAGATCTCTACCATCGACGAAAAACAGAACACCTCTTTCTTCCGTGACTTCATC



TTCTACTTCAACCTGATCTGCCAGATCCGTAACACCGACGACTCTGAAATCGCGAAAAAA



AACGGTAAAGACGACTTCATCCTGTCTCCGGTTGAACCGTTCTTCGACTCTCGTAAAGAC



AACGGTAACAAACTGCCGGAAAACGGTGACGACAACGGTGCGTACAACATCGCGCGTAAA



GGTATCGTTATCCTGAACAAAATCTCTCAGTACTCTGAAAAAAACGAAAACTGCGAAAAA



ATGAAATGGGGTGACCTGTACGTTTCTAACATCGACTGGGACAACTTCGTT





SEQ
ATGGAAAACTTTAAAAACTTATACCCAATAAACAAAACGTTACGTTTTGAACTGCGTCCA


ID
TATGGTAAAACACTGGAAAACTTTAAAAAAAGCGGTTTGTTGGAGAAGGATGCATTTAAA


NO:
GCGAACTCTCGCAGATCCATGCAGGCCATCATTGATGAAAAATTTAAAGAGACGATCGAA


51
GAACGTCTGAAATACACGGAATTTAGTGAGTGTGACTTAGGTAATATGACTTCTAAAGAT



AAGAAAATCACCGATAAGGCGGCGACCAACCTGAAGAAGCAAGTCATTTTATCTTTTGAT



GATGAAATCTTTAACAACTATTTGAAACCGGACAAAAACATCGATGCCTTATTTAAAAAT



GACCCTTCGAACCCGGTGATTAGCACATTTAAGGGCTTCACAACGTATTTTGTCAATTTT



TTTGAAATTCGTAAACATATCTTCAAAGGAGAATCAAGCGGCTCTATGGCTTATCGCATT



ATTGATGAAAACCTGACGACCTATTTGAATAACATTGAAAAAATCAAAAAACTGCCAGAG



GAATTAAAGTCTCAGTTAGAAGGCATCGACCAGATCGACAAACTCAACAACTATAACGAA



TTTATTACGCAGTCTGGTATCACCCACTATAATGAAATTATTGGAGGTATCAGTAAATCA



GAAAATGTGAAAATCCAAGGGATTAATGAAGGCATTAACCTCTATTGCCAGAAAAATAAA



GTGAAACTGCCGAGGCTGACTCCACTCTACAAAATGATCCTGTCTGACCGCGTCTCGAAT



AGCTTTGTCCTGGACACAATTGAAAACGATACGGAATTGATTGAGATGATAAGCGATCTG



ATTAACAAAACCGAAATTTCACAGGATGTAATCATGAGTGATATACAAAACATCTTTATT



AAATATAAACAGCTTGGTAATCTGCCTGGAATTAGCTATTCGTCAATAGTGAACGCAATC



TGTTCTGATTATGATAACAATTTTGGCGACGGTAAGCGTAAAAAGAGTTATGAAAACGAT



AGGAAAAAACACCTGGAAACTAACGTGTATTCTATCAACTATATCAGCGAACTGCTTACG



GACACCGATGTGAGTTCAAACATTAAGATGCGGTATAAGGAGCTTGAACAGAACTACCAG



GTCTGTAAGGAAAACTTCAACGCAACCAACTGGATGAACATTAAAAATATCAAACAATCC



GAGAAGACCAACTTAATCAAAGATCTGCTGGATATTTTGAAGAGCATTCAACGTTTTTAT



GATCTGTTCGATATCGTTGATGAAGACAAGAATCCTAGTGCGGAATTTTATACATGGCTG



TCTAAAAATGCGGAGAAATTGGATTTCGAATTCAATTCTGTTTATAATAAATCACGCAAC



TATTTGACCCGCAAACAATACAGCGACAAAAAGATAAAACTAAACTTCGACAGTCCGACA



TTGGCAAAGGGCTGGGACGCAAATAAGGAAATCGATAACTCTACGATAATTATGCGTAAG



TTCAATAATGATCGAGGTGATTATGATTATTTCTTAGGCATTTGGAACAAAAGCACCCCG



GCCAACGAAAAGATAATTCCACTGGAGGATAACGGTCTGTTCGAAAAAATGCAGTACAAA



TTATATCCGGATCCAAGCAAGATGCTTCCAAAGCAGTTTCTGTCTAAAATTTGGAAAGCT



AAGCATCCGACCACCCCAGAATTTGACAAGAAATATAAGGAAGGCCGCCATAAGAAAGGT



CCCGATTTTGAAAAAGAATTCTTGCACGAACTGATTGATTGCTTTAAACATGGCTTAGTC



AATCACGATGAAAAGTATCAAGATGTTTTTGGATTCAATTTGAGAAACACAGAAGACTAC



AATTCCTACACTGAGTTTCTCGAAGATGTGGAACGATGTAATTATAATCTGAGCTTTAAC



AAAATCGCGGACACCTCGAATCTGATTAACGATGGTAAACTTTATGTTTTCCAGATCTGG



AGCAAGGATTTCTCTATTGACAGCAAAGGCACCAAAAACCTGAACACCATTTACTTTGAA



AGTCTCTTCAGCGAAGAAAATATGATTGAGAAAATGTTTAAACTTAGCGGTGAAGCTGAA



ATATTCTATCGCCCGGCAAGCCTGAACTATTGCGAAGACATTATCAAAAAGGGTCATCAC



CACGCTGAACTGAAAGATAAATTTGATTATCCTATCATAAAAGATAAACGCTATAGCCAG



GATAAATTTTTTTTTCATGTTCCTATGGTCATTAACTACAAATCAGAAAAACTGAACTCT



AAAAGCCTCAATAATCGAACCAATGAAAACCTTGGGCAGTTTACCCATATAATTGGAATT



GATCGCGGAGAGCGTCATTTAATCTACCTGACCGTAGTCGATGTATCGACCGGCGAGATC



GTCGAGCAGAAGCACTTAGACGAGATTATCAACACTGATACCAAAGGTGTTGAGCATAAG



ACGCACTATCTAAACAAGCTGGAGGAAAAATCGAAAACCCGTGATAATGAACGTAAGAGT



TGGGAGGCAATTGAAACGATTAAAGAACTGAAGGAGGGTTATATCAGCCACGTAATCAAT



GAAATTCAAAAACTGCAGGAAAAATACAACGCCCTGATCGTTATGGAAAATCTGAATTAC



GGTTTCAAAAATTCTCGCATCAAAGTGGAAAAACAGGTATATCAGAAGTTCGAGACGGCA



TTAATTAAAAAGTTTAATTACATCATTGACAAAAAAGATCCGGAAACTTATATTCATGGC



TATCAGCTGACGAACCCGATCACCACACTGGATAAAATTGGTAACCAGTCTGGTATCGTG



CTTTACATCCCTGCCTGGAATACCAGTAAAATCGATCCGGTAACGGGATTCGTCAACCTT



CTATATGCAGATGACCTCAAATATAAGAATCAGGAACAGGCCAAGTCTTTTATTCAGAAA



ATCGATAACATTTACTTTGAGAATGGGGAATTCAAATTTGATATTGATTTTTCTAAATGG



AACAATCGTTATAGTATATCTAAGACGAAATGGACGCTCACCTCGTACGGAACCCGAATC



CAGACATTCCGCAATCCGCAGAAGAACAATAAATGGGACAGCGCCGAGTATGATCTCACT



GAAGAATTCAAATTGATTCTGAACATTGACGGTACCCTGAAAAGCCAGGATGTCGAAACC



TATAAAAAATTTATGTCTCTGTTCAAGCTGATGCTGCAACTTAGGAACTCTGTTACCGGC



ACTGATATCGATTATATGATCTCCCCTGTCACTGATAAAACAGGTACGCATTTCGATTCG



CGCGAAAATATCAAAAATCTGCCCGCAGATGCCGACGCCAATGGGGCGTACAATATTGCA



CGCAAGGGTATCATGGCGATCGAAAACATTATGAATGGTATCAGCGACCCGCTGAAAATC



TCAAACGAAGATTATTTGAAATATATCCAAAACCAGCAGGAATAA





SEQ
ATGACCCAGTTCGAAGGTTTCACCAACCTGTACCAGGTTTCTAAAACCCTGCGTTTCGAA


ID
CTGATCCCGCAGGGTAAAACCCTGAAACACATCCAGGAACAGGGTTTCATCGAAGAAGAC


NO:
AAAGCGCGTAACGACCACTACAAAGAACTGAAACCGATCATCGACCGTATCTACAAAACC


52
TACGCGGACCAGTGCCTGCAGCTGGTTCAGCTGGACTGGGAAAACCTGTCTGCGGCGATC



GACTCTTACCGTAAAGAAAAAACCGAAGAAACCCGTAACGCGCTGATCGAAGAACAGGCG



ACCTACCGTAACGCGATCCACGACTACTTCATCGGTCGTACCGACAACCTGACCGACGCG



ATCAACAAACGTCACGCGGAAATCTACAAAGGTCTGTTCAAAGCGGAACTGTTCAACGGT



AAAGTTCTGAAACAGCTGGGTACCGTTACCACCACCGAACACGAAAACGCGCTGCTGCGT



TCTTTCGACAAATTCACCACCTACTTCTCTGGTTTCTACGAAAACCGTAAAAACGTTTTC



TCTGCGGAAGACATCTCTACCGCGATCCCGCACCGTATCGTTCAGGACAACTTCCCGAAA



TTCAAAGAAAACTGCCACATCTTCACCCGTCTGATCACCGCGGTTCCGTCTCTGCGTGAA



CACTTCGAAAACGTTAAAAAAGCGATCGGTATCTTCGTTTCTACCTCTATCGAAGAAGTT



TTCTCTTTCCCGTTCTACAACCAGCTGCTGACCCAGACCCAGATCGACCTGTACAACCAG



CTGCTGGGTGGTATCTCTCGTGAAGCGGGTACCGAAAAAATCAAAGGTCTGAACGAAGTT



CTGAACCTGGCGATCCAGAAAAACGACGAAACCGCGCACATCATCGCGTCTCTGCCGCAC



CGTTTCATCCCGCTGTTCAAACAGATCCTGTCTGACCGTAACACCCTGTCTTTCATCCTG



GAAGAATTCAAATCTGACGAAGAAGTTATCCAGTCTTTCTGCAAATACAAAACCCTGCTG



CGTAACGAAAACGTTCTGGAAACCGCGGAAGCGCTGTTCAACGAACTGAACTCTATCGAC



CTGACCCACATCTTCATCTCTCACAAAAAACTGGAAACCATCTCTTCTGCGCTGTGCGAC



CACTGGGACACCCTGCGTAACGCGCTGTACGAACGTCGTATCTCTGAACTGACCGGTAAA



ATCACCAAATCTGCGAAAGAAAAAGTTCAGCGTTCTCTGAAACACGAAGACATCAACCTG



CAGGAAATCATCTCTGCGGCGGGTAAAGAACTGTCTGAAGCGTTCAAACAGAAAACCTCT



GAAATCCTGTCTCACGCGCACGCGGCGCTGGACCAGCCGCTGCCGACCACCCTGAAAAAA



CAGGAAGAAAAAGAAATCCTGAAATCTCAGCTGGACTCTCTGCTGGGTCTGTACCACCTG



CTGGACTGGTTCGCGGTTGACGAATCTAACGAAGTTGACCCGGAATTCTCTGCGCGTCTG



ACCGGTATCAAACTGGAAATGGAACCGTCTCTGTCTTTCTACAACAAAGCGCGTAACTAC



GCGACCAAAAAACCGTACTCTGTTGAAAAATTCAAACTGAACTTCCAGATGCCGACCCTG



GCGTCTGGTTGGGACGTTAACAAAGAAAAAAACAACGGTGCGATCCTGTTCGTTAAAAAC



GGTCTGTACTACCTGGGTATCATGCCGAAACAGAAAGGTCGTTACAAAGCGCTGTCTTTC



GAACCGACCGAAAAAACCTCTGAAGGTTTCGACAAAATGTACTACGACTACTTCCCGGAC



GCGGCGAAAATGATCCCGAAATGCTCTACCCAGCTGAAAGCGGTTACCGCGCACTTCCAG



ACCCACACCACCCCGATCCTGCTGTCTAACAACTTCATCGAACCGCTGGAAATCACCAAA



GAAATCTACGACCTGAACAACCCGGAAAAAGAACCGAAAAAATTCCAGACCGCGTACGCG



AAAAAAACCGGTGACCAGAAAGGTTACCGTGAAGCGCTGTGCAAATGGATCGACTTCACC



CGTGACTTCCTGTCTAAATACACCAAAACCACCTCTATCGACCTGTCTTCTCTGCGTCCG



TCTTCTCAGTACAAAGACCTGGGTGAATACTACGCGGAACTGAACCCGCTGCTGTACCAC



ATCTCTTTCCAGCGTATCGCGGAAAAAGAAATCATGGACGCGGTTGAAACCGGTAAACTG



TACCTGTTCCAGATCTACAACAAAGACTTCGCGAAAGGTCACCACGGTAAACCGAACCTG



CACACCCTGTACTGGACCGGTCTGTTCTCTCCGGAAAACCTGGCGAAAACCTCTATCAAA



CTGAACGGTCAGGCGGAACTGTTCTACCGTCCGAAATCTCGTATGAAACGTATGGCGCAC



CGTCTGGGTGAAAAAATGCTGAACAAAAAACTGAAAGACCAGAAAACCCCGATCCCGGAC



ACCCTGTACCAGGAACTGTACGACTACGTTAACCACCGTCTGTCTCACGACCTGTCTGAC



GAAGCGCGTGCGCTGCTGCCGAACGTTATCACCAAAGAAGTTTCTCACGAAATCATCAAA



GACCGTCGTTTCACCTCTGACAAATTCTTCTTCCACGTTCCGATCACCCTGAACTACCAG



GCGGCGAACTCTCCGTCTAAATTCAACCAGCGTGTTAACGCGTACCTGAAAGAACACCCG



GAAACCCCGATCATCGGTATCGACCGTGGTGAACGTAACCTGATCTACATCACCGTTATC



GACTCTACCGGTAAAATCCTGGAACAGCGTTCTCTGAACACCATCCAGCAGTTCGACTAC



CAGAAAAAACTGGACAACCGTGAAAAAGAACGTGTTGCGGCGCGTCAGGCGTGGTCTGTT



GTTGGTACCATCAAAGACCTGAAACAGGGTTACCTGTCTCAGGTTATCCACGAAATCGTT



GACCTGATGATCCACTACCAGGCGGTTGTTGTTCTGGAAAACCTGAACTTCGGTTTCAAA



TCTAAACGTACCGGTATCGCGGAAAAAGCGGTTTACCAGCAGTTCGAAAAAATGCTGATC



GACAAACTGAACTGCCTGGTTCTGAAAGACTACCCGGCGGAAAAAGTTGGTGGTGTTCTG



AACCCGTACCAGCTGACCGACCAGTTCACCTCTTTCGCGAAAATGGGTACCCAGTCTGGT



TTCCTGTTCTACGTTCCGGCGCCGTACACCTCTAAAATCGACCCGCTGACCGGTTTCGTT



GACCCGTTCGTTTGGAAAACCATCAAAAACCACGAATCTCGTAAACACTTCCTGGAAGGT



TTCGACTTCCTGCACTACGACGTTAAAACCGGTGACTTCATCCTGCACTTCAAAATGAAC



CGTAACCTGTCTTTCCAGCGTGGTCTGCCGGGTTTCATGCCGGCGTGGGACATCGTTTTC



GAAAAAAACGAAACCCAGTTCGACGCGAAAGGTACCCCGTTCATCGCGGGTAAACGTATC



GTTCCGGTTATCGAAAACCACCGTTTCACCGGTCGTTACCGTGACCTGTACCCGGCGAAC



GAACTGATCGCGCTGCTGGAAGAAAAAGGTATCGTTTTCCGTGACGGTTCTAACATCCTG



CCGAAACTGCTGGAAAACGACGACTCTCACGCGATCGACACCATGGTTGCGCTGATCCGT



TCTGTTCTGCAGATGCGTAACTCTAACGCGGCGACCGGTGAAGACTACATCAACTCTCCG



GTTCGTGACCTGAACGGTGTTTGCTTCGACTCTCGTTTCCAGAACCCGGAATGGCCGATG



GACGCGGACGCGAACGGTGCGTACCACATCGCGCTGAAAGGTCAGCTGCTGCTGAACCAC



CTGAAAGAATCTAAAGACCTGAAACTGCAGAACGGTATCTCTAACCAGGACTGGCTGGCG



TACATCCAGGAACTGCGTAACTA





SEQ
ATGGCGGTTAAATCTATCAAAGTTAAACTGCGTCTGGACGACATGCCGGAAATCCGTGCG


ID
GGTCTGTGGAAACTGCACAAAGAAGTTAACGCGGGTGTTCGTTACTACACCGAATGGCTG


NO:
TCTCTGCTGCGTCAGGAAAACCTGTACCGTCGTTCTCCGAACGGTGACGGTGAACAGGAA


53
TGCGACAAAACCGCGGAAGAATGCAAAGCGGAACTGCTGGAACGTCTGCGTGCGCGTCAG



GTTGAAAACGGTCACCGTGGTCCGGCGGGTTCTGACGACGAACTGCTGCAGCTGGCGCGT



CAGCTGTACGAACTGCTGGTTCCGCAGGCGATCGGTGCGAAAGGTGACGCGCAGCAGATC



GCGCGTAAATTCCTGTCTCCGCTGGCGGACAAAGACGCGGTTGGTGGTCTGGGTATCGCG



AAAGCGGGTAACAAACCGCGTTGGGTTCGTATGCGTGAAGCGGGTGAACCGGGTTGGGAA



GAAGAAAAAGAAAAAGCGGAAACCCGTAAATCTGCGGACCGTACCGCGGACGTTCTGCGT



GCGCTGGCGGACTTCGGTCTGAAACCGCTGATGCGTGTTTACACCGACTCTGAAATGTCT



TCTGTTGAATGGAAACCGCTGCGTAAAGGTCAGGCGGTTCGTACCTGGGACCGTGACATG



TTCCAGCAGGCGATCGAACGTATGATGTCTTGGGAATCTTGGAACCAGCGTGTTGGTCAG



GAATACGCGAAACTGGTTGAACAGAAAAACCGTTTCGAACAGAAAAACTTCGTTGGTCAG



GAACACCTGGTTCACCTGGTTAACCAGCTGCAGCAGGACATGAAAGAAGCGTCTCCGGGT



CTGGAATCTAAAGAACAGACCGCGCACTACGTTACCGGTCGTGCGCTGCGTGGTTCTGAC



AAAGTTTTCGAAAAATGGGGTAAACTGGCGCCGGACGCGCCGTTCGACCTGTACGACGCG



GAAATCAAAAACGTTCAGCGTCGTAACACCCGTCGTTTCGGTTCTCACGACCTGTTCGCG



AAACTGGCGGAACCGGAATACCAGGCGCTGTGGCGTGAAGACGCGTCTTTCCTGACCCGT



TACGCGGTTTACAACTCTATCCTGCGTAAACTGAACCACGCGAAAATGTTCGCGACCTTC



ACCCTGCCGGACGCGACCGCGCACCCGATCTGGACCCGTTTCGACAAACTGGGTGGTAAC



CTGCACCAGTACACCTTCCTGTTCAACGAATTCGGTGAACGTCGTCACGCGATCCGTTTC



CACAAACTGCTGAAAGTTGAAAACGGTGTTGCGCGTGAAGTTGACGACGTTACCGTTCCG



ATCTCTATGTCTGAACAGCTGGACAACCTGCTGCCGCGTGACCCGAACGAACCGATCGCG



CTGTACTTCCGTGACTACGGTGCGGAACAGCACTTCACCGGTGAATTCGGTGGTGCGAAA



ATCCAGTGCCGTCGTGACCAGCTGGCGCACATGCACCGTCGTCGTGGTGCGCGTGACGTT



TACCTGAACGTTTCTGTTCGTGTTCAGTCTCAGTCTGAAGCGCGTGGTGAACGTCGTCCG



CCGTACGCGGCGGTTTTCCGTCTGGTTGGTGACAACCACCGTGCGTTCGTTCACTTCGAC



AAACTGTCTGACTACCTGGCGGAACACCCGGACGACGGTAAACTGGGTTCTGAAGGTCTG



CTGTCTGGTCTGCGTGTTATGTCTGTTGACCTGGGTCTGCGTACCTCTGCGTCTATCTCT



GTTTTCCGTGTTGCGCGTAAAGACGAACTGAAACCGAACTCTAAAGGTCGTGTTCCGTTC



TTCTTCCCGATCAAAGGTAACGACAACCTGGTTGCGGTTCACGAACGTTCTCAGCTGCTG



AAACTGCCGGGTGAAACCGAATCTAAAGACCTGCGTGCGATCCGTGAAGAACGTCAGCGT



ACCCTGCGTCAGCTGCGTACCCAGCTGGCGTACCTGCGTCTGCTGGTTCGTTGCGGTTCT



GAAGACGTTGGTCGTCGTGAACGTTCTTGGGCGAAACTGATCGAACAGCCGGTTGACGCG



GCGAACCACATGACCCCGGACTGGCGTGAAGCGTTCGAAAACGAACTGCAGAAACTGAAA



TCTCTGCACGGTATCTGCTCTGACAAAGAATGGATGGACGCGGTTTACGAATCTGTTCGT



CGTGTTTGGCGTCACATGGGTAAACAGGTTCGTGACTGGCGTAAAGACGTTCGTTCTGGT



GAACGTCCGAAAATCCGTGGTTACGCGAAAGACGTTGTTGGTGGTAACTCTATCGAACAG



ATCGAATACCTGGAACGTCAGTACAAATTCCTGAAATCTTGGTCTTTCTTCGGTAAAGTT



TCTGGTCAGGTTATCCGTGCGGAAAAAGGTTCTCGTTTCGCGATCACCCTGCGTGAACAC



ATCGACCACGCGAAAGAAGACCGTCTGAAAAAACTGGCGGACCGTATCATCATGGAAGCG



CTGGGTTACGTTTACGCGCTGGACGAACGTGGTAAAGGTAAATGGGTTGCGAAATACCCG



CCGTGCCAGCTGATCCTGCTGGAAGAACTGTCTGAATACCAGTTCAACAACGACCGTCCG



CCGTCTGAAAACAACCAGCTGATGCAGTGGTCTCACCGTGGTGTTTTCCAGGAACTGATC



AACCAGGCGCAGGTTCACGACCTGCTGGTTGGTACCATGTACGCGGCGTTCTCTTCTCGT



TTCGACGCGCGTACCGGTGCGCCGGGTATCCGTTGCCGTCGTGTTCCGGCGCGTTGCACC



CAGGAACACAACCCGGAACCGTTCCCGTGGTGGCTGAACAAATTCGTTGTTGAACACACC



CTGGACGCGTGCCCGCTGCGTGCGGACGACCTGATCCCGACCGGTGAAGGTGAAATCTTC



GTTTCTCCGTTCTCTGCGGAAGAAGGTGACTTCCACCAGATCCACGCGGACCTGAACGCG



GCGCAGAACCTGCAGCAGCGTCTGTGGTCTGACTTCGACATCTCTCAGATCCGTCTGCGT



TGCGACTGGGGTGAAGTTGACGGTGAACTGGTTCTGATCCCGCGTCTGACCGGTAAACGT



ACCGCGGACTCTTACTCTAACAAAGTTTTCTACACCAACACCGGTGTTACCTACTACGAA



CGTGAACGTGGTAAAAAACGTCGTAAAGTTTTCGCGCAGGAAAAACTGTCTGAAGAAGAA



GCGGAACTGCTGGTTGAAGCGGACGAAGCGCGTGAAAAATCTGTTGTTCTGATGCGTGAC



CCGTCTGGTATCATCAACCGTGGTAACTGGACCCGTCAGAAAGAATTCTGGTCTATGGTT



AACCAGCGTATCGAAGGTTACCTGGTTAAACAGATCCGTTCTCGTGTTCCGCTGCAGGAC



TCTGCGTGCGAAAACACCGGTGACATCTAA





SEQ
ATGGCGACCCGTTCTTTCATCCTGAAAATCGAACCGAACGAAGAAGTTAAAAAAGGTCTG


ID
TGGAAAACCCACGAAGTTCTGAACCACGGTATCGCGTACTACATGAACATCCTGAAACTG


NO:
ATCCGTCAGGAAGCGATCTACGAACACCACGAACAGGACCCGAAAAACCCGAAAAAAGTT


54
TCTAAAGCGGAAATCCAGGCGGAACTGTGGGACTTCGTTCTGAAAATGCAGAAATGCAAC



TCTTTCACCCACGAAGTTGACAAAGACGTTGTTTTCAACATCCTGCGTGAACTGTACGAA



GAACTGGTTCCGTCTTCTGTTGAAAAAAAAGGTGAAGCGAACCAGCTGTCTAACAAATTC



CTGTACCCGCTGGTTGACCCGAACTCTCAGTCTGGTAAAGGTACCGCGTCTTCTGGTCGT



AAACCGCGTTGGTACAACCTGAAAATCGCGGGTGACCCGTCTTGGGAAGAAGAAAAAAAA



AAATGGGAAGAAGACAAAAAAAAAGACCCGCTGGCGAAAATCCTGGGTAAACTGGCGGAA



TACGGTCTGATCCCGCTGTTCATCCCGTTCACCGACTCTAACGAACCGATCGTTAAAGAA



ATCAAATGGATGGAAAAATCTCGTAACCAGTCTGTTCGTCGTCTGGACAAAGACATGTTC



ATCCAGGCGCTGGAACGTTTCCTGTCTTGGGAATCTTGGAACCTGAAAGTTAAAGAAGAA



TACGAAAAAGTTGAAAAAGAACACAAAACCCTGGAAGAACGTATCAAAGAAGACATCCAG



GCGTTCAAATCTCTGGAACAGTACGAAAAAGAACGTCAGGAACAGCTGCTGCGTGACACC



CTGAACACCAACGAATACCGTCTGTCTAAACGTGGTCTGCGTGGTTGGCGTGAAATCATC



CAGAAATGGCTGAAAATGGACGAAAACGAACCGTCTGAAAAATACCTGGAAGTTTTCAAA



GACTACCAGCGTAAACACCCGCGTGAAGCGGGTGACTACTCTGTTTACGAATTCCTGTCT



AAAAAAGAAAACCACTTCATCTGGCGTAACCACCCGGAATACCCGTACCTGTACGCGACC



TTCTGCGAAATCGACAAAAAAAAAAAAGACGCGAAACAGCAGGCGACCTTCACCCTGGCG



GACCCGATCAACCACCCGCTGTGGGTTCGTTTCGAAGAACGTTCTGGTTCTAACCTGAAC



AAATACCGTATCCTGACCGAACAGCTGCACACCGAAAAACTGAAAAAAAAACTGACCGTT



CAGCTGGACCGTCTGATCTACCCGACCGAATCTGGTGGTTGGGAAGAAAAAGGTAAAGTT



GACATCGTTCTGCTGCCGTCTCGTCAGTTCTACAACCAGATCTTCCTGGACATCGAAGAA



AAAGGTAAACACGCGTTCACCTACAAAGACGAATCTATCAAATTCCCGCTGAAAGGTACC



CTGGGTGGTGCGCGTGTTCAGTTCGACCGTGACCACCTGCGTCGTTACCCGCACAAAGTT



GAATCTGGTAACGTTGGTCGTATCTACTTCAACATGACCGTTAACATCGAACCGACCGAA



TCTCCGGTTTCTAAATCTCTGAAAATCCACCGTGACGACTTCCCGAAATTCGTTAACTTC



AAACCGAAAGAACTGACCGAATGGATCAAAGACTCTAAAGGTAAAAAACTGAAATCTGGT



ATCGAATCTCTGGAAATCGGTCTGCGTGTTATGTCTATCGACCTGGGTCAGCGTCAGGCG



GCGGCGGCGTCTATCTTCGAAGTTGTTGACCAGAAACCGGACATCGAAGGTAAACTGTTC



TTCCCGATCAAAGGTACCGAACTGTACGCGGTTCACCGTGCGTCTTTCAACATCAAACTG



CCGGGTGAAACCCTGGTTAAATCTCGTGAAGTTCTGCGTAAAGCGCGTGAAGACAACCTG



AAACTGATGAACCAGAAACTGAACTTCCTGCGTAACGTTCTGCACTTCCAGCAGTTCGAA



GACATCACCGAACGTGAAAAACGTGTTACCAAATGGATCTCTCGTCAGGAAAACTCTGAC



GTTCCGCTGGTTTACCAGGACGAACTGATCCAGATCCGTGAACTGATGTACAAACCGTAC



AAAGACTGGGTTGCGTTCCTGAAACAGCTGCACAAACGTCTGGAAGTTGAAATCGGTAAA



GAAGTTAAACACTGGCGTAAATCTCTGTCTGACGGTCGTAAAGGTCTGTACGGTATCTCT



CTGAAAAACATCGACGAAATCGACCGTACCCGTAAATTCCTGCTGCGTTGGTCTCTGCGT



CCGACCGAACCGGGTGAAGTTCGTCGTCTGGAACCGGGTCAGCGTTTCGCGATCGACCAG



CTGAACCACCTGAACGCGCTGAAAGAAGACCGTCTGAAAAAAATGGCGAACACCATCATC



ATGCACGCGCTGGGTTACTGCTACGACGTTCGTAAAAAAAAATGGCAGGCGAAAAACCCG



GCGTGCCAGATCATCCTGTTCGAAGACCTGTCTAACTACAACCCGTACGAAGAACGTTCT



CGTTTCGAAAACTCTAAACTGATGAAATGGTCTCGTCGTGAAATCCCGCGTCAGGTTGCG



CTGCAGGGTGAAATCTACGGTCTGCAGGTTGGTGAAGTTGGTGCGCAGTTCTCTTCTCGT



TTCCACGCGAAAACCGGTTCTCCGGGTATCCGTTGCTCTGTTGTTACCAAAGAAAAACTG



CAGGACAACCGTTTCTTCAAAAACCTGCAGCGTGAAGGTCGTCTGACCCTGGACAAAATC



GCGGTTCTGAAAGAAGGTGACCTGTACCCGGACAAAGGTGGTGAAAAATTCATCTCTCTG



TCTAAAGACCGTAAACTGGTTACCACCCACGCGGACATCAACGCGGCGCAGAACCTGCAG



AAACGTTTCTGGACCCGTACCCACGGTTTCTACAAAGTTTACTGCAAAGCGTACCAGGTT



GACGGTCAGACCGTTTACATCCCGGAATCTAAAGACCAGAAACAGAAAATCATCGAAGAA



TTCGGTGAAGGTTACTTCATCCTGAAAGACGGTGTTTACGAATGGGGTAACGCGGGTAAA



CTGAAAATCAAAAAAGGTTCTTCTAAACAGTCTTCTTCTGAACTGGTTGACTCTGACATC



CTGAAAGACTCTTTCGACCTGGCGTCTGAACTGAAAGGTGAAAAACTGATGCTGTACCGT



GACCCGTCTGGTAACGTTTTCCCGTCTGACAAATGGATGGCGGCGGGTGTTTTCTTCGGT



AAACTGGAACGTATCCTGATCTCTAAACTGACCAACCAGTACTCTATCTCTACCATCGAA



GACGACTCTTCTAAACAGTCTATGTAA





SEQ
ATGCCGACCCGTACCATCAACCTGAAACTGGTTCTGGGTAAAAACCCGGAAAACGCGACC


ID
CTGCGTCGTGCGCTGTTCTCTACCCACCGTCTGGTTAACCAGGCGACCAAACGTATCGAA


NO:
GAATTCCTGCTGCTGTGCCGTGGTGAAGCGTACCGTACCGTTGACAACGAAGGTAAAGAA


55
GCGGAAATCCCGCGTCACGCGGTTCAGGAAGAAGCGCTGGCGTTCGCGAAAGCGGCGCAG



CGTCACAACGGTTGCATCTCTACCTACGAAGACCAGGAAATCCTGGACGTTCTGCGTCAG



CTGTACGAACGTCTGGTTCCGTCTGTTAACGAAAACAACGAAGCGGGTGACGCGCAGGCG



GCGAACGCGTGGGTTTCTCCGCTGATGTCTGCGGAATCTGAAGGTGGTCTGTCTGTTTAC



GACAAAGTTCTGGACCCGCCGCCGGTTTGGATGAAACTGAAAGAAGAAAAAGCGCCGGGT



TGGGAAGCGGCGTCTCAGATCTGGATCCAGTCTGACGAAGGTCAGTCTCTGCTGAACAAA



CCGGGTTCTCCGCCGCGTTGGATCCGTAAACTGCGTTCTGGTCAGCCGTGGCAGGACGAC



TTCGTTTCTGACCAGAAAAAAAAACAGGACGAACTGACCAAAGGTAACGCGCCGCTGATC



AAACAGCTGAAAGAAATGGGTCTGCTGCCGCTGGTTAACCCGTTCTTCCGTCACCTGCTG



GACCCGGAAGGTAAAGGTGTTTCTCCGTGGGACCGTCTGGCGGTTCGTGCGGCGGTTGCG



CACTTCATCTCTTGGGAATCTTGGAACCACCGTACCCGTGCGGAATACAACTCTCTGAAA



CTGCGTCGTGACGAATTCGAAGCGGCGTCTGACGAATTCAAAGACGACTTCACCCTGCTG



CGTCAGTACGAAGCGAAACGTCACTCTACCCTGAAATCTATCGCGCTGGCGGACGACTCT



AACCCGTACCGTATCGGTGTTCGTTCTCTGCGTGCGTGGAACCGTGTTCGTGAAGAATGG



ATCGACAAAGGTGCGACCGAAGAACAGCGTGTTACCATCCTGTCTAAACTGCAGACCCAG



CTGCGTGGTAAATTCGGTGACCCGGACCTGTTCAACTGGCTGGCGCAGGACCGTCACGTT



CACCTGTGGTCTCCGCGTGACTCTGTTACCCCGCTGGTTCGTATCAACGCGGTTGACAAA



GTTCTGCGTCGTCGTAAACCGTACGCGCTGATGACCTTCGCGCACCCGCGTTTCCACCCG



CGTTGGATCCTGTACGAAGCGCCGGGTGGTTCTAACCTGCGTCAGTACGCGCTGGACTGC



ACCGAAAACGCGCTGCACATCACCCTGCCGCTGCTGGTTGACGACGCGCACGGTACCTGG



ATCGAAAAAAAAATCCGTGTTCCGCTGGCGCCGTCTGGTCAGATCCAGGACCTGACCCTG



GAAAAACTGGAAAAAAAAAAAAACCGTCTGTACTACCGTTCTGGTTTCCAGCAGTTCGCG



GGTCTGGCGGGTGGTGCGGAAGTTCTGTTCCACCGTCCGTACATGGAACACGACGAACGT



TCTGAAGAATCTCTGCTGGAACGTCCGGGTGCGGTTTGGTTCAAACTGACCCTGGACGTT



GCGACCCAGGCGCCGCCGAACTGGCTGGACGGTAAAGGTCGTGTTCGTACCCCGCCGGAA



GTTCACCACTTCAAAACCGCGCTGTCTAACAAATCTAAACACACCCGTACCCTGCAGCCG



GGTCTGCGTGTTCTGTCTGTTGACCTGGGTATGCGTACCTTCGCGTCTTGCTCTGTTTTC



GAACTGATCGAAGGTAAACCGGAAACCGGTCGTGCGTTCCCGGTTGCGGACGAACGTTCT



ATGGACTCTCCGAACAAACTGTGGGCGAAACACGAACGTTCTTTCAAACTGACCCTGCCG



GGTGAAACCCCGTCTCGTAAAGAAGAAGAAGAACGTTCTATCGCGCGTGCGGAAATCTAC



GCGCTGAAACGTGACATCCAGCGTCTGAAATCTCTGCTGCGTCTGGGTGAAGAAGACAAC



GACAACCGTCGTGACGCGCTGCTGGAACAGTTCTTCAAAGGTTGGGGTGAAGAAGACGTT



GTTCCGGGTCAGGCGTTCCCGCGTTCTCTGTTCCAGGGTCTGGGTGCGGCGCCGTTCCGT



TCTACCCCGGAACTGTGGCGTCAGCACTGCCAGACCTACTACGACAAAGCGGAAGCGTGC



CTGGCGAAACACATCTCTGACTGGCGTAAACGTACCCGTCCGCGTCCGACCTCTCGTGAA



ATGTGGTACAAAACCCGTTCTTACCACGGTGGTAAATCTATCTGGATGCTGGAATACCTG



GACGCGGTTCGTAAACTGCTGCTGTCTTGGTCTCTGCGTGGTCGTACCTACGGTGCGATC



AACCGTCAGGACACCGCGCGTTTCGGTTCTCTGGCGTCTCGTCTGCTGCACCACATCAAC



TCTCTGAAAGAAGACCGTATCAAAACCGGTGCGGACTCTATCGTTCAGGCGGCGCGTGGT



TACATCCCGCTGCCGCACGGTAAAGGTTGGGAACAGCGTTACGAACCGTGCCAGCTGATC



CTGTTCGAAGACCTGGCGCGTTACCGTTTCCGTGTTGACCGTCCGCGTCGTGAAAACTCT



CAGCTGATGCAGTGGAACCACCGTGCGATCGTTGCGGAAACCACCATGCAGGCGGAACTG



TACGGTCAGATCGTTGAAAACACCGCGGCGGGTTTCTCTTCTCGTTTCCACGCGGCGACC



GGTGCGCCGGGTGTTCGTTGCCGTTTCCTGCTGGAACGTGACTTCGACAACGACCTGCCG



AAACCGTACCTGCTGCGTGAACTGTCTTGGATGCTGGGTAACACCAAAGTTGAATCTGAA



GAAGAAAAACTGCGTCTGCTGTCTGAAAAAATCCGTCCGGGTTCTCTGGTTCCGTGGGAC



GGTGGTGAACAGTTCGCGACCCTGCACCCGAAACGTCAGACCCTGTGCGTTATCCACGCG



GACATGAACGCGGCGCAGAACCTGCAGCGTCGTTTCTTCGGTCGTTGCGGTGAAGCGTTC



CGTCTGGTTTGCCAGCCGCACGGTGACGACGTTCTGCGTCTGGCGTCTACCCCGGGTGCG



CGTCTGCTGGGTGCGCTGCAGCAGCTGGAAAACGGTCAGGGTGCGTTCGAACTGGTTCGT



GACATGGGTTCTACCTCTCAGATGAACCGTTTCGTTATGAAATCTCTGGGTAAAAAAAAA



ATCAAACCGCTGCAGGACAACAACGGTGACGACGAACTGGAAGACGTTCTGTCTGTTCTG



CCGGAAGAAGACGACACCGGTCGTATCACCGTTTTCCGTGACTCTTCTGGTATCTTCTTC



CCGTGCAACGTTTGGATCCCGGCGAAACAGTTCTGGCCGGCGGTTCGTGCGATGATCTGG



AAAGTTATGGCGTCTCACTCTCTGGGTTAA





SEQ
ATGACCAAACTGCGTCACCGTCAGAAAAAACTGACCCACGACTGGGCGGGTTCTAAAAAA


ID
CGTGAAGTTCTGGGTTCTAACGGTAAACTGCAGAACCCGCTGCTGATGCCGGTTAAAAAA


NO:
GGTCAGGTTACCGAATTCCGTAAAGCGTTCTCTGCGTACGCGCGTGCGACCAAAGGTGAA


56
ATGACCGACGGTCGTAAAAACATGTTCACCCACTCTTTCGAACCGTTCAAAACCAAACCG



TCTCTGCACCAGTGCGAACTGGCGGACAAAGCGTACCAGTCTCTGCACTCTTACCTGCCG



GGTTCTCTGGCGCACTTCCTGCTGTCTGCGCACGCGCTGGGTTTCCGTATCTTCTCTAAA



TCTGGTGAAGCGACCGCGTTCCAGGCGTCTTCTAAAATCGAAGCGTACGAATCTAAACTG



GCGTCTGAACTGGCGTGCGTTGACCTGTCTATCCAGAACCTGACCATCTCTACCCTGTTC



AACGCGCTGACCACCTCTGTTCGTGGTAAAGGTGAAGAAACCTCTGCGGACCCGCTGATC



GCGCGTTTCTACACCCTGCTGACCGGTAAACCGCTGTCTCGTGACACCCAGGGTCCGGAA



CGTGACCTGGCGGAAGTTATCTCTCGTAAAATCGCGTCTTCTTTCGGTACCTGGAAAGAA



ATGACCGCGAACCCGCTGCAGTCTCTGCAGTTCTTCGAAGAAGAACTGCACGCGCTGGAC



GCGAACGTTTCTCTGTCTCCGGCGTTCGACGTTCTGATCAAAATGAACGACCTGCAGGGT



GACCTGAAAAACCGTACCATCGTTTTCGACCCGGACGCGCCGGTTTTCGAATACAACGCG



GAAGACCCGGCGGACATCATCATCAAACTGACCGCGCGTTACGCGAAAGAAGCGGTTATC



AAAAACCAGAACGTTGGTAACTACGTTAAAAACGCGATCACCACCACCAACGCGAACGGT



CTGGGTTGGCTGCTGAACAAAGGTCTGTCTCTGCTGCCGGTTTCTACCGACGACGAACTG



CTGGAATTCATCGGTGTTGAACGTTCTCACCCGTCTTGCCACGCGCTGATCGAACTGATC



GCGCAGCTGGAAGCGCCGGAACTGTTCGAAAAAAACGTTTTCTCTGACACCCGTTCTGAA



GTTCAGGGTATGATCGACTCTGCGGTTTCTAACCACATCGCGCGTCTGTCTTCTTCTCGT



AACTCTCTGTCTATGGACTCTGAAGAACTGGAACGTCTGATCAAATCTTTCCAGATCCAC



ACCCCGCACTGCTCTCTGTTCATCGGTGCGCAGTCTCTGTCTCAGCAGCTGGAATCTCTG



CCGGAAGCGCTGCAGTCTGGTGTTAACTCTGCGGACATCCTGCTGGGTTCTACCCAGTAC



ATGCTGACCAACTCTCTGGTTGAAGAATCTATCGCGACCTACCAGCGTACCCTGAACCGT



ATCAACTACCTGTCTGGTGTTGCGGGTCAGATCAACGGTGCGATCAAACGTAAAGCGATC



GACGGTGAAAAAATCCACCTGCCGGCGGCGTGGTCTGAACTGATCTCTCTGCCGTTCATC



GGTCAGCCGGTTATCGACGTTGAATCTGACCTGGCGCACCTGAAAAACCAGTACCAGACC



CTGTCTAACGAATTCGACACCCTGATCTCTGCGCTGCAGAAAAACTTCGACCTGAACTTC



AACAAAGCGCTGCTGAACCGTACCCAGCACTTCGAAGCGATGTGCCGTTCTACCAAAAAA



AACGCGCTGTCTAAACCGGAAATCGTTTCTTACCGTGACCTGCTGGCGCGTCTGACCTCT



TGCCTGTACCGTGGTTCTCTGGTTCTGCGTCGTGCGGGTATCGAAGTTCTGAAAAAACAC



AAAATCTTCGAATCTAACTCTGAACTGCGTGAACACGTTCACGAACGTAAACACTTCGTT



TTCGTTTCTCCGCTGGACCGTAAAGCGAAAAAACTGCTGCGTCTGACCGACTCTCGTCCG



GACCTGCTGCACGTTATCGACGAAATCCTGCAGCACGACAACCTGGAAAACAAAGACCGT



GAATCTCTGTGGCTGGTTCGTTCTGGTTACCTGCTGGCGGGTCTGCCGGACCAGCTGTCT



TCTTCTTTCATCAACCTGCCGATCATCACCCAGAAAGGTGACCGTCGTCTGATCGACCTG



ATCCAGTACGACCAGATCAACCGTGACGCGTTCGTTATGCTGGTTACCTCTGCGTTCAAA



TCTAACCTGTCTGGTCTGCAGTACCGTGCGAACAAACAGTCTTTCGTTGTTACCCGTACC



CTGTCTCCGTACCTGGGTTCTAAACTGGTTTACGTTCCGAAAGACAAAGACTGGCTGGTT



CCGTCTCAGATGTTCGAAGGTCGTTTCGCGGACATCCTGCAGTCTGACTACATGGTTTGG



AAAGACGCGGGTCGTCTGTGCGTTATCGACACCGCGAAACACCTGTCTAACATCAAAAAA



TCTGTTTTCTCTTCTGAAGAAGTTCTGGCGTTCCTGCGTGAACTGCCGCACCGTACCTTC



ATCCAGACCGAAGTTCGTGGTCTGGGTGTTAACGTTGACGGTATCGCGTTCAACAACGGT



GACATCCCGTCTCTGAAAACCTTCTCTAACTGCGTTCAGGTTAAAGTTTCTCGTACCAAC



ACCTCTCTGGTTCAGACCCTGAACCGTTGGTTCGAAGGTGGTAAAGTTTCTCCGCCGTCT



ATCCAGTTCGAACGTGCGTACTACAAAAAAGACGACCAGATCCACGAAGACGCGGCGAAA



CGTAAAATCCGTTTCCAGATGCCGGCGACCGAACTGGTTCACGCGTCTGACGACGCGGGT



TGGACCCCGTCTTACCTGCTGGGTATCGACCCGGGTGAATACGGTATGGGTCTGTCTCTG



GTTTCTATCAACAACGGTGAAGTTCTGGACTCTGGTTTCATCCACATCAACTCTCTGATC



AACTTCGCGTCTAAAAAATCTAACCACCAGACCAAAGTTGTTCCGCGTCAGCAGTACAAA



TCTCCGTACGCGAACTACCTGGAACAGTCTAAAGACTCTGCGGCGGGTGACATCGCGCAC



ATCCTGGACCGTCTGATCTACAAACTGAACGCGCTGCCGGTTTTCGAAGCGCTGTCTGGT



AACTCTCAGTCTGCGGCGGACCAGGTTTGGACCAAAGTTCTGTCTTTCTACACCTGGGGT



GACAACGACGCGCAGAACTCTATCCGTAAACAGCACTGGTTCGGTGCGTCTCACTGGGAC



ATCAAAGGTATGCTGCGTCAGCCGCCGACCGAAAAAAAACCGAAACCGTACATCGCGTTC



CCGGGTTCTCAGGTTTCTTCTTACGGTAACTCTCAGCGTTGCTCTTGCTGCGGTCGTAAC



CCGATCGAACAGCTGCGTGAAATGGCGAAAGACACCTCTATCAAAGAACTGAAAATCCGT



AACTCTGAAATCCAGCTGTTCGACGGTACCATCAAACTGTTCAACCCGGACCCGTCTACC



GTTATCGAACGTCGTCGTCACAACCTGGGTCCGTCTCGTATCCCGGTTGCGGACCGTACC



TTCAAAAACATCTCTCCGTCTTCTCTGGAATTCAAAGAACTGATCACCATCGTTTCTCGT



TCTATCCGTCACTCTCCGGAATTCATCGCGAAAAAACGTGGTATCGGTTCTGAATACTTC



TGCGCGTACTCTGACTGCAACTCTTCTCTGAACTCTGAAGCGAACGCGGCGGCGAACGTT



GCGCAGAAATTCCAGAAACAGCTGTTCTTCGAACTGTAA





SEQ
ATGAAACGTATCCTGAACTCTCTGAAAGTTGCGGCGCTGCGTCTGCTGTTCCGTGGTAAA


ID
GGTTCTGAACTGGTTAAAACCGTTAAATACCCGCTGGTTTCTCCGGTTCAGGGTGCGGTT


NO:
GAAGAACTGGCGGAAGCGATCCGTCACGACAACCTGCACCTGTTCGGTCAGAAAGAAATC


57
GTTGACCTGATGGAAAAAGACGAAGGTACCCAGGTTTACTCTGTTGTTGACTTCTGGCTG



GACACCCTGCGTCTGGGTATGTTCTTCTCTCCGTCTGCGAACGCGCTGAAAATCACCCTG



GGTAAATTCAACTCTGACCAGGTTTCTCCGTTCCGTAAAGTTCTGGAACAGTCTCCGTTC



TTCCTGGCGGGTCGTCTGAAAGTTGAACCGGCGGAACGTATCCTGTCTGTTGAAATCCGT



AAAATCGGTAAACGTGAAAACCGTGTTGAAAACTACGCGGCGGACGTTGAAACCTGCTTC



ATCGGTCAGCTGTCTTCTGACGAAAAACAGTCTATCCAGAAACTGGCGAACGACATCTGG



GACTCTAAAGACCACGAAGAACAGCGTATGCTGAAAGCGGACTTCTTCGCGATCCCGCTG



ATCAAAGACCCGAAAGCGGTTACCGAAGAAGACCCGGAAAACGAAACCGCGGGTAAACAG



AAACCGCTGGAACTGTGCGTTTGCCTGGTTCCGGAACTGTACACCCGTGGTTTCGGTTCT



ATCGCGGACTTCCTGGTTCAGCGTCTGACCCTGCTGCGTGACAAAATGTCTACCGACACC



GCGGAAGACTGCCTGGAATACGTTGGTATCGAAGAAGAAAAAGGTAACGGTATGAACTCT



CTGCTGGGTACCTTCCTGAAAAACCTGCAGGGTGACGGTTTCGAACAGATCTTCCAGTTC



ATGCTGGGTTCTTACGTTGGTTGGCAGGGTAAAGAAGACGTTCTGCGTGAACGTCTGGAC



CTGCTGGCGGAAAAAGTTAAACGTCTGCCGAAACCGAAATTCGCGGGTGAATGGTCTGGT



CACCGTATGTTCCTGCACGGTCAGCTGAAATCTTGGTCTTCTAACTTCTTCCGTCTGTTC



AACGAAACCCGTGAACTGCTGGAATCTATCAAATCTGACATCCAGCACGCGACCATGCTG



ATCTCTTACGTTGAAGAAAAAGGTGGTTACCACCCGCAGCTGCTGTCTCAGTACCGTAAA



CTGATGGAACAGCTGCCGGCGCTGCGTACCAAAGTTCTGGACCCGGAAATCGAAATGACC



CACATGTCTGAAGCGGTTCGTTCTTACATCATGATCCACAAATCTGTTGCGGGTTTCCTG



CCGGACCTGCTGGAATCTCTGGACCGTGACAAAGACCGTGAATTCCTGCTGTCTATCTTC



CCGCGTATCCCGAAAATCGACAAAAAAACCAAAGAAATCGTTGCGTGGGAACTGCCGGGT



GAACCGGAAGAAGGTTACCTGTTCACCGCGAACAACCTGTTCCGTAACTTCCTGGAAAAC



CCGAAACACGTTCCGCGTTTCATGGCGGAACGTATCCCGGAAGACTGGACCCGTCTGCGT



TCTGCGCCGGTTTGGTTCGACGGTATGGTTAAACAGTGGCAGAAAGTTGTTAACCAGCTG



GTTGAATCTCCGGGTGCGCTGTACCAGTTCAACGAATCTTTCCTGCGTCAGCGTCTGCAG



GCGATGCTGACCGTTTACAAACGTGACCTGCAGACCGAAAAATTCCTGAAACTGCTGGCG



GACGTTTGCCGTCCGCTGGTTGACTTCTTCGGTCTGGGTGGTAACGACATCATCTTCAAA



TCTTGCCAGGACCCGCGTAAACAGTGGCAGACCGTTATCCCGCTGTCTGTTCCGGCGGAC



GTTTACACCGCGTGCGAAGGTCTGGCGATCCGTCTGCGTGAAACCCTGGGTTTCGAATGG



AAAAACCTGAAAGGTCACGAACGTGAAGACTTCCTGCGTCTGCACCAGCTGCTGGGTAAC



CTGCTGTTCTGGATCCGTGACGCGAAACTGGTTGTTAAACTGGAAGACTGGATGAACAAC



CCGTGCGTTCAGGAATACGTTGAAGCGCGTAAAGCGATCGACCTGCCGCTGGAAATCTTC



GGTTTCGAAGTTCCGATCTTCCTGAACGGTTACCTGTTCTCTGAACTGCGTCAGCTGGAA



CTGCTGCTGCGTCGTAAATCTGTTATGACCTCTTACTCTGTTAAAACCACCGGTTCTCCG



AACCGTCTGTTCCAGCTGGTTTACCTGCCGCTGAACCCGTCTGACCCGGAAAAAAAAAAC



TCTAACAACTTCCAGGAACGTCTGGACACCCCGACCGGTCTGTCTCGTCGTTTCCTGGAC



CTGACCCTGGACGCGTTCGCGGGTAAACTGCTGACCGACCCGGTTACCCAGGAACTGAAA



ACCATGGCGGGTTTCTACGACCACCTGTTCGGTTTCAAACTGCCGTGCAAACTGGCGGCG



ATGTCTAACCACCCGGGTTCTTCTTCTAAAATGGTTGTTCTGGCGAAACCGAAAAAAGGT



GTTGCGTCTAACATCGGTTTCGAACCGATCCCGGACCCGGCGCACCCGGTTTTCCGTGTT



CGTTCTTCTTGGCCGGAACTGAAATACCTGGAAGGTCTGCTGTACCTGCCGGAAGACACC



CCGCTGACCATCGAACTGGCGGAAACCTCTGTTTCTTGCCAGTCTGTTTCTTCTGTTGCG



TTCGACCTGAAAAACCTGACCACCATCCTGGGTCGTGTTGGTGAATTCCGTGTTACCGCG



GACCAGCCGTTCAAACTGACCCCGATCATCCCGGAAAAAGAAGAATCTTTCATCGGTAAA



ACCTACCTGGGTCTGGACGCGGGTGAACGTTCTGGTGTTGGTTTCGCGATCGTTACCGTT



GACGGTGACGGTTACGAAGTTCAGCGTCTGGGTGTTCACGAAGACACCCAGCTGATGGCG



CTGCAGCAGGTTGCGTCTAAATCTCTGAAAGAACCGGTTTTCCAGCCGCTGCGTAAAGGT



ACCTTCCGTCAGCAGGAACGTATCCGTAAATCTCTGCGTGGTTGCTACTGGAACTTCTAC



CACGCGCTGATGATCAAATACCGTGCGAAAGTTGTTCACGAAGAATCTGTTGGTTCTTCT



GGTCTGGTTGGTCAGTGGCTGCGTGCGTTCCAGAAAGACCTGAAAAAAGCGGACGTTCTG



CCGAAAAAAGGTGGTAAAAACGGTGTTGACAAAAAAAAACGTGAATCTTCTGCGCAGGAC



ACCCTGTGGGGTGGTGCGTTCTCTAAAAAAGAAGAACAGCAGATCGCGTTCGAAGTTCAG



GCGGCGGGTTCTTCTCAGTTCTGCCTGAAATGCGGTTGGTGGTTCCAGCTGGGTATGCGT



GAAGTTAACCGTGTTCAGGAATCTGGTGTTGTTCTGGACTGGAACCGTTCTATCGTTACC



TTCCTGATCGAATCTTCTGGTGAAAAAGTTTACGGTTTCTCTCCGCAGCAGCTGGAAAAA



GGTTTCCGTCCGGACATCGAAACCTTCAAAAAAATGGTTCGTGACTTCATGCGTCCGCCG



ATGTTCGACCGTAAAGGTCGTCCGGCGGCGGCGTACGAACGTTTCGTTCTGGGTCGTCGT



CACCGTCGTTACCGTTTCGACAAAGTTTTCGAAGAACGTTTCGGTCGTTCTGCGCTGTTC



ATCTGCCCGCGTGTTGGTTGCGGTAACTTCGACCACTCTTCTGAACAGTCTGCGGTTGTT



CTGGCGCTGATCGGTTACATCGCGGACAAAGAAGGTATGTCTGGTAAAAAACTGGTTTAC



GTTCGTCTGGCGGAACTGATGGCGGAATGGAAACTGAAAAAACTGGAACGTTCTCGTGTT



GAAGAACAGTCTTCTGCGCAGTAA





SEQ
ATGGCGGAATCTAAACAGATGCAGTGCCGTAAATGCGGTGCGTCTATGAAATACGAAGTT


ID
ATCGGTCTGGGTAAAAAATCTTGCCGTTACATGTGCCCGGACTGCGGTAACCACACCTCT


NO:
GCGCGTAAAATCCAGAACAAAAAAAAACGTGACAAAAAATACGGTTCTGCGTCTAAAGCG


58
CAGTCTCAGCGTATCGCGGTTGCGGGTGCGCTGTACCCGGACAAAAAAGTTCAGACCATC



AAAACCTACAAATACCCGGCGGACCTGAACGGTGAAGTTCACGACTCTGGTGTTGCGGAA



AAAATCGCGCAGGCGATCCAGGAAGACGAAATCGGTCTGCTGGGTCCGTCTTCTGAATAC



GCGTGCTGGATCGCGTCTCAGAAACAGTCTGAACCGTACTCTGTTGTTGACTTCTGGTTC



GACGCGGTTTGCGCGGGTGGTGTTTTCGCGTACTCTGGTGCGCGTCTGCTGTCTACCGTT



CTGCAGCTGTCTGGTGAAGAATCTGTTCTGCGTGCGGCGCTGGCGTCTTCTCCGTTCGTT



GACGACATCAACCTGGCGCAGGCGGAAAAATTCCTGGCGGTTTCTCGTCGTACCGGTCAG



GACAAACTGGGTAAACGTATCGGTGAATGCTTCGCGGAAGGTCGTCTGGAAGCGCTGGGT



ATCAAAGACCGTATGCGTGAATTCGTTCAGGCGATCGACGTTGCGCAGACCGCGGGTCAG



CGTTTCGCGGCGAAACTGAAAATCTTCGGTATCTCTCAGATGCCGGAAGCGAAACAGTGG



AACAACGACTCTGGTCTGACCGTTTGCATCCTGCCGGACTACTACGTTCCGGAAGAAAAC



CGTGCGGACCAGCTGGTTGTTCTGCTGCGTCGTCTGCGTGAAATCGCGTACTGCATGGGT



ATCGAAGACGAAGCGGGTTTCGAACACCTGGGTATCGACCCGGGTGCGCTGTCTAACTTC



TCTAACGGTAACCCGAAACGTGGTTTCCTGGGTCGTCTGCTGAACAACGACATCATCGCG



CTGGCGAACAACATGTCTGCGATGACCCCGTACTGGGAAGGTCGTAAAGGTGAACTGATC



GAACGTCTGGCGTGGCTGAAACACCGTGCGGAAGGTCTGTACCTGAAAGAACCGCACTTC



GGTAACTCTTGGGCGGACCACCGTTCTCGTATCTTCTCTCGTATCGCGGGTTGGCTGTCT



GGTTGCGCGGGTAAACTGAAAATCGCGAAAGACCAGATCTCTGGTGTTCGTACCGACCTG



TTCCTGCTGAAACGTCTGCTGGACGCGGTTCCGCAGTCTGCGCCGTCTCCGGACTTCATC



GCGTCTATCTCTGCGCTGGACCGTTTCCTGGAAGCGGCGGAATCTTCTCAGGACCCGGCG



GAACAGGTTCGTGCGCTGTACGCGTTCCACCTGAACGCGCCGGCGGTTCGTTCTATCGCG



AACAAAGCGGTTCAGCGTTCTGACTCTCAGGAATGGCTGATCAAAGAACTGGACGCGGTT



GACCACCTGGAATTCAACAAAGCGTTCCCGTTCTTCTCTGACACCGGTAAAAAAAAAAAA



AAAGGTGCGAACTCTAACGGTGCGCCGTCTGAAGAAGAATACACCGAAACCGAATCTATC



CAGCAGCCGGAAGACGCGGAACAGGAAGTTAACGGTCAGGAAGGTAACGGTGCGTCTAAA



AACCAGAAAAAATTCCAGCGTATCCCGCGTTTCTTCGGTGAAGGTTCTCGTTCTGAATAC



CGTATCCTGACCGAAGCGCCGCAGTACTTCGACATGTTCTGCAACAACATGCGTGCGATC



TTCATGCAGCTGGAATCTCAGCCGCGTAAAGCGCCGCGTGACTTCAAATGCTTCCTGCAG



AACCGTCTGCAGAAACTGTACAAACAGACCTTCCTGAACGCGCGTTCTAACAAATGCCGT



GCGCTGCTGGAATCTGTTCTGATCTCTTGGGGTGAATTCTACACCTACGGTGCGAACGAA



AAAAAATTCCGTCTGCGTCACGAAGCGTCTGAACGTTCTTCTGACCCGGACTACGTTGTT



CAGCAGGCGCTGGAAATCGCGCGTCGTCTGTTCCTGTTCGGTTTCGAATGGCGTGACTGC



TCTGCGGGTGAACGTGTTGACCTGGTTGAAATCCACAAAAAAGCGATCTCTTTCCTGCTG



GCGATCACCCAGGCGGAAGTTTCTGTTGGTTCTTACAACTGGCTGGGTAACTCTACCGTT



TCTCGTTACCTGTCTGTTGCGGGTACCGACACCCTGTACGGTACCCAGCTGGAAGAATTC



CTGAACGCGACCGTTCTGTCTCAGATGCGTGGTCTGGCGATCCGTCTGTCTTCTCAGGAA



CTGAAAGACGGTTTCGACGTTCAGCTGGAATCTTCTTGCCAGGACAACCTGCAGCACCTG



CTGGTTTACCGTGCGTCTCGTGACCTGGCGGCGTGCAAACGTGCGACCTGCCCGGCGGAA



CTGGACCCGAAAATCCTGGTTCTGCCGGTTGGTGCGTTCATCGCGTCTGTTATGAAAATG



ATCGAACGTGGTGACGAACCGCTGGCGGGTGCGTACCTGCGTCACCGTCCGCACTCTTTC



GGTTGGCAGATCCGTGTTCGTGGTGTTGCGGAAGTTGGTATGGACCAGGGTACCGCGCTG



GCGTTCCAGAAACCGACCGAATCTGAACCGTTCAAAATCAAACCGTTCTCTGCGCAGTAC



GGTCCGGTTCTGTGGCTGAACTCTTCTTCTTACTCTCAGTCTCAGTACCTGGACGGTTTC



CTGTCTCAGCCGAAAAACTGGTCTATGCGTGTTCTGCCGCAGGCGGGTTCTGTTCGTGTT



GAACAGCGTGTTGCGCTGATCTGGAACCTGCAGGCGGGTAAAATGCGTCTGGAACGTTCT



GGTGCGCGTGCGTTCTTCATGCCGGTTCCGTTCTCTTTCCGTCCGTCTGGTTCTGGTGAC



GAAGCGGTTCTGGCGCCGAACCGTTACCTGGGTCTGTTCCCGCACTCTGGTGGTATCGAA



TACGCGGTTGTTGACGTTCTGGACTCTGCGGGTTTCAAAATCCTGGAACGTGGTACCATC



GCGGTTAACGGTTTCTCTCAGAAACGTGGTGAACGTCAGGAAGAAGCGCACCGTGAAAAA



CAGCGTCGTGGTATCTCTGACATCGGTCGTAAAAAACCGGTTCAGGCGGAAGTTGACGCG



GCGAACGAACTGCACCGTAAATACACCGACGTTGCGACCCGTCTGGGTTGCCGTATCGTT



GTTCAGTGGGCGCCGCAGCCGAAACCGGGTACCGCGCCGACCGCGCAGACCGTTTACGCG



CGTGCGGTTCGTACCGAAGCGCCGCGTTCTGGTAACCAGGAAGACCACGCGCGTATGAAA



TCTTCTTGGGGTTACACCTGGGGTACCTACTGGGAAAAACGTAAACCGGAAGACATCCTG



GGTATCTCTACCCAGGTTTACTGGACCGGTGGTATCGGTGAATCTTGCCCGGCGGTTGCG



GTTGCGCTGCTGGGTCACATCCGTGCGACCTCTACCCAGACCGAATGGGAAAAAGAAGAA



GTTGTTTTCGGTCGTCTGAAAAAATTCTTCCCGTCTTAA





SEQ
ATGGAAAAACGTATCAACAAAATCCGTAAAAAACTGTCTGCGGACAACGCGACCAAACCG


ID
GTTTCTCGTTCTGGTCCGATGAAAACCCTGCTGGTTCGTGTTATGACCGACGACCTGAAA


NO:
AAACGTCTGGAAAAACGTCGTAAAAAACCGGAAGTTATGCCGCAGGTTATCTCTAACAAC


59
GCGGCGAACAACCTGCGTATGCTGCTGGACGACTACACCAAAATGAAAGAAGCGATCCTG



CAGGTTTACTGGCAGGAATTCAAAGACGACCACGTTGGTCTGATGTGCAAATTCGCGCAG



CCGGCGTCTAAAAAAATCGACCAGAACAAACTGAAACCGGAAATGGACGAAAAAGGTAAC



CTGACCACCGCGGGTTTCGCGTGCTCTCAGTGCGGTCAGCCGCTGTTCGTTTACAAACTG



GAACAGGTTTCTGAAAAAGGTAAAGCGTACACCAACTACTTCGGTCGTTGCAACGTTGCG



GAACACGAAAAACTGATCCTGCTGGCGCAGCTGAAACCGGAAAAAGACTCTGACGAAGCG



GTTACCTACTCTCTGGGTAAATTCGGTCAGCGTGCGCTGGACTTCTACTCTATCCACGTT



ACCAAAGAATCTACCCACCCGGTTAAACCGCTGGCGCAGATCGCGGGTAACCGTTACGCG



TCTGGTCCGGTTGGTAAAGCGCTGTCTGACGCGTGCATGGGTACCATCGCGTCTTTCCTG



TCTAAATACCAGGACATCATCATCGAACACCAGAAAGTTGTTAAAGGTAACCAGAAACGT



CTGGAATCTCTGCGTGAACTGGCGGGTAAAGAAAACCTGGAATACCCGTCTGTTACCCTG



CCGCCGCAGCCGCACACCAAAGAAGGTGTTGACGCGTACAACGAAGTTATCGCGCGTGTT



CGTATGTGGGTTAACCTGAACCTGTGGCAGAAACTGAAACTGTCTCGTGACGACGCGAAA



CCGCTGCTGCGTCTGAAAGGTTTCCCGTCTTTCCCGGTTGTTGAACGTCGTGAAAACGAA



GTTGACTGGTGGAACACCATCAACGAAGTTAAAAAACTGATCGACGCGAAACGTGACATG



GGTCGTGTTTTCTGGTCTGGTGTTACCGCGGAAAAACGTAACACCATCCTGGAAGGTTAC



AACTACCTGCCGAACGAAAACGACCACAAAAAACGTGAAGGTTCTCTGGAAAACCCGAAA



AAACCGGCGAAACGTCAGTTCGGTGACCTGCTGCTGTACCTGGAAAAAAAATACGCGGGT



GACTGGGGTAAAGTTTTCGACGAAGCGTGGGAACGTATCGACAAAAAAATCGCGGGTCTG



ACCTCTCACATCGAACGTGAAGAAGCGCGTAACGCGGAAGACGCGCAGTCTAAAGCGGTT



CTGACCGACTGGCTGCGTGCGAAAGCGTCTTTCGTTCTGGAACGTCTGAAAGAAATGGAC



GAAAAAGAATTCTACGCGTGCGAAATCCAGCTGCAGAAATGGTACGGTGACCTGCGTGGT



AACCCGTTCGCGGTTGAAGCGGAAAACCGTGTTGTTGACATCTCTGGTTTCTCTATCGGT



TCTGACGGTCACTCTATCCAGTACCGTAACCTGCTGGCGTGGAAATACCTGGAAAACGGT



AAACGTGAATTCTACCTGCTGATGAACTACGGTAAAAAAGGTCGTATCCGTTTCACCGAC



GGTACCGACATCAAAAAATCTGGTAAATGGCAGGGTCTGCTGTACGGTGGTGGTAAAGCG



AAAGTTATCGACCTGACCTTCGACCCGGACGACGAACAGCTGATCATCCTGCCGCTGGCG



TTCGGTACCCGTCAGGGTCGTGAATTCATCTGGAACGACCTGCTGTCTCTGGAAACCGGT



CTGATCAAACTGGCGAACGGTCGTGTTATCGAAAAAACCATCTACAACAAAAAAATCGGT



CGTGACGAACCGGCGCTGTTCGTTGCGCTGACCTTCGAACGTCGTGAAGTTGTTGACCCG



TCTAACATCAAACCGGTTAACCTGATCGGTGTTGACCGTGGTGAAAACATCCCGGCGGTT



ATCGCGCTGACCGACCCGGAAGGTTGCCCGCTGCCGGAATTCAAAGACTCTTCTGGTGGT



CCGACCGACATCCTGCGTATCGGTGAAGGTTACAAAGAAAAACAGCGTGCGATCCAGGCG



GCGAAAGAAGTTGAACAGCGTCGTGCGGGTGGTTACTCTCGTAAATTCGCGTCTAAATCT



CGTAACCTGGCGGACGACATGGTTCGTAACTCTGCGCGTGACCTGTTCTACCACGCGGTT



ACCCACGACGCGGTTCTGGTTTTCGAAAACCTGTCTCGTGGTTTCGGTCGTCAGGGTAAA



CGTACCTTCATGACCGAACGTCAGTACACCAAAATGGAAGACTGGCTGACCGCGAAACTG



GCGTACGAAGGTCTGACCTCTAAAACCTACCTGTCTAAAACCCTGGCGCAGTACACCTCT



AAAACCTGCTCTAACTGCGGTTTCACCATCACCACCGCGGACTACGACGGTATGCTGGTT



CGTCTGAAAAAAACCTCTGACGGTTGGGCGACCACCCTGAACAACAAAGAACTGAAAGCG



GAAGGTCAGATCACCTACTACAACCGTTACAAACGTCAGACCGTTGAAAAAGAACTGTCT



GCGGAACTGGACCGTCTGTCTGAAGAATCTGGTAACAACGACATCTCTAAATGGACCAAA



GGTCGTCGTGACGAAGCGCTGTTCCTGCTGAAAAAACGTTTCTCTCACCGTCCGGTTCAG



GAACAGTTCGTTTGCCTGGACTGCGGTCACGAAGTTCACGCGGACGAACAGGCGGCGCTG



AACATCGCGCGTTCTTGGCTGTTCCTGAACTCTAACTCTACCGAATTCAAATCTTACAAA



TCTGGTAAACAGCCGTTCGTTGGTGCGTGGCAGGCGTTCTACAAACGTCGTCTGAAAGAA



GTTTGGAAACCGAACGCG





SEQ
ATGAAACGTATCAACAAAATCCGTCGTCGTCTGGTTAAAGACTCTAACACCAAAAAAGCG


ID
GGTAAAACCGGTCCGATGAAAACCCTGCTGGTTCGTGTTATGACCCCGGACCTGCGTGAA


NO:
CGTCTGGAAAACCTGCGTAAAAAACCGGAAAACATCCCGCAGCCGATCTCTAACACCTCT


60
CGTGCGAACCTGAACAAACTGCTGACCGACTACACCGAAATGAAAAAAGCGATCCTGCAC



GTTTACTGGGAAGAATTCCAGAAAGACCCGGTTGGTCTGATGTCTCGTGTTGCGCAGCCG



GCGCCGAAAAACATCGACCAGCGTAAACTGATCCCGGTTAAAGACGGTAACGAACGTCTG



ACCTCTTCTGGTTTCGCGTGCTCTCAGTGCTGCCAGCCGCTGTACGTTTACAAACTGGAA



CAGGTTAACGACAAAGGTAAACCGCACACCAACTACTTCGGTCGTTGCAACGTTTCTGAA



CACGAACGTCTGATCCTGCTGTCTCCGCACAAACCGGAAGCGAACGACGAACTGGTTACC



TACTCTCTGGGTAAATTCGGTCAGCGTGCGCTGGACTTCTACTCTATCCACGTTACCCGT



GAATCTAACCACCCGGTTAAACCGCTGGAACAGATCGGTGGTAACTCTTGCGCGTCTGGT



CCGGTTGGTAAAGCGCTGTCTGACGCGTGCATGGGTGCGGTTGCGTCTTTCCTGACCAAA



TACCAGGACATCATCCTGGAACACCAGAAAGTTATCAAAAAAAACGAAAAACGTCTGGCG



AACCTGAAAGACATCGCGTCTGCGAACGGTCTGGCGTTCCCGAAAATCACCCTGCCGCCG



CAGCCGCACACCAAAGAAGGTATCGAAGCGTACAACAACGTTGTTGCGCAGATCGTTATC



TGGGTTAACCTGAACCTGTGGCAGAAACTGAAAATCGGTCGTGACGAAGCGAAACCGCTG



CAGCGTCTGAAAGGTTTCCCGTCTTTCCCGCTGGTTGAACGTCAGGCGAACGAAGTTGAC



TGGTGGGACATGGTTTGCAACGTTAAAAAACTGATCAACGAAAAAAAAGAAGACGGTAAA



GTTTTCTGGCAGAACCTGGCGGGTTACAAACGTCAGGAAGCGCTGCTGCCGTACCTGTCT



TCTGAAGAAGACCGTAAAAAAGGTAAAAAATTCGCGCGTTACCAGTTCGGTGACCTGCTG



CTGCACCTGGAAAAAAAACACGGTGAAGACTGGGGTAAAGTTTACGACGAAGCGTGGGAA



CGTATCGACAAAAAAGTTGAAGGTCTGTCTAAACACATCAAACTGGAAGAAGAACGTCGT



TCTGAAGACGCGCAGTCTAAAGCGGCGCTGACCGACTGGCTGCGTGCGAAAGCGTCTTTC



GTTATCGAAGGTCTGAAAGAAGCGGACAAAGACGAATTCTGCCGTTGCGAACTGAAACTG



CAGAAATGGTACGGTGACCTGCGTGGTAAACCGTTCGCGATCGAAGCGGAAAACTCTATC



CTGGACATCTCTGGTTTCTCTAAACAGTACAACTGCGCGTTCATCTGGCAGAAAGACGGT



GTTAAAAAACTGAACCTGTACCTGATCATCAACTACTTCAAAGGTGGTAAACTGCGTTTC



AAAAAAATCAAACCGGAAGCGTTCGAAGCGAACCGTTTCTACACCGTTATCAACAAAAAA



TCTGGTGAAATCGTTCCGATGGAAGTTAACTTCAACTTCGACGACCCGAACCTGATCATC



CTGCCGCTGGCGTTCGGTAAACGTCAGGGTCGTGAATTCATCTGGAACGACCTGCTGTCT



CTGGAAACCGGTTCTCTGAAACTGGCGAACGGTCGTGTTATCGAAAAAACCCTGTACAAC



CGTCGTACCCGTCAGGACGAACCGGCGCTGTTCGTTGCGCTGACCTTCGAACGTCGTGAA



GTTCTGGACTCTTCTAACATCAAACCGATGAACCTGATCGGTATCGACCGTGGTGAAAAC



ATCCCGGCGGTTATCGCGCTGACCGACCCGGAAGGTTGCCCGCTGTCTCGTTTCAAAGAC



TCTCTGGGTAACCCGACCCACATCCTGCGTATCGGTGAATCTTACAAAGAAAAACAGCGT



ACCATCCAGGCGGCGAAAGAAGTTGAACAGCGTCGTGCGGGTGGTTACTCTCGTAAATAC



GCGTCTAAAGCGAAAAACCTGGCGGACGACATGGTTCGTAACACCGCGCGTGACCTGCTG



TACTACGCGGTTACCCAGGACGCGATGCTGATCTTCGAAAACCTGTCTCGTGGTTTCGGT



CGTCAGGGTAAACGTACCTTCATGGCGGAACGTCAGTACACCCGTATGGAAGACTGGCTG



ACCGCGAAACTGGCGTACGAAGGTCTGCCGTCTAAAACCTACCTGTCTAAAACCCTGGCG



CAGTACACCTCTAAAACCTGCTCTAACTGCGGTTTCACCATCACCTCTGCGGACTACGAC



CGTGTTCTGGAAAAACTGAAAAAAACCGCGACCGGTTGGATGACCACCATCAACGGTAAA



GAACTGAAAGTTGAAGGTCAGATCACCTACTACAACCGTTACAAACGTCAGAACGTTGTT



AAAGACCTGTCTGTTGAACTGGACCGTCTGTCTGAAGAATCTGTTAACAACGACATCTCT



TCTTGGACCAAAGGTCGTTCTGGTGAAGCGCTGTCTCTGCTGAAAAAACGTTTCTCTCAC



CGTCCGGTTCAGGAAAAATTCGTTTGCCTGAACTGCGGTTTCGAAACCCACGCGGACGAA



CAGGCGGCGCTGAACATCGCGCGTTCTTGGCTGTTCCTGCGTTCTCAGGAATACAAAAAA



TACCAGACCAACAAAACCACCGGTAACACCGACAAACGTGCGTTCGTTGAAACCTGGCAG



TCTTTCTACCGTAAAAAACTGAAAGAAGTTTGGAAACCG





SEQ
AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATT


ID
GATAATTGAGATCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAA


NO:
TTATTTATTTATCCAGAAAATGAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCT


