Methods for generating barcoded combinatorial libraries

Abstract
Provided herein are methods and composition for trackable genetic variant libraries. Further provided herein are methods and compositions for recursive engineering. Further provided herein are methods and compositions for multiplex engineering. Further provided herein are methods and compositions for enriching for editing and trackable engineered sequences and cells using nucleic acid-guided nucleases.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jul. 14, 2017, is named 49022-705_201_SL.txt and is 810,578 bytes in size. This application contains a sequence list in Table 5.


BACKGROUND OF THE DISCLOSURE

Understanding the relationship between a protein's amino acid structure and its overall function continues to be of great practical, clinical, and scientific significance for biologists and engineers. Directed evolution can be a powerful engineering and discovery tool, but the random and often combinatorial nature of mutations makes their individual impacts difficult to quantify and thus challenges further engineering. More systematic analysis of contributions of individual residues or saturation mutagenesis remains labor- and time-intensive for entire proteins and simply is not possible on reasonable timescales for editing of multiple proteins in parallel, such as metabolic pathways or multi-protein complexes, using standard methods.


SUMMARY OF THE DISCLOSURE

Disclosed herein are compositions comprising: i) a first donor nucleic acid comprising: a) a modified first target nucleic acid sequence; b) a first protospacer adjacent motif (PAM) mutation; and c) a first guide nucleic acid sequence comprising a first spacer region complementary to a portion of the first target nucleic acid; and ii) a second donor nucleic acid comprising: a) a barcode corresponding to the modified first target nucleic acid sequence; and b) a second guide nucleic acid sequence comprising a second spacer region complementary to a portion of a second target nucleic acid. Further disclosed are compositions wherein the modified first target nucleic acid sequence comprises at least one inserted, deleted, or substituted nucleic acid compared to a corresponding un-modified first target nucleic acid. Further disclosed are compositions wherein the first guide nucleic acid and second guide nucleic acid are compatible with a nucleic acid-guided nuclease. Further disclosed are compositions wherein the nucleic acid-guided nuclease is a Type II or Type V Cas protein. Further disclosed are compositions wherein the nucleic acid-guided nuclease is a Cas9 homologue or a Cpf1 homologue. Further disclosed are compositions wherein the second donor nucleic acid comprises a second PAM mutation. Further disclosed are compositions wherein the second donor nucleic acid sequence comprises a regulatory sequence or a mutation to turn a screenable or selectable marker on or off. Further disclosed are compositions wherein the second donor nucleic acid sequence targets a unique landing site.


Disclosed herein are methods of genome engineering, the method comprising: a) contacting a population of cells with a polynucleotide, wherein each cell comprises a first target nucleic acid, a second target nucleic acid, and a nucleic acid-guided nuclease, wherein the polynucleotide comprises 1) an editing cassette comprising: i) a modified first target nucleic acid sequence; ii) a first protospacer adjacent motif (PAM) mutation; iii) a first guide nucleic acid sequence comprising a spacer region complementary to a portion of the first target nucleic acid and compatible with the nucleic acid-guided nuclease; and 2) a recorder cassette comprising i) a barcode corresponding to the modified first target nucleic acid sequence; and ii) a second guide nucleic acid sequence comprising a second spacer region complementary to a portion of the second target nucleic acid and compatible with the nucleic acid-guided nuclease; b) allowing the first guide nucleic acid sequence, the second guide nucleic acid sequence, and the nucleic acid-guided nuclease to create a genome edit within the first target nucleic acid and the second target nucleic acid. Further disclosed are methods further comprising c) sequencing a portion of the barcode, thereby identifying the modified first target nucleic acid that was inserted within the first target nucleic acid in step a). Further disclosed are methods wherein the nucleic acid-guided nuclease is a CRISPR nuclease. Further disclosed are methods wherein the PAM mutation is not recognized by the nucleic acid-guided nuclease. Further disclosed are methods wherein the nucleic acid-guided nuclease is a Type II or Type V Cas protein. Further disclosed are methods wherein the nucleic acid-guided nuclease is a Cas9 homologue or a Cpf1 homologue. Further disclosed are methods wherein the recorder cassette further comprises a second PAM mutation that is not recognized by the nucleic acid-guided nuclease.