61
GGCGCAGTTGATATGTcaaaCAGGTtgccgtcactgcgtcttttactggctcttctcgct



aaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagccat



gacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgattattt



gcacggcgtcacactttgctatgccatagcatttttatccataagattagcggatcctac



ctgacgctttttatcgcaactctctactgtttctccatacccgtttttttgggctagcac



cgcctatctcgtgtgagataggcggagatacgaactttaagAAGGAGatataccATGGGT



AAAATGTATTACCTTGGTTTAGACATTGGCACGAATTCCGTGGGCTACGCGGTGACCGAC



CCCTCATACCACCTGCTGAAGTTTAAGGGGGAACCAATGTGGGGTGCGCACGTATTTGCC



GCCGGTAATCAGAGCGCGGAACGACGCTCGTTCCGCACATCGCGTCGTCGTTTGGACCGA



CGCCAACAGCGCGTTAAACTGGTACAGGAGATTTTTGCCCCGGTGATTAGTCCGATCGAC



CCACGCTTCTTCATTCGTCTGCATGAATCCGCCCTGTGGCGCGATGACGTCGCGGAGACG



GATAAACATATCTTTTTCAATGATCCTACCTATACCGATAAGGAATATTATAGCGATTAC



CCGACTATCCATCACCTGATCGTTGATCTGATGGAAAGCTCTGAGAAACACGATCCGCGG



CTGGTGTACCTTGCAGTGGCGTGGTTAGTGGCACACCGTGGTCATTTTCTGAACGAGGTG



GACAAGGATAATATTGGAGATGTGTTGTCGTTCGACGCATTTTATCCGGAGTTTCTCGCG



TTCCTGTCGGACAACGGTGTATCACCGTGGGTGTGCGAAAGCAAAGCGCTGCAGGCGACC



TTGCTGAGCCGTAACTCAGTGAACGACAAATATAAAGCCCTTAAGTCTCTGATCTTCGGA



TCCCAGAAACCTGAAGATAACTTCGATGCCAATATTTCGGAAGATGGACTCATTCAACTG



CTGGCCGGCAAAAAGGTAAAAGTTAACAAACTGTTCCCTCAGGAATCGAACGATGCATCC



TTCACATTGAATGATAAAGAAGACGCGATAGAAGAAATCCTGGGTACGCTTACACCAGAT



GAATGTGAATGGATTGCGCATATACGCCGCCTTTTTGACTGGGCTATCATGAAACATGCT



CTGAAAGATGGCAGGACTATTAGCGAGTCAAAAGTCAAACTGTATGAGCAGCACCATCAC



GATCTGACCCAACTTAAATACTTCGTGAAAACCTACCTTGCAAAAGAATACGACGATATT



TTCCGCAACGTGGATAGCGAAACAACGAAAAACTATGTAGCGTATTCCTATCATGTGAAA



GAGGTGAAAGGCACTCTGCCTAAAAATAAGGCAACGCAAGAAGAGTTTTGTAAGTATGTC



CTGGGCAAGGTTAAAAACATTGAATGCTCTGAAGCAGACAAGGTTGACTTTGATGAGATG



ATTCAGCGTCTTACCGACAACTCTTTTATGCCTAAGCAGGTTTCGGGCGAAAACCGCGTT



ATTCCTTATCAGTTATATTATTATGAACTGAAGACAATTCTGAATAAAGCAGCCTCGTAC



CTGCCTTTCCTGACGCAGTGTGGAAAAGATGCAATTTCGAACCAGGACAAACTACTGTCG



ATCATGACGTTCCGTATTCCTTACTTCGTCGGACCCTTGCGAAAAGATAATTCGGAACAT



GCATGGCTCGAACGAAAGGCCGGTAAGATTTATCCGTGGAACTTTAACGACAAAGTGGAC



TTGGATAAATCAGAAGAAGCGTTCATTCGCCGAATGACCAATACCTGTACCTATTATCCC



GGCGAAGATGTTTTACCGTTGGATTCGCTGATCTATGAGAAATTTATGATTTTAAATGAA



ATCAATAATATTCGTATTGACGGCTACCCGATTAGTGTTGACGTTAAACAGCAGGTTTTT



GGCTTGTTCGAAAAAAAACGACGCGTAACCGTGAAAGATATTCAGAACCTGCTGCTGTCT



CTCGGAGCTCTGGACAAACACGGGAAGCTGACAGGCATCGATACCACTATCCACTCAAAC



TATAATACGTATCACCATTTTAAATCTCTCATGGAACGCGGCGTCCTGACCCGGGATGAC



GTGGAACGCATCGTTGAAAGGATGACCTACAGCGACGATACTAAGCGTGTGCGTCTGTGG



CTGAATAACAACTATGGTACTTTAACCGCCGACGATGTGAAACACATTTCGCGTCTGCGC



AAACACGATTTTGGCCGTTTATCCAAAATGTTCTTAACAGGTCTGAAGGGTGTCCATAAG



GAGACCGGTGAACGTGCCTCCATACTGGATTTCATGTGGAACACGAACGATAACCTGATG



CAGCTCCTTTCCGAATGCTACACGTTCAGTGATGAAATCACAAAGCTGCAAGAGGCGTAT



TATGCAAAAGCCCAGTTGTCTTTAAACGATTTTTTAGACTCGATGTACATCTCTAACGCG



GTGAAACGTCCGATTTACAGAACTCTGGCAGTGGTGAACGATATTCGAAAAGCATGTGGG



ACGGCCCCTAAACGCATTTTCATCGAAATGGCTCGTGATGGTGAATCAAAAAAAAAGAGA



AGTGTTACACGTCGCGAGCAGATCAAAAACCTGTACCGCTCGATTCGTAAAGATTTCCAG



CAGGAAGTTGATTTTCTGGAAAAGATCCTGGAAAATAAATCTGATGGTCAACTTCAGTCA



GATGCTTTGTATCTTTACTTTGCACAATTAGGGCGCGATATGTACACGGGCGATCCAATA



AAGCTGGAGCACATCAAAGATCAGAGTTTCTATAACATAGACCATATTTACCCGCAGTCT



ATGGTGAAAGACGATTCCCTAGATAACAAAGTGCTGGTGCAAAGCGAAATTAACGGCGAG



AAAAGCTCGCGATACCCTTTGGACGCCGCGATCCGCAATAAAATGAAGCCCCTTTGGGAC



GCTTACTATAATCATGGCCTGATCTCCTTAAAGAAATACCAGCGTCTAACGCGCTCGACC



CCGTTTACCGATGATGAAAAATGGGACTTTATTAATCGCCAGTTAGTGGAAACCCGTCAA



TCTACCAAAGCGCTGGCCATTTTGTTGAAGCGTAAGTTTCCAGACACCGAAATTGTGTAT



TCGAAGGCGGGGTTATCGTCCGACTTCAGACATGAATTCGGCCTTGTAAAAAGTCGCAAT



ATTAATGATTTGCACCACGCTAAAGACGCATTCTTGGCTATCGTTACCGGCAATGTGTAC



CATGAAAGATTCAATCGCAGATGGTTTATGGTGAACCAGCCGTACTCAGTTAAAACTAAA



ACTCTTTTTACCCACAGCATAAAGAATGGCAACTTCGTTGCCTGGAACGGCGAAGAAGAT



CTCGGTCGTATTGTAAAAATGCTGAAGCAAAACAAAAATACCATTCACTTCACGCGCTTC



TCCTTCGATCGCAAAGAAGGATTATTTGATATCCAACCTCTGAAAGCCAGCACCGGCTTA



GTCCCACGAAAAGCCGGTCTGGATGTCGTTAAATACGGCGGATATGACAAATCTACCGCG



GCCTATTACCTGCTGGTGAGGTTCACGCTCGAGGACAAGAAAACCCAGCACAAGCTGATG



ATGATTCCTGTAGAAGGCCTGTACAAGGCTCGCATTGATCATGACAAGGAATTTCTTACC



GATTATGCGCAAACGACTATAAGCGAAATCCTACAGAAAGATAAACAGAAAGTGATCAAT



ATTATGTTTCCAATGGGTACGAGGCATATAAAACTCAATTCAATGATTAGTATCGATGGC



TTCTATCTTAGTATCGGCGGAAAGTCCTCTAAAGGTAAGTCAGTTCTATGTCACGCAATG



GTTCCACTGATCGTCCCTCACAAAATCGAATGTTACATTAAAGCAATGGAAAGCTTCGCC



CGGAAGTTTAAAGAAAACAACAAGCTGCGCATCGTAGAAAAATTCGATAAAATCACCGTT



GAAGACAACCTGAATCTCTACGAGCTCTTTCTCCAAAAACTGCAGCATAATCCCTATAAT



AAGTTTTTTTCGACACAGTTTGACGTACTGACGAACGGCCGTTCTACTTTCACAAAACTG



TCGCCGGAGGAACAGGTACAGACGCTCTTGAACATTTTAAGTATCTTTAAAACATGCCGC



AGTTCGGGTTGCGACCTGAAATCCATCAACGGCAGTGCCCAGGCAGCGCGCATCATGATT



AGCGCTGACTTAACTGGACTGTCGAAAAAATATTCAGATATTAGGTTGGTTGAACAGTCA



GCTTCTGGTTTGTTCGTATCCAAAAGTCAGAACTTACTGGAGTATCTCTAAGAAATCATC



CTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATTTATTATATCGCGTTGATTATTGAT



GCTGTTTTTAGTTTTAACGGCAATTAATATATGTGTTATTAATTGAATGAATTTTATCAT



TCATAATAAGTATGTGTAGGATCAAGCTCAGGTTAAATATTCACTCAGGAAGTTATTACT



CAGGAAGCAAAGAGGATTACAGAATTATCTCATAACAAGTGTTAAGGGATGTTATTTCC





SEQ
AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATT


ID
GATAATTGAGATCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAA


NO:
TTATTTATTTATCCAGAAAATGAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCT


62
GGCGCAGTTGATATGTcaaaCAGGTtgccgtcactgcgtcttttactggctcttctcgct



aaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagccat



gacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgattattt



gcacggcgtcacactttgctatgccatagcatttttatccataagattagcggatcctac



ctgacgctttttatcgcaactctctactgtttctccatacccgtttttttgggctagcac



cgcctatctcgtgtgagataggcggagatacgaactttaagAAGGAGatataccATGTCA



TCGCTCACGAAATTCACTAACAAATACTCTAAACAGCTCACCATTAAGAATGAACTCATC



CCAGTTGGCAAAACACTGGAGAACATCAAAGAGAATGGTCTGATAGATGGCGACGAACAG



CTGAATGAGAATTATCAGAAGGCGAAAATTATTGTGGATGATTTTCTGCGGGACTTCATT



AATAAAGCACTGAATAATACGCAGATCGGGAACTGGCGCGAACTGGCGGATGCCCTTAAT



AAAGAGGATGAAGATAACATCGAGAAATTGCAGGATAAAATTCGGGGAATCATTGTATCC



AAATTTGAAACGTTTGATCTGTTTAGCAGCTATTCTATTAAGAAAGATGAAAAGATTATT



GACGACGACAATGATGTTGAAGAAGAGGAACTGGATCTGGGCAAGAAGACCAGCTCATTT



AAATACATATTTAAAAAAAACCTGTTTAAGTTAGTGTTGCCATCCTACCTGAAAACCACA



AACCAGGACAAGCTGAAGATTATTAGCTCGTTTGATAATTTTTCAACGTACTTCCGCGGG



TTCTTTGAAAACCGGAAAAACATTTTTACCAAGAAACCGATCTCCACAAGTATTGCGTAT



CGCATTGTTCATGATAACTTCCCGAAATTCCTTGATAACATTCGTTGTTTTAATGTGTGG



CAGACGGAATGCCCGCAACTAATCGTGAAAGCAGATAACTATCTGAAAAGCAAAAATGTT



ATAGCGAAAGATAAAAGTTTGGCAAACTATTTTACCGTGGGCGCGTATGACTATTTCCTG



TCTCAGAATGGTATAGATTTTTACAACAATATTATAGGTGGACTGCCAGCGTTCGCCGGC



CATGAGAAAATCCAAGGTCTCAATGAATTCATCAATCAAGAGTGCCAAAAAGACAGCGAG



CTGAAAAGTAAGCTGAAAAACCGTCACGCGTTCAAAATGGCGGTACTGTTCAAACAGATA



CTCAGCGATCGTGAAAAAAGTTTTGTAATTGATGAGTTCGAGTCGGATGCTCAAGTTATT



GACGCCGTTAAAAACTTTTACGCCGAACAGTGCAAAGATAACAATGTTATTTTTAACTTA



TTAAATCTTATCAAGAATATCGCTTTCTTAAGTGATGACGAACTGGACGGCATATTCATT



GAAGGGAAATACCTGTCGAGCGTTAGTCAAAAACTCTATAGCGATTGGTCAAAATTACGT



AACGACATTGAGGATTCGGCTAACTCTAAACAAGGCAATAAAGAGCTGGCCAAGAAGATC



AAAACCAACAAAGGGGATGTAGAAAAAGCGATCTCGAAATATGAGTTCTCGCTGTCGGAA



CTGAACTCGATTGTACATGATAACACCAAGTTTTCTGACCTCCTTAGTTGTACACTGCAT



AAGGTGGCTTCTGAGAAACTGGTGAAGGTCAATGAAGGCGACTGGCCGAAACATCTCAAG



AATAATGAAGAGAAACAAAAAATCAAAGAGCCGCTTGATGCTCTGCTGGAGATCTATAAT



ACACTTCTGATTTTTAACTGCAAAAGCTTCAATAAAAACGGCAACTTCTATGTCGACTAT



GATCGTTGCATCAATGAACTGAGTTCGGTCGTGTATCTGTATAATAAAACACGTAACTAT



TGCACTAAAAAACCCTATAACACGGACAAGTTCAAACTCAATTTTAACAGTCCGCAGCTC



GGTGAAGGCTTTTCCAAGTCGAAAGAAAATGACTGTCTGACTCTTTTGTTTAAAAAAGAC



GACAACTATTATGTAGGCATTATCCGCAAAGGTGCAAAAATCAATTTTGATGATACACAA



GCAATCGCCGATAACACCGACAATTGCATCTTTAAAATGAATTATTTCCTACTTAAAGAC



GCAAAAAAATTTATCCCGAAATGTAGCATTCAGCTGAAAGAAGTCAAGGCCCATTTTAAG



AAATCTGAAGATGATTACATTTTGTCTGATAAAGAGAAATTTGCTAGCCCGCTGGTCATT



AAAAAGAGCACATTTTTGCTGGCAACTGCACATGTGAAAGGGAAAAAAGGCAATATCAAG



AAATTTCAGAAAGAATATTCGAAAGAAAACCCCACTGAGTATCGCAATTCTTTAAACGAA



TGGATTGCTTTTTGTAAAGAGTTCTTAAAAACTTATAAAGCGGCTACCATTTTTGATATA



ACCACATTGAAAAAGGCAGAGGAATATGCTGATATTGTAGAATTCTACAAGGATGTCGAT



AATCTGTGCTACAAACTGGAGTTCTGCCCGATTAAAACCTCGTTTATAGAAAACCTGATA



GATAACGGCGACCTGTATCTGTTTCGCATCAATAACAAAGACTTCAGCAGTAAATCGACC



GGCACCAAGAACCTTCATACGTTATATTTACAAGCTATATTCGATGAACGTAATCTGAAC



AATCCGACAATTATGCTGAATGGGGGAGCAGAACTGTTCTATCGTAAAGAAAGTATTGAG



CAGAAAAACCGTATCACACACAAAGCCGGTTCAATTCTCGTGAATAAGGTGTGTAAAGAC



GGTACAAGCCTGGATGATAAGATACGTAATGAAATTTATCAATATGAGAATAAATTTATT



GATACCCTGTCTGATGAAGCTAAAAAGGTGTTACCGAATGTCATTAAAAAGGAAGCTACC



CATGACATTACAAAAGATAAACGTTTCACTAGTGACAAATTCTTCTTTCACTGCCCCCTG



ACAATTAATTATAAGGAAGGCGATACCAAGCAGTTCAATAACGAAGTGCTGAGTTTTCTG



CGTGGAAATCCTGACATCAACATTATCGGCATTGACCGCGGAGAGCGTAATTTAATCTAT



GTAACGGTTATAAACCAGAAAGGCGAGATTCTGGATTCGGTTTCATTCAATACCGTGACC



AACAAGAGTTCAAAAATCGAGCAGACAGTCGATTATGAAGAGAAATTGGCAGTCCGCGAG



AAAGAGAGGATTGAAGCAAAACGTTCCTGGGACTCTATCTCAAAAATTGCGACACTAAAG



GAAGGTTATCTGAGCGCAATAGTTCACGAGATCTGTCTGTTAATGATTAAACACAACGCG



ATCGTTGTCTTAGAGAATCTTAATGCAGGCTTTAAGCGTATTCGTGGCGGTTTATCAGAA



AAAAGTGTTTATCAAAAATTCGAAAAAATGTTGATTAACAAACTGAACTATTTTGTCAGC



AAGAAGGAATCCGACTGGAATAAACCGTCTGGTCTGCTGAATGGACTGCAGCTTTCGGAT



CAGTTTGAAAGCTTCGAAAAACTGGGTATTCAGTCTGGTTTTATTTTTTACGTGCCGGCT



GCATATACCTCAAAGATTGATCCGACCACGGGCTTCGCCAATGTTCTGAATCTGTCGAAG



GTACGCAATGTTGATGCGATCAAAAGCTTTTTTTCTAACTTCAACGAAATTAGTTATAGC



AAGAAAGAAGCCCTTTTCAAATTCTCATTCGATCTGGATTCACTGAGTAAGAAAGGCTTT



AGTAGCTTTGTGAAATTTAGTAAGAGTAAATGGAACGTCTACACCTTTGGAGAACGTATC



ATAAAGCCAAAGAATAAGCAAGGTTATCGGGAGGACAAAAGAATCAACTTGACCTTCGAG



ATGAAGAAGTTACTTAACGAGTATAAGGTTTCTTTTGATCTTGAAAATAACTTGATTCCG



AATCTCACGAGTGCCAACCTGAAGGATACTTTTTGGAAAGAGCTATTCTTTATCTTCAAG



ACTACGCTGCAGCTCCGTAACAGCGTTACTAACGGTAAAGAAGATGTGCTCATCTCTCCG



GTCAAAAATGCGAAGGGTGAATTCTTCGTTTCGGGAACGCATAACAAGACTCTTCCGCAA



GATTGCGATGCGAACGGTGCATACCATATTGCGTTGAAAGGTCTGATGATACTCGAACGT



AACAACCTTGTACGTGAGGAGAAAGATACGAAAAAGATTATGGCGATTTCAAACGTGGAT



TGGTTCGAGTACGTGCAGAAACGTAGAGGCGTTCTGTAAGAAATCATCCTTAGCGAAAGC



TAAGGATTTTTTTTATCTGAAATTTATTATATCGCGTTGATTATTGATGCTGTTTTTAGT



TTTAACGGCAATTAATATATGTGTTATTAATTGAATGAATTTTATCATTCATAATAAGTA



TGTGTAGGATCAAGCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAAG



AGGATTACAGAATTATCTCATAACAAGTGTTAAGGGATGTTATTTCC





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG


ID
TCACTGCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAG


NO:
CATTCTGTAACAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAA


63
TCACGGCAGAAAAGTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGC



ATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGT



TTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGGGTCTCATCTC



GTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCATC



ACCATAACAACTACGACGAATTCACCAAACTGTACCCGATCCAGAAAACCATCCGTTTCG



AACTGAAACCGCAGGGTCGTACCATGGAACACCTGGAAACCTTCAACTTCTTCGAAGAAG



ACCGTGACCGTGCGGAAAAATACAAAATCCTGAAAGAAGCGATCGACGAATACCACAAAA



AATTCATCGACGAACACCTGACCAACATGTCTCTGGACTGGAACTCTCTGAAACAGATCT



CTGAAAAATACTACAAATCTCGTGAAGAAAAAGACAAAAAAGTTTTCCTGTCTGAACAGA



AACGTATGCGTCAGGAAATCGTTTCTGAATTCAAAAAAGACGACCGTTTCAAAGACCTGT



TCTCTAAAAAACTGTTCTCTGAACTGCTGAAAGAAGAAATCTACAAAAAAGGTAACCACC



AGGAAATCGACGCGCTGAAATCTTTCGACAAATTCTCTGGTTACTTCATCGGTCTGCACG



AAAACCGTAAAAACATGTACTCTGACGGTGACGAAATCACCGCGATCTCTAACCGTATCG



TTAACGAAAACTTCCCGAAATTCCTGGACAACCTGCAGAAATACCAGGAAGCGCGTAAAA



AATACCCGGAATGGATCATCAAAGCGGAATCTGCGCTGGTTGCGCACAACATCAAAATGG



ACGAAGTTTTCTCTCTGGAATACTTCAACAAAGTTCTGAACCAGGAAGGTATCCAGCGTT



ACAACCTGGCGCTGGGTGGTTACGTTACCAAATCTGGTGAAAAAATGATGGGTCTGAACG



ACGCGCTGAACCTGGCGCACCAGTCTGAAAAATCTTCTAAAGGTCGTATCCACATGACCC



CGCTGTTCAAACAGATCCTGTCTGAAAAAGAATCTTTCTCTTACATCCCGGACGTTTTCA



CCGAAGACTCTCAGCTGCTGCCGTCTATCGGTGGTTTCTTCGCGCAGATCGAAAACGACA



AAGACGGTAACATCTTCGACCGTGCGCTGGAACTGATCTCTTCTTACGCGGAATACGACA



CCGAACGTATCTACATCCGTCAGGCGGACATCAACCGTGTTTCTAACGTTATCTTCGGTG



AATGGGGTACCCTGGGTGGTCTGATGCGTGAATACAAAGCGGACTCTATCAACGACATCA



ACCTGGAACGTACCTGCAAAAAAGTTGACAAATGGCTGGACTCTAAAGAATTCGCGCTGT



CTGACGTTCTGGAAGCGATCAAACGTACCGGTAACAACGACGCGTTCAACGAATACATCT



CTAAAATGCGTACCGCGCGTGAAAAAATCGACGCGGCGCGTAAAGAAATGAAATTCATCT



CTGAAAAAATCTCTGGTGACGAAGAATCTATCCACATCATCAAAACCCTGCTGGACTCTG



TTCAGCAGTTCCTGCACTTCTTCAACCTGTTCAAAGCGCGTCAGGACATCCCGCTGGACG



GTGCGTTCTACGCGGAATTCGACGAAGTTCACTCTAAACTGTTCGCGATCGTTCCGCTGT



ACAACAAAGTTCGTAACTACCTGACCAAAAACAACCTGAACACCAAAAAAATCAAACTGA



ACTTCAAAAACCCGACCCTGGCGAACGGTTGGGACCAGAACAAAGTTTACGACTACGCGT



CTCTGATCTTCCTGCGTGACGGTAACTACTACCTGGGTATCATCAACCCGAAACGTAAAA



AAAACATCAAATTCGAACAGGGTTCTGGTAACGGTCCGTTCTACCGTAAAATGGTTTACA



AACAGATCCCGGGTCCGAACAAAAACCTGCCGCGTGTTTTCCTGACCTCTACCAAAGGTA



AAAAAGAATACAAACCGTCTAAAGAAATCATCGAAGGTTACGAAGCGGACAAACACATCC



GTGGTGACAAATTCGACCTGGACTTCTGCCACAAACTGATCGACTTCTTCAAAGAATCTA



TCGAAAAACACAAAGACTGGTCTAAATTCAACTTCTACTTCTCTCCGACCGAATCTTACG



GTGACATCTCTGAATTCTACCTGGACGTTGAAAAACAGGGTTACCGTATGCACTTCGAAA



ACATCTCTGCGGAAACCATCGACGAATACGTTGAAAAAGGTGACCTGTTCCTGTTCCAGA



TCTACAACAAAGACTTCGTTAAAGCGGCGACCGGTAAAAAAGACATGCACACCATCTACT



GGAACGCGGCGTTCTCTCCGGAAAACCTGCAGGACGTTGTTGTTAAACTGAACGGTGAAG



CGGAACTGTTCTACCGTGACAAATCTGACATCAAAGAAATCGTTCACCGTGAAGGTGAAA



TCCTGGTTAACCGTACCTACAACGGTCGTACCCCGGTTCCGGACAAAATCCACAAAAAAC



TGACCGACTACCACAACGGTCGTACCAAAGACCTGGGTGAAGCGAAAGAATACCTGGACA



AAGTTCGTTACTTCAAAGCGCACTACGACATCACCAAAGACCGTCGTTACCTGAACGACA



AAATCTACTTCCACGTTCCGCTGACCCTGAACTTCAAAGCGAACGGTAAAAAAAACCTGA



ACAAAATGGTTATCGAAAAATTCCTGTCTGACGAAAAAGCGCACATCATCGGTATCGACC



GTGGTGAACGTAACCTGCTGTACTACTCTATCATCGACCGTTCTGGTAAAATCATCGACC



AGCAGTCTCTGAACGTTATCGACGGTTTCGACTACCGTGAAAAACTGAACCAGCGTGAAA



TCGAAATGAAAGACGCGCGTCAGTCTTGGAACGCGATCGGTAAAATCAAAGACCTGAAAG



AAGGTTACCTGTCTAAAGCGGTTCACGAAATCACCAAAATGGCGATCCAGTACAACGCGA



TCGTTGTTATGGAAGAACTGAACTACGGTTTCAAACGTGGTCGTTTCAAAGTTGAAAAAC



AGATCTACCAGAAATTCGAAAACATGCTGATCGACAAAATGAACTACCTGGTTTTCAAAG



ACGCGCCGGACGAATCTCCGGGTGGTGTTCTGAACGCGTACCAGCTGACCAACCCGCTGG



AATCTTTCGCGAAACTGGGTAAACAGACCGGTATCCTGTTCTACGTTCCGGCGGCGTACA



CCTCTAAAATCGACCCGACCACCGGTTTCGTTAACCTGTTCAACACCTCTTCTAAAACCA



ACGCGCAGGAACGTAAAGAATTCCTGCAGAAATTCGAATCTATCTCTTACTCTGCGAAAG



ACGGTGGTATCTTCGCGTTCGCGTTCGACTACCGTAAATTCGGTACCTCTAAAACCGACC



ACAAAAACGTTTGGACCGCGTACACCAACGGTGAACGTATGCGTTACATCAAAGAAAAAA



AACGTAACGAACTGTTCGACCCGTCTAAAGAAATCAAAGAAGCGCTGACCTCTTCTGGTA



TCAAATACGACGGTGGTCAGAACATCCTGCCGGACATCCTGCGTTCTAACAACAACGGTC



TGATCTACACCATGTACTCTTCTTTCATCGCGGCGATCCAGATGCGTGTTTACGACGGTA



AAGAAGACTACATCATCTCTCCGATCAAAAACTCTAAAGGTGAATTCTTCCGTACCGACC



CGAAACGTCGTGAACTGCCGATCGACGCGGACGCGAACGGTGCGTACAACATCGCGCTGC



GTGGTGAACTGACCATGCGTGCGATCGCGGAAAAATTCGACCCGGACTCTGAAAAAATGG



CGAAACTGGAACTGAAACACAAAGACTGGTTCGAATTCATGCAGACCCGTGGTGACTAAG



AAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATGTAGGGAGACCCTCAGG



TTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGATTACA





SEQ
AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATT


ID
GATAATTGAGATCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAA


NO:
TTATTTATTTATCCAGAAAATGAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCT


64
GGCGCAGTTGATATGTcaaaCAGGTtgccgtcactgcgtcttttactggctcttctcgct



aaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagccat



gacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgattattt



gcacggcgtcacactttgctatgccatagcatttttatccataagattagcggatcctac



ctgacgctttttatcgcaactctctactgtttctccatacccgtttttttgggctagcac



cgcctatctcgtgtgagataggcggagatacgaactttaagAAGGAGatataccATGACT



AAAACATTTGATTCAGAGTTTTTTAATTTGTACTCGCTGCAAAAAACGGTACGCTTTGAG



TTAAAACCCGTGGGAGAAACCGCGTCATTTGTGGAAGACTTTAAAAACGAGGGCTTGAAA



CGTGTTGTGAGCGAAGATGAAAGGCGAGCCGTCGATTACCAGAAAGTTAAGGAAATAATT



GACGATTACCATCGGGATTTCATTGAAGAAAGTTTAAATTATTTTCCGGAACAGGTGAGT



AAAGATGCTCTTGAGCAGGCGTTTCATCTTTATCAGAAACTGAAGGCAGCAAAAGTTGAG



GAAAGGGAAAAAGCGCTGAAAGAATGGGAAGCGCTGCAGAAAAAGCTACGTGAAAAAGTG



GTGAAATGCTTCTCGGACTCGAATAAAGCCCGCTTCTCAAGGATTGATAAAAAGGAACTG



ATTAAGGAAGACCTGATAAATTGGTTGGTCGCCCAGAATCGCGAGGATGATATCCCTACG



GTCGAAACGTTTAACAACTTCACCACATATTTTACCGGCTTCCATGAGAATCGTAAAAAT



ATTTACTCCAAAGATGATCACGCCACCGCTATTAGCTTTCGCCTTATTCATGAAAATCTT



CCAAAGTTTTTTGACAACGTGATTAGCTTCAATAAGTTGAAAGAGGGTTTCCCTGAATTA



AAATTTGATAAAGTGAAAGAGGATTTAGAAGTAGATTATGATCTGAAGCATGCGTTTGAA



ATAGAATATTTCGTTAACTTCGTGACCCAAGCGGGCATAGATCAGTATAATTATCTGTTA



GGAGGGAAAACCCTGGAGGACGGGACGAAAAAACAAGGGATGAATGAGCAAATTAATCTG



TTCAAACAACAGCAAACGCGAGATAAAGCGCGTCAGATTCCCAAACTGATCCCCCTGTTC



AAACAGATTCTTAGCGAAAGGACTGAAAGCCAGTCCTTTATTCCTAAACAATTTGAAAGT



GATCAGGAGTTGTTCGATTCACTGCAGAAGTTACATAATAACTGCCAGGATAAATTCACC



GTGCTGCAACAAGCCATTCTCGGTCTGGCAGAGGCGGATCTTAAGAAGGTCTTCATCAAA



ACCTCTGATTTAAATGCCTTATCTAACACCATTTTCGGGAATTACAGCGTCTTTTCCGAT



GCACTGAACCTGTATAAAGAAAGCCTGAAAACGAAAAAAGCGCAGGAGGCTTTTGAGAAA



CTACCGGCCCATTCTATTCACGACCTCATTCAATACTTGGAACAGTTCAATTCCAGCCTG



GACGCGGAAAAACAACAGAGCACCGACACCGTCCTGAACTACTTCATCAAGACCGATGAA



TTATATTCTCGCTTCATTAAATCCACTAGCGAGGCTTTCACTCAGGTGCAGCCTTTGTTC



GAACTGGAAGCCCTGTCATCTAAGCGCCGCCCACCGGAATCGGAAGATGAAGGGGCAAAA



GGGCAGGAAGGCTTCGAGCAGATCAAGCGTATTAAAGCTTACCTGGATACGCTTATGGAA



GCGGTACACTTTGCAAAGCCGTTGTATCTTGTTAAGGGTCGTAAAATGATCGAAGGGCTC



GATAAAGACCAGTCCTTTTATGAAGCGTTTGAAATGGCGTACCAAGAACTTGAATCGTTA



ATCATTCCTATCTATAACAAAGCGCGGAGCTATCTGTCGCGGAAACCTTTCAAGGCCGAT



AAATTCAAGATTAATTTTGACAACAACACGCTACTGAGCGGATGGGATGCGAACAAGGAA



ACTGCTAACGCGTCCATTCTGTTTAAGAAAGACGGGTTATATTACCTTGGAATTATGCCG



AAAGGTAAGACCTTTCTCTTTGACTACTTTGTATCGAGCGAGGATTCAGAGAAACTGAAA



CAGCGTCGCCAGAAGACCGCCGAAGAAGCTCTGGCGCAGGATGGTGAAAGTTACTTCGAA



AAAATTCGTTATAAACTGTTACCAGGGGCTTCAAAGATGTTACCGAAAGTCTTTTTTAGC



AACAAAAATATTGGCTTTTACAACCCGTCGGATGACATTTTACGCATTCGCAACACAGCC



TCTCACACCAAAAACGGGACCCCTCAGAAAGGCCACTCAAAAGTTGAGTTTAACCTGAAT



GATTGTCATAAGATGATTGATTTCTTCAAATCATCAATTCAGAAACACCCGGAATGGGGG



TCTTTTGGCTTTACGTTTTCTGATACCAGTGATTTTGAAGACATGAGTGCCTTCTACCGG



GAAGTAGAAAACCAGGGTTACGTAATTAGCTTTGACAAAATCAAAGAGACCTATATACAG



AGCCAGGTGGAACAGGGTAATCTCTACTTATTCCAGATTTATAACAAGGATTTCTCGCCC



TACAGCAAAGGCAAACCAAACCTGCATACTCTGTACTGGAAAGCCCTGTTTGAAGAAGCG



AACCTGAATAACGTAGTGGCGAAGTTGAACGGTGAAGCGGAAATCTTCTTCCGTCGTCAC



TCCATTAAGGCCTCTGATAAAGTTGTCCATCCGGCAAATCAGGCCATTGATAATAAGAAT



CCACACACGGAAAAAACGCAGTCAACCTTTGAATATGACCTCGTTAAAGACAAACGCTAC



ACGCAAGATAAGTTCTTTTTCCACGTCCCAATCAGCCTCAACTTTAAAGCACAAGGGGTT



TCAAAGTTTAATGATAAAGTCAATGGGTTCCTCAAGGGCAACCCGGATGTCAACATTATA



GGTATAGACAGGGGCGAACGCCATCTGCTTTACTTTACCGTAGTGAATCAGAAAGGTGAA



ATACTGGTTCAGGAATCATTAAATACCTTGATGTCGGACAAAGGGCACGTTAATGATTAC



CAGCAGAAACTGGATAAAAAAGAACAGGAACGTGATGCTGCGCGTAAATCGTGGACCACG



GTTGAGAACATTAAAGAGCTGAAAGAGGGGTATCTAAGCCATGTGGTACACAAACTGGCG



CACCTCATCATTAAATATAACGCAATAGTCTGCCTAGAAGACTTGAATTTTGGCTTTAAA



CGCGGCCGCTTCAAAGTGGAAAAACAAGTTTATCAAAAATTTGAAAAGGCGCTTATAGAT



AAACTGAATTATCTGGTTTTTAAAGAAAAGGAACTTGGTGAGGTAGGGCACTACTTGACA



GCTTATCAACTGACGGCCCCGTTCGAATCATTCAAAAAACTGGGCAAACAGTCTGGCATT



CTGTTTTACGTGCCGGCAGATTATACTTCAAAAATCGATCCAACAACTGGCTTTGTGAAC



TTCCTGGACCTGAGATATCAGTCTGTAGAAAAAGCTAAACAACTTCTTAGCGATTTTAAT



GCCATTCGTTTTAACAGCGTTCAGAATTACTTTGAATTCGAAATTGACTATAAAAAACTT



ACTCCGAAACGTAAAGTCGGAACCCAAAGTAAATGGGTAATTTGTACGTATGGCGATGTC



AGGTATCAGAACCGTCGGAATCAAAAAGGTCATTGGGAGACCGAAGAAGTGAACGTGACC



GAAAAGCTGAAGGCTCTGTTCGCCAGCGATTCAAAAACTACAACTGTGATCGATTACGCA



AATGATGATAACCTGATAGATGTGATTTTAGAGCAGGATAAAGCCAGCTTTTTTAAAGAA



CTGTTGTGGCTCCTGAAACTTACGATGACCTTACGACATTCCAAGATCAAATCGGAAGAT



GATTTTATTCTGTCACCGGTCAAGAATGAGCAGGGTGAATTCTATGATAGTAGGAAAGCC



GGCGAAGTGTGGCCGAAAGACGCCGACGCCAATGGCGCCTATCATATCGCGCTCAAAGGG



CTTTGGAATTTGCAGCAGATTAACCAGTGGGAAAAAGGTAAAACCCTGAATCTGGCTATC



AAAAACCAGGATTGGTTTAGCTTTATCCAAGAGAAACCGTATCAGGAATGAGAAATCATC



CTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATTTATTATATCGCGTTGATTATTGAT



GCTGTTTTTAGTTTTAACGGCAATTAATATATGTGTTATTAATTGAATGAATTTTATCAT



TCATAATAAGTATGTGTAGGATCAAGCTCAGGTTAAATATTCACTCAGGAAGTTATTACT



CAGGAAGCAAAGAGGATTACAGAATTATCTCATAACAAGTGTTAAGGGATGTTATTTCC





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG


ID
TCACTGCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAG


NO:
CATTCTGTAACAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAA


65
TCACGGCAGAAAAGTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGC



ATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGT



TTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGGGTCTCATCTC



GTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCATC



ACCATCATACAGGCGGTCTTCTTAGTATGGACGCGAAAGAGTTCACAGGTCAGTATCCGT



TGTCGAAAACATTACGATTCGAACTTCGGCCCATCGGCCGCACGTGGGATAACCTGGAGG



CCTCAGGCTACTTAGCGGAAGACCGCCATCGTGCCGAATGTTATCCTCGTGCGAAAGAGT



TATTGGATGACAACCATCGTGCCTTCCTGAATCGTGTGTTGCCACAAATCGATATGGATT



GGCACCCGATTGCGGAGGCCTTTTGTAAGGTACATAAAAACCCTGGTAATAAAGAACTTG



CCCAGGATTACAACCTTCAGTTGTCAAAGCGCCGTAAGGAGATCAGCGCATATCTTCAGG



ATGCAGATGGCTATAAAGGCCTGTTCGCGAAGCCCGCCTTAGACGAAGCTATGAAAATTG



CGAAAGAAAACGGGAACGAAAGTGATATTGAGGTTCTCGAAGCGTTTAACGGTTTTAGCG



TATACTTCACCGGTTATCATGAGTCACGCGAGAACATTTATAGCGATGAGGATATGGTGA



GCGTAGCCTACCGAATTACTGAGGATAATTTCCCGCGCTTTGTCTCAAACGCTTTGATCT



TTGATAAATTAAACGAAAGCCATCCGGATATTATCTCTGAAGTATCGGGCAATCTTGGAG



TTGATGACATTGGTAAGTACTTTGACGTGTCGAACTATAACAATTTTCTTTCCCAGGCCG



GTATAGATGACTACAATCACATTATTGGCGGCCATACAACCGAAGACGGACTGATACAAG



CGTTTAATGTCGTATTGAACTTACGTCACCAAAAAGACCCTGGCTTTGAAAAAATTCAGT



TCAAACAGCTCTACAAACAAATCCTGAGCGTGCGTACCAGCAAAAGCTACATCCCGAAAC



AGTTTGACAACTCTAAGGAGATGGTTGACTGCATTTGCGATTATGTCAGCAAAATAGAGA



AATCCGAAACAGTAGAACGGGCCCTGAAACTAGTCCGTAATATCAGTTCTTTCGACTTGC



GCGGGATCTTTGTCAATAAAAAGAACTTGCGCATACTGAGCAACAAACTGATAGGAGATT



GGGACGCGATCGAAACCGCATTGATGCATAGTTCTTCATCAGAAAACGATAAGAAAAGCG



TATATGATAGCGCGGAGGCTTTTACGTTGGATGACATCTTTTCAAGCGTGAAAAAATTTT



CTGATGCCTCTGCCGAAGATATTGGCAACAGGGCGGAAGACATCTGTAGAGTGATAAGTG



AGACGGCCCCTTTTATCAACGATCTGCGAGCGGTGGACCTGGATAGCCTGAACGACGATG



GTTATGAAGCGGCCGTCTCAAAAATTCGGGAGTCGCTGGAGCCTTATATGGATCTTTTCC



ATGAACTGGAAATTTTCTCGGTTGGCGATGAGTTCCCAAAATGCGCAGCATTTTACAGCG



AACTGGAGGAAGTCAGCGAACAGCTGATCGAAATTATTCCGTTATTCAACAAGGCGCGTT



CGTTCTGCACCCGGAAACGCTATAGCACCGATAAGATTAAAGTGAACTTAAAATTCCCGA



CCTTGGCGGACGGGTGGGACCTGAACAAAGAGAGAGACAACAAAGCCGCGATTCTGCGGA



AAGACGGTAAGTATTATCTGGCAATTCTGGATATGAAGAAAGATCTGTCAAGCATTAGGA



CCAGCGACGAAGATGAATCCAGCTTCGAAAAGATGGAGTATAAACTGTTACCGAGTCCAG



TAAAAATGCTGCCAAAGATATTCGTAAAATCGAAAGCCGCTAAGGAAAAATATGGCCTGA



CAGATCGTATGCTTGAATGCTACGATAAAGGTATGCATAAGTCGGGTAGTGCGTTTGATC



TTGGCTTTTGCCATGAACTCATTGATTATTACAAGCGTTGTATCGCGGAGTACCCAGGCT



GGGATGTGTTCGATTTCAAGTTTCGCGAAACTTCCGATTATGGGTCCATGAAAGAGTTCA



ATGAAGATGTGGCCGGAGCCGGTTACTATATGAGTCTGAGAAAAATTCCGTGCAGCGAAG



TGTACCGTCTGTTAGACGAGAAATCGATTTATCTATTTCAAATTTATAACAAAGATTACT



CTGAAAATGCACATGGTAATAAGAACATGCATACCATGTACTGGGAGGGTCTCTTTTCCC



CGCAAAACCTGGAGTCGCCCGTTTTCAAGTTGTCGGGTGGGGCAGAACTTTTCTTTCGAA



AATCCTCAATCCCTAACGATGCCAAAACAGTACACCCGAAAGGCTCAGTGCTGGTTCCAC



GTAATGATGTTAACGGTCGGCGTATTCCAGATTCAATCTACCGCGAACTGACACGCTATT



TTAACCGTGGCGATTGCCGAATCAGTGACGAAGCCAAAAGTTATCTTGACAAGGTTAAGA



CTAAAAAAGCGGACCATGACATTGTGAAAGATCGCCGCTTTACCGTGGATAAAATGATGT



TCCACGTCCCGATTGCGATGAACTTTAAGGCGATCAGTAAACCGAACTTAAACAAAAAAG



TCATTGATGGCATCATTGATGATCAGGATCTGAAAATCATTGGTATTGATCGTGGCGAGC



GGAACTTAATTTACGTCACGATGGTTGACAGAAAAGGGAATATCTTATATCAGGATTCTC



TTAACATCCTCAATGGCTACGACTATCGTAAAGCTCTGGATGTGCGCGAATATGACAACA



AGGAAGCGCGTCGTAACTGGACTAAAGTGGAGGGCATTCGCAAAATGAAGGAAGGCTATC



TGTCATTAGCGGTCTCGAAATTAGCGGATATGATTATCGAAAATAACGCCATCATCGTTA



TGGAGGACCTGAACCACGGATTCAAAGCGGGCCGCTCAAAGATTGAAAAACAAGTTTATC



AGAAATTTGAGAGTATGCTGATTAACAAACTGGGCTATATGGTGTTAAAAGACAAGTCAA



TTGACCAATCAGGTGGCGCGCTGCATGGATACCAGCTGGCGAACCATGTTACCACCTTAG



CATCAGTTGGAAAGCAGTGTGGGGTTATCTTTTATATACCGGCAGCGTTCACTAGTAAAA



TAGATCCGACCACTGGTTTCGCCGATCTCTTTGCCCTGAGTAACGTTAAAAACGTAGCGA



GCATGCGTGAATTCTTTTCCAAAATGAAATCTGTCATTTATGATAAAGCTGAAGGCAAAT



TCGCATTCACCTTTGATTACTTGGATTACAACGTGAAGAGCGAATGTGGTCGTACGCTGT



GGACCGTTTACACCGTTGGTGAGCGCTTCACCTATTCCCGTGTGAACCGCGAATATGTAC



GTAAAGTCCCCACCGATATTATCTATGATGCCCTCCAGAAAGCAGGCATTAGCGTCGAAG



GAGACTTAAGGGACAGAATTGCCGAAAGCGATGGCGATACGCTGAAGTCTATTTTTTACG



CATTCAAATACGCGCTAGATATGCGCGTTGAGAATCGCGAGGAAGACTACATTCAATCAC



CTGTGAAAAATGCCTCTGGGGAATTTTTTTGTTCAAAAAATGCTGGTAAAAGCCTCCCAC



AAGATAGCGATGCAAACGGTGCATATAACATTGCCCTGAAAGGTATTCTTCAATTACGCA



TGCTGTCTGAGCAGTACGACCCCAACGCGGAATCTATTAGACTTCCGCTGATAACCAATA



AAGCCTGGCTGACATTCATGCAGTCTGGCATGAAGACCTGGAAAAATTAGGAAATCATCC



TTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAATATT



CACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGATTACA





SEQ
AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATT


ID
GATAATTGAGATCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAA


NO:
TTATTTATTTATCCAGAAAATGAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCT


66
GGCGCAGTTGATATGTcaaaCAGGTtgccgtcactgcgtcttttactggctcttctcgct



aaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagccat



gacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgattattt



gcacggcgtcacactttgctatgccatagcatttttatccataagattagcggatcctac



ctgacgctttttatcgcaactctctactgtttctccatacccgtttttttgggctagcac



cgcctatctcgtgtgagataggcggagatacgaactttaagAAGGAGatataccatgGAT



AGTTTGAAAGATTTCACCAATCTGTACCCTGTCAGTAAGACATTGAGATTTGAATTAAAG



CCCGTTGGAAAGACTTTAGAAAATATCGAGAAAGCAGGTATTTTGAAAGAGGATGAGCAT



CGTGCAGAAAGTTATCGGAGGGTGAAGAAAATAATTGATACTTATCATAAGGTATTTATC



GATTCTTCTCTTGAAAATATGGCTAAAATGGGTATTGAGAATGAAATAAAAGCAATGCTC



CAAAGTTTCTGCGAATTGTATAAAAAAGATCATCGCACTGAGGGTGAAGACAAGGCATTA



GATAAAATTCGAGCAGTACTTCGTGGCCTGATTGTTGGGGCTTTCACTGGTGTTTGCGGA



AGACGGGAAAATACAGTCCAAAACGAGAAGTACGAGAGTTTGTTCAAAGAAAAGTTGATA



AAAGAAATTTTACCTGATTTTGTGCTCTCTACTGAGGCTGAAAGCTTGCCTTTCTCTGTT



GAAGAAGCTACGAGGTCACTGAAGGAGTTTGATAGCTTTACATCCTACTTTGCTGGTTTT



TACGAGAATAGAAAGAATATATACTCGACGAAACCTCAATCCACTGCCATTGCTTATCGT



CTTATTCATGAGAACTTGCCGAAGTTCATTGATAATATTCTTGTTTTTCAGAAGATCAAA



GAGCCTATAGCCAAAGAGCTGGAACATATTCGTGCGGACTTTTCTGCCGGGGGGTACATA



AAAAAGGATGAGAGATTGGAGGATATTTTTTCGTTGAACTATTATATCCACGTGTTATCT



CAGGCTGGGATCGAAAAATATAACGCATTGATTGGGAAGATTGTGACAGAAGGAGATGGA



GAGATGAAAGGGCTCAATGAACACATCAACCTTTACAACCAACAAAGAGGCAGAGAGGAT



CGGCTCCCTCTTTTTAGGCCTCTTTATAAACAGATATTGAGTGACAGAGAGCAATTATCA



TACTTGCCTGAGAGTtttGAAAAAGAtGAGGAGctcctcAGGGctctAAAAGAGttctAt



GAtcAtAtcGcAGAAGACATTCTCGGACGTACTCAACAGTTGATGACTTCTATTTCAGAA



TATGATTTATCTCGGATATACGTAAGGAACGATAGCCAATTGACTGATATATCAAAAAAA



ATGTTGGGAGATTGGAATGCTATCTACATGGCTAGAGAACGAGCATATGACCACGAGCAG



GCTCCCAAAAGAATCACGGCGAAATACGAGAGGGACAGGATTAAAGCTCTTAAAGGAGAA



GAGAGTATAAGTCTGGCAAATCTTAATAGTTGTATTGCCTTTCTGGACAATGTTAGAGAT



TGCCGTGTAGATACTTATCTTTCCACACTGGGCCAGAAGGAAGGACCACATGGTCTATCT



AATCTCGTTGAGAACGTTTTTGCCTCATACCATGAAGCAGAGCAATTGTTGAGCTTTCCA



TACCCCGAAGAGAATAATCTGATTCAGGACAAGGACAATGTGGTGTTAATTAAGAATCTT



CTCGACAATATCAGTGATCTGCAGAGGTTCTTGAAACCTCTTTGGGGTATGGGAGACGAA



CCCGATAAAGATGAAAGATTTTATGGAGAGTATAATTATATCCGAGGAGCTCTAGATCAG



GTGATCCCTCTGTACAATAAGGTAAGGAACTACCTCACTCGGAAGCCTTATTCGACCAGA



AAAGTAAAACTCAATTTTGGGAATTCTCAATTGCTTAGTGGTTGGGATAGAAATAAGGAA



AAGGATAATAGCTGTGTGATTTTGCGTAAGGGGCAGAACTTCTATTTGGCTATTATGAAC



AATAGGCACAAAAGAAGTTTCGAAAACAAGGTGTTGCCCGAGTATAAGGAGGGAGAACCT



TACTTCGAAAAGATGGATTATAAATTTTTGCCTGATCCTAATAAAATGCTTCCTAAGGTT



TTTCTTTCGAAAAAAGGAATAGAGATATACAAACCAAGTCCGAAGCTTTTAGAACAATAT



GGACATGGAACTCACAAAAAGGGAGATACCTTTAGTATGGATGATTTGCACGAACTGATC



GATTTCTTCAAACACTCAATCGAGGCTCATGAAGATTGGAAGCAATTCGGATTCAAATTT



TCTGATACGGCTACTTATGAGAATGTATCTAGTTTCTATAGAGAAGTTGAGGATCAGGGG



TATAAGCTCTCTTTCCGAAAAGTTTCGGAATCTTATGTCTATTCATTAATAGATCAAGGC



AAGTTGTATTTATTTCAGATATACAACAAGGACTTTTCTCCCTGCAGCAAAGGGACACCT



AATCTGCATACCTTGTATTGGAGAATGCTTTTTGACGAGCGCAATTTGGCAGATGTCATA



TACAAACTGGATGGGAAGGCTGAAATCTTTTTCCGAGAGAAGAGTTTGAAAAATGATCAT



CCCACGCATCCGGCTGGTAAGCCTATCAAAAAGAAAAGTCGACAAAAAAAAGGAGAGGAG



AGTCTGTTTGAGTATGATTTAGTCAAGGATAGGCACTATACGATGGATAAGTTCCAGTTT



CATGTGCCTATTACTATGAATTTTAAATGTTCTGCAGGAAGCAAAGTCAATGATATGGTT



AATGCTCATATTCGAGAGGCAAAGGATATGCATGTCATTGGAATTGATCGTGGAGAACGC



AATCTGCTGTATATATGCGTGATAGATAGTCGAGGGACGATTTTGGATCAAATTTCTCTG



AATACGATTAACGATATAGACTATCATGATTTATTGGAGAGTCGAGACAAAGACCGTCAG



CAGGAGCGCCGAAACTGGCAAACTATCGAAGGGATCAAGGAGCTAAAACAAGGCTACCTT



AGTCAGGCGGTTCATCGGATAGCCGAACTGATGGTGGCTTATAAGGCTGTAGTTGCTTTG



GAGGATTTGAATATGGGGTTCAAACGTGGGCGGCAGAAAGTAGAAAGTTCTGTTTATCAG



CAGTTTGAGAAACAGCTGATAGATAAGCTCAACTATCTTGTGGACAAGAAGAAAAGGCCT



GAAGATATTGGAGGATTGTTGAGAGCCTATCAATTTACGGCCCCATTTAAGAGTTTTAAG



GAAATGGGAAAGCAAAACGGCTTCTTGTTTTATATCCCGGCTTGGAACACGAGCAACATA



GATCCGACTACTGGATTTGTTAATTTATTTCATGCCCAGTATGAAAATGTAGATAAAGCG



AAGAGCTTCTTTCAAAAGTTTGATTCAATTAGTTACAACCCGAAGAAAGACTGGTTTGAG



TTTGCATTCGATTATAAAAACTTTACTAAAAAGGCTGAAGGAAGTCGTTCTATGTGGATA



TTATGCACACATGGTTCCCGAATAAAGAATTTTAGAAATTCCCAGAAGAATGGTCAATGG



GATTCCGAAGAATTCGCCTTGACGGAGGCTTTTAAGTCTCTTTTTGTGCGATATGAGATA



GATTATACCGCTGATTTGAAAACAGCTATTGTGGACGAAAAGCAAAAAGACTTCTTCGTG



GATCTTCTGAAGCTATTCAAATTGACAGTACAGATGCGCAACAGCTGGAAAGAGAAGGAT



TTGGATTATCTAATCTCTCCTGTAGCAGGGGCTGATGGCCGTTTCTTCGATACAAGAGAG



GGAAATAAAAGTCTGCCTAAGGATGCAGATGCCAATGGAGCTTATAATATTGCCCTAAAA



GGACTTTGGGCTCTACGCCAGATTCGGCAAACTTCAGAAGGCGGTAAACTCAAATTGGCG



ATTTCCAATAAGGAATGGCTACAGTTTGTGCAAGAGAGATCTTACGAGAAAGACtgaGAA



ATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATTTATTATATCGCGTTGATT



ATTGATGCTGTTTTTAGTTTTAACGGCAATTAATATATGTGTTATTAATTGAATGAATTT



TATCATTCATAATAAGTATGTGTAGGATCAAGCTCAGGTTAAATATTCACTCAGGAAGTT



ATTACTCAGGAAGCAAAGAGGATTACAGAATTATCTCATAACAAGTGTTAAGGGATGTTA



TTTCC





SEQ
AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATT


ID
GATAATTGAGATCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAA


NO:
TTATTTATTTATCCAGAAAATGAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCT


67
GGCGCAGTTGATATGTcaaaCAGGTtgccgtcactgcgtcttttactggctcttctcgct



aaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagccat



gacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgattattt



gcacggcgtcacactttgctatgccatagcatttttatccataagattagcggatcctac



ctgacgctttttatcgcaactctctactgtttctccatacccgtttttttgggctagcac



cgcctatctcgtgtgagataggcggagatacgaactttaagAAGGAGatataccATGAAC



AACGGCACAAATAATTTTCAGAACTTCATCGGGATCTCAAGTTTGCAGAAAACGCTGCGC



AATGCTCTGATCCCCACGGAAACCACGCAACAGTTCATCGTCAAGAACGGAATAATTAAA



GAAGATGAGTTACGTGGCGAGAACCGCCAGATTCTGAAAGATATCATGGATGACTACTAC



CGCGGATTCATCTCTGAGACTCTGAGTTCTATTGATGACATAGATTGGACTAGCCTGTTC



GAAAAAATGGAAATTCAGCTGAAAAATGGTGATAATAAAGATACCTTAATTAAGGAACAG



ACAGAGTATCGGAAAGCAATCCATAAAAAATTTGCGAACGACGATCGGTTTAAGAACATG



TTTAGCGCCAAACTGATTAGTGACATATTACCTGAATTTGTCATCCACAACAATAATTAT



TCGGCATCAGAGAAAGAGGAAAAAACCCAGGTGATAAAATTGTTTTCGCGCTTTGCGACT



AGCTTTAAAGATTACTTCAAGAACCGTGCAAATTGCTTTTCAGCGGACGATATTTCATCA



AGCAGCTGCCATCGCATCGTCAACGACAATGCAGAGATATTCTTTTCAAATGCGCTGGTC



TACCGCCGGATCGTAAAATCGCTGAGCAATGACGATATCAACAAAATTTCGGGCGATATG



AAAGATTCATTAAAAGAAATGAGTCTGGAAGAAATATATTCTTACGAGAAGTATGGGGAA



TTTATTACCCAGGAAGGCATTAGCTTCTATAATGATATCTGTGGGAAAGTGAATTCTTTT



ATGAACCTGTATTGTCAGAAAAATAAAGAAAACAAAAATTTATACAAACTTCAGAAACTT



CACAAACAGATTCTATGCATTGCGGACACTAGCTATGAGGTCCCGTATAAATTTGAAAGT



GACGAGGAAGTGTACCAATCAGTTAACGGCTTCCTTGATAACATTAGCAGCAAACATATA



GTCGAAAGATTACGCAAAATCGGCGATAACTATAACGGCTACAACCTGGATAAAATTTAT



ATCGTGTCCAAATTTTACGAGAGCGTTAGCCAAAAAACCTACCGCGACTGGGAAACAATT



AATACCGCCCTCGAAATTCATTACAATAATATCTTGCCGGGTAACGGTAAAAGTAAAGCC



GACAAAGTAAAAAAAGCGGTTAAGAATGATTTACAGAAATCCATCACCGAAATAAATGAA



CTAGTGTCAAACTATAAGCTGTGCAGTGACGACAACATCAAAGCGGAGACTTATATACAT



GAGATTAGCCATATCTTGAATAACTTTGAAGCACAGGAATTGAAATACAATCCGGAAATT



CACCTAGTTGAATCCGAGCTCAAAGCGAGTGAGCTTAAAAACGTGCTGGACGTGATCATG



AATGCGTTTCATTGGTGTTCGGTTTTTATGACTGAGGAACTTGTTGATAAAGACAACAAT



TTTTATGCGGAACTGGAGGAGATTTACGATGAAATTTATCCAGTAATTAGTCTGTACAAC



CTGGTTCGTAACTACGTTACCCAGAAACCGTACAGCACGAAAAAGATTAAATTGAACTTT



GGAATACCGACGTTAGCAGACGGTTGGTCAAAGTCCAAAGAGTATTCTAATAACGCTATC



ATACTGATGCGCGACAATCTGTATTATCTGGGCATCTTTAATGCGAAGAATAAACCGGAC



AAGAAGATTATCGAGGGTAATACGTCAGAAAATAAGGGTGACTACAAAAAGATGATTTAT



AATTTGCTCCCGGGTCCCAACAAAATGATCCCGAAAGTTTTCTTGAGCAGCAAGACGGGG



GTGGAAACGTATAAACCGAGCGCCTATATCCTAGAGGGGTATAAACAGAATAAACATATC



AAGTCTTCAAAAGACTTTGATATCACTTTCTGTCATGATCTGATCGACTACTTCAAAAAC



TGTATTGCAATTCATCCCGAGTGGAAAAACTTCGGTTTTGATTTTAGCGACACCAGTACT



TATGAAGACATTTCCGGGTTTTATCGTGAGGTAGAGTTACAAGGTTACAAGATTGATTGG



ACATACATTAGCGAAAAAGACATTGATCTGCTGCAGGAAAAAGGTCAACTGTATCTGTTC



CAGATATATAACAAAGATTTTTCGAAAAAATCAACCGGGAATGACAACCTTCACACCATG



TACCTGAAAAATCTTTTCTCAGAAGAAAATCTTAAGGATATCGTCCTGAAACTTAACGGC



GAAGCGGAAATCTTCTTCAGGAAGAGCAGCATAAAGAACCCAATCATTCATAAAAAAGGC



TCGATTTTAGTCAACCGTACCTACGAAGCAGAAGAAAAAGACCAGTTTGGCAACATTCAA



ATTGTGCGTAAAAATATTCCGGAAAACATTTATCAGGAGCTGTACAAATACTTCAACGAT



AAAAGCGACAAAGAGCTGTCTGATGAAGCAGCCAAACTGAAGAATGTAGTGGGACACCAC



GAGGCAGCGACGAATATAGTCAAGGACTATCGCTACACGTATGATAAATACTTCCTTCAT



ATGCCTATTACGATCAATTTCAAAGCCAATAAAACGGGTTTTATTAATGATAGGATCTTA



CAGTATATCGCTAAAGAAAAAGACTTACATGTGATCGGCATTGATCGGGGCGAGCGTAAC



CTGATCTACGTGTCCGTGATTGATACTTGTGGTAATATAGTTGAACAGAAAAGCTTTAAC



ATTGTAAACGGCTACGACTATCAGATAAAACTGAAACAACAGGAGGGCGCTAGACAGATT



GCGCGGAAAGAATGGAAAGAAATTGGTAAAATTAAAGAGATCAAAGAGGGCTACCTGAGC



TTAGTAATCCACGAGATCTCTAAAATGGTAATCAAATACAATGCAATTATAGCGATGGAG



GATTTGTCTTATGGTTTTAAAAAAGGGCGCTTTAAGGTCGAACGGCAAGTTTACCAGAAA



TTTGAAACCATGCTCATCAATAAACTCAACTATCTGGTATTTAAAGATATTTCGATTACC



GAGAATGGCGGTCTCCTGAAAGGTTATCAGCTGACATACATTCCTGATAAACTTAAAAAC



GTGGGTCATCAGTGCGGCTGCATTTTTTATGTGCCTGCTGCATACACGAGCAAAATTGAT



CCGACCACCGGCTTTGTGAATATCTTTAAATTTAAAGACCTGACAGTGGACGCAAAACGT



GAATTCATTAAAAAATTTGACTCAATTCGTTATGACAGTGAAAAAAATCTGTTCTGCTTT



ACATTTGACTACAATAACTTTATTACGCAAAACACGGTCATGAGCAAATCATCGTGGAGT



GTGTATACATACGGCGTGCGCATCAAACGTCGCTTTGTGAACGGCCGCTTCTCAAACGAA



AGTGATACCATTGACATAACCAAAGATATGGAGAAAACGTTGGAAATGACGGACATTAAC



TGGCGCGATGGCCACGATCTTCGTCAAGACATTATAGATTATGAAATTGTTCAGCACATA



TTCGAAATTTTCCGTTTAACAGTGCAAATGCGTAACTCCTTGTCTGAACTGGAGGACCGT



GATTACGATCGTCTCATTTCACCTGTACTGAACGAAAATAACATTTTTTATGACAGCGCG



AAAGCGGGGGATGCACTTCCTAAGGATGCCGATGCAAATGGTGCGTATTGTATTGCATTA



AAAGGGTTATATGAAATTAAACAAATTACCGAAAATTGGAAAGAAGATGGTAAATTTTCG



CGCGATAAACTCAAAATCAGCAATAAAGATTGGTTCGACTTTATCCAGAATAAGCGCTAT



CTCTAAGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATTTATTATATC



GCGTTGATTATTGATGCTGTTTTTAGTTTTAACGGCAATTAATATATGTGTTATTAATTG



AATGAATTTTATCATTCATAATAAGTATGTGTAGGATCAAGCTCAGGTTAAATATTCACT



CAGGAAGTTATTACTCAGGAAGCAAAGAGGATTACAGAATTATCTCATAACAAGTGTTAA



GGGATGTTATTTCC





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG


ID
TCACTGCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAG


NO:
CATTCTGTAACAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAA


68
TCACGGCAGAAAAGTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGC



ATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGT



TTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGGGTCTCATCTC



GTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCATC



ACCATACCAATAAATTCACTAACCAGTATTCTCTCTCTAAGACCCTGCGCTTTGAACTGA



TTCCGCAGGGGAAAACCTTGGAGTTCATTCAAGAAAAAGGCCTCTTGTCTCAGGATAAAC



AGAGGGCTGAATCTTACCAAGAAATGAAGAAAACTATTGATAAGTTTCATAAATATTTCA



TTGATTTAGCCTTGTCTAACGCCAAATTAACTCACTTGGAAACGTATCTGGAGTTATACA



ACAAATCTGCCGAAACTAAGAAAGAACAGAAATTTAAAGACGATTTGAAAAAAGTACAGG



ACAATCTGCGTAAAGAAATTGTCAAATCCTTCAGTGACGGCGATGCTAAAAGCATTTTTG



CCATTCTGGACAAAAAAGAGTTGATTACTGTGGAATTAGAAAAGTGGTTTGAAAACAATG



AGCAGAAAGACATCTACTTCGATGAGAAATTCAAAACTTTCACCACCTATTTTACAGGAT



TTCATCAAAACCGGAAGAACATGTACTCAGTAGAACCGAACTCCACGGCCATTGCGTATC



GTTTGATCCATGAGAATCTGCCTAAATTTCTGGAGAATGCGAAAGCCTTTGAAAAGATTA



AGCAGGTCGAATCGCTGCAAGTGAATTTTCGTGAACTCATGGGCGAATTTGGTGACGAAG



GTCTAATCTTCGTTAACGAACTGGAAGAAATGTTTCAGATTAATTACTACAATGACGTGC



TATCGCAGAACGGTATCACAATCTACAATAGTATTATCTCAGGGTTCACAAAAAACGATA



TAAAATACAAAGGCCTGAACGAGTATATCAATAACTACAACCAAACAAAGGACAAAAAGG



ATAGGCTTCCGAAACTGAAGCAGTTATACAAACAGATTTTATCTGACAGAATCTCCCTGA



GCTTTCTGCCGGATGCTTTCACTGATGGGAAGCAGGTTCTGAAAGCGATTTTCGATTTTT



ATAAGATTAACTTACTGAGCTACACGATTGAAGGTCAAGAAGAATCTCAAAACTTACTGC



TCTTGATCCGTCAAACCATTGAAAATCTATCATCGTTCGATACGCAGAAAATCTACCTCA



AAAACGATACTCACCTGACTACGATCTCTCAGCAGGTTTTCGGGGATTTTAGTGTATTTT



CAACAGCTCTGAACTACTGGTATGAAACCAAAGTCAATCCGAAATTCGAGACGGAATATT



CTAAGGCCAACGAAAAAAAACGTGAGATTCTTGATAAAGCTAAAGCCGTATTTACTAAAC



AGGATTACTTTTCTATTGCTTTCCTGCAGGAAGTTTTATCGGAGTATATCCTGACCCTGG



ATCATACATCTGATATCGTTAAAAAACACAGCAGCAATTGCATCGCTGACTATTTCAAAA



ACCACTTTGTCGCCAAAAAAGAAAACGAAACAGACAAGACTTTCGATTTCATTGCTAACA



TCACCGCAAAATACCAGTGTATTCAGGGTATCTTGGAAAACGCCGACCAATACGAAGACG



AACTGAAACAAGATCAGAAGCTGATCGATAATTTAAAATTCTTCTTAGATGCAATCCTGG



AGCTGCTGCACTTCATCAAACCGCTTCATTTAAAGAGCGAGTCCATTACCGAAAAGGACA



CCGCCTTCTATGACGTTTTTGAAAATTATTATGAAGCCCTCTCCTTGCTGACTCCGCTGT



ATAATATGGTACGCAATTACGTAACCCAGAAACCATATTCTACCGAAAAAATTAAACTGA



ACTTTGAAAACGCACAGCTGCTCAACGGTTGGGACGCGAATAAAGAAGGTGACTACCTCA



CCACCATCCTGAAAAAAGATGGTAACTATTTTCTGGCAATTATGGATAAGAAACATAATA



AAGCATTCCAGAAATTTCCTGAAGGGAAAGAAAATTACGAAAAGATGGTGTACAAACTCT



TACCTGGAGTTAACAAAATGTTGCCGAAAGTATTTTTTAGTAATAAGAACATCGCGTACT



TTAACCCGTCCAAAGAACTGCTGGAAAATTATAAAAAGGAGACGCATAAGAAAGGGGATA



CCTTTAACCTGGAACATTGCCATACCTTAATAGACTTCTTCAAGGATTCCCTGAATAAAC



ACGAGGATTGGAAATATTTCGATTTTCAGTTTAGTGAGACCAAGTCATACCAGGATCTTA



GCGGCTTTTATCGCGAAGTAGAACACCAAGGCTATAAAATTAACTTCAAAAACATCGACA



GCGAATACATCGACGGTTTAGTTAACGAGGGCAAACTGTTTCTGTTCCAGATCTATTCAA



AGGATTTTAGCCCGTTCTCTAAAGGCAAACCAAATATGCATACGTTGTACTGGAAAGCAC



TGTTTGAAGAGCAAAACCTGCAGAATGTGATTTATAAACTGAACGGCCAAGCTGAGATTT



TTTTCCGTAAAGCCTCGATTAAACCGAAAAATATCATCCTTCATAAGAAGAAAATAAAGA



TCGCTAAAAAACACTTCATAGATAAAAAAACCAAAACCTCCGAAATAGTGCCTGTTCAAA



CAATTAAGAACTTGAATATGTACTACCAGGGCAAGATATCGGAAAAGGAGTTGACTCAAG



ACGATCTTCGCTATATCGATAACTTTTCGATTTTTAACGAAAAAAACAAGACGATCGACA



TCATCAAAGATAAACGCTTCACTGTAGATAAGTTCCAGTTTCATGTGCCGATTACTATGA



ACTTCAAAGCTACCGGGGGTAGCTATATCAACCAAACGGTGTTGGAATACCTGCAGAATA



ACCCGGAAGTCAAAATCATTGGGCTGGACCGCGGAGAACGTCACCTTGTGTACTTGACCT



TAATCGATCAGCAAGGCAACATCTTAAAACAAGAATCGCTGAATACCATTACGGATTCAA



AGATTAGCACCCCGTATCATAAGCTGCTCGATAACAAGGAGAATGAGCGCGACCTGGCCC



GTAAAAACTGGGGCACGGTGGAAAACATTAAGGAGTTAAAGGAGGGTTATATTTCCCAGG



TAGTGCATAAGATCGCCACTCTCATGCTCGAGGAAAATGCGATCGTTGTCATGGAAGACT



TAAACTTCGGATTTAAACGTGGGCGATTTAAAGTAGAGAAACAAATCTACCAGAAGTTAG



AAAAAATGCTGATTGACAAATTAAATTACTTGGTCCTAAAAGACAAACAGCCGCAAGAAT



TGGGTGGATTATACAACGCCCTCCAACTTACCAATAAATTCGAAAGTTTTCAGAAAATGG



GTAAACAGTCAGGCTTTCTTTTTTATGTTCCTGCGTGGAACACATCCAAAATCGACCCTA



CAACCGGCTTCGTCAATTACTTCTATACTAAATATGAAAACGTCGACAAAGCAAAAGCAT



TCTTTGAAAAGTTCGAAGCAATACGTTTTAACGCTGAGAAAAAATATTTCGAGTTCGAAG



TCAAGAAATACTCAGACTTTAACCCCAAAGCTGAGGGCACACAGCAAGCGTGGACAATCT



GCACCTACGGCGAGCGCATCGAAACGAAGCGTCAAAAAGATCAGAATAACAAATTTGTTT



CAACACCTATCAACCTGACCGAGAAGATTGAAGACTTCTTAGGTAAAAATCAGATTGTTT



ATGGCGACGGTAACTGTATAAAATCTCAAATAGCCTCAAAGGATGATAAAGCATTTTTCG



AAACATTATTATATTGGTTCAAAATGACACTGCAGATGCGCAATAGTGAGACGCGTACAG



ATATTGATTATCTTATCAGCCCGGTCATGAACGACAACGGTACTTTTTACAACTCCAGAG



ACTATGAAAAACTTGAGAATCCAACTCTCCCCAAAGATGCTGATGCGAACGGTGCTTATC



ACATCGCGAAAAAAGGTCTGATGCTGCTGAACAAAATCGACCAAGCCGATCTGACTAAGA



AAGTTGACCTAAGCATTTCAAATCGGGACTGGTTACAGTTTGTTCAAAAGAACAAATGAG



AAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATGTAGGGAGACCCTCAGG



TTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGATTACA





SEQ
AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATT


ID
GATAATTGAGATCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAA


NO:
TTATTTATTTATCCAGAAAATGAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCT


69
GGCGCAGTTGATATGTcaaaCAGGTtgccgtcactgcgtcttttactggctcttctcgct



aaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagccat



gacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgattattt



gcacggcgtcacactttgctatgccatagcatttttatccataagattagcggatcctac



ctgacgctttttatcgcaactctctactgtttctccatacccgtttttttgggctagcac



cgcctatctcgtgtgagataggcggagatacgaactttaagAAGGAGatataccATGGAA



CAGGAATATTATCTGGGCTTGGACATGGGCACCGGTTCCGTCGGCTGGGCTGTTACTGAC



AGTGAATATCACGTTCTAAGAAAGCATGGTAAGGCATTGTGGGGTGTAAGACTTTTCGAA



TCTGCTTCCACTGCTGAAGAGCGTAGAATGTTTAGAACGAGTCGACGTAGGCTAGACAGG



CGCAATTGGAGAATCGAAATTTTACAAGAAATTTTTGCGGAAGAGATATCTAAGAAAGAC



CCAGGCTTTTTCCTGAGAATGAAGGAATCTAAGTATTACCCTGAGGATAAAAGAGATATA



AATGGTAACTGTCCCGAATTGCCTTACGCATTATTTGTGGACGATGATTTTACCGATAAG



GATTACCATAAAAAGTTCCCAACTATCTACCATTTACGCAAAATGTTAATGAATACAGAG



GAAACCCCAGACATAAGACTAGTTTATCTGGCAATACACCATATGATGAAACATAGAGGC



CATTTCTTACTTTCCGGGGATATCAACGAAATCAAAGAGTTTGGTACCACATTTAGTAAG



TTACTGGAAAACATAAAGAATGAAGAATTGGATTGGAACTTAGAACTCGGAAAAGAAGAA



TACGCGGTTGTCGAATCTATCCTGAAGGATAATATGCTGAATAGGTCGACCAAAAAAACT



AGGCTGATCAAAGCACTGAAAGCCAAATCTATCTGCGAAAAAGCTGTTTTAAATTTACTT



GCTGGTGGCACTGTTAAGTTATCAGACATTTTTGGTTTGGAAGAATTGAACGAAACCGAG



CGTCCAAAAATTAGTTTCGCTGATAATGGCTACGATGATTACATTGGTGAGGTGGAAAAC



GAGTTGGGCGAACAATTTTATATTATAGAGACAGCTAAGGCAGTCTATGACTGGGCTGTT



TTAGTAGAAATCCTTGGTAAATACACATCTATCTCCGAAGCGAAAGTTGCTACTTACGAA



AAGCACAAGTCCGATCTCCAGTTTTTGAAGAAAATTGTCAGGAAATATCTGACTAAGGAA



GAATATAAAGATATTTTCGTTAGTACCTCTGACAAACTGAAAAATTACTCCGCTTACATC



GGGATGACCAAGATTAATGGCAAAAAAGTTGATCTGCAAAGCAAAAGGTGTTCGAAGGAA



GAATTTTATGATTTCATTAAAAAGAATGTCTTAAAAAAATTAGAAGGTCAGCCAGAATAC



GAATATTTGAAAGAAGAACTGGAAAGAGAGACATTCTTACCAAAACAAGTCAACAGAGAT



AATGGGGTAATTCCATATCAAATTCACCTCTACGAATTAAAAAAAATTTTAGGCAATTTA



CGCGATAAAATTGACCTTATCAAAGAAAATGAGGATAAGCTGGTTCAACTCTTTGAATTC



AGAATACCCTATTATGTGGGCCCACTGAACAAGATTGATGACGGCAAAGAAGGTAAATTC



ACATGGGCCGTCCGCAAATCCAATGAAAAAATTTACCCATGGAACTTTGAAAATGTAGTA



GATATTGAAGCGTCTGCGGAGAAATTTATTCGAAGAATGACTAATAAATGCACTTACTTG



ATGGGAGAGGATGTTCTGCCTAAAGACAGCTTATTATACAGCAAGTACATGGTTCTAAAC



GAACTTAACAACGTTAAGTTGGACGGTGAGAAATTAAGTGTAGAATTGAAACAAAGATTG



TATACTGACGTCTTCTGCAAGTACAGAAAAGTGACAGTTAAAAAAATTAAGAATTACTTG



AAGTGCGAAGGTATAATTTCTGGAAACGTAGAGATTACTGGTATTGATGGTGATTTCAAA



GCATCCCTAACAGCTTACCACGATTTCAAGGAAATCCTGACAGGAACTGAACTCGCAAAA



AAAGATAAAGAAAACATTATTACTAATATTGTTCTTTTCGGTGATGACAAGAAATTGTTG



AAGAAAAGACTGAATAGACTTTACCCCCAGATTACTCCCAATCAACTTAAGAAAATTTGT



GCTTTGTCTTACACAGGATGGGGTCGTTTTTCAAAAAAGTTCTTAGAAGAGATTACCGCA



CCTGATCCAGAAACAGGCGAAGTATGGAATATAATTACCGCCTTATGGGAATCGAACAAT



AATCTTATGCAACTTCTGAGCAATGAATATCGTTTCATGGAAGAAGTTGAGACTTACAAC



ATGGGCAAACAGACGAAGACTTTATCCTATGAAACTGTGGAAAATATGTATGTATCACCT



TCTGTCAAGAGACAAATTTGGCAAACCTTAAAAATTGTCAAAGAATTAGAAAAGGTAATG



AAGGAGTCTCCTAAACGTGTGTTTATTGAAATGGCTAGAGAAAAACAAGAGTCAAAAAGA



ACCGAGTCAAGAAAGAAGCAGTTAATCGATTTATATAAGGCTTGTAAAAACGAAGAGAAA



GATTGGGTTAAAGAATTGGGGGACCAAGAGGAACAAAAACTACGGTCGGATAAGTTGTAT



TTATACTATACGCAAAAGGGACGATGTATGTATTCCGGCGAGGTAATAGAATTGAAGGAT



TTATGGGACAATACAAAATATGACATAGACCATATATATCCCCAATCAAAAACGATGGAC



GATAGCTTGAACAATAGAGTACTCGTGAAAAAAAAATATAATGCGACCAAATCTGATAAG



TATCCTCTGAATGAAAATATCAGACATGAAAGAAAGGGGTTCTGGAAGTCCTTGTTAGAT



GGTGGGTTTATAAGCAAAGAAAAGTACGAGCGTCTAATAAGAAACACGGAGTTATCGCCA



GAAGAACTCGCTGGTTTTATTGAGAGGCAAATCGTGGAAACGAGACAATCTACCAAAGCC



GTTGCTGAGATCCTAAAGCAAGTTTTCCCAGAGTCGGAGATTGTCTATGTCAAAGCTGGC



ACAGTGAGCAGGTTTAGGAAAGACTTCGAACTATTAAAGGTAAGAGAAGTGAACGATTTA



CATCACGCAAAGGACGCTTACCTAAATATCGTTGTAGGTAACTCATATTATGTTAAATTT



ACCAAGAACGCCTCTTGGTTTATAAAGGAGAACCCAGGTAGAACATATAACCTGAAAAAG



ATGTTCACCTCTGGTTGGAATATTGAGAGAAACGGAGAAGTCGCATGGGAAGTTGGTAAG



AAAGGGACTATAGTGACAGTAAAGCAAATTATGAACAAAAATAATATCCTCGTTACAAGG



CAGGTTCATGAAGCAAAGGGCGGCCTTTTTGACCAACAAATTATGAAGAAAGGGAAAGGT



CAAATTGCAATAAAAGAAACCGATGAGAGACTAGCGTCAATAGAAAAGTATGGTGGCTAT



AATAAAGCTGCGGGTGCATACTTTATGCTTGTTGAATCAAAAGACAAGAAAGGTAAGACT



ATTAGAACTATAGAATTTATACCCCTGTACCTTAAAAACAAAATTGAATCGGATGAGTCA



ATCGCGTTAAATTTTCTAGAGAAAGGAAGGGGTTTAAAAGAACCAAAGATCCTGTTAAAA



AAGATTAAGATTGACACCTTGTTCGATGTAGATGGATTTAAAATGTGGTTATCTGGCAGA



ACAGGCGATAGACTTTTGTTTAAGTGCGCTAATCAATTAATTTTGGATGAGAAAATCATT



GTCACAATGAAAAAAATAGTTAAGTTTATTCAGAGAAGACAAGAAAACAGGGAGTTGAAA



TTATCTGATAAAGATGGTATCGACAATGAAGTTTTAATGGAAATCTACAATACATTCGTT



GATAAACTTGAAAATACCGTATATCGAATCAGGTTAAGTGAACAAGCCAAAACATTAATT



GATAAACAAAAAGAATTTGAAAGGCTATCACTGGAAGACAAATCCTCCACCCTATTTGAA



ATTTTGCATATATTCCAGTGCCAATCTTCAGCAGCTAATTTAAAAATGATTGGCGGACCT



GGGAAAGCCGGCATCCTAGTGATGAACAATAATATCTCCAAGTGTAACAAAATATCAATT



ATTAACCAATCTCCGACAGGTATTTTTGAAAATGAAATAGACTTGCTTAAGATATAAGAA



ATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATTTATTATATCGCGTTGATT



ATTGATGCTGTTTTTAGTTTTAACGGCAATTAATATATGTGTTATTAATTGAATGAATTT



TATCATTCATAATAAGTATGTGTAGGATCAAGCTCAGGTTAAATATTCACTCAGGAAGTT



ATTACTCAGGAAGCAAAGAGGATTACAGAATTATCTCATAACAAGTGTTAAGGGATGTTA



TTTCC





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG


ID
TCACTGCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAG


NO:
CATTCTGTAACAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAA


70
TCACGGCAGAAAAGTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGC



ATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGT



TTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGGGTCTCATCTC



GTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCATC



ACCATTCTTTCGACTCTTTCACCAACCTGTACTCTCTGTCTAAAACCCTGAAATTCGAAA



TGCGTCCGGTTGGTAACACCCAGAAAATGCTGGACAACGCGGGTGTTTTCGAAAAAGACA



AACTGATCCAGAAAAAATACGGTAAAACCAAACCGTACTTCGACCGTCTGCACCGTGAAT



TCATCGAAGAAGCGCTGACCGGTGTTGAACTGATCGGTCTGGACGAAAACTTCCGTACCC



TGGTTGACTGGCAGAAAGACAAAAAAAACAACGTTGCGATGAAAGCGTACGAAAACTCTC



TGCAGCGTCTGCGTACCGAAATCGGTAAAATCTTCAACCTGAAAGCGGAAGACTGGGTTA



AAAACAAATACCCGATCCTGGGTCTGAAAAACAAAAACACCGACATCCTGTTCGAAGAAG



CGGTTTTCGGTATCCTGAAAGCGCGTTACGGTGAAGAAAAAGACACCTTCATCGAAGTTG



AAGAAATCGACAAAACCGGTAAATCTAAAATCAACCAGATCTCTATCTTCGACTCTTGGA



AAGGTTTCACCGGTTACTTCAAAAAATTCTTCGAAACCCGTAAAAACTTCTACAAAAACG



ACGGTACCTCTACCGCGATCGCGACCCGTATCATCGACCAGAACCTGAAACGTTTCATCG



ACAACCTGTCTATCGTTGAATCTGTTCGTCAGAAAGTTGACCTGGCGGAAACCGAAAAAT



CTTTCTCTATCTCTCTGTCTCAGTTCTTCTCTATCGACTTCTACAACAAATGCCTGCTGC



AGGACGGTATCGACTACTACAACAAAATCATCGGTGGTGAAACCCTGAAAAACGGTGAAA



AACTGATCGGTCTGAACGAACTGATCAACCAGTACCGTCAGAACAACAAAGACCAGAAAA



TCCCGTTCTTCAAACTGCTGGACAAACAGATCCTGTCTGAAAAAATCCTGTTCCTGGACG



AAATCAAAAACGACACCGAACTGATCGAAGCGCTGTCTCAGTTCGCGAAAACCGCGGAAG



AAAAAACCAAAATCGTTAAAAAACTGTTCGCGGACTTCGTTGAAAACAACTCTAAATACG



ACCTGGCGCAGATCTACATCTCTCAGGAAGCGTTCAACACCATCTCTAACAAATGGACCT



CTGAAACCGAAACCTTCGCGAAATACCTGTTCGAAGCGATGAAATCTGGTAAACTGGCGA



AATACGAAAAAAAAGACAACTCTTACAAATTCCCGGACTTCATCGCGCTGTCTCAGATGA



AATCTGCGCTGCTGTCTATCTCTCTGGAAGGTCACTTCTGGAAAGAAAAATACTACAAAA



TCTCTAAATTCCAGGAAAAAACCAACTGGGAACAGTTCCTGGCGATCTTCCTGTACGAAT



TCAACTCTCTGTTCTCTGACAAAATCAACACCAAAGACGGTGAAACCAAACAGGTTGGTT



ACTACCTGTTCGCGAAAGACCTGCACAACCTGATCCTGTCTGAACAGATCGACATCCCGA



AAGACTCTAAAGTTACCATCAAAGACTTCGCGGACTCTGTTCTGACCATCTACCAGATGG



CGAAATACTTCGCGGTTGAAAAAAAACGTGCGTGGCTGGCGGAATACGAACTGGACTCTT



TCTACACCCAGCCGGACACCGGTTACCTGCAGTTCTACGACAACGCGTACGAAGACATCG



TTCAGGTTTACAACAAACTGCGTAACTACCTGACCAAAAAACCGTACTCTGAAGAAAAAT



GGAAACTGAACTTCGAAAACTCTACCCTGGCGAACGGTTGGGACAAAAACAAAGAATCTG



ACAACTCTGCGGTTATCCTGCAGAAAGGTGGTAAATACTACCTGGGTCTGATCACCAAAG



GTCACAACAAAATCTTCGACGACCGTTTCCAGGAAAAATTCATCGTTGGTATCGAAGGTG



GTAAATACGAAAAAATCGTTTACAAATTCTTCCCGGACCAGGCGAAAATGTTCCCGAAAG



TTTGCTTCTCTGCGAAAGGTCTGGAATTCTTCCGTCCGTCTGAAGAAATCCTGCGTATCT



ACAACAACGCGGAATTCAAAAAAGGTGAAACCTACTCTATCGACTCTATGCAGAAACTGA



TCGACTTCTACAAAGACTGCCTGACCAAATACGAAGGTTGGGCGTGCTACACCTTCCGTC



ACCTGAAACCGACCGAAGAATACCAGAACAACATCGGTGAATTCTTCCGTGACGTTGCGG



AAGACGGTTACCGTATCGACTTCCAGGGTATCTCTGACCAGTACATCCACGAAAAAAACG



AAAAAGGTGAACTGCACCTGTTCGAAATCCACAACAAAGACTGGAACCTGGACAAAGCGC



GTGACGGTAAATCTAAAACCACCCAGAAAAACCTGCACACCCTGTACTTCGAATCTCTGT



TCTCTAACGACAACGTTGTTCAGAACTTCCCGATCAAACTGAACGGTCAGGCGGAAATCT



TCTACCGTCCGAAAACCGAAAAAGACAAACTGGAATCTAAAAAAGACAAAAAAGGTAACA



AAGTTATCGACCACAAACGTTACTCTGAAAACAAAATCTTCTTCCACGTTCCGCTGACCC



TGAACCGTACCAAAAACGACTCTTACCGTTTCAACGCGCAGATCAACAACTTCCTGGCGA



ACAACAAAGACATCAACATCATCGGTGTTGACCGTGGTGAAAAACACCTGGTTTACTACT



CTGTTATCACCCAGGCGTCTGACATCCTGGAATCTGGTTCTCTGAACGAACTGAACGGTG



TTAACTACGCGGAAAAACTGGGTAAAAAAGCGGAAAACCGTGAACAGGCGCGTCGTGACT



GGCAGGACGTTCAGGGTATCAAAGACCTGAAAAAAGGTTACATCTCTCAGGTTGTTCGTA



AACTGGCGGACCTGGCGATCAAACACAACGCGATCATCATCCTGGAAGACCTGAACATGC



GTTTCAAACAGGTTCGTGGTGGTATCGAAAAATCTATCTACCAGCAGCTGGAAAAAGCGC



TGATCGACAAACTGTCTTTCCTGGTTGACAAAGGTGAAAAAAACCCGGAACAGGCGGGTC



ACCTGCTGAAAGCGTACCAGCTGTCTGCGCCGTTCGAAACCTTCCAGAAAATGGGTAAAC



AGACCGGTATCATCTTCTACACCCAGGCGTCTTACACCTCTAAATCTGACCCGGTTACCG



GTTGGCGTCCGCACCTGTACCTGAAATACTTCTCTGCGAAAAAAGCGAAAGACGACATCG



CGAAATTCACCAAAATCGAATTCGTTAACGACCGTTTCGAACTGACCTACGACATCAAAG



ACTTCCAGCAGGCGAAAGAATACCCGAACAAAACCGTTTGGAAAGTTTGCTCTAACGTTG



AACGTTTCCGTTGGGACAAAAACCTGAACCAGAACAAAGGTGGTTACACCCACTACACCA



ACATCACCGAAAACATCCAGGAACTGTTCACCAAATACGGTATCGACATCACCAAAGACC



TGCTGACCCAGATCTCTACCATCGACGAAAAACAGAACACCTCTTTCTTCCGTGACTTCA



TCTTCTACTTCAACCTGATCTGCCAGATCCGTAACACCGACGACTCTGAAATCGCGAAAA



AAAACGGTAAAGACGACTTCATCCTGTCTCCGGTTGAACCGTTCTTCGACTCTCGTAAAG



ACAACGGTAACAAACTGCCGGAAAACGGTGACGACAACGGTGCGTACAACATCGCGCGTA



AAGGTATCGTTATCCTGAACAAAATCTCTCAGTACTCTGAAAAAAACGAAAACTGCGAAA



AAATGAAATGGGGTGACCTGTACGTTTCTAACATCGACTGGGACAACTTCGTTGAAATCA



TCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAAT



ATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGATTACA





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG


ID
TCACTGCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAG


NO:
CATTCTGTAACAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAA


71
TCACGGCAGAAAAGTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGC



ATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGT



TTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGGGTCTCATCTC



GTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCATC



ACCATAACAAATTCGAAAACTTCACCGGTCTGTACCCGATCTCTAAAACCCTGCGTTTCG



AACTGATCCCGCAGGGTAAAACCCTGGAATACATCGAAAAATCTGAAATCCTGGAAAACG



ACAACTACCGTGCGGAAAAATACGAAGAAGTTAAAGACATCATCGACGGTTACCACAAAT



GGTTCATCAACGAAACCCTGCACGACCTGCACATCAACTGGTCTGAACTGAAAGTTGCGC



TGGAAAACAACCGTATCGAAAAATCTGACGCGTCTAAAAAAGAACTGCAGCGTGTTCAGA



AAATCAAACGTGAAGAAATCTACAACGCGTTCATCGAACACGAAGCGTTCCAGTACCTGT



TCAAAGAAAACCTGCTGTCTGACCTGCTGCCGATCCAGATCGAACAGTCTGAAGACCTGG



ACGCGGAAAAAAAAAAACAGGCGGTTGAAACCTTCAACCGTTTCTCTACCTACTTCACCG



GTTTCCACGAAAACCGTAAAAACATCTACTCTAAAGAAGGTATCTCTACCTCTGTTACCT



ACCGTATCGTTCACGACAACTTCCCGAAATTCCTGGAAAACATGAAAGTTTTCGAAATCC



TGCGTAACGAATGCCCGGAAGTTATCTCTGACACCGCGAACGAACTGGCGCCGTTCATCG



ACGGTGTTCGTATCGAAGACATCTTCCTGATCGACTTCTTCAACTCTACCTTCTCTCAGA



ACGGTATCGACTACTACAACCGTATCCTGGGTGGTGTTACCACCGAAACCGGTGAAAAAT



ACCGTGGTATCAACGAATTCACCAACCTGTACCGTCAGCAGCACCCGGAATTCGGTAAAT



CTAAAAAAGCGACCAAAATGGTTGTTCTGTTCAAACAGATCCTGTCTGACCGTGACACCC



TGTCTTTCATCCCGGAAATGTTCGGTAACGACAAACAGGTTCAGAACTCTATCCAGCTGT



TCTACAACCGTGAAATCTCTCAGTTCGAAAACGAAGGTGTTAAAACCGACGTTTGCACCG



CGCTGGCGACCCTGACCTCTAAAATCGCGGAATTCGACACCGAAAAAATCTACATCCAGC



AGCCGGAACTGCCGAACGTTTCTCAGCGTCTGTTCGGTTCTTGGAACGAACTGAACGCGT



GCCTGTTCAAATACGCGGAACTGAAATTCGGTACCGCGGAAAAAGTTGCGAACCGTAAAA



AAATCGACAAATGGCTGAAATCTGACCTGTTCTCTTTCACCGAACTGAACAAAGCGCTGG



AATTCTCTGGTAAAGACGAACGTATCGAAAACTACTTCTCTGAAACCGGTATCTTCGCGC



AGCTGGTTAAAACCGGTTTCGACGAAGCGCAGTCTATCCTGGAAACCGAATACACCTCTG



AAGTTCACCTGAAAGACCAGCAGACCGACATCGAAAAAATCAAAACCTTCCTGGACGCGC



TGCAGAACCTGATGCACCTGCTGAAATCTCTGTGCGTTTCTGAAGAAGCGGACCGTGACG



CGGCGTTCTACAACGAATTCGACATGCTGTACAACCAGCTGAAACTGGTTGTTCCGCTGT



ACAACAAAGTTCGTAACTACATCACCCAGAAACTGTTCCGTTCTGACAAAATCAAAATCT



ACTTCGAAAACAAAGGTCAGTTCCTGGGTGGTTGGGTTGACTCTCAGACCGAAAACTCTG



ACAACGGTACCCAGGCGGGTGGTTACATCTTCCGTAAAGAAAACGTTATCAACGAATACG



ACTACTACCTGGGTATCTGCTCTGACCCGAAACTGTTCCGTCGTACCACCATCGTTTCTG



AAAACGACCGTTCTTCTTTCGAACGTCTGGACTACTACCAGCTGAAAACCGCGTCTGTTT



ACGGTAACTCTTACTGCGGTAAACACCCGTACACCGAAGACAAAAACGAACTGGTTAACT



CTATCGACCGTTTCGTTCACCTGTCTGGTAACAACATCCTGATCGAAAAAATCGCGAAAG



ACAAAGTTAAATCTAACCCGACCACCAACACCCCGTCTGGTTACCTGAACTTCATCCACC



GTGAAGCGCCGAACACCTACGAATGCCTGCTGCAGGACGAAAACTTCGTTTCTCTGAACC



AGCGTGTTGTTTCTGCGCTGAAAGCGACCCTGGCGACCCTGGTTCGTGTTCCGAAAGCGC



TGGTTTACGCGAAAAAAGACTACCACCTGTTCTCTGAAATCATCAACGACATCGACGAAC



TGTCTTACGAAAAAGCGTTCTCTTACTTCCCGGTTTCTCAGACCGAATTCGAAAACTCTT



CTAACCGTACCATCAAACCGCTGCTGCTGTTCAAAATCTCTAACAAAGACCTGTCTTTCG



CGGAAAACTTCGAAAAAGGTAACCGTCAGAAAATCGGTAAAAAAAACCTGCACACCCTGT



ACTTCGAAGCGCTGATGAAAGGTAACCAGGACACCATCGACATCGGTACCGGTATGGTTT



TCCACCGTGTTAAATCTCTGAACTACAACGAAAAAACCCTGAAATACGGTCACCACTCTA



CCCAGCTGAACGAAAAATTCTCTTACCCGATCATCAAAGACAAACGTTTCGCGTCTGACA



AATTCCTGTTCCACCTGTCTACCGAAATCAACTACAAAGAAAAACGTAAACCGCTGAACA



ACTCTATCATCGAATTCCTGACCAACAACCCGGACATCAACATCATCGGTCTGGACCGTG



GTGAACGTCACCTGATCTACCTGACCCTGATCAACCAGAAAGGTGAAATCCTGCGTCAGA



AAACCTTCAACATCGTTGGTAACACCAACTACCACGAAAAACTGAACCAGCGTGAAAAAG



AACGTGACAACGCGCGTAAATCTTGGGCGACCATCGGTAAAATCAAAGAACTGAAAGAAG



GTTTCCTGTCTCTGGTTATCCACGAAATCGCGAAAATCATGGTTGAAAACAACGCGATCG



TTGTTCTGGAAGACCTGAACTTCGGTTTCAAACGTGGTCGTTTCAAAGTTGAAAAACAGA



TCTACCAGAAATTCGAAAAAATGCTGATCGACAAACTGAACTACCTGGTTTTCAAAGACA



AAAAAGCGAACGAAGCGGGTGGTGTTCTGAAAGGTTACCAGCTGGCGGAAAAATTCGAAT



CTTTCCAGAAAATGGGTAAACAGTCTGGTTTCCTGTTCTACGTTCCGGCGGCGTACACCT



CTAAAATCGACCCGACCACCGGTTTCGTTAACATGCTGAACCTGAACTACACCAACATGA



AAGACGCGCAGACCCTGCTGTCTGGTATGGACAAAATCTCTTTCAACGCGGACGCGAACT



ACTTCGAATTCGAACTGGACTACGAAAAATTCAAAACCAACCAGACCGACCACACCAACA



AATGGACCATCTGCACCGTTGGTGAAAAACGTTTCACCTACAACTCTGCGACCAAAGAAA



CCACCACCGTTAACGTTACCGAAGACCTGAAAAAACTGCTGGACAAATTCGAAGTTAAAT



ACTCTAACGGTGACAACATCAAAGACGAAATCTGCCGTCAGACCGACGCGAAATTCTTCG



AAATCATCCTGTGGCTGCTGAAACTGACCATGCAGATGCGTAACTCTAACACCAAAACCG



AAGAAGACTTCATCCTGTCTCCGGTTAAAAACTCTAACGGTGAATTCTTCCGTTCTAACG



ACGACGCGAACGGTATCTGGCCGGCGGACGCGGACGCGAACGGTGCGTACCACATCGCGC



TGAAAGGTCTGTACCTGGTTAAAGAATGCTTCAACAAAAACGAAAAATCTCTGAAAATCG



AACACAAAAACTGGTTCAAATTCGCGCAGACCCGTTTCAACGGTTCTCTGACCAAAAACG



GTTAAGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATGTAGGGAGACC



CTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGATTACA





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG


ID
TCACTGCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAG


NO:
CATTCTGTAACAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAA


72
TCACGGCAGAAAAGTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGC



ATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGT



TTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGGGTCTCATCTC



GTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCATC



ACCATACCCAGTTCGAAGGTTTCACCAACCTGTACCAGGTTTCTAAAACCCTGCGTTTCG



AACTGATCCCGCAGGGTAAAACCCTGAAACACATCCAGGAACAGGGTTTCATCGAAGAAG



ACAAAGCGCGTAACGACCACTACAAAGAACTGAAACCGATCATCGACCGTATCTACAAAA



CCTACGCGGACCAGTGCCTGCAGCTGGTTCAGCTGGACTGGGAAAACCTGTCTGCGGCGA



TCGACTCTTACCGTAAAGAAAAAACCGAAGAAACCCGTAACGCGCTGATCGAAGAACAGG



CGACCTACCGTAACGCGATCCACGACTACTTCATCGGTCGTACCGACAACCTGACCGACG



CGATCAACAAACGTCACGCGGAAATCTACAAAGGTCTGTTCAAAGCGGAACTGTTCAACG



GTAAAGTTCTGAAACAGCTGGGTACCGTTACCACCACCGAACACGAAAACGCGCTGCTGC



GTTCTTTCGACAAATTCACCACCTACTTCTCTGGTTTCTACGAAAACCGTAAAAACGTTT



TCTCTGCGGAAGACATCTCTACCGCGATCCCGCACCGTATCGTTCAGGACAACTTCCCGA



AATTCAAAGAAAACTGCCACATCTTCACCCGTCTGATCACCGCGGTTCCGTCTCTGCGTG



AACACTTCGAAAACGTTAAAAAAGCGATCGGTATCTTCGTTTCTACCTCTATCGAAGAAG



TTTTCTCTTTCCCGTTCTACAACCAGCTGCTGACCCAGACCCAGATCGACCTGTACAACC



AGCTGCTGGGTGGTATCTCTCGTGAAGCGGGTACCGAAAAAATCAAAGGTCTGAACGAAG



TTCTGAACCTGGCGATCCAGAAAAACGACGAAACCGCGCACATCATCGCGTCTCTGCCGC



ACCGTTTCATCCCGCTGTTCAAACAGATCCTGTCTGACCGTAACACCCTGTCTTTCATCC



TGGAAGAATTCAAATCTGACGAAGAAGTTATCCAGTCTTTCTGCAAATACAAAACCCTGC



TGCGTAACGAAAACGTTCTGGAAACCGCGGAAGCGCTGTTCAACGAACTGAACTCTATCG



ACCTGACCCACATCTTCATCTCTCACAAAAAACTGGAAACCATCTCTTCTGCGCTGTGCG



ACCACTGGGACACCCTGCGTAACGCGCTGTACGAACGTCGTATCTCTGAACTGACCGGTA



AAATCACCAAATCTGCGAAAGAAAAAGTTCAGCGTTCTCTGAAACACGAAGACATCAACC



TGCAGGAAATCATCTCTGCGGCGGGTAAAGAACTGTCTGAAGCGTTCAAACAGAAAACCT



CTGAAATCCTGTCTCACGCGCACGCGGCGCTGGACCAGCCGCTGCCGACCACCCTGAAAA



AACAGGAAGAAAAAGAAATCCTGAAATCTCAGCTGGACTCTCTGCTGGGTCTGTACCACC



TGCTGGACTGGTTCGCGGTTGACGAATCTAACGAAGTTGACCCGGAATTCTCTGCGCGTC



TGACCGGTATCAAACTGGAAATGGAACCGTCTCTGTCTTTCTACAACAAAGCGCGTAACT



ACGCGACCAAAAAACCGTACTCTGTTGAAAAATTCAAACTGAACTTCCAGATGCCGACCC



TGGCGTCTGGTTGGGACGTTAACAAAGAAAAAAACAACGGTGCGATCCTGTTCGTTAAAA



ACGGTCTGTACTACCTGGGTATCATGCCGAAACAGAAAGGTCGTTACAAAGCGCTGTCTT



TCGAACCGACCGAAAAAACCTCTGAAGGTTTCGACAAAATGTACTACGACTACTTCCCGG



ACGCGGCGAAAATGATCCCGAAATGCTCTACCCAGCTGAAAGCGGTTACCGCGCACTTCC



AGACCCACACCACCCCGATCCTGCTGTCTAACAACTTCATCGAACCGCTGGAAATCACCA



AAGAAATCTACGACCTGAACAACCCGGAAAAAGAACCGAAAAAATTCCAGACCGCGTACG



CGAAAAAAACCGGTGACCAGAAAGGTTACCGTGAAGCGCTGTGCAAATGGATCGACTTCA



CCCGTGACTTCCTGTCTAAATACACCAAAACCACCTCTATCGACCTGTCTTCTCTGCGTC



CGTCTTCTCAGTACAAAGACCTGGGTGAATACTACGCGGAACTGAACCCGCTGCTGTACC



ACATCTCTTTCCAGCGTATCGCGGAAAAAGAAATCATGGACGCGGTTGAAACCGGTAAAC



TGTACCTGTTCCAGATCTACAACAAAGACTTCGCGAAAGGTCACCACGGTAAACCGAACC



TGCACACCCTGTACTGGACCGGTCTGTTCTCTCCGGAAAACCTGGCGAAAACCTCTATCA



AACTGAACGGTCAGGCGGAACTGTTCTACCGTCCGAAATCTCGTATGAAACGTATGGCGC



ACCGTCTGGGTGAAAAAATGCTGAACAAAAAACTGAAAGACCAGAAAACCCCGATCCCGG



ACACCCTGTACCAGGAACTGTACGACTACGTTAACCACCGTCTGTCTCACGACCTGTCTG



ACGAAGCGCGTGCGCTGCTGCCGAACGTTATCACCAAAGAAGTTTCTCACGAAATCATCA



AAGACCGTCGTTTCACCTCTGACAAATTCTTCTTCCACGTTCCGATCACCCTGAACTACC



AGGCGGCGAACTCTCCGTCTAAATTCAACCAGCGTGTTAACGCGTACCTGAAAGAACACC



CGGAAACCCCGATCATCGGTATCGACCGTGGTGAACGTAACCTGATCTACATCACCGTTA



TCGACTCTACCGGTAAAATCCTGGAACAGCGTTCTCTGAACACCATCCAGCAGTTCGACT



ACCAGAAAAAACTGGACAACCGTGAAAAAGAACGTGTTGCGGCGCGTCAGGCGTGGTCTG



TTGTTGGTACCATCAAAGACCTGAAACAGGGTTACCTGTCTCAGGTTATCCACGAAATCG



TTGACCTGATGATCCACTACCAGGCGGTTGTTGTTCTGGAAAACCTGAACTTCGGTTTCA



AATCTAAACGTACCGGTATCGCGGAAAAAGCGGTTTACCAGCAGTTCGAAAAAATGCTGA



TCGACAAACTGAACTGCCTGGTTCTGAAAGACTACCCGGCGGAAAAAGTTGGTGGTGTTC



TGAACCCGTACCAGCTGACCGACCAGTTCACCTCTTTCGCGAAAATGGGTACCCAGTCTG



GTTTCCTGTTCTACGTTCCGGCGCCGTACACCTCTAAAATCGACCCGCTGACCGGTTTCG



TTGACCCGTTCGTTTGGAAAACCATCAAAAACCACGAATCTCGTAAACACTTCCTGGAAG



GTTTCGACTTCCTGCACTACGACGTTAAAACCGGTGACTTCATCCTGCACTTCAAAATGA



ACCGTAACCTGTCTTTCCAGCGTGGTCTGCCGGGTTTCATGCCGGCGTGGGACATCGTTT



TCGAAAAAAACGAAACCCAGTTCGACGCGAAAGGTACCCCGTTCATCGCGGGTAAACGTA



TCGTTCCGGTTATCGAAAACCACCGTTTCACCGGTCGTTACCGTGACCTGTACCCGGCGA



ACGAACTGATCGCGCTGCTGGAAGAAAAAGGTATCGTTTTCCGTGACGGTTCTAACATCC



TGCCGAAACTGCTGGAAAACGACGACTCTCACGCGATCGACACCATGGTTGCGCTGATCC



GTTCTGTTCTGCAGATGCGTAACTCTAACGCGGCGACCGGTGAAGACTACATCAACTCTC



CGGTTCGTGACCTGAACGGTGTTTGCTTCGACTCTCGTTTCCAGAACCCGGAATGGCCGA



TGGACGCGGACGCGAACGGTGCGTACCACATCGCGCTGAAAGGTCAGCTGCTGCTGAACC



ACCTGAAAGAATCTAAAGACCTGAAACTGCAGAACGGTATCTCTAACCAGGACTGGCTGG



CGTACATCCAGGAACTGCGTAACTAGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTT



ATCTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAA



GCAAAGAGGATTACA





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG


ID
TCACTGCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAG


NO:
CATTCTGTAACAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAA


73
TCACGGCAGAAAAGTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGC



ATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGT



TTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGGGTCTCATCTC



GTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCATC



ACCATGCGGTTAAATCTATCAAAGTTAAACTGCGTCTGGACGACATGCCGGAAATCCGTG



CGGGTCTGTGGAAACTGCACAAAGAAGTTAACGCGGGTGTTCGTTACTACACCGAATGGC



TGTCTCTGCTGCGTCAGGAAAACCTGTACCGTCGTTCTCCGAACGGTGACGGTGAACAGG



AATGCGACAAAACCGCGGAAGAATGCAAAGCGGAACTGCTGGAACGTCTGCGTGCGCGTC



AGGTTGAAAACGGTCACCGTGGTCCGGCGGGTTCTGACGACGAACTGCTGCAGCTGGCGC



GTCAGCTGTACGAACTGCTGGTTCCGCAGGCGATCGGTGCGAAAGGTGACGCGCAGCAGA



TCGCGCGTAAATTCCTGTCTCCGCTGGCGGACAAAGACGCGGTTGGTGGTCTGGGTATCG



CGAAAGCGGGTAACAAACCGCGTTGGGTTCGTATGCGTGAAGCGGGTGAACCGGGTTGGG



AAGAAGAAAAAGAAAAAGCGGAAACCCGTAAATCTGCGGACCGTACCGCGGACGTTCTGC



GTGCGCTGGCGGACTTCGGTCTGAAACCGCTGATGCGTGTTTACACCGACTCTGAAATGT



CTTCTGTTGAATGGAAACCGCTGCGTAAAGGTCAGGCGGTTCGTACCTGGGACCGTGACA



TGTTCCAGCAGGCGATCGAACGTATGATGTCTTGGGAATCTTGGAACCAGCGTGTTGGTC



AGGAATACGCGAAACTGGTTGAACAGAAAAACCGTTTCGAACAGAAAAACTTCGTTGGTC



AGGAACACCTGGTTCACCTGGTTAACCAGCTGCAGCAGGACATGAAAGAAGCGTCTCCGG



GTCTGGAATCTAAAGAACAGACCGCGCACTACGTTACCGGTCGTGCGCTGCGTGGTTCTG



ACAAAGTTTTCGAAAAATGGGGTAAACTGGCGCCGGACGCGCCGTTCGACCTGTACGACG



CGGAAATCAAAAACGTTCAGCGTCGTAACACCCGTCGTTTCGGTTCTCACGACCTGTTCG



CGAAACTGGCGGAACCGGAATACCAGGCGCTGTGGCGTGAAGACGCGTCTTTCCTGACCC



GTTACGCGGTTTACAACTCTATCCTGCGTAAACTGAACCACGCGAAAATGTTCGCGACCT



TCACCCTGCCGGACGCGACCGCGCACCCGATCTGGACCCGTTTCGACAAACTGGGTGGTA



ACCTGCACCAGTACACCTTCCTGTTCAACGAATTCGGTGAACGTCGTCACGCGATCCGTT



TCCACAAACTGCTGAAAGTTGAAAACGGTGTTGCGCGTGAAGTTGACGACGTTACCGTTC



CGATCTCTATGTCTGAACAGCTGGACAACCTGCTGCCGCGTGACCCGAACGAACCGATCG



CGCTGTACTTCCGTGACTACGGTGCGGAACAGCACTTCACCGGTGAATTCGGTGGTGCGA



AAATCCAGTGCCGTCGTGACCAGCTGGCGCACATGCACCGTCGTCGTGGTGCGCGTGACG



TTTACCTGAACGTTTCTGTTCGTGTTCAGTCTCAGTCTGAAGCGCGTGGTGAACGTCGTC



CGCCGTACGCGGCGGTTTTCCGTCTGGTTGGTGACAACCACCGTGCGTTCGTTCACTTCG



ACAAACTGTCTGACTACCTGGCGGAACACCCGGACGACGGTAAACTGGGTTCTGAAGGTC



TGCTGTCTGGTCTGCGTGTTATGTCTGTTGACCTGGGTCTGCGTACCTCTGCGTCTATCT



CTGTTTTCCGTGTTGCGCGTAAAGACGAACTGAAACCGAACTCTAAAGGTCGTGTTCCGT



TCTTCTTCCCGATCAAAGGTAACGACAACCTGGTTGCGGTTCACGAACGTTCTCAGCTGC



TGAAACTGCCGGGTGAAACCGAATCTAAAGACCTGCGTGCGATCCGTGAAGAACGTCAGC



GTACCCTGCGTCAGCTGCGTACCCAGCTGGCGTACCTGCGTCTGCTGGTTCGTTGCGGTT



CTGAAGACGTTGGTCGTCGTGAACGTTCTTGGGCGAAACTGATCGAACAGCCGGTTGACG



CGGCGAACCACATGACCCCGGACTGGCGTGAAGCGTTCGAAAACGAACTGCAGAAACTGA



AATCTCTGCACGGTATCTGCTCTGACAAAGAATGGATGGACGCGGTTTACGAATCTGTTC



GTCGTGTTTGGCGTCACATGGGTAAACAGGTTCGTGACTGGCGTAAAGACGTTCGTTCTG



GTGAACGTCCGAAAATCCGTGGTTACGCGAAAGACGTTGTTGGTGGTAACTCTATCGAAC



AGATCGAATACCTGGAACGTCAGTACAAATTCCTGAAATCTTGGTCTTTCTTCGGTAAAG



TTTCTGGTCAGGTTATCCGTGCGGAAAAAGGTTCTCGTTTCGCGATCACCCTGCGTGAAC



ACATCGACCACGCGAAAGAAGACCGTCTGAAAAAACTGGCGGACCGTATCATCATGGAAG



CGCTGGGTTACGTTTACGCGCTGGACGAACGTGGTAAAGGTAAATGGGTTGCGAAATACC



CGCCGTGCCAGCTGATCCTGCTGGAAGAACTGTCTGAATACCAGTTCAACAACGACCGTC



CGCCGTCTGAAAACAACCAGCTGATGCAGTGGTCTCACCGTGGTGTTTTCCAGGAACTGA



TCAACCAGGCGCAGGTTCACGACCTGCTGGTTGGTACCATGTACGCGGCGTTCTCTTCTC



GTTTCGACGCGCGTACCGGTGCGCCGGGTATCCGTTGCCGTCGTGTTCCGGCGCGTTGCA



CCCAGGAACACAACCCGGAACCGTTCCCGTGGTGGCTGAACAAATTCGTTGTTGAACACA



CCCTGGACGCGTGCCCGCTGCGTGCGGACGACCTGATCCCGACCGGTGAAGGTGAAATCT



TCGTTTCTCCGTTCTCTGCGGAAGAAGGTGACTTCCACCAGATCCACGCGGACCTGAACG



CGGCGCAGAACCTGCAGCAGCGTCTGTGGTCTGACTTCGACATCTCTCAGATCCGTCTGC



GTTGCGACTGGGGTGAAGTTGACGGTGAACTGGTTCTGATCCCGCGTCTGACCGGTAAAC



GTACCGCGGACTCTTACTCTAACAAAGTTTTCTACACCAACACCGGTGTTACCTACTACG



AACGTGAACGTGGTAAAAAACGTCGTAAAGTTTTCGCGCAGGAAAAACTGTCTGAAGAAG



AAGCGGAACTGCTGGTTGAAGCGGACGAAGCGCGTGAAAAATCTGTTGTTCTGATGCGTG



ACCCGTCTGGTATCATCAACCGTGGTAACTGGACCCGTCAGAAAGAATTCTGGTCTATGG



TTAACCAGCGTATCGAAGGTTACCTGGTTAAACAGATCCGTTCTCGTGTTCCGCTGCAGG



ACTCTGCGTGCGAAAACACCGGTGACATCTAAGAAATCATCCTTAGCGAAAGCTAAGGAT



TTTTTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTATTAC



TCAGGAAGCAAAGAGGATTACA





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG


ID
TCACTGCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAG


NO:
CATTCTGTAACAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAA


74
TCACGGCAGAAAAGTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGC



ATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGT



TTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGGGTCTCATCTC



GTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCATC



ACCATGCGACCCGTTCTTTCATCCTGAAAATCGAACCGAACGAAGAAGTTAAAAAAGGTC



TGTGGAAAACCCACGAAGTTCTGAACCACGGTATCGCGTACTACATGAACATCCTGAAAC



TGATCCGTCAGGAAGCGATCTACGAACACCACGAACAGGACCCGAAAAACCCGAAAAAAG



TTTCTAAAGCGGAAATCCAGGCGGAACTGTGGGACTTCGTTCTGAAAATGCAGAAATGCA



ACTCTTTCACCCACGAAGTTGACAAAGACGTTGTTTTCAACATCCTGCGTGAACTGTACG



AAGAACTGGTTCCGTCTTCTGTTGAAAAAAAAGGTGAAGCGAACCAGCTGTCTAACAAAT



TCCTGTACCCGCTGGTTGACCCGAACTCTCAGTCTGGTAAAGGTACCGCGTCTTCTGGTC



GTAAACCGCGTTGGTACAACCTGAAAATCGCGGGTGACCCGTCTTGGGAAGAAGAAAAAA



AAAAATGGGAAGAAGACAAAAAAAAAGACCCGCTGGCGAAAATCCTGGGTAAACTGGCGG



AATACGGTCTGATCCCGCTGTTCATCCCGTTCACCGACTCTAACGAACCGATCGTTAAAG



AAATCAAATGGATGGAAAAATCTCGTAACCAGTCTGTTCGTCGTCTGGACAAAGACATGT



TCATCCAGGCGCTGGAACGTTTCCTGTCTTGGGAATCTTGGAACCTGAAAGTTAAAGAAG



AATACGAAAAAGTTGAAAAAGAACACAAAACCCTGGAAGAACGTATCAAAGAAGACATCC



AGGCGTTCAAATCTCTGGAACAGTACGAAAAAGAACGTCAGGAACAGCTGCTGCGTGACA



CCCTGAACACCAACGAATACCGTCTGTCTAAACGTGGTCTGCGTGGTTGGCGTGAAATCA



TCCAGAAATGGCTGAAAATGGACGAAAACGAACCGTCTGAAAAATACCTGGAAGTTTTCA



AAGACTACCAGCGTAAACACCCGCGTGAAGCGGGTGACTACTCTGTTTACGAATTCCTGT



CTAAAAAAGAAAACCACTTCATCTGGCGTAACCACCCGGAATACCCGTACCTGTACGCGA



CCTTCTGCGAAATCGACAAAAAAAAAAAAGACGCGAAACAGCAGGCGACCTTCACCCTGG



CGGACCCGATCAACCACCCGCTGTGGGTTCGTTTCGAAGAACGTTCTGGTTCTAACCTGA



ACAAATACCGTATCCTGACCGAACAGCTGCACACCGAAAAACTGAAAAAAAAACTGACCG



TTCAGCTGGACCGTCTGATCTACCCGACCGAATCTGGTGGTTGGGAAGAAAAAGGTAAAG



TTGACATCGTTCTGCTGCCGTCTCGTCAGTTCTACAACCAGATCTTCCTGGACATCGAAG



AAAAAGGTAAACACGCGTTCACCTACAAAGACGAATCTATCAAATTCCCGCTGAAAGGTA



CCCTGGGTGGTGCGCGTGTTCAGTTCGACCGTGACCACCTGCGTCGTTACCCGCACAAAG



TTGAATCTGGTAACGTTGGTCGTATCTACTTCAACATGACCGTTAACATCGAACCGACCG



AATCTCCGGTTTCTAAATCTCTGAAAATCCACCGTGACGACTTCCCGAAATTCGTTAACT



TCAAACCGAAAGAACTGACCGAATGGATCAAAGACTCTAAAGGTAAAAAACTGAAATCTG



GTATCGAATCTCTGGAAATCGGTCTGCGTGTTATGTCTATCGACCTGGGTCAGCGTCAGG



CGGCGGCGGCGTCTATCTTCGAAGTTGTTGACCAGAAACCGGACATCGAAGGTAAACTGT



TCTTCCCGATCAAAGGTACCGAACTGTACGCGGTTCACCGTGCGTCTTTCAACATCAAAC



TGCCGGGTGAAACCCTGGTTAAATCTCGTGAAGTTCTGCGTAAAGCGCGTGAAGACAACC



TGAAACTGATGAACCAGAAACTGAACTTCCTGCGTAACGTTCTGCACTTCCAGCAGTTCG



AAGACATCACCGAACGTGAAAAACGTGTTACCAAATGGATCTCTCGTCAGGAAAACTCTG



ACGTTCCGCTGGTTTACCAGGACGAACTGATCCAGATCCGTGAACTGATGTACAAACCGT



ACAAAGACTGGGTTGCGTTCCTGAAACAGCTGCACAAACGTCTGGAAGTTGAAATCGGTA



AAGAAGTTAAACACTGGCGTAAATCTCTGTCTGACGGTCGTAAAGGTCTGTACGGTATCT



CTCTGAAAAACATCGACGAAATCGACCGTACCCGTAAATTCCTGCTGCGTTGGTCTCTGC



GTCCGACCGAACCGGGTGAAGTTCGTCGTCTGGAACCGGGTCAGCGTTTCGCGATCGACC



AGCTGAACCACCTGAACGCGCTGAAAGAAGACCGTCTGAAAAAAATGGCGAACACCATCA



TCATGCACGCGCTGGGTTACTGCTACGACGTTCGTAAAAAAAAATGGCAGGCGAAAAACC



CGGCGTGCCAGATCATCCTGTTCGAAGACCTGTCTAACTACAACCCGTACGAAGAACGTT



CTCGTTTCGAAAACTCTAAACTGATGAAATGGTCTCGTCGTGAAATCCCGCGTCAGGTTG



CGCTGCAGGGTGAAATCTACGGTCTGCAGGTTGGTGAAGTTGGTGCGCAGTTCTCTTCTC



GTTTCCACGCGAAAACCGGTTCTCCGGGTATCCGTTGCTCTGTTGTTACCAAAGAAAAAC



TGCAGGACAACCGTTTCTTCAAAAACCTGCAGCGTGAAGGTCGTCTGACCCTGGACAAAA



TCGCGGTTCTGAAAGAAGGTGACCTGTACCCGGACAAAGGTGGTGAAAAATTCATCTCTC



TGTCTAAAGACCGTAAACTGGTTACCACCCACGCGGACATCAACGCGGCGCAGAACCTGC



AGAAACGTTTCTGGACCCGTACCCACGGTTTCTACAAAGTTTACTGCAAAGCGTACCAGG



TTGACGGTCAGACCGTTTACATCCCGGAATCTAAAGACCAGAAACAGAAAATCATCGAAG



AATTCGGTGAAGGTTACTTCATCCTGAAAGACGGTGTTTACGAATGGGGTAACGCGGGTA



AACTGAAAATCAAAAAAGGTTCTTCTAAACAGTCTTCTTCTGAACTGGTTGACTCTGACA



TCCTGAAAGACTCTTTCGACCTGGCGTCTGAACTGAAAGGTGAAAAACTGATGCTGTACC



GTGACCCGTCTGGTAACGTTTTCCCGTCTGACAAATGGATGGCGGCGGGTGTTTTCTTCG



GTAAACTGGAACGTATCCTGATCTCTAAACTGACCAACCAGTACTCTATCTCTACCATCG



AAGACGACTCTTCTAAACAGTCTATGTAAGAAATCATCCTTAGCGAAAGCTAAGGATTTT



TTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCA



GGAAGCAAAGAGGATTACA





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG


ID
TCACTGCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAG


NO:
CATTCTGTAACAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAA


75
TCACGGCAGAAAAGTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGC



ATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGT



TTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGGGTCTCATCTC



GTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCATC



ACCATCCGACCCGTACCATCAACCTGAAACTGGTTCTGGGTAAAAACCCGGAAAACGCGA



CCCTGCGTCGTGCGCTGTTCTCTACCCACCGTCTGGTTAACCAGGCGACCAAACGTATCG



AAGAATTCCTGCTGCTGTGCCGTGGTGAAGCGTACCGTACCGTTGACAACGAAGGTAAAG



AAGCGGAAATCCCGCGTCACGCGGTTCAGGAAGAAGCGCTGGCGTTCGCGAAAGCGGCGC



AGCGTCACAACGGTTGCATCTCTACCTACGAAGACCAGGAAATCCTGGACGTTCTGCGTC



AGCTGTACGAACGTCTGGTTCCGTCTGTTAACGAAAACAACGAAGCGGGTGACGCGCAGG



CGGCGAACGCGTGGGTTTCTCCGCTGATGTCTGCGGAATCTGAAGGTGGTCTGTCTGTTT



ACGACAAAGTTCTGGACCCGCCGCCGGTTTGGATGAAACTGAAAGAAGAAAAAGCGCCGG



GTTGGGAAGCGGCGTCTCAGATCTGGATCCAGTCTGACGAAGGTCAGTCTCTGCTGAACA



AACCGGGTTCTCCGCCGCGTTGGATCCGTAAACTGCGTTCTGGTCAGCCGTGGCAGGACG



ACTTCGTTTCTGACCAGAAAAAAAAACAGGACGAACTGACCAAAGGTAACGCGCCGCTGA



TCAAACAGCTGAAAGAAATGGGTCTGCTGCCGCTGGTTAACCCGTTCTTCCGTCACCTGC



TGGACCCGGAAGGTAAAGGTGTTTCTCCGTGGGACCGTCTGGCGGTTCGTGCGGCGGTTG



CGCACTTCATCTCTTGGGAATCTTGGAACCACCGTACCCGTGCGGAATACAACTCTCTGA



AACTGCGTCGTGACGAATTCGAAGCGGCGTCTGACGAATTCAAAGACGACTTCACCCTGC



TGCGTCAGTACGAAGCGAAACGTCACTCTACCCTGAAATCTATCGCGCTGGCGGACGACT



CTAACCCGTACCGTATCGGTGTTCGTTCTCTGCGTGCGTGGAACCGTGTTCGTGAAGAAT



GGATCGACAAAGGTGCGACCGAAGAACAGCGTGTTACCATCCTGTCTAAACTGCAGACCC



AGCTGCGTGGTAAATTCGGTGACCCGGACCTGTTCAACTGGCTGGCGCAGGACCGTCACG



TTCACCTGTGGTCTCCGCGTGACTCTGTTACCCCGCTGGTTCGTATCAACGCGGTTGACA



AAGTTCTGCGTCGTCGTAAACCGTACGCGCTGATGACCTTCGCGCACCCGCGTTTCCACC



CGCGTTGGATCCTGTACGAAGCGCCGGGTGGTTCTAACCTGCGTCAGTACGCGCTGGACT



GCACCGAAAACGCGCTGCACATCACCCTGCCGCTGCTGGTTGACGACGCGCACGGTACCT



GGATCGAAAAAAAAATCCGTGTTCCGCTGGCGCCGTCTGGTCAGATCCAGGACCTGACCC



TGGAAAAACTGGAAAAAAAAAAAAACCGTCTGTACTACCGTTCTGGTTTCCAGCAGTTCG



CGGGTCTGGCGGGTGGTGCGGAAGTTCTGTTCCACCGTCCGTACATGGAACACGACGAAC



GTTCTGAAGAATCTCTGCTGGAACGTCCGGGTGCGGTTTGGTTCAAACTGACCCTGGACG



TTGCGACCCAGGCGCCGCCGAACTGGCTGGACGGTAAAGGTCGTGTTCGTACCCCGCCGG



AAGTTCACCACTTCAAAACCGCGCTGTCTAACAAATCTAAACACACCCGTACCCTGCAGC



CGGGTCTGCGTGTTCTGTCTGTTGACCTGGGTATGCGTACCTTCGCGTCTTGCTCTGTTT



TCGAACTGATCGAAGGTAAACCGGAAACCGGTCGTGCGTTCCCGGTTGCGGACGAACGTT



CTATGGACTCTCCGAACAAACTGTGGGCGAAACACGAACGTTCTTTCAAACTGACCCTGC



CGGGTGAAACCCCGTCTCGTAAAGAAGAAGAAGAACGTTCTATCGCGCGTGCGGAAATCT



ACGCGCTGAAACGTGACATCCAGCGTCTGAAATCTCTGCTGCGTCTGGGTGAAGAAGACA



ACGACAACCGTCGTGACGCGCTGCTGGAACAGTTCTTCAAAGGTTGGGGTGAAGAAGACG



TTGTTCCGGGTCAGGCGTTCCCGCGTTCTCTGTTCCAGGGTCTGGGTGCGGCGCCGTTCC



GTTCTACCCCGGAACTGTGGCGTCAGCACTGCCAGACCTACTACGACAAAGCGGAAGCGT



GCCTGGCGAAACACATCTCTGACTGGCGTAAACGTACCCGTCCGCGTCCGACCTCTCGTG



AAATGTGGTACAAAACCCGTTCTTACCACGGTGGTAAATCTATCTGGATGCTGGAATACC



TGGACGCGGTTCGTAAACTGCTGCTGTCTTGGTCTCTGCGTGGTCGTACCTACGGTGCGA



TCAACCGTCAGGACACCGCGCGTTTCGGTTCTCTGGCGTCTCGTCTGCTGCACCACATCA



ACTCTCTGAAAGAAGACCGTATCAAAACCGGTGCGGACTCTATCGTTCAGGCGGCGCGTG



GTT



ACATCCCGCTGCCGCACGGTAAAGGTTGGGAACAGCGTTACGAACCGTGCCAGCTGATCC



TGTTCGAAGACCTGGCGCGTTACCGTTTCCGTGTTGACCGTCCGCGTCGTGAAAACTCTC



AGCTGATGCAGTGGAACCACCGTGCGATCGTTGCGGAAACCACCATGCAGGCGGAACTGT



ACGGTCAGATCGTTGAAAACACCGCGGCGGGTTTCTCTTCTCGTTTCCACGCGGCGACCG



GTGCGCCGGGTGTTCGTTGCCGTTTCCTGCTGGAACGTGACTTCGACAACGACCTGCCGA



AACCGTACCTGCTGCGTGAACTGTCTTGGATGCTGGGTAACACCAAAGTTGAATCTGAAG



AAGAAAAACTGCGTCTGCTGTCTGAAAAAATCCGTCCGGGTTCTCTGGTTCCGTGGGACG



GTGGTGAACAGTTCGCGACCCTGCACCCGAAACGTCAGACCCTGTGCGTTATCCACGCGG



ACATGAACGCGGCGCAGAACCTGCAGCGTCGTTTCTTCGGTCGTTGCGGTGAAGCGTTCC



GTCTGGTTTGCCAGCCGCACGGTGACGACGTTCTGCGTCTGGCGTCTACCCCGGGTGCGC



GTCTGCTGGGTGCGCTGCAGCAGCTGGAAAACGGTCAGGGTGCGTTCGAACTGGTTCGTG



ACATGGGTTCTACCTCTCAGATGAACCGTTTCGTTATGAAATCTCTGGGTAAAAAAAAAA



TCAAACCGCTGCAGGACAACAACGGTGACGACGAACTGGAAGACGTTCTGTCTGTTCTGC



CGGAAGAAGACGACACCGGTCGTATCACCGTTTTCCGTGACTCTTCTGGTATCTTCTTCC



CGTGCAACGTTTGGATCCCGGCGAAACAGTTCTGGCCGGCGGTTCGTGCGATGATCTGGA



AAGTTATGGCGTCTCACTCTCTGGGTTAAGAAATCATCCTTAGCGAAAGCTAAGGATTTT



TTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCA



GGAAGCAAAGAGGATTACA





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG


ID
TCACTGCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAG


NO:
CATTCTGTAACAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAA


76
TCACGGCAGAAAAGTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGC



ATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGT



TTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGGGTCTCATCTC



GTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCATC



ACCATACCAAACTGCGTCACCGTCAGAAAAAACTGACCCACGACTGGGCGGGTTCTAAAA



AACGTGAAGTTCTGGGTTCTAACGGTAAACTGCAGAACCCGCTGCTGATGCCGGTTAAAA



AAGGTCAGGTTACCGAATTCCGTAAAGCGTTCTCTGCGTACGCGCGTGCGACCAAAGGTG



AAATGACCGACGGTCGTAAAAACATGTTCACCCACTCTTTCGAACCGTTCAAAACCAAAC



CGTCTCTGCACCAGTGCGAACTGGCGGACAAAGCGTACCAGTCTCTGCACTCTTACCTGC



CGGGTTCTCTGGCGCACTTCCTGCTGTCTGCGCACGCGCTGGGTTTCCGTATCTTCTCTA



AATCTGGTGAAGCGACCGCGTTCCAGGCGTCTTCTAAAATCGAAGCGTACGAATCTAAAC



TGGCGTCTGAACTGGCGTGCGTTGACCTGTCTATCCAGAACCTGACCATCTCTACCCTGT



TCAACGCGCTGACCACCTCTGTTCGTGGTAAAGGTGAAGAAACCTCTGCGGACCCGCTGA



TCGCGCGTTTCTACACCCTGCTGACCGGTAAACCGCTGTCTCGTGACACCCAGGGTCCGG



AACGTGACCTGGCGGAAGTTATCTCTCGTAAAATCGCGTCTTCTTTCGGTACCTGGAAAG



AAATGACCGCGAACCCGCTGCAGTCTCTGCAGTTCTTCGAAGAAGAACTGCACGCGCTGG



ACGCGAACGTTTCTCTGTCTCCGGCGTTCGACGTTCTGATCAAAATGAACGACCTGCAGG



GTGACCTGAAAAACCGTACCATCGTTTTCGACCCGGACGCGCCGGTTTTCGAATACAACG



CGGAAGACCCGGCGGACATCATCATCAAACTGACCGCGCGTTACGCGAAAGAAGCGGTTA



TCAAAAACCAGAACGTTGGTAACTACGTTAAAAACGCGATCACCACCACCAACGCGAACG



GTCTGGGTTGGCTGCTGAACAAAGGTCTGTCTCTGCTGCCGGTTTCTACCGACGACGAAC



TGCTGGAATTCATCGGTGTTGAACGTTCTCACCCGTCTTGCCACGCGCTGATCGAACTGA



TCGCGCAGCTGGAAGCGCCGGAACTGTTCGAAAAAAACGTTTTCTCTGACACCCGTTCTG



AAGTTCAGGGTATGATCGACTCTGCGGTTTCTAACCACATCGCGCGTCTGTCTTCTTCTC



GTAACTCTCTGTCTATGGACTCTGAAGAACTGGAACGTCTGATCAAATCTTTCCAGATCC



ACACCCCGCACTGCTCTCTGTTCATCGGTGCGCAGTCTCTGTCTCAGCAGCTGGAATCTC



TGCCGGAAGCGCTGCAGTCTGGTGTTAACTCTGCGGACATCCTGCTGGGTTCTACCCAGT



ACATGCTGACCAACTCTCTGGTTGAAGAATCTATCGCGACCTACCAGCGTACCCTGAACC



GTATCAACTACCTGTCTGGTGTTGCGGGTCAGATCAACGGTGCGATCAAACGTAAAGCGA



TCGACGGTGAAAAAATCCACCTGCCGGCGGCGTGGTCTGAACTGATCTCTCTGCCGTTCA



TCGGTCAGCCGGTTATCGACGTTGAATCTGACCTGGCGCACCTGAAAAACCAGTACCAGA



CCCTGTCTAACGAATTCGACACCCTGATCTCTGCGCTGCAGAAAAACTTCGACCTGAACT



TCAACAAAGCGCTGCTGAACCGTACCCAGCACTTCGAAGCGATGTGCCGTTCTACCAAAA



AAAACGCGCTGTCTAAACCGGAAATCGTTTCTTACCGTGACCTGCTGGCGCGTCTGACCT



CTTGCCTGTACCGTGGTTCTCTGGTTCTGCGTCGTGCGGGTATCGAAGTTCTGAAAAAAC



ACAAAATCTTCGAATCTAACTCTGAACTGCGTGAACACGTTCACGAACGTAAACACTTCG



TTTTCGTTTCTCCGCTGGACCGTAAAGCGAAAAAACTGCTGCGTCTGACCGACTCTCGTC



CGGACCTGCTGCACGTTATCGACGAAATCCTGCAGCACGACAACCTGGAAAACAAAGACC



GTGAATCTCTGTGGCTGGTTCGTTCTGGTTACCTGCTGGCGGGTCTGCCGGACCAGCTGT



CTTCTTCTTTCATCAACCTGCCGATCATCACCCAGAAAGGTGACCGTCGTCTGATCGACC



TGATCCAGTACGACCAGATCAACCGTGACGCGTTCGTTATGCTGGTTACCTCTGCGTTCA



AATCTAACCTGTCTGGTCTGCAGTACCGTGCGAACAAACAGTCTTTCGTTGTTACCCGTA



CCCTGTCTCCGTACCTGGGTTCTAAACTGGTTTACGTTCCGAAAGACAAAGACTGGCTGG



TTCCGTCTCAGATGTTCGAAGGTCGTTTCGCGGACATCCTGCAGTCTGACTACATGGTTT



GGAAAGACGCGGGTCGTCTGTGCGTTATCGACACCGCGAAACACCTGTCTAACATCAAAA



AATCTGTTTTCTCTTCTGAAGAAGTTCTGGCGTTCCTGCGTGAACTGCCGCACCGTACCT



TCATCCAGACCGAAGTTCGTGGTCTGGGTGTTAACGTTGACGGTATCGCGTTCAACAACG



GTGACATCCCGTCTCTGAAAACCTTCTCTAACTGCGTTCAGGTTAAAGTTTCTCGTACCA



ACACCTCTCTGGTTCAGACCCTGAACCGTTGGTTCGAAGGTGGTAAAGTTTCTCCGCCGT



CTATCCAGTTCGAACGTGCGTACTACAAAAAAGACGACCAGATCCACGAAGACGCGGCGA



AACGTAAAATCCGTTTCCAGATGCCGGCGACCGAACTGGTTCACGCGTCTGACGACGCGG



GTTGGACCCCGTCTTACCTGCTGGGTATCGACCCGGGTGAATACGGTATGGGTCTGTCTC



TGGTTTCTATCAACAACGGTGAAGTTCTGGACTCTGGTTTCATCCACATCAACTCTCTGA



TCAACTTCGCGTCTAAAAAATCTAACCACCAGACCAAAGTTGTTCCGCGTCAGCAGTACA



AATCTCCGTACGCGAACTACCTGGAACAGTCTAAAGACTCTGCGGCGGGTGACATCGCGC



ACATCCTGGACCGTCTGATCTACAAACTGAACGCGCTGCCGGTTTTCGAAGCGCTGTCTG



GTAACTCTCAGTCTGCGGCGGACCAGGTTTGGACCAAAGTTCTGTCTTTCTACACCTGGG



GTGACAACGACGCGCAGAACTCTATCCGTAAACAGCACTGGTTCGGTGCGTCTCACTGGG



ACATCAAAGGTATGCTGCGTCAGCCGCCGACCGAAAAAAAACCGAAACCGTACATCGCGT



TCCCGGGTTCTCAGGTTTCTTCTTACGGTAACTCTCAGCGTTGCTCTTGCTGCGGTCGTA



ACCCGATCGAACAGCTGCGTGAAATGGCGAAAGACACCTCTATCAAAGAACTGAAAATCC



GTAACTCTGAAATCCAGCTGTTCGACGGTACCATCAAACTGTTCAACCCGGACCCGTCTA



CCGTTATCGAACGTCGTCGTCACAACCTGGGTCCGTCTCGTATCCCGGTTGCGGACCGTA



CCTTCAAAAACATCTCTCCGTCTTCTCTGGAATTCAAAGAACTGATCACCATCGTTTCTC



GTTCTATCCGTCACTCTCCGGAATTCATCGCGAAAAAACGTGGTATCGGTTCTGAATACT



TCTGCGCGTACTCTGACTGCAACTCTTCTCTGAACTCTGAAGCGAACGCGGCGGCGAACG



TTGCGCAGAAATTCCAGAAACAGCTGTTCTTCGAACTGTAAGAAATCATCCTTAGCGAAA



GCTAAGGATTTTTTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGA



AGTTATTACTCAGGAAGCAAAGAGGATTACA





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG


ID
TCACTGCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAG


NO:
CATTCTGTAACAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAA


77
TCACGGCAGAAAAGTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGC



ATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGT



TTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGGGTCTCATCTC



GTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCATC



ACCATAAACGTATCCTGAACTCTCTGAAAGTTGCGGCGCTGCGTCTGCTGTTCCGTGGTA



AAGGTTCTGAACTGGTTAAAACCGTTAAATACCCGCTGGTTTCTCCGGTTCAGGGTGCGG



TTGAAGAACTGGCGGAAGCGATCCGTCACGACAACCTGCACCTGTTCGGTCAGAAAGAAA



TCGTTGACCTGATGGAAAAAGACGAAGGTACCCAGGTTTACTCTGTTGTTGACTTCTGGC



TGGACACCCTGCGTCTGGGTATGTTCTTCTCTCCGTCTGCGAACGCGCTGAAAATCACCC



TGGGTAAATTCAACTCTGACCAGGTTTCTCCGTTCCGTAAAGTTCTGGAACAGTCTCCGT



TCTTCCTGGCGGGTCGTCTGAAAGTTGAACCGGCGGAACGTATCCTGTCTGTTGAAATCC



GTAAAATCGGTAAACGTGAAAACCGTGTTGAAAACTACGCGGCGGACGTTGAAACCTGCT



TCATCGGTCAGCTGTCTTCTGACGAAAAACAGTCTATCCAGAAACTGGCGAACGACATCT



GGGACTCTAAAGACCACGAAGAACAGCGTATGCTGAAAGCGGACTTCTTCGCGATCCCGC



TGATCAAAGACCCGAAAGCGGTTACCGAAGAAGACCCGGAAAACGAAACCGCGGGTAAAC



AGAAACCGCTGGAACTGTGCGTTTGCCTGGTTCCGGAACTGTACACCCGTGGTTTCGGTT



CTATCGCGGACTTCCTGGTTCAGCGTCTGACCCTGCTGCGTGACAAAATGTCTACCGACA



CCGCGGAAGACTGCCTGGAATACGTTGGTATCGAAGAAGAAAAAGGTAACGGTATGAACT



CTCTGCTGGGTACCTTCCTGAAAAACCTGCAGGGTGACGGTTTCGAACAGATCTTCCAGT



TCATGCTGGGTTCTTACGTTGGTTGGCAGGGTAAAGAAGACGTTCTGCGTGAACGTCTGG



ACCTGCTGGCGGAAAAAGTTAAACGTCTGCCGAAACCGAAATTCGCGGGTGAATGGTCTG



GTCACCGTATGTTCCTGCACGGTCAGCTGAAATCTTGGTCTTCTAACTTCTTCCGTCTGT



TCAACGAAACCCGTGAACTGCTGGAATCTATCAAATCTGACATCCAGCACGCGACCATGC



TGATCTCTTACGTTGAAGAAAAAGGTGGTTACCACCCGCAGCTGCTGTCTCAGTACCGTA



AACTGATGGAACAGCTGCCGGCGCTGCGTACCAAAGTTCTGGACCCGGAAATCGAAATGA



CCCACATGTCTGAAGCGGTTCGTTCTTACATCATGATCCACAAATCTGTTGCGGGTTTCC



TGCCGGACCTGCTGGAATCTCTGGACCGTGACAAAGACCGTGAATTCCTGCTGTCTATCT



TCCCGCGTATCCCGAAAATCGACAAAAAAACCAAAGAAATCGTTGCGTGGGAACTGCCGG



GTGAACCGGAAGAAGGTTACCTGTTCACCGCGAACAACCTGTTCCGTAACTTCCTGGAAA



ACCCGAAACACGTTCCGCGTTTCATGGCGGAACGTATCCCGGAAGACTGGACCCGTCTGC



GTTCTGCGCCGGTTTGGTTCGACGGTATGGTTAAACAGTGGCAGAAAGTTGTTAACCAGC



TGGTTGAATCTCCGGGTGCGCTGTACCAGTTCAACGAATCTTTCCTGCGTCAGCGTCTGC



AGGCGATGCTGACCGTTTACAAACGTGACCTGCAGACCGAAAAATTCCTGAAACTGCTGG



CGGACGTTTGCCGTCCGCTGGTTGACTTCTTCGGTCTGGGTGGTAACGACATCATCTTCA



AATCTTGCCAGGACCCGCGTAAACAGTGGCAGACCGTTATCCCGCTGTCTGTTCCGGCGG



ACGTTTACACCGCGTGCGAAGGTCTGGCGATCCGTCTGCGTGAAACCCTGGGTTTCGAAT



GGAAAAACCTGAAAGGTCACGAACGTGAAGACTTCCTGCGTCTGCACCAGCTGCTGGGTA



ACCTGCTGTTCTGGATCCGTGACGCGAAACTGGTTGTTAAACTGGAAGACTGGATGAACA



ACCCGTGCGTTCAGGAATACGTTGAAGCGCGTAAAGCGATCGACCTGCCGCTGGAAATCT



TCGGTTTCGAAGTTCCGATCTTCCTGAACGGTTACCTGTTCTCTGAACTGCGTCAGCTGG



AACTGCTGCTGCGTCGTAAATCTGTTATGACCTCTTACTCTGTTAAAACCACCGGTTCTC



CGAACCGTCTGTTCCAGCTGGTTTACCTGCCGCTGAACCCGTCTGACCCGGAAAAAAAAA



ACTCTAACAACTTCCAGGAACGTCTGGACACCCCGACCGGTCTGTCTCGTCGTTTCCTGG



ACCTGACCCTGGACGCGTTCGCGGGTAAACTGCTGACCGACCCGGTTACCCAGGAACTGA



AAACCATGGCGGGTTTCTACGACCACCTGTTCGGTTTCAAACTGCCGTGCAAACTGGCGG



CGATGTCTAACCACCCGGGTTCTTCTTCTAAAATGGTTGTTCTGGCGAAACCGAAAAAAG



GTGTTGCGTCTAACATCGGTTTCGAACCGATCCCGGACCCGGCGCACCCGGTTTTCCGTG



TTCGTTCTTCTTGGCCGGAACTGAAATACCTGGAAGGTCTGCTGTACCTGCCGGAAGACA



CCCCGCTGACCATCGAACTGGCGGAAACCTCTGTTTCTTGCCAGTCTGTTTCTTCTGTTG



CGTTCGACCTGAAAAACCTGACCACCATCCTGGGTCGTGTTGGTGAATTCCGTGTTACCG



CGGACCAGCCGTTCAAACTGACCCCGATCATCCCGGAAAAAGAAGAATCTTTCATCGGTA



AAACCTACCTGGGTCTGGACGCGGGTGAACGTTCTGGTGTTGGTTTCGCGATCGTTACCG



TTGACGGTGACGGTTACGAAGTTCAGCGTCTGGGTGTTCACGAAGACACCCAGCTGATGG



CGCTGCAGCAGGTTGCGTCTAAATCTCTGAAAGAACCGGTTTTCCAGCCGCTGCGTAAAG



GTACCTTCCGTCAGCAGGAACGTATCCGTAAATCTCTGCGTGGTTGCTACTGGAACTTCT



ACCACGCGCTGATGATCAAATACCGTGCGAAAGTTGTTCACGAAGAATCTGTTGGTTCTT



CTGGTCTGGTTGGTCAGTGGCTGCGTGCGTTCCAGAAAGACCTGAAAAAAGCGGACGTTC



TGCCGAAAAAAGGTGGTAAAAACGGTGTTGACAAAAAAAAACGTGAATCTTCTGCGCAGG



ACACCCTGTGGGGTGGTGCGTTCTCTAAAAAAGAAGAACAGCAGATCGCGTTCGAAGTTC



AGGCGGCGGGTTCTTCTCAGTTCTGCCTGAAATGCGGTTGGTGGTTCCAGCTGGGTATGC



GTGAAGTTAACCGTGTTCAGGAATCTGGTGTTGTTCTGGACTGGAACCGTTCTATCGTTA



CCTTCCTGATCGAATCTTCTGGTGAAAAAGTTTACGGTTTCTCTCCGCAGCAGCTGGAAA



AAGGTTTCCGTCCGGACATCGAAACCTTCAAAAAAATGGTTCGTGACTTCATGCGTCCGC



CGATGTTCGACCGTAAAGGTCGTCCGGCGGCGGCGTACGAACGTTTCGTTCTGGGTCGTC



GTCACCGTCGTTACCGTTTCGACAAAGTTTTCGAAGAACGTTTCGGTCGTTCTGCGCTGT



TCATCTGCCCGCGTGTTGGTTGCGGTAACTTCGACCACTCTTCTGAACAGTCTGCGGTTG



TTCTGGCGCTGATCGGTTACATCGCGGACAAAGAAGGTATGTCTGGTAAAAAACTGGTTT



ACGTTCGTCTGGCGGAACTGATGGCGGAATGGAAACTGAAAAAACTGGAACGTTCTCGTG



TTGAAGAACAGTCTTCTGCGCAGTAAGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTT



TATCTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGA



AGCAAAGAGGATTACA





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG


ID
TCACTGCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAG


NO:
CATTCTGTAACAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAA


78
TCACGGCAGAAAAGTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGC



ATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGT



TTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGGGTCTCATCTC



GTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCATC



ACCATGCGGAATCTAAACAGATGCAGTGCCGTAAATGCGGTGCGTCTATGAAATACGAAG



TTATCGGTCTGGGTAAAAAATCTTGCCGTTACATGTGCCCGGACTGCGGTAACCACACCT



CTGCGCGTAAAATCCAGAACAAAAAAAAACGTGACAAAAAATACGGTTCTGCGTCTAAAG



CGCAGTCTCAGCGTATCGCGGTTGCGGGTGCGCTGTACCCGGACAAAAAAGTTCAGACCA



TCAAAACCTACAAATACCCGGCGGACCTGAACGGTGAAGTTCACGACTCTGGTGTTGCGG



AAAAAATCGCGCAGGCGATCCAGGAAGACGAAATCGGTCTGCTGGGTCCGTCTTCTGAAT



ACGCGTGCTGGATCGCGTCTCAGAAACAGTCTGAACCGTACTCTGTTGTTGACTTCTGGT



TCGACGCGGTTTGCGCGGGTGGTGTTTTCGCGTACTCTGGTGCGCGTCTGCTGTCTACCG



TTCTGCAGCTGTCTGGTGAAGAATCTGTTCTGCGTGCGGCGCTGGCGTCTTCTCCGTTCG



TTGACGACATCAACCTGGCGCAGGCGGAAAAATTCCTGGCGGTTTCTCGTCGTACCGGTC



AGGACAAACTGGGTAAACGTATCGGTGAATGCTTCGCGGAAGGTCGTCTGGAAGCGCTGG



GTATCAAAGACCGTATGCGTGAATTCGTTCAGGCGATCGACGTTGCGCAGACCGCGGGTC



AGCGTTTCGCGGCGAAACTGAAAATCTTCGGTATCTCTCAGATGCCGGAAGCGAAACAGT



GGAACAACGACTCTGGTCTGACCGTTTGCATCCTGCCGGACTACTACGTTCCGGAAGAAA



ACCGTGCGGACCAGCTGGTTGTTCTGCTGCGTCGTCTGCGTGAAATCGCGTACTGCATGG



GTATCGAAGACGAAGCGGGTTTCGAACACCTGGGTATCGACCCGGGTGCGCTGTCTAACT



TCTCTAACGGTAACCCGAAACGTGGTTTCCTGGGTCGTCTGCTGAACAACGACATCATCG



CGCTGGCGAACAACATGTCTGCGATGACCCCGTACTGGGAAGGTCGTAAAGGTGAACTGA



TCGAACGTCTGGCGTGGCTGAAACACCGTGCGGAAGGTCTGTACCTGAAAGAACCGCACT



TCGGTAACTCTTGGGCGGACCACCGTTCTCGTATCTTCTCTCGTATCGCGGGTTGGCTGT



CTGGTTGCGCGGGTAAACTGAAAATCGCGAAAGACCAGATCTCTGGTGTTCGTACCGACC



TGTTCCTGCTGAAACGTCTGCTGGACGCGGTTCCGCAGTCTGCGCCGTCTCCGGACTTCA



TCGCGTCTATCTCTGCGCTGGACCGTTTCCTGGAAGCGGCGGAATCTTCTCAGGACCCGG



CGGAACAGGTTCGTGCGCTGTACGCGTTCCACCTGAACGCGCCGGCGGTTCGTTCTATCG



CGAACAAAGCGGTTCAGCGTTCTGACTCTCAGGAATGGCTGATCAAAGAACTGGACGCGG



TTGACCACCTGGAATTCAACAAAGCGTTCCCGTTCTTCTCTGACACCGGTAAAAAAAAAA



AAAAAGGTGCGAACTCTAACGGTGCGCCGTCTGAAGAAGAATACACCGAAACCGAATCTA



TCCAGCAGCCGGAAGACGCGGAACAGGAAGTTAACGGTCAGGAAGGTAACGGTGCGTCTA



AAAACCAGAAAAAATTCCAGCGTATCCCGCGTTTCTTCGGTGAAGGTTCTCGTTCTGAAT



ACCGTATCCTGACCGAAGCGCCGCAGTACTTCGACATGTTCTGCAACAACATGCGTGCGA



TCTTCATGCAGCTGGAATCTCAGCCGCGTAAAGCGCCGCGTGACTTCAAATGCTTCCTGC



AGAACCGTCTGCAGAAACTGTACAAACAGACCTTCCTGAACGCGCGTTCTAACAAATGCC



GTGCGCTGCTGGAATCTGTTCTGATCTCTTGGGGTGAATTCTACACCTACGGTGCGAACG



AAAAAAAATTCCGTCTGCGTCACGAAGCGTCTGAACGTTCTTCTGACCCGGACTACGTTG



TTCAGCAGGCGCTGGAAATCGCGCGTCGTCTGTTCCTGTTCGGTTTCGAATGGCGTGACT



GCTCTGCGGGTGAACGTGTTGACCTGGTTGAAATCCACAAAAAAGCGATCTCTTTCCTGC



TGGCGATCACCCAGGCGGAAGTTTCTGTTGGTTCTTACAACTGGCTGGGTAACTCTACCG



TTTCTCGTTACCTGTCTGTTGCGGGTACCGACACCCTGTACGGTACCCAGCTGGAAGAAT



TCCTGAACGCGACCGTTCTGTCTCAGATGCGTGGTCTGGCGATCCGTCTGTCTTCTCAGG



AACTGAAAGACGGTTTCGACGTTCAGCTGGAATCTTCTTGCCAGGACAACCTGCAGCACC



TGCTGGTTTACCGTGCGTCTCGTGACCTGGCGGCGTGCAAACGTGCGACCTGCCCGGCGG



AACTGGACCCGAAAATCCTGGTTCTGCCGGTTGGTGCGTTCATCGCGTCTGTTATGAAAA



TGATCGAACGTGGTGACGAACCGCTGGCGGGTGCGTACCTGCGTCACCGTCCGCACTCTT



TCGGTTGGCAGATCCGTGTTCGTGGTGTTGCGGAAGTTGGTATGGACCAGGGTACCGCGC



TGGCGTTCCAGAAACCGACCGAATCTGAACCGTTCAAAATCAAACCGTTCTCTGCGCAGT



ACGGTCCGGTTCTGTGGCTGAACTCTTCTTCTTACTCTCAGTCTCAGTACCTGGACGGTT



TCCTGTCTCAGCCGAAAAACTGGTCTATGCGTGTTCTGCCGCAGGCGGGTTCTGTTCGTG



TTGAACAGCGTGTTGCGCTGATCTGGAACCTGCAGGCGGGTAAAATGCGTCTGGAACGTT



CTGGTGCGCGTGCGTTCTTCATGCCGGTTCCGTTCTCTTTCCGTCCGTCTGGTTCTGGTG



ACGAAGCGGTTCTGGCGCCGAACCGTTACCTGGGTCTGTTCCCGCACTCTGGTGGTATCG



AATACGCGGTTGTTGACGTTCTGGACTCTGCGGGTTTCAAAATCCTGGAACGTGGTACCA



TCGCGGTTAACGGTTTCTCTCAGAAACGTGGTGAACGTCAGGAAGAAGCGCACCGTGAAA



AACAGCGTCGTGGTATCTCTGACATCGGTCGTAAAAAACCGGTTCAGGCGGAAGTTGACG



CGGCGAACGAACTGCACCGTAAATACACCGACGTTGCGACCCGTCTGGGTTGCCGTATCG



TTGTTCAGTGGGCGCCGCAGCCGAAACCGGGTACCGCGCCGACCGCGCAGACCGTTTACG



CGCGTGCGGTTCGTACCGAAGCGCCGCGTTCTGGTAACCAGGAAGACCACGCGCGTATGA



AATCTTCTTGGGGTTACACCTGGGGTACCTACTGGGAAAAACGTAAACCGGAAGACATCC



TGGGTATCTCTACCCAGGTTTACTGGACCGGTGGTATCGGTGAATCTTGCCCGGCGGTTG



CGGTTGCGCTGCTGGGTCACATCCGTGCGACCTCTACCCAGACCGAATGGGAAAAAGAAG



AAGTTGTTTTCGGTCGTCTGAAAAAATTCTTCCCGTCTTAAGAAATCATCCTTAGCGAAA



GCTAAGGATTTTTTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGA



AGTTATTACTCAGGAAGCAAAGAGGATTACA





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG


ID
TCACTGCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAG


NO:
CATTCTGTAACAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAA


79
TCACGGCAGAAAAGTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGC



ATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGT



TTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGGGTCTCATCTC



GTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCATC



ACCATGAAAAACGTATCAACAAAATCCGTAAAAAACTGTCTGCGGACAACGCGACCAAAC



CGGTTTCTCGTTCTGGTCCGATGAAAACCCTGCTGGTTCGTGTTATGACCGACGACCTGA



AAAAACGTCTGGAAAAACGTCGTAAAAAACCGGAAGTTATGCCGCAGGTTATCTCTAACA



ACGCGGCGAACAACCTGCGTATGCTGCTGGACGACTACACCAAAATGAAAGAAGCGATCC



TGCAGGTTTACTGGCAGGAATTCAAAGACGACCACGTTGGTCTGATGTGCAAATTCGCGC



AGCCGGCGTCTAAAAAAATCGACCAGAACAAACTGAAACCGGAAATGGACGAAAAAGGTA



ACCTGACCACCGCGGGTTTCGCGTGCTCTCAGTGCGGTCAGCCGCTGTTCGTTTACAAAC



TGGAACAGGTTTCTGAAAAAGGTAAAGCGTACACCAACTACTTCGGTCGTTGCAACGTTG



CGGAACACGAAAAACTGATCCTGCTGGCGCAGCTGAAACCGGAAAAAGACTCTGACGAAG



CGGTTACCTACTCTCTGGGTAAATTCGGTCAGCGTGCGCTGGACTTCTACTCTATCCACG



TTACCAAAGAATCTACCCACCCGGTTAAACCGCTGGCGCAGATCGCGGGTAACCGTTACG



CGTCTGGTCCGGTTGGTAAAGCGCTGTCTGACGCGTGCATGGGTACCATCGCGTCTTTCC



TGTCTAAATACCAGGACATCATCATCGAACACCAGAAAGTTGTTAAAGGTAACCAGAAAC



GTCTGGAATCTCTGCGTGAACTGGCGGGTAAAGAAAACCTGGAATACCCGTCTGTTACCC



TGCCGCCGCAGCCGCACACCAAAGAAGGTGTTGACGCGTACAACGAAGTTATCGCGCGTG



TTCGTATGTGGGTTAACCTGAACCTGTGGCAGAAACTGAAACTGTCTCGTGACGACGCGA



AACCGCTGCTGCGTCTGAAAGGTTTCCCGTCTTTCCCGGTTGTTGAACGTCGTGAAAACG



AAGTTGACTGGTGGAACACCATCAACGAAGTTAAAAAACTGATCGACGCGAAACGTGACA



TGGGTCGTGTTTTCTGGTCTGGTGTTACCGCGGAAAAACGTAACACCATCCTGGAAGGTT



ACAACTACCTGCCGAACGAAAACGACCACAAAAAACGTGAAGGTTCTCTGGAAAACCCGA



AAAAACCGGCGAAACGTCAGTTCGGTGACCTGCTGCTGTACCTGGAAAAAAAATACGCGG



GTGACTGGGGTAAAGTTTTCGACGAAGCGTGGGAACGTATCGACAAAAAAATCGCGGGTC



TGACCTCTCACATCGAACGTGAAGAAGCGCGTAACGCGGAAGACGCGCAGTCTAAAGCGG



TTCTGACCGACTGGCTGCGTGCGAAAGCGTCTTTCGTTCTGGAACGTCTGAAAGAAATGG



ACGAAAAAGAATTCTACGCGTGCGAAATCCAGCTGCAGAAATGGTACGGTGACCTGCGTG



GTAACCCGTTCGCGGTTGAAGCGGAAAACCGTGTTGTTGACATCTCTGGTTTCTCTATCG



GTTCTGACGGTCACTCTATCCAGTACCGTAACCTGCTGGCGTGGAAATACCTGGAAAACG



GTAAACGTGAATTCTACCTGCTGATGAACTACGGTAAAAAAGGTCGTATCCGTTTCACCG



ACGGTACCGACATCAAAAAATCTGGTAAATGGCAGGGTCTGCTGTACGGTGGTGGTAAAG



CGAAAGTTATCGACCTGACCTTCGACCCGGACGACGAACAGCTGATCATCCTGCCGCTGG



CGTTCGGTACCCGTCAGGGTCGTGAATTCATCTGGAACGACCTGCTGTCTCTGGAAACCG



GTCTGATCAAACTGGCGAACGGTCGTGTTATCGAAAAAACCATCTACAACAAAAAAATCG



GTCGTGACGAACCGGCGCTGTTCGTTGCGCTGACCTTCGAACGTCGTGAAGTTGTTGACC



CGTCTAACATCAAACCGGTTAACCTGATCGGTGTTGACCGTGGTGAAAACATCCCGGCGG



TTATCGCGCTGACCGACCCGGAAGGTTGCCCGCTGCCGGAATTCAAAGACTCTTCTGGTG



GTCCGACCGACATCCTGCGTATCGGTGAAGGTTACAAAGAAAAACAGCGTGCGATCCAGG



CGGCGAAAGAAGTTGAACAGCGTCGTGCGGGTGGTTACTCTCGTAAATTCGCGTCTAAAT



CTCGTAACCTGGCGGACGACATGGTTCGTAACTCTGCGCGTGACCTGTTCTACCACGCGG



TTACCCACGACGCGGTTCTGGTTTTCGAAAACCTGTCTCGTGGTTTCGGTCGTCAGGGTA



AACGTACCTTCATGACCGAACGTCAGTACACCAAAATGGAAGACTGGCTGACCGCGAAAC



TGGCGTACGAAGGTCTGACCTCTAAAACCTACCTGTCTAAAACCCTGGCGCAGTACACCT



CTAAAACCTGCTCTAACTGCGGTTTCACCATCACCACCGCGGACTACGACGGTATGCTGG



TTCGTCTGAAAAAAACCTCTGACGGTTGGGCGACCACCCTGAACAACAAAGAACTGAAAG



CGGAAGGTCAGATCACCTACTACAACCGTTACAAACGTCAGACCGTTGAAAAAGAACTGT



CTGCGGAACTGGACCGTCTGTCTGAAGAATCTGGTAACAACGACATCTCTAAATGGACCA



AAGGTCGTCGTGACGAAGCGCTGTTCCTGCTGAAAAAACGTTTCTCTCACCGTCCGGTTC



AGGAACAGTTCGTTTGCCTGGACTGCGGTCACGAAGTTCACGCGGACGAACAGGCGGCGC



TGAACATCGCGCGTTCTTGGCTGTTCCTGAACTCTAACTCTACCGAATTCAAATCTTACA



AATCTGGTAAACAGCCGTTCGTTGGTGCGTGGCAGGCGTTCTACAAACGTCGTCTGAAAG



AAGTTTGGAAACCGAACGCGTAAGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTAT



CTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGC



AAAGAGGATTACA





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCG


ID
TCACTGCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAG


NO:
CATTCTGTAACAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAA


80
TCACGGCAGAAAAGTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGC



ATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGT



TTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGGGTCTCATCTC



GTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCATC



ACCATAAACGTATCAACAAAATCCGTCGTCGTCTGGTTAAAGACTCTAACACCAAAAAAG



CGGGTAAAACCGGTCCGATGAAAACCCTGCTGGTTCGTGTTATGACCCCGGACCTGCGTG



AACGTCTGGAAAACCTGCGTAAAAAACCGGAAAACATCCCGCAGCCGATCTCTAACACCT



CTCGTGCGAACCTGAACAAACTGCTGACCGACTACACCGAAATGAAAAAAGCGATCCTGC



ACGTTTACTGGGAAGAATTCCAGAAAGACCCGGTTGGTCTGATGTCTCGTGTTGCGCAGC



CGGCGCCGAAAAACATCGACCAGCGTAAACTGATCCCGGTTAAAGACGGTAACGAACGTC



TGACCTCTTCTGGTTTCGCGTGCTCTCAGTGCTGCCAGCCGCTGTACGTTTACAAACTGG



AACAGGTTAACGACAAAGGTAAACCGCACACCAACTACTTCGGTCGTTGCAACGTTTCTG



AACACGAACGTCTGATCCTGCTGTCTCCGCACAAACCGGAAGCGAACGACGAACTGGTTA



CCTACTCTCTGGGTAAATTCGGTCAGCGTGCGCTGGACTTCTACTCTATCCACGTTACCC



GTGAATCTAACCACCCGGTTAAACCGCTGGAACAGATCGGTGGTAACTCTTGCGCGTCTG



GTCCGGTTGGTAAAGCGCTGTCTGACGCGTGCATGGGTGCGGTTGCGTCTTTCCTGACCA



AATACCAGGACATCATCCTGGAACACCAGAAAGTTATCAAAAAAAACGAAAAACGTCTGG



CGAACCTGAAAGACATCGCGTCTGCGAACGGTCTGGCGTTCCCGAAAATCACCCTGCCGC



CGCAGCCGCACACCAAAGAAGGTATCGAAGCGTACAACAACGTTGTTGCGCAGATCGTTA



TCTGGGTTAACCTGAACCTGTGGCAGAAACTGAAAATCGGTCGTGACGAAGCGAAACCGC



TGCAGCGTCTGAAAGGTTTCCCGTCTTTCCCGCTGGTTGAACGTCAGGCGAACGAAGTTG



ACTGGTGGGACATGGTTTGCAACGTTAAAAAACTGATCAACGAAAAAAAAGAAGACGGTA



AAGTTTTCTGGCAGAACCTGGCGGGTTACAAACGTCAGGAAGCGCTGCTGCCGTACCTGT



CTTCTGAAGAAGACCGTAAAAAAGGTAAAAAATTCGCGCGTTACCAGTTCGGTGACCTGC



TGCTGCACCTGGAAAAAAAACACGGTGAAGACTGGGGTAAAGTTTACGACGAAGCGTGGG



AACGTATCGACAAAAAAGTTGAAGGTCTGTCTAAACACATCAAACTGGAAGAAGAACGTC



GTTCTGAAGACGCGCAGTCTAAAGCGGCGCTGACCGACTGGCTGCGTGCGAAAGCGTCTT



TCGTTATCGAAGGTCTGAAAGAAGCGGACAAAGACGAATTCTGCCGTTGCGAACTGAAAC



TGCAGAAATGGTACGGTGACCTGCGTGGTAAACCGTTCGCGATCGAAGCGGAAAACTCTA



TCCTGGACATCTCTGGTTTCTCTAAACAGTACAACTGCGCGTTCATCTGGCAGAAAGACG



GTGTTAAAAAACTGAACCTGTACCTGATCATCAACTACTTCAAAGGTGGTAAACTGCGTT



TCAAAAAAATCAAACCGGAAGCGTTCGAAGCGAACCGTTTCTACACCGTTATCAACAAAA



AATCTGGTGAAATCGTTCCGATGGAAGTTAACTTCAACTTCGACGACCCGAACCTGATCA



TCCTGCCGCTGGCGTTCGGTAAACGTCAGGGTCGTGAATTCATCTGGAACGACCTGCTGT



CTCTGGAAACCGGTTCTCTGAAACTGGCGAACGGTCGTGTTATCGAAAAAACCCTGTACA



ACCGTCGTACCCGTCAGGACGAACCGGCGCTGTTCGTTGCGCTGACCTTCGAACGTCGTG



AAGTTCTGGACTCTTCTAACATCAAACCGATGAACCTGATCGGTATCGACCGTGGTGAAA



ACATCCCGGCGGTTATCGCGCTGACCGACCCGGAAGGTTGCCCGCTGTCTCGTTTCAAAG



ACTCTCTGGGTAACCCGACCCACATCCTGCGTATCGGTGAATCTTACAAAGAAAAACAGC



GTACCATCCAGGCGGCGAAAGAAGTTGAACAGCGTCGTGCGGGTGGTTACTCTCGTAAAT



ACGCGTCTAAAGCGAAAAACCTGGCGGACGACATGGTTCGTAACACCGCGCGTGACCTGC



TGTACTACGCGGTTACCCAGGACGCGATGCTGATCTTCGAAAACCTGTCTCGTGGTTTCG



GTCGTCAGGGTAAACGTACCTTCATGGCGGAACGTCAGTACACCCGTATGGAAGACTGGC



TGACCGCGAAACTGGCGTACGAAGGTCTGCCGTCTAAAACCTACCTGTCTAAAACCCTGG



CGCAGTACACCTCTAAAACCTGCTCTAACTGCGGTTTCACCATCACCTCTGCGGACTACG



ACCGTGTTCTGGAAAAACTGAAAAAAACCGCGACCGGTTGGATGACCACCATCAACGGTA



AAGAACTGAAAGTTGAAGGTCAGATCACCTACTACAACCGTTACAAACGTCAGAACGTTG



TTAAAGACCTGTCTGTTGAACTGGACCGTCTGTCTGAAGAATCTGTTAACAACGACATCT



CTTCTTGGACCAAAGGTCGTTCTGGTGAAGCGCTGTCTCTGCTGAAAAAACGTTTCTCTC



ACCGTCCGGTTCAGGAAAAATTCGTTTGCCTGAACTGCGGTTTCGAAACCCACGCGGACG



AACAGGCGGCGCTGAACATCGCGCGTTCTTGGCTGTTCCTGCGTTCTCAGGAATACAAAA



AATACCAGACCAACAAAACCACCGGTAACACCGACAAACGTGCGTTCGTTGAAACCTGGC



AGTCTTTCTACCGTAAAAAACTGAAAGAAGTTTGGAAACCGGAAATCATCCTTAGCGAAA



GCTAAGGATTTTTTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGA



AGTTATTACTCAGGAAGCAAAGAGGATTACA





SEQ
tgccgtcactgcgtcttttactggctcttctcgctaaccaaaccggtaaccccgcttatt


ID
aaaagcattctgtaacaaagcgggaccaaagccatgacaaaaacgcgtaacaaaagtgtc


NO:
tataatcacggcagaaaagtccacattgattatttgcacggcgtcacactttgctatgcc


81
atagcatttttatccataagattagcggatcctacctgacgctttttatcgcaactctct



actgtttctccatacccgtttttttgggctagcaccgcctatctcgtgtgagataggcgg



agatacgaactttaagAAGGAGatatacc





SEQ
TGCCGTCACTGCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATT


ID
AAAAGCATTCTGTAACAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTC


NO:
TATAATCACGGCAGAAAAGTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCC


82
ATAGCATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTTTTTATCGCAACTCTCT



ACTGTTTCTCCATACCCGTTTTTTTGGGTAGCGGATCCTACCTGAC





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTTCTA


ID
GAGCACAGCTAACACCACGTCGTCCCTATCTGCTGCCCTAGGTCTATGAGTGGTTGCTGG


NO:
ATAACTTTACGGGCATGCATAAGGCTCGTAATATATATTCAGGGAGACCACAACGGTTTC


83
CCTCTACAAATAATTTTGTTTAACTTTTACTAGAGCTAGCAGTAATACGACTCACTATAG



GGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCA





SEQ
GTTTGAGAGATATGTAAATTCAAAGGATAATCAAAC


ID



NO:



84






SEQ
actacattttttaagacctaattttgagt


ID



NO:



85






SEQ
ctcaaaactcattcgaatctctactctttgtagat


ID



NO:



86






SEQ
CTCTAGCAGGCCTGGCAAATTTCTACTGTTGTAGAT


ID



NO:



87






SEQ
CCGTCTAAAACTCATTCAGAATTTCTACTAGTGTAGAT


ID



NO:



88






SEQ
GTCTAGGTACTCTCTTTAATTTCTACTATTGT


ID



NO:



89






SEQ
gttaagttatatagaataatttctactgttgtaga


ID



NO:



90






SEQ
gtttaaaaccactttaaaatttctactattgta


ID



NO:



91






SEQ
GTTTGAGAATGATGTAAAAATGTATGGTACACAGAAATGTTTTAATACCATATTTTTACA


ID
TCACTCTCAAACATACATCTCTTGTTACTGTTTATCGTATCCAGATTAAATTTCACGTTT


NO:
TT


92






SEQ
CTCTACAACTGATAAAGAATTTCTACTTTTGTAGAT


ID



NO:93






SEQ
GTCTGGCCCCAAATTTTAATTTCTACTGTTGTAGAT


ID



NO:



94






SEQ
GTCAAAAGACCTTTTTAATTTCTACTCTTGTAGAT


ID



NO:



95






SEQ
GTCTAGAGGACAGAATTTTTCAACGGGTGTGCCAATGGCCACTTTCCAGGTGGCAAAGCC


ID
CGTTGAGCTTCTACGGAAGTGGCAC


NO:



96






SEQ
CGAGGTTCTGTCTTTTGGTCAGGACAACCGTCTAGCTATAAGTGCTGCAGGGGTGTGAGA


ID
AACTCCTATTGCTGGACGATGTCTCTTTTAACGAGGCATTAGCAC


NO:



97






SEQ
GAACGAGGGACGTTTTGTCTCCAATGATTTTGCTATGACGACCTCGAACTGTGCCTTCAA


ID
GTCTGAGGCGAAAAAGAAATGGAAAAAAGTGTCTCATCGCTCTACCTCGTAGTTAGAGG


NO:



98






SEQ
AATTACTGATGTTGTGATGAAGG


ID



NO:



99






SEQ
TATACCATAAGGATTTAAAGACT


ID



NO:



100






SEQ
GTCTTTACTCTCACCTTTCCACCTG


ID



NO:



101






SEQ
ATTTGAAGGTATCTCCGATAAGTAAAACGCATCAAAG


ID



NO:



102






SEQ
GTTTGAAGATATCTCCGATAAATAAGAAGCATCAAAG


ID



NO:



103






SEQ
TTGTTTTAATACCATATTTTTACATCACTCTCAAAC


ID



NO:



104






SEQ
AAAGAACGCTCGCTCAGTGTTCTGACCTTTCGAGCGCCTGTTCAGGGCGAAAACCCTGGG


ID
AGGCGCTCGAATCATAGGTGGGACAAGGGATTCGCGGCGAAAA


NO:



105






SEQ
GTTTGAGAATGATGTAAAAATGTATGGTACACAGAAATGTTTTAATACCATATTTTTACA


ID
TCACTCTCAAACATACATCTCTTGTTACTGTTTATCGTATCCAGATTAAATTTCACGTTT


NO:
TT


106






SEQ
GTCTAGAGGACAGAATTTTTCAACGGGTGTGCCAATGGCCACTTTCCAGGTGGCAAAGCC


ID
CGTTGAGCTTCTACGGAAGTGGCAC


NO:



107






SEQ
MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQF


ID
FIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFK


NO:
NLFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFK


108
GFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIKKDLAE



ELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGENTKRKGI



NEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQSFYEQIA



AFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEY



ITQQIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILA



NFAAIPMIFDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKL



KIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNF



ENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKENKGEGYKKIVYK



LLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNGSPQKGYEKFEFNIEDCRKF



IDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISESYIDSVVNQ



GKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKK



ITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEI



NLLLKEKANDVHILSIDRGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAI



EKDRDSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEYNAIVVFEDLNFGFKRGRFKVE



KQVYQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAG



FTSKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKG



KWTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESD



KKFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDADANGAY



HIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN





SEQ
MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQF


ID
FIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFK


NO:
NLFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFK


109
GFHENRKNVYSSDDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIKKDLAE



ELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGENTKRKGI



NEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQSFYEQIA



AFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEY



ITQQVAPKNLDNPSKKEQDLIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILA



NFAAIPMIFDEIAQNKDNLAQISLKYQNQGKKDLLQASAEEDVKAIKDLLDQTNNLLHRL



KIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNF



ENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKENKGEGYKKIVYK



LLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNGNPQKGYEKFEFNIEDCRKF



IDFYKESISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENISESYIDSVVNQ



GKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKK



ITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEI



NLLLKEKANDVHILSIDRGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAI



EKDRDSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEHNAIVVFEDLNFGFKRGRFKVE



KQVYQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAG



FTSKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKG



KWTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESD



KKFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDADANGAY



HIGLKGLMLLDRIKNNQEGKKLNLVIKNEEYFEFVQNRNN





SEQ
MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAE


ID
ATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFG


NO:
NIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSD


110
VDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGN



LIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI



LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYA



GYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELH



AILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEE



VVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL



SGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI



IKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG



RLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSL



HEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRER



MKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDH



IVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL



TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKS



KLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRK



MIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDF



ATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVA



YSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPK



YSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVE



QHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGA



PAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD





SEQ
PKKKRKV


ID



NO:



111






SEQ
KRPAATKKAGQAKKKK


ID



NO:



112






SEQ
PAAKRVKLD


ID



NO:



113






SEQ
RQRRNELKRSP


ID



NO:



114






SEQ
NQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGY


ID



NO:



115






SEQ
RMRIZFKNKGKDTAELRRRRVEVSVELRKAKKDEQILKRRNV


ID



NO:



116






SEQ
VSRKRPRP


ID



NO:



117






SEQ
PPKKARED


ID



NO:



118






SEQ
PQPKKKPL


ID



NO:



119






SEQ
SALIKKKKKMAP


ID



NO:



120






SEQ
DRLRR


ID



NO:



121






SEQ
PKQKKRK


ID



NO:



122






SEQ
RKLKKKIKKL


ID



NO:



123






SEQ
REKKKFLKRR


ID



NO:



124






SEQ
KRKGDEVDGVDEVAKKKSKK


ID



NO:



125






SEQ
RKCLQAGMNLEARKTKK


ID



NO:



126






SEQ
ATGGGTAAGATGTATTATCTGGGTTTGGATATAGGCACTAACTCTGTGGGATATGCAGTA


ID
ACTGATCCCTCGTATCACTTGTTAAAGTTCAAAGGCGAACCCATGTGGGGAGCACATGTA


NO:
TTTGCTGCGGGTAATCAGAGTGCCGAAAGGCGATCTTTCAGAACATCCAGGAGGCGATTA


127
GATAGGAGACAGCAAAGAGTAAAGCTTGTGCAAGAGATCTTTGCTCCTGTCATTTCACCT



ATAGACCCTCGTTTTTTTATAAGATTGCACGAATCGGCTCTATGGAGAGACGATGTTGCC



GAAACAGATAAACATATCTTTTTCAATGATCCCACTTATACAGACAAGGAATACTACTCC



GACTACCCGACAATTCATCATTTGATCGTCGATCTTATGGAGAGCTCTGAAAAGCATGAC



CCCCGACTTGTCTATTTGGCTGTAGCTTGGTTAGTTGCTCATAGAGGTCATTTCTTGAAT



GAAGTAGATAAAGACAATATAGGTGATGTACTTTCTTTTGATGCTTTCTACCCGGAATTT



TTGGCCTTTTTGTCAGACAATGGCGTCAGTCCCTGGGTCTGTGAGTCGAAGGCCCTTCAA



GCTACTCTGCTGTCTAGGAATAGCGTGAACGACAAATATAAAGCATTAAAATCGCTGATA



TTCGGATCGCAAAAACCGGAAGATAACTTTGACGCTAACATCTCTGAAGATGGTTTAATC



CAATTGCTGGCGGGTAAGAAAGTTAAAGTAAACAAACTATTCCCACAAGAGTCCAACGAT



GCTAGCTTTACGTTGAATGATAAAGAAGACGCTATTGAAGAAATTCTAGGTACTTTAACG



CCTGACGAGTGCGAATGGATCGCTCATATTCGCAGATTGTTCGATTGGGCCATCATGAAA



CACGCGCTAAAGGATGGCAGGACGATATCTGAATGAAAAGTGAAGCTATACGAGCAGCAT



CATCATGACTTGACTCAGTTAAAGTACTTTGTGAAGACCTACCTAGCTAAAGAGTATGAT



GATATCTTCAGAAACGTAGACTCCGAGACAACTAAAAATTATGTAGCTTATTCTTACCAT



GTGAAGGAAGTGAAAGGCACATTACCAAAAAATAAAGCAACGCAAGAAGAATTTTGTAAA



TACGTCCTTGGCAAAGTCAAAAACATTGAATGTTCCGAAGCAGACAAGGTTGATTttGAt



GAAAtGAtAcAAcGActtAcGGAcAAttcttttAtGccAAAGcAAGtctcAGGtGAAAAT



AGAGTAATACCATACCAGTTGTACTACTATGAATTAAAGACAATTTTAAACAAAGCCGCC



TCATATCTACCTTTTTTGACACAATGCGGTAAAGATGCTATTTCTAACCAAGACAAATTA



CTGTCTATAATGACATTTCGCATACCATATTTCGTCGGCCCTTTAAGGAAAGATAATTCA



GAACATGCCTGGTTGGAACGTAAAGCGGGTAAAATTTACCCGTGGAACTTTAATGATAAA



GTAGATCTTGATAAATCGGAGGAAGCCTTTATCCGTAGGATGACCAATACTTGCACGTAT



TACCCAGGAGAAGACGTGTTACCATTAGATTCACTTATCTATGAAAAGTTTATGATCTTG



AATGAGATAAACAATATTAGGATTGACGGATACCCCATTTCTGTTGATGTGAAACAACAA



GTATTTGGTTTATTTGAGAAGAAAAGGCGAGTAACAGTTAAGGATATTCAAAATCTACTA



TTATCTCTTGGAGCGTTGGATAAACACGGTAAGCTGACTGGTATTGACACGACAATACAC



TCTAATTATAACACTTATCATCATTTTAAATCTCTTATGGAGCGGGGAGTATTGACCAGA



GATGATGTGGAAAGAATAGTGGAAAGAATGACATATTCTGACGATACTAAGAGGGTCAGA



CTGTGGTTAAATAATAATTATGGAACTCTAACAGCTGACGATGTTAAGCATATCTCAAGA



CTCAGAAAACACGATTTCGGCCGTTTGTCTAAAATGTTTTTGACAGGATTGAAAGGTGTT



CATAAGGAGACAGGCGAGAGAGCAAGTATACTGGATTTTATGTGGAATACTAACGACAAT



TTAATGCAACTACTGTCCGAATGTTACACATTCTCGGATGAGATCACCAAATTACAAGAG



GCCTACTACGCAAAAGCTCAATTATCGCTAAATGACTTCTTGGACTCTATGTATATATCA



AACGCCGTTAAGAGACCTATTTATCGGACCTTAGCGGTAGTAAATGATATTAGAAAGGCA



TGCGGGACGGCACCTAAAAGAATTTTCATCGAGATGGCGCGAGATGGAGAGTCTAAGAAG



AAAAGATCTGTGACTCGTAGAGAGCAAATTAAAAATCTCTATAGATCAATTCGTAAAGAC



TTTCAACAAGAAGTTGATTTTCTGGAAAAGATATTGGAAAATAAGAGTGACGGGCAGCTT



CAGTCTGACGCTTTATATTTGTATTTTGCTCAATTAGGCAGAGACATGTACACAGGTGAT



CCAATCAAATTAGAACATATTAAAGACCAATCTTTTTACAACATTGATCATATTTATCCT



CAATCGATGGTGAAAGATGACAGTTTGGATAACAAGGTACTAGTCCAAAGCGAAATCAAT



GGCGAAAAGAGTTCGCGCTATCCATTAGACGCAGCCATTAGAAACAAAATGAAGCCGTTG



TGGGATGCCTACTATAATCATGGATTAATTTCTCTTAAGAAATACCAGCGTTTGACGAGA



TCTACTCCATTTACGGACGACGAGAAGTGGGATTTTATCAATCGTCAGCTAGTTGAAACT



AGGCAATCTACTAAAGCTTTAGCAATATTGTTAAAGCGTAAGTTTCCAGATACTGAAATA



GTTTACTCAAAGGCTGGACTATCCAGCGATTTTAGACATGAATTCGGCCTGGTTAAGAGT



AGGAATATTAATGATCTACACCATGCTAAAGATGCCTTTCTCGCAATAGTTACTGGGAAC



GTTTATCATGAAAGATTTAATAGAAGATGGTTTATGGTTAACCAGCCATACTCTGTGAAA



ACTAAGACATTGTTTACCCATTCAATTAAGAATGGCAACTTTGTCGCTTGGAATGGAGAA



GAAGATCTTGGACGTATCGTAAAGATGTTGAAACAAAACAAGAACACAATCCACTTCACC



AGGTTTTCCTTTGATAGGAAGGAGGGATTGTTCGATATTCAACCTCTCAAAGCTTCTACC



GGATTGGTTCCACGAAAAGCAGGGTTGGATGTTGTTAAATATGGAGGATACGATAAAAGC



ACTGCCGCGTATTATTTATTAGTACGTTTTACACTCGAGGATAAGAAGACTCAACACAAA



TTGATGATGATTCCTGTTGAAGGTCTCTACAAAGCACGTATTGACCATGATAAAGAGTTT



TTAACAGATTATGCTCAGACCACGATCAGCGAAATTCTTCAAAAGGACAAGCAGAAAGTG



ATCAACATCATGTTCCCTATGGGCACGAGACATATCAAACTGAATTCGATGATTTCTATT



GATGGATTCTATCTTTCTATTGGTGGGAAGAGTAGCAAAGGTAAGTCAGTACTATGTCAT



GCTATGGTGCCATTAATCGTCCCACACAAGATAGAATGTTATATCAAGGCTATGGAATCG



TTTGCAAGAAAATTCAAAGAAAATAATAAATTGAGGATCGTTGAAAAGTTTGATAAAATA



ACTGTTGAAGATAACTTGAACTTATACGAGCTTTTTCTACAAAAGTTGCAACATAACCCA



TATAATAAATTTTTCTCTACACAATTTGATGTGTTGACGAACGGTAGAAGTACATTCACC



AAATTGTCTCCAGAGGAGCAAGTCCAGACTTTACTTAATATACTGAGTATATTTAAAACT



TGTCGTTCTTCTGGGTGTGATTTAAAATCAATAAATGGTTCCGCTCAAGCGGCTAGAATT



ATGATATCCGCTGATTTAACTGGCTTATCAAAAAAGTATTCAGATATTAGATTAGTTGAG



CAAAGCGCATCAGGTCTATTTGTTTCAAAATCTCAAAATCTCTTGGAATACTTGCCAAAA



AAGAAAAGGAAAGTTTAG





SEQ
ATGAGTAGTTTAACAAAGTTTACCAATAAATATAGTAAGCAACTAACTATAAAGAACGAA


ID
TTGATACCGGTCGGTAAGACTTTGGAAAACATAAAAGAAAATGGGTTGATTGATGGAGAC


NO:
GAGCAATTGAATGAGAATTATCAAAAAGCAAAGATAATAGTAGATGATTTTTTGAGAGAC


128
TTTATTAATAAAGCTCTAAATAACACTCAAATTGGTAACTGGAGAGAGCTAGCCGACGCC



TTGAACAAGGAAGATGAGGATAATATTGAGAAATTACAAGATAAGATTAGAGGGATTATC



GTGTCTAAGTTTGAGACTTTTGATCTGTTCAGTTCGTATTCGATTAAAAAGGACGAGAAA



ATCATCGATGATGATAACGATGTGGAAGAAGAGGAGCTAGACCTTGGGAAGAAGACATCT



AGCTTCAAATACATATTCAAGAAAAATTTGTTCAAACTTGTCCTTCCTTCATATTTAAAA



ACAACAAATCAAGATAAGTTAAAAATCATTTCTTCCTTCGATAATTTTAGTACTTATTTT



CGTGGTTTTTTCGAAAACAGGAAAAATATATTCACTAAAAAGCCTATATCTACCTCTATA



GCTTATAGAATTGTTCACGATAATTTCCCAAAATTTCTAGATAATATCAGGTGTTTTAAT



GTTTGGCAAACCGAGTGTCCTCAGTTAATAGTCAAGGCCGACAACTACCTTAAAAGCAAG



AATGTGATTGCAAAAGATAAGTCTTTGGCTAACTATTTTACAGTCGGTGCCTATGATTAT



TTTCTGAGTCAAAATGGTATCGATTTCTATAACAACATTATTGGCGGCTTACCAGCTTTT



GCCGGGCATGAGAAGATTCAGGGTTTGAACGAATTTATCAATCAAGAATGTCAAAAGGAT



TCTGAATTAAAGTCTAAGCTCAAGAATAGGCACGCTTTCAAAATGGCAGTCTTATTCAAA



CAAATCCTTTCAGACAGAGAAAAGTCATTTGTGATTGACGAGTTCGAATCAGACGCTCAG



GTAATTGATGCTGTTAAAAATTTTTACGCGGAACAATGCAAAGATAATAACGTCATATTT



AATTTATTGAATCTGATCAAGAATATTGCTTTTTTGTCGGATGATGAGTTAGACGGCATT



TTCATAGAGGGTAAATACCTGTCCTCTGTGTCTCAAAAATTGTATAGTGATTGGTCAAAG



TTGAGAAATGATATTGAAGATTCGGCTAATTCTAAACAGGGTAACAAAGAATTAGCGAAG



AAAATCAAAACTAACAAGGGTGATGTTGAAAAGGCTATAAGTAAGTACGAGTTCAGTTTA



TCTGAACTAAATTCAATTGTTCATGATAACACAAAATTTTCCGATCTTTTATCATGCACA



TTACATAAAGTTGCAAGTGAAAAATTAGTCAAAGTAAACGAAGGTGATTGGCCAAAACAT



CTAAAAAACAACGAGGAAAAACAGAAGATAAAAGAACCTCTTGACGCTTTATTGGAAATA



TACAATACTCTATTAATATTTAACTGTAAAAGTTTTAACAAAAATGGTAATTTCTATGTC



GACTACGATCGCTGCATTAATGAGTTGTCCAGTGTTGTGTACTTGTATAATAAAACTCGT



AATTATTGTACGAAAAAGCCGTACAACACTGACAAATTTAAGTTGAATTTCAACTCCCCA



CAACTGGGTGAGGGCTTCTCTAAAAGTAAAGAGAATGATTGCCTTACATTATTATTTAAA



AAAGATGATAATTATTATGTCGGAATCATAAGAAAGGGGGCAAAGATCAACTTCGATGAC



ACTCAGGCCATAGCAGACAACACAGATAACTGTATATTCAAAATGAATTATTTTTTGCTG



AAGGATGCTAAAAAATTTATCCCCAAATGTTCAATACAATTAAAAGAGGTTAAGGCCCAT



TTCAAAAAGTCGGAAGATGACTATATTTTGTCCGATAAGGAAAAATTCGCTAGTCCGCTT



GTTATTAAAAAATCCACATTTCTTCTCGCTACGGCTCATGTGAAAGGAAAGAAGGGCAAT



ATTAAGAAATTTCAGAAAGAATACTCCAAAGAAAATCCTACGGAGTATAGAAATAGTCTG



AACGAATGGATAGCATTCTGCAAAGAGTTCTTGAAGACCTATAAAGCTGCCACCATCTTT



GATATTACAACTTTGAAAAAGGCCGAGGAATACGCTGACATTGTGGAATTCTATAAGGAT



GTAGATAATCTTTGTTACAAGTTAGAATTTTGCCCTATCAAAACTTCTTTTATCGAAAAT



CTTATAGATAATGGCGATTTATACCTGTTTAGAATTAATAACAAGGACTTTTCTTCAAAA



AGTACAGGCACGAAAAACTTACACACATTATACTTGCAGGCTATATTTGACGAGCGAAAC



TTAAACAACCCCACGATAATGTTGAATGGAGGTGCAGAGTTATTCTACAGAAAAGAATCT



ATAGAACAGAAAAATCGGATCACGCACAAAGCCGGTAGTATCTTAGTGAATAAAGTGTGC



AAAGATGGTACAAGTCTAGATGACAAAATCCGTAACGAAATTTACCAGTATGAAAACAAA



TTCATTGATACTCTTTCGGACGAAGCTAAAAAGGTTCTGCCAAACGTTATTAAGAAAGAG



GCTACGCATGATATAACAAAAGATAAACGTTTCACTAGCGACAAATTCTTCTTTCATTGT



CCTTTAACAATCAACTACAAGGAAGGTGACACCAAACAATTTAATAATGAAGTGCTCTCA



TTCCTTAGAGGTAACCCCGATATCAATATTATCGGCATTGATAGAGGAGAAAGAAACCTA



ATCTATGTAACAGTCATTAACCAAAAAGGCGAAATATTGGATAGCGTCTCCTTCAATACT



GTCACCAATAAGTCATCGAAGATAGAACAAACTGTTGATTACGAAGAAAAATTGGCCGTT



AGAGAAAAGGAACGTATCGAAGCGAAGAGATCTTGGGATAGCATATCCAAGATTGCCACC



TTGAAGGAGGGTTATCTAAGCGCGATCGTACATGAAATCTGCTTATTAATGATTAAGCAT



AATGCTATTGTCGTGTTAGAAAACCTGAATGCCGGTTTTAAAAGGATTAGAGGTGGTTTG



TCAGAAAAGTCAGTATATCAAAAGTTTGAAAAGATGCTTATTAATAAACTCAACTACTTC



GTTAGCAAGAAAGAAAGTGATTGGAATAAACCGTCAGGTTTGCTCAATGGTCTTCAGTTA



AGTGATCAATTTGAGTCTTTCGAAAAATTAGGAATTCAAAGTGGATTCATTTTTTATGTA



CCAGCCGCGTACACTTCAAAAATTGACCCTACGACCGGATTTGCCAACGTCTTGAATTTG



TCCAAGGTCAGAAATGTTGACGCCATCAAAAGTTTTTTTAGCAACTTCAATGAAATCTCT



TATTCCAAAAAGGAAGCCCTTTTCAAGTTTTCTTTTGACCTAGACTCGTTATCGAAGAAA



GGATTTTCATCTTTCGTAAAGTTTAGCAAGTCCAAGTGGAATGTATACACATTCGGCGAG



AGAATTATCAAGCCCAAGAACAAACAGGGCTATAGAGAAGACAAGAGAATCAACTTGACT



TTTGAGATGAAAAAATTACTCAACGAATACAAGGTTTCATTTGATTTGGAGAACAACTTG



ATTCCCAATTTGACATCAGCTAACTTGAAGGATACGTTCTGGAAGGAGTTATTCTTTATA



TTCAAAACGACATTACAACTGCGTAATAGTGTTACAAACGGTAAAGAAGATGTATTAATC



TCACCTGTAAAGAATGCCAAAGGAGAATTTTTCGTATCCGGTACTCACAATAAGACACTA



CCACAGGATTGCGACGCTAACGGTGCGTATCATATTGCGTTGAAAGGATTAATGATACTT



GAAAGAAATAACCTTGTTCGCGAAGAAAAAGACACCAAGAAGATCATGGCTATTAGCAAT



GTTGATTGGTTTGAATACGTGCAAAAGAGGAGAGGTGTTTTGTAA





SEQ
ATGAACAATTATGACGAGTTCACAAAGCTATACCCTATCCAAAAAACTATCAGGTTCGAA


ID
TTGAAACCACAAGGGAGAACAATGGAACATCTGGAGACATTCAACTTTTTTGAAGAGGAC


NO:
AGAGACAGAGCGGAGAAATACAAAATTTTAAAAGAGGCCATCGATGAATATCACAAAAAG


129
TTTATCGACGAGCATTTAACAAACATGTCTTTGGACTGGAATTCACTTAAACAAATTTCT



GAGAAATATTATAAGTCTCGGGAGGAAAAAGACAAAAAGGTCTTTTTGTCCGAGCAAAAG



AGAATGAGACAAGAAATTGTCTCGGAGTTTAAAAAAGATGATCGGTTCAAAGATTTGTTT



AGCAAGAAATTGTTTTCTGAATTGTTGAAGGAGGAGATATACAAGAAAGGCAACCATCAA



GAAATAGATGCTTTGAAATCGTTTGACAAGTTCAGCGGTTACTTCATTGGTTTACATGAA



AATAGGAAGAACATGTATAGCGACGGCGATGAGATCACCGCTATATCGAATAGAATCGTT



AACGAAAATTTTCCGAAATTTTTGGATAATTTGCAAAAATACCAGGAAGCTAGGAAAAAG



TACCCTGAATGGATAATAAAGGCGGAATCAGCTTTGGTGGCTCACAACATAAAGATGGAT



GAAGTCTTCTCGCTGGAATATTTTAACAAAGTATTAAATCAGGAAGGAATCCAAAGATAC



AACTTAGCCTTGGGTGGATACGTAACCAAATCAGGTGAGAAAATGATGGGCTTAAATGAT



GCACTTAATCTAGCTCACCAATCCGAAAAGTCCTCTAAAGGGAGGATACACATGACACCA



TTGTTTAAGCAAATCCTTTCGGAGAAAGAATCTTTTTCATATATCCCCGATGTTTTCACT



GAGGATAGTCAATTGTTGCCCAGCATTGGTGGATTTTTTGCACAAATAGAAAATGATAAA



GATGGTAACATCTTCGATAGAGCCTTGGAATTGATAAGCTCCTATGCAGAATACGATACG



GAACGAATATACATTAGACAAGCTGACATCAACAGAGTAAGCAATGTTATTTTTGGTGAG



TGGGGAACTTTAGGTGGATTAATGCGGGAGTACAAAGCTGACTCAATCAATGATATTAAT



TTGGAACGTACGTGCAAAAAAGTCGATAAGTGGCTTGATAGTAAGGAGTTTGCTCTGTCG



GATGTACTAGAAGCAATTAAGAGAACAGGAAACAATGATGCATTTAATGAATATATTAGT



AAAATGAGGACGGCTAGAGAAAAGATAGACGCCGCACGTAAGGAAATGAAGTTTATTTCC



GAGAAAATATCTGGCGATGAAGAGTCGATTCACATCATCAAGACCCTACTCGATTCTGTT



CAGCAATTTCTCCATTTTTTTAACCTCTTCAAAGCAAGACAAGACATTCCCTTAGATGGG



GCTTTTTATGCCGAATTTGATGAAGTTCATTCAAAGTTGTTTGCTATTGTTCCTCTTTAC



AATAAGGTCCGTAATTACCTTACTAAAAATAACTTGAACACCAAGAAAATAAAGTTAAAC



TTCAAGAATCCGACTCTTGCCAACGGGTGGGATCAGAATAAAGTTTATGATTATGCTAGC



TTAATATTTCTAAGAGATGGGAATTATTACTTAGGAATCATCAATCCAAAGCGTAAGAAA



AACATTAAATTTGAACAAGGGTCAGGCAATGGCCCATTCTATAGAAAAATGGTGTATAAG



CAAATACCAGGACCTAACAAGAACTTGCCTCGCGTATTTTTAACTTCAACAAAGGGTAAA



AAAGAATATAAACCAAGCAAAGAAATTATTGAAGGTTACGAAGCAGATAAACACATCAGA



GGTGATAAGTTCGATCTGGATTTCTGCCATAAATTGATTGACTTTTTTAAGGAATCTATA



GAAAAACATAAGGACTGGTCCAAATTTAATTTCTACTTCTCACCTACAGAAAGTTATGGT



GACATTTCAGAATTTTATTTAGACGTTGAGAAACAAGGATATAGGATGCATTTTGAAAAT



ATTTCAGCGGAAACCATCGACGAATACGTTGAGAAGGGTGATTTATTCTTGTTCCAAATT



TACAATAAAGACTTCGTTAAAGCTGCAACCGGAAAGAAGGATATGCATACCATATATTGG



AACGCTGCATTCTCGCCAGAAAACTTACAAGATGTCGTTGTAAAGCTTAATGGAGAAGCT



GAGCTGTTCTATAGAGACAAGAGTGATATAAAAGAGATTGTGCATCGGGAAGGTGAAATT



CTGGTGAACAGAACTTACAATGGTCGTACACCCGTTCCAGACAAAATACATAAAAAACTG



ACCGATTATCATAATGGTAGGACAAAGGACTTGGGCGAGGCCAAGGAGTACCTCGATAAA



GTTAGATATTTCAAGGCACACTATGATATTACGAAAGACAGGAGATATTTAAACGATAAA



ATTTACTTTCATGTCCCTTTGACCCTTAACTTTAAAGCTAATGGTAAAAAGAATTTGAAC



AAAATGGTAATTGAGAAGTTTTTATCGGACGAAAAAGCTCACATAATCGGAATCGACCGC



GGAGAGAGAAATTTACTGTATTATAGTATCATCGACAGAAGTGGAAAGATTATTGATCAG



CAATCTTTGAACGTCATTGATGGGTTTGACTATCGGGAAAAGTTAAATCAAAGGGAAATT



GAAATGAAGGATGCGAGACAATCATGGAATGCCATTGGTAAAATTAAAGATCTCAAGGAG



GGGTACTTATCAAAAGCTGTACACGAGATAACTAAAATGGCTATCCAATATAATGCAATT



GTTGTAATGGAAGAATTGAATTATGGTTTTAAACGCGGCAGGTTTAAAGTCGAAAAACAA



ATATACCAAAAGTTTGAAAACATGTTAATTGATAAGATGAACTATCTTGTTTTCAAAGAT



GCACCTGATGAGAGTCCTGGCGGTGTGCTGAACGCCTATCAATTAACAAACCCATTAGAG



TCCTTTGCTAAACTGGGTAAACAAACTGGCATTCTATTTTATGTTCCAGCCGCTTACACC



TCAAAGATCGATCCAACGACCGGTTTTGTAAACTTATTTAATACTTCTTCCAAAACAAAC



GCGCAAGAACGCAAAGAATTCCTACAAAAATTTGAATCAATATCCTATAGCGCAAAAGAT



GGAGGTATATTCGCTTTCGCTTTTGACTACAGAAAGTTTGGCACTTCCAAGACAGATCAT



AAAAATGTGTGGACCGCTTATACCAACGGAGAAAGGATGCGTTATATTAAAGAAAAAAAG



AGGAACGAACTATTTGATCCATCGAAAGAAATTAAAGAAGCTTTGACAAGCAGCGGAATC



AAATATGATGGAGGTCAAAACATACTTCCAGATATTCTCAGATCTAATAATAACGGTCTT



ATTTACACGATGTATTCATCTTTTATCGCTGCCATCCAAATGCGTGTGTATGATGGCAAG



GAAGATTATATTATATCTCCTATTAAAAATTCAAAGGGTGAATTTTTTCGCACGGATCCA



AAAAGAAGAGAGCTTCCAATTGACGCCGATGCTAACGGTGCTTACAATATTGCATTGCGT



GGTGAACTTACTATGAGAGCCATCGCCGAAAAGTTTGATCCGGACAGTGAAAAAATGGCG



AAATTGGAGCTAAAGCACAAGGATTGGTTTGAATTCATGCAGACCCGTGGCGATTGA





SEQ
ATGACTAAAACGTTCGACTCCGAGTTTTTTAATCTCTATTCCTTGCAAAAGACCGTTAGG


ID
TTTGAATTGAAACCAGTTGGTGAAACTGCCTCATTTGTCGAAGACTTTAAAAACGAGGGA


NO:
TTGAAAAGAGTGGTTAGTGAAGATGAAAGAAGGGCAGTAGACTATCAAAAGGTTAAAGAA


130
ATCATTGACGATTACCACAGAGATTTTATAGAAGAATCTCTGAACTATTTTCCAGAGCAG



GTTTCAAAAGATGCTCTAGAGCAAGCGTTTCATTTGTATCAAAAGTTGAAAGCAGCGAAG



GTGGAAGAAAGGGAAAAAGCTTTAAAAGAATGGGAAGCATTACAGAAAAAATTGCGAGAA



AAAGTCGTCAAATGTTTCAGCGACTCTAATAAAGCTCGCTTTTCTAGAATCGATAAAAAA



GAATTGATTAAGGAAGATTTAATAAATTGGCTGGTAGCACAAAACAGAGAGGATGATATT



CCTACTGTTGAAACGTTCAATAATTTTACTACTTACTTCACTGGTTTCCATGAGAACAGG



AAGAATATTTACTCTAAAGATGATCACGCTACTGCTATAAGTTTTAGGTTGATTCACGAA



AACTTGCCTAAATTTTTTGACAATGTCATCAGTTTTAACAAGTTGAAAGAAGGTTTCCCG



GAATTAAAATTCGACAAAGTTAAAGAAGATTTAGAAGTAGATTACGACTTGAAGCATGCG



TTTGAAATTGAATATTTCGTTAATTTCGTCACACAAGCTGGTATCGACCAATATAATTAC



CTGCTTGGAGGCAAAACTCTAGAAGACGGTACGAAGAAACAAGGAATGAATGAACAGATT



AATTTATTTAAGCAACAACAAACTCGCGATAAAGCTAGACAGATTCCAAAACTGATTCCA



CTTTTCAAACAGATTCTATCTGAGAGAACTGAATCTCAGAGTTTTATCCCTAAGCAGTTC



GAGTCTGATCAGGAACTATTCGATTCCCTGCAGAAATTGCATAACAACTGTCAAGATAAG



TTTACCGTTTTGCAACAGGCGATCTTGGGATTGGCTGAGGCAGATCTTAAAAAGGTCTTT



ATTAAAACTAGTGATCTAAACGCATTGTCTAACACTATTTTTGGAAATTATTCTGTGTTC



TCAGACGCGCTCAATTTATATAAAGAGTCGCTAAAAACTAAAAAGGCTCAAGAAGCTTTT



GAAAAGTTGCCTGCACATAGTATTCATGATTTAATCCAATACTTAGAACAATTTAATTCG



TCTCTCGATGCTGAAAAGCAACAGTCTACCGATACTGTATTAAACTACTTTATTAAAACC



GACGAATTATATAGTCGTTTCATTAAATCCACCTCTGAGGCATTCACCCAAGTACAACCT



CTCTTTGAACTGGAAGCTTTGAGCTCCAAAAGAAGACCCCCAGAAAGTGAAGATGAGGGG



GCTAAAGGCCAAGAAGGTTTCGAACAAATTAAGAGAATCAAAGCTTATCTAGACACTCTA



ATGGAGGCTGTCCACTTTGCTAAGCCTTTGTATCTTGTCAAGGGTAGAAAGATGATAGAG



GGTCTAGACAAGGATCAAAGCTTCTACGAAGCGTTTGAAATGGCCTACCAGGAGTTGGAG



TCTTTAATCATCCCCATTTACAATAAGGCCAGATCTTACCTGTCTAGGAAGCCATTTAAA



GCGGATAAATTCAAAATTAATTTTGACAATAATACACTTCTATCTGGGTGGGATGCTAAC



AAGGAGACGGCTAACGCCAGCATATTGTTTAAGAAGGATGGTTTATACTACCTGGGAATC



ATGCCAAAAGGCAAAACTTTCTTGTTCGATTATTTCGTTAGTTCAGAAGATTCTGAAAAG



TTGAAACAACGGAGACAGAAAACCGCAGAGGAAGCGCTCGCACAGGATGGAGAATCCTAT



TTTGAAAAAATACGGTATAAACTCCTACCAGGTGCTAGTAAGATGTTGCCAAAGGTATTT



TTTAGCAATAAAAATATTGGGTTTTACAATCCCTCAGATGATATTCTACGAATTCGGAAT



ACGGCCTCTCATACTAAGAATGGTACTCCCCAGAAGGGTCATTCCAAGGTAGAATTTAAC



TTGAATGACTGTCACAAAATGATTGATTTTTTTAAATCTTCCATACAGAAACATCCCGAG



TGGGGATCCTTTGGTTTCACTTTTTCTGATACGTCGGACTTTGAAGATATGAGTGCTTTC



TACCGAGAAGTTGAAAATCAAGGTTACGTTATAAGTTTTGATAAAATAAAAGAAACTTAC



ATTCAGTCTCAAGTTGAGCAAGGTAACTTATATTTATTTCAAATTTACAACAAAGATTTT



AGTCCGTATTCAAAGGGAAAGCCAAACCTGCACACTTTATACTGGAAAGCTCTGTTTGAA



GAGGCTAATTTGAATAACGTAGTGGCTAAGCTAAACGGCGAAGCAGAAATCTTTTTCAGA



AGACACAGTATCAAAGCATCTGATAAAGTGGTACATCCTGCTAATCAAGCTATAGATAAT



AAGAATCCCCATACTGAGAAGACGCAGTCCACATTTGAATATGACTTGGTCAAAGACAAA



AGATATACCCAAGACAAATTTTTTTTTCATGTACCGATATCTTTAAACTTTAAGGCTCAG



GGCGTTTCAAAGTTTAATGATAAGGTAAATGGATTCTTAAAGGGCAATCCCGACGTTAAT



ATAATCGGTATAGATCGAGGTGAGAGACATCTTTTATACTTTACCGTGGTGAATCAAAAA



GGAGAAATATTAGTGCAAGAGTCCTTGAATACATTAATGTCTGACAAGGGTCATGTCAAC



GATTATCAACAGAAATTGGACAAGAAGGAACAGGAAAGGGACGCTGCCAGGAAGTCCTGG



ACGACAGTAGAAAATATTAAAGAATTAAAAGAAGGTTATTTATCACATGTGGTTCATAAA



CTTGCACATTTAATCATCAAATATAACGCAATAGTGTGCTTGGAAGATCTTAATTTTGGC



TTCAAGAGGGGTAGGTTCAAGGTCGAAAAACAGGTCTACCAGAAGTTCGAGAAAGCTCTG



ATCGATAAATTGAATTATCTTGTTTTCAAAGAAAAAGAATTAGGAGAAGTTGGTCATTAT



CTTACAGCATACCAACTCACTGCACCATTTGAAAGCTTCAAAAAGCTAGGCAAGCAATCT



GGGATTTTGTTCTATGTTCCGGCTGATTATACATCAAAGATAGATCCTACCACAGGCTTT



GTAAATTTTTTAGATCTTAGGTACCAATCCGTTGAAAAAGCTAAACAGTTGCTGTCCGAT



TTTAATGCGATAAGATTTAATAGTGTTCAGAATTATTTTGAGTTCGAAATTGATTATAAA



AAATTGACACCAAAACGTAAAGTAGGAACACAATCTAAATGGGTTATTTGTACCTATGGA



GATGTTAGATACCAAAACAGAAGAAATCAGAAAGGTCACTGGGAAACTGAAGAAGTTAAC



GTTACTGAAAAACTTAAAGCTCTATTTGCGAGCGATTCAAAAACGACGACGGTGATCGAT



TATGCAAATGATGATAACCTTATTGATGTAATTCTGGAACAAGATAAGGCATCATTTTTT



AAAGAACTACTATGGTTGTTAAAGCTAACCATGACCCTAAGGCACTCCAAGATAAAGTCA



GAGGATGATTTTATCCTCTCTCCAGTGAAAAACGAACAAGGTGAGTTTTACGACTCAAGA



AAGGCGGGTGAAGTCTGGCCTAAGGATGCTGATGCCAATGGAGCTTATCACATCGCTCTG



AAGGGGCTATGGAACTTACAGCAAATTAACCAATGGGAAAAAGGTAAAACTTTAAACCTC



GCCATAAAGAACCAGGATTGGTTCAGCTTTATCCAAGAAAAACCATATCAAGAATAA





SEQ
ATGCACACAGGAGGTCTACTCTCGATGGATGCTAAGGAATTTACCGGTCAATATCCGCTG


ID
TCCAAAACTTTGCGTTTTGAGCTTAGACCTATTGGCCGAACGTGGGATAACCTAGAGGCT


NO:
TCTGGTTATTTGGCGGAAGATAGACATAGAGCTGAGTGTTATCCCCGAGCTAAAGAATTG


131
CTGGATGATAACCACAGGGCGTTCCTGAATAGAGTTCTACCGCAAATCGATATGGATTGG



CATCCAATTGCTGAAGCTTTCTGCAAGGTGCACAAAAATCCAGGTAATAAAGAATTGGCT



CAGGATTATAATTTGCAGCTTAGTAAGAGAAGAAAAGAAATTTCCGCTTATTTGCAGGAT



GCTGATGGATACAAGGGGTTGTTCGCGAAACCTGCCCTGGACGAAGCTATGAAAATAGCT



AAGGAAAACGGCAATGAATCTGATATTGAAGTTTTGGAAGCCTTCAATGGATTTTCCGTT



TATTTCACTGGTTATCATGAGAGTAGGGAGAATATATACTCAGACGAAGATATGGTATCC



GTCGCCTATCGCATAACTGAAGATAATTTTCCAAGGTTCGTGTCGAACGCGTTAATTTTT



GATAAACTAAATGAATCGCACCCGGATATTATTTCGGAAGTGTCCGGTAATCTGGGGGTA



GACGATATTGGTAAATATTTTGATGTGTCCAACTACAATAATTTCCTTAGTCAAGCAGGA



ATTGATGACTACAACCATATTATAGGAGGGCATACAACTGAAGACGGTCTCATTCAAGCT



TTTAACGTAGTGTTAAACCTAAGGCACCAAAAAGACCCAGGTTTTGAGAAAATTCAATTT



AAGCAACTCTACAAGCAGATACTGAGCGTTAGGACTAGTAAGTCATATATCCCAAAGCAA



TTCGATAACTCAAAGGAAATGGTCGACTGTATATGCGACTACGTCTCAAAAATAGAAAAA



TCTGAAACAGTAGAAAGAGCTCTGAAATTGGTAAGAAATATATCTTCTTTTGATTTAAGA



GGTATTTTCGTAAATAAAAAAAACCTTCGAATTTTGTCTAATAAGTTAATTGGAGACTGG



GACGCAATAGAGACAGCTTTGATGCACAGTTCCAGCAGTGAAAACGATAAGAAATCAGTG



TATGACTCTGCAGAGGCATTCACCCTTGATGATATCTTCAGTTCTGTGAAAAAGTTCAGC



GACGCCTCCGCTGAGGATATAGGAAACCGCGCTGAAGACATATGTCGTGTTATCTCAGAA



ACAGCTCCTTTCATTAACGACTTAAGGGCTGTAGATTTGGATTCTTTAAATGATGACGGC



TATGAAGCGGCCGTGTCTAAAATACGGGAATCTCTTGAACCCTACATGGATCTATTTCAC



GAATTGGAGATCTTTAGCGTGGGTGATGAGTTTCCTAAATGTGCTGCCTTTTATAGCGAG



TTGGAAGAGGTCTCAGAACAACTGATTGAAATCATTCCTTTATTTAACAAAGCAAGAAGT



TTTTGCACAAGGAAAAGGTATTCAACCGACAAAATCAAAGTCAATTTAAAATTCCCTACT



CTGGCAGATGGATGGGATCTAAATAAAGAAAGGGATAACAAAGCCGCAATTCTAAGAAAA



GACGGTAAATACTACCTGGCAATTTTAGACATGAAGAAAGATCTCAGTAGTATTCGTACG



AGCGATGAGGACGAGTCTTCTTTTGAAAAGATGGAATATAAATTGCTCCCTTCTCCTGTG



AAAATGCTTCCAAAAATTTTTGTTAAATCGAAAGCCGCCAAAGAAAAGTACGGGTTGACC



GATAGAATGTTAGAATGCTACGATAAAGGTATGCATAAGTCGGGTAGTGCTTTTGATTTG



GGTTTTTGTCATGAATTGATCGATTACTATAAGCGCTGCATTGCCGAGTACCCAGGCTGG



GATGTTTTCGACTTTAAATTTCGTGAGACAAGCGATTACGGATCCATGAAAGAATTTAAT



GAAGACGTCGCTGGCGCAGGTTACTATATGTCACTTAGAAAGATTCCATGTTCCGAAGTT



TATCGTTTACTGGACGAGAAGTCAATTTACTTGTTTCAAATATATAATAAGGATTATAGC



GAAAACGCACATGGGAATAAGAATATGCATACGATGTATTGGGAGGGCTTGTTCTCACCA



CAAAATTTGGAATCACCAGTCTTCAAATTGTCCGGAGGCGCAGAACTTTTTTTCAGAAAG



TCATCTATTCCTAATGACGCTAAAACGGTACATCCGAAAGGTTCAGTTCTTGTTCCCAGA



AACGACGTCAATGGTAGAAGAATACCAGACTCGATCTACAGAGAGTTGACAAGGTATTTT



AACCGTGGGGATTGCAGGATCAGTGATGAAGCTAAGTCTTACCTGGACAAGGTCAAGACA



AAAAAAGCGGACCATGACATTGTTAAGGATAGAAGATTTACTGTAGATAAGATGATGTTC



CATGTTCCGATTGCCATGAATTTTAAAGCTATAAGTAAACCAAATCTTAATAAGAAAGTT



ATTGATGGCATAATAGATGATCAAGATTTGAAAATCATCGGTATCGATCGTGGTGAGAGA



AATCTTATTTATGTGACCATGGTCGATAGGAAGGGGAATATATTGTATCAAGACAGTCTT



AATATTTTAAATGGATACGATTACCGCAAAGCTTTAGACGTGAGGGAATATGATAACAAA



GAAGCTAGAAGGAATTGGACTAAAGTAGAAGGTATTAGAAAAATGAAAGAAGGTTATTTA



TCTTTAGCTGTTAGTAAATTGGCCGATATGATCATCGAAAATAATGCTATAATCGTAATG



GAAGATTTGAATCACGGGTTTAAGGCAGGTCGTTCCAAAATTGAAAAGCAGGTGTATCAA



AAATTCGAATCAATGTTAATCAACAAGTTAGGATACATGGTGCTAAAAGACAAGTCCATT



GACCAGTCTGGTGGAGCCCTTCATGGTTACCAATTAGCCAATCATGTTACGACCTTAGCT



AGCGTGGGTAAACAATGTGGAGTAATTTTTTACATACCTGCAGCTTTTACTTCGAAGATT



GATCCCACCACGGGCTTTGCTGATTTATTCGCTCTCTCTAATGTGAAGAATGTCGCTTCT



ATGAGAGAGTTCTTCTCCAAAATGAAGTCAGTAATATATGACAAGGCGGAAGGCAAATTC



GCCTTTACATTTGATTATTTGGATTATAACGTTAAAAGCGAATGTGGACGTACCTTATGG



ACTGTGTATACAGTTGGTGAACGCTTCACCTACTCTAGAGTAAACCGAGAGTATGTTCGG



AAAGTCCCAACAGATATCATCTATGATGCATTACAAAAAGCTGGTATTAGCGTCGAAGGT



GACCTTAGAGATAGAATCGCGGAAAGCGACGGTGACACATTAAAGTCTATATTCTACGCT



TTTAAATACGCGTTGGATATGAGAGTCGAAAACAGAGAGGAAGACTATATACAGTCACCT



GTGAAGAATGCTTCTGGTGAGTTCTTTTGTTCAAAAAACGCCGGAAAGTCTTTGCCGCAG



GATTCAGATGCAAATGGTGCCTATAATATAGCTCTGAAAGGGATCCTACAACTCAGAATG



TTGAGCGAACAATACGATCCAAATGCAGAATCGATTAGATTGCCACTTATAACTAACAAG



GCATGGTTAACTTTTATGCAATCCGGTATGAAAACTTGGAAGAATTAA





SEQ
ATGGATTCTCTTAAGGATTTCACTAATTTATATCCAGTCTCGAAAACATTGCGGTTCGAA


ID
TTGAAACCAGTTGGGAAAACTCTAGAAAACATTGAAAAAGCCGGTATATTGAAAGAAGAT


NO:
GAACACAGAGCGGAATCCTACCGCCGGGTAAAAAAGATAATTGACACATACCATAAAGTG


132
TTTATTGACAGCTCCTTAGAGAACATGGCTAAAATGGGGATAGAAAATGAAATCAAGGCT



ATGCTGCAGTCTTTTTGTGAACTCTATAAGAAAGACCACAGGACAGAAGGAGAAGATAAA



GCTCTTGATAAAATTAGAGCTGTTCTTAGAGGTTTAATCGTTGGGGCTTTCACTGGTGTA



TGTGGAAGACGAGAAAACACAGTACAAAATGAAAAGTACGAGAGTTTGTTCAAAGAAAAA



TTGATAAAGGAAATTTTGCCAGATTTCGTGTTGTCCACCGAGGCTGAGTCTCTTCCATTC



AGCGTTGAAGAAGCAACAAGGAGCTTAAAAGAGTTTGACTCATTCACTTCTTATTTTGCT



GGTTTTTACGAAAATAGAAAGAATATTTATTCCACGAAACCGCAAAGTACTGCGATAGCC



TACAGATTAATTCATGAAAACTTGCCTAAATTTATAGATAATATTTTGGTCTTCCAGAAG



ATTAAAGAACCAATCGCTAAAGAACTTGAGCACATAAGAGCAGATTTTAGCGCAGGCGGA



TATATCAAAAAAGATGAACGGCTAGAAGACATATTCTCATTAAATTACTACATTCATGTC



CTTTCTCAAGCTGGTATAGAAAAATATAATGCTTTAATCGGGAAGATAGTGACGGAAGGT



GATGGTGAAATGAAAGGTCTTAATGAACATATTAACTTATATAACCAACAGAGGGGTCGA



GAGGATAGGTTGCCCTTGTTTAGGCCTCTATACAAGCAAATCCTGTCCGATAGAGAGCAA



TTGTCTTATTTACCTGAATCATTTGAAAAAGATGAAGAGCTGCTTAGAGCACTTAAGGAA



TTTTACGATCACATCGCCGAAGACATCTTGGGTAGAACACAGCAATTGATGACTTCAATT



TCTGAATACGACTTGTCCCGTATTTATGTCAGAAATGATTCTCAACTTACAGACATCTCG



AAGAAAATGCTAGGAGATTGGAACGCCATTTATATGGCTAGAGAACGAGCCTACGACCAC



GAACAGGCTCCTAAACGTATTACTGCTAAATACGAACGTGATAGAATCAAGGCCTTAAAA



GGTGAAGAGTCAATTTCATTGGCGAATCTGAACAGCTGTATAGCTTTCTTGGACAATGTA



AGGGATTGTCGAGTTGACACATACCTATCAACTTTGGGGCAGAAAGAGGGTCCTCATGGC



TTAAGTAACTTGGTGGAAAACGTCTTCGCCTCATATCATGAAGCAGAACAGTTATTGTCG



TTTCCTTACCCCGAAGAGAACAACCTTATTCAGGACAAAGACAATGTAGTTTTGATCAAA



AACCTATTGGATAATATAAGTGATTTACAACGTTTCCTTAAACCTTTGTGGGGAATGGGC



GATGAACCTGACAAAGACGAAAGGTTTTACGGTGAATACAACTATATTAGAGGAGCGCTT



GACCAGGTAATACCTTTGTACAATAAAGTAAGGAACTACTTGACTCGTAAACCATATTCT



ACTAGAAAAGTTAAATTGAACTTTGGTAATTCACAGCTGCTGAGTGGTTGGGATCGTAAT



AAAGAAAAAGATAACTCCTGTGTTATCTTGCGAAAAGGACAAAACTTTTACTTGGCAATT



ATGAACAACCGTCACAAAAGGTCCTTCGAGAACAAAGTTCTGCCTGAATACAAAGAAGGT



GAACCATATTTTGAAAAAATGGACTATAAATTCCTGCCAGATCCTAATAAAATGTTGCCT



AAGGTCTTCTTGTCTAAAAAAGGTATAGAAATATATAAACCATCCCCGAAGTTGCTGGAG



CAATATGGTCATGGAACGCACAAAAAAGGTGACACTTTTAGTATGGATGACTTGCACGAG



TTGATTGATTTTTTTAAACATTCCATTGAAGCGCACGAAGATTGGAAACAATTTGGTTTC



AAGTTCTCTGACACAGCCACTTACGAAAATGTATCGTCCTTTTATAGAGAAGTGGAAGAT



CAGGGTTATAAACTGTCATTCCGTAAGGTTAGTGAAAGCTATGTGTACTCGTTGATCGAT



CAAGGGAAGCTTTATCTTTTTCAAATCTATAATAAAGATTTCTCTCCTTGTTCAAAGGGC



ACACCTAATCTTCATACACTATACTGGAGAATGCTTTTCGATGAAAGAAATTTGGCTGAT



GTGATCTATAAATTAGACGGTAAAGCTGAGATTTTTTTCAGAGAGAAATCCCTGAAAAAC



GACCATCCAACTCATCCGGCAGGTAAACCGATTAAAAAGAAATCCCGGCAAAAAAAGGGC



GAAGAGAGTTTATTCGAGTATGATTTAGTTAAGGACAGACATTATACAATGGACAAATTT



CAATTTCATGTGCCCATTACTATGAACTTTAAGTGTAGTGCAGGGTCTAAGGTTAATGAT



ATGGTAAACGCACATATTAGAGAAGCTAAAGATATGCACGTCATCGGTATTGATCGCGGA



GAAAGAAATTTACTTTACATTTGCGTTATCGATTCTAGGGGCACCATCTTGGATCAAATC



TCTTTGAACACTATAAATGATATTGACTATCATGATCTACTAGAGAGTCGGGATAAAGAC



AGGCAACAAGAAAGAAGAAATTGGCAAACAATTGAAGGTATTAAAGAATTAAAGCAAGGC



TATCTAAGCCAGGCTGTACACAGAATTGCCGAATTAATGGTAGCATATAAAGCTGTCGTA



GCTCTAGAAGACTTGAACATGGGTTTCAAAAGAGGGCGCCAGAAGGTCGAAAGTAGTGTT



TATCAACAATTTGAAAAACAGTTAATAGATAAGTTGAATTATCTAGTGGATAAAAAAAAG



CGTCCTGAGGACATTGGCGGTTTATTAAGAGCCTACCAATTCACTGCGCCATTTAAATCG



TTCAAAGAAATGGGTAAACAAAACGGTTTTCTATTCTACATCCCCGCATGGAATACCTCA



AATATAGATCCAACTACCGGTTTCGTCAACTTATTTCATGCTCAATATGAGAATGTGGAC



AAAGCAAAATCATTCTTTCAAAAATTTGATAGCATTAGCTACAATCCTAAAAAAGATTGG



TTTGAATTTGCGTTCGATTATAAAAATTTCACCAAGAAGGCTGAAGGTTCCAGATCTATG



TGGATATTGTGCACCCACGGAAGTAGAATTAAGAACTTCCGTAATTCACAGAAAAACGGC



CAGTGGGACAGCGAAGAATTCGCCCTAACCGAAGCTTTCAAAAGTCTTTTCGTAAGATAC



GAGATAGACTATACAGCTGATCTAAAGACAGCTATTGTGGATGAGAAGCAAAAAGACTTC



TTTGTCGACCTTCTTAAGTTGTTCAAGTTAACTGTGCAGATGAGAAATAGTTGGAAGGAA



AAAGACCTAGATTACTTGATTAGCCCAGTCGCTGGTGCAGATGGCAGATTTTTTGATACA



CGTGAAGGCAATAAATCACTACCAAAAGACGCGGACGCTAATGGCGCATACAACATCGCA



TTGAAGGGTTTGTGGGCTCTCAGGCAGATTAGGCAGACAAGTGAGGGTGGTAAGCTTAAG



CTGGCGATTTCTAATAAGGAATGGTTACAGTTTGTTCAAGAAAGATCCTACGAAAAAGAT



TAA





SEQ
ATGAACAATGGTACTAATAATTTTCAAAACTTCATAGGGATTTCTAGCCTTCAAAAGACA


ID
TTGAGAAATGCTTTAATTCCAACAGAAACGACTCAACAATTCATAGTGAAAAATGGTATT


NO:
ATAAAAGAAGACGAGTTGCGTGGCGAGAATAGACAAATTTTGAAAGATATCATGGATGAC


133
TACTACAGAGGGTTCATCTCCGAAACATTGTCTTCTATTGACGACATTGACTGGACCAGC



TTATTCGAAAAAATGGAAATACAGCTGAAGAACGGAGATAACAAGGACACTCTTATAAAG



GAGCAAACGGAATATAGAAAGGCTATACACAAAAAGTTTGCTAATGACGATAGATTTAAA



AACATGTTTAGTGCGAAGTTAATTTCTGATATTCTACCCGAGTTTGTCATTCATAATAAT



AACTACTCTGCATCTGAAAAAGAGGAGAAGACCCAGGTTATAAAGTTGTTTTCAAGATTT



GCCACATCATTTAAAGACTACTTCAAGAACAGGGCGAATTGCTTCTCTGCTGATGATATT



AGCTCTTCCAGCTGTCATAGAATTGTTAACGATAATGCCGAAATTTTTTTTAGTAATGCC



TTGGTATATAGACGCATAGTCAAGTCACTAAGCAATGATGATATAAACAAGATTAGTGGT



GATATGAAAGATAGCCTTAAAGAAATGAGCCTTGAAGAGATATATTCATATGAGAAGTAC



GGTGAATTTATAACTCAAGAAGGAATTTCTTTTTATAACGATATTTGTGGTAAGGTTAAT



TCTTTTATGAATTTGTATTGCCAGAAGAACAAGGAAAATAAGAATCTATATAAACTACAA



AAGTTGCATAAACAGATTTTGTGTATAGCTGATACATCCTACGAAGTTCCGTATAAATTT



GAATCTGATGAGGAAGTTTATCAATCGGTAAACGGTTTTCTTGACAACATTTCCAGCAAA



CATATCGTTGAGAGACTACGTAAAATTGGAGACAACTATAATGGTTACAATCTAGATAAA



ATATACATAGTGTCCAAGTTTTATGAGTCTGTCTCTCAAAAGACATATCGTGATTGGGAG



ACCATTAATACTGCACTTGAAATTCATTATAACAACATATTGCCTGGTAACGGGAAGAGT



AAAGCTGATAAGGTTAAAAAGGCCGTCAAAAACGACTTGCAAAAGTCTATTACCGAGATA



AATGAATTAGTGTCAAACTACAAACTATGCTCAGATGATAATATTAAAGCGGAAACATAC



ATCCACGAAATTTCCCACATACTGAATAACTTTGAAGCTCAGGAGCTTAAATATAACCCG



GAAATACACTTGGTTGAGAGCGAGTTAAAAGCATCTGAGTTGAAAAATGTATTAGACGTC



ATCATGAATGCGTTTCATTGGTGTTCAGTTTTCATGACTGAAGAATTAGTCGACAAAGAT



AACAATTTTTATGCCGAATTAGAGGAAATATATGATGAAATTTATCCCGTAATTAGTTTA



TACAATCTAGTTAGAAATTATGTTACACAAAAGCCGTATAGTACCAAGAAAATAAAGCTT



AATTTCGGAATACCTACGCTTGCTGATGGTTGGTCAAAAAGTAAAGAATATAGCAATAAT



GCAATAATTTTAATGAGAGATAACCTATATTATTTGGGTATTTTTAACGCTAAGAACAAA



CCAGACAAGAAAATAATTGAAGGTAATACATCTGAAAACAAGGGCGACTATAAAAAGATG



ATATACAATTTGCTCCCAGGTCCTAATAAAATGATTCCTAAGGTTTTCCTGAGTAGCAAG



ACTGGCGTTGAAACTTACAAGCCTAGTGCGTATATCCTGGAGGGTTATAAACAGAACAAG



CATATCAAATCCTCTAAGGACTTCGATATCACCTTTTGCCATGACTTAATCGATTATTTT



AAAAATTGTATCGCAATTCATCCAGAATGGAAAAATTTCGGATTTGATTTTAGTGATACC



AGCACTTACGAGGATATCTCTGGGTTCTACAGAGAAGTGGAGTTGCAGGGCTACAAAATC



GATTGGACTTACATATCTGAAAAGGACATAGATTTGCTGCAGGAGAAAGGTCAGCTATAT



TTGTTTCAAATCTACAACAAAGACTTTTCTAAAAAGTCTACCGGTAATGACAATCTGCAC



ACAATGTACTTGAAGAACTTATTCTCCGAGGAGAACTTAAAGGACATTGTACTCAAGTTG



AATGGAGAAGCCGAGATTTTTTTTAGAAAGAGCAGTATAAAGAATCCTATAATCCACAAG



AAGGGCTCAATTCTCGTGAATAGGACGTATGAGGCAGAAGAAAAGGACCAATTTGGGAAT



ATACAAATTGTAAGAAAAAACATCCCAGAAAATATCTACCAGGAATTATATAAGTATTTT



AATGACAAATCTGATAAGGAACTGTCTGACGAAGCCGCTAAGCTCAAGAATGTTGTGGGC



CACCATGAAGCTGCTACTAATATAGTGAAGGACTACAGATATACCTACGATAAATATTTC



CTGCATATGCCAATTACTATAAACTTCAAAGCAAATAAAACAGGTTTTATAAATGATAGA



ATCCTGCAGTATATTGCTAAAGAAAAGGATTTACATGTAATTGGGATTGATAGAGGTGAA



CGCAATCTGATCTATGTCAGCGTAATAGATACTTGTGGTAATATTGTGGAACAAAAGTCC



TTTAATATTGTGAACGGATATGATTACCAAATCAAGTTGAAACAACAAGAGGGAGCACGC



CAAATTGCCCGTAAGGAATGGAAAGAGATAGGTAAGATCAAGGAAATTAAGGAAGGTTAT



CTTTCATTAGTTATTCACGAAATTTCGAAGATGGTAATCAAATACAACGCAATAATTGCT



ATGGAGGACCTGTCATATGGATTTAAGAAAGGTAGATTCAAGGTTGAGAGACAGGTATAC



CAGAAATTTGAAACTATGTTGATCAACAAATTAAATTACTTAGTCTTTAAGGACATATCA



ATAACGGAAAACGGCGGGCTTTTAAAAGGGTATCAACTTACATACATACCTGATAAGTTG



AAAAATGTGGGTCATCAGTGTGGGTGCATCTTTTATGTTCCAGCCGCTTACACATCAAAA



ATCGATCCTACTACTGGGTTCGTAAACATATTTAAATTTAAAGATCTAACCGTTGATGCA



AAAAGAGAGTTTATCAAGAAATTTGATAGCATTAGGTACGATTCAGAAAAAAATCTATTC



TGTTTTACTTTTGACTACAACAACTTTATAACGCAGAATACAGTGATGTCAAAATCGTCC



TGGTCAGTGTATACTTATGGTGTTAGAATTAAGAGACGTTTCGTAAACGGTCGTTTTTCT



AACGAGTCCGATACAATCGACATCACTAAAGATATGGAAAAAACTTTGGAAATGACAGAT



ATAAACTGGAGAGATGGTCACGACCTTAGACAAGATATAATCGATTATGAAATCGTACAG



CATATTTTTGAAATTTTTCGCTTAACAGTTCAGATGCGTAACTCTCTTAGTGAGCTAGAA



GATAGAGATTATGATAGACTTATCTCGCCTGTTCTTAACGAAAATAATATCTTCTATGAC



TCGGCAAAAGCCGGTGATGCACTTCCAAAAGATGCTGATGCAAATGGCGCGTACTGCATC



GCATTGAAGGGGCTCTACGAGATTAAACAAATCACCGAAAACTGGAAAGAAGATGGTAAA



TTTTCTAGGGATAAGTTGAAAATCAGTAATAAAGATTGGTTCGATTTTATACAAAATAAG



CGATACTTATAG





SEQ
ATGACCAATAAGTTTACTAATCAATACTCATTGTCTAAAACGTTAAGATTCGAGTTAATT


ID
CCCCAGGGAAAGACACTAGAATTTATTCAAGAAAAAGGTCTTCTCTCTCAGGATAAACAA


NO:
AGAGCAGAATCATACCAGGAGATGAAAAAAACCATAGATAAATTTCATAAGTACTTCATC


134
GACTTGGCACTATCGAACGCCAAGCTAACACATTTGGAAACCTACCTGGAGTTGTATAAT



AAATCGGCAGAGACGAAAAAGGAACAAAAATTCAAGGATGACCTGAAGAAGGTTCAAGAT



AATCTGCGAAAGGAAATAGTGAAGTCGTTTAGTGATGGTGATGCAAAGTCAATCTTTGCT



ATTTTAGACAAGAAGGAATTAATAACCGTGGAACTTGAAAAGTGGTTTGAAAATAACGAA



CAGAAAGATATTTACTTCGACGAAAAATTTAAAACGTTTACTACGTACTTTACAGGGTTC



CATCAGAACCGCAAAAACATGTACTCCGTTGAACCAAACTCTACTGCAATCGCCTACAGA



TTAATACACGAAAATTTGCCTAAGTTTTTAGAAAATGCAAAGGCTTTTGAAAAGATAAAG



CAAGTCGAATCGTTACAGGTAAACTTTCGCGAATTAATGGGCGAATTTGGAGATGAAGGT



CTTATTTTTGTCAATGAATTAGAGGAAATGTTTCAAATTAATTATTATAACGATGTCTTG



AGTCAGAACGGCATTACTATCTACAACTCAATTATCAGTGGTTTCACTAAGAATGATATA



AAATATAAAGGTTTGAATGAATACATTAATAATTATAATCAAACTAAAGATAAGAAGGAC



AGGCTTCCGAAATTGAAGCAATTGTACAAGCAGATTCTAAGTGATAGGATTAGTTTGTCT



TTCTTGCCAGACGCATTTACTGATGGCAAGCAAGTCTTAAAGGCTATATTCGATTTCTAC



AAGATTAACCTACTTTCGTACACAATTGAAGGTCAAGAAGAATCTCAAAATCTGCTGCTT



TTGATTAGGCAAACTATAGAAAATTTGTCGTCCTTTGACACTCAAAAAATTTACCTGAAG



AATGATACACACCTGACTACAATATCACAGCAGGTCTTTGGGGATTTTTCTGTCTTCTCC



ACGGCCCTAAACTATTGGTATGAGACAAAAGTTAATCCAAAATTTGAAACAGAATATAGT



AAGGCGAATGAAAAAAAGAGAGAAATTTTGGATAAAGCGAAGGCAGTATTCACAAAACAA



GACTATTTTTCTATCGCATTTCTCCAAGAAGTCTTATCCGAATATATTTTGACACTCGAT



CACACCTCTGATATAGTTAAGAAACATTCGTCCAACTGCATCGCAGATTACTTCAAGAAT



CACTTCGTGGCTAAGAAAGAAAACGAAACGGATAAAACTTTTGACTTCATTGCTAACATA



ACCGCTAAATACCAATGTATTCAGGGCATATTAGAAAATGCAGACCAGTACGAAGACGAG



TTAAAACAGGACCAAAAGTTAATAGATAATCTAAAGTTTTTCTTAGATGCTATACTTGAG



TTATTACATTTTATAAAGCCATTGCATCTAAAATCGGAAAGTATTACTGAAAAAGACACT



GCGTTCTATGATGTGTTCGAAAATTATTATGAGGCTTTATCTTTATTGACCCCCCTTTAC



AACATGGTCCGCAATTATGTTACTCAGAAGCCTTACTCTACTGAAAAGATCAAATTAAAC



TTTGAAAATGCTCAGTTGCTGAATGGTTGGGATGCCAATAAGGAAGGTGACTACCTGACG



ACTATTCTAAAAAAAGACGGTAATTATTTCTTAGCAATCATGGATAAAAAACATAACAAG



GCATTTCAAAAATTTCCAGAAGGAAAAGAAAACTATGAAAAGATGGTTTATAAATTGTTG



CCTGGAGTTAATAAAATGTTGCCAAAAGTTTTTTTTAGCAATAAGAACATAGCTTACTTT



AATCCATCTAAGGAACTGCTCGAGAACTACAAGAAGGAAACACATAAAAAAGGTGATACA



TTTAATTTGGAACATTGCCATACTCTGATTGATTTTTTTAAGGACTCTCTTAATAAACAT



GAAGACTGGAAATATTTTGATTTTCAATTTTCGGAAACTAAATCATACCAAGATCTAAGT



GGATTTTACAGAGAAGTTGAACACCAAGGTTATAAGATTAACTTCAAGAATATAGATTCT



GAATACATTGATGGTCTTGTAAACGAGGGTAAACTATTCCTGTTCCAAATCTACTCTAAG



GACTTCTCACCTTTTTCCAAAGGAAAACCTAATATGCATACGTTGTACTGGAAGGCTCTA



TTTGAAGAACAAAATTTGCAAAATGTAATCTACAAACTGAACGGCCAAGCTGAAATATTC



TTCAGAAAAGCCTCAATTAAGCCAAAAAACATTATTCTTCATAAAAAGAAGATCAAGATT



GCGAAGAAACATTTTATTGATAAGAAGACCAAGACTTCCGAAATTGTACCAGTACAAACA



ATCAAGAATCTCAATATGTATTATCAAGGCAAGATAAGTGAGAAAGAGTTAACCCAGGAT



GATTTACGTTATATAGACAATTTCTCTATATTCAACGAGAAGAACAAAACAATAGACATT



ATCAAAGATAAAAGGTTTACTGTTGACAAATTTCAATTTCATGTGCCTATCACAATGAAC



TTTAAGGCCACAGGTGGTTCGTACATTAATCAAACTGTTTTAGAATATCTGCAAAATAAC



CCAGAGGTCAAGATCATCGGTCTTGATAGGGGTGAGAGACATCTGGTGTATCTAACACTC



ATTGATCAACAAGGCAACATCTTGAAGCAAGAATCATTGAACACTATCACAGACTCCAAG



ATCTCGACTCCATATCACAAACTCCTTGACAATAAAGAAAACGAAAGGGATCTTGCCAGA



AAAAATTGGGGTACAGTTGAAAATATTAAGGAACTAAAAGAAGGTTACATTTCGCAAGTA



GTTCACAAGATTGCAACACTCATGTTGGAAGAAAACGCAATCGTTGTCATGGAAGATTTA



AATTTCGGATTTAAGAGAGGAAGATTTAAAGTAGAAAAGCAAATCTACCAGAAGTTGGAG



AAGATGTTAATTGACAAATTGAACTACTTAGTGCTGAAAGACAAACAGCCTCAAGAATTG



GGCGGTCTATACAACGCTTTACAACTGACAAATAAATTTGAGTCATTCCAAAAGATGGGT



AAGCAGAGTGGTTTTTTGTTTTATGTTCCGGCATGGAACACATCCAAAATCGATCCAACT



ACAGGCTTCGTGAATTATTTCTACACTAAATATGAAAATGTGGATAAAGCAAAAGCTTTC



TTTGAGAAGTTCGAGGCGATCCGTTTTAACGCTGAAAAGAAGTACTTCGAGTTCGAGGTC



AAAAAGTATTCAGATTTTAACCCCAAGGCTGAAGGCACCCAGCAAGCATGGACTATTTGC



ACGTACGGTGAGCGAATCGAAACTAAAAGGCAAAAGGATCAAAATAATAAGTTTGTAAGC



ACACCCATTAACTTGACAGAAAAGATAGAAGATTTTCTTGGAAAAAACCAAATTGTATAT



GGTGACGGTAACTGTATCAAGTCACAAATTGCTTCTAAAGACGATAAGGCCTTCTTCGAA



ACTCTGCTATACTGGTTTAAAATGACGTTGCAAATGAGAAACAGTGAAACTAGAACTGAT



ATCGACTATTTAATATCACCCGTGATGAACGATAATGGTACCTTTTACAATTCAAGAGAT



TACGAGAAATTGGAGAACCCCACACTACCAAAAGACGCAGACGCTAATGGTGCCTACCAT



ATTGCTAAAAAGGGACTGATGTTGTTGAACAAGATAGATCAAGCCGACTTAACTAAAAAA



GTTGATTTGTCAATTTCGAATAGAGATTGGTTGCAATTCGTCCAGAAAAATAAGTAA





SEQ
ATGGAACAGGAATACTACTTGGGTTTGGATATGGGAACTGGTTCAGTCGGTTGGGCTGTT


ID
ACGGACTCCGAGTACCACGTGTTGAGAAAACACGGAAAGGCTTTATGGGGTGTCAGACTA


NO:
TTCGAATCAGCATCGACCGCGGAAGAGAGAAGAATGTTTAGAACTTCAAGAAGAAGGCTG


135
GATCGTAGGAATTGGCGGATAGAAATTTTACAAGAAATATTCGCCGAAGAAATCTCTAAA



AAAGATCCAGGATTTTTTCTACGTATGAAGGAATCCAAATACTATCCGGAAGATAAACGT



GATATTAATGGCAATTGTCCAGAGTTACCCTATGCTTTATTTGTGGACGACGATTTCACC



GATAAAGATTACCATAAGAAGTTCCCAACAATTTACCATCTGAGAAAGATGTTAATGAAC



ACTGAAGAAACCCCGGATATAAGACTGGTCTATCTAGCCATTCATCATATGATGAAACAC



AGGGGACACTTCTTGCTATCAGGGGATATAAATGAAATTAAAGAATTTGGTACAACATTT



TCTAAATTATTGGAAAATATTAAAAACGAAGAATTAGATTGGAATTTAGAATTAGGCAAG



GAGGAATACGCAGTTGTCGAATCGATTCTGAAAGATAACATGTTGAACAGATCAACGAAA



AAAACAAGGCTGATCAAGGCTTTAAAAGCGAAATCAATATGCGAAAAAGCAGTATTGAAT



TTGTTAGCTGGGGGGACTGTCAAGTTGTCTGATATTTTCGGATTGGAAGAATTGAATGAA



ACAGAGAGACCGAAGATATCCTTCGCCGATAATGGCTACGATGATTATATAGGCGAAGTC



GAAAATGAGCTGGGCGAACAATTCTACATTATCGAGACTGCCAAGGCTGTTTATGATTGG



GCGGTGTTAGTCGAAATCCTTGGCAAATACACTTCCATCTCCGAAGCTAAGGTGGCAACC



TACGAAAAGCATAAAAGTGATTTGCAATTCCTTAAGAAAATTGTCCGAAAGTACTTGACC



AAAGAAGAGTACAAGGATATTTTCGTATCAACATCGGACAAACTGAAGAATTATTCAGCT



TATATTGGCATGACGAAAATTAATGGTAAGAAAGTTGATTTGCAATCCAAGAGATGTTCT



AAAGAAGAATTTTACGATTTCATTAAAAAAAATGTCCTAAAAAAGTTGGAGGGACAACCT



GAATATGAGTATTTAAAGGAAGAACTGGAAAGAGAAACTTTCCTACCAAAGCAAGTTAAT



CGTGATAATGGCGTTATTCCATACCAAATACACTTGTACGAATTAAAGAAGATCTTGGGT



AACTTGAGGGACAAAATTGATTTAATCAAGGAAAATGAAGACAAACTGGTACAATTATTT



GAATTTAGAATACCTTACTACGTGGGCCCTTTAAACAAAATAGACGATGGTAAGGAAGGG



AAGTTCACATGGGCAGTCAGAAAGTCCAATGAAAAAATTTACCCATGGAATTTCGAAAAC



GTTGTAGATATTGAAGCTTCTGCTGAGAAATTTATTAGGAGAATGACAAATAAATGCACT



TATCTTATGGGGGAAGACGTGTTGCCTAAAGATAGTTTATTATATTCAAAGTATATGGTC



TTAAATGAATTAAACAATGTTAAATTAGATGGTGAAAAACTTTCCGTCGAATTGAAACAA



AGATTGTATACAGATGTATTCTGCAAATATAGAAAAGTAACTGTAAAGAAGATTAAAAAC



TACCTTAAATGTGAAGGCATTATCAGCGGAAATGTTGAGATCACTGGTATCGATGGTGAT



TTTAAGGCATCTTTAACCGCATATCACGACTTTAAGGAAATATTGACGGGTACTGAGCTT



GCTAAAAAAGACAAAGAGAACATTATCACCAATATCGTGCTCTTCGGAGACGACAAGAAA



TTATTGAAAAAGAGATTGAACCGCCTATACCCTCAGATTACCCCTAACCAATTGAAGAAA



ATCTGCGCTCTGTCTTATACTGGATGGGGTCGTTTTAGCAAGAAGTTTCTAGAAGAAATT



ACTGCTCCGGATCCTGAAACTGGGGAAGTCTGGAATATAATTACCGCGCTATGGGAATCG



AATAATAATTTAATGCAATTACTATCTAATGAATACAGATTTATGGAAGAAGTCGAAACT



TACAATATGGGAAAACAAACAAAAACTTTGAGCTACGAAACAGTAGAGAATATGTATGTC



TCACCATCTGTAAAGCGGCAGATCTGGCAAACCTTGAAGATAGTTAAAGAATTAGAAAAA



GTGATGAAGGAAAGTCCAAAAAGGGTTTTTATTGAAATGGCCCGAGAAAAACAAGAATCT



AAAAGGACGGAAAGTAGGAAAAAGCAACTTATAGATCTATATAAAGCCTGCAAAAATGAA



GAAAAAGATTGGGTAAAGGAATTAGGTGACCAGGAAGAGCAAAAATTGAGATCTGACAAG



CTGTACTTGTATTATACGCAAAAGGGCCGGTGTATGTATTCGGGTGAGGTAATAGAATTG



AAAGATTTATGGGATAACACTAAGTATGACATTGACCATATTTACCCCCAGTCTAAGACA



ATGGACGATTCATTAAATAACCGAGTTCTTGTCAAAAAGAAGTACAATGCCACAAAGAGC



GATAAGTACCCATTGAACGAAAATATAAGACATGAACGAAAAGGTTTCTGGAAATCATTG



TTGGACGGTGGATTTATTTCCAAAGAAAAATACGAGAGATTGATTAGAAACACTGAACTA



TCTCCAGAGGAGTTAGCTGGCTTTATCGAAAGACAAATTGTTGAAACTAGACAGTCTACA



AAAGCAGTTGCAGAAATCTTAAAACAAGTATTTCCAGAATCCGAAATTGTGTACGTCAAA



GCCGGAACAGTAAGTAGATTTAGAAAAGACTTTGAATTATTGAAAGTACGAGAGGTTAAC



GACCTACATCATGCTAAGGATGCTTATTTAAATATAGTCGTTGGTAATTCGTATTACGTG



AAATTCACAAAAAACGCATCTTGGTTCATCAAGGAGAATCCTGGTAGGACATACAACTTG



AAAAAGATGTTTACATCAGGATGGAATATCGAAAGAAATGGTGAGGTTGCGTGGGAGGTA



GGCAAGAAGGGAACCATTGTTACTGTAAAGCAAATTATGAATAAAAACAATATACTTGTT



ACGAGACAGGTGCACGAAGCCAAAGGAGGGTTGTTTGACCAGCAAATCATGAAGAAAGGT



AAAGGTCAGATAGCAATAAAAGAGACTGATGAGCGTTTAGCTAGTATAGAAAAATATGGG



GGCTACAATAAGGCAGCTGGTGCTTACTTCATGTTGGTCGAATCAAAGGATAAAAAAGGG



AAGACGATCCGGACCATAGAGTTTATCCCTCTGTACTTGAAGAATAAGATTGAGTCTGAC



GAAAGCATCGCATTGAATTTCTTGGAAAAGGGGCGCGGTCTAAAGGAGCCAAAAATATTG



TTAAAGAAAATTAAAATAGACACCCTATTCGACGTCGATGGGTTTAAGATGTGGCTTAGT



GGTCGTACTGGGGACAGATTATTATTCAAGTGTGCCAATCAGTTAATCCTTGACGAGAAA



ATCATTGTTACAATGAAAAAAATTGTTAAGTTTATTCAAAGGCGACAAGAAAATAGAGAA



CTAAAGTTGAGTGATAAGGATGGAATCGATAATGAAGTGTTAATGGAGATTTATAACACT



TTTGTCGACAAATTGGAGAATACGGTGTACAGAATTAGGCTATCTGAACAGGCTAAAACC



CTAATTGATAAACAGAAGGAGTTTGAGCGACTTTCTCTTGAAGACAAATCTTCAACTCTT



TTCGAGATCCTACATATCTTTCAGTGTCAATCTTCTGCAGCTAATTTGAAAATGATTGGA



GGTCCTGGTAAGGCTGGTATATTAGTCATGAACAACAACATATCTAAGTGTAATAAGATT



AGTATAATTAACCAATCACCGACAGGTATCTTTGAAAATGAAATTGATTTACTTAAA





SEQ
ATGAAATCATTCGACTCGTTCACCAACTTGTACTCCCTGTCTAAAACATTGAAATTTGAA


ID
ATGCGACCTGTTGGTAACACCCAAAAGATGTTAGATAATGCAGGAGTTTTCGAAAAGGAT


NO:
AAACTGATCCAGAAAAAATACGGTAAAACGAAACCATATTTCGATAGGTTGCATCGGGAA


136
TTTATAGAAGAAGCTTTGACTGGTGTAGAATTAATTGGCTTAGATGAGAATTTCCGTACT



CTAGTCGATTGGCAAAAAGATAAAAAGAACAATGTTGCCATGAAGGCATACGAAAATAGT



CTACAAAGACTAAGAACAGAGATCGGGAAAATTTTCAATTTGAAGGCAGAAGACTGGGTG



AAGAACAAATATCCAATATTGGGTCTTAAGAATAAGAATACTGATATATTGTTCGAGGAG



GCCGTTTTCGGTATTCTTAAGGCAAGATATGGTGAAGAGAAAGACACGTTTATTGAAGTT



GAGGAGATTGATAAAACCGGTAAGTCCAAAATCAACCAGATCTCTATCTTCGACAGTTGG



AAGGGCTTCACTGGTTATTTTAAGAAGTTCTTCGAAACTAGGAAGAACTTCTATAAAAAC



GATGGTACTTCCACGGCTATTGCTACAAGAATTATCGACCAAAACCTTAAGCGTTTTATT



GATAACCTATCAATTGTTGAAAGTGTTCGACAGAAAGTAGATTTGGCTGAAACTGAAAAA



TCTTTTAGTATCTCCTTATCCCAGTTTTTCTCTATAGATTTTTATAATAAATGTTTGCTG



CAAGATGGCATTGACTACTATAATAAAATAATTGGTGGAGAGACATTGAAAAACGGAGAG



AAGCTGATTGGCCTTAATGAGTTGATAAATCAATATAGACAAAATAATAAGGACCAGAAA



ATCCCTTTCTTTAAATTGCTAGACAAACAGATTTTGTCTGAAAAGATCCTATTCTTGGAT



GAAATAAAGAACGATACTGAATTGATTGAAGCTTTGTCCCAGTTTGCTAAAACAGCTGAA



GAAAAGACAAAGATTGTGAAAAAATTGTTTGCTGATTTCGTAGAAAACAATTCTAAATAT



GATCTAGCCCAGATTTATATAAGTCAAGAAGCTTTCAATACAATAAGTAATAAGTGGACA



AGTGAAACAGAAACTTTTGCTAAGTATTTATTCGAAGCCATGAAGTCTGGTAAACTTGCC



AAATACGAAAAAAAAGATAACAGTTATAAATTTCCAGACTTTATAGCCCTTTCACAGATG



AAGTCTGCCTTATTGTCGATATCCTTAGAAGGTCATTTTTGGAAGGAAAAATATTATAAG



ATAAGCAAGTTCCAAGAAAAGACTAATTGGGAACAATTTTTGGCTATATTTCTATATGAG



TTCAATTCATTATTTTCCGATAAAATCAACACTAAGGATGGAGAGACTAAGCAAGTTGGC



TACTATTTGTTCGCAAAAGATCTGCACAATTTGATTCTATCAGAACAAATAGATATACCA



AAAGATTCAAAGGTAACTATAAAGGATTTCGCAGATTCCGTCCTCACCATTTATCAAATG



GCTAAATATTTTGCCGTTGAAAAAAAGAGAGCGTGGTTAGCAGAATACGAGTTGGACTCG



TTTTATACTCAGCCAGATACTGGATACTTGCAATTCTACGATAATGCATACGAAGACATT



GTACAGGTATACAATAAACTTAGAAATTACTTAACCAAGAAGCCCTACAGTGAAGAAAAA



TGGAAGCTGAACTTTGAAAATTCGACTTTGGCAAATGGTTGGGATAAAAATAAAGAAAGT



GACAACTCCGCAGTGATTTTGCAAAAGGGTGGGAAATATTACTTGGGTTTAATCACAAAA



GGCCACAATAAGATTTTTGATGATAGATTTCAAGAAAAATTCATAGTTGGTATAGAAGGT



GGCAAATACGAGAAAATTGTCTATAAATTCTTCCCTGATCAAGCCAAAATGTTCCCAAAA



GTTTGCTTTTCTGCTAAAGGATTGGAGTTTTTCCGGCCTAGCGAGGAGATCCTTCGTATC



TACAACAATGCTGAATTCAAAAAAGGAGAAACCTATAGCATAGATTCTATGCAAAAACTG



ATAGATTTTTATAAGGATTGTTTAACAAAGTACGAAGGCTGGGCCTGCTATACATTTAGA



CATTTAAAGCCCACAGAAGAATACCAAAATAACATTGGTGAATTCTTTCGGGACGTTGCC



GAAGACGGCTATAGGATCGATTTTCAAGGTATCTCAGATCAATATATCCACGAAAAGAAC



GAGAAGGGTGAGCTGCACCTTTTCGAAATTCATAATAAGGACTGGAATTTGGATAAGGCG



AGAGATGGTAAATCGAAGACCACTCAAAAGAACTTGCATACTTTATATTTTGAGTCCTTG



TTTTCTAATGATAACGTCGTCCAAAATTTTCCAATAAAGTTGAATGGACAAGCGGAAATT



TTCTATCGGCCTAAGACAGAGAAAGACAAATTAGAATCAAAGAAAGATAAAAAGGGAAAT



AAAGTCATTGATCACAAACGATACTCTGAGAATAAAATATTTTTCCACGTACCATTGACA



CTCAACAGGACTAAGAATGACTCTTATAGATTTAATGCTCAGATTAATAATTTTTTGGCA



AATAACAAGGATATTAACATAATTGGGGTGGATAGAGGTGAAAAGCACTTGGTATATTAC



TCTGTCATCACTCAGGCTTCTGATATATTGGAAAGCGGGTCTCTAAATGAATTGAACGGT



GTTAACTACGCCGAAAAGCTAGGTAAAAAAGCTGAAAACAGAGAGCAGGCTCGGCGCGAT



TGGCAAGATGTTCAAGGAATTAAAGACCTTAAAAAAGGCTACATTAGTCAAGTAGTTAGA



AAGTTAGCCGATCTTGCTATTAAACATAACGCAATCATTATTCTGGAGGACCTAAATATG



CGTTTTAAGCAAGTTAGGGGTGGCATAGAAAAAAGTATTTATCAGCAGCTTGAGAAGGCT



TTGATAGATAAGTTATCGTTCCTAGTTGACAAAGGTGAAAAAAATCCTGAACAAGCTGGT



CATCTGTTGAAAGCTTATCAGCTGAGCGCACCTTTTGAAACATTTCAAAAAATGGGAAAA



CAAACAGGTATTATTTTCTATACTCAAGCGAGTTATACAAGTAAATCTGACCCAGTGACA



GGATGGAGACCACACCTTTATCTAAAATATTTTTCTGCTAAAAAGGCCAAAGATGACATC



GCTAAGTTTACAAAAATAGAATTTGTCAACGATAGATTTGAATTGACTTACGATATTAAA



GATTTTCAGCAAGCAAAAGAATACCCAAATAAGACAGTGTGGAAAGTATGCTCCAATGTG



GAGAGATTTAGATGGGATAAAAATCTCAATCAAAACAAGGGTGGTTACACACATTATACT



AATATAACTGAAAATATTCAAGAATTGTTTACTAAGTACGGAATTGACATAACCAAAGAC



TTACTAACTCAGATTTCAACTATTGACGAAAAACAAAATACCTCATTTTTCCGCGACTTT



ATTTTTTATTTCAACTTGATCTGTCAAATTCGTAACACGGATGATTCCGAAATTGCCAAG



AAGAACGGAAAAGATGATTTCATCCTATCTCCAGTGGAACCATTTTTTGACTCAAGAAAA



GATAATGGTAATAAGTTGCCTGAGAACGGAGATGATAACGGCGCTTATAATATCGCTCGG



AAGGGTATTGTAATTCTTAATAAAATATCTCAGTACTCTGAAAAGAACGAAAACTGCGAG



AAAATGAAGTGGGGCGACTTGTATGTATCTAATATAGATTGGGATAATTTCGTTACTCAA



GCCAACGCGAGACATTGA





SEQ
ATGGAAAATTTTAAAAACCTATATCCAATTAATAAGACACTTAGATTCGAGCTTAGGCCA


ID
TACGGCAAAACACTAGAAAATTTTAAGAAGTCAGGCCTATTAGAAAAAGACGCCTTTAAG


NO:
GCAAATTCCAGAAGATCAATGCAGGCAATTATTGATGAGAAATTTAAAGAGACTATCGAG


137
GAAAGGTTGAAATACACTGAATTCTCTGAGTGCGATCTGGGAAACATGACTTCCAAGGAT



AAAAAGATTACCGATAAGGCTGCTACCAACCTCAAAAAGCAAGTCATCTTATCGTTTGAT



GATGAAATTTTTAATAACTACTTAAAGCCGGACAAAAACATTGACGCCCTATTCAAAAAT



GATCCGTCCAACCCCGTAATTTCAACTTTTAAGGGTTTTACCACGTACTTTGTAAATTTT



TTTGAGATTCGTAAACATATCTTCAAAGGAGAATCGTCGGGTTCCATGGCCTATAGGATA



ATTGATGAAAATCTTACGACTTACTTAAACAATATCGAAAAGATAAAAAAGTTACCAGAA



GAATTAAAGTCTCAATTGGAAGGTATTGACCAAATAGACAAATTAAATAACTATAATGAG



TTCATAACTCAAAGCGGTATCACACATTACAATGAAATTATCGGTGGTATATCTAAAAGT



GAGAACGTAAAAATACAGGGAATAAACGAGGGGATCAATCTATACTGTCAGAAGAATAAA



GTAAAATTACCAAGACTAACGCCATTATACAAAATGATTCTGTCTGATAGAGTTTCCAAC



TCGTTCGTGCTTGATACTATAGAAAATGATACTGAATTAATTGAGATGATTAGCGACTTG



ATTAATAAAACAGAAATATCTCAAGACGTAATAATGTCAGACATTCAGAACATTTTCATA



AAATATAAACAGCTTGGTAATTTACCGGGGATAAGTTACTCTAGCATCGTGAATGCTATT



TGCTCCGATTATGACAATAATTTTGGTGACGGAAAAAGAAAAAAATCATATGAGAACGAT



AGGAAGAAACACCTTGAAACAAACGTATACTCAATTAACTATATATCGGAACTGTTAACA



GACACCGATGTATCATCTAATATAAAAATGAGATATAAGGAACTTGAACAAAATTACCAG



GTGTGTAAGGAGAATTTCAATGCTACCAACTGGATGAACATTAAGAATATTAAACAGAGT



GAAAAGACAAACTTGATTAAAGATCTACTAGATATACTGAAATCAATACAGAGATTCTAC



GATCTGTTTGATATAGTTGATGAAGACAAAAATCCTAGTGCTGAGTTTTACACGTGGCTA



AGTAAAAATGCGGAAAAGTTAGATTTCGAGTTCAACTCTGTTTATAATAAATCTAGGAAT



TATTTAACTAGAAAGCAGTATTCTGATAAAAAGATAAAATTGAACTTCGACTCCCCTACG



TTGGCAAAGGGTTGGGATGCAAACAAAGAAATCGATAACTCCACCATAATAATGCGTAAG



TTTAACAATGATAGGGGGGATTACGATTATTTTTTGGGAATTTGGAACAAATCTACCCCA



GCGAATGAAAAAATTATTCCCCTTGAAGACAATGGTCTTTTTGAAAAAATGCAGTATAAA



TTATATCCAGACCCATCCAAGATGCTTCCAAAGCAATTTCTGTCAAAAATTTGGAAGGCT



AAACACCCTACTACTCCTGAATTTGATAAGAAGTATAAGGAGGGCCGACACAAAAAGGGT



CCAGATTTTGAAAAAGAATTCCTGCATGAATTGATAGATTGTTTTAAGCATGGTTTGGTA



AATCATGATGAAAAATATCAGGATGTCTTTGGATTCAATTTGAGAAATACAGAGGATTAC



AACTCATATACAGAATTTCTCGAGGACGTCGAACGTTGCAATTATAATCTCAGTTTCAAC



AAGATCGCAGACACTTCAAACTTAATTAACGACGGAAAATTGTACGTTTTTCAAATCTGG



TCGAAAGACTTTAGTATTGATTCAAAGGGTACAAAAAACCTAAATACAATATATTTCGAA



AGTCTATTCTCGGAAGAAAACATGATCGAAAAAATGTTCAAACTGTCAGGCGAAGCTGAA



ATATTCTACCGTCCCGCAAGCCTTAATTATTGTGAGGATATCATTAAAAAAGGACATCAC



CATGCAGAGTTAAAAGATAAATTCGATTACCCAATAATTAAAGATAAAAGATACTCCCAG



GATAAGTTCTTTTTCCATGTACCTATGGTTATTAACTACAAGTCGGAAAAACTAAACTCG



AAGTCATTAAATAATAGAACTAACGAGAACTTGGGACAATTCACACATATAATTGGTATT



GATCGTGGCGAAAGACATTTAATATATCTGACTGTTGTTGATGTTTCAACAGGAGAAATT



GTTGAACAGAAACATCTTGATGAAATTATAAACACAGATACAAAAGGCGTTGAGCATAAA



ACTCATTATCTAAATAAATTGGAGGAAAAGTCGAAGACTCGCGATAACGAGAGAAAGAGT



TGGGAAGCAATTGAAACCATAAAAGAGCTTAAAGAAGGTTACATTAGTCACGTCATCAAT



GAAATACAAAAGTTACAAGAAAAGTATAACGCTTTGATTGTAATGGAAAATCTAAATTAT



GGTTTTAAGAATTCAAGAATCAAAGTCGAAAAGCAGGTCTATCAGAAATTTGAAACGGCA



CTTATTAAAAAGTTTAACTACATTATTGATAAAAAGGACCCAGAAACTTATATTCATGGT



TACCAACTGACGAACCCAATCACAACATTGGACAAAATTGGAAACCAAAGTGGAATTGTT



TTATACATTCCAGCTTGGAATACATCCAAAATAGACCCTGTCACGGGGTTTGTCAACTTG



TTATATGCCGACGATTTAAAGTATAAAAACCAAGAACAAGCAAAGTCTTTTATTCAAAAG



ATTGATAATATTTATTTCGAAAACGGTGAATTTAAATTCGACATAGATTTTTCTAAATGG



AACAACCGTTATTCAATAAGTAAAACTAAATGGACACTCACCTCATACGGCACTCGTATC



CAAACCTTTCGGAATCCCCAAAAAAATAACAAATGGGATTCTGCAGAATACGACTTGACC



GAGGAATTTAAATTAATTCTTAATATAGACGGTACACTCAAAAGTCAAGACGTGGAGACA



TACAAGAAGTTTATGTCGTTATTCAAGCTTATGCTTCAGTTGAGGAACTCCGTTACAGGC



ACTGATATTGATTACATGATTTCACCAGTAACGGATAAGACTGGGACTCATTTCGATTCT



AGGGAAAATATTAAAAATTTACCTGCTGACGCAGACGCAAACGGCGCATACAATATAGCA



AGAAAAGGGATTATGGCCATTGAGAATATTATGAATGGCATATCAGATCCATTAAAGATA



AGCAATGAAGACTACTTAAAATACATTCAGAATCAGCAAGAATAA





SEQ
ATGACCCAGTTTGAAGGTTTCACCAATTTGTACCAAGTAAGTAAAACCTTGAGGTTCGAA


ID
TTGATCCCACAGGGCAAGACATTGAAGCATATTCAAGAGCAAGGATTTATAGAAGAAGAT


NO:
AAAGCGAGAAACGATCACTATAAAGAGTTAAAACCCATTATTGACAGGATCTATAAAACA


138
TACGCCGATCAATGCCTTCAATTAGTGCAATTAGATTGGGAAAACTTGAGCGCTGCCATC



GATTCCTACAGGAAGGAAAAAACAGAAGAAACAAGAAATGCCTTAATCGAGGAACAAGCA



ACCTATAGAAACGCTATACACGATTACTTCATCGGTAGAACTGATAATCTAACAGATGCA



ATAAATAAGAGACATGCTGAGATATATAAAGGACTATTTAAAGCAGAATTATTCAACGGA



AAGGTGTTGAAACAGTTAGGTACCGTTACAACTACTGAGCATGAAAATGCCTTGCTGAGA



AGCTTTGACAAGTTTACTACCTACTTTTCGGGTTTCTACGAAAATCGCAAAAATGTATTT



TCTGCGGAAGATATTTCAACTGCAATCCCTCATAGGATTGTTCAAGATAATTTCCCTAAG



TTTAAAGAGAACTGTCACATTTTTACAAGGTTAATTACTGCGGTTCCAAGTCTAAGAGAA



CATTTTGAGAATGTAAAAAAAGCGATTGGTATATTTGTATCCACTAGCATTGAAGAGGTT



TTCAGCTTCCCTTTTTATAACCAATTACTTACCCAAACACAGATCGACCTGTACAACCAA



TTGTTAGGTGGTATATCGAGGGAGGCTGGTACGGAAAAGATTAAAGGATTAAATGAAGTT



CTTAATTTGGCCATACAAAAAAATGATGAAACCGCGCACATTATCGCATCTTTACCACAT



AGGTTTATACCGTTATTCAAGCAAATATTATCTGATCGTAATACCTTATCGTTCATATTA



GAGGAGTTTAAATCTGACGAAGAAGTTATACAATCTTTTTGCAAGTATAAGACGCTATTG



AGAAACGAAAACGTTCTGGAAACAGCCGAAGCACTGTTCAATGAATTAAACAGTATCGAC



TTGACTCATATTTTTATATCGCATAAAAAGTTGGAGACAATTTCTTCAGCATTGTGCGAT



CACTGGGACACTTTAAGGAACGCACTATATGAACGTAGGATCTCAGAATTGACAGGTAAG



ATAACGAAGTCTGCTAAAGAGAAAGTGCAGAGATCCCTAAAACACGAGGATATAAATTTG



CAGGAGATAATTTCAGCTGCAGGTAAAGAGTTGTCTGAAGCGTTCAAGCAAAAGACTTCC



GAAATCTTGTCACACGCACACGCCGCATTAGATCAACCTTTACCCACTACTTTGAAAAAA



CAAGAAGAGAAGGAGATATTAAAATCACAACTTGATTCTTTACTTGGCCTTTATCATCTT



TTAGATTGGTTCGCTGTTGACGAGAGCAATGAAGTGGATCCAGAGTTTTCCGCAAGATTG



ACCGGTATAAAGTTGGAAATGGAACCTTCGTTATCATTTTACAACAAAGCTAGGAACTAT



GCTACAAAAAAACCTTATTCTGTCGAAAAATTTAAACTGAACTTCCAAATGCCTACTCTA



GCAAGTGGCTGGGATGTTAATAAAGAAAAGAACAATGGCGCTATTTTGTTTGTAAAAAAT



GGCCTATACTATCTTGGAATTATGCCTAAACAAAAAGGTCGCTACAAGGCTTTGTCATTT



GAACCTACTGAAAAGACTAGCGAAGGTTTCGATAAGATGTATTACGATTATTTCCCGGAT



GCCGCTAAAATGATCCCCAAGTGCTCTACTCAATTGAAGGCAGTAACTGCTCATTTCCAA



ACGCATACCACGCCAATACTGCTTTCTAACAACTTTATAGAACCACTAGAAATAACGAAA



GAAATTTACGACCTAAATAACCCAGAGAAAGAACCAAAAAAGTTCCAGACGGCCTACGCC



AAAAAGACAGGGGACCAAAAAGGTTACCGCGAGGCGTTATGTAAATGGATTGATTTTACT



AGGGACTTTTTATCAAAATACACTAAAACGACGTCTATTGATCTTAGCTCCTTACGCCCG



TCCTCCCAATACAAGGATCTAGGTGAGTATTACGCAGAGTTGAACCCGCTATTATACCAT



ATTTCCTTCCAAAGGATTGCTGAAAAGGAAATTATGGACGCTGTTGAAACTGGGAAATTG



TACCTGTTTCAGATTTATAATAAGGACTTCGCAAAGGGTCACCATGGTAAGCCTAACCTT



CACACTTTGTACTGGACCGGACTATTCTCGCCTGAAAATTTGGCTAAAACAAGTATCAAG



TTAAACGGTCAGGCCGAGTTATTTTATAGACCCAAATCTAGAATGAAAAGAATGGCCCAT



AGATTAGGCGAAAAGATGTTAAACAAGAAATTAAAGGACCAAAAAACCCCGATACCAGAC



ACTCTATACCAAGAACTGTACGACTATGTGAATCACAGGCTTAGTCACGATTTATCAGAT



GAAGCGAGGGCTTTATTGCCAAATGTCATCACCAAGGAAGTATCACATGAAATAATTAAG



GATAGAAGGTTCACATCTGATAAATTCTTTTTTCATGTCCCAATTACATTGAATTATCAA



GCAGCGAACTCACCATCTAAATTTAATCAGCGCGTCAACGCCTATTTGAAAGAACATCCC



GAAACACCAATCATCGGCATAGATCGAGGTGAGAGAAACTTAATATATATAACTGTGATT



GATTCTACAGGAAAAATCCTGGAGCAACGATCTTTAAATACCATACAACAGTTTGATTAT



CAAAAAAAGTTGGATAACAGAGAAAAAGAACGTGTTGCCGCTAGGCAGGCTTGGTCTGTG



GTAGGAACAATTAAGGACTTAAAGCAGGGCTATCTGTCCCAAGTTATTCATGAAATAGTC



GATCTGATGATACATTATCAGGCAGTTGTCGTGTTGGAAAATTTGAATTTTGGCTTTAAA



TCAAAAAGAACTGGCATAGCAGAAAAAGCTGTGTACCAGCAGTTTGAAAAGATGTTAATC



GATAAGCTAAACTGCCTTGTTCTTAAAGATTACCCCGCAGAAAAAGTAGGTGGTGTTCTT



AATCCATATCAGTTGACAGACCAATTTACATCCTTTGCGAAAATGGGTACGCAAAGCGGG



TTCTTATTCTACGTACCGGCCCCCTATACTTCTAAGATCGACCCACTAACAGGTTTTGTG



GACCCTTTTGTTTGGAAGACGATAAAGAACCACGAGTCACGCAAACATTTCTTAGAGGGC



TTTGATTTCTTGCACTACGACGTGAAAACTGGTGATTTTATCTTACACTTTAAAATGAAC



AGAAATCTCTCTTTCCAACGTGGACTGCCCGGATTCATGCCGGCTTGGGACATCGTTTTT



GAAAAGAATGAAACGCAGTTTGACGCCAAAGGTACACCATTTATAGCGGGTAAGAGAATT



GTGCCGGTCATAGAAAACCATAGATTTACAGGTAGATATAGGGATCTGTACCCTGCTAAT



GAATTGATTGCATTACTCGAAGAGAAAGGAATTGTGTTTCGAGATGGATCGAATATTTTA



CCTAAGTTGTTGGAAAATGATGATTCACACGCAATTGATACTATGGTTGCCCTCATAAGA



TCGGTATTGCAAATGAGAAACTCAAATGCTGCTACGGGAGAGGATTATATAAACAGCCCC



GTTCGCGATCTTAATGGTGTTTGTTTTGATTCACGTTTTCAGAACCCCGAATGGCCAATG



GATGCCGACGCAAACGGAGCATATCATATTGCTCTTAAAGGCCAACTACTATTAAATCAC



TTAAAGGAATCCAAAGACCTAAAATTGCAAAACGGGATATCTAATCAGGATTGGCTGGCT



TACATACAAGAACTACGTAACTAG





SEQ
ATGGCCGTTAAGTCAATCAAAGTGAAACTTAGACTGGATGACATGCCAGAGATTCGTGCG


ID
GGGTTATGGAAACTTCATAAGGAAGTTAACGCAGGGGTAAGATATTATACCGAATGGTTA


NO:
TCATTACTTCGACAAGAGAATTTGTACAGAAGGTCCCCGAACGGCGACGGTGAGCAAGAA


139
TGCGATAAGACGGCTGAAGAATGTAAGGCAGAACTTTTGGAGCGCCTGAGAGCCCGTCAG



GTTGAAAATGGCCATAGAGGTCCTGCGGGATCTGATGATGAGCTTTTACAGCTAGCTAGA



CAATTGTATGAATTGTTGGTCCCTCAGGCTATTGGGGCTAAAGGAGACGCTCAACAAATC



GCCAGAAAGTTCTTGTCACCTCTGGCTGACAAAGATGCCGTGGGAGGATTAGGTATCGCT



AAAGCAGGTAATAAACCAAGATGGGTTAGAATGAGAGAAGCAGGCGAACCTGGTTGGGAA



GAAGAGAAAGAAAAGGCCGAAACTAGAAAAAGCGCTGACAGAACCGCAGATGTTTTACGG



GCCTTGGCTGATTTTGGACTGAAGCCTTTGATGAGAGTGTATACTGATTCAGAAATGTCT



TCCGTTGAATGGAAGCCCCTAAGGAAGGGACAAGCGGTCAGAACCTGGGATAGGGATATG



TTTCAACAGGCTATTGAAAGGATGATGTCATGGGAATCCTGGAATCAAAGAGTAGGTCAA



GAATACGCTAAACTGGTCGAACAAAAGAATAGATTTGAACAAAAAAATTTTGTAGGTCAA



GAACATTTAGTACATTTGGTTAATCAACTTCAACAAGATATGAAAGAGGCATCTCCTGGT



TTGGAATCAAAAGAACAAACAGCACACTATGTTACCGGCCGAGCTTTGCGAGGTTCTGAC



AAAGTATTTGAAAAGTGGGGGAAATTAGCTCCCGATGCCCCCTTTGATCTATATGATGCT



GAAATTAAAAACGTTCAAAGAAGGAACACTAGACGTTTTGGATCCCATGATCTTTTTGCA



AAGCTAGCTGAGCCAGAATACCAGGCTCTATGGCGTGAAGACGCCTCGTTTTTGACTAGA



TACGCAGTATACAATTCAATACTCAGAAAACTAAACCATGCCAAGATGTTTGCTACATTC



ACCCTGCCCGATGCTACCGCTCATCCTATTTGGACTAGATTTGACAAGTTGGGGGGGAAT



CTACATCAGTACACATTTTTATTTAATGAATTCGGTGAAAGAAGACACGCTATTAGATTC



CACAAGCTCCTAAAGGTTGAAAACGGCGTTGCGAGAGAAGTTGATGATGTAACAGTTCCC



ATTTCTATGTCGGAGCAATTGGATAATCTATTGCCTAGAGACCCTAATGAACCAATTGCT



TTGTACTTTCGTGACTACGGTGCAGAACAACACTTTACAGGTGAATTCGGCGGAGCCAAG



ATTCAATGTAGACGTGATCAACTCGCACACATGCATAGAAGAAGAGGCGCTCGTGATGTT



TATTTAAATGTGTCTGTTAGAGTTCAATCCCAATCGGAGGCTAGAGGTGAAAGAAGGCCA



CCATACGCAGCAGTTTTTAGGTTAGTAGGTGATAATCATAGGGCATTTGTCCACTTCGAC



AAATTAAGTGATTATTTAGCAGAGCACCCTGATGATGGAAAGTTGGGCAGTGAGGGATTA



TTAAGTGGGTTGAGGGTAATGTCTGTAGATCTTGGTCTTCGTACTTCTGCGAGTATCTCT



GTCTTTAGAGTAGCACGTAAGGATGAGTTGAAACCTAATAGCAAAGGAAGAGTCCCGTTT



TTTTTTCCTATTAAGGGTAACGATAACCTGGTGGCCGTGCATGAAAGATCACAACTTTTG



AAATTGCCAGGAGAAACGGAGTCCAAGGACTTGAGGGCAATTAGAGAGGAACGTCAGCGT



ACATTGCGACAGCTGAGAACTCAATTGGCTTATTTGAGGTTGTTGGTTAGGTGTGGTTCC



GAGGATGTTGGCAGAAGAGAAAGGTCTTGGGCCAAATTGATAGAACAACCAGTGGACGCC



GCAAATCACATGACACCAGATTGGAGAGAAGCTTTCGAAAATGAACTCCAGAAATTAAAG



AGCCTACATGGCATATGCTCTGATAAAGAGTGGATGGATGCCGTATACGAATCCGTTCGT



AGAGTCTGGCGCCACATGGGTAAGCAAGTACGGGACTGGAGAAAGGATGTTCGTTCCGGC



GAAAGACCGAAGATAAGGGGGTATGCAAAGGACGTTGTAGGCGGTAATTCTATTGAACAG



ATTGAGTATTTGGAAAGGCAGTACAAATTTCTTAAATCCTGGAGCTTCTTCGGCAAAGTG



TCAGGACAAGTCATCAGGGCTGAAAAAGGTTCCAGATTTGCTATTACGCTAAGGGAACAT



ATTGATCATGCGAAAGAAGATAGACTGAAAAAACTAGCAGATAGAATAATTATGGAAGCA



CTTGGTTACGTCTATGCACTTGATGAAAGAGGCAAGGGGAAATGGGTAGCTAAATACCCG



CCTTGTCAACTTATTTTATTAGAAGAATTAAGCGAGTACCAATTTAACAACGATAGACCT



CCATCCGAAAATAATCAGCTGATGCAATGGTCCCATAGGGGTGTTTTTCAAGAATTGATA



AATCAAGCTCAAGTACACGATTTGCTGGTAGGTACTATGTACGCAGCGTTTTCGAGCCGT



TTTGATGCAAGAACTGGTGCCCCAGGTATCAGATGTCGACGTGTTCCGGCCAGATGTACA



CAGGAACATAACCCTGAGCCATTTCCGTGGTGGCTTAATAAGTTTGTTGTCGAGCACACA



TTAGACGCATGCCCTCTGAGAGCAGATGACCTTATACCCACTGGAGAAGGCGAAATATTT



GTTAGTCCATTCTCTGCAGAAGAAGGTGACTTTCACCAGATACATGCAGACTTAAATGCA



GCACAGAATCTCCAACAAAGGTTGTGGTCGGATTTTGATATTTCGCAAATAAGACTAAGA



TGCGATTGGGGAGAGGTTGATGGAGAATTGGTGCTGATTCCAAGATTAACCGGAAAGCGA



ACTGCCGATTCCTATTCTAACAAGGTGTTTTACACAAATACTGGTGTTACCTATTACGAA



AGAGAAAGGGGTAAGAAGAGACGTAAAGTATTTGCTCAAGAAAAATTGTCAGAAGAGGAG



GCAGAACTGTTAGTAGAAGCAGACGAAGCCAGAGAAAAATCAGTTGTGCTTATGCGTGAC



CCTTCCGGCATTATAAATCGTGGTAATTGGACACGACAAAAAGAATTTTGGTCTATGGTC



AATCAACGTATCGAAGGCTACCTAGTTAAGCAAATCAGGTCTAGGGTTCCACTACAAGAT



AGCGCATGTGAAAATACGGGTGATATATAA





SEQ
ATGGCTACTAGATCTTTCATTTTAAAAATTGAACCTAATGAAGAAGTGAAGAAGGGTCTC


ID
TGGAAAACTCACGAAGTACTTAATCATGGCATTGCCTATTATATGAATATCCTGAAGCTT


NO:
ATTCGTCAAGAAGCTATATACGAGCATCATGAGCAAGATCCTAAGAACCCTAAGAAAGTA


140
AGCAAAGCGGAAATTCAGGCTGAATTGTGGGACTTCGTCTTGAAGATGCAGAAGTGTAAC



AGTTTTACGCACGAAGTTGATAAAGATGTGGTGTTTAATATTTTGAGGGAGCTATATGAG



GAGTTGGTGCCCTCGAGTGTCGAAAAAAAAGGAGAAGCTAATCAGCTGTCAAATAAATTT



TTATATCCTCTGGTGGATCCAAACTCTCAATCAGGTAAAGGCACTGCCAGTAGTGGTCGA



AAACCGAGATGGTATAATTTGAAAATCGCAGGTGATCCATCGTGGGAAGAAGAAAAAAAA



AAATGGGAAGAAGATAAAAAAAAAGATCCCCTTGCCAAAATACTAGGTAAGCTAGCCGAG



TATGGACTTATACCATTATTCATTCCTTTCACGGACTCTAATGAACCAATTGTGAAGGAA



ATCAAATGGATGGAAAAATCACGTAATCAGTCTGTTAGGAGGTTGGACAAAGATATGTTT



ATACAGGCTCTTGAGAGGTTTTTGTCGTGGGAGTCCTGGAATTTGAAAGTGAAAGAAGAA



TATGAAAAAGTGGAAAAGGAGCATAAGACGTTGGAAGAAAGGATTAAGGAAGATATTCAG



GCCTTTAAGAGTCTGGAACAGTACGAAAAAGAAAGACAGGAACAGTTATTGAGAGATACT



CTAAACACTAATGAATATAGGCTTTCCAAGAGGGGCTTGCGAGGATGGAGAGAGATAATT



CAGAAATGGTTGAAAATGGATGAGAACGAGCCATCGGAGAAATATCTAGAGGTGTTTAAA



GATTACCAAAGAAAGCACCCTCGCGAAGCTGGTGATTACTCTGTTTATGAATTCCTTTCG



AAGAAGGAAAATCACTTCATCTGGCGAAATCATCCAGAGTACCCATATTTATATGCTACA



TTTTGCGAAATTGACAAGAAAAAAAAAGATGCTAAACAGCAAGCGACATTCACCCTCGCT



GATCCCATCAACCACCCATTATGGGTCAGGTTCGAAGAGAGATCAGGCTCGAACCTGAAT



AAGTACAGGATCTTGACTGAGCAATTGCATACTGAGAAGTTAAAAAAGAAATTGACGGTC



CAACTTGACAGATTGATTTATCCCACTGAATCTGGTGGATGGGAGGAGAAAGGTAAGGTT



GATATTGTCCTATTGCCTTCTCGTCAATTTTACAACCAAATATTTCTGGACATCGAAGAG



AAGGGTAAACATGCTTTTACCTATAAGGATGAGAGTATTAAATTTCCATTGAAGGGAACG



CTTGGCGGCGCTAGAGTTCAGTTCGATAGAGATCATTTGAGAAGATACCCGCATAAAGTG



GAATCTGGTAATGTAGGTCGGATCTACTTTAACATGACGGTAAATATTGAACCTACCGAG



TCACCAGTCAGTAAGTCTTTAAAGATTCATAGGGATGATTTCCCTAAATTTGTCAACTTC



AAGCCTAAGGAACTAACCGAGTGGATCAAAGACAGTAAAGGCAAAAAGTTAAAGAGCGGT



ATTGAGTCCCTGGAGATAGGTCTTAGAGTCATGTCTATCGATTTGGGTCAAAGACAAGCA



GCCGCAGCATCTATTTTCGAAGTTGTTGACCAAAAACCGGATATCGAGGGGAAATTATTT



TTTCCAATAAAAGGAACTGAGCTATACGCTGTGCATCGCGCATCCTTCAATATAAAACTG



CCAGGAGAAACACTAGTAAAATCTAGAGAGGTCTTGCGTAAAGCACGTGAGGACAATCTC



AAATTAATGAATCAGAAGTTAAATTTCCTTAGGAACGTGTTGCATTTCCAACAGTTCGAG



GACATAACTGAACGCGAGAAAAGAGTCACTAAGTGGATCTCAAGACAAGAAAATAGTGAT



GTGCCATTAGTGTATCAAGACGAACTTATTCAAATAAGAGAGCTAATGTATAAACCATAT



AAAGACTGGGTGGCATTCTTAAAACAATTACACAAGCGGCTTGAAGTAGAAATAGGAAAA



GAAGTAAAGCATTGGAGGAAGAGTCTGTCCGATGGTCGCAAAGGCCTGTACGGGATATCA



CTTAAAAATATTGATGAAATTGACAGAACACGAAAATTTTTGTTAAGATGGTCATTGAGA



CCAACCGAACCAGGTGAGGTTAGAAGGTTGGAACCAGGCCAAAGGTTTGCCATCGATCAA



TTAAACCATCTTAACGCACTGAAAGAAGATAGATTGAAGAAGATGGCGAACACTATTATT



ATGCACGCTCTAGGTTATTGCTATGATGTGAGAAAGAAAAAATGGCAAGCCAAGAACCCT



GCATGCCAAATTATTTTGTTTGAAGATCTTTCTAATTACAATCCATACGAAGAGCGTTCA



CGTTTTGAAAACTCTAAATTGATGAAATGGTCTAGAAGAGAGATTCCGAGACAGGTCGCT



CTACAAGGGGAGATTTACGGTCTTCAAGTCGGTGAGGTTGGTGCTCAATTTTCTTCCAGA



TTTCATGCAAAAACTGGGTCTCCAGGCATTAGGTGTTCGGTCGTTACTAAGGAAAAGTTA



CAGGACAACCGTTTCTTCAAAAATTTGCAACGTGAAGGCCGTTTAACACTTGATAAGATA



GCTGTCCTTAAGGAAGGCGATCTGTACCCAGATAAAGGTGGTGAGAAATTCATATCTTTG



AGTAAAGACAGGAAACTGGTTACAACACACGCCGACATTAACGCAGCTCAGAACTTGCAA



AAGAGATTCTGGACAAGGACCCACGGCTTCTATAAGGTGTACTGTAAAGCTTATCAAGTA



GATGGACAAACGGTTTATATTCCTGAATCAAAGGACCAGAAACAAAAAATTATAGAAGAA



TTTGGTGAAGGATACTTTATCTTGAAGGATGGAGTTTATGAGTGGGGCAATGCAGGTAAG



TTAAAGATAAAGAAAGGTTCATCAAAGCAATCAAGTAGCGAACTGGTCGATTCGGATATT



TTAAAGGATAGCTTTGATCTAGCTAGTGAATTGAAGGGAGAAAAGTTAATGTTATACAGA



GATCCCAGTGGGAATGTATTTCCATCTGATAAGTGGATGGCCGCCGGAGTGTTTTTTGGC



AAATTAGAGAGAATCTTGATTTCTAAACTGACCAATCAATACTCAATTTCGACCATCGAA



GACGACTCTTCAAAACAATCCATGTGA





SEQ
ATGCCTACTCGCACCATCAATCTGAAGTTAGTTTTGGGGAAGAACCCAGAAAATGCGACT


ID
CTAAGACGGGCACTATTCTCTACACATAGACTTGTCAACCAAGCGACTAAGAGAATTGAA


NO:
GAATTTTTACTGTTGTGTAGAGGAGAAGCTTATCGTACCGTAGATAATGAAGGTAAAGAA


141
GCTGAGATCCCACGCCATGCTGTTCAAGAAGAGGCGCTTGCTTTTGCAAAAGCTGCACAA



CGACATAACGGCTGTATCTCCACATATGAGGACCAGGAAATCTTGGATGTGCTTAGACAA



TTGTATGAAAGATTAGTACCTAGCGTCAATGAAAACAACGAGGCTGGGGATGCCCAAGCC



GCTAACGCTTGGGTGAGTCCATTAATGAGTGCAGAGTCCGAAGGTGGACTATCGGTCTAT



GATAAAGTGTTAGACCCGCCGCCAGTATGGATGAAACTCAAAGAAGAGAAAGCGCCTGGT



TGGGAAGCTGCTTCTCAGATTTGGATACAGTCCGACGAAGGTCAATCGCTGCTAAATAAA



CCGGGTAGCCCACCACGTTGGATTAGAAAACTTAGATCTGGTCAACCGTGGCAAGATGAC



TTCGTTTCAGACCAAAAAAAAAAGCAAGATGAACTAACGAAAGGTAACGCACCACTCATA



AAACAATTGAAAGAGATGGGCCTCTTGCCTTTAGTTAATCCCTTTTTTAGACATTTGTTG



GATCCCGAGGGTAAGGGTGTATCCCCATGGGACAGATTGGCCGTAAGGGCCGCGGTGGCG



CACTTCATCTCTTGGGAAAGTTGGAACCACAGAACAAGAGCTGAGTATAACAGTTTGAAA



CTGCGAAGAGATGAATTTGAGGCCGCATCTGATGAATTCAAGGACGATTTTACATTGCTA



CGACAATATGAGGCTAAGCGACATAGTACGCTTAAGTCAATTGCCTTAGCTGATGACTCT



AACCCGTACCGAATTGGTGTAAGGTCCTTGAGAGCCTGGAATAGGGTTAGAGAAGAATGG



ATTGACAAAGGCGCAACCGAGGAACAAAGGGTTACCATCCTTAGTAAGCTTCAAACACAA



TTACGGGGTAAATTCGGTGATCCAGACCTATTTAATTGGCTAGCCCAAGATAGACACGTA



CACCTGTGGTCCCCGAGAGATTCCGTCACGCCCCTCGTAAGGATTAATGCCGTCGACAAA



GTGCTTAGAAGACGTAAGCCTTATGCACTGATGACTTTTGCACATCCGAGATTCCATCCA



AGATGGATTCTATACGAAGCGCCTGGTGGTTCTAACTTGCGACAATACGCTTTAGATTGT



ACTGAAAATGCTCTGCATATTACACTTCCATTACTCGTCGACGACGCCCATGGTACATGG



ATTGAGAAAAAAATCCGCGTACCACTCGCTCCTAGTGGACAAATACAAGATTTAACTTTA



GAAAAACTTGAAAAGAAAAAAAACAGATTATACTATAGATCAGGATTCCAACAATTTGCT



GGATTAGCCGGTGGTGCTGAGGTGTTGTTTCATAGGCCGTATATGGAACATGATGAGAGA



TCAGAAGAATCTCTGTTGGAAAGGCCAGGCGCTGTGTGGTTCAAATTAACCTTAGATGTT



GCTACCCAAGCACCACCTAACTGGTTAGATGGTAAAGGCAGAGTTAGGACACCTCCAGAA



GTTCATCATTTCAAAACCGCTCTGTCAAATAAATCTAAACATACGAGAACCTTGCAACCA



GGATTGAGAGTCCTTTCTGTTGATTTGGGTATGAGAACATTTGCTTCTTGTTCTGTTTTC



GAATTGATCGAAGGTAAACCTGAAACAGGTAGAGCATTCCCTGTTGCTGACGAAAGATCA



ATGGATAGTCCAAATAAGTTATGGGCCAAGCACGAGAGAAGCTTTAAACTAACTCTGCCT



GGAGAAACACCGAGCAGAAAGGAGGAAGAAGAGAGAAGCATTGCTAGGGCAGAGATTTAC



GCGCTGAAAAGAGATATTCAAAGACTGAAATCACTCCTAAGATTAGGTGAGGAAGATAAT



GATAATAGAAGAGATGCTTTGTTAGAGCAATTCTTTAAAGGATGGGGTGAAGAGGACGTA



GTTCCTGGTCAAGCTTTCCCTAGAAGCCTCTTTCAGGGATTAGGCGCTGCACCCTTTAGG



TCAACACCCGAATTGTGGAGACAGCACTGTCAGACGTATTACGACAAAGCGGAAGCTTGC



CTGGCAAAGCATATTTCCGACTGGAGGAAGAGAACTAGACCTCGTCCGACTTCGAGAGAG



ATGTGGTATAAGACAAGATCTTACCATGGTGGCAAAAGTATTTGGATGCTAGAATACTTA



GATGCTGTCCGCAAATTACTACTTTCATGGTCGTTAAGAGGTCGTACTTACGGAGCTATT



AATAGACAAGACACCGCTCGTTTTGGTTCCTTAGCTTCTAGATTGTTGCATCATATCAAC



TCTTTAAAGGAAGACCGCATCAAAACCGGTGCAGATAGTATTGTGCAGGCCGCAAGGGGC



TATATTCCTCTCCCACATGGCAAGGGTTGGGAACAGCGTTATGAACCCTGTCAGTTGATA



TTATTTGAAGATCTAGCTAGGTACAGATTTCGTGTAGACAGACCTCGGAGAGAGAATTCG



CAATTGATGCAGTGGAATCATCGAGCTATAGTAGCAGAAACGACGATGCAAGCTGAACTA



TACGGTCAAATAGTCGAAAATACCGCTGCTGGTTTCTCCTCAAGATTTCATGCTGCAACT



GGTGCTCCTGGTGTCAGATGTCGCTTTTTGTTAGAACGAGATTTCGATAATGACCTACCA



AAGCCGTACTTACTGAGAGAACTAAGTTGGATGTTAGGTAACACAAAGGTTGAATCAGAG



GAAGAAAAATTGCGTCTTCTAAGCGAGAAAATTAGACCAGGTTCATTAGTCCCTTGGGAT



GGGGGTGAACAATTCGCGACATTACACCCGAAAAGACAAACTCTTTGTGTCATTCACGCA



GATATGAACGCTGCTCAAAACCTGCAACGCAGATTTTTCGGAAGGTGTGGGGAAGCCTTT



CGCCTTGTGTGTCAGCCACATGGTGATGATGTTTTGAGGCTAGCGTCTACACCAGGTGCA



AGACTTTTGGGTGCATTACAACAACTGGAAAATGGTCAGGGAGCTTTCGAATTAGTTCGT



GATATGGGTAGCACATCACAAATGAATCGTTTCGTCATGAAGTCGTTGGGCAAAAAAAAG



ATCAAGCCATTACAAGACAATAACGGGGATGATGAACTAGAAGACGTGCTATCTGTTTTA



CCTGAAGAAGATGATACCGGACGAATTACTGTATTTCGGGACTCTTCGGGTATATTCTTC



CCTTGTAACGTTTGGATCCCGGCAAAACAGTTCTGGCCTGCGGTCCGTGCTATGATTTGG



AAGGTTATGGCATCACATTCATTGGGTTAG





SEQ
ATGACAAAGTTAAGGCATAGACAGAAGAAGTTAACTCACGATTGGGCGGGGTCTAAAAAG


ID
AGAGAAGTTCTAGGGAGCAATGGTAAATTACAGAATCCATTGCTAATGCCCGTCAAAAAA


NO:
GGTCAGGTGACAGAATTTCGAAAAGCATTTTCCGCATACGCCCGAGCAACCAAAGGGGAA


142
ATGACGGATGGCAGAAAAAATATGTTTACTCACTCATTTGAACCATTCAAGACCAAGCCT



TCGTTACATCAGTGCGAACTGGCTGACAAAGCCTACCAGAGCTTGCATTCATATTTACCG



GGTTCTTTGGCGCATTTTCTTTTATCTGCCCATGCACTTGGTTTTAGGATTTTTAGCAAA



TCAGGGGAAGCCACTGCATTCCAAGCGTCCTCAAAGATTGAAGCTTACGAAAGCAAGTTA



GCTAGCGAGCTTGCTTGTGTTGATTTGTCTATTCAGAACTTGACTATTTCAACTTTGTTC



AACGCATTAACGACTTCCGTAAGAGGTAAAGGTGAGGAGACATCGGCAGATCCACTGATA



GCTAGATTTTACACCTTACTTACCGGTAAACCACTAAGCAGAGACACTCAGGGCCCAGAA



CGAGATTTAGCCGAGGTGATAAGCAGAAAAATTGCAAGTTCTTTTGGAACTTGGAAGGAG



ATGACTGCCAATCCACTTCAATCTCTTCAATTTTTTGAAGAGGAGTTGCATGCGCTAGAT



GCAAATGTTAGTTTGTCACCTGCCTTCGATGTTCTGATTAAGATGAACGACCTGCAGGGT



GACTTGAAGAACAGAACGATAGTTTTTGATCCAGATGCTCCTGTGTTTGAATATAATGCT



GAGGATCCTGCTGACATCATCATTAAACTGACAGCTAGATATGCGAAAGAAGCAGTGATT



AAAAATCAAAATGTCGGGAATTATGTTAAGAACGCTATTACGACAACTAACGCAAACGGA



CTAGGTTGGTTGCTGAACAAAGGCCTTTCCTTATTGCCTGTCTCCACTGATGACGAACTA



TTGGAGTTTATTGGGGTCGAGAGATCCCATCCTAGCTGTCATGCGTTGATAGAACTTATC



GCTCAGTTAGAAGCACCTGAACTGTTCGAAAAAAATGTTTTTTCTGATACTCGTTCCGAG



GTTCAAGGTATGATAGATTCAGCTGTAAGCAATCATATCGCCAGGCTGTCAAGCTCTCGT



AATTCATTGAGCATGGACTCAGAGGAACTTGAGAGATTGATAAAATCTTTTCAAATTCAT



ACACCACATTGTTCATTATTTATAGGGGCTCAATCCTTATCTCAACAATTGGAAAGCCTA



CCCGAAGCATTGCAGTCAGGAGTGAACAGTGCTGATATTCTGCTCGGCTCAACCCAATAC



ATGTTGACAAATTCTTTGGTCGAGGAGTCAATCGCTACGTATCAGAGAACCTTAAATAGA



ATTAACTACCTGTCCGGCGTTGCAGGACAGATTAACGGTGCTATTAAGAGGAAAGCTATT



GATGGTGAGAAGATACATTTACCCGCTGCTTGGTCAGAGTTAATTTCTTTACCCTTTATT



GGGCAACCAGTGATTGATGTTGAATCAGATTTAGCCCACTTAAAGAACCAATACCAGACA



TTGTCTAACGAATTTGATACGCTGATTTCCGCACTGCAAAAGAATTTCGACTTAAATTTT



AATAAAGCCTTGCTTAATCGAACACAACATTTCGAGGCTATGTGTAGATCAACAAAAAAG



AATGCCCTTTCTAAGCCTGAGATCGTTAGTTATAGAGATTTGCTAGCCAGGTTGACTTCT



TGTCTTTATAGGGGCTCTCTAGTCTTGAGGAGGGCGGGTATAGAAGTACTGAAAAAGCAC



AAGATATTTGAGTCCAACTCTGAATTAAGAGAGCACGTTCATGAAAGAAAACACTTCGTA



TTTGTTTCTCCGCTCGATAGAAAAGCCAAGAAGCTCCTACGTTTGACTGACTCTAGGCCT



GATTTATTGCACGTAATTGATGAAATACTACAACATGATAATTTAGAGAACAAGGATAGA



GAATCTTTGTGGTTAGTTCGATCTGGTTATTTACTGGCCGGCCTACCAGACCAACTCTCC



TCTTCCTTTATAAATCTTCCAATCATTACTCAAAAAGGCGATCGTCGCTTGATAGATCTC



ATTCAATACGACCAAATTAATAGAGATGCTTTTGTGATGTTGGTAACTTCCGCTTTTAAG



TCGAACTTAAGTGGGCTGCAGTACAGAGCAAACAAACAATCTTTTGTGGTTACGCGCACT



TTGTCACCATATTTGGGATCTAAATTGGTTTATGTGCCCAAAGATAAAGATTGGCTGGTC



CCTTCCCAAATGTTCGAGGGGAGATTTGCGGACATTTTGCAATCCGATTATATGGTGTGG



AAGGACGCTGGAAGATTGTGTGTTATTGACACAGCTAAGCATTTGTCTAACATTAAAAAA



TCTGTATTCTCAAGTGAAGAAGTCCTCGCGTTTTTAAGAGAATTGCCACACCGTACGTTT



ATCCAAACTGAGGTCAGGGGTTTAGGGGTGAATGTGGACGGTATTGCATTTAATAACGGG



GATATACCCTCTCTGAAGACGTTTAGCAATTGCGTGCAAGTCAAAGTGAGTCGGACAAAC



ACTAGTCTGGTCCAAACATTAAATAGATGGTTTGAAGGCGGTAAGGTCTCGCCGCCTAGC



ATCCAATTTGAGAGAGCATATTACAAAAAAGATGATCAAATCCACGAGGACGCTGCAAAA



AGGAAGATAAGGTTTCAAATGCCAGCTACAGAGTTGGTACACGCGTCAGACGACGCAGGA



TGGACCCCCTCCTATTTACTTGGTATCGATCCCGGTGAATATGGTATGGGTTTGTCATTG



GTCTCAATAAATAATGGCGAAGTTTTAGATAGCGGATTTATACACATAAATTCATTGATA



AATTTCGCTTCTAAGAAATCAAATCATCAAACCAAAGTTGTTCCGAGGCAGCAATACAAG



TCACCATACGCCAACTATCTAGAACAATCTAAAGATTCTGCAGCAGGAGACATAGCTCAT



ATTTTGGATAGACTTATCTACAAGTTGAACGCCCTACCCGTTTTCGAAGCTCTATCTGGC



AATAGTCAAAGCGCAGCGGATCAGGTTTGGACAAAAGTCCTCAGCTTCTACACCTGGGGA



GATAATGATGCACAAAATTCAATTCGTAAGCAACATTGGTTCGGTGCTTCACACTGGGAC



ATTAAAGGCATGTTGAGGCAACCGCCAACAGAAAAAAAGCCCAAACCATACATTGCCTTT



CCCGGTTCACAAGTTTCTTCTTATGGTAATTCTCAAAGGTGTTCATGTTGTGGACGTAAC



CCAATTGAACAATTGCGCGAAATGGCGAAGGACACATCCATTAAGGAGTTGAAGATTAGA



AATTCAGAAATTCAATTGTTCGACGGTACTATAAAGTTATTTAATCCAGACCCGTCAACG



GTCATAGAAAGAAGAAGACATAATTTAGGGCCATCAAGAATTCCTGTAGCTGATAGAACT



TTCAAAAATATAAGTCCAAGCTCACTAGAATTCAAAGAACTAATAACGATTGTGTCACGG



TCTATACGTCATTCCCCAGAATTTATTGCTAAAAAAAGAGGTATAGGTAGTGAGTACTTT



TGTGCTTATAGTGATTGTAATTCCTCCTTAAATTCAGAAGCAAATGCGGCTGCGAACGTT



GCCCAAAAGTTCCAAAAGCAATTGTTTTTCGAATTATAG





SEQ
ATGAAAAGAATCTTGAACTCTTTAAAGGTTGCCGCCCTGCGTTTGTTATTTAGAGGTAAA


ID
GGATCTGAACTTGTCAAGACTGTTAAATACCCTTTGGTCTCGCCGGTTCAGGGTGCAGTT


NO:
GAGGAGTTAGCTGAGGCGATCCGCCATGATAACCTACATCTGTTTGGTCAAAAAGAAATT


143
GTTGACCTTATGGAAAAGGATGAAGGTACGCAAGTTTACTCAGTGGTTGATTTCTGGTTA



GATACCCTTCGTTTGGGGATGTTTTTCAGTCCATCAGCAAACGCATTAAAAATCACGCTG



GGTAAGTTTAATTCTGATCAGGTTAGCCCTTTTAGGAAAGTGTTAGAGCAGTCTCCATTC



TTCTTGGCTGGTAGGCTGAAGGTTGAACCGGCAGAACGTATATTATCTGTCGAGATCCGT



AAGATTGGGAAGAGGGAAAACAGAGTTGAGAACTATGCTGCTGACGTAGAAACGTGTTTT



ATAGGCCAATTAAGTTCAGATGAGAAACAGTCAATACAAAAATTAGCTAATGATATCTGG



GATAGTAAAGATCATGAAGAGCAAAGAATGTTAAAGGCAGATTTCTTCGCTATCCCTTTG



ATTAAGGATCCAAAGGCTGTGACCGAAGAGGATCCTGAAAATGAAACTGCTGGTAAACAA



AAACCCTTGGAGTTGTGTGTCTGCCTTGTCCCAGAACTTTACACAAGAGGATTCGGGTCA



ATAGCCGATTTTTTGGTTCAACGCTTAACTCTTTTAAGGGATAAAATGTCTACAGATACT



GCAGAAGATTGTTTAGAATATGTCGGGATTGAGGAGGAAAAAGGTAACGGCATGAACTCA



TTGTTGGGAACGTTCTTAAAGAATTTGCAAGGCGATGGATTTGAGCAGATTTTCCAATTT



ATGTTAGGGAGCTATGTCGGTTGGCAAGGGAAGGAAGATGTTTTAAGAGAGAGATTAGAC



TTATTGGCTGAAAAAGTGAAGAGGTTACCGAAACCAAAATTTGCTGGCGAATGGTCTGGT



CATAGGATGTTCTTGCATGGCCAATTGAAGTCTTGGTCTTCAAATTTTTTTAGACTATTT



AACGAGACAAGGGAACTTCTAGAGTCTATTAAGTCAGATATACAGCATGCCACAATGCTA



ATATCATATGTAGAAGAAAAAGGTGGTTATCATCCTCAATTACTTAGTCAATATAGAAAA



CTTATGGAACAACTACCAGCTTTGCGTACCAAGGTATTGGACCCTGAGATTGAAATGACA



CATATGTCCGAAGCAGTTCGCTCTTATATAATGATACATAAATCTGTTGCGGGTTTTTTA



CCGGATTTATTAGAATCATTAGATAGAGACAAGGATCGTGAGTTTCTGCTTAGTATTTTT



CCAAGAATCCCAAAAATTGATAAAAAAACCAAGGAAATTGTAGCTTGGGAACTGCCGGGA



GAACCAGAAGAAGGTTATTTATTTACTGCTAATAACTTGTTCAGAAACTTCTTAGAGAAT



CCGAAACATGTCCCGAGATTTATGGCCGAAAGGATCCCAGAAGATTGGACTCGATTACGC



TCTGCTCCTGTCTGGTTCGATGGAATGGTAAAACAATGGCAAAAAGTCGTTAACCAGTTA



GTAGAATCACCAGGTGCTTTATATCAATTTAACGAATCCTTCTTGAGACAAAGGTTACAG



GCCATGTTAACTGTGTATAAGAGGGACTTACAAACTGAAAAATTTCTTAAACTTTTGGCG



GATGTTTGTAGGCCTCTTGTAGATTTTTTTGGTTTGGGTGGAAATGATATTATTTTTAAG



AGCTGTCAAGACCCAAGAAAACAATGGCAAACCGTTATTCCTCTCTCTGTTCCGGCAGAT



GTCTATACTGCTTGCGAAGGTTTGGCGATTAGACTAAGGGAGACATTAGGATTCGAATGG



AAGAATTTGAAAGGTCACGAGAGAGAAGATTTCTTAAGATTGCACCAGTTATTGGGCAAT



TTACTTTTCTGGATTCGTGATGCTAAATTGGTAGTAAAATTAGAGGATTGGATGAACAAC



CCATGTGTTCAGGAATATGTAGAAGCCCGGAAAGCTATCGATCTTCCACTAGAAATATTC



GGTTTTGAAGTGCCTATCTTCCTGAATGGCTATCTATTTTCGGAGTTGAGACAATTAGAA



CTTTTGCTTAGGAGAAAAAGTGTGATGACTAGCTACAGTGTAAAGACTACTGGATCTCCT



AATAGGCTATTTCAGCTAGTTTATTTACCTCTAAACCCTAGTGACCCCGAAAAGAAGAAC



TCAAATAACTTTCAAGAACGTTTGGATACCCCAACTGGTTTGTCCCGTCGTTTCCTAGAC



CTAACCCTTGATGCATTCGCAGGTAAGTTACTTACCGATCCAGTTACACAAGAATTGAAG



ACAATGGCAGGTTTTTACGATCATCTTTTTGGATTCAAATTGCCATGTAAACTCGCCGCC



ATGTCGAATCATCCAGGTTCTTCTTCAAAGATGGTTGTGTTAGCGAAACCCAAAAAAGGT



GTTGCTTCTAATATAGGGTTTGAACCGATCCCAGATCCCGCTCATCCCGTATTTAGGGTT



AGATCCAGTTGGCCAGAGTTGAAGTACCTCGAGGGGCTATTGTATTTGCCAGAAGACACA



CCTTTGACCATCGAATTAGCAGAGACCTCCGTATCGTGCCAAAGTGTCTCGTCAGTTGCA



TTCGATTTGAAAAACTTGACAACGATCTTAGGTCGTGTGGGAGAATTTAGGGTCACAGCT



GATCAACCCTTTAAACTAACGCCTATAATCCCGGAGAAAGAAGAATCTTTTATTGGTAAA



ACTTATTTGGGTCTCGACGCGGGTGAAAGGAGCGGCGTCGGTTTCGCTATTGTTACAGTG



GACGGAGATGGGTACGAAGTGCAAAGATTGGGGGTCCACGAGGATACACAGCTTATGGCC



TTGCAGCAAGTTGCTAGTAAATCCTTAAAAGAGCCAGTATTTCAGCCTCTAAGAAAAGGC



ACCTTTAGACAACAAGAAAGAATACGGAAATCCTTACGTGGTTGCTACTGGAATTTTTAT



CATGCCTTGATGATAAAATATAGGGCCAAAGTAGTACATGAGGAATCTGTCGGAAGTAGT



GGTCTTGTGGGTCAATGGTTGAGGGCTTTTCAGAAGGATTTGAAGAAAGCCGATGTTCTC



CCCAAGAAGGGCGGTAAAAACGGTGTAGATAAGAAGAAGAGAGAGTCCTCAGCTCAAGAC



ACTCTTTGGGGTGGTGCTTTCTCTAAAAAGGAGGAGCAACAGATTGCGTTTGAGGTGCAA



GCTGCAGGTTCTTCGCAATTTTGTTTGAAGTGCGGATGGTGGTTCCAACTAGGCATGCGT



GAAGTAAACAGGGTACAAGAATCGGGCGTCGTGTTAGATTGGAATAGAAGCATAGTTACC



TTTTTAATAGAATCATCCGGCGAAAAAGTTTATGGTTTCTCCCCACAGCAATTAGAGAAG



GGTTTCAGACCAGACATCGAAACTTTTAAAAAGATGGTAAGAGACTTTATGAGACCTCCT



ATGTTTGATAGAAAAGGCAGACCGGCCGCAGCTTACGAGAGATTTGTTTTAGGAAGGAGA



CATCGAAGGTACAGGTTTGATAAAGTATTTGAGGAAAGATTTGGGAGGTCTGCTCTTTTC



ATTTGTCCTAGAGTAGGTTGTGGAAATTTTGACCACAGCTCCGAACAGTCCGCGGTTGTT



TTGGCCTTGATCGGATATATTGCCGATAAGGAGGGAATGTCAGGTAAGAAGTTGGTTTAT



GTACGGCTGGCCGAACTTATGGCCGAATGGAAACTAAAAAAATTAGAAAGATCCAGAGTT



GAAGAACAATCATCCGCTCAATAA





SEQ
ATGGCAGAAAGCAAACAAATGCAGTGTAGGAAATGTGGAGCTAGTATGAAGTACGAAGTC


ID
ATCGGTTTGGGTAAAAAGTCATGTAGATACATGTGTCCCGATTGTGGCAACCATACCTCG


NO:
GCAAGAAAGATACAAAACAAAAAAAAAAGAGATAAAAAATATGGGTCAGCCAGTAAAGCC


144
CAATCTCAAAGAATTGCTGTAGCAGGTGCTCTTTACCCTGACAAAAAAGTACAAACTATC



AAAACCTATAAATATCCAGCAGACTTGAATGGTGAGGTGCATGATAGCGGTGTTGCCGAG



AAAATCGCACAAGCAATACAAGAGGACGAGATTGGACTTTTGGGACCAAGCTCAGAATAT



GCATGCTGGATTGCATCTCAAAAACAGTCTGAGCCTTACAGTGTAGTCGATTTCTGGTTT



GATGCAGTGTGCGCAGGGGGAGTCTTCGCCTACTCTGGCGCTAGATTATTGAGTACAGTT



TTACAGTTATCCGGTGAGGAATCGGTGCTTAGAGCTGCCTTAGCCTCGTCTCCATTCGTT



GACGATATAAACTTAGCGCAAGCCGAAAAGTTTTTGGCGGTTAGCAGGCGTACAGGTCAA



GATAAGTTAGGTAAGAGAATTGGGGAGTGCTTTGCAGAAGGAAGATTGGAAGCTTTAGGG



ATAAAAGATAGAATGAGGGAATTTGTTCAAGCTATCGATGTTGCACAGACCGCCGGACAA



CGTTTCGCTGCCAAATTGAAGATATTCGGTATAAGTCAGATGCCAGAAGCTAAGCAATGG



AATAACGATTCCGGACTGACTGTCTGTATACTACCTGATTATTATGTTCCCGAAGAGAAT



CGCGCGGACCAACTTGTAGTGTTGTTAAGAAGACTTCGCGAGATTGCATATTGCATGGGT



ATTGAAGATGAAGCGGGTTTCGAACATCTTGGAATAGATCCTGGTGCTCTTTCGAATTTT



TCAAACGGTAACCCTAAGAGAGGATTTCTAGGGAGGCTGTTAAATAACGATATTATTGCG



TTGGCAAACAATATGAGTGCGATGACTCCATATTGGGAAGGGCGTAAGGGTGAACTCATA



GAAAGGCTTGCGTGGTTAAAGCACAGGGCAGAAGGGCTGTATCTTAAAGAACCTCATTTC



GGTAACTCCTGGGCCGATCATAGGTCACGAATTTTCTCAAGGATCGCAGGCTGGTTATCT



GGTTGCGCTGGCAAGTTGAAAATTGCGAAAGACCAAATTTCTGGAGTACGTACAGATCTA



TTTCTGCTAAAAAGACTGCTGGACGCAGTTCCGCAATCGGCGCCATCCCCCGATTTTATT



GCGTCAATTTCGGCACTTGACAGGTTTTTAGAAGCTGCAGAATCGAGCCAGGACCCTGCT



GAACAAGTGAGGGCTCTCTACGCTTTTCACTTGAACGCACCTGCAGTCCGAAGTATAGCC



AATAAAGCAGTGCAAAGGTCCGACAGCCAAGAATGGCTGATAAAAGAACTAGACGCTGTT



GACCATTTAGAATTTAACAAAGCGTTCCCATTTTTCTCTGACACAGGAAAAAAAAAAAAA



AAAGGTGCTAATAGCAACGGTGCTCCATCGGAAGAAGAGTACACTGAAACGGAATCAATA



CAACAACCTGAGGACGCGGAACAGGAAGTAAACGGACAAGAAGGGAACGGAGCGTCTAAA



AATCAAAAGAAATTTCAAAGAATACCTAGATTCTTCGGTGAAGGCTCCAGATCTGAATAC



AGAATTTTAACGGAAGCTCCACAGTATTTCGATATGTTTTGTAATAACATGAGGGCTATA



TTTATGCAGTTAGAAAGTCAACCCCGTAAAGCTCCCAGAGATTTTAAATGTTTCCTACAA



AATCGATTACAAAAATTATACAAACAGACTTTCTTGAATGCACGAAGCAACAAGTGTCGC



GCTCTGCTTGAGTCAGTTTTAATCTCTTGGGGAGAATTTTATACATACGGTGCCAACGAA



AAGAAATTTAGATTAAGACATGAAGCTTCAGAACGCAGCAGTGACCCAGATTACGTAGTT



CAGCAAGCCTTGGAAATCGCGCGTCGTCTATTCCTTTTTGGCTTCGAATGGAGAGATTGC



TCCGCTGGTGAAAGAGTGGATTTGGTTGAAATTCACAAAAAGGCTATCAGTTTTTTGTTG



GCTATTACTCAAGCTGAGGTCTCTGTTGGTTCATACAATTGGCTTGGCAACTCAACAGTA



TCGAGATATTTATCCGTTGCGGGAACTGATACCTTATACGGTACCCAATTGGAAGAATTC



CTGAACGCTACAGTGTTGAGTCAAATGCGTGGTCTGGCCATTAGATTGAGTTCTCAAGAA



CTTAAGGACGGTTTTGATGTGCAGCTCGAGTCTTCCTGCCAGGACAATCTGCAACACCTA



TTGGTGTATAGGGCTTCGAGAGATTTGGCGGCTTGCAAGCGCGCTACTTGTCCAGCCGAA



CTCGATCCTAAGATTTTAGTTTTACCGGTAGGTGCATTCATCGCTTCCGTAATGAAAATG



ATAGAAAGAGGTGACGAACCTTTAGCTGGTGCTTATTTACGGCATAGGCCACACTCTTTC



GGATGGCAAATTAGGGTCCGCGGTGTTGCTGAGGTAGGGATGGATCAGGGTACAGCATTG



GCCTTTCAAAAGCCAACAGAGTCAGAACCTTTTAAAATTAAGCCCTTCTCTGCACAGTAT



GGACCAGTTCTGTGGTTGAACAGTAGTAGTTATTCTCAATCACAATATTTGGACGGTTTT



CTATCTCAACCAAAAAATTGGAGTATGAGGGTGTTGCCTCAGGCGGGTTCAGTTCGCGTC



GAACAACGAGTTGCTTTGATATGGAACTTACAAGCAGGCAAGATGAGACTAGAACGCTCC



GGTGCGAGGGCCTTTTTCATGCCTGTACCGTTTTCATTTAGGCCATCCGGCAGTGGGGAC



GAAGCAGTTTTGGCGCCCAACCGGTACTTGGGTCTGTTCCCTCATTCCGGAGGTATAGAA



TACGCTGTAGTGGATGTCCTGGATTCTGCTGGATTTAAAATTCTTGAAAGAGGCACTATT



GCTGTCAATGGTTTCTCTCAGAAAAGGGGAGAGCGCCAAGAAGAAGCCCATCGTGAAAAA



CAAAGAAGGGGGATAAGTGATATAGGGCGAAAGAAGCCTGTGCAGGCAGAAGTCGATGCG



GCGAACGAATTGCATAGAAAGTACACTGATGTTGCCACAAGATTAGGTTGTAGAATCGTC



GTTCAATGGGCACCACAACCTAAACCAGGGACAGCACCGACAGCGCAAACTGTTTACGCG



AGGGCTGTTAGGACAGAAGCTCCGAGGAGCGGCAACCAAGAAGATCATGCAAGAATGAAA



AGTTCTTGGGGTTACACCTGGGGTACGTATTGGGAGAAACGAAAACCAGAAGATATTTTA



GGGATTTCTACACAGGTGTATTGGACAGGAGGTATAGGCGAATCCTGTCCTGCTGTAGCA



GTCGCTTTATTAGGTCATATTAGAGCAACTTCAACACAAACGGAGTGGGAAAAGGAAGAA



GTTGTCTTTGGAAGACTGAAGAAGTTCTTTCCGAGTTAA





SEQ
ATGGAGAAGAGAATTAATAAGATACGGAAAAAATTATCTGCGGATAATGCAACAAAGCCA


ID
GTCTCTCGTTCAGGCCCCATGAAAACCCTGCTTGTAAGAGTAATGACGGATGATTTAAAA


NO:
AAGAGGTTGGAAAAGCGTAGAAAAAAACCAGAAGTGATGCCGCAAGTGATCTCAAATAAC


145
GCAGCTAATAATCTAAGGATGCTACTTGATGATTATACAAAAATGAAAGAAGCAATCCTG



CAAGTTTACTGGCAGGAATTCAAGGATGACCATGTTGGACTAATGTGCAAATTCGCACAA



CCAGCGTCTAAGAAAATTGACCAAAATAAATTGAAACCCGAAATGGACGAAAAAGGGAAT



TTAACAACTGCCGGGTTTGCCTGCTCGCAATGTGGGCAACCATTATTTGTTTATAAATTA



GAGCAGGTTTCGGAAAAAGGAAAGGCTTACACAAATTACTTCGGCAGATGTAATGTTGCC



GAACACGAAAAACTCATATTGTTAGCTCAGTTGAAGCCTGAGAAAGACTCTGATGAGGCC



GTTACTTACTCGTTGGGGAAGTTTGGTCAAAGAGCTCTCGATTTTTATTCTATTCATGTG



ACAAAGGAGTCCACACATCCCGTCAAGCCCTTGGCACAAATTGCGGGTAATAGATACGCT



TCGGGTCCAGTTGGGAAGGCCCTTTCTGATGCATGTATGGGCACAATTGCTAGCTTTCTT



AGTAAATACCAGGATATCATAATAGAGCATCAAAAAGTTGTAAAGGGTAACCAAAAGAGA



TTAGAATCGCTGCGTGAGTTGGCGGGTAAAGAAAACTTGGAATATCCATCTGTCACTCTG



CCTCCTCAACCTCATACTAAGGAAGGTGTAGATGCGTACAATGAAGTTATCGCTAGAGTC



CGTATGTGGGTGAATTTAAATTTGTGGCAAAAATTGAAGTTATCGCGTGATGATGCAAAA



CCTCTTCTTAGACTAAAGGGCTTTCCTAGCTTCCCTGTAGTGGAAAGACGCGAAAATGAA



GTCGATTGGTGGAATACAATTAACGAAGTCAAAAAACTGATCGATGCAAAGCGAGATATG



GGTCGAGTTTTTTGGTCTGGTGTTACAGCTGAAAAAAGGAATACGATCTTAGAAGGTTAC



AACTACTTGCCAAATGAGAACGATCATAAAAAAAGAGAAGGCAGTTTAGAAAATCCAAAA



AAGCCAGCTAAGAGACAATTTGGTGATTTGCTACTTTACCTAGAAAAAAAGTACGCCGGA



GATTGGGGGAAAGTCTTTGACGAAGCTTGGGAGAGAATAGATAAAAAAATAGCAGGATTG



ACGTCACACATTGAAAGAGAAGAGGCGAGAAATGCAGAAGATGCTCAGTCCAAAGCTGTC



CTCACCGACTGGTTGAGAGCCAAAGCGTCCTTTGTTCTCGAACGCCTAAAAGAAATGGAT



GAGAAGGAATTTTATGCCTGCGAAATCCAGCTACAAAAATGGTACGGAGACTTGAGAGGT



AACCCCTTTGCCGTGGAAGCAGAGAACCGTGTTGTAGATATCTCCGGTTTCTCAATCGGT



AGCGATGGACACTCCATTCAGTATCGCAACTTGTTGGCCTGGAAATATTTGGAAAACGGT



AAGAGGGAATTCTATTTACTTATGAATTATGGCAAGAAAGGTAGAATCAGGTTTACTGAC



GGAACAGACATTAAAAAGAGTGGTAAGTGGCAAGGCCTTTTGTACGGTGGTGGCAAGGCC



AAAGTAATAGACTTAACATTTGACCCCGACGACGAACAACTGATAATACTGCCTTTAGCT



TTTGGTACTCGACAGGGGCGAGAGTTCATTTGGAATGATCTTTTGTCACTCGAGACTGGT



TTGATAAAACTTGCAAATGGAAGAGTCATCGAGAAGACAATTTACAACAAAAAGATAGGT



CGCGATGAGCCTGCACTATTTGTGGCCTTGACCTTTGAGAGAAGGGAAGTTGTCGACCCA



TCCAATATTAAACCAGTCAACCTAATCGGTGTAGATAGAGGTGAAAACATCCCAGCTGTT



ATCGCTCTGACAGACCCTGAAGGTTGCCCTTTGCCAGAATTTAAAGATTCGTCTGGTGGA



CCAACAGATATATTACGTATTGGGGAAGGCTATAAAGAGAAACAACGTGCTATTCAGGCT



GCAAAAGAAGTTGAACAGAGGAGAGCTGGAGGTTACAGTAGAAAATTCGCCAGTAAAAGT



AGAAACTTAGCAGATGACATGGTTAGAAACTCTGCCCGGGATTTGTTCTATCATGCGGTT



ACTCACGATGCAGTCTTAGTCTTTGAAAATCTATCGCGCGGTTTTGGTAGGCAAGGCAAG



AGGACTTTTATGACAGAGAGACAATATACAAAAATGGAAGATTGGTTAACCGCGAAGCTC



GCATATGAAGGTCTTACTTCGAAAACGTACCTCAGCAAAACGCTGGCTCAATATACTTCT



AAAACTTGTTCAAATTGTGGTTTTACTATTACCACGGCAGACTACGACGGGATGTTGGTG



AGATTGAAGAAGACGAGCGATGGTTGGGCAACAACATTGAATAATAAGGAATTAAAAGCA



GAAGGACAGATTACGTATTACAATCGTTATAAACGCCAAACGGTTGAGAAAGAGTTGTCA



GCCGAGTTGGATAGACTAAGTGAAGAGAGCGGTAACAATGATATCTCAAAGTGGACTAAA



GGGAGGCGGGATGAAGCCCTCTTTTTACTAAAGAAGAGATTCTCACATAGACCTGTGCAA



GAACAATTCGTTTGTTTAGATTGTGGCCATGAGGTTCATGCAGACGAACAGGCTGCGTTA



AATATTGCGAGAAGCTGGCTATTTCTAAATTCTAATTCAACAGAGTTCAAGAGCTATAAA



TCCGGAAAACAACCTTTCGTAGGCGCGTGGCAAGCCTTCTATAAAAGGAGATTAAAAGAG



GTTTGGAAACCAAATGCA





SEQ
ATGAAAAGAATTAACAAAATTAGAAGGAGGCTGGTCAAAGATTCTAATACCAAGAAAGCT


ID
GGTAAGACTGGTCCGATGAAAACCCTATTAGTCAGAGTTATGACCCCAGATTTGAGAGAA


NO:
AGATTGGAGAACCTCAGGAAAAAGCCCGAAAACATCCCACAACCCATTAGTAACACATCA


146
AGAGCTAATTTAAACAAGTTATTAACTGACTACACTGAAATGAAAAAAGCAATATTGCAT



GTTTACTGGGAAGAGTTCCAGAAAGATCCTGTTGGGTTGATGTCTAGAGTTGCTCAACCG



GCCCCAAAGAATATAGATCAAAGGAAACTTATTCCTGTGAAGGACGGCAATGAAAGATTA



ACCAGCTCCGGTTTCGCTTGCTCCCAGTGCTGCCAACCCCTGTATGTATACAAACTGGAA



CAAGTAAATGATAAAGGTAAGCCACATACTAACTACTTTGGTAGGTGTAATGTATCCGAG



CATGAAAGATTGATCTTGTTAAGTCCCCATAAACCAGAAGCTAATGATGAGTTAGTAACT



TATAGTTTAGGTAAGTTCGGACAACGAGCTTTAGATTTCTATAGCATCCATGTTACAAGA



GAAAGCAATCACCCCGTCAAACCACTGGAACAAATCGGTGGTAATAGTTGTGCGTCAGGT



CCAGTAGGCAAAGCTTTATCAGACGCTTGCATGGGTGCCGTGGCTAGTTTTTTGACGAAA



TACCAAGATATTATACTGGAACATCAAAAGGTAATTAAAAAGAATGAAAAGAGACTCGCT



AACTTAAAAGATATTGCAAGTGCCAATGGTTTAGCTTTTCCTAAAATTACCTTGCCACCT



CAGCCACATACAAAGGAGGGAATTGAAGCTTACAATAATGTAGTAGCCCAAATAGTTATT



TGGGTGAACCTTAACCTATGGCAAAAGTTAAAAATTGGTAGAGACGAAGCCAAACCCCTG



CAGAGGCTGAAGGGTTTTCCCTCCTTCCCCTTAGTAGAGAGACAAGCTAATGAAGTGGAC



TGGTGGGATATGGTGTGCAATGTTAAAAAATTGATTAATGAGAAGAAAGAGGATGGTAAA



GTGTTTTGGCAGAATCTTGCTGGCTACAAGAGACAGGAAGCTTTACTGCCTTATTTATCT



TCTGAGGAAGATAGGAAAAAAGGTAAAAAATTTGCTAGATATCAATTCGGAGACCTACTT



CTGCATTTAGAAAAAAAACATGGCGAAGATTGGGGTAAAGTTTATGATGAAGCCTGGGAA



AGAATTGATAAGAAGGTAGAAGGTCTCTCCAAACATATTAAATTAGAGGAAGAACGTAGG



TCCGAAGACGCTCAATCAAAGGCAGCATTAACTGATTGGTTGAGAGCAAAAGCCTCTTTC



GTTATTGAAGGATTAAAAGAAGCCGACAAAGATGAATTTTGTAGATGTGAGTTAAAGTTG



CAAAAGTGGTATGGAGACCTCCGTGGTAAACCTTTTGCTATTGAGGCTGAAAATTCTATA



CTCGATATCTCTGGATTTTCAAAACAATATAACTGCGCATTTATATGGCAGAAAGATGGT



GTTAAAAAGCTAAATCTATACTTAATTATCAATTACTTTAAAGGTGGTAAATTGCGTTTT



AAGAAGATAAAGCCTGAAGCCTTTGAGGCAAACCGTTTTTACACTGTTATCAATAAAAAA



TCTGGGGAAATCGTACCAATGGAAGTTAATTTCAATTTCGATGATCCTAATCTTATTATT



TTACCTCTTGCTTTCGGCAAAAGGCAAGGTAGGGAGTTTATTTGGAATGATTTATTGTCG



CTGGAAACGGGGTCTCTCAAACTCGCAAACGGTAGGGTGATAGAAAAAACATTATACAAC



AGGAGAACTCGGCAGGATGAGCCAGCTCTTTTTGTGGCTCTGACATTCGAGAGAAGGGAA



GTTTTAGATTCATCTAACATCAAACCAATGAATTTAATAGGTATTGACCGGGGTGAAAAT



ATACCTGCAGTTATTGCTTTAACTGATCCTGAGGGATGTCCTCTTAGCAGATTCAAGGAC



TCGTTGGGTAACCCTACTCACATCTTAAGGATTGGAGAAAGTTACAAGGAGAAACAAAGG



ACAATACAAGCTGCTAAAGAAGTAGAACAAAGGAGGGCGGGTGGATATAGTCGGAAATAT



GCCAGCAAGGCCAAGAATTTAGCTGACGACATGGTTAGGAATACAGCTAGAGACCTTTTA



TACTATGCCGTCACCCAGGATGCCATGTTGATATTTGAAAATTTAAGTAGAGGCTTCGGT



AGACAAGGTAAGCGCACCTTCATGGCAGAGAGACAATATACTAGAATGGAAGATTGGTTG



ACTGCCAAATTGGCATACGAAGGTCTACCTAGTAAGACGTACTTATCTAAAACACTAGCG



CAGTATACTTCCAAGACATGCAGTAATTGTGGTTTCACAATCACTTCTGCCGATTACGAT



CGCGTCTTGGAAAAACTAAAAAAAACAGCGACAGGTTGGATGACTACTATTAATGGGAAA



GAATTGAAGGTCGAAGGACAAATAACTTACTATAATAGATATAAACGGCAAAACGTTGTA



AAAGACCTGTCAGTCGAACTCGATCGACTTAGTGAAGAATCTGTTAATAATGATATTAGT



TCGTGGACAAAAGGTAGATCCGGTGAAGCTTTGAGCCTCCTGAAAAAACGTTTTAGCCAT



AGGCCTGTCCAAGAAAAGTTTGTATGTTTAAACTGTGGTTTTGAGACCCATGCAGACGAG



CAGGCCGCTCTTAATATTGCTAGATCATGGTTATTTTTAAGATCTCAGGAATACAAGAAG



TACCAGACTAACAAGACAACAGGCAACACAGATAAGCGAGCATTCGTTGAGACTTGGCAA



TCTTTTTATAGAAAGAAATTGAAGGAAGTCTGGAAACCA





SEQ
ATGGGAAAAATGTATTATCTAGGCCTGGACATAGGGACCAATTCAGTAGGCTACGCTGTC


ID
ACTGACCCCTCCTACCATTTGCTGAAGTTCAAGGGGGAACCCATGTGGGGAGCACACGTG


NO:
TTTGCGGCCGGCAACCAGAGCGCAGAGCGGAGAAGCTTCCGCACCTCCAGGAGAAGGCTG


147
GATCGCAGGCAGCAGCGTGTGAAGCTGGTCCAAGAGATATTTGCCCCAGTGATTTCCCCC



ATCGATCCGCGCTTCTTTATTAGGCTCCACGAGTCCGCTCTCTGGCGCGACGACGTGGCC



GAAACTGATAAACATATTTTCTTTAATGACCCAACATACACTGACAAGGAGTACTATTCA



GATTACCCAACAATTCACCATTTGATCGTGGACCTTATGGAAAGTTCGGAGAAGCATGAT



CCTCGACTTGTCTATTTGGCCGTGGCGTGGCTCGTGGCACATAGGGGCCACTTCTTGAAC



GAGGTGGACAAGGATAACATCGGGGATGTGTTATCTTTCGACGCTTTCTATCCTGAATTC



CTTGCTTTTCTGTCTGACAATGGCGTCAGCCCGTGGGTCTGCGAATCCAAGGCCCTCCAG



GCTACGCTATTGTCAAGAAATAGCGTGAACGACAAGTACAAGGCTCTTAAGTCTTTGATT



TTTGGAAGCCAGAAGCCCGAGGACAACTTTGATGCAAATATCTCGGAGGACGGGCTGATT



CAGCTCCTCGCTGGGAAAAAGGTCAAGGTCAATAAGCTGTTTCCACAGGAGTCAAATGAC



GCGAGCTTCACCCTTAACGACAAAGAGGATGCCATTGAAGAGATCCTGGGGACACTCACC



CCAGACGAGTGCGAGTGGATAGCCCATATTAGGCGCCTCTTTGATTGGGCCATAATGAAA



CATGCGCTTAAGGACGGGCGCACGATATCCGAAAGCAAGGTCAAATTGTACGAGCAGCAC



CACCATGATCTGACCCAGCTAAAATATTTTGTAAAAACATATCTGGCCAAGGAGTACGAT



GATATCTTCCGCAACGTGGATAGTGAGACCACCAAAAACTACGTCGCGTACTCATACCAC



GTGAAAGAAGTTAAGGGCACGCTGCCTAAGAACAAGGCAACACAAGAGGAGTTCTGCAAG



TACGTTCTCGGGAAAGTTAAAAATATAGAGTGCAGCGAGGCCGACAAAGTGGATTTTGAC



GAGATGATTCAACGCCTGACCGACAATTCGTTTATGCCTAAACAGGTGAGTGGAGAGAAT



CGCGTGATTCCATATCAGCTCTATTACTATGAACTCAAGACTATTCTGAATAAGGCCGCT



AGCTATTTACCCTTCCTTACGCAGTGCGGGAAGGATGCCATTTCTAACCAGGATAAACTC



TTGAGTATAATGACATTTCGAATTCCCTATTTCGTGGGTCCGCTTCGTAAGGATAACAGT



GAGCACGCTTGGCTGGAGCGGAAGGCTGGCAAAATTTATCCATGGAATTTCAACGACAAG



GTGGATCTGGACAAATCCGAAGAAGCCTTTATCCGCAGGATGACCAATACTTGCACATAC



TATCCTGGGGAGGATGTCCTTCCACTGGACTCTCTGATCTACGAAAAGTTCATGATTTTG



AATGAAATTAACAACATAAGGATCGATGGGTATCCTATTTCCGTCGACGTGAAGCAGCAG



GTGTTCGGGCTCTTTGAGAAGAAGCGACGGGTGACCGTGAAGGATATTCAGAATCTTCTC



TTATCGCTGGGAGCCCTGGATAAACACGGAAAACTGACCGGGATAGATACTACGATTCAT



TCTAATTACAACACGTATCACCATTTTAAGTCACTGATGGAGAGGGGCGTCCTAACAAGA



GATGACGTGGAGAGAATAGTGGAACGAATGACATATTCTGATGACACCAAGAGAGTGCGG



CTTTGGCTGAATAACAACTACGGCACTCTGACGGCGGATGATGTAAAGCATATTTCCCGA



CTCCGTAAGCATGACTTCGGGCGGCTGTCTAAGATGTTTCTAACAGGCCTCAAGGGTGTG



CATAAGGAAACTGGGGAGCGCGCTAGCATCCTGGATTTTATGTGGAACACCAATGATAAC



CTGATGCAGCTCCTGTCAGAATGCTACACATTTTCGGACGAAATCACCAAGCTGCAGGAG



GCTTACTATGCCAAGGCCCAACTAAGCTTGAATGATTTCCTGGATTCTATGTACATCAGC



AACGCCGTAAAACGACCAATTTATAGGACACTGGCAGTGGTTAACGACATTAGGAAAGCA



TGCGGAACAGCTCCCAAGCGAATCTTTATCGAGATGGCCCGCGACGGCGAGAGTAAGAAG



AAAAGGTCAGTGACTAGGCGGGAGCAGATCAAGAACCTTTACCGCTCTATCCGAAAAGAC



TTCCAGCAAGAGGTTGATTTCCTTGAGAAGATCTTAGAGAACAAGTCAGATGGACAGCTC



CAATCCGATGCTCTGTATCTGTACTTCGCTCAGCTGGGACGAGATATGTACACTGGCGAC



CCCATTAAACTAGAACATATCAAGGACCAATCGTTTTATAATATCGACCACATCTACCCT



CAGTCCATGGTGAAAGACGATAGTCTGGACAATAAGGTGCTCGTCCAAAGTGAGATTAAC



GGAGAAAAGTCGAGCAGATATCCTTTGGACGCTGCGATCCGCAACAAGATGAAGCCCCTG



TGGGATGCTTACTACAATCATGGACTGATCAGCCTGAAGAAGTATCAGAGACTGACCCGG



AGTACCCCTTTCACAGACGATGAGAAGTGGGATTTTATCAATAGACAACTGGTGGAAACC



AGGCAGTCCACGAAAGCTCTGGCCATTCTTCTGAAGAGAAAGTTTCCAGACACAGAGATC



GTCTATTCAAAGGCCGGCCTCAGTTCCGACTTTAGACATGAGTTCGGACTCGTTAAATCA



CGAAATATAAACGATCTCCACCATGCAAAGGACGCATTCCTCGCGATTGTGACTGGAAAT



GTCTATCACGAAAGATTTAATAGGCGGTGGTTCATGGTTAACCAGCCATACTCAGTGAAG



ACCAAGACCCTTTTCACTCACTCTATTAAAAATGGCAACTTCGTGGCTTGGAATGGTGAG



GAGGATCTTGGAAGAATTGTGAAGATGTTAAAACAGAATAAGAATACCATCCACTTTACT



AGATTCAGCTTTGACCGAAAAGAGGGGCTATTCGATATTCAACCGTTAAAGGCTTCAACA



GGTCTCGTTCCACGAAAGGCCGGACTGGACGTAGTGAAATACGGCGGCTATGATAAGAGC



ACCGCAGCTTACTACCTCCTTGTGCGATTTACGCTCGAGGATAAGAAGACCCAACACAAG



CTGATGATGATTCCCGTGGAGGGACTGTACAAAGCTCGAATTGACCATGATAAAGAGTTT



CTCACAGATTACGCACAAACCACCATCTCTGAGATTCTCCAGAAAGACAAACAAAAAGTT



ATAAACATAATGTTTCCAATGGGTACAAGGCATATTAAACTGAACAGCATGATCTCCATT



GATGGCTTTTATTTGTCCATTGGAGGAAAGTCTAGTAAAGGCAAGTCTGTCCTCTGCCAT



GCCATGGTACCCCTAATCGTCCCACACAAGATTGAATGCTACATCAAGGCTATGGAGAGT



TTTGCTCGGAAATTTAAAGAGAATAATAAGCTGCGTATTGTGGAAAAATTCGACAAGATA



ACCGTTGAAGACAATCTGAATCTGTACGAGCTCTTTCTGCAGAAGCTGCAGCATAACCCC



TATAATAAGTTCTTCTCCACACAGTTCGATGTACTGACCAACGGGCGATCAACTTTCACA



AAGCTAAGTCCTGAGGAACAGGTGCAAACACTCCTAAACATTCTTTCCATTTTTAAGACC



TGCAGATCTTCAGGATGCGACTTGAAGAGCATTAACGGGAGCGCACAGGCAGCTAGGATC



ATGATCTCAGCTGACCTGACAGGGCTGAGTAAAAAATACTCCGACATTCGGCTTGTAGAG



CAAAGCGCCAGTGGGTTGTTCGTTAGTAAGTCGCAGAACCTGCTGGAATACCTGTAA





SEQ
ATGTCTTCTTTGACGAAGTTTACAAACAAATACTCTAAGCAGCTTACAATTAAGAACGAA


ID
CTGATTCCCGTAGGAAAGACTCTGGAAAACATCAAAGAGAATGGGCTGATAGACGGCGAC


NO:
GAACAACTGAATGAGAACTATCAGAAGGCCAAAATTATCGTGGATGACTTCCTGAGGGAT


148
TTTATTAACAAGGCCCTGAATAATACCCAGATCGGCAATTGGCGGGAACTGGCCGACGCT



CTGAACAAAGAAGATGAGGACAATATCGAAAAATTACAAGACAAAATCAGGGGCATTATT



GTCAGTAAGTTCGAGACATTCGATCTGTTCTCTTCGTACTCCATTAAGAAGGACGAGAAA



ATCATCGATGATGACAATGACGTTGAGGAAGAAGAACTGGACTTGGGTAAAAAGACCTCA



TCCTTCAAGTATATTTTTAAAAAAAATCTGTTTAAATTAGTGCTCCCCAGTTATTTAAAG



ACAACTAACCAGGACAAGCTTAAGATTATCTCCTCTTTTGACAACTTTAGCACCTATTTT



AGAGGCTTCTTTGAAAATCGCAAGAATATTTTCACTAAGAAGCCCATAAGCACCTCTATT



GCCTACAGAATCGTACATGATAACTTCCCAAAATTTTTGGATAACATTAGATGTTTTAAT



GTATGGCAGACCGAATGTCCTCAGTTAATTGTGAAGGCGGATAACTACCTCAAATCCAAG



AATGTGATCGCCAAAGATAAGTCTCTTGCTAACTACTTTACGGTCGGAGCCTACGATTAC



TTCTTATCTCAAAACGGTATTGACTTTTACAATAACATTATCGGGGGATTGCCTGCCTTC



GCCGGCCATGAGAAAATTCAGGGCTTAAACGAGTTCATAAATCAGGAATGTCAAAAGGAC



TCAGAGCTGAAATCAAAGCTTAAGAATCGACACGCATTTAAAATGGCGGTCTTGTTCAAA



CAGATCCTCAGCGATAGAGAGAAAAGCTTCGTTATTGATGAATTCGAGAGCGACGCACAG



GTGATTGATGCCGTGAAGAACTTCTATGCGGAACAGTGTAAAGACAATAATGTTATTTTC



AACCTATTAAACTTGATTAAGAATATCGCGTTTTTAAGTGACGATGAACTCGACGGTATC



TTTATAGAAGGCAAGTACCTGTCCTCTGTCAGCCAAAAACTCTACTCAGATTGGTCCAAG



CTAAGAAATGACATCGAGGACAGTGCTAACAGCAAACAGGGCAATAAAGAGCTGGCAAAG



AAAATCAAGACTAATAAAGGGGATGTGGAGAAGGCGATATCTAAATATGAGTTCTCCCTC



TCCGAACTGAACTCCATCGTCCACGATAATACCAAGTTTAGTGATCTGTTGTCGTGTACA



CTGCACAAAGTGGCCAGTGAAAAACTCGTCAAGGTGAACGAAGGCGATTGGCCCAAACAC



CTGAAAAATAATGAGGAGAAACAGAAGATCAAAGAACCTTTGGATGCGTTGCTCGAAATA



TATAACACACTGTTGATCTTCAACTGTAAAAGCTTCAACAAGAACGGGAACTTTTATGTA



GACTACGATCGATGTATAAATGAACTGAGCAGCGTCGTTTACCTGTACAACAAGACTCGC



AATTATTGTACGAAAAAACCATATAACACCGATAAGTTCAAGCTTAATTTCAACAGTCCC



CAGCTGGGAGAAGGGTTCAGCAAATCAAAAGAAAACGATTGCCTGACATTACTCTTTAAA



AAGGATGATAATTATTATGTTGGGATTATTAGGAAAGGCGCTAAGATCAACTTTGACGAC



ACACAGGCCATAGCTGACAACACTGATAACTGCATCTTTAAAATGAATTACTTTCTGTTG



AAGGACGCCAAAAAATTCATTCCAAAATGCTCTATTCAGCTCAAGGAGGTTAAGGCCCAT



TTCAAGAAGTCTGAAGATGACTACATCCTCTCTGACAAGGAAAAATTCGCTAGTCCTCTG



GTTATCAAAAAAAGTACCTTCTTGCTGGCTACAGCTCACGTGAAAGGCAAGAAAGGGAAC



ATTAAGAAGTTCCAAAAGGAATACAGCAAAGAGAATCCAACCGAGTACAGAAATTCTCTG



AACGAATGGATCGCATTCTGTAAAGAATTTCTAAAGACGTACAAGGCCGCTACCATTTTC



GATATTACCACCTTGAAAAAAGCCGAGGAGTACGCCGACATCGTCGAATTCTATAAAGAC



GTGGATAACCTGTGTTACAAATTGGAATTCTGCCCAATTAAGACCTCTTTCATTGAAAAC



CTCATCGACAATGGGGACCTCTACTTATTTAGAATTAACAATAAGGATTTTTCTTCGAAA



TCTACCGGAACTAAAAATCTGCACACACTGTATCTGCAAGCAATCTTCGATGAACGTAAT



CTCAACAACCCTACAATAATGCTGAACGGCGGTGCTGAACTGTTCTACCGTAAAGAGAGT



ATTGAACAGAAGAATCGAATCACACACAAAGCGGGCAGTATTCTCGTCAATAAGGTGTGC



AAAGACGGGACCAGCCTGGACGATAAGATCAGGAATGAAATATATCAGTATGAGAACAAG



TTTATCGACACCTTGTCGGATGAGGCAAAGAAGGTGCTACCTAACGTTATCAAGAAGGAA



GCTACCCATGACATAACCAAGGATAAGCGGTTCACTTCTGACAAGTTCTTCTTCCACTGT



CCTCTGACCATTAACTACAAGGAAGGAGACACTAAACAATTCAATAATGAAGTACTTAGC



TTTTTGCGGGGTAATCCCGATATTAACATAATTGGTATCGACCGGGGAGAACGGAACCTG



ATATACGTGACAGTAATTAATCAGAAAGGAGAAATCCTGGATTCCGTATCCTTCAATACC



GTGACTAATAAATCTAGTAAAATCGAGCAGACGGTCGACTACGAGGAAAAGTTAGCAGTC



AGAGAGAAGGAGAGAATCGAGGCCAAACGTTCCTGGGATAGTATCAGCAAGATTGCTACT



CTGAAAGAAGGATATCTGTCCGCTATCGTCCATGAGATCTGTTTGTTGATGATCAAGCAC



AATGCTATAGTGGTTCTGGAGAACCTGAACGCAGGCTTCAAGCGAATTAGAGGGGGCCTG



TCGGAAAAAAGCGTTTACCAGAAGTTTGAAAAGATGCTAATCAATAAGTTAAATTACTTT



GTAAGTAAAAAAGAAAGCGATTGGAATAAGCCATCAGGACTTTTAAACGGGCTGCAACTG



AGCGACCAGTTTGAGTCATTCGAAAAACTGGGTATTCAGAGTGGTTTCATATTCTACGTA



CCTGCCGCTTACACTTCAAAGATCGATCCTACAACTGGTTTTGCGAATGTCCTGAATCTG



TCTAAGGTGAGGAATGTGGACGCAATCAAGTCTTTCTTCAGCAACTTCAACGAGATATCT



TACAGCAAGAAAGAGGCTCTGTTTAAATTCAGTTTTGATCTGGATAGCCTGAGCAAGAAA



GGATTCTCTTCTTTCGTAAAGTTTTCTAAGTCCAAATGGAACGTCTACACGTTCGGAGAG



AGAATCATTAAACCAAAGAACAAGCAGGGGTATCGGGAAGACAAAAGGATCAATCTGACT



TTCGAAATGAAGAAACTATTGAATGAGTACAAAGTCTCATTCGATTTGGAGAACAATCTG



ATCCCCAATCTGACCAGCGCTAACCTCAAAGACACATTCTGGAAGGAGCTGTTTTTCATC



TTTAAGACCACCCTGCAGCTACGGAATAGTGTCACAAATGGGAAAGAGGATGTACTGATC



TCACCTGTGAAAAACGCCAAGGGGGAGTTCTTTGTGTCCGGCACCCATAACAAAACCCTG



CCTCAGGACTGTGACGCGAACGGGGCCTACCACATCGCGCTAAAGGGGTTAATGATTCTC



GAACGTAATAATCTGGTGCGCGAAGAAAAAGACACAAAGAAAATTATGGCCATCAGCAAC



GTTGACTGGTTTGAGTACGTGCAGAAGCGTCGAGGAGTTTTGTAA





SEQ
ATGAACAACTATGACGAGTTCACTAAACTTTACCCCATTCAGAAAACCATCAGATTTGAA


ID
CTGAAGCCTCAGGGTCGTACCATGGAACACTTGGAAACTTTCAACTTTTTCGAGGAGGAC


NO:
AGGGATAGAGCTGAGAAATACAAGATCTTGAAAGAGGCCATCGACGAGTATCACAAAAAA


149
TTCATCGATGAGCATCTCACCAACATGTCGCTGGATTGGAACAGTCTCAAGCAGATTTCC



GAGAAGTACTATAAATCTCGGGAGGAGAAAGATAAAAAGGTGTTTTTGAGCGAGCAAAAG



CGAATGCGACAGGAGATAGTCTCTGAATTTAAGAAAGATGATCGGTTTAAAGACCTATTT



TCCAAAAAGCTTTTTTCAGAGCTGCTGAAGGAAGAGATCTATAAAAAAGGCAATCACCAA



GAAATTGATGCCCTGAAATCATTCGACAAATTCAGTGGGTATTTCATAGGACTGCATGAG



AACCGGAAGAATATGTATAGTGATGGAGACGAGATCACAGCCATAAGCAATCGAATCGTT



AACGAGAATTTCCCGAAGTTCCTGGATAACCTGCAGAAGTATCAAGAGGCTAGGAAAAAG



TACCCTGAGTGGATCATCAAGGCTGAATCAGCTCTGGTGGCTCACAATATCAAGATGGAT



GAAGTCTTTAGTCTTGAGTACTTTAATAAAGTCCTTAACCAGGAGGGCATCCAGCGCTAT



AACCTGGCTCTCGGTGGCTACGTCACAAAAAGCGGAGAAAAGATGATGGGTCTCAACGAT



GCACTGAATTTGGCTCATCAGTCGGAGAAGTCATCTAAGGGACGCATACACATGACACCA



CTGTTTAAACAAATCCTGAGCGAAAAGGAATCATTTTCCTACATTCCCGACGTATTCACC



GAGGACTCACAACTGCTGCCTAGTATAGGGGGGTTTTTCGCTCAGATAGAGAACGACAAA



GATGGCAACATTTTTGACAGAGCCTTGGAGTTGATTTCATCTTACGCCGAGTACGATACG



GAGCGCATTTATATTCGCCAGGCGGATATCAACAGGGTTTCCAATGTGATCTTTGGCGAG



TGGGGAACGCTGGGCGGGCTGATGCGGGAATACAAAGCCGACTCGATCAATGACATCAAC



CTGGAGAGAACATGCAAGAAGGTCGATAAATGGTTGGATAGCAAAGAGTTCGCCCTGAGT



GACGTCTTGGAAGCTATCAAAAGAACCGGAAATAATGACGCGTTCAACGAGTATATCTCT



AAAATGAGGACCGCGAGAGAAAAAATTGATGCAGCAAGGAAGGAGATGAAGTTTATATCT



GAGAAGATCTCAGGCGATGAAGAGTCCATCCATATTATTAAAACTCTTCTGGACTCAGTG



CAGCAATTCCTGCACTTTTTTAACCTCTTCAAGGCCAGGCAGGATATACCGTTAGACGGG



GCTTTTTATGCCGAGTTTGATGAAGTTCATTCGAAACTTTTTGCTATAGTGCCTCTCTAT



AATAAAGTTCGCAATTACCTGACAAAGAATAACTTAAACACAAAGAAAATCAAGCTCAAC



TTCAAAAACCCAACACTGGCAAACGGATGGGATCAGAACAAGGTATATGATTACGCCTCA



TTGATTTTCCTCCGGGACGGGAATTACTATCTGGGGATCATCAACCCTAAGCGCAAAAAG



AACATTAAGTTCGAACAGGGATCTGGCAATGGTCCCTTCTATAGGAAAATGGTATACAAA



CAGATTCCTGGCCCCAACAAGAATCTCCCACGCGTCTTTCTGACGTCCACTAAGGGAAAG



AAGGAGTACAAGCCGTCTAAAGAAATTATCGAGGGCTATGAGGCAGACAAGCATATTAGG



GGTGACAAGTTTGACCTAGACTTTTGTCATAAGCTTATCGACTTTTTCAAGGAGTCCATA



GAGAAGCACAAAGATTGGTCAAAGTTTAATTTCTATTTTTCTCCAACAGAGTCCTACGGG



GATATCTCTGAGTTCTATCTGGATGTTGAAAAGCAGGGGTACAGAATGCACTTCGAAAAT



ATCTCAGCAGAAACTATCGATGAGTACGTAGAGAAAGGAGATCTGTTTCTTTTCCAAATC



TACAATAAGGATTTTGTGAAGGCCGCCACTGGGAAGAAGGACATGCACACTATTTACTGG



AACGCTGCATTTTCCCCTGAAAATCTGCAGGACGTAGTAGTGAAATTAAATGGTGAGGCA



GAACTGTTTTACCGCGATAAATCAGACATCAAGGAAATAGTGCACCGGGAAGGCGAGATT



CTTGTTAACCGAACATATAATGGCAGGACACCTGTCCCTGATAAAATTCATAAGAAACTG



ACCGATTACCACAACGGTCGAACCAAGGATCTGGGCGAGGCCAAGGAATACCTCGATAAG



GTGAGGTACTTCAAAGCCCATTATGACATCACCAAGGACCGAAGATACCTTAACGACAAA



ATCTACTTCCATGTCCCACTCACCTTGAACTTCAAAGCTAACGGTAAGAAGAACCTCAAT



AAAATGGTGATTGAAAAATTTCTGTCCGATGAGAAGGCCCATATCATCGGCATTGATCGC



GGCGAGAGAAATCTCCTTTACTATTCTATCATTGATCGGTCGGGAAAGATTATCGACCAA



CAATCACTGAATGTCATCGACGGATTCGACTATAGAGAGAAGCTGAACCAACGGGAAATC



GAGATGAAGGACGCGCGCCAGTCCTGGAACGCTATCGGCAAAATTAAAGATTTGAAAGAA



GGTTACCTCTCCAAAGCAGTGCACGAAATTACCAAAATGGCAATCCAGTACAATGCTATT



GTGGTAATGGAGGAGTTAAATTACGGATTTAAGCGCGGGAGGTTCAAGGTTGAAAAGCAA



ATTTACCAAAAATTTGAGAACATGTTGATTGATAAGATGAACTACCTGGTGTTCAAGGAC



GCACCTGACGAGTCGCCAGGCGGCGTGTTAAATGCATATCAGCTGACAAATCCACTGGAG



AGCTTTGCCAAGCTAGGAAAGCAGACTGGCATTCTCTTTTACGTCCCTGCAGCGTATACA



TCCAAAATTGACCCCACCACTGGCTTCGTCAATCTGTTTAACACCTCCTCCAAAACCAAC



GCACAAGAACGGAAAGAATTTTTGCAAAAGTTTGAGTCCATTAGCTACTCTGCCAAAGAC



GGCGGGATCTTTGCTTTCGCATTCGACTACAGGAAATTCGGGACGAGTAAGACAGACCAC



AAGAACGTCTGGACCGCGTACACTAATGGGGAACGCATGCGCTACATCAAAGAGAAAAAG



AGGAATGAACTTTTTGACCCTTCAAAGGAAATCAAGGAAGCTCTCACCTCAAGCGGTATC



AAATACGATGGCGGGCAGAATATTTTGCCAGATATCCTCAGATCGAACAATAATGGACTT



ATCTATACTATGTACTCCTCCTTCATTGCAGCAATTCAAATGAGAGTGTACGATGGAAAG



GAGGATTACATTATATCGCCAATTAAGAACTCCAAAGGCGAATTCTTCCGCACGGATCCT



AAGCGAAGAGAACTCCCAATCGACGCTGATGCGAACGGCGCCTATAATATAGCCCTGCGG



GGTGAATTAACAATGCGCGCTATTGCCGAGAAGTTCGACCCCGATTCAGAAAAAATGGCT



AAGCTTGAGCTGAAACACAAAGATTGGTTCGAATTCATGCAGACAAGAGGCGACTAA





SEQ
ATGACTAAGACCTTCGATTCCGAGTTCTTCAACCTTTATTCCCTGCAGAAAACTGTAAGG


ID
TTTGAGCTGAAGCCGGTGGGCGAGACAGCCAGCTTCGTAGAGGATTTCAAGAATGAGGGT


NO:
CTCAAACGGGTAGTTAGTGAGGATGAGAGGAGAGCAGTGGACTATCAGAAGGTGAAAGAG


150
ATCATCGATGACTATCACCGGGATTTCATAGAGGAGTCGTTGAATTACTTCCCTGAGCAA



GTATCCAAAGACGCGCTGGAACAGGCCTTTCATCTTTACCAGAAACTGAAGGCAGCGAAG



GTTGAGGAGCGGGAAAAGGCCTTGAAAGAGTGGGAAGCCCTGCAGAAAAAGCTCAGAGAA



AAGGTTGTCAAATGCTTCAGCGACAGCAACAAAGCCAGGTTCAGTAGGATCGATAAGAAA



GAACTGATCAAAGAAGACTTGATCAATTGGCTGGTTGCACAGAACCGGGAAGATGATATT



CCCACCGTAGAGACCTTCAACAACTTCACAACTTACTTCACCGGCTTCCATGAGAATCGT



AAAAACATCTACAGTAAAGATGATCATGCAACCGCCATCTCCTTCCGGTTGATCCACGAG



AATCTCCCCAAGTTCTTTGACAACGTGATAAGTTTCAATAAGTTGAAAGAGGGATTTCCC



GAACTCAAGTTCGATAAAGTGAAGGAGGATCTGGAAGTGGATTATGACCTTAAGCACGCT



TTCGAGATAGAGTACTTCGTGAACTTTGTGACTCAGGCCGGCATCGATCAGTATAACTAC



CTCCTCGGGGGTAAGACGCTCGAGGACGGTACTAAGAAGCAAGGAATGAATGAGCAAATT



AATCTATTTAAACAGCAGCAGACCAGGGATAAGGCTAGACAGATCCCCAAGCTTATTCCT



CTTTTTAAACAGATCCTAAGTGAAAGGACAGAAAGTCAAAGCTTCATACCTAAGCAATTT



GAAAGTGATCAGGAGCTGTTTGACTCCCTGCAAAAGCTGCACAACAATTGCCAGGACAAG



TTTACCGTGCTGCAGCAGGCTATCCTCGGACTGGCTGAGGCGGATCTTAAGAAGGTATTC



ATTAAGACTAGCGACCTCAATGCCCTTAGTAACACCATCTTTGGAAATTACTCCGTTTTC



AGCGATGCCCTCAATCTATACAAAGAGAGCTTGAAGACTAAAAAAGCTCAGGAAGCTTTT



GAAAAATTACCGGCACATTCTATACACGACCTTATACAATACTTAGAGCAGTTCAACAGC



AGCCTCGACGCTGAGAAACAGCAATCCACAGACACCGTCCTGAATTACTTCATCAAAACC



GATGAACTGTACTCCCGATTTATCAAGAGCACTTCAGAAGCCTTCACGCAAGTTCAGCCT



CTGTTCGAGCTGGAGGCACTGTCCAGCAAGAGACGACCGCCAGAGTCTGAAGACGAGGGA



GCCAAGGGTCAAGAGGGGTTTGAACAGATAAAGCGAATTAAGGCTTACTTGGATACTCTC



ATGGAGGCGGTGCATTTCGCTAAGCCTTTGTACCTGGTTAAAGGCCGAAAAATGATTGAG



GGGCTAGATAAGGATCAGTCTTTTTACGAGGCTTTTGAAATGGCCTACCAGGAATTGGAA



TCCTTGATCATTCCAATCTATAATAAAGCCCGGAGTTATCTGAGCAGGAAGCCCTTCAAA



GCCGACAAGTTCAAAATAAATTTTGACAATAATACGCTACTGTCTGGTTGGGACGCTAAC



AAGGAAACAGCCAATGCTTCCATCCTGTTTAAGAAAGACGGCCTGTACTACCTGGGAATT



ATGCCAAAAGGCAAAACTTTTTTGTTCGATTACTTTGTGTCATCAGAGGATAGCGAGAAG



TTAAAGCAAAGACGGCAGAAGACCGCCGAAGAAGCCCTCGCACAAGACGGAGAATCATAT



TTCGAGAAAATTCGATATAAGCTCCTGCCTGGCGCATCAAAGATGTTGCCAAAAGTCTTC



TTTTCCAACAAAAACATCGGCTTTTATAACCCCAGCGATGATATCCTTCGCATCCGGAAC



ACCGCCTCACATACCAAAAATGGAACTCCACAGAAGGGCCACTCGAAGGTTGAATTCAAC



CTTAACGATTGTCACAAAATGATTGATTTTTTTAAGAGCTCCATTCAGAAACACCCCGAA



TGGGGGTCCTTTGGCTTCACCTTTTCTGATACTTCAGACTTCGAGGACATGTCCGCCTTC



TACAGGGAGGTGGAGAACCAGGGCTATGTCATCTCCTTCGACAAAATAAAAGAGACATAC



ATTCAGAGCCAGGTCGAGCAGGGAAATCTGTACCTGTTTCAGATCTATAACAAGGATTTC



AGTCCCTATAGCAAGGGCAAGCCCAATTTACATACCCTGTACTGGAAGGCCCTGTTCGAA



GAGGCAAACCTTAACAATGTAGTTGCTAAGCTGAATGGGGAAGCAGAGATCTTCTTCCGA



AGGCACAGCATCAAGGCAAGCGACAAAGTTGTACATCCTGCTAACCAGGCCATCGATAAC



AAGAACCCGCATACAGAAAAGACACAGTCAACCTTTGAATACGACCTCGTGAAGGACAAG



AGGTACACACAAGATAAATTCTTCTTCCACGTGCCCATCAGCTTGAATTTTAAAGCGCAG



GGAGTGAGCAAATTTAACGACAAGGTCAACGGCTTCCTGAAGGGAAACCCCGACGTGAAT



ATCATCGGAATTGATCGCGGTGAAAGACATCTCCTCTACTTTACTGTGGTGAACCAGAAG



GGTGAGATCCTAGTACAGGAGAGCCTGAACACCCTTATGAGTGATAAGGGCCATGTGAAT



GATTACCAGCAGAAGCTGGACAAGAAGGAACAGGAAAGGGACGCAGCGCGGAAGTCCTGG



ACCACTGTTGAGAATATCAAAGAACTGAAGGAGGGATATCTTAGCCATGTGGTACACAAA



CTTGCACATCTGATTATCAAGTATAATGCCATAGTCTGCCTGGAAGACTTGAACTTCGGT



TTCAAGCGAGGAAGGTTTAAAGTGGAGAAGCAGGTGTACCAGAAGTTTGAGAAAGCCCTT



ATTGATAAGCTAAACTACCTTGTCTTTAAGGAAAAAGAACTCGGCGAAGTTGGCCACTAT



TTAACCGCCTACCAACTAACCGCCCCTTTCGAGTCTTTTAAGAAACTGGGAAAGCAGAGC



GGAATACTCTTCTATGTGCCTGCAGACTACACCTCTAAGATCGACCCCACTACCGGCTTT



GTAAACTTTCTAGATCTCCGCTATCAGTCAGTAGAAAAAGCCAAACAGCTCTTGTCAGAT



TTTAACGCCATCCGATTTAATTCCGTCCAAAATTACTTCGAGTTCGAAATCGACTATAAA



AAACTTACCCCCAAGAGAAAGGTTGGGACGCAGTCTAAGTGGGTAATCTGCACTTACGGT



GACGTGAGATACCAGAACCGCCGAAACCAGAAAGGTCATTGGGAAACCGAGGAAGTGAAT



GTGACTGAGAAGCTCAAGGCCCTCTTCGCTAGCGACAGTAAAACAACAACAGTTATCGAT



TACGCCAATGACGATAATCTTATAGACGTGATCTTGGAACAAGACAAAGCCTCTTTTTTT



AAGGAATTGTTGTGGTTGCTGAAACTTACAATGACCCTTAGGCACAGCAAGATCAAATCA



GAGGATGACTTCATCCTCAGCCCGGTGAAGAATGAACAGGGAGAGTTCTACGATTCACGG



AAGGCTGGAGAGGTGTGGCCCAAGGATGCCGACGCGAACGGGGCCTACCACATAGCTCTA



AAAGGTCTGTGGAACCTGCAACAAATCAATCAATGGGAGAAAGGTAAGACACTGAACCTG



GCCATCAAAAATCAAGATTGGTTCTCATTCATCCAGGAAAAGCCTTATCAAGAGTGA





SEQ
ATGCATACGGGAGGCCTTTTATCAATGGACGCAAAAGAGTTCACCGGGCAGTATCCATTA


ID
TCTAAGACACTCCGCTTCGAGCTGAGGCCCATTGGCAGGACCTGGGACAACCTGGAGGCG


NO:
TCGGGCTACCTGGCTGAGGACAGACATCGCGCAGAATGCTATCCGAGAGCTAAGGAGCTT


151
TTGGACGACAATCATCGCGCGTTCCTTAACCGGGTGCTCCCACAGATCGATATGGACTGG



CACCCGATCGCTGAGGCTTTTTGCAAGGTCCATAAGAACCCTGGGAACAAAGAGCTCGCC



CAGGACTACAACTTGCAGCTGAGCAAGCGACGGAAAGAGATTTCTGCCTACCTTCAAGAC



GCCGATGGCTACAAAGGGCTCTTCGCAAAGCCCGCATTGGATGAGGCCATGAAAATCGCC



AAGGAGAACGGGAATGAAAGTGACATCGAAGTTCTCGAAGCGTTTAACGGATTTAGCGTG



TACTTTACCGGCTATCATGAGTCAAGGGAGAATATTTATAGCGATGAGGACATGGTCTCT



GTGGCCTACCGGATTACCGAGGATAATTTCCCGAGGTTTGTTTCAAATGCACTAATATTC



GACAAGTTAAATGAGAGCCACCCAGACATCATCTCGGAGGTCAGCGGCAACCTCGGAGTT



GACGATATTGGCAAATACTTCGACGTGAGCAACTATAACAACTTCCTCTCACAGGCTGGC



ATCGACGACTATAATCATATTATAGGCGGCCACACTACTGAGGATGGTCTCATTCAGGCA



TTCAATGTAGTCTTGAATCTTAGGCACCAGAAGGACCCTGGGTTTGAAAAGATACAGTTC



AAGCAGCTGTATAAGCAGATATTATCCGTGCGAACATCTAAAAGTTACATCCCCAAACAG



TTTGATAACTCAAAGGAGATGGTGGATTGCATATGCGATTATGTGTCAAAAATTGAAAAG



AGCGAGACTGTGGAGCGGGCTCTGAAGCTCGTCAGGAACATTAGCTCCTTTGACCTTAGA



GGAATTTTCGTCAATAAAAAGAATCTGAGGATCCTGAGCAATAAGCTAATAGGAGATTGG



GACGCCATAGAGACAGCATTGATGCATTCCAGCTCAAGCGAGAATGATAAGAAGTCTGTC



TACGATAGCGCTGAAGCCTTCACGCTGGACGATATCTTCTCTTCCGTGAAAAAATTTAGT



GATGCGTCCGCAGAAGATATCGGGAATCGAGCCGAAGATATCTGCAGGGTAATTTCAGAG



ACCGCCCCTTTCATCAATGACCTGCGCGCCGTGGACCTGGATAGCCTGAATGACGATGGT



TACGAAGCTGCAGTTTCTAAGATCAGGGAGTCTCTGGAGCCATATATGGACTTGTTTCAC



GAACTTGAGATCTTTAGCGTGGGCGACGAGTTCCCGAAATGCGCAGCTTTCTATAGCGAG



TTAGAGGAGGTCAGCGAGCAATTAATCGAGATCATACCCCTGTTTAATAAGGCACGGAGC



TTTTGTACTCGCAAGCGCTACAGCACCGACAAGATTAAAGTTAATCTGAAATTTCCAACT



CTCGCAGACGGGTGGGACCTAAACAAGGAACGCGATAATAAAGCCGCCATCCTTAGAAAG



GACGGAAAGTACTATCTTGCCATCCTAGATATGAAAAAAGATCTGAGTTCCATTCGTACT



AGCGATGAAGACGAATCTTCTTTCGAAAAAATGGAGTATAAGCTGCTCCCCTCGCCAGTC



AAGATGCTACCCAAGATCTTTGTGAAGAGCAAAGCAGCCAAGGAAAAGTACGGGCTGACG



GACAGGATGCTGGAGTGCTACGATAAGGGAATGCATAAATCAGGGTCAGCTTTTGACTTG



GGCTTTTGCCATGAGCTAATCGATTACTACAAGCGCTGTATCGCCGAGTATCCAGGATGG



GACGTTTTCGACTTTAAATTTCGGGAGACTTCTGATTATGGTTCAATGAAGGAGTTCAAC



GAAGATGTCGCTGGTGCCGGTTACTACATGAGCCTTCGCAAGATTCCTTGTTCCGAAGTC



TACCGGCTACTGGACGAGAAATCTATATATTTGTTCCAGATATATAACAAGGACTACAGT



GAGAATGCACATGGGAATAAGAATATGCATACTATGTATTGGGAAGGTCTCTTTTCACCC



CAAAATTTGGAGTCACCCGTGTTCAAACTTAGCGGTGGCGCAGAGCTGTTCTTTAGGAAA



TCCAGTATACCCAATGACGCCAAGACAGTCCACCCAAAGGGTAGCGTCCTGGTGCCCAGA



AACGATGTGAACGGCAGGAGAATCCCTGACAGCATTTACCGAGAACTTACCAGGTACTTC



AACCGCGGCGACTGTAGAATCTCTGATGAGGCAAAGTCTTATCTGGATAAGGTGAAGACT



AAGAAGGCAGATCATGACATTGTGAAAGACCGCCGCTTTACTGTCGACAAAATGATGTTT



CACGTGCCTATCGCAATGAATTTTAAGGCAATCTCAAAACCGAATCTGAACAAGAAGGTG



ATAGATGGCATTATCGATGACCAGGACCTCAAGATCATCGGAATCGACAGAGGTGAGCGA



AACCTGATATACGTCACAATGGTAGATCGGAAGGGTAATATTCTGTACCAGGATTCACTA



AACATCCTCAATGGATATGACTATCGAAAAGCTCTCGATGTCAGGGAATACGACAACAAG



GAGGCGCGACGGAATTGGACAAAGGTGGAAGGCATACGGAAGATGAAGGAAGGCTATCTG



TCACTAGCTGTCTCCAAATTGGCTGATATGATTATAGAGAACAACGCCATTATCGTGATG



GAAGATCTCAACCATGGATTCAAGGCAGGAAGAAGTAAAATTGAGAAGCAGGTGTATCAG



AAGTTCGAAAGCATGCTTATTAATAAGTTGGGTTATATGGTCTTAAAGGACAAGTCTATC



GATCAGAGCGGCGGCGCACTCCATGGGTATCAGCTGGCTAACCATGTCACCACACTAGCA



TCCGTAGGCAAACAGTGTGGCGTGATTTTCTACATTCCTGCTGCGTTCACTTCTAAGATC



GATCCTACCACGGGATTCGCAGACCTGTTCGCACTGAGCAATGTTAAAAACGTGGCCTCC



ATGAGGGAGTTCTTTAGCAAAATGAAAAGCGTGATTTATGACAAGGCCGAGGGCAAGTTC



GCTTTCACATTTGACTACCTGGACTACAATGTGAAATCAGAGTGCGGGAGAACCCTGTGG



ACCGTATACACGGTAGGGGAAAGATTCACTTACAGTCGAGTTAATCGGGAGTATGTCCGT



AAAGTGCCAACTGACATCATCTACGATGCCCTTCAGAAGGCTGGCATAAGTGTTGAGGGG



GATCTAAGGGACAGGATCGCTGAATCGGATGGCGATACTCTCAAATCAATCTTCTACGCC



TTCAAGTATGCCCTCGACATGAGGGTAGAGAACCGGGAGGAGGACTATATACAGTCTCCC



GTGAAGAATGCGTCGGGAGAGTTCTTCTGCTCAAAAAACGCCGGGAAATCTTTGCCGCAG



GATTCTGATGCAAATGGGGCTTATAACATTGCTCTCAAAGGCATCCTGCAGCTGCGCATG



CTATCTGAACAATATGACCCAAACGCTGAAAGCATTAGATTGCCATTGATCACCAATAAG



GCTTGGCTGACTTTCATGCAGAGCGGTATGAAGACATGGAAAAACTAA





SEQ
ATGGATTCCCTTAAGGACTTCACAAATCTTTACCCCGTGAGTAAAACCCTGAGATTTGAA


ID
CTCAAGCCCGTGGGAAAGACTCTCGAGAATATCGAGAAGGCCGGGATTTTGAAGGAAGAC


NO:
GAGCATCGGGCGGAAAGTTACAGACGGGTGAAGAAGATTATAGATACTTATCACAAGGTC


152
TTTATAGACAGCTCTTTAGAGAACATGGCAAAGATGGGCATCGAGAACGAAATCAAGGCC



ATGCTGCAGTCCTTCTGCGAGCTGTATAAAAAGGATCATCGGACCGAAGGCGAAGACAAG



GCGCTGGATAAGATCAGGGCAGTGCTGCGCGGCCTCATTGTGGGTGCCTTCACTGGGGTG



TGCGGGCGGAGAGAGAACACTGTGCAGAATGAGAAATACGAGAGTTTGTTCAAAGAGAAA



CTCATCAAGGAAATCCTGCCCGACTTCGTCTTAAGCACAGAAGCCGAATCTCTCCCATTT



TCTGTCGAGGAGGCCACGCGTTCCCTTAAAGAGTTCGACAGTTTCACTTCATACTTTGCC



GGATTTTATGAAAACCGTAAAAATATATACTCCACTAAACCACAGTCAACTGCAATAGCT



TACAGGTTAATCCACGAAAACCTGCCAAAATTCATCGACAATATACTCGTCTTTCAAAAA



ATCAAGGAACCAATCGCGAAGGAACTTGAACACATCCGGGCTGACTTTAGTGCGGGAGGA



TACATCAAAAAAGACGAGCGCCTGGAGGATATATTTTCACTAAATTATTATATTCATGTA



CTGAGCCAGGCTGGCATAGAAAAGTACAACGCTCTAATTGGGAAAATCGTGACAGAAGGT



GACGGGGAAATGAAAGGGCTAAACGAACATATTAACTTATATAACCAACAGCGGGGTCGA



GAAGATCGTCTGCCCCTGTTCAGACCTCTGTATAAGCAAATACTCTCCGACAGAGAGCAG



CTATCATATCTGCCCGAGTCCTTTGAGAAAGATGAAGAGCTGCTCCGGGCGCTCAAGGAG



TTCTATGATCATATAGCCGAGGACATTTTGGGCAGAACTCAGCAACTCATGACGTCTATT



TCTGAATATGATCTGTCTCGTATCTATGTCAGGAATGATAGCCAGCTGACCGATATATCC



AAGAAGATGCTGGGGGACTGGAACGCCATTTATATGGCGAGGGAGCGAGCATACGATCAC



GAGCAGGCACCCAAGAGAATCACAGCCAAATATGAGAGAGACCGCATTAAGGCGCTGAAG



GGCGAAGAAAGTATCAGTCTGGCCAATCTGAACTCCTGCATAGCTTTCCTTGATAACGTG



AGGGATTGCAGAGTTGATACTTACCTGAGTACCCTGGGCCAGAAGGAAGGGCCTCACGGC



CTCTCTAATCTAGTGGAGAATGTATTTGCCTCCTACCACGAAGCTGAGCAGCTGCTGTCA



TTTCCGTACCCAGAGGAAAATAATTTAATACAGGATAAGGACAACGTAGTGCTTATCAAA



AATCTACTGGATAACATTTCCGACCTCCAGCGCTTTCTCAAACCACTTTGGGGGATGGGC



GACGAGCCTGATAAGGATGAGCGCTTTTACGGCGAGTACAACTACATCAGGGGCGCCTTG



GACCAGGTGATTCCCCTCTATAATAAAGTCAGGAATTACCTGACCCGAAAGCCATACAGT



ACAAGAAAGGTGAAATTAAATTTCGGCAATAGTCAGCTGCTGTCTGGTTGGGACCGAAAT



AAGGAGAAAGACAACAGCTGCGTAATTCTCAGAAAAGGACAGAACTTTTATTTGGCCATC



ATGAATAACAGACACAAGAGATCTTTCGAGAACAAAGTGCTCCCTGAGTATAAGGAGGGG



GAACCCTACTTCGAGAAGATGGACTATAAATTCCTTCCTGATCCAAATAAAATGCTGCCT



AAAGTATTTCTGTCAAAAAAAGGTATAGAAATCTACAAACCTTCACCTAAGCTACTTGAA



CAGTATGGCCACGGCACCCATAAAAAAGGGGACACGTTCAGCATGGACGACCTACACGAA



CTGATTGACTTCTTTAAGCACAGCATAGAAGCTCATGAGGACTGGAAACAGTTCGGATTC



AAATTCTCAGATACCGCGACCTACGAAAACGTGTCTAGTTTTTACCGGGAAGTCGAGGAC



CAGGGCTACAAGCTCAGCTTCAGAAAAGTTAGCGAATCTTACGTCTACTCCCTTATAGAT



CAAGGTAAGCTGTATCTCTTTCAAATCTACAACAAGGACTTTTCCCCATGTAGCAAGGGC



ACCCCCAATCTGCACACTCTCTACTGGCGGATGCTGTTCGACGAGCGTAACCTGGCAGAC



GTGATCTACAAATTAGATGGTAAAGCTGAGATCTTCTTTCGTGAAAAGAGCCTAAAGAAC



GATCACCCCACTCACCCCGCCGGAAAGCCCATTAAGAAGAAAAGTAGGCAGAAGAAAGGA



GAAGAATCGCTATTTGAGTACGACCTCGTCAAGGATCGGCATTATACAATGGATAAGTTC



CAGTTCCATGTGCCAATAACTATGAATTTCAAGTGCAGTGCTGGCAGTAAGGTGAATGAC



ATGGTAAACGCTCATATCCGGGAGGCAAAGGACATGCATGTTATTGGAATTGATAGGGGT



GAGCGTAATCTCCTCTACATCTGTGTTATTGACTCCCGCGGCACAATCCTCGATCAGATT



TCCTTGAATACAATTAATGATATAGACTACCATGACTTGCTTGAGTCTCGCGACAAAGAT



AGACAGCAGGAGAGAAGAAATTGGCAGACCATCGAAGGCATCAAGGAACTCAAGCAAGGC



TACCTTTCTCAGGCAGTGCATCGAATAGCCGAGCTGATGGTGGCTTATAAAGCCGTCGTG



GCACTAGAAGACCTAAATATGGGATTTAAACGAGGCAGGCAGAAGGTGGAATCATCCGTA



TACCAGCAGTTCGAAAAACAGTTGATAGACAAACTCAATTACCTTGTAGACAAGAAGAAG



CGGCCTGAGGACATAGGGGGCCTGCTTAGAGCGTATCAATTTACAGCCCCATTCAAGTCT



TTCAAAGAAATGGGTAAACAGAACGGTTTTCTGTTTTACATCCCAGCGTGGAACACCAGC



AATATAGATCCAACCACTGGCTTCGTCAATCTGTTTCATGCTCAGTATGAAAATGTGGAC



AAGGCCAAATCCTTCTTTCAGAAATTTGACAGCATCTCCTATAACCCAAAGAAAGACTGG



TTTGAATTCGCCTTTGACTATAAGAATTTCACTAAGAAGGCCGAGGGATCAAGAAGCATG



TGGATATTGTGCACGCATGGCTCACGTATAAAGAACTTTAGAAACTCGCAAAAAAACGGG



CAGTGGGACTCAGAAGAATTCGCACTCACCGAGGCTTTCAAATCCCTCTTCGTCCGGTAT



GAGATCGATTACACCGCCGATCTGAAGACGGCAATCGTCGACGAGAAACAGAAAGACTTC



TTTGTAGATCTACTTAAGCTCTTTAAGCTAACCGTTCAGATGCGAAACAGTTGGAAAGAA



AAGGATCTCGACTATCTCATTAGTCCAGTGGCTGGCGCGGATGGTAGATTTTTCGATACC



CGGGAAGGTAACAAGTCCCTTCCCAAAGACGCCGACGCGAATGGTGCCTACAATATTGCA



CTAAAGGGGCTCTGGGCGCTGCGGCAAATTAGACAGACATCTGAAGGGGGCAAGCTTAAG



CTGGCTATTTCTAATAAAGAGTGGTTGCAGTTTGTGCAGGAAAGGAGTTATGAGAAGGAC



TAG





SEQ
ATGAACAACGGCACCAACAACTTCCAGAACTTCATCGGCATATCGTCTCTGCAGAAAACA


ID
CTTAGGAATGCCCTGATTCCAACTGAGACAACACAGCAGTTTATTGTGAAGAATGGGATC


NO:
ATCAAAGAGGACGAATTGCGCGGGGAGAATAGGCAGATCCTGAAGGACATCATGGACGAT


153
TACTACAGGGGTTTTATCTCCGAAACGCTGAGCTCGATTGACGATATTGACTGGACGTCC



CTCTTTGAGAAGATGGAAATCCAACTTAAAAATGGCGATAATAAAGATACCCTGATAAAG



GAACAAACCGAATATAGAAAGGCTATACACAAAAAATTCGCAAATGACGACCGCTTTAAG



AACATGTTTTCTGCAAAACTGATTAGCGATATTCTGCCCGAGTTTGTGATTCACAATAAT



AACTATTCCGCTTCGGAGAAGGAGGAAAAGACTCAGGTGATTAAACTGTTTTCTCGGTTC



GCCACTTCTTTCAAAGATTATTTCAAAAATCGCGCCAACTGTTTTTCCGCTGACGACATC



TCCTCCTCTTCCTGCCACCGGATCGTAAACGACAATGCCGAGATCTTTTTTAGTAACGCC



CTTGTGTATCGGAGGATAGTGAAGAGCCTGTCCAATGATGACATAAACAAAATTTCTGGC



GATATGAAGGATAGCCTCAAAGAGATGAGCCTTGAAGAAATTTACTCCTACGAGAAGTAT



GGGGAGTTCATCACCCAGGAGGGGATTTCCTTCTATAATGACATCTGTGGCAAGGTGAAC



AGCTTCATGAACCTGTACTGCCAGAAGAATAAGGAAAACAAAAATCTGTACAAGCTTCAG



AAGTTACATAAGCAGATCCTGTGTATCGCGGATACCTCATATGAGGTTCCTTATAAGTTC



GAGAGTGATGAAGAAGTGTACCAGTCTGTAAATGGATTCTTAGACAATATTTCGTCCAAA



CATATAGTGGAGAGACTGAGAAAGATCGGGGACAATTACAATGGGTACAATCTCGACAAG



ATTTATATCGTGTCGAAGTTTTACGAATCTGTGAGCCAGAAAACATACAGGGATTGGGAA



ACCATTAATACCGCGCTTGAAATTCACTACAATAATATTCTGCCTGGCAACGGAAAAAGC



AAGGCCGATAAGGTAAAAAAGGCAGTCAAAAATGACCTTCAGAAAAGTATCACCGAAATC



AATGAGTTGGTGAGCAACTACAAATTGTGTTCAGACGATAATATTAAAGCGGAAACGTAC



ATACATGAAATTAGCCATATTCTGAATAACTTTGAGGCGCAGGAACTTAAGTACAACCCT



GAAATTCATCTCGTCGAAAGCGAATTGAAGGCCTCTGAATTGAAAAACGTTCTTGACGTG



ATAATGAACGCTTTCCATTGGTGCTCTGTGTTTATGACTGAAGAGCTGGTTGATAAGGAC



AACAACTTTTATGCTGAACTTGAGGAAATCTACGACGAGATCTACCCTGTGATTAGCTTG



TATAACCTCGTCAGAAACTACGTTACCCAGAAGCCGTACAGCACGAAAAAAATAAAGCTG



AACTTTGGTATTCCGACTCTCGCCGATGGATGGAGCAAGTCGAAGGAATATTCCAACAAT



GCCATCATTCTTATGCGAGACAATCTGTATTACCTCGGCATCTTTAACGCCAAAAACAAG



CCGGATAAGAAAATCATTGAAGGGAATACGAGCGAGAATAAGGGCGACTATAAGAAAATG



ATCTACAACTTACTGCCAGGTCCCAATAAAATGATTCCTAAGGTGTTTCTGTCATCGAAA



ACAGGTGTAGAAACATATAAGCCCAGCGCATACATCCTGGAAGGCTACAAGCAAAACAAA



CACATCAAAAGCAGCAAGGACTTTGATATCACATTCTGCCACGATCTAATCGACTACTTC



AAAAATTGCATCGCCATTCACCCTGAGTGGAAGAACTTCGGCTTTGACTTCTCCGACACC



AGTACCTACGAAGACATTTCTGGATTCTACCGTGAGGTTGAGCTGCAGGGTTATAAAATT



GACTGGACATACATCAGTGAAAAAGACATCGATCTACTGCAGGAGAAGGGGCAGCTCTAT



CTCTTCCAGATTTATAATAAGGATTTCAGCAAGAAGTCCACTGGAAACGACAATCTGCAT



ACAATGTATCTTAAGAACTTGTTTAGCGAAGAGAATTTGAAAGATATCGTTCTAAAGTTA



AACGGGGAAGCCGAGATTTTCTTTCGAAAGTCTTCCATTAAGAATCCAATTATTCACAAG



AAGGGCAGTATCCTGGTCAACAGAACCTATGAGGCCGAGGAAAAGGACCAGTTCGGTAAT



ATACAAATTGTGCGCAAGAACATCCCCGAGAACATTTACCAGGAGCTCTATAAATACTTC



AACGACAAAAGCGATAAGGAGCTTTCCGACGAGGCTGCCAAGCTGAAAAACGTGGTGGGA



CACCATGAAGCAGCCACCAACATCGTCAAAGATTATCGTTATACATATGACAAATATTTT



CTGCACATGCCTATTACAATAAACTTTAAGGCAAACAAGACCGGGTTCATCAATGACCGG



ATACTCCAGTACATCGCAAAAGAGAAGGACCTGCATGTGATCGGCATCGACCGCGGTGAA



AGAAATCTCATTTACGTCAGCGTTATCGACACTTGTGGAAACATTGTGGAGCAGAAGTCC



TTCAACATTGTTAACGGCTATGACTATCAGATCAAGCTCAAACAGCAGGAAGGTGCTCGT



CAGATTGCGAGGAAAGAATGGAAAGAGATCGGCAAGATCAAGGAGATCAAAGAAGGGTAT



CTGAGCTTGGTCATTCACGAGATCTCCAAAATGGTCATCAAGTACAACGCTATTATCGCG



ATGGAAGACCTCTCTTACGGCTTTAAGAAGGGGCGCTTTAAAGTGGAGCGCCAGGTCTAT



CAGAAGTTCGAGACTATGCTTATCAATAAGCTGAATTACTTGGTCTTTAAGGATATCAGT



ATCACCGAGAACGGAGGACTGCTGAAAGGTTACCAGCTCACATATATTCCCGATAAGCTC



AAGAATGTGGGCCACCAATGCGGTTGTATTTTTTACGTTCCAGCTGCCTACACATCTAAG



ATCGATCCTACCACCGGATTCGTCAATATATTTAAATTTAAAGATCTAACCGTTGATGCC



AAGCGTGAGTTTATTAAGAAATTTGATTCAATCAGGTACGACAGCGAAAAGAACCTCTTC



TGTTTCACTTTCGACTACAACAACTTCATCACACAAAATACTGTGATGAGCAAGTCATCA



TGGAGCGTTTATACTTATGGTGTAAGGATAAAAAGGCGCTTTGTTAATGGAAGGTTTTCC



AATGAAAGCGATACAATAGACATCACAAAAGACATGGAGAAGACACTGGAGATGACAGAT



ATTAATTGGAGGGACGGGCATGACCTTAGACAGGACATCATCGACTACGAAATCGTCCAA



CACATTTTTGAGATATTCAGACTCACTGTCCAGATGCGAAACAGCCTGTCGGAACTCGAA



GACCGGGACTACGATAGACTGATCTCCCCGGTGTTAAACGAAAATAATATTTTCTACGAT



TCTGCTAAGGCAGGAGACGCTCTTCCTAAAGATGCGGACGCCAATGGCGCTTACTGTATA



GCGTTGAAGGGATTGTATGAGATTAAACAGATCACTGAGAATTGGAAAGAAGACGGTAAA



TTCTCCAGAGACAAGCTGAAAATCTCCAACAAAGACTGGTTTGATTTTATTCAAAATAAG



CGCTACCTGTAA





SEQ
ATGACAAACAAATTTACTAATCAGTACAGCCTGTCAAAGACCCTCCGCTTCGAACTGATT


ID
CCACAAGGGAAGACCCTTGAATTCATCCAGGAAAAGGGTTTATTATCCCAGGATAAACAA


NO:
CGCGCAGAAAGCTATCAAGAGATGAAGAAGACGATCGATAAATTTCATAAGTATTTCATA


154
GATTTAGCCCTGAGCAACGCTAAATTGACCCACCTGGAAACCTATTTGGAGCTGTACAAC



AAGTCAGCCGAGACAAAGAAAGAGCAGAAGTTTAAGGACGACCTGAAAAAAGTACAGGAC



AATTTGCGAAAAGAGATCGTCAAGTCTTTTTCCGACGGAGACGCCAAGTCAATATTTGCC



ATCCTGGACAAAAAGGAACTCATCACTGTGGAGTTGGAGAAGTGGTTTGAGAATAATGAG



CAGAAGGACATCTATTTTGACGAAAAGTTCAAGACATTTACTACTTACTTCACCGGATTT



CACCAAAACCGGAAGAACATGTACTCTGTTGAGCCGAACTCAACCGCCATCGCCTACCGC



CTTATTCACGAAAATCTGCCAAAGTTTCTCGAGAATGCTAAAGCCTTTGAGAAAATTAAG



CAGGTCGAGTCGCTCCAGGTGAACTTTCGAGAGCTGATGGGTGAATTCGGGGACGAGGGC



CTGATTTTCGTGAATGAACTCGAAGAGATGTTTCAGATCAACTACTATAATGATGTACTC



TCACAGAACGGGATCACTATCTACAACAGCATTATCTCTGGATTCACTAAGAACGATATC



AAGTATAAAGGGCTGAATGAATACATCAACAATTATAATCAGACTAAGGACAAAAAGGAC



AGGCTGCCTAAATTGAAACAGCTGTATAAGCAGATCCTCAGTGATAGAATTAGCTTGTCA



TTTCTCCCAGATGCCTTCACTGACGGAAAGCAGGTGCTTAAGGCGATATTCGATTTCTAT



AAGATCAACCTCCTCTCTTATACAATCGAGGGCCAGGAGGAGTCACAGAACCTCCTGCTC



CTGATTCGACAAACTATTGAAAATCTGTCCTCTTTCGATACGCAGAAGATATACCTGAAA



AATGACACCCATCTCACTACAATATCCCAACAGGTATTCGGAGATTTCTCCGTCTTCAGT



ACAGCCCTGAATTACTGGTACGAGACAAAGGTGAACCCTAAGTTCGAAACAGAGTACAGC



AAGGCGAACGAAAAGAAGAGGGAGATCCTGGACAAAGCCAAAGCCGTTTTCACCAAGCAA



GATTACTTTAGCATCGCATTTCTGCAGGAAGTCCTGTCTGAGTACATACTGACACTCGAT



CACACAAGCGACATAGTTAAGAAGCACTCTTCCAATTGTATCGCGGACTACTTCAAAAAT



CATTTTGTCGCGAAAAAGGAGAACGAGACAGATAAGACCTTCGATTTTATCGCGAATATT



ACCGCAAAGTATCAATGCATTCAGGGTATCTTGGAGAACGCCGACCAGTACGAAGACGAG



CTTAAACAGGATCAGAAGCTCATCGACAACCTAAAGTTCTTTTTGGACGCTATACTGGAA



CTCCTTCATTTTATTAAGCCACTACATCTGAAGAGTGAGTCTATCACTGAGAAGGACACT



GCTTTTTACGACGTTTTCGAGAATTACTACGAAGCACTGTCTCTGCTAACCCCTCTGTAT



AACATGGTGAGAAACTATGTGACACAGAAACCTTATAGTACCGAGAAGATTAAGTTGAAC



TTCGAGAACGCACAATTGCTGAATGGGTGGGATGCAAACAAAGAGGGTGATTACCTCACA



ACAATCCTCAAGAAAGATGGCAATTACTTCCTGGCCATTATGGATAAAAAACATAACAAG



GCATTTCAGAAATTTCCCGAGGGGAAGGAAAATTATGAAAAGATGGTATACAAGTTGCTG



CCCGGGGTGAACAAAATGCTCCCGAAGGTGTTTTTCTCGAATAAGAATATCGCGTACTTT



AACCCGTCCAAGGAACTGTTGGAAAATTATAAAAAGGAAACACACAAGAAGGGGGACACT



TTTAATTTGGAGCACTGCCACACACTCATTGACTTCTTTAAAGATAGTCTCAACAAACAT



GAGGATTGGAAATATTTTGACTTTCAGTTTAGCGAGACCAAGTCTTATCAGGATCTGTCG



GGATTTTATAGGGAAGTTGAGCACCAGGGTTACAAGATAAATTTCAAGAACATCGATAGC



GAGTACATTGACGGACTGGTGAACGAAGGGAAGCTGTTCCTGTTTCAGATTTACAGCAAA



GATTTCTCTCCTTTCTCAAAAGGCAAGCCGAACATGCATACCCTGTATTGGAAGGCCCTG



TTCGAGGAGCAAAACCTTCAGAATGTGATTTACAAGCTGAACGGTCAGGCCGAGATTTTT



TTTAGGAAGGCCTCTATCAAGCCCAAAAACATCATTCTGCACAAGAAAAAGATAAAGATC



GCCAAAAAACACTTCATTGATAAAAAGACAAAGACTTCTGAGATCGTACCTGTTCAGACA



ATCAAGAATCTCAACATGTATTATCAGGGGAAGATTAGCGAGAAAGAGCTGACACAGGAC



GATTTGAGGTACATCGACAACTTCTCTATCTTTAACGAGAAGAACAAGACAATCGATATC



ATCAAGGACAAGCGGTTTACCGTCGATAAATTCCAGTTCCATGTGCCTATCACGATGAAT



TTCAAGGCCACCGGTGGGAGTTATATCAACCAGACTGTGCTGGAGTATCTGCAGAACAAC



CCCGAAGTAAAAATTATTGGCCTGGACAGAGGAGAGCGGCATCTGGTGTACTTGACCCTC



ATCGATCAGCAGGGAAATATCCTGAAACAAGAATCTCTGAATACTATTACGGACTCCAAA



ATCAGCACACCTTACCACAAGCTGCTTGATAATAAAGAGAATGAGAGGGACTTGGCCCGC



AAAAATTGGGGCACCGTCGAGAATATTAAGGAATTGAAAGAAGGATACATCTCACAGGTG



GTTCACAAAATCGCAACCCTGATGTTAGAAGAGAACGCTATTGTGGTGATGGAGGACTTA



AACTTCGGATTTAAAAGAGGAAGATTTAAAGTCGAGAAACAGATTTATCAGAAACTGGAA



AAAATGCTCATTGACAAATTAAATTACCTGGTGCTGAAAGATAAACAGCCACAGGAGCTG



GGTGGCCTGTATAATGCTCTGCAGCTGACCAACAAGTTCGAGTCGTTTCAGAAAATGGGC



AAGCAGTCAGGCTTCCTTTTTTACGTGCCCGCTTGGAACACCTCAAAAATCGACCCTACA



ACAGGCTTTGTGAATTATTTCTATACCAAGTATGAAAACGTGGACAAGGCAAAGGCCTTT



TTCGAGAAGTTTGAAGCAATCAGGTTCAATGCCGAGAAAAAATACTTTGAGTTCGAGGTC



AAAAAATATAGCGACTTCAACCCTAAGGCCGAAGGCACGCAACAAGCCTGGACAATATGC



ACGTATGGGGAGAGAATTGAGACTAAGCGGCAGAAGGATCAGAATAACAAATTCGTGAGC



ACACCGATTAACCTGACAGAGAAGATAGAGGACTTCCTCGGCAAGAATCAGATCGTGTAC



GGCGACGGCAATTGCATCAAGTCACAAATTGCATCTAAAGATGACAAAGCATTCTTCGAA



ACACTGCTGTATTGGTTCAAGATGACACTCCAGATGCGAAATAGCGAAACAAGAACAGAT



ATTGACTACCTCATCAGCCCTGTGATGAATGATAACGGCACGTTTTACAATTCCCGGGAC



TATGAAAAATTAGAGAACCCGACACTGCCAAAAGACGCCGACGCAAATGGTGCATATCAC



ATCGCAAAGAAAGGTTTGATGCTGTTGAACAAAATTGATCAGGCTGATCTGACAAAAAAG



GTCGATCTGAGTATCAGTAACCGCGACTGGTTGCAGTTTGTCCAGAAGAACAAATAA





SEQ
ATGGAACAAGAGTACTATCTGGGCCTGGACATGGGCACCGGGAGTGTCGGATGGGCAGTC


ID
ACCGACTCAGAGTACCACGTCCTCAGAAAGCACGGTAAGGCACTTTGGGGAGTGCGACTC


NO:
TTCGAGTCCGCTAGTACTGCTGAAGAGAGGAGGATGTTTCGAACTTCCAGGCGCAGGCTG


155
GATCGGCGAAACTGGAGAATAGAGATTCTCCAGGAGATATTTGCTGAAGAGATTTCAAAG



AAGGATCCTGGTTTTTTCCTGCGCATGAAAGAATCTAAGTATTACCCCGAAGATAAACGC



GACATCAACGGCAATTGTCCTGAACTGCCCTATGCTCTGTTTGTCGACGACGATTTCACC



GACAAAGATTACCACAAGAAATTCCCCACCATATACCACCTGAGAAAGATGTTGATGAAC



ACCGAGGAGACACCCGACATACGTCTGGTTTACCTGGCTATCCATCATATGATGAAGCAC



CGCGGGCATTTCCTGCTGTCTGGAGACATCAATGAGATAAAGGAATTTGGTACTACGTTC



TCCAAGTTGTTAGAAAACATTAAGAATGAAGAGTTGGACTGGAATCTTGAACTGGGAAAG



GAAGAGTATGCAGTTGTAGAGTCGATTTTGAAAGATAACATGTTAAACCGGTCAACTAAG



AAAACCAGGTTAATTAAGGCACTAAAGGCCAAATCGATATGCGAGAAGGCTGTGCTAAAT



CTGCTGGCTGGAGGCACCGTGAAACTGTCTGATATTTTCGGCCTGGAAGAGCTCAATGAA



ACCGAGCGGCCTAAAATTTCTTTCGCCGATAACGGATACGATGACTATATTGGGGAGGTG



GAAAACGAGCTCGGAGAACAATTCTACATTATTGAAACCGCTAAGGCAGTCTATGACTGG



GCCGTGCTCGTCGAGATTTTAGGCAAGTACACCAGCATTAGCGAAGCAAAGGTGGCTACC



TATGAAAAGCACAAATCTGACCTCCAGTTTCTGAAAAAGATTGTGCGCAAATACTTAACA



AAAGAAGAGTACAAGGACATCTTTGTGAGCACATCAGATAAGCTCAAGAATTACTCAGCA



TACATTGGAATGACAAAGATTAACGGGAAGAAGGTGGATCTCCAAAGCAAACGTTGTTCA



AAGGAGGAGTTTTACGATTTCATAAAGAAGAACGTGCTGAAGAAACTGGAGGGACAACCG



GAGTACGAGTATTTAAAGGAGGAGCTCGAGCGAGAAACTTTCCTGCCCAAGCAAGTGAAC



AGAGACAATGGTGTCATTCCTTACCAGATTCACTTATATGAGCTGAAGAAAATCCTGGGG



AACTTGAGAGACAAGATAGACCTCATCAAGGAAAATGAAGATAAGTTGGTCCAGTTGTTC



GAATTCAGAATCCCATATTACGTCGGCCCGCTCAATAAGATCGACGACGGCAAGGAAGGC



AAATTCACTTGGGCGGTGCGAAAAAGCAACGAAAAAATATACCCATGGAACTTTGAGAAC



GTCGTTGACATCGAGGCCAGCGCCGAGAAATTTATAAGACGCATGACTAATAAGTGTACT



TACCTCATGGGCGAGGATGTTCTGCCCAAGGACAGCCTGCTGTATTCCAAGTACATGGTG



CTTAACGAGCTGAATAATGTAAAGTTAGATGGTGAGAAGCTCAGCGTGGAGCTTAAACAG



AGGCTGTACACTGATGTGTTTTGCAAGTATCGGAAAGTTACCGTTAAGAAGATAAAGAAT



TACCTGAAATGCGAAGGGATCATTTCCGGCAACGTGGAAATTACCGGAATCGACGGCGAT



TTTAAGGCGTCGTTGACCGCTTATCATGATTTCAAGGAGATTTTAACCGGCACGGAGCTC



GCGAAGAAAGACAAGGAGAACATAATCACGAATATAGTTCTGTTTGGGGACGATAAAAAA



CTTCTTAAAAAACGACTCAATCGACTGTATCCGCAGATTACCCCCAACCAGCTGAAGAAG



ATTTGCGCTCTGAGCTATACCGGGTGGGGCCGGTTCTCTAAGAAATTCCTCGAGGAGATC



ACAGCACCAGACCCAGAGACTGGTGAGGTGTGGAATATTATTACAGCTCTGTGGGAATCC



AATAATAACCTTATGCAATTGTTGAGCAATGAATATAGGTTCATGGAGGAAGTGGAAACC



TACAATATGGGCAAGCAGACAAAGACCCTATCTTACGAGACCGTTGAGAATATGTATGTC



TCCCCTTCAGTGAAACGGCAAATCTGGCAAACTTTGAAGATCGTGAAGGAGCTCGAAAAG



GTGATGAAAGAGAGCCCGAAGAGGGTTTTTATTGAAATGGCCAGAGAGAAACAGGAGAGC



AAGAGAACAGAGTCTAGGAAGAAGCAGCTAATCGATTTGTATAAAGCCTGCAAGAACGAG



GAAAAAGACTGGGTCAAGGAGCTAGGCGATCAGGAAGAACAGAAGTTGCGCTCTGATAAG



CTGTACTTATATTATACCCAGAAAGGACGGTGCATGTACTCAGGTGAGGTCATTGAGCTG



AAAGATCTGTGGGACAATACTAAGTATGATATTGATCACATCTACCCTCAGTCAAAAACT



ATGGACGACTCCCTCAACAACAGGGTGTTGGTTAAGAAGAAATACAATGCTACAAAGTCC



GATAAATACCCTCTTAACGAAAACATCCGGCACGAAAGAAAGGGCTTCTGGAAGTCCCTG



CTGGATGGGGGTTTTATCAGTAAAGAAAAGTATGAGAGGCTGATCCGAAATACCGAGCTC



TCCCCCGAGGAACTGGCTGGCTTTATCGAAAGGCAGATCGTAGAGACTAGGCAATCTACA



AAGGCAGTCGCTGAGATCCTGAAGCAAGTGTTTCCTGAGTCAGAAATCGTGTACGTCAAA



GCTGGCACAGTGTCACGGTTCCGAAAGGACTTTGAGTTGTTAAAAGTTCGGGAGGTGAAT



GACCTGCACCACGCTAAAGACGCCTATCTGAATATCGTTGTGGGGAACTCCTATTATGTT



AAGTTTACTAAGAATGCGTCCTGGTTTATTAAGGAGAACCCGGGGCGCACCTATAACCTG



AAGAAGATGTTCACCTCCGGCTGGAACATAGAACGGAACGGAGAAGTCGCGTGGGAGGTG



GGTAAGAAAGGGACCATTGTGACCGTCAAACAGATTATGAACAAAAACAACATATTGGTA



ACTCGCCAGGTGCATGAGGCCAAAGGGGGCCTCTTTGATCAGCAGATTATGAAAAAGGGC



AAAGGACAGATCGCAATCAAGGAAACCGACGAGCGCCTGGCATCCATTGAGAAGTACGGA



GGCTACAACAAGGCGGCAGGTGCGTACTTCATGCTCGTCGAGTCCAAAGATAAGAAAGGC



AAAACTATTAGAACAATCGAGTTCATCCCTCTATATTTGAAAAATAAGATCGAAAGTGAC



GAAAGCATCGCCCTTAACTTCTTGGAGAAGGGCCGGGGCTTAAAGGAACCAAAGATTCTG



CTCAAGAAGATCAAGATCGACACACTCTTCGATGTGGATGGTTTTAAGATGTGGCTGTCA



GGCAGGACAGGGGATCGCTTGCTGTTCAAATGCGCAAATCAGTTGATTCTGGACGAAAAG



ATCATTGTGACGATGAAGAAGATCGTTAAATTCATTCAGCGGAGACAGGAAAACAGAGAA



CTGAAACTCTCCGATAAGGATGGAATTGACAATGAAGTCCTCATGGAGATTTACAATACC



TTTGTGGACAAGCTTGAGAACACAGTCTATCGGATCCGACTGTCCGAACAGGCAAAGACT



CTGATCGACAAACAGAAAGAATTCGAAAGACTAAGCTTAGAGGACAAAAGTTCAACTCTC



TTTGAAATTCTCCACATCTTCCAATGTCAAAGTAGTGCAGCCAACTTGAAGATGATCGGG



GGTCCCGGCAAGGCTGGAATCTTAGTCATGAACAACAACATCTCCAAATGTAACAAAATC



TCCATCATAAACCAGTCTCCCACCGGCATTTTCGAGAACGAAATTGATTTACTCAAG





SEQ
ATGAAATCTTTCGATTCTTTCACCAACCTCTACTCCCTTAGCAAAACCCTTAAGTTTGAA


ID
ATGAGGCCGGTGGGGAATACACAGAAGATGCTTGACAATGCTGGCGTCTTTGAAAAGGAC


NO:
AAATTAATCCAGAAGAAGTATGGTAAAACAAAGCCATATTTTGACCGATTGCATCGGGAA


156
TTCATTGAAGAGGCTCTTACAGGAGTAGAATTGATCGGACTGGACGAGAACTTCCGTACC



TTAGTAGACTGGCAGAAGGACAAGAAGAACAACGTGGCAATGAAGGCCTATGAGAACTCA



CTCCAGCGCCTTAGAACCGAGATCGGAAAGATCTTTAATCTTAAGGCGGAAGATTGGGTA



AAAAATAAGTACCCGATCCTGGGACTGAAAAACAAAAACACAGACATCCTGTTTGAAGAA



GCCGTCTTTGGTATCTTGAAGGCCAGGTATGGAGAGGAGAAAGACACGTTTATAGAGGTA



GAGGAGATTGATAAAACAGGCAAGAGTAAGATTAATCAGATCAGTATCTTTGATTCTTGG



AAGGGGTTCACAGGCTACTTTAAGAAGTTTTTCGAAACCAGGAAAAATTTCTATAAGAAC



GATGGCACCTCCACAGCTATCGCGACACGCATCATAGATCAGAATCTGAAACGGTTCATT



GATAATCTGAGCATTGTTGAATCCGTGCGCCAGAAGGTCGACCTAGCTGAGACTGAGAAG



TCTTTCTCTATATCACTCTCCCAGTTCTTCTCAATAGATTTTTATAATAAGTGCCTTCTG



CAAGATGGCATAGACTACTATAACAAGATCATCGGCGGCGAAACTCTCAAAAACGGTGAA



AAGCTCATTGGCCTGAATGAGCTCATCAACCAATATAGACAAAATAACAAGGATCAGAAA



ATCCCATTCTTTAAGCTGCTAGATAAACAGATCCTATCAGAAAAAATCCTGTTCCTCGAC



GAAATCAAAAACGACACCGAACTCATCGAGGCTCTCTCGCAGTTTGCCAAGACGGCTGAG



GAGAAGACGAAGATTGTGAAAAAGCTGTTTGCAGACTTTGTGGAGAACAACTCTAAATAC



GATTTGGCTCAGATTTATATCTCCCAGGAAGCATTTAACACAATCTCCAATAAGTGGACT



AGCGAGACTGAAACCTTCGCCAAATACCTGTTCGAGGCCATGAAAAGCGGCAAGCTCGCC



AAATACGAGAAGAAGGACAATTCCTATAAGTTTCCCGATTTCATCGCATTATCTCAGATG



AAGTCCGCGCTACTTAGCATTAGCCTGGAAGGCCATTTTTGGAAGGAGAAATACTATAAG



ATTTCCAAATTCCAAGAAAAGACCAATTGGGAGCAGTTCTTGGCTATTTTTCTATACGAG



TTCAACTCTTTGTTCAGTGACAAGATCAACACTAAGGACGGTGAGACCAAACAAGTGGGG



TACTACCTCTTCGCCAAAGATCTTCATAACCTGATACTGTCCGAACAGATCGACATACCC



AAGGATTCAAAGGTGACCATCAAGGATTTTGCGGATTCGGTATTGACGATCTATCAGATG



GCGAAGTATTTCGCTGTCGAGAAAAAGCGGGCATGGCTGGCCGAATACGAGTTGGACTCC



TTCTATACTCAACCCGATACAGGGTACCTGCAGTTTTACGATAATGCATACGAGGATATA



GTCCAGGTGTACAATAAACTCAGGAACTACCTCACTAAGAAACCATACTCCGAAGAAAAA



TGGAAACTTAATTTTGAGAATAGTACACTGGCCAATGGATGGGACAAGAACAAGGAATCA



GACAACTCCGCTGTAATTCTCCAGAAGGGTGGCAAGTATTATCTGGGACTGATAACAAAG



GGCCATAACAAGATTTTCGATGACCGTTTTCAGGAGAAGTTTATAGTGGGCATAGAGGGT



GGCAAGTATGAAAAAATAGTCTACAAGTTCTTTCCCGATCAGGCGAAGATGTTCCCCAAA



GTATGCTTCAGTGCTAAAGGCCTCGAGTTTTTCCGGCCATCTGAAGAGATACTCCGCATC



TATAATAACGCAGAGTTTAAAAAGGGAGAGACGTACTCAATCGACTCGATGCAGAAACTC



ATTGACTTCTACAAAGATTGTCTCACAAAATACGAGGGCTGGGCTTGCTACACGTTTCGG



CACTTGAAGCCAACCGAGGAATATCAAAACAACATCGGGGAGTTCTTCCGTGACGTCGCC



GAAGACGGCTATAGAATTGACTTTCAGGGCATAAGTGATCAGTATATTCACGAGAAGAAT



GAGAAAGGTGAGTTGCATCTTTTCGAAATCCACAATAAAGACTGGAATCTTGACAAGGCT



CGCGATGGAAAATCAAAGACTACCCAGAAGAATCTTCATACACTTTACTTCGAGTCCCTC



TTTTCCAACGACAACGTCGTACAGAATTTCCCAATAAAACTGAACGGCCAGGCCGAAATT



TTTTACAGGCCCAAAACCGAAAAAGATAAACTGGAATCCAAGAAAGACAAGAAGGGAAAT



AAGGTGATAGATCACAAAAGGTATTCCGAGAACAAGATTTTTTTCCACGTACCTCTTACC



CTGAACAGAACGAAGAACGACTCTTATAGATTCAATGCCCAGATAAACAACTTTCTCGCA



AACAACAAAGATATCAATATTATCGGCGTCGATAGAGGTGAGAAGCACTTGGTATATTAT



TCTGTGATCACGCAAGCATCCGATATCTTGGAGTCCGGTTCTTTGAACGAACTGAATGGT



GTCAACTACGCCGAGAAACTCGGTAAGAAAGCTGAGAATCGGGAGCAGGCTAGAAGGGAC



TGGCAGGACGTTCAGGGTATCAAGGACCTGAAGAAGGGCTACATTTCTCAGGTGGTTCGA



AAACTGGCTGATTTGGCCATTAAGCACAATGCAATCATCATTTTAGAAGATTTGAACATG



CGGTTTAAACAAGTCAGGGGGGGGATAGAGAAATCAATTTACCAACAGCTGGAAAAAGCT



CTGATTGATAAACTCTCTTTTTTGGTTGATAAGGGCGAAAAGAACCCCGAGCAAGCAGGA



CATCTCCTTAAAGCCTATCAACTGAGCGCACCTTTCGAGACATTCCAGAAGATGGGAAAG



CAAACCGGCATCATTTTCTATACCCAGGCTTCCTATACATCCAAGTCTGATCCAGTGACT



GGGTGGAGACCCCATCTCTACCTCAAGTACTTTTCTGCCAAAAAAGCTAAGGACGACATT



GCTAAGTTCACAAAAATCGAGTTCGTGAACGACAGGTTCGAGCTGACTTATGACATAAAA



GATTTCCAGCAGGCCAAGGAGTACCCAAACAAGACAGTTTGGAAAGTGTGTTCCAATGTG



GAGAGGTTTCGGTGGGACAAGAATCTGAATCAGAATAAAGGGGGATATACTCACTACACC



AACATTACCGAGAACATCCAAGAGTTGTTCACCAAATACGGCATCGACATTACTAAAGAT



CTGCTGACACAGATCTCCACCATCGATGAGAAGCAGAACACATCTTTCTTCCGGGATTTC



ATCTTTTATTTTAACTTGATCTGTCAGATTAGAAATACCGACGACAGTGAGATAGCTAAA



AAAAACGGGAAAGACGATTTCATTCTCTCTCCCGTGGAGCCGTTTTTTGACTCCCGCAAA



GACAATGGCAATAAGCTTCCGGAAAACGGGGACGATAACGGCGCCTACAACATCGCTCGT



AAGGGAATCGTTATCCTCAATAAAATAAGCCAGTATTCCGAGAAGAACGAGAATTGTGAA



AAAATGAAGTGGGGGGACCTTTACGTCAGCAACATCGATTGGGATAACTTTGTGACACAA



GCCAATGCGAGACACTAG





SEQ
ATGGAAAACTTCAAAAACCTCTACCCCATCAACAAGACCTTGAGGTTTGAGCTCCGGCCA


ID
TATGGGAAGACACTGGAGAACTTCAAAAAGTCCGGTCTGCTGGAAAAGGATGCTTTTAAG


NO:
GCTAACTCTAGGAGGTCTATGCAGGCCATTATCGATGAGAAATTCAAGGAGACCATAGAG


157
GAGCGTCTGAAATATACTGAGTTTTCCGAGTGTGACCTAGGAAATATGACCAGTAAGGAC



AAAAAGATCACCGACAAGGCAGCGACAAACCTGAAGAAACAGGTGATTTTAAGCTTTGAT



GATGAGATTTTCAATAACTACTTGAAGCCGGACAAAAACATCGACGCTCTGTTCAAGAAT



GATCCAAGCAACCCGGTCATCTCTACTTTCAAGGGCTTCACCACATACTTTGTAAATTTC



TTCGAAATACGGAAACACATCTTCAAGGGAGAGTCTTCCGGTAGCATGGCTTACAGAATA



ATCGATGAGAACCTAACTACATATCTAAACAATATCGAGAAGATCAAGAAATTGCCTGAA



GAACTGAAATCTCAGCTTGAGGGAATCGATCAAATTGACAAACTGAACAACTATAACGAG



TTCATCACCCAGTCCGGCATTACTCATTATAACGAAATTATTGGAGGGATTTCGAAGTCT



GAAAATGTCAAAATTCAAGGCATTAACGAAGGGATTAATCTTTACTGTCAAAAGAATAAA



GTGAAGCTACCACGCTTAACTCCTCTGTATAAGATGATTCTCTCTGATCGGGTCTCTAAT



TCCTTTGTGCTGGATACCATTGAAAATGATACCGAGTTAATTGAAATGATCTCTGATCTG



ATAAATAAGACAGAGATAAGTCAGGATGTTATTATGTCCGACATCCAAAATATTTTCATC



AAATATAAACAACTCGGCAACTTGCCGGGGATTAGCTACTCATCTATAGTGAATGCTATC



TGTTCGGATTACGACAATAACTTTGGTGACGGCAAACGTAAAAAAAGCTATGAGAATGAT



CGCAAAAAACACCTCGAGACTAACGTGTATAGCATTAACTATATCTCAGAGTTACTGACA



GACACCGACGTCTCCAGCAACATAAAGATGCGGTACAAAGAGCTGGAGCAGAATTATCAG



GTATGCAAGGAAAATTTCAACGCCACTAACTGGATGAACATCAAAAACATTAAGCAGTCT



GAGAAAACCAATCTGATCAAGGACCTTCTTGACATCCTCAAGAGCATCCAGCGGTTTTAT



GATTTGTTTGACATCGTGGATGAAGACAAAAATCCTAGTGCTGAGTTCTATACCTGGCTG



TCTAAAAACGCGGAGAAACTGGACTTCGAGTTTAATTCAGTGTACAACAAGAGCAGGAAC



TACCTCACGAGAAAGCAGTACTCCGATAAAAAGATTAAGTTGAACTTCGATAGTCCTACT



CTCGCCAAGGGGTGGGATGCGAACAAAGAAATTGATAATAGCACAATTATCATGAGGAAG



TTCAACAACGACCGGGGCGATTACGATTACTTCTTGGGGATCTGGAATAAGAGCACACCT



GCCAACGAAAAGATCATCCCATTAGAGGATAATGGACTGTTTGAAAAAATGCAATATAAG



CTGTATCCCGATCCTAGTAAAATGCTGCCAAAGCAATTCCTTTCTAAGATCTGGAAAGCT



AAACATCCAACTACACCCGAGTTTGATAAGAAGTACAAAGAAGGTCGGCACAAGAAGGGG



CCTGATTTTGAGAAAGAGTTTCTGCACGAGTTGATCGATTGCTTTAAGCATGGATTGGTA



AACCACGACGAAAAATATCAGGATGTGTTCGGGTTCAATCTGCGCAACACGGAAGACTAC



AACTCTTATACAGAGTTTCTGGAGGACGTCGAAAGGTGCAACTATAATCTTAGTTTCAAT



AAAATCGCTGACACGTCTAACTTGATAAATGATGGGAAACTCTATGTTTTTCAGATCTGG



AGCAAGGATTTCAGCATAGATAGCAAGGGAACAAAAAACTTGAACACAATATACTTTGAA



TCCCTCTTCTCGGAGGAAAATATGATCGAGAAGATGTTCAAGCTCTCAGGGGAAGCCGAA



ATATTCTATCGTCCAGCAAGTTTGAATTATTGTGAAGATATTATCAAGAAGGGACACCAC



CACGCCGAACTGAAGGACAAATTCGACTATCCCATCATCAAGGACAAGCGATATAGCCAG



GACAAATTTTTTTTTCATGTCCCCATGGTTATCAACTACAAAAGCGAGAAGTTAAACTCC



AAATCACTTAACAATAGGACGAACGAAAATTTAGGCCAATTCACGCACATCATCGGTATC



GACCGCGGAGAGCGACATCTCATCTACCTGACCGTGGTGGATGTGTCCACCGGTGAGATC



GTTGAGCAAAAGCACCTGGATGAAATTATAAATACAGATACAAAAGGCGTCGAGCATAAA



ACTCATTATCTCAATAAATTAGAAGAGAAGTCCAAGACGCGGGATAATGAAAGAAAGTCC



TGGGAAGCAATCGAGACGATTAAGGAGCTGAAAGAAGGCTATATTAGCCACGTGATCAAT



GAAATCCAGAAATTGCAGGAAAAGTATAACGCACTGATAGTGATGGAGAACCTCAATTAT



GGGTTTAAGAACTCGCGTATCAAAGTGGAAAAGCAGGTCTACCAGAAATTCGAGACCGCC



CTGATTAAAAAGTTTAATTACATCATTGACAAGAAAGATCCTGAAACCTACATTCATGGA



TACCAACTGACGAATCCAATCACTACACTCGATAAAATTGGTAACCAGAGCGGTATTGTG



TTGTACATTCCGGCTTGGAATACAAGCAAGATTGATCCAGTCACTGGTTTCGTTAACCTC



CTGTATGCAGACGATTTGAAATACAAGAACCAGGAGCAGGCTAAAAGCTTTATCCAGAAA



ATCGATAATATCTACTTCGAAAATGGTGAGTTTAAATTTGATATAGATTTCAGCAAATGG



AACAACCGCTACTCAATTAGCAAGACGAAATGGACACTGACAAGCTACGGAACCCGGATA



CAGACGTTCCGAAACCCCCAGAAAAATAACAAGTGGGACAGCGCCGAGTATGACCTGACC



GAAGAGTTTAAATTAATCCTGAACATCGATGGTACTCTGAAATCTCAGGATGTGGAAACC



TATAAGAAATTCATGTCTTTATTCAAGCTGATGTTGCAGCTGCGAAACTCCGTTACTGGA



ACAGACATTGACTACATGATTAGCCCTGTGACAGATAAAACTGGAACCCACTTTGATTCA



CGGGAGAATATCAAGAACCTGCCCGCCGATGCTGATGCGAACGGAGCTTACAACATTGCT



AGGAAGGGCATCATGGCAATCGAGAATATTATGAACGGCATTAGCGACCCTCTGAAGATC



AGTAATGAGGACTACCTGAAGTACATTCAGAACCAACAAGAGTAA





SEQ
ATGACCCAGTTTGAGGGTTTCACCAATCTTTATCAGGTGTCAAAAACACTCAGATTTGAG


ID
CTCATCCCACAGGGTAAAACTTTAAAGCATATTCAAGAGCAGGGCTTTATAGAGGAAGAC


NO:
AAAGCCAGAAACGACCATTATAAGGAACTAAAACCGATCATTGACCGCATCTACAAAACC


158
TATGCCGACCAATGCCTTCAGCTCGTCCAACTCGATTGGGAGAATCTGAGCGCCGCTATT



GACAGCTACAGGAAGGAGAAGACCGAGGAGACTAGAAACGCCCTGATCGAGGAGCAGGCG



ACCTATAGAAACGCTATTCACGATTATTTTATCGGCCGCACCGACAATTTGACAGATGCC



ATCAACAAGCGGCACGCCGAAATTTATAAGGGGTTATTTAAGGCCGAGCTGTTCAATGGA



AAAGTACTGAAACAGCTGGGCACCGTAACAACCACCGAACACGAGAATGCTCTGTTGAGG



TCCTTCGACAAGTTTACTACCTACTTTAGCGGCTTCTACGAAAACCGTAAAAACGTGTTT



TCCGCGGAGGATATTTCAACAGCCATTCCTCATAGGATCGTGCAGGATAATTTCCCCAAG



TTTAAGGAGAACTGCCATATCTTTACCAGACTTATCACTGCTGTGCCAAGTTTACGAGAA



CACTTCGAGAATGTTAAGAAGGCTATAGGCATATTCGTTTCCACCTCCATCGAAGAAGTA



TTCAGTTTTCCATTCTACAATCAGTTACTCACGCAGACCCAGATAGATCTCTACAATCAG



CTGCTCGGAGGCATTTCTAGAGAAGCAGGCACGGAAAAGATCAAGGGCTTAAATGAAGTA



CTCAATCTTGCAATTCAGAAGAACGATGAGACAGCACACATTATTGCATCTCTCCCTCAC



AGATTCATTCCCCTGTTCAAACAGATCCTGTCCGATCGCAACACACTAAGCTTTATACTT



GAGGAGTTTAAGTCAGATGAGGAAGTGATCCAGAGCTTCTGTAAGTATAAGACTTTGCTC



CGTAATGAAAACGTGCTTGAGACAGCAGAGGCTCTCTTTAACGAGTTGAATTCCATCGAC



CTGACACACATTTTTATCAGCCATAAAAAGCTGGAAACGATTAGCTCTGCCTTGTGCGAC



CACTGGGACACCCTGCGTAACGCCCTCTATGAAAGGCGCATTTCCGAGCTCACCGGGAAG



ATCACAAAAAGTGCCAAGGAAAAAGTCCAGAGGTCCCTTAAACATGAAGACATCAACCTA



CAAGAGATCATCTCTGCGGCTGGGAAAGAGCTGTCAGAAGCATTTAAACAGAAGACTTCC



GAGATCCTGAGCCACGCACACGCCGCATTAGACCAGCCCCTGCCTACAACTCTTAAAAAA



CAGGAGGAGAAGGAGATTTTAAAGAGCCAGCTGGACTCATTACTCGGCCTGTATCATCTC



CTGGACTGGTTCGCCGTGGACGAATCCAACGAGGTGGACCCAGAATTTAGCGCCAGGCTG



ACAGGAATTAAACTGGAAATGGAGCCAAGTTTGAGCTTTTACAACAAGGCTCGGAACTAT



GCCACTAAAAAGCCCTACAGCGTGGAAAAGTTCAAGCTGAATTTTCAGATGCCGACCCTG



GCTTCCGGGTGGGATGTTAATAAGGAAAAGAATAATGGGGCTATACTGTTCGTCAAAAAT



GGTCTCTACTACCTGGGAATCATGCCCAAACAGAAGGGCAGGTACAAAGCCCTTTCGTTT



GAGCCGACCGAAAAAACCAGCGAAGGCTTTGATAAGATGTATTACGACTATTTCCCAGAT



GCAGCCAAGATGATCCCAAAATGTAGCACTCAGTTGAAGGCGGTAACCGCTCACTTTCAG



ACACACACCACTCCTATCTTGCTCTCCAACAACTTTATTGAGCCGCTGGAGATCACGAAG



GAAATCTACGACCTTAACAACCCAGAGAAGGAACCCAAGAAATTCCAAACAGCTTATGCT



AAGAAGACTGGGGATCAAAAGGGCTATCGAGAGGCTTTGTGTAAGTGGATTGACTTTACA



CGGGATTTCCTGAGTAAGTATACCAAGACCACATCTATTGACCTGTCCTCACTGAGACCT



TCCTCACAATATAAGGATCTCGGAGAGTATTATGCCGAACTCAACCCTCTACTCTATCAC



ATCTCTTTCCAGAGGATCGCCGAAAAGGAAATTATGGACGCCGTCGAGACAGGCAAGCTG



TACCTCTTCCAGATTTACAACAAGGATTTCGCAAAGGGCCACCACGGAAAACCCAATTTG



CACACTTTGTACTGGACAGGGCTCTTCTCTCCCGAAAATTTGGCCAAAACTTCAATAAAA



CTGAACGGGCAAGCCGAGCTGTTCTATCGGCCCAAGTCACGTATGAAGCGGATGGCCCAC



CGGCTGGGCGAGAAGATGCTCAACAAGAAACTGAAGGATCAGAAGACGCCCATACCAGAC



ACTCTTTACCAAGAGCTGTATGACTACGTGAATCACAGACTGAGTCACGACCTGTCTGAT



GAAGCCCGGGCTCTTCTTCCAAATGTGATTACCAAAGAAGTTTCCCACGAAATTATCAAG



GACCGGCGCTTCACCTCTGACAAATTCTTTTTCCACGTCCCAATCACCCTCAACTACCAG



GCAGCCAATTCCCCTTCAAAGTTTAACCAGCGTGTGAATGCCTACCTGAAAGAGCATCCG



GAGACCCCCATCATAGGGATAGACAGAGGAGAGCGGAATCTTATCTACATTACTGTGATT



GACAGCACAGGTAAGATCTTGGAGCAGAGATCTTTAAATACAATCCAGCAGTTTGACTAC



CAGAAGAAACTGGATAACCGAGAGAAGGAAAGGGTTGCTGCAAGACAGGCCTGGTCAGTG



GTCGGCACCATCAAAGACCTGAAGCAGGGCTACTTATCCCAAGTAATTCACGAAATTGTC



GATCTTATGATTCATTATCAAGCCGTTGTTGTGCTGGAGAACCTGAATTTTGGCTTCAAA



AGCAAACGAACAGGTATCGCCGAGAAAGCCGTGTATCAGCAGTTCGAAAAGATGCTCATA



GACAAGCTGAACTGCTTAGTGCTGAAGGATTATCCTGCTGAGAAGGTCGGCGGCGTACTT



AACCCATACCAGCTGACCGATCAGTTCACTAGTTTCGCCAAGATGGGAACGCAAAGTGGC



TTCCTTTTCTACGTGCCCGCTCCCTACACGAGTAAGATCGACCCTCTGACCGGCTTCGTC



GACCCATTCGTCTGGAAGACCATCAAGAATCACGAATCACGGAAACACTTCTTAGAGGGG



TTTGACTTCCTGCACTACGACGTGAAGACAGGGGACTTCATCTTACACTTTAAGATGAAT



CGAAACCTCTCCTTCCAGCGGGGCCTGCCTGGTTTCATGCCCGCATGGGACATCGTGTTT



GAGAAAAACGAGACACAGTTTGACGCTAAGGGAACCCCCTTTATTGCGGGGAAGCGGATT



GTCCCAGTCATCGAAAACCATCGGTTCACCGGGCGATACCGGGATCTGTACCCGGCCAAC



GAGCTCATCGCGCTGCTGGAGGAGAAGGGTATTGTGTTTAGGGATGGATCCAACATTCTG



CCTAAGTTGCTGGAAAATGATGATTCGCACGCCATTGATACCATGGTTGCACTGATTAGA



TCCGTACTGCAGATGAGGAATAGCAATGCTGCAACCGGGGAGGATTATATTAATTCCCCA



GTGCGAGATCTGAATGGTGTCTGTTTTGACTCGCGCTTTCAGAATCCAGAATGGCCAATG



GATGCAGACGCTAACGGGGCGTACCACATTGCTCTGAAAGGCCAGCTACTCCTGAACCAC



CTCAAGGAGAGCAAAGATCTGAAGCTGCAGAACGGCATTTCCAACCAAGACTGGCTCGCC



TACATACAAGAACTGCGCAATTAA





SEQ
ATGGCTGTCAAATCCATCAAGGTTAAATTACGGCTTGATGACATGCCCGAGATCCGCGCC


ID
GGGCTCTGGAAACTCCATAAAGAAGTGAATGCTGGCGTTAGATACTACACAGAATGGCTC


NO:
TCCCTGCTGCGCCAGGAAAATTTGTACCGCCGGTCACCTAATGGAGATGGAGAGCAGGAA


159
TGCGATAAAACAGCAGAAGAGTGCAAAGCCGAATTGCTGGAGCGACTGCGGGCACGGCAG



GTTGAGAATGGACACCGAGGTCCGGCGGGATCGGACGACGAGCTGCTCCAGCTCGCCAGA



CAATTATATGAACTGCTGGTGCCTCAGGCTATTGGGGCAAAGGGTGACGCACAGCAGATT



GCTAGAAAATTTCTGTCTCCCCTCGCCGACAAAGACGCTGTCGGCGGCCTTGGGATAGCC



AAAGCCGGCAACAAACCCCGATGGGTGCGCATGAGGGAGGCTGGTGAGCCTGGCTGGGAG



GAAGAAAAGGAAAAGGCCGAAACCAGAAAGTCCGCCGACAGGACCGCGGACGTACTCCGA



GCATTGGCCGATTTTGGGCTGAAGCCCTTAATGCGAGTCTACACCGATAGTGAAATGTCT



AGCGTGGAGTGGAAGCCATTACGCAAAGGGCAGGCAGTGCGGACGTGGGACCGTGACATG



TTCCAGCAAGCCATCGAGCGAATGATGAGCTGGGAGAGCTGGAACCAGAGAGTGGGGCAG



GAGTATGCCAAGCTGGTCGAGCAGAAAAACCGGTTTGAGCAAAAAAATTTTGTAGGTCAG



GAACACCTGGTGCATCTCGTTAACCAGCTCCAGCAAGATATGAAGGAAGCTTCGCCTGGA



TTAGAGAGCAAAGAGCAGACTGCACACTATGTAACCGGAAGAGCACTGAGGGGCAGTGAC



AAAGTGTTCGAAAAATGGGGAAAACTGGCTCCCGATGCCCCCTTTGACCTGTACGACGCA



GAAATAAAAAACGTGCAGCGGCGAAACACCAGGCGATTTGGTAGCCATGATCTGTTCGCC



AAATTGGCAGAGCCGGAATATCAGGCTCTTTGGCGAGAAGACGCATCATTTCTCACTAGG



TACGCGGTCTATAACTCCATTTTGAGGAAATTGAACCACGCAAAAATGTTTGCCACCTTC



ACGTTGCCTGACGCCACCGCTCATCCCATTTGGACACGGTTTGATAAGCTGGGCGGCAAT



CTGCATCAGTATACATTCCTGTTTAACGAGTTTGGAGAGCGAAGACATGCGATACGATTC



CACAAGCTACTGAAGGTCGAAAATGGCGTGGCACGTGAGGTGGACGATGTCACCGTGCCC



ATCAGCATGAGCGAACAGCTGGATAATTTGTTGCCGCGGGACCCAAATGAACCTATAGCC



CTTTATTTTAGGGACTACGGGGCGGAGCAACATTTCACTGGGGAGTTTGGCGGCGCAAAA



ATTCAGTGCCGACGCGACCAGCTCGCCCACATGCATAGAAGACGCGGGGCCCGGGACGTA



TACCTTAACGTCTCTGTGAGGGTGCAGTCCCAGTCAGAGGCAAGAGGGGAACGCAGACCA



CCTTACGCAGCAGTATTCAGGCTGGTAGGCGATAACCACCGGGCGTTTGTACACTTTGAT



AAACTTTCTGACTACCTGGCCGAACACCCGGATGACGGCAAATTAGGATCGGAGGGGCTG



CTTAGCGGCCTGCGTGTGATGAGCGTCGATCTGGGGCTACGGACCTCTGCTTCCATCTCT



GTGTTCCGTGTGGCCCGAAAGGACGAGTTGAAACCTAATTCGAAGGGCCGTGTACCATTC



TTTTTCCCTATTAAGGGAAATGATAATCTCGTCGCGGTGCACGAGCGTTCCCAACTGCTG



AAACTGCCTGGCGAGACCGAGTCCAAAGATCTCAGAGCAATCCGGGAGGAGCGACAACGT



ACACTTAGGCAACTCCGCACCCAGCTGGCCTATCTGCGCTTGCTGGTGCGGTGCGGCTCC



GAGGATGTAGGGAGAAGAGAGCGAAGCTGGGCAAAGCTGATAGAGCAACCAGTTGACGCC



GCGAATCACATGACCCCCGACTGGCGCGAAGCGTTTGAAAATGAGCTGCAGAAGTTGAAA



TCTCTGCATGGGATTTGCTCAGATAAGGAGTGGATGGACGCCGTATACGAGTCTGTTCGC



CGGGTATGGCGGCACATGGGGAAGCAGGTGAGAGATTGGAGAAAGGACGTTCGCTCTGGG



GAACGGCCGAAAATTCGGGGATACGCAAAGGATGTCGTGGGCGGCAATAGCATTGAGCAG



ATCGAGTACCTGGAAAGGCAATACAAATTTCTGAAATCTTGGTCTTTCTTTGGGAAGGTA



AGCGGACAAGTTATCAGAGCCGAAAAGGGATCTCGCTTTGCTATCACATTGAGGGAACAC



ATTGATCACGCCAAAGAAGACAGGTTGAAAAAGTTGGCTGATCGCATTATCATGGAAGCA



CTCGGTTACGTCTACGCCCTTGATGAGCGCGGTAAAGGGAAGTGGGTAGCCAAGTATCCC



CCATGTCAGCTGATCCTGCTCGAGGAACTTTCTGAGTATCAGTTCAATAACGACCGTCCT



CCCTCCGAAAATAATCAGCTCATGCAATGGTCCCACCGGGGTGTGTTCCAAGAACTGATC



AATCAGGCTCAGGTGCACGACCTCCTCGTAGGCACTATGTATGCAGCCTTTAGCTCCCGT



TTTGACGCGCGCACAGGCGCCCCTGGAATACGATGTAGGCGAGTTCCCGCACGGTGCACT



CAAGAACATAACCCGGAGCCTTTCCCATGGTGGCTCAATAAGTTTGTTGTGGAGCATACC



CTCGACGCTTGCCCATTGAGGGCGGATGACTTGATTCCCACAGGCGAGGGGGAGATCTTC



GTGAGCCCATTTTCTGCCGAAGAAGGGGATTTCCACCAAATACATGCCGACTTGAATGCT



GCCCAAAATCTGCAGCAAAGGCTGTGGTCAGACTTCGACATCTCGCAAATCAGACTGCGG



TGTGACTGGGGCGAAGTAGACGGCGAGCTGGTGCTGATACCTAGACTGACGGGTAAGCGT



ACCGCCGATAGCTATAGTAATAAGGTTTTTTATACGAATACGGGGGTGACATATTACGAG



CGTGAGAGAGGCAAGAAGCGTCGGAAGGTGTTCGCGCAGGAGAAGCTGAGCGAAGAGGAG



GCGGAGCTACTGGTAGAGGCAGATGAGGCAAGAGAAAAGTCCGTCGTCCTGATGCGGGAT



CCTAGCGGGATTATTAACAGAGGTAATTGGACACGGCAGAAAGAATTCTGGAGCATGGTG



AATCAAAGAATCGAGGGTTACCTGGTGAAGCAAATTCGAAGCCGGGTGCCCCTTCAAGAC



AGCGCATGTGAAAACACTGGGGACATCTAG





SEQ
ATGGCTACTCGGTCCTTCATCCTGAAAATCGAGCCAAATGAAGAGGTGAAAAAGGGCCTG


ID
TGGAAGACCCATGAGGTACTTAACCACGGCATAGCATACTATATGAATATCCTAAAACTT


NO:
ATACGGCAGGAGGCTATCTACGAGCATCACGAGCAAGATCCTAAAAATCCAAAGAAGGTT


160
AGTAAGGCTGAAATCCAGGCTGAATTGTGGGACTTCGTGCTGAAGATGCAGAAATGCAAC



AGTTTCACGCATGAAGTTGATAAGGACGTCGTGTTTAATATACTCCGGGAGCTGTACGAA



GAACTGGTACCAAGCTCTGTGGAAAAGAAAGGAGAGGCCAACCAGCTAAGTAATAAGTTC



CTCTATCCTCTCGTGGACCCCAATTCACAGAGCGGCAAAGGTACCGCATCTTCTGGGAGG



AAACCACGCTGGTACAACTTGAAGATCGCTGGCGATCCCAGCTGGGAGGAGGAAAAGAAG



AAATGGGAAGAGGATAAAAAGAAAGACCCCCTGGCCAAAATCTTAGGCAAGCTCGCCGAG



TACGGTCTGATTCCACTTTTCATCCCGTTCACAGATAGCAATGAGCCGATCGTCAAGGAG



ATTAAGTGGATGGAAAAGAGCCGCAATCAGAGTGTGCGGAGGCTGGACAAAGACATGTTT



ATTCAGGCCCTGGAACGCTTCCTTAGCTGGGAAAGCTGGAACCTGAAGGTTAAGGAAGAG



TACGAAAAAGTCGAGAAGGAGCATAAGACTTTGGAGGAGCGCATCAAAGAAGACATCCAG



GCCTTTAAGTCTCTAGAACAGTATGAGAAAGAACGGCAGGAACAGCTGCTGCGTGATACA



CTGAACACAAACGAATATCGCCTGAGCAAGAGGGGACTCAGAGGCTGGAGAGAAATCATT



CAAAAGTGGCTCAAAATGGATGAAAATGAGCCGTCTGAAAAATACCTTGAAGTTTTCAAG



GACTACCAGCGGAAGCACCCTAGAGAAGCCGGCGACTATAGTGTTTACGAATTCTTGAGC



AAGAAGGAGAATCATTTTATATGGAGGAATCACCCGGAGTACCCATATCTGTACGCAACC



TTCTGCGAAATCGACAAGAAAAAAAAAGACGCCAAGCAACAGGCTACATTTACTCTGGCC



GACCCTATCAATCACCCTCTATGGGTCCGGTTTGAGGAGCGCTCCGGAAGCAATCTGAAT



AAATATCGTATTCTGACTGAACAGTTACACACAGAGAAGCTCAAGAAGAAACTTACGGTG



CAGCTGGACCGCCTGATATACCCAACAGAGTCCGGAGGATGGGAAGAGAAAGGAAAGGTT



GACATCGTACTGCTTCCATCTCGTCAGTTTTACAACCAGATATTCCTGGACATCGAGGAG



AAGGGGAAACACGCCTTCACATACAAGGACGAGTCCATAAAGTTCCCACTGAAGGGTACT



TTAGGCGGTGCTAGGGTGCAGTTCGACCGCGATCACCTGAGACGGTACCCCCACAAGGTG



GAGAGCGGGAACGTGGGACGAATCTACTTTAATATGACAGTGAACATTGAACCCACAGAG



AGTCCAGTTAGTAAATCCCTGAAAATTCACCGTGACGACTTTCCGAAATTTGTGAATTTC



AAGCCAAAGGAGCTTACGGAGTGGATCAAGGATTCAAAGGGAAAGAAGCTGAAATCTGGT



ATCGAATCTCTCGAGATCGGTCTCCGTGTCATGAGCATCGATCTGGGACAGCGCCAGGCA



GCTGCCGCCAGTATATTCGAGGTGGTAGACCAAAAGCCTGACATCGAGGGAAAGCTCTTC



TTCCCAATCAAAGGCACAGAGCTGTATGCGGTGCACCGGGCGTCCTTTAATATAAAGCTG



CCCGGTGAAACCCTGGTGAAGTCACGGGAGGTGCTTAGAAAAGCGCGAGAGGATAACCTC



AAACTGATGAACCAAAAACTGAACTTTCTGAGGAACGTCCTGCACTTTCAGCAGTTCGAA



GATATTACCGAACGCGAAAAGAGAGTAACCAAGTGGATATCTCGTCAAGAGAACAGCGAC



GTCCCGTTAGTCTATCAGGACGAACTCATCCAAATACGGGAGTTGATGTATAAGCCCTAC



AAGGATTGGGTCGCCTTTCTTAAGCAGCTTCACAAACGCCTAGAGGTCGAAATAGGTAAA



GAGGTGAAACATTGGCGGAAGTCGCTCAGCGACGGGAGGAAGGGACTTTATGGCATCTCT



TTGAAGAACATTGACGAAATCGATAGAACCAGAAAATTTTTGTTGAGATGGTCCCTCCGA



CCCACCGAGCCTGGAGAGGTGAGGCGGTTAGAACCAGGACAGAGGTTCGCTATCGATCAG



CTGAATCACCTCAATGCTCTGAAGGAGGACCGCCTCAAGAAAATGGCCAATACAATCATA



ATGCACGCCCTTGGCTACTGCTACGACGTCCGAAAGAAGAAGTGGCAGGCCAAGAATCCC



GCCTGTCAAATTATCCTTTTTGAGGATCTTAGCAATTACAACCCCTATGAAGAGCGGTCC



AGATTCGAAAATAGTAAGCTCATGAAGTGGAGCCGCAGGGAGATCCCGCGCCAAGTGGCC



CTTCAGGGGGAAATTTATGGGCTGCAGGTAGGCGAGGTCGGGGCCCAATTCTCCTCGCGC



TTTCATGCGAAAACTGGAAGTCCTGGAATCCGGTGCTCAGTGGTGACAAAGGAGAAGTTG



CAAGACAATCGGTTTTTTAAAAACTTACAGCGGGAGGGAAGGCTGACCCTGGATAAGATA



GCCGTACTTAAGGAAGGAGATCTGTACCCTGACAAAGGCGGTGAAAAGTTCATTAGCTTG



AGCAAGGACCGAAAACTTGTGACCACCCACGCTGACATCAATGCGGCACAGAACCTGCAG



AAGAGATTTTGGACTCGCACCCACGGATTCTACAAAGTTTACTGCAAAGCATATCAAGTA



GACGGACAGACCGTATACATCCCCGAGTCCAAAGATCAGAAGCAGAAAATTATTGAAGAG



TTTGGGGAAGGGTACTTTATCCTGAAGGATGGTGTCTACGAATGGGGCAACGCTGGTAAA



CTTAAAATTAAGAAGGGCAGCTCTAAACAGTCCTCCAGCGAGTTAGTTGATTCTGATATT



CTGAAAGACAGTTTCGACCTGGCCAGCGAACTTAAAGGGGAAAAATTAATGCTGTACCGG



GACCCCAGCGGAAACGTCTTTCCATCCGATAAGTGGATGGCCGCTGGAGTGTTCTTTGGC



AAGTTAGAGAGGATTCTCATAAGTAAGCTGACCAACCAATACTCAATCTCCACAATCGAG



GATGACTCATCCAAGCAGTCTATGTGA





SEQ
ATGCCTACACGCACTATCAACCTGAAACTGGTTCTTGGCAAGAATCCAGAGAATGCTACC


ID
CTTCGTCGGGCACTATTTTCAACGCATAGACTGGTGAATCAGGCTACCAAACGGATTGAA


NO:
GAGTTCCTCTTGCTTTGTCGGGGGGAAGCATATAGGACGGTGGATAATGAGGGGAAAGAG


161
GCTGAAATTCCGAGACACGCCGTGCAGGAGGAAGCTCTTGCGTTTGCAAAGGCCGCTCAA



CGGCACAATGGTTGCATCTCTACTTATGAAGACCAGGAAATCCTGGATGTGCTCCGGCAA



CTGTATGAAAGGCTGGTGCCTTCTGTGAATGAAAATAATGAAGCAGGGGACGCTCAAGCC



GCAAACGCGTGGGTGTCGCCACTGATGTCCGCCGAGTCCGAGGGAGGGCTCAGCGTTTAC



GACAAGGTGCTGGACCCACCCCCAGTGTGGATGAAACTCAAAGAGGAAAAAGCTCCGGGC



TGGGAGGCTGCTTCCCAGATCTGGATCCAGTCCGACGAAGGGCAGTCCCTTCTTAACAAG



CCTGGTTCGCCCCCGCGGTGGATTAGGAAACTGAGGTCAGGCCAGCCTTGGCAGGACGAT



TTTGTTAGCGACCAGAAAAAGAAGCAGGACGAGCTGACAAAGGGGAATGCGCCACTGATC



AAACAATTAAAGGAAATGGGCTTATTGCCTCTTGTGAATCCCTTTTTTAGACATCTGCTT



GACCCGGAGGGGAAGGGGGTGTCACCTTGGGACAGACTCGCTGTTAGGGCCGCTGTCGCT



CATTTCATATCATGGGAATCATGGAACCACCGGACACGCGCCGAATACAATAGTTTGAAG



CTGCGGAGGGATGAGTTCGAAGCAGCTTCCGACGAATTCAAGGACGACTTCACGCTGCTT



CGGCAGTACGAGGCTAAGAGGCACTCCACACTGAAGAGTATAGCTTTAGCCGATGATTCA



AACCCTTATAGGATCGGCGTACGCTCCCTCCGCGCTTGGAACCGCGTCCGCGAGGAGTGG



ATCGACAAGGGAGCGACCGAGGAGCAGCGGGTCACCATTCTCAGCAAGTTGCAGACCCAA



CTAAGGGGCAAATTTGGAGATCCTGACTTGTTCAACTGGCTGGCGCAGGACCGGCACGTG



CACCTCTGGAGCCCTAGAGATAGTGTTACCCCACTGGTTAGGATCAACGCTGTTGACAAA



GTATTGCGACGGAGAAAACCGTACGCCTTGATGACTTTTGCCCACCCAAGATTCCACCCT



CGGTGGATACTTTACGAAGCCCCAGGGGGCAGCAATCTCCGCCAGTATGCACTGGATTGT



ACCGAAAATGCTCTGCACATTACACTGCCTCTGCTGGTTGACGATGCACATGGCACATGG



ATTGAGAAAAAAATTAGGGTTCCTCTTGCCCCCAGCGGCCAGATTCAGGACCTGACACTA



GAAAAGCTCGAGAAGAAGAAAAATCGTCTCTACTACCGTTCTGGGTTCCAGCAGTTTGCC



GGCCTGGCCGGAGGTGCCGAGGTGCTTTTCCATCGACCATACATGGAGCACGATGAGAGG



AGCGAGGAGAGCTTATTAGAACGCCCTGGTGCTGTTTGGTTCAAACTCACCTTGGACGTG



GCAACCCAGGCCCCTCCAAACTGGTTGGACGGAAAGGGCCGCGTCCGAACGCCCCCCGAG



GTTCACCACTTCAAGACAGCCCTCAGTAACAAGTCTAAGCACACACGGACCCTCCAGCCC



GGACTCAGAGTGTTATCCGTGGATCTGGGAATGCGCACCTTCGCCTCTTGCTCCGTATTT



GAGCTGATCGAGGGCAAACCAGAGACTGGCAGAGCGTTCCCTGTGGCCGACGAACGTTCC



ATGGATTCACCAAACAAGCTGTGGGCCAAGCACGAAAGATCCTTTAAACTCACGCTCCCC



GGCGAAACCCCCAGTCGGAAAGAAGAGGAGGAACGGAGCATTGCAAGAGCCGAAATCTAT



GCGTTGAAAAGAGATATTCAGAGATTAAAAAGTCTTCTGCGCCTGGGGGAAGAGGATAAC



GATAATAGACGCGATGCACTTCTTGAGCAATTTTTCAAGGGCTGGGGCGAGGAAGACGTG



GTTCCAGGTCAGGCCTTTCCCCGGAGTCTGTTCCAGGGGCTGGGGGCCGCCCCATTCAGA



TCCACCCCTGAGTTGTGGAGACAACACTGTCAAACCTATTATGATAAAGCAGAGGCGTGC



CTGGCTAAACACATCAGCGATTGGCGCAAGAGAACCAGGCCTAGGCCTACCTCACGTGAG



ATGTGGTACAAGACACGCTCTTATCACGGCGGAAAGTCAATCTGGATGCTGGAATACCTC



GACGCTGTGAGGAAACTGCTCTTATCCTGGAGCCTCAGAGGCCGGACCTACGGGGCTATC



AACAGACAGGACACAGCAAGGTTCGGGAGCTTAGCCAGCCGGCTCCTTCACCACATTAAC



TCACTCAAAGAGGATCGAATAAAGACCGGAGCCGACTCGATCGTGCAGGCAGCCCGAGGG



TACATCCCCCTGCCTCATGGGAAGGGCTGGGAGCAGCGATATGAACCCTGCCAGCTGATC



TTGTTTGAGGACCTTGCCCGTTATAGATTTCGCGTTGATAGACCTCGCCGTGAGAATTCT



CAGCTGATGCAGTGGAACCACAGAGCGATCGTGGCTGAGACCACTATGCAGGCCGAGCTG



TATGGACAGATCGTGGAGAACACCGCCGCAGGGTTCAGTTCTCGGTTTCATGCTGCCACC



GGAGCTCCCGGCGTCCGGTGCCGCTTCCTCTTAGAGCGTGATTTTGACAATGACCTCCCA



AAGCCCTATCTGCTGAGGGAACTGAGCTGGATGCTGGGGAACACAAAAGTAGAATCGGAG



GAGGAGAAGCTACGGCTCCTCTCCGAAAAGATACGTCCAGGCTCTCTGGTACCATGGGAC



GGAGGAGAGCAGTTCGCGACACTGCATCCTAAGAGACAGACGTTATGTGTGATTCACGCC



GATATGAACGCCGCTCAGAATCTGCAGCGAAGATTCTTTGGCCGCTGCGGCGAAGCCTTC



AGGCTGGTATGTCAGCCCCACGGGGATGATGTGCTGCGGCTGGCCTCAACCCCTGGGGCT



AGACTCTTGGGGGCACTCCAGCAGCTGGAAAATGGCCAAGGGGCTTTCGAACTCGTTCGG



GACATGGGCAGCACAAGCCAGATGAACAGATTCGTCATGAAGAGCCTGGGAAAGAAAAAG



ATCAAACCCTTACAGGACAATAATGGCGACGACGAACTGGAGGACGTGTTGTCCGTGCTG



CCAGAGGAAGACGACACAGGCCGCATCACTGTCTTCCGCGACTCAAGTGGGATATTCTTT



CCTTGCAACGTGTGGATTCCGGCCAAACAGTTCTGGCCTGCCGTCAGAGCCATGATTTGG



AAAGTGATGGCTAGTCATTCATTGGGATGA





SEQ
ATGACAAAGCTGAGGCACAGACAAAAGAAGCTTACACACGACTGGGCAGGGAGCAAGAAA


ID
CGTGAGGTCCTTGGGTCAAATGGAAAACTGCAGAACCCCTTGCTCATGCCTGTAAAGAAG


NO:
GGGCAGGTAACAGAATTTAGAAAAGCATTCTCCGCGTACGCTCGGGCAACTAAGGGGGAA


162
ATGACCGATGGACGGAAGAACATGTTCACCCATTCTTTCGAGCCATTCAAAACAAAGCCG



TCATTGCACCAATGCGAGCTGGCCGATAAGGCTTACCAGTCTTTGCATAGTTACCTCCCC



GGTTCCCTGGCCCATTTCTTGCTTTCCGCACACGCACTGGGCTTTCGTATTTTCTCTAAA



TCTGGGGAGGCAACTGCCTTCCAGGCCAGCTCAAAAATCGAGGCCTATGAGTCCAAGCTC



GCTTCGGAGCTAGCCTGTGTCGATTTGAGTATCCAGAATTTGACGATTAGTACTCTTTTC



AACGCTCTCACAACTTCAGTTCGGGGCAAGGGGGAGGAAACTTCAGCAGATCCCCTTATC



GCACGGTTCTACACTCTCCTGACGGGCAAGCCCCTGAGCCGAGACACACAGGGCCCAGAA



CGGGACTTGGCAGAGGTCATCTCCAGAAAGATCGCCTCGTCCTTCGGCACATGGAAGGAA



ATGACTGCCAACCCTCTGCAGAGCCTCCAGTTCTTCGAAGAAGAGCTTCATGCACTAGAT



GCCAACGTGTCTTTATCTCCAGCTTTTGATGTGTTAATCAAGATGAATGATCTCCAAGGT



GATCTGAAGAACCGTACTATAGTGTTCGACCCAGATGCACCCGTGTTCGAGTACAACGCT



GAGGATCCAGCCGATATCATCATAAAGCTGACAGCTCGGTATGCGAAGGAGGCCGTCATC



AAGAATCAGAACGTGGGCAATTATGTGAAAAACGCCATTACCACCACTAATGCCAATGGG



CTGGGGTGGCTCCTCAATAAAGGGCTTTCACTACTGCCAGTTTCTACTGACGATGAGCTG



CTCGAATTCATTGGGGTGGAGAGAAGCCATCCCAGCTGTCACGCGCTGATAGAGCTGATT



GCCCAGCTAGAGGCGCCGGAACTGTTTGAGAAGAATGTGTTTAGTGACACCCGTTCCGAG



GTTCAGGGTATGATCGACAGTGCAGTGTCGAACCACATTGCTCGGCTGTCCAGCAGCCGA



AACTCCCTGAGCATGGACAGCGAGGAATTGGAACGCTTGATTAAATCTTTCCAGATTCAT



ACTCCCCATTGTTCTCTGTTCATAGGCGCTCAGTCCTTATCTCAGCAGCTGGAGAGCTTA



CCTGAGGCGCTGCAGTCCGGAGTGAACAGCGCTGATATCTTATTAGGCAGCACACAGTAT



ATGCTGACCAACTCTCTCGTTGAAGAGTCAATTGCAACATATCAAAGGACATTAAATAGG



ATCAATTACCTGAGTGGGGTGGCTGGGCAGATTAACGGTGCTATCAAAAGAAAGGCAATC



GACGGCGAAAAAATACACCTGCCTGCCGCCTGGAGTGAGCTCATCTCCTTACCTTTCATT



GGACAGCCGGTGATTGATGTGGAGAGCGACCTGGCACACTTAAAAAACCAGTACCAGACC



CTGTCCAATGAATTTGACACCCTCATTTCGGCCCTGCAGAAGAACTTCGATTTGAATTTC



AACAAAGCACTCCTTAACCGCACGCAGCATTTCGAGGCAATGTGCCGGAGCACAAAAAAA



AATGCTTTATCTAAGCCCGAGATCGTGTCCTACAGAGATCTGCTGGCGCGGCTGACCAGT



TGCCTTTATCGAGGCTCGCTGGTTCTCAGAAGGGCGGGAATCGAAGTTCTGAAAAAGCAC



AAAATCTTTGAGTCGAATAGTGAGCTGAGAGAACACGTCCACGAGCGAAAGCACTTCGTG



TTCGTTAGTCCATTGGACAGAAAGGCAAAAAAACTGTTGCGCCTGACCGATTCCCGCCCT



GACTTGCTCCATGTGATCGATGAGATCCTGCAACATGACAATCTGGAGAATAAGGACAGA



GAGTCCCTTTGGCTGGTCCGGTCTGGGTACCTCCTTGCTGGTCTGCCGGACCAGCTGAGT



TCTTCGTTTATCAATCTCCCCATAATCACGCAAAAGGGCGATCGCCGGCTGATTGACCTG



ATTCAGTATGACCAGATCAATCGCGATGCTTTCGTAATGTTGGTGACAAGTGCTTTCAAA



AGCAATCTCTCTGGGTTGCAGTACCGCGCTAACAAGCAGTCTTTCGTGGTCACCCGCACC



CTGTCTCCTTACCTGGGTAGTAAGCTCGTATACGTCCCTAAAGACAAAGATTGGCTGGTC



CCATCCCAGATGTTTGAGGGAAGATTCGCCGATATTCTGCAGAGTGACTACATGGTCTGG



AAGGATGCCGGACGCCTGTGCGTGATCGACACTGCCAAACATCTCTCTAACATTAAAAAA



AGCGTGTTTAGTAGCGAAGAAGTCCTTGCTTTTCTTCGAGAGCTGCCTCACCGGACCTTC



ATCCAGACCGAGGTACGGGGGTTAGGAGTGAACGTCGATGGAATCGCATTTAATAACGGG



GATATCCCGAGCTTGAAGACATTCTCGAATTGTGTGCAGGTGAAGGTGAGTAGGACTAAT



ACTAGTCTCGTGCAGACTCTAAACAGGTGGTTCGAGGGTGGCAAAGTGTCACCTCCCTCT



ATTCAGTTCGAAAGAGCTTACTACAAAAAAGACGATCAGATTCACGAGGACGCAGCCAAG



AGAAAGATACGCTTCCAGATGCCAGCAACGGAATTAGTGCACGCCAGCGATGACGCTGGT



TGGACCCCCAGCTACCTGCTGGGCATCGACCCCGGTGAGTACGGAATGGGTCTCAGTTTG



GTGTCCATCAACAATGGAGAGGTCCTGGATTCTGGATTCATCCACATTAATTCCCTGATC



AATTTCGCGTCCAAAAAAAGCAATCACCAGACCAAAGTAGTCCCCCGCCAGCAGTACAAG



TCCCCCTACGCGAATTATCTCGAGCAGTCAAAGGATTCAGCAGCAGGGGATATAGCTCAC



ATTCTGGATCGGCTAATCTACAAATTGAACGCCTTGCCTGTGTTCGAGGCGCTGTCTGGC



AACAGTCAGAGTGCTGCTGATCAGGTATGGACCAAAGTTCTATCCTTCTATACATGGGGA



GACAACGACGCACAGAACAGTATACGGAAGCAGCACTGGTTCGGTGCCTCACACTGGGAT



ATTAAGGGGATGCTGCGCCAACCCCCAACCGAAAAAAAACCCAAACCATATATAGCCTTT



CCCGGGAGTCAAGTGTCATCCTATGGAAATAGTCAAAGGTGTAGTTGTTGCGGCCGCAAT



CCCATTGAGCAGTTGCGTGAGATGGCAAAGGACACGAGTATCAAGGAGCTGAAAATCCGA



AATAGTGAGATCCAACTATTCGATGGTACAATCAAGCTGTTTAACCCCGACCCTTCCACC



GTCATCGAGAGGCGGCGGCATAACCTAGGACCCTCACGCATTCCTGTGGCAGACCGAACT



TTCAAGAATATTAGCCCTTCTTCGTTAGAGTTCAAGGAGCTCATTACTATCGTTTCTCGA



AGCATCCGCCATAGCCCCGAATTTATTGCTAAGAAACGGGGTATCGGGTCTGAGTACTTT



TGTGCTTATTCTGACTGCAACTCCTCACTGAACTCAGAGGCCAATGCCGCGGCCAATGTG



GCACAGAAGTTTCAGAAGCAACTCTTTTTCGAACTCTGA





SEQ
ATGAAACGTATTCTGAACTCTCTGAAAGTCGCCGCACTGAGGCTGCTGTTTCGAGGAAAG


ID
GGCTCAGAGCTGGTGAAGACCGTCAAGTACCCTCTGGTTTCGCCCGTCCAGGGTGCTGTG


NO:
GAAGAACTCGCCGAAGCAATACGCCACGACAACCTACATTTATTTGGGCAGAAGGAAATC


163
GTAGATCTGATGGAGAAGGACGAGGGCACCCAGGTCTACTCGGTGGTGGACTTTTGGCTC



GACACACTCCGTCTAGGGATGTTCTTCAGTCCAAGTGCTAATGCCCTTAAGATCACTCTG



GGGAAGTTTAACAGCGACCAAGTTTCCCCTTTCAGGAAGGTTCTGGAGCAGTCCCCTTTC



TTTCTCGCGGGTAGACTCAAAGTGGAGCCCGCTGAACGTATCCTCAGCGTGGAGATCCGC



AAGATCGGTAAGAGGGAGAATAGAGTGGAGAACTACGCCGCAGATGTAGAGACTTGTTTT



ATCGGTCAGCTGTCTAGTGATGAAAAGCAGTCTATCCAGAAGCTCGCTAACGATATCTGG



GACTCTAAGGATCACGAAGAGCAAAGGATGCTTAAGGCGGATTTCTTTGCCATTCCCCTC



ATCAAAGACCCAAAGGCAGTGACCGAGGAAGATCCCGAGAATGAAACCGCAGGCAAACAG



AAGCCTCTCGAATTATGTGTGTGCTTAGTGCCCGAGTTGTACACCCGCGGGTTCGGTTCA



ATAGCGGACTTCCTGGTCCAGCGTCTGACACTATTAAGAGACAAAATGAGCACAGACACA



GCAGAAGACTGCCTTGAGTATGTCGGCATAGAGGAGGAGAAGGGTAATGGGATGAACTCG



CTGCTGGGGACGTTCCTCAAGAACCTGCAGGGAGACGGGTTCGAACAGATCTTCCAATTT



ATGCTCGGCAGTTACGTGGGATGGCAAGGTAAGGAAGACGTCCTACGCGAACGGCTTGAT



TTGCTAGCGGAGAAGGTTAAAAGACTGCCGAAACCTAAGTTTGCCGGCGAGTGGTCCGGC



CATCGGATGTTCCTGCATGGTCAATTGAAGAGCTGGTCCTCTAACTTTTTCCGCCTGTTT



AACGAGACTAGGGAGCTCCTCGAAAGCATAAAATCCGACATCCAACACGCGACCATGTTA



ATCAGCTACGTCGAAGAGAAAGGGGGATACCACCCACAACTCTTGTCACAGTACAGGAAA



CTAATGGAGCAGCTGCCAGCTCTCAGAACAAAGGTGTTAGATCCAGAGATAGAAATGACT



CACATGAGCGAGGCGGTAAGGTCGTACATTATGATCCACAAGTCGGTAGCAGGATTTCTG



CCTGACTTACTCGAGTCCCTCGATAGGGACAAGGACAGGGAATTCCTGCTGAGTATATTT



CCAAGGATCCCCAAAATTGACAAAAAAACTAAGGAAATCGTGGCCTGGGAGCTCCCAGGC



GAGCCCGAAGAAGGATACCTGTTCACTGCCAATAATCTTTTTCGCAACTTTCTGGAGAAT



CCTAAACATGTTCCACGTTTCATGGCAGAAAGGATCCCGGAAGATTGGACGCGCCTGCGG



TCCGCTCCCGTATGGTTTGACGGCATGGTGAAACAATGGCAGAAAGTGGTAAACCAGCTG



GTGGAGTCACCTGGAGCATTGTATCAGTTCAATGAAAGCTTTCTCCGACAACGTTTACAG



GCAATGCTGACAGTGTATAAGAGAGACCTGCAGACAGAGAAATTCCTTAAGTTGTTGGCT



GATGTCTGCAGGCCTCTGGTGGACTTCTTTGGGCTGGGGGGAAACGATATCATCTTCAAA



AGCTGCCAGGACCCGAGGAAACAATGGCAAACTGTCATTCCCTTGAGTGTCCCCGCTGAT



GTGTACACCGCGTGTGAGGGGCTGGCAATCCGGCTTCGTGAGACATTGGGATTTGAGTGG



AAGAACCTTAAGGGCCATGAAAGGGAGGACTTTCTAAGACTGCACCAGCTTTTAGGGAAT



CTGCTTTTCTGGATTCGAGATGCCAAACTGGTGGTGAAATTGGAAGATTGGATGAATAAT



CCCTGTGTTCAGGAGTACGTTGAGGCTCGTAAGGCCATTGATCTCCCACTGGAGATCTTC



GGCTTTGAGGTCCCCATCTTCCTGAACGGATATCTGTTTAGTGAACTGAGGCAGTTAGAA



CTGCTGCTCCGCCGTAAGTCGGTTATGACCAGCTATTCGGTTAAGACAACTGGCAGTCCA



AACAGGCTTTTCCAGTTAGTCTACCTGCCATTAAATCCTTCCGACCCTGAGAAAAAAAAT



TCTAATAACTTTCAGGAACGCCTGGACACCCCCACTGGCTTATCACGTCGCTTCCTGGAC



CTTACTCTGGACGCCTTCGCCGGCAAGTTGCTGACAGACCCCGTGACTCAAGAGCTTAAA



ACTATGGCTGGGTTCTACGATCACCTGTTTGGTTTCAAGCTCCCATGTAAGCTGGCAGCC



ATGTCTAACCACCCTGGCTCTAGCAGCAAGATGGTCGTGTTGGCCAAACCTAAAAAAGGG



GTTGCATCTAATATAGGATTCGAACCAATCCCTGATCCCGCGCACCCCGTATTCCGGGTG



AGATCATCATGGCCAGAGCTGAAGTATCTGGAGGGGTTACTGTATCTTCCAGAAGACACT



CCACTGACAATAGAGCTCGCAGAGACAAGTGTTAGTTGTCAGAGCGTCAGTAGCGTGGCA



TTCGATCTGAAAAATCTGACTACTATCCTTGGACGCGTGGGTGAGTTCCGTGTGACCGCA



GACCAGCCTTTTAAGTTGACCCCCATCATCCCTGAGAAGGAGGAGTCCTTCATAGGAAAA



ACATATCTAGGCCTTGATGCCGGGGAACGCTCAGGCGTAGGGTTCGCTATCGTCACAGTC



GACGGGGATGGGTACGAGGTACAGCGCCTGGGGGTGCATGAAGATACACAGCTGATGGCC



CTACAGCAGGTGGCCTCTAAAAGCTTGAAGGAGCCGGTGTTCCAGCCGCTCAGAAAGGGT



ACTTTTCGGCAGCAGGAACGTATTAGAAAATCTCTCAGAGGATGTTATTGGAACTTCTAT



CACGCTCTGATGATTAAGTACCGCGCCAAGGTAGTGCACGAAGAGAGCGTGGGCAGTTCC



GGCCTGGTTGGGCAGTGGTTACGAGCATTCCAGAAGGACCTCAAGAAAGCCGATGTGTTG



CCAAAAAAGGGAGGCAAAAACGGAGTCGATAAGAAAAAGAGAGAGTCTTCTGCACAAGAC



ACATTGTGGGGAGGGGCTTTTAGCAAGAAGGAAGAACAGCAGATAGCTTTCGAAGTCCAA



GCTGCTGGTTCTAGCCAGTTCTGCCTGAAGTGCGGATGGTGGTTCCAACTCGGAATGCGT



GAGGTTAATCGCGTGCAGGAATCCGGCGTCGTGCTGGATTGGAATCGGAGTATTGTCACA



TTCCTGATTGAGAGCTCTGGCGAGAAAGTGTATGGGTTCTCCCCTCAGCAACTCGAAAAG



GGGTTCAGACCAGACATTGAAACCTTCAAGAAGATGGTTCGGGATTTCATGCGCCCGCCT



ATGTTTGACCGGAAGGGTCGCCCAGCAGCTGCCTACGAAAGGTTTGTCTTGGGACGCCGG



CATCGGCGGTATAGATTCGACAAGGTTTTTGAAGAACGATTCGGACGATCCGCGCTATTC



ATTTGCCCGAGGGTTGGCTGTGGCAACTTTGACCACAGCAGCGAGCAGTCAGCCGTAGTG



CTGGCTCTAATCGGATATATTGCCGACAAAGAGGGGATGAGCGGAAAAAAGCTAGTCTAC



GTGCGTCTGGCAGAACTAATGGCGGAATGGAAATTGAAGAAACTGGAGAGGAGTAGAGTT



GAGGAGCAAAGCTCCGCTCAGTGA





SEQ
ATGGCGGAGTCGAAGCAAATGCAGTGCAGGAAGTGTGGAGCCTCTATGAAGTACGAAGTG


ID
ATCGGCCTCGGGAAGAAAAGCTGCAGATATATGTGTCCCGACTGCGGGAATCACACATCT


NO:
GCAAGAAAGATTCAGAATAAGAAGAAAAGGGACAAGAAGTATGGATCTGCCAGTAAAGCA


164
CAAAGCCAACGAATCGCAGTTGCAGGGGCCTTATACCCGGATAAAAAGGTTCAGACCATC



AAGACTTATAAGTATCCAGCCGACCTGAATGGTGAGGTCCATGACTCAGGGGTGGCCGAA



AAAATAGCCCAAGCAATCCAGGAGGATGAAATAGGGCTCCTCGGCCCCTCTTCCGAGTAC



GCCTGTTGGATCGCTAGCCAGAAACAGAGCGAGCCCTACAGTGTTGTAGACTTTTGGTTT



GACGCTGTGTGCGCCGGAGGCGTGTTCGCCTATTCTGGGGCTAGATTGCTGTCTACCGTC



CTGCAGCTATCTGGGGAGGAGAGCGTCCTACGCGCAGCCCTGGCATCCTCCCCTTTTGTC



GACGATATCAATCTGGCACAGGCCGAAAAATTTCTGGCGGTGTCCAGGCGAACCGGCCAA



GATAAGCTGGGGAAGCGCATTGGAGAGTGCTTCGCAGAGGGCCGACTTGAGGCCCTAGGC



ATCAAGGACCGGATGCGTGAATTTGTCCAGGCTATCGATGTCGCTCAGACCGCTGGGCAG



CGTTTTGCCGCGAAACTGAAAATCTTTGGGATTTCTCAGATGCCCGAGGCAAAGCAGTGG



AACAATGACAGCGGACTCACCGTGTGCATCCTGCCCGACTATTACGTCCCAGAAGAAAAT



CGCGCAGATCAGTTGGTCGTCCTGCTAAGACGACTGAGAGAGATAGCATACTGTATGGGG



ATCGAAGATGAGGCCGGTTTTGAACATCTTGGAATTGATCCTGGCGCACTATCAAATTTT



TCCAATGGCAATCCTAAACGCGGATTTTTGGGCCGCCTGCTGAACAATGATATTATTGCC



TTAGCGAACAACATGTCCGCCATGACGCCTTACTGGGAGGGCAGGAAGGGAGAACTGATT



GAAAGATTGGCTTGGCTGAAGCACCGTGCAGAGGGGCTTTATCTGAAGGAACCGCATTTT



GGAAATAGTTGGGCCGACCATAGGTCTAGAATTTTTTCCAGAATAGCCGGGTGGCTTTCT



GGGTGCGCTGGGAAGCTAAAGATCGCCAAAGACCAGATCAGCGGAGTGCGTACTGATCTG



TTCCTTCTGAAGAGACTGCTGGATGCGGTCCCGCAGTCCGCCCCTTCTCCCGACTTCATA



GCCTCTATCTCTGCCTTGGATCGCTTCCTGGAGGCCGCAGAATCTAGTCAGGATCCTGCC



GAACAGGTGAGGGCCCTATACGCCTTTCATCTGAACGCACCCGCGGTGCGAAGCATCGCC



AACAAGGCAGTCCAGCGATCCGACAGCCAAGAATGGCTTATAAAGGAACTGGACGCTGTG



GACCACCTGGAGTTTAACAAGGCCTTTCCCTTCTTCTCTGATACGGGAAAGAAGAAAAAG



AAAGGGGCTAACTCGAATGGCGCTCCGTCCGAGGAGGAGTACACCGAGACTGAGAGCATC



CAGCAGCCCGAGGACGCTGAGCAAGAGGTTAATGGTCAGGAAGGCAACGGGGCCTCGAAG



AACCAGAAGAAGTTTCAGAGAATCCCCCGATTCTTCGGCGAGGGGAGTCGCAGCGAGTAT



CGCATCCTCACTGAAGCCCCGCAGTACTTCGACATGTTCTGTAACAACATGCGGGCCATC



TTTATGCAATTAGAATCCCAACCGCGTAAAGCTCCCAGGGATTTTAAGTGTTTCCTGCAG



AATCGGCTGCAGAAATTGTATAAGCAGACATTCCTGAACGCTCGATCCAACAAGTGCCGG



GCATTACTAGAGTCCGTATTGATTAGTTGGGGAGAGTTTTACACCTACGGGGCTAACGAG



AAAAAATTTCGACTGCGTCATGAAGCTTCTGAGCGCTCCTCGGACCCAGATTACGTGGTG



CAACAGGCGCTGGAGATCGCTCGGAGGCTGTTTCTCTTCGGCTTTGAGTGGAGGGACTGT



AGCGCAGGTGAAAGAGTGGATCTGGTCGAAATACATAAGAAAGCCATATCTTTCCTGTTG



GCCATCACTCAGGCTGAGGTGTCTGTGGGCAGCTATAACTGGCTGGGCAATTCTACCGTG



AGTCGGTACCTGTCCGTGGCAGGGACTGATACCCTTTACGGCACCCAGCTGGAAGAATTC



TTAAATGCAACCGTGTTATCTCAGATGCGGGGGCTGGCTATCAGGTTATCATCTCAGGAA



CTGAAGGATGGATTTGACGTACAGCTGGAGTCTAGTTGCCAGGATAATCTGCAACACTTG



CTCGTGTACAGGGCTTCACGAGACCTTGCCGCCTGCAAGCGCGCTACTTGTCCAGCTGAG



TTGGATCCTAAGATTCTGGTACTGCCCGTGGGGGCCTTTATCGCTAGCGTGATGAAAATG



ATTGAAAGAGGGGATGAGCCTTTAGCTGGAGCTTATCTGAGACACAGACCCCATAGTTTC



GGGTGGCAGATCCGCGTTCGAGGTGTGGCAGAGGTGGGAATGGACCAAGGGACCGCCCTG



GCGTTCCAGAAACCGACCGAGAGCGAACCCTTCAAGATAAAGCCGTTTTCCGCTCAATAC



GGCCCCGTTCTATGGCTGAACAGCTCCAGTTATAGCCAGAGCCAGTACCTGGACGGGTTC



CTATCACAGCCCAAGAACTGGAGTATGCGGGTGCTGCCACAGGCCGGCTCAGTGCGGGTA



GAACAGCGCGTCGCCTTGATTTGGAATCTCCAGGCCGGAAAGATGAGGCTGGAACGGAGC



GGAGCGCGGGCTTTCTTCATGCCCGTCCCATTCAGTTTCCGCCCCAGTGGCAGCGGCGAC



GAGGCAGTCCTGGCTCCAAATAGGTACCTGGGACTCTTTCCACACAGCGGCGGCATAGAG



TACGCTGTGGTCGATGTTCTTGACTCTGCCGGCTTCAAAATACTCGAGAGAGGAACAATA



GCCGTCAATGGCTTCTCCCAGAAACGAGGAGAAAGACAAGAGGAAGCCCATCGCGAAAAA



CAAAGACGCGGTATCTCCGATATTGGGCGCAAGAAGCCAGTCCAGGCCGAAGTCGATGCG



GCCAACGAGCTCCATCGAAAATACACCGATGTTGCTACTCGGCTGGGGTGTCGAATTGTC



GTTCAATGGGCACCCCAACCCAAACCAGGCACTGCGCCGACCGCTCAGACTGTGTACGCT



AGGGCCGTGAGGACTGAAGCACCAAGATCCGGCAATCAGGAAGATCACGCCAGGATGAAA



TCTTCCTGGGGATACACATGGGGTACGTATTGGGAAAAAAGGAAGCCCGAGGACATCCTC



GGCATTAGTACCCAGGTGTATTGGACAGGCGGGATCGGCGAGTCCTGCCCGGCTGTCGCC



GTCGCGCTATTGGGACACATCAGGGCCACCTCAACCCAGACTGAATGGGAGAAAGAGGAA



GTCGTGTTTGGGCGATTGAAAAAGTTCTTCCCATCCTGA





SEQ
ATGGAGAAGCGCATCAATAAAATTCGCAAGAAGCTGTCTGCCGATAACGCCACAAAACCA


ID
GTTAGTCGAAGCGGCCCAATGAAGACCCTGCTAGTTCGAGTGATGACTGATGATCTGAAG


NO:
AAAAGGCTCGAAAAGCGACGCAAGAAGCCTGAGGTAATGCCTCAGGTTATAAGTAACAAT


165
GCAGCAAACAATCTGCGGATGCTGCTTGACGATTACACAAAGATGAAGGAAGCCATTCTC



CAGGTGTATTGGCAGGAGTTCAAGGATGATCACGTAGGCCTGATGTGTAAATTCGCGCAA



CCTGCAAGCAAGAAGATCGACCAAAACAAGCTGAAACCCGAGATGGATGAAAAAGGCAAT



TTAACAACCGCCGGATTCGCTTGTTCCCAGTGTGGGCAGCCACTGTTCGTGTACAAGTTA



GAACAGGTGTCGGAAAAAGGAAAGGCATACACTAACTACTTTGGACGGTGCAATGTTGCA



GAACACGAAAAGCTGATACTGCTTGCCCAGCTTAAGCCCGAAAAAGACAGCGACGAAGCG



GTGACCTACAGCCTGGGAAAATTCGGGCAGCGGGCACTGGACTTCTATTCTATCCACGTT



ACCAAGGAGAGCACCCACCCAGTGAAGCCGTTGGCCCAAATCGCTGGAAACCGGTACGCC



AGCGGACCAGTCGGCAAGGCCCTGTCCGATGCCTGTATGGGCACAATTGCTTCTTTCCTG



TCCAAGTACCAGGACATCATAATCGAGCACCAAAAAGTTGTGAAAGGGAATCAGAAACGC



CTGGAATCCCTTCGAGAACTGGCCGGCAAGGAGAACCTTGAGTACCCGTCCGTGACCCTG



CCTCCACAGCCACATACCAAAGAGGGCGTAGACGCGTATAATGAGGTCATTGCCCGCGTT



CGCATGTGGGTTAATTTAAACCTGTGGCAGAAATTAAAACTAAGCCGAGATGATGCTAAA



CCGTTACTGAGATTGAAGGGATTCCCTAGCTTTCCTGTGGTGGAGAGAAGGGAAAACGAG



GTTGATTGGTGGAATACTATTAATGAGGTGAAAAAGCTTATTGACGCCAAGAGGGATATG



GGCAGGGTGTTCTGGAGCGGGGTGACTGCCGAAAAGAGAAATACCATCCTCGAGGGATAC



AATTACCTCCCCAACGAGAATGATCATAAGAAAAGAGAGGGGAGCTTAGAGAATCCAAAG



AAACCTGCAAAGAGGCAATTCGGTGATCTCCTGCTCTACCTCGAGAAGAAATACGCGGGG



GACTGGGGAAAAGTTTTTGACGAAGCCTGGGAGCGCATTGACAAGAAGATCGCCGGGCTG



ACGTCTCACATTGAACGGGAAGAGGCACGGAATGCAGAGGACGCCCAGTCTAAGGCCGTG



CTGACTGACTGGCTGCGCGCAAAGGCCTCCTTCGTGCTCGAACGTCTGAAGGAAATGGAT



GAGAAAGAGTTTTACGCGTGTGAAATACAGCTGCAGAAGTGGTACGGCGATCTAAGGGGA



AATCCCTTCGCAGTGGAAGCCGAGAATAGGGTAGTTGACATCAGTGGGTTCTCCATCGGC



AGTGATGGACATTCTATCCAGTATAGAAACCTGCTCGCCTGGAAGTACTTAGAGAACGGC



AAGAGAGAGTTCTATCTGCTGATGAACTACGGGAAAAAAGGTAGAATTCGCTTTACAGAT



GGCACCGACATAAAGAAGTCCGGAAAGTGGCAAGGCCTCTTATACGGAGGCGGCAAAGCA



AAGGTGATAGACTTGACTTTTGACCCTGACGACGAACAGCTGATAATCTTGCCGCTGGCC



TTTGGCACAAGACAAGGTAGGGAATTTATCTGGAATGATCTTCTTTCTCTCGAGACCGGA



CTCATCAAGCTCGCAAACGGAAGGGTCATCGAGAAGACAATCTACAATAAAAAGATAGGC



CGAGACGAGCCAGCCCTGTTTGTGGCTTTGACATTTGAGCGGAGAGAGGTCGTAGATCCC



AGCAACATCAAACCCGTGAACCTGATCGGTGTTGACAGGGGCGAGAACATCCCGGCGGTT



ATCGCACTGACGGATCCAGAAGGATGTCCTCTGCCCGAGTTCAAAGATTCATCGGGAGGG



CCAACCGACATTTTGAGGATAGGGGAGGGGTACAAGGAGAAGCAGCGAGCTATCCAGGCG



GCCAAAGAAGTGGAGCAACGAAGAGCTGGTGGTTATTCTCGCAAGTTCGCTTCCAAAAGT



CGTAACCTGGCTGACGATATGGTGCGCAATTCTGCCCGTGACCTTTTCTACCACGCCGTT



ACACACGACGCCGTGTTAGTGTTTGAAAATCTTAGTCGAGGCTTCGGGCGACAGGGGAAG



CGGACCTTTATGACCGAGAGACAGTATACAAAAATGGAGGATTGGCTGACCGCCAAACTG



GCGTATGAAGGACTCACATCCAAGACCTATCTCTCAAAAACTTTGGCCCAGTATACATCT



AAGACGTGCAGTAACTGTGGCTTCACCATTACCACAGCTGACTACGATGGCATGCTGGTC



CGCTTAAAAAAGACATCTGACGGCTGGGCTACTACCCTCAACAATAAAGAGCTCAAAGCC



GAAGGACAAATTACCTATTATAACAGGTATAAAAGACAGACTGTCGAGAAGGAGTTGAGC



GCGGAGCTGGACCGCCTATCAGAGGAGTCAGGGAACAACGATATCTCTAAGTGGACTAAG



GGACGCCGAGACGAGGCGTTGTTCTTGCTGAAAAAGCGGTTCTCTCATCGACCCGTGCAG



GAGCAGTTCGTGTGTCTGGACTGCGGCCACGAGGTTCATGCTGATGAGCAAGCTGCTCTA



AATATTGCCCGTAGTTGGTTGTTCCTGAACAGCAATTCAACAGAGTTCAAGTCATACAAG



AGCGGAAAGCAGCCGTTTGTGGGCGCATGGCAGGCATTTTACAAAAGACGCCTGAAGGAA



GTGTGGAAGCCAAACGCC





SEQ
ATGAAAAGGATTAACAAAATCCGAAGGCGGCTTGTAAAGGATTCTAACACCAAAAAGGCT


ID
GGCAAGACGGGGCCCATGAAAACATTACTCGTTAGAGTTATGACCCCCGACCTCAGAGAG


NO:
CGACTGGAAAATTTACGCAAGAAGCCAGAGAACATACCTCAGCCAATTAGTAATACCTCT


166
CGGGCAAACCTAAACAAGTTGCTTACTGATTACACGGAGATGAAAAAGGCCATACTGCAT



GTGTACTGGGAGGAGTTTCAAAAGGACCCTGTCGGGCTAATGAGCAGGGTGGCTCAGCCT



GCACCTAAAAACATCGACCAGCGGAAACTCATCCCAGTTAAGGACGGAAATGAGAGATTG



ACAAGTTCAGGTTTCGCCTGCTCACAGTGCTGTCAACCGCTGTACGTTTATAAGTTAGAA



CAAGTGAATGACAAAGGAAAGCCTCACACAAATTATTTTGGCCGGTGTAATGTCTCTGAG



CATGAGCGTCTGATTCTGTTGTCCCCGCATAAACCGGAAGCTAATGACGAGCTCGTAACC



TACAGCTTGGGGAAGTTTGGCCAAAGAGCATTGGACTTCTATTCAATCCATGTGACCCGC



GAATCCAATCATCCCGTCAAGCCCTTGGAGCAGATAGGGGGCAATAGTTGCGCTTCTGGC



CCTGTGGGCAAAGCCCTGTCCGACGCCTGTATGGGAGCCGTGGCTTCATTCCTGACCAAA



TATCAGGATATCATCTTGGAGCACCAGAAAGTGATCAAGAAAAATGAAAAAAGGTTAGCA



AACCTCAAGGATATTGCAAGCGCTAACGGCTTGGCTTTTCCTAAAATCACACTTCCACCT



CAGCCTCACACAAAGGAAGGCATCGAGGCATACAACAATGTGGTGGCCCAGATCGTCATC



TGGGTTAACTTAAACCTGTGGCAGAAACTTAAAATTGGCAGGGATGAGGCAAAACCCTTA



CAGCGCCTGAAAGGATTCCCCAGCTTTCCACTGGTGGAGCGCCAGGCTAACGAAGTGGAC



TGGTGGGATATGGTGTGTAACGTCAAGAAGCTCATCAATGAAAAGAAAGAGGACGGTAAA



GTCTTCTGGCAGAACCTCGCCGGTTACAAACGGCAGGAGGCGCTGTTACCTTATCTGTCG



AGTGAAGAGGACCGGAAAAAAGGCAAGAAATTTGCTCGTTATCAGTTTGGTGATTTGCTC



CTACATTTGGAGAAGAAGCACGGCGAGGACTGGGGAAAAGTATACGATGAGGCCTGGGAG



AGGATTGACAAAAAGGTGGAGGGACTGTCAAAGCACATCAAGCTCGAAGAAGAGCGCAGA



AGCGAGGACGCCCAATCCAAAGCAGCGCTGACTGACTGGCTGCGGGCGAAGGCCAGTTTT



GTAATCGAAGGCCTTAAAGAAGCCGACAAGGATGAATTCTGCAGATGCGAATTAAAACTC



CAGAAGTGGTACGGCGATCTCCGAGGTAAGCCTTTCGCAATCGAGGCCGAGAATTCCATA



CTGGACATTAGTGGATTCAGTAAACAGTATAATTGTGCCTTTATATGGCAGAAGGATGGT



GTCAAGAAACTCAACCTGTACCTTATTATTAATTATTTCAAAGGCGGGAAACTGAGATTT



AAGAAGATAAAGCCTGAAGCCTTTGAGGCGAACCGATTCTACACAGTTATTAACAAGAAA



TCTGGTGAAATTGTACCCATGGAGGTAAACTTCAACTTCGATGATCCCAATCTGATTATA



TTGCCACTAGCTTTTGGCAAGCGGCAGGGTAGGGAATTCATTTGGAACGATTTGCTTTCA



CTGGAAACAGGGTCCCTTAAGCTGGCAAACGGGAGAGTGATTGAAAAGACATTGTACAAT



CGGAGGACACGTCAGGATGAACCTGCCCTTTTCGTGGCTCTGACATTCGAGCGCAGGGAG



GTTCTGGACTCTAGCAATATCAAGCCAATGAACCTGATCGGCATAGACCGAGGAGAGAAT



ATTCCGGCTGTGATCGCACTCACCGATCCCGAAGGATGTCCCCTTTCTCGGTTCAAGGAC



TCCTTAGGCAATCCAACTCATATCCTGAGAATCGGCGAGTCATACAAGGAGAAGCAGCGA



ACAATTCAGGCCGCCAAGGAAGTCGAGCAGAGGCGAGCTGGCGGCTACAGCCGTAAATAC



GCTAGTAAAGCTAAGAACCTGGCCGACGATATGGTGCGCAATACTGCTAGAGACCTGCTG



TACTATGCAGTGACGCAGGACGCAATGCTGATATTCGAGAATCTGTCCAGAGGATTCGGA



AGGCAGGGCAAGCGGACGTTCATGGCCGAGCGCCAGTATACAAGGATGGAGGATTGGTTA



ACGGCCAAGCTTGCCTATGAGGGGCTACCTAGTAAGACCTATCTGTCTAAGACGCTGGCT



CAATACACCAGTAAGACCTGCTCAAACTGTGGCTTTACAATCACTTCTGCTGATTATGAT



AGAGTGCTCGAGAAGCTAAAAAAAACTGCCACCGGCTGGATGACTACTATTAATGGGAAG



GAACTGAAAGTGGAAGGACAGATTACCTATTATAATCGCTACAAGCGTCAAAACGTCGTC



AAGGACCTGTCGGTGGAATTGGACAGACTCAGTGAAGAGTCCGTGAACAATGATATCAGC



TCCTGGACAAAAGGGCGCAGTGGGGAGGCACTCAGCTTGCTTAAAAAGAGGTTTTCACAT



CGGCCGGTCCAGGAGAAATTTGTCTGCCTGAACTGCGGATTCGAGACACACGCCGACGAG



CAGGCAGCACTGAACATTGCCAGATCCTGGCTGTTCCTTAGGTCCCAGGAATATAAGAAG



TACCAGACTAACAAAACCACGGGAAACACAGATAAAAGGGCCTTTGTCGAAACTTGGCAA



TCCTTTTACCGGAAGAAGTTAAAGGAAGTGTGGAAGCCC





SEQ
ATGGATAAGAAATACTCAATAGGCTTAGCAATCGGCACAAATAGCGTCGGATGGGCGGTG


ID
ATCACTGATGAATATAAGGTTCCGTCTAAAAAGTTCAAGGTTCTGGGAAATACAGACCGC


NO:
CACAGTATCAAAAAAAATCTTATAGGGGCTCTTTTATTTGACAGTGGAGAGACAGCGGAA


167
GCGACTCGTCTCAAACGGACAGCTCGTAGAAGGTATACACGTCGGAAGAATCGTATTTGT



TATCTACAGGAGATTTTTTCAAATGAGATGGCGAAAGTAGATGATAGTTTCTTTCATCGA



CTTGAAGAGTCTTTTTTGGTGGAAGAAGACAAGAAGCATGAACGTCATCCTATTTTTGGA



AATATAGTAGATGAAGTTGCTTATCATGAGAAATATCCAACTATCTATCATCTGCGAAAA



AAATTGGTAGATTCTACTGATAAAGCGGATTTGCGCTTAATCTATTTGGCCTTAGCGCAT



ATGATTAAGTTTCGTGGTCATTTTTTGATTGAGGGAGATTTAAATCCTGATAATAGTGAT



GTGGACAAACTATTTATCCAGTTGGTACAAACCTACAATCAATTATTTGAAGAAAACCCT



ATTAACGCAAGTGGAGTAGATGCTAAAGCGATTCTTTCTGCACGATTGAGTAAATCAAGA



CGATTAGAAAATCTCATTGCTCAGCTCCCCGGTGAGAAGAAAAATGGCTTATTTGGGAAT



CTCATTGCTTTGTCATTGGGTTTGACCCCTAATTTTAAATCAAATTTTGATTTGGCAGAA



GATGCTAAATTACAGCTTTCAAAAGATACTTACGATGATGATTTAGATAATTTATTGGCG



CAAATTGGAGATCAATATGCTGATTTGTTTTTGGCAGCTAAGAATTTATCAGATGCTATT



TTACTTTCAGATATCCTAAGAGTAAATACTGAAATAACTAAGGCTCCCCTATCAGCTTCA



ATGATTAAACGCTACGATGAACATCATCAAGACTTGACTCTTTTAAAAGCTTTAGTTCGA



CAACAACTTCCAGAAAAGTATAAAGAAATCTTTTTTGATCAATCAAAAAACGGATATGCA



GGTTATATTGATGGGGGAGCTAGCCAAGAAGAATTTTATAAATTTATCAAACCAATTTTA



GAAAAAATGGATGGTACTGAGGAATTATTGGTGAAACTAAATCGTGAAGATTTGCTGCGC



AAGCAACGGACCTTTGACAACGGCTCTATTCCCCATCAAATTCACTTGGGTGAGCTGCAT



GCTATTTTGAGAAGACAAGAAGACTTTTATCCATTTTTAAAAGACAATCGTGAGAAGATT



GAAAAAATCTTGACTTTTCGAATTCCTTATTATGTTGGTCCATTGGCGCGTGGCAATAGT



CGTTTTGCATGGATGACTCGGAAGTCTGAAGAAACAATTACCCCATGGAATTTTGAAGAA



GTTGTCGATAAAGGTGCTTCAGCTCAATCATTTATTGAACGCATGACAAACTTTGATAAA



AATCTTCCAAATGAAAAAGTACTACCAAAACATAGTTTGCTTTATGAGTATTTTACGGTT



TATAACGAATTGACAAAGGTCAAATATGTTACTGAAGGAATGCGAAAACCAGCATTTCTT



TCAGGTGAACAGAAGAAAGCCATTGTTGATTTACTCTTCAAAACAAATCGAAAAGTAACC



GTTAAGCAATTAAAAGAAGATTATTTCAAAAAAATAGAATGTTTTGATAGTGTTGAAATT



TCAGGAGTTGAAGATAGATTTAATGCTTCATTAGGTACCTACCATGATTTGCTAAAAATT



ATTAAAGATAAAGATTTTTTGGATAATGAAGAAAATGAAGATATCTTAGAGGATATTGTT



TTAACATTGACCTTATTTGAAGATAGGGAGATGATTGAGGAAAGACTTAAAACATATGCT



CACCTCTTTGATGATAAGGTGATGAAACAGCTTAAACGTCGCCGTTATACTGGTTGGGGA



CGTTTGTCTCGAAAATTGATTAATGGTATTAGGGATAAGCAATCTGGCAAAACAATATTA



GATTTTTTGAAATCAGATGGTTTTGCCAATCGCAATTTTATGCAGCTGATCCATGATGAT



AGTTTGACATTTAAAGAAGACATTCAAAAAGCACAAGTGTCTGGACAAGGCGATAGTTTA



CATGAACATATTGCAAATTTAGCTGGTAGCCCTGCTATTAAAAAAGGTATTTTACAGACT



GTAAAAGTTGTTGATGAATTGGTCAAAGTAATGGGGCGGCATAAGCCAGAAAATATCGTT



ATTGAAATGGCACGTGAAAATCAGACAACTCAAAAGGGCCAGAAAAATTCGCGAGAGCGT



ATGAAACGAATCGAAGAAGGTATCAAAGAATTAGGAAGTCAGATTCTTAAAGAGCATCCT



GTTGAAAATACTCAATTGCAAAATGAAAAGCTCTATCTCTATTATCTCCAAAATGGAAGA



GACATGTATGTGGACCAAGAATTAGATATTAATCGTTTAAGTGATTATGATGTCGATCAC



ATTGTTCCACAAAGTTTCCTTAAAGACGATTCAATAGACAATAAGGTCTTAACGCGTTCT



GATAAAAATCGTGGTAAATCGGATAACGTTCCAAGTGAAGAAGTAGTCAAAAAGATGAAA



AACTATTGGAGACAACTTCTAAACGCCAAGTTAATCACTCAACGTAAGTTTGATAATTTA



ACGAAAGCTGAACGTGGAGGTTTGAGTGAACTTGATAAAGCTGGTTTTATCAAACGCCAA



TTGGTTGAAACTCGCCAAATCACTAAGCATGTGGCACAAATTTTGGATAGTCGCATGAAT



ACTAAATACGATGAAAATGATAAACTTATTCGAGAGGTTAAAGTGATTACCTTAAAATCT



AAATTAGTTTCTGACTTCCGAAAAGATTTCCAATTCTATAAAGTACGTGAGATTAACAAT



TACCATCATGCCCATGATGCGTATCTAAATGCCGTCGTTGGAACTGCTTTGATTAAGAAA



TATCCAAAACTTGAATCGGAGTTTGTCTATGGTGATTATAAAGTTTATGATGTTCGTAAA



ATGATTGCTAAGTCTGAGCAAGAAATAGGCAAAGCAACCGCAAAATATTTCTTTTACTCT



AATATCATGAACTTCTTCAAAACAGAAATTACACTTGCAAATGGAGAGATTCGCAAACGC



CCTCTAATCGAAACTAATGGGGAAACTGGAGAAATTGTCTGGGATAAAGGGCGAGATTTT



GCCACAGTGCGCAAAGTATTGTCCATGCCCCAAGTCAATATTGTCAAGAAAACAGAAGTA



CAGACAGGCGGATTCTCCAAGGAGTCAATTTTACCAAAAAGAAATTCGGACAAGCTTATT



GCTCGTAAAAAAGACTGGGATCCAAAAAAATATGGTGGTTTTGATAGTCCAACGGTAGCT



TATTCAGTCCTAGTGGTTGCTAAGGTGGAAAAAGGGAAATCGAAGAAGTTAAAATCCGTT



AAAGAGTTACTAGGGATCACAATTATGGAAAGAAGTTCCTTTGAAAAAAATCCGATTGAC



TTTTTAGAAGCTAAAGGATATAAGGAAGTTAAAAAAGACTTAATCATTAAACTACCTAAA



TATAGTCTTTTTGAGTTAGAAAACGGTCGTAAACGGATGCTGGCTAGTGCCGGAGAATTA



CAAAAAGGAAATGAGCTGGCTCTGCCAAGCAAATATGTGAATTTTTTATATTTAGCTAGT



CATTATGAAAAGTTGAAGGGTAGTCCAGAAGATAACGAACAAAAACAATTGTTTGTGGAG



CAGCATAAGCATTATTTAGATGAGATTATTGAGCAAATCAGTGAATTTTCTAAGCGTGTT



ATTTTAGCAGATGCCAATTTAGATAAAGTTCTTAGTGCATATAACAAACATAGAGACAAA



CCAATACGTGAACAAGCAGAAAATATTATTCATTTATTTACGTTGACGAATCTTGGAGCT



CCCGCTGCTTTTAAATATTTTGATACAACAATTGATCGTAAACGATATACGTCTACAAAA



GAAGTTTTAGATGCCACTCTTATCCATCAATCCATCACTGGTCTTTATGAAACACGCATT



GATTTGAGTCAGCTAGGAGGTGACTGA





SEQ
ATGGATAAGAAGTATTCAATTGGACTTGCGATTGGCACTAACAGTGTGGGCTGGGCGGTG


ID
ATTACAGACGAGTATAAGGTGCCGTCAAAAAAGTTTAAAGTTCTGGGCAACACTGATCGC


NO:
CATTCCATCAAGAAAAACCTAATCGGGGCCCTTCTTTTTGATAGTGGCGAAACGGCCGAG


168
GCGACGCGTCTAAAACGTACCGCGCGGCGTCGCTACACCCGACGAAAAAACCGTATTTGT



TACCTTCAGGAGATCTTCAGTAACGAAATGGCTAAGGTGGACGATTCATTCTTCCACCGT



CTGGAGGAGTCCTTTTTAGTTGAAGAAGACAAGAAGCATGAGCGACACCCAATTTTTGGT



AACATTGTCGACGAAGTCGCCTATCACGAAAAATATCCGACCATTTATCACCTGCGCAAA



AAACTGGTCGATAGCACGGATAAAGCGGATCTGCGGCTTATTTACCTGGCGCTTGCCCAC



ATGATCAAGTTCCGCGGCCACTTCCTGATAGAAGGAGACCTGAACCCGGATAATAGCGAT



GTAGACAAACTGTTTATTCAGCTGGTCCAGACCTACAACCAGCTGTTTGAAGAAAATCCG



ATTAATGCGTCAGGCGTGGATGCGAAAGCGATACTGAGTGCCCGCCTGTCGAAATCTCGC



CGTCTCGAAAATCTGATTGCACAGCTGCCCGGCGAAAAAAAAAACGGTCTTTTTGGCAAT



CTGATCGCGCTGTCACTGGGCCTGACACCAAATTTTAAGAGCAACTTCGACCTGGCAGAG



GATGCGAAGCTTCAACTGTCGAAGGACACCTATGACGATGATCTGGATAATCTTCTGGCA



CAAATCGGTGATCAGTATGCGGATTTATTCCTTGCAGCGAAAAACCTATCTGACGCAATT



CTGTTGAGCGATATCCTCCGCGTCAACACCGAAATCACTAAAGCCCCCCTGTCAGCGTCG



ATGATTAAACGTTATGATGAGCACCATCAGGATCTGACCTTGCTAAAGGCGCTGGTGCGA



CAGCAGCTTCCCGAAAAATATAAAGAGATCTTTTTTGATCAATCGAAGAATGGTTATGCC



GGATACATTGATGGCGGAGCCAGTCAGGAAGAATTTTACAAATTCATCAAACCGATCCTG



GAAAAAATGGATGGCACAGAAGAACTGCTTGTGAAATTGAACCGGGAAGATTTACTGCGC



AAACAGCGTACGTTCGACAACGGCTCCATACCCCATCAGATTCACTTAGGTGAGCTGCAT



GCAATACTCCGTCGCCAGGAAGATTTTTATCCATTTTTAAAAGACAACCGTGAGAAGATT



GAAAAAATTTTAACTTTTCGTATTCCATATTACGTCGGGCCTTTGGCCCGAGGTAACTCT



CGATTCGCCTGGATGACGAGAAAAAGCGAGGAGACCATCACTCCGTGGAATTTTGAAGAG



GTTGTTGATAAAGGCGCGAGCGCCCAGTCGTTTATCGAACGTATGACCAACTTTGATAAA



AATCTGCCGAATGAAAAAGTGCTTCCGAAGCATTCTCTGTTGTATGAATATTTCACTGTG



TACAATGAGTTAACGAAAGTGAAATATGTGACCGAAGGCATGCGGAAACCTGCTTTTCTG



TCCGGAGAACAGAAAAAAGCAATTGTGGACCTGCTGTTCAAAACGAACCGGAAAGTAACT



GTGAAGCAGCTGAAAGAGGACTACTTCAAAAAAATCGAATGCTTCGACTCAGTAGAGATC



TCTGGTGTTGAAGATCGCTTCAACGCGAGTCTGGGAACGTACCATGATTTGTTGAAAATC



ATCAAAGATAAAGACTTTCTGGATAACGAAGAGAATGAGGACATTCTTGAAGATATTGTT



TTGACACTGACTCTGTTTGAGGATCGCGAAATGATTGAAGAGCGCCTGAAAACGTATGCC



CATTTATTCGATGACAAAGTCATGAAGCAGCTGAAACGTCGCCGCTATACTGGGTGGGGC



AGACTTTCACGTAAATTGATCAATGGTATAAGAGACAAACAGAGCGGCAAAACTATCTTA



GATTTCCTGAAGAGTGATGGATTTGCCAACCGGAATTTTATGCAGCTTATACATGATGAC



TCGCTAACGTTTAAAGAAGACATTCAGAAGGCGCAGGTCAGCGGCCAGGGTGATTCGCTG



CATGAACACATTGCAAATCTTGCCGGATCGCCAGCGATCAAAAAAGGCATCCTTCAGACA



GTAAAAGTTGTGGATGAACTGGTGAAAGTAATGGGTCGTCACAAGCCAGAAAATATTGTG



ATCGAAATGGCCCGGGAAAATCAGACTACTCAAAAAGGTCAGAAAAATTCTCGCGAGCGT



ATGAAACGTATTGAAGAAGGCATCAAAGAGCTAGGCAGCCAGATATTAAAGGAACATCCG



GTTGAGAACACTCAGCTGCAGAATGAAAAACTGTATCTGTATTATCTTCAGAACGGCCGT



GACATGTATGTTGATCAAGAACTGGATATCAATCGCTTGTCCGATTATGACGTGGATCAT



ATTGTTCCGCAAAGCTTTCTGAAAGACGATTCTATTGACAATAAAGTACTGACACGTTCG



GACAAAAACCGTGGTAAAAGCGATAACGTACCGTCGGAAGAAGTTGTTAAGAAAATGAAA



AATTATTGGCGCCAACTCCTGAATGCTAAATTGATTACCCAGCGGAAATTTGATAACTTA



ACCAAAGCCGAGCGGGGTGGCTTAAGTGAACTGGATAAAGCGGGTTTTATTAAACGCCAA



CTGGTAGAAACCCGCCAGATAACGAAACATGTAGCTCAAATCCTCGATAGTCGCATGAAT



ACGAAATATGACGAAAATGATAAATTGATCCGTGAAGTAAAAGTGATTACTCTTAAAAGC



AAATTGGTATCTGATTTTCGGAAAGATTTCCAATTCTATAAGGTGAGAGAAATTAACAAT



TACCATCATGCACATGATGCGTATTTAAATGCAGTTGTTGGCACCGCCTTAATCAAAAAA



TATCCGAAATTAGAATCTGAGTTCGTGTATGGTGATTATAAAGTTTATGATGTTCGAAAA



ATGATTGCTAAGTCTGAACAGGAAATCGGCAAAGCGACCGCAAAGTATTTTTTTTATAGC



AATATTATGAATTTTTTTAAAACTGAGATTACCCTGGCGAATGGCGAAATTCGCAAACGT



CCTCTGATTGAAACCAATGGCGAAACCGGCGAGATAGTATGGGACAAGGGCCGTGATTTT



GCGACCGTCCGGAAAGTCCTGTCAATGCCGCAGGTGAATATTGTCAAGAAAACAGAAGTT



CAGACAGGCGGTTTTAGTAAAGAGTCTATTCTGCCCAAACGTAATTCGGATAAATTGATT



GCCCGCAAGAAAGATTGGGATCCGAAGAAATATGGTGGATTCGATTCTCCGACGGTCGCC



TATAGCGTTCTAGTCGTCGCCAAGGTCGAAAAAGGTAAATCCAAAAAACTGAAATCTGTG



AAAGAACTGTTAGGCATTACAATCATGGAACGTAGTAGTTTTGAAAAGAACCCGATCGAC



TTCCTCGAGGCGAAAGGCTACAAAGAAGTCAAGAAGGATTTGATTATTAAACTCCCAAAA



TATTCATTATTTGAGTTAGAAAACGGTAGGAAGCGTATGCTGGCGAGTGCTGGGGAATTA



CAGAAAGGGAATGAGTTAGCACTGCCGTCAAAATATGTGAACTTTCTGTATCTGGCCTCC



CATTACGAGAAACTGAAAGGTAGCCCGGAAGATAATGAACAGAAACAACTATTTGTCGAG



CAACACAAACATTATCTGGATGAAATTATTGAACAGATTAGTGAATTCTCTAAACGTGTT



ATTTTAGCGGATGCCAACCTTGACAAGGTGCTGAGCGCATATAATAAACACCGTGATAAA



CCCATTCGTGAACAGGCTGAAAATATCATACATCTGTTCACGTTAACCAACTTGGGAGCT



CCTGCCGCTTTTAAATATTTCGATACCACAATTGACCGCAAACGTTATACGTCTACAAAA



GAGGTGCTCGATGCGACCCTGATCCACCAGTCTATTACAGGCCTGTATGAAACTCGTATC



GACCTGTCACAACTGGGCGGCGACTGA





SEQ
ATGGACAAGAAATATTCAATCGGTTTAGCAATAGGAACTAACTCAGTAGGTTGGGCTGTA


ID
ATTACAGACGAATACAAGGTACCGTCCAAAAAGTTTAAGGTGTTGGGGAACACAGATAGA


NO:
CACTCTATAAAAAAAAATTTAATAGGCGCTTTACTTTTCGATTCAGGCGAAACTGCAGAA


169
GCGACACGTCTGAAGAGAACCGCTAGACGTAGATACACGAGGAGAAAGAACAGAATATGT



TACCTACAAGAAATTTTTTCTAATGAGATGGCTAAGGTGGATGATTCGTTTTTTCATAGA



CTCGAAGAATCTTTCTTAGTTGAAGAAGATAAAAAACACGAAAGGCATCCTATCTTTGGA



AACATAGTTGATGAGGTGGCTTACCATGAAAAATATCCCACTATATATCACCTTAGAAAA



AAGTTGGTTGATTCAACCGACAAAGCGGATCTAAGGTTAATTTACCTCGCGTTGGCTCAC



ATGATAAAATTTAGAGGACATTTCTTGATCGAAGGTGATTTAAATCCCGATAACTCTGAT



GTAGATAAACTGTTCATCCAGTTGGTTCAAACATATAATCAGTTGTTCGAAGAGAACCCC



ATTAACGCATCAGGTGTTGATGCTAAAGCAATCTTATCAGCAAGGTTGAGCAAGAGCAGA



CGTCTGGAAAACTTGATTGCCCAATTGCCAGGTGAAAAGAAGAACGGTCTTTTTGGAAAT



TTAATTGCACTTTCACTTGGGTTGACACCGAATTTTAAAAGCAATTTCGACCTCGCTGAG



GATGCTAAACTCCAGTTATCTAAGGATACATATGACGATGATTTGGATAATCTATTGGCC



CAGATAGGTGATCAGTATGCAGATTTGTTTTTGGCAGCTAAGAATTTATCAGATGCAATT



CTACTGAGCGATATTTTAAGGGTGAATACAGAAATAACTAAAGCACCTTTGTCTGCATCT



ATGATAAAAAGATACGATGAACACCATCAAGATCTCACACTATTAAAAGCTTTAGTTAGA



CAACAATTACCAGAAAAATATAAAGAAATCTTTTTCGATCAGTCCAAGAACGGATACGCC



GGCTATATAGATGGCGGTGCCTCCCAAGAAGAATTTTACAAATTTATCAAACCCATTTTG



GAAAAGATGGATGGTACTGAAGAATTATTGGTCAAATTAAACAGGGAAGATTTATTAAGA



AAACAAAGGACCTTTGATAATGGTTCTATTCCACACCAAATCCATCTAGGGGAATTACAT



GCGATTCTTAGAAGACAAGAAGATTTTTATCCATTCTTGAAAGATAACAGGGAAAAGATA



GAGAAAATCTTAACTTTTAGAATTCCCTACTACGTCGGGCCCTTAGCTAGGGGGAATTCT



AGATTCGCCTGGATGACACGCAAATCAGAAGAAACAATTACGCCTTGGAATTTTGAAGAA



GTTGTTGATAAAGGAGCCTCTGCTCAATCTTTTATTGAACGAATGACCAATTTTGATAAG



AATTTACCCAATGAAAAGGTCTTACCCAAACATTCACTCCTATACGAGTACTTTACTGTT



TACAATGAGTTGACAAAAGTGAAGTATGTTACCGAGGGTATGCGAAAACCTGCTTTCTTG



AGTGGTGAACAAAAGAAGGCCATTGTTGACTTGTTATTCAAAACTAACAGAAAGGTCACT



GTGAAGCAGCTTAAAGAAGATTATTTCAAAAAGATCGAATGTTTCGACTCGGTAGAAATT



AGTGGTGTGGAAGATAGATTTAATGCTTCTCTTGGAACATATCATGATCTACTAAAGATC



ATCAAAGATAAAGATTTCTTGGACAATGAAGAAAATGAAGATATTCTTGAAGACATCGTG



TTGACACTTACATTGTTTGAGGACAGAGAAATGATTGAAGAAAGGCTGAAGACCTACGCC



CATTTGTTTGATGATAAAGTCATGAAACAGTTAAAGAGGAGAAGGTATACCGGATGGGGT



AGGCTGTCTCGCAAATTGATTAATGGTATTCGTGATAAACAATCGGGTAAAACAATCCTA



GATTTCCTGAAGTCCGATGGTTTCGCCAACAGGAATTTTATGCAATTGATTCATGACGAT



TCTTTGACTTTTAAAGAGGATATTCAGAAAGCACAGGTCTCAGGACAGGGCGATTCACTC



CATGAACATATAGCTAACCTGGCTGGCTCCCCTGCTATTAAGAAAGGTATCTTGCAAACC



GTCAAAGTAGTAGACGAACTTGTTAAAGTTATGGGAAGACACAAACCTGAAAATATCGTT



ATTGAAATGGCTCGCGAAAACCAGACAACACAAAAGGGTCAAAAGAATTCGAGAGAGAGA



ATGAAGCGTATCGAAGAAGGTATTAAAGAACTTGGGTCCCAAATACTTAAAGAACATCCA



GTAGAAAACACTCAGCTTCAAAATGAAAAATTATACTTATATTATCTTCAGAATGGCCGC



GATATGTATGTTGACCAAGAGTTAGATATAAATAGGTTGTCTGATTACGACGTGGATCAT



ATTGTACCTCAATCTTTTCTAAAAGATGATTCAATTGATAATAAGGTATTAACGAGAAGT



GATAAAAATAGAGGTAAATCTGACAACGTGCCAAGCGAAGAGGTGGTGAAGAAAATGAAA



AATTATTGGCGTCAACTGTTGAACGCCAAGTTAATTACGCAGAGAAAGTTTGATAATCTA



ACAAAAGCTGAAAGAGGAGGCCTATCTGAGTTAGATAAGGCCGGTTTTATCAAACGTCAG



TTAGTTGAAACCAGGCAAATCACGAAGCACGTTGCCCAAATTCTAGATTCAAGGATGAAT



ACCAAATACGATGAAAACGATAAACTGATTCGGGAAGTCAAGGTTATAACTCTAAAAAGC



AAACTAGTTTCAGATTTTCGCAAAGATTTTCAATTTTACAAAGTTCGAGAAATCAATAAT



TATCATCATGCTCACGACGCGTACTTGAACGCGGTCGTTGGTACAGCTTTAATAAAGAAA



TATCCTAAACTGGAATCGGAATTTGTATATGGGGATTACAAAGTATACGACGTGAGAAAG



ATGATCGCTAAATCTGAACAAGAAATTGGGAAAGCAACTGCCAAATATTTTTTTTACAGC



AACATAATGAATTTTTTTAAAACGGAAATTACATTGGCAAATGGCGAAATTAGAAAGCGC



CCATTGATAGAGACCAATGGAGAGACTGGGGAAATCGTGTGGGATAAAGGACGTGATTTT



GCCACAGTGAGGAAAGTGTTAAGTATGCCACAAGTTAATATTGTAAAAAAGACCGAGGTC



CAAACGGGTGGATTTAGCAAAGAATCAATTTTACCTAAGAGAAATTCAGATAAATTAATT



GCCCGCAAAAAGGATTGGGATCCTAAAAAATATGGTGGTTTTGATTCCCCAACAGTTGCT



TACTCCGTCCTAGTTGTTGCTAAGGTTGAAAAAGGAAAGTCTAAGAAACTTAAATCCGTA



AAAGAGTTACTGGGAATTACAATAATGGAAAGATCCTCTTTCGAAAAGAACCCTATTGAC



TTCTTGGAGGCGAAAGGTTATAAAGAAGTCAAAAAAGATTTGATCATAAAACTACCAAAG



TATTCTCTATTTGAATTGGAAAACGGCAGAAAAAGGATGTTGGCAAGCGCTGGTGAACTA



CAAAAGGGTAACGAATTGGCATTGCCGAGTAAATACGTGAATTTTCTATATTTGGCATCA



CATTACGAAAAGTTAAAGGGATCACCCGAGGATAACGAGCAGAAACAACTGTTTGTTGAA



CAACACAAACATTATCTTGATGAAATTATAGAACAAATTAGTGAGTTCAGTAAGAGAGTT



ATTTTAGCCGATGCAAATTTAGACAAAGTTTTATCTGCTTATAACAAACATAGAGATAAG



CCTATAAGGGAACAAGCCGAAAATATTATTCATTTGTTTACGTTAACAAATTTAGGGGCA



CCAGCAGCATTCAAGTACTTCGATACGACTATCGATCGTAAGCGTTACACATCTACCAAA



GAAGTTCTTGATGCAACTTTGATTCATCAATCTATAACAGGCTTATATGAAACTAGAATC



GATCTGTCACAACTTGGTGGTGACTAA





SEQ
ATGGACAAGAAGTACTCAATTGGGCTTGCTATCGGCACTAACAGCGTTGGCTGGGCGGTC


ID
ATCACAGACGAATATAAGGTCCCATCAAAGAAATTCAAAGTCCTTGGCAATACGGACCGA


NO:
CATTCAATCAAGAAGAACCTGATTGGAGCTCTGCTGTTTGATTCCGGTGAAACCGCCGAG


170
GCAACACGATTGAAACGTACCGCTCGTAGGAGGTATACGCGGCGGAAAAATAGGATCTGC



TATCTGCAGGAAATATTTAGCAACGAAATGGCCAAGGTAGACGACAGCTTCTTCCACCGG



CTCGAGGAATCTTTCCTCGTGGAAGAAGACAAAAAGCACGAGCGCCACCCCATTTTCGGC



AATATCGTGGACGAGGTAGCTTACCATGAAAAGTATCCAACTATTTACCACTTACGTAAG



AAGTTAGTGGACAGCACCGATAAAGCCGACCTTCGCCTGATTTACCTAGCACTTGCACAC



ATGATTAAGTTCCGAGGCCACTTCTTGATAGAGGGAGACCTGAATCCTGACAATTCCGAT



GTGGATAAATTGTTCATCCAGCTGGTACAGACATACAATCAGTTGTTTGAGGAAAATCCG



ATTAATGCCAGTGGCGTGGACGCCAAGGCTATCCTGTCTGCTCGGCTTAGTAAGAGTAGA



CGCCTGGAAAATCTAATCGCACAGCTGCCCGGCGAAAAGAAAAATGGACTGTTCGGTAAT



TTGATCGCCCTGAGCCTGGGCCTCACCCCTAACTTTAAGTCTAACTTCGACCTGGCCGAA



GATGCTAAGCTCCAGCTGTCCAAAGATACTTACGATGACGATCTCGATAATCTACTGGCT



CAGATCGGGGACCAGTACGCTGACCTGTTTCTAGCTGCCAAGAACCTCAGTGACGCCATT



CTCCTGTCCGATATTCTGAGGGTTAACACTGAAATTACAAAGGCCCCGCTGAGCGCGAGC



ATGATCAAAAGGTACGACGAGCATCACCAGGACCTCACGCTGCTGAAGGCCTTAGTCAGA



CAGCAACTGCCCGAAAAGTACAAAGAAATCTTTTTCGACCAATCCAAGAACGGGTACGCC



GGCTACATTGATGGCGGGGCTTCACAAGAGGAGTTTTACAAGTTTATCAAGCCCATCCTG



GAGAAAATGGACGGCACTGAAGAACTGCTTGTGAAACTCAATAGGGAAGACTTACTGAGG



AAACAGCGCACATTCGATAATGGCTCCATACCCCACCAAATCCATCTGGGAGAGTTGCAT



GCCATCTTGCGAAGGCAGGAGGACTTCTACCCCTTTCTTAAGGACAACAGGGAGAAAATC



GAGAAAATTCTGACTTTCCGTATCCCCTACTACGTGGGCCCACTTGCTCGCGGAAACTCA



CGATTCGCATGGATGACCAGAAAGTCCGAGGAAACAATTACACCCTGGAATTTTGAGGAG



GTAGTAGACAAGGGAGCCAGCGCTCAATCTTTCATTGAGAGGATGACGAATTTCGACAAG



AACCTTCCAAACGAGAAAGTGCTTCCTAAGCACAGCCTGCTGTATGAGTATTTCACGGTG



TACAACGAACTTACGAAGGTCAAGTATGTGACAGAGGGTATGCGGAAACCTGCTTTTCTG



TCTGGTGAACAGAAGAAAGCTATCGTCGATCTCCTGTTTAAAACCAACCGAAAGGTGACG



GTGAAACAGTTGAAGGAGGATTACTTCAAGAAGATCGAGTGTTTTGATTCTGTTGAAATT



TCTGGGGTCGAGGATAGATTCAACGCCAGCCTGGGCACCTACCATGATTTGCTGAAGATT



ATCAAGGATAAGGATTTTCTGGATAATGAGGAGAATGAAGACATTTTGGAGGATATAGTG



CTGACCCTCACCCTGTTCGAGGACCGGGAGATGATCGAGGAGAGACTGAAAACATACGCT



CACCTGTTTGACGACAAGGTCATGAAGCAGCTTAAGAGACGCCGTTACACAGGCTGGGGA



AGATTATCCCGCAAATTAATCAACGGGATACGCGATAAACAAAGTGGCAAGACCATACTC



GACTTCCTAAAGAGCGATGGATTCGCAAATCGCAATTTCATGCAGTTGATCCACGACGAT



AGCCTGACCTTCAAAGAGGACATTCAGAAAGCGCAGGTGAGTGGTCAAGGGGATTCCCTG



CACGAACACATTGCTAACTTGGCTGGATCACCAGCCATTAAGAAAGGCATACTGCAGACC



GTTAAAGTGGTAGATGAGCTTGTGAAAGTCATGGGAAGACATAAGCCAGAGAACATAGTG



ATCGAAATGGCCAGGGAAAATCAGACCACGCAAAAGGGGCAGAAGAACTCAAGAGAGCGT



ATGAAGAGGATCGAGGAGGGCATCAAGGAGCTGGGTAGCCAGATCCTTAAAGAGCACCCA



GTTGAGAATACCCAGCTGCAGAATGAGAAACTTTATCTCTATTATCTCCAGAACGGAAGG



GATATGTATGTCGACCAGGAACTGGACATCAATCGGCTGAGTGATTATGACGTCGACCAC



ATTGTGCCTCAAAGCTTTCTGAAGGATGATTCCATCGACAATAAAGTTCTGACCCGGTCT



GATAAAAATAGAGGCAAATCCGACAACGTACCTAGCGAAGAAGTCGTCAAAAAAATGAAG



AACTATTGGAGGCAGTTGCTGAATGCCAAGCTGATTACACAACGCAAGTTTGACAATCTC



ACCAAGGCAGAAAGGGGGGGCCTGTCAGAACTCGACAAAGCAGGTTTCATTAAAAGGCAG



CTAGTTGAAACTAGGCAGATTACTAAGCACGTGGCCCAGATCCTCGACTCACGGATGAAT



ACAAAGTATGATGAGAATGATAAGCTAATCCGGGAGGTGAAGGTGATTACTCTGAAATCT



AAGCTGGTGTCAGATTTCAGAAAAGACTTCCAGTTCTACAAAGTCAGAGAGATCAACAAT



TATCACCATGCCCACGATGCATATCTTAATGCAGTAGTGGGGACAGCTCTGATCAAAAAA



TATCCTAAACTGGAGTCTGAATTCGTTTATGGTGACTATAAAGTCTATGACGTCAGAAAA



ATGATCGCAAAGAGCGAGCAGGAGATAGGGAAGGCCACAGCAAAGTACTTCTTTTACAGT



AATATCATGAACTTTTTCAAAACTGAGATTACATTGGCTAACGGCGAGATCCGCAAGCGG



CCACTGATAGAGACTAACGGAGAGACAGGGGAGATTGTTTGGGATAAGGGCCGTGACTTC



GCCACCGTTAGGAAAGTGCTGTCCATGCCCCAGGTGAACATTGTGAAGAAGACAGAAGTG



CAGACGGGTGGGTTCTCAAAAGAGTCTATTCTGCCTAAGCGGAATAGTGACAAACTGATC



GCACGTAAAAAGGACTGGGATCCAAAAAAGTACGGCGGATTCGACAGTCCTACCGTTGCA



TATTCCGTGCTTGTGGTCGCTAAGGTGGAGAAGGGAAAAAGCAAGAAACTGAAGTCAGTC



AAAGAACTACTGGGCATAACGATCATGGAGCGCTCCAGTTTCGAAAAAAACCCAATCGAT



TTTCTTGAAGCCAAGGGATACAAGGAGGTAAAGAAAGACCTTATCATTAAGCTGCCTAAG



TACAGTCTGTTCGAACTGGAGAATGGGAGGAAGCGCATGCTGGCATCAGCTGGAGAACTC



CAAAAAGGGAACGAGTTGGCCCTCCCCTCAAAGTATGTCAATTTTCTCTACCTGGCTTCT



CACTACGAGAAGTTAAAGGGGTCTCCAGAGGATAATGAGCAGAAACAGCTGTTTGTGGAA



CAGCACAAGCACTATTTGGACGAAATCATCGAACAAATTTCCGAGTTCAGTAAGAGGGTG



ATTCTGGCCGACGCAAACCTTGACAAAGTTCTGTCCGCATACAATAAGCACAGAGACAAA



CCAATCCGCGAGCAAGCCGAGAATATAATTCACCTTTTCACTCTGACTAATCTGGGGGCC



CCCGCAGCATTTAAATATTTCGATACAACAATCGACCGGAAGCGGTATACATCTACTAAG



GAAGTCCTCGATGCGACACTGATCCACCAGTCAATTACAGGTTTATATGAAACAAGAATC



GACCTGTCCCAGCTGGGCGGCGACTAG





SEQ
AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATT


ID
GATAATTGAGATCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAA


NO:
TTATTTATTTATCCAGAAAATGAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCT


171
GGCGCAGTTGATATGTcaaaCAGGTtgccgtcactgcgtcttttactggctcttctcgct



aaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagccat



gacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgattattt



gcacggcgtcacactttgctatgccatagcatttttatccataagattagcggatcctac



ctgacgctttttatcgcaactctctactgtttctccatacccgtttttttgggctagcac



cgcctatctcgtgtgagataggcggagatacgaactttaagAAGGAGatataccATGGAA



CAGGAATATTATCTGGGCTTGGACATGGGCACCGGTTCCGTCGGCTGGGCTGTTACTGAC



AGTGAATATCACGTTCTAAGAAAGCATGGTAAGGCATTGTGGGGTGTAAGACTTTTCGAA



TCTGCTTCCACTGCTGAAGAGCGTAGAATGTTTAGAACGAGTCGACGTAGGCTAGACAGG



CGCAATTGGAGAATCGAAATTTTACAAGAAATTTTTGCGGAAGAGATATCTAAGAAAGAC



CCAGGCTTTTTCCTGAGAATGAAGGAATCTAAGTATTACCCTGAGGATAAAAGAGATATA



AATGGTAACTGTCCCGAATTGCCTTACGCATTATTTGTGGACGATGATTTTACCGATAAG



GATTACCATAAAAAGTTCCCAACTATCTACCATTTACGCAAAATGTTAATGAATACAGAG



GAAACCCCAGACATAAGACTAGTTTATCTGGCAATACACCATATGATGAAACATAGAGGC



CATTTCTTACTTTCCGGGGATATCAACGAAATCAAAGAGTTTGGTACCACATTTAGTAAG



TTACTGGAAAACATAAAGAATGAAGAATTGGATTGGAACTTAGAACTCGGAAAAGAAGAA



TACGCGGTTGTCGAATCTATCCTGAAGGATAATATGCTGAATAGGTCGACCAAAAAAACT



AGGCTGATCAAAGCACTGAAAGCCAAATCTATCTGCGAAAAAGCTGTTTTAAATTTACTT



GCTGGTGGCACTGTTAAGTTATCAGACATTTTTGGTTTGGAAGAATTGAACGAAACCGAG



CGTCCAAAAATTAGTTTCGCTGATAATGGCTACGATGATTACATTGGTGAGGTGGAAAAC



GAGTTGGGCGAACAATTTTATATTATAGAGACAGCTAAGGCAGTCTATGACTGGGCTGTT



TTAGTAGAAATCCTTGGTAAATACACATCTATCTCCGAAGCGAAAGTTGCTACTTACGAA



AAGCACAAGTCCGATCTCCAGTTTTTGAAGAAAATTGTCAGGAAATATCTGACTAAGGAA



GAATATAAAGATATTTTCGTTAGTACCTCTGACAAACTGAAAAATTACTCCGCTTACATC



GGGATGACCAAGATTAATGGCAAAAAAGTTGATCTGCAAAGCAAAAGGTGTTCGAAGGAA



GAATTTTATGATTTCATTAAAAAGAATGTCTTAAAAAAATTAGAAGGTCAGCCAGAATAC



GAATATTTGAAAGAAGAACTGGAAAGAGAGACATTCTTACCAAAACAAGTCAACAGAGAT



AATGGGGTAATTCCATATCAAATTCACCTCTACGAATTAAAAAAAATTTTAGGCAATTTA



CGCGATAAAATTGACCTTATCAAAGAAAATGAGGATAAGCTGGTTCAACTCTTTGAATTC



AGAATACCCTATTATGTGGGCCCACTGAACAAGATTGATGACGGCAAAGAAGGTAAATTC



ACATGGGCCGTCCGCAAATCCAATGAAAAAATTTACCCATGGAACTTTGAAAATGTAGTA



GATATTGAAGCGTCTGCGGAGAAATTTATTCGAAGAATGACTAATAAATGCACTTACTTG



ATGGGAGAGGATGTTCTGCCTAAAGACAGCTTATTATACAGCAAGTACATGGTTCTAAAC



GAACTTAACAACGTTAAGTTGGACGGTGAGAAATTAAGTGTAGAATTGAAACAAAGATTG



TATACTGACGTCTTCTGCAAGTACAGAAAAGTGACAGTTAAAAAAATTAAGAATTACTTG



AAGTGCGAAGGTATAATTTCTGGAAACGTAGAGATTACTGGTATTGATGGTGATTTCAAA



GCATCCCTAACAGCTTACCACGATTTCAAGGAAATCCTGACAGGAACTGAACTCGCAAAA



AAAGATAAAGAAAACATTATTACTAATATTGTTCTTTTCGGTGATGACAAGAAATTGTTG



AAGAAAAGACTGAATAGACTTTACCCCCAGATTACTCCCAATCAACTTAAGAAAATTTGT



GCTTTGTCTTACACAGGATGGGGTCGTTTTTCAAAAAAGTTCTTAGAAGAGATTACCGCA



CCTGATCCAGAAACAGGCGAAGTATGGAATATAATTACCGCCTTATGGGAATCGAACAAT



AATCTTATGCAACTTCTGAGCAATGAATATCGTTTCATGGAAGAAGTTGAGACTTACAAC



ATGGGCAAACAGACGAAGACTTTATCCTATGAAACTGTGGAAAATATGTATGTATCACCT



TCTGTCAAGAGACAAATTTGGCAAACCTTAAAAATTGTCAAAGAATTAGAAAAGGTAATG



AAGGAGTCTCCTAAACGTGTGTTTATTGAAATGGCTAGAGAAAAACAAGAGTCAAAAAGA



ACCGAGTCAAGAAAGAAGCAGTTAATCGATTTATATAAGGCTTGTAAAAACGAAGAGAAA



GATTGGGTTAAAGAATTGGGGGACCAAGAGGAACAAAAACTACGGTCGGATAAGTTGTAT



TTATACTATACGCAAAAGGGACGATGTATGTATTCCGGCGAGGTAATAGAATTGAAGGAT



TTATGGGACAATACAAAATATGACATAGACCATATATATCCCCAATCAAAAACGATGGAC



GATAGCTTGAACAATAGAGTACTCGTGAAAAAAAAATATAATGCGACCAAATCTGATAAG



TATCCTCTGAATGAAAATATCAGACATGAAAGAAAGGGGTTCTGGAAGTCCTTGTTAGAT



GGTGGGTTTATAAGCAAAGAAAAGTACGAGCGTCTAATAAGAAACACGGAGTTATCGCCA



GAAGAACTCGCTGGTTTTATTGAGAGGCAAATCGTGGAAACGAGACAATCTACCAAAGCC



GTTGCTGAGATCCTAAAGCAAGTTTTCCCAGAGTCGGAGATTGTCTATGTCAAAGCTGGC



ACAGTGAGCAGGTTTAGGAAAGACTTCGAACTATTAAAGGTAAGAGAAGTGAACGATTTA



CATCACGCAAAGGACGCTTACCTAAATATCGTTGTAGGTAACTCATATTATGTTAAATTT



ACCAAGAACGCCTCTTGGTTTATAAAGGAGAACCCAGGTAGAACATATAACCTGAAAAAG



ATGTTCACCTCTGGTTGGAATATTGAGAGAAACGGAGAAGTCGCATGGGAAGTTGGTAAG



AAAGGGACTATAGTGACAGTAAAGCAAATTATGAACAAAAATAATATCCTCGTTACAAGG



CAGGTTCATGAAGCAAAGGGCGGCCTTTTTGACCAACAAATTATGAAGAAAGGGAAAGGT



CAAATTGCAATAAAAGAAACCGATGAGAGACTAGCGTCAATAGAAAAGTATGGTGGCTAT



AATAAAGCTGCGGGTGCATACTTTATGCTTGTTGAATCAAAAGACAAGAAAGGTAAGACT



ATTAGAACTATAGAATTTATACCCCTGTACCTTAAAAACAAAATTGAATCGGATGAGTCA



ATCGCGTTAAATTTTCTAGAGAAAGGAAGGGGTTTAAAAGAACCAAAGATCCTGTTAAAA



AAGATTAAGATTGACACCTTGTTCGATGTAGATGGATTTAAAATGTGGTTATCTGGCAGA



ACAGGCGATAGACTTTTGTTTAAGTGCGCTAATCAATTAATTTTGGATGAGAAAATCATT



GTCACAATGAAAAAAATAGTTAAGTTTATTCAGAGAAGACAAGAAAACAGGGAGTTGAAA



TTATCTGATAAAGATGGTATCGACAATGAAGTTTTAATGGAAATCTACAATACATTCGTT



GATAAACTTGAAAATACCGTATATCGAATCAGGTTAAGTGAACAAGCCAAAACATTAATT



GATAAACAAAAAGAATTTGAAAGGCTATCACTGGAAGACAAATCCTCCACCCTATTTGAA



ATTTTGCATATATTCCAGTGCCAATCTTCAGCAGCTAATTTAAAAATGATTGGCGGACCT



GGGAAAGCCGGCATCCTAGTGATGAACAATAATATCTCCAAGTGTAACAAAATATCAATT



ATTAACCAATCTCCGACAGGTATTTTTGAAAATGAAATAGACTTGCTTAAGATATAAGAA



ATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATTTATTATATCGCGTTGATT



ATTGATGCTGTTTTTAGTTTTAACGGCAATTAATATATGTGTTATTAATTGAATGAATTT



TATCATTCATAATAAGTATGTGTAGGATCAAGCTCAGGTTAAATATTCACTCAGGAAGTT



ATTACTCAGGAAGCAAAGAGGATTACAGAATTATCTCATAACAAGTGTTAAGGGATGTTA



TTTCC





SEQ
AATTCAAAGGATAATCAAAC


ID



NO:



172






SEQ
AATCTCTACTCTTTGTAGAT


ID



NO:



173






SEQ
AATTTCTACTGTTGTAGAT


ID



NO:



174






SEQ
AATTTCTACTAGTGTAGAT


ID



NO:



175






SEQ
AATTTCTACTATTGT


ID



NO:



176






SEQ
AATTTCTACTGTTGTAGA


ID



NO:



177






SEQ
AATTTCTACTATTGTA


ID



NO:



178






SEQ
AATTTCTACTTTTGTAGAT


ID



NO:



179






SEQ
AATTTCTACTGTTGTAGAT


ID



NO:



180






SEQ
AATTTCTACTCTTGTAGAT


ID



NO:



181








Claims
  • 1. A composition comprising: i) a first donor nucleic acid comprising: a) a modified first target nucleic acid sequence;b) a first protospacer adjacent motif (PAM) mutation; andc) a first guide nucleic acid sequence comprising a first spacer region complementary to a portion of the first target nucleic acid; andii) a second donor nucleic acid comprising: a) a barcode corresponding to the modified first target nucleic acid sequence; andb) a second guide nucleic acid sequence comprising a second spacer region complementary to a portion of a second target nucleic acid.
  • 2. The composition of claim 1, wherein the modified first target nucleic acid sequence comprises at least one inserted, deleted, or substituted nucleic acid compared to a corresponding un-modified first target nucleic acid.
  • 3. The composition of claim 1, wherein the first guide nucleic acid and second guide nucleic acid are compatible with a nucleic acid-guided nuclease.
  • 4. The composition of claim 3, wherein the nucleic acid-guided nuclease is a Type II or Type V Cas protein.
  • 5. The composition of claim 3, wherein the nucleic acid-guided nuclease is a Cas9 homologue or a Cpf1 homologue.
  • 6. The composition of claim 1, wherein the second donor nucleic acid comprises a second PAM mutation.
  • 7. The composition of claim 1, wherein the second donor nucleic acid sequence comprises a regulatory sequence or a mutation to turn a screenable or selectable marker on or off.
  • 8. The composition of claim 1, wherein the second donor nucleic acid sequence targets a unique landing site.
  • 9. A method of genome engineering, the method comprising: a) contacting a population of cells with a polynucleotide, wherein each cell comprises a first target nucleic acid, a second target nucleic acid, and a nucleic acid-guided nuclease, wherein the polynucleotide comprises 1) an editing cassette comprising: i) a modified first target nucleic acid sequence;ii) a first protospacer adjacent motif (PAM) mutation;iii) a first guide nucleic acid sequence comprising a spacer region complementary to a portion of the first target nucleic acid and compatible with the nucleic acid-guided nuclease; and2) a recorder cassette comprising i) a barcode corresponding to the modified first target nucleic acid sequence; andii) a second guide nucleic acid sequence comprising a second spacer region complementary to a portion of the second target nucleic acid and compatible with the nucleic acid-guided nuclease;b) allowing the first guide nucleic acid sequence, the second guide nucleic acid sequence, and the nucleic acid-guided nuclease to create a genome edit within the first target nucleic acid and the second target nucleic acid.
  • 10. The method of claim 9, further comprising c) sequencing a portion of the barcode, thereby identifying the modified first target nucleic acid that was inserted within the first target nucleic acid in step a).
  • 11. The method of claim 9, wherein the nucleic acid-guided nuclease is a CRISPR nuclease.
  • 12. The method of claim 9, wherein the PAM mutation is not recognized by the nucleic acid-guided nuclease.
  • 13. The method of claim 9, wherein the nucleic acid-guided nuclease is a Type II or Type V Cas protein.
  • 14. The method of claim 9, wherein the nucleic acid-guided nuclease is a Cas9 homologue or a Cpf1 homologue.
  • 15. The method of claim 9, wherein the recorder cassette further comprises a second PAM mutation that is not recognized by the nucleic acid-guided nuclease.
  • 16. A method of selectable recursive genetic engineering comprising a) contacting cells comprising a nucleic acid-guided nuclease with a polynucleotide comprising a recorder cassette, said recorder cassette comprising i) a nucleic acid sequence that recombines into a unique landing site incorporated during a previous round of engineering, wherein the nucleic acid sequence comprises a unique barcode; andii) a guide RNA compatible with the nucleic acid-guided nuclease that targets the unique landing site; andb) allowing the nucleic acid-guided nuclease to edit the unique landing site, thereby incorporating the unique barcode into the unique landing site.
  • 17. The method of claim 16, wherein the nucleic acid sequence further comprises a regulatory sequence that turns transcription of a screenable or selectable marker on or off.
  • 18. The method of claim 16, wherein the nucleic acid sequence further comprises a PAM mutation that is not compatible with the nucleic acid-guided nuclease.
  • 19. The method of claim 16, wherein the nucleic acid sequence further comprises a second unique landing site for subsequent engineering rounds.
  • 20. The method of claim 16, wherein the polynucleotide further comprises an editing cassette comprising a) a modified first target nucleic acid sequence;b) a first protospacer adjacent motif (PAM) mutation; andc) a first guide nucleic acid sequence comprising a first spacer region complementary to a portion of the first target nucleic acid,
CROSS-REFERENCE

The present application claims priority to U.S. patent application Ser. No. 16/295,393, filed Mar. 7, 2019, which claims priority to U.S. patent application Ser. No. 15/948,798, filed Apr. 9, 2018, now U.S. Pat. No. 10,287,575; which claims priority to U.S. patent application Ser. No. 15/948,793, filed Apr. 9, 2018, now U.S. Pat. No. 10,294,473; which claims priority to U.S. patent application Ser. No. 15/632,222, filed Jun. 23, 2017, now U.S. Pat. No. 10,017,760; which claims priority to U.S. Provisional Application Ser. No. 62/354,516, filed Jun. 24, 2016; U.S. Provisional Application Ser. No. 62/367,386, filed Jul. 27, 2016; and U.S. Provisional Application Ser. No. 62/483,930, filed Apr. 10, 2017, the contents of each being hereby incorporated by reference in their entirety.

STATEMENT AS TO FEDERALLY SPONSORED RESEARCH

This disclosure was made with the support of the United States government under Contract number DE-SC0008812 by the Department of Energy.

Provisional Applications (3)
Number Date Country
62483930 Apr 2017 US
62367386 Jul 2016 US
62354516 Jun 2016 US
Continuations (4)
Number Date Country
Parent 16295393 Mar 2019 US
Child 18157740 US
Parent 15948798 Apr 2018 US
Child 16295393 US
Parent 15948793 Apr 2018 US
Child 15948798 US
Parent 15632222 Jun 2017 US
Child 15948793 US