Disclosed herein are methods of selectable recursive genetic engineering comprising a) contacting cells comprising a nucleic acid-guided nuclease with a polynucleotide comprising a recorder cassette, said recorder cassette comprising i) a nucleic acid sequence that recombines into a unique landing site incorporated during a previous round of engineering, wherein the nucleic acid sequence comprises a unique barcode; and ii) a guide RNA compatible with the nucleic acid-guided nuclease that targets the unique landing site; and b) allowing the nucleic acid-guided nuclease to edit the unique landing site, thereby incorporating the unique barcode into the unique landing site. Further disclosed are methods wherein the nucleic acid sequence further comprises a regulatory sequence that turns transcription of a screenable or selectable marker on or off. Further disclosed are methods wherein the nucleic acid sequence further comprises a PAM mutation that is not compatible with the nucleic acid-guided nuclease. Further disclosed are methods wherein the nucleic acid sequence further comprises a second unique landing site for subsequent engineering rounds. Further disclosed are methods wherein the polynucleotide further comprises an editing cassette comprising a) a modified first target nucleic acid sequence; b) a first protospacer adjacent motif (PAM) mutation; and c) a first guide nucleic acid sequence comprising a first spacer region complementary to a portion of the first target nucleic acid, wherein the unique barcode corresponds to the modified first target nucleic acid such that the modified target nucleic acid can be identified by the unique barcode.


Provided herein are compositions comprising i) a first donor nucleic acid comprising: a) a modified first target nucleic acid sequence; b) a mutant protospacer adjacent motif (PAM) sequence; and c) a first guide nucleic acid sequence comprising a first spacer region complementary to a portion of the first target nucleic acid; and ii) a second donor nucleic acid comprising: a) a recorder sequence; and b) a second guide nucleic acid sequence comprising a second spacer region complementary to a portion of the second target nucleic acid. In some aspects, the first donor nucleic acid and the second donor nucleic acid are covalently linked or comprised on a single nucleic acid molecule. Further provided are compositions wherein the modified first target nucleic acid comprises a 5′ homology are and a 3′ homology arm. Further provided are compositions wherein the 5′ homology arm and the 3′ homology arm are homologous to nucleic acid sequence flanking a protospacer complementary to the first spacer region. Further provided are compositions wherein the modified first target nucleic acid sequence comprises at least one inserted, deleted, or substituted nucleic acid compared to a corresponding un-modified first target nucleic acid. Further provided are compositions wherein the first gRNA is compatible with a nucleic acid-guided nuclease, thereby facilitating nuclease-mediate cleavage of the first target nucleic acid. Further provided are compositions wherein the nucleic acid-guided nuclease is a Cas protein, such as a Type II or Type V Cas protein. Further provided are compositions wherein the nucleic acid-guided nuclease is Cas9 or Cpf1. Further provided are compositions wherein the nucleic acid-guided nuclease is MAD2 or MAD7. Further provided are compositions wherein the nucleic acid-guided nuclease is an engineered or non-natural enzyme. Further provided are compositions wherein the nucleic acid-guided nuclease is a engineered or non-natural enzyme derived from Cas9 or Cpf1. Further provided are compositions wherein the nucleic acid-guided nuclease is an engineered or non-natural enzyme that has less than 80% homology to either Cas9 or Cpf1. Further provided are compositions wherein the mutant PAM sequence is not recognized by the nucleic acid-guided nuclease. Further provided are compositions wherein the recorder sequence comprises a barcode. Further provided are compositions wherein the recorder sequence comprises a fragment of a screenable or selectable marker. Further provided are compositions wherein the recorder sequence comprises a unique sequence by which the modified first target nucleic acid sequence is specifically identified. Further provided are compositions wherein the recorder sequence comprises a unique sequence by which the edited cells may be selected or enriched. A first donor nucleic acid can be a cassette, such as an editing cassette as disclosed herein. A second donor nucleic acid can be a cassette, such as a recording cassette as disclosed herein. A first donor nucleic acid and a second donor nucleic acid can be comprised on a single cassette. A first donor nucleic acid and a second donor nucleic acid can be covalently linked. In any of these examples, the elements of the cassette or donor nucleic acids can be contiguous or non-contiguous.


Provided herein are cells comprising an engineered chromosome or polynucleic acid comprising: a first modified sequence; a first mutant protospacer adjacent motif (PAM); a first recorder sequence, the sequence of which uniquely identifies the first modified sequence, wherein the first modified sequence and the first recorder sequence are separated by at least 1 bp. Further provided are cells wherein the first modified sequence and the first recorder sequence are separated by at least 100 bp. Further provided are cells wherein the first modified sequence and the first recorder sequence are separated by at least 500 bp. Further provided are cells wherein the first modified sequence and the first recorder sequence are separated by at least 1 kbp. Further provided are cells wherein the first recorder sequence is a barcode. Further provided are cells wherein the first modified sequence is within a coding sequence. Further provided are cells wherein the first modified sequence comprises at least one inserted, deleted, or substituted nucleotide compared to an unmodified sequence. Further provided are cells further comprising: a second modified sequence; a second mutant PAM; and a second recorder sequence, the sequence of which uniquely identifies the second modified sequence, wherein the second modified sequence and the second recorder sequence are separated by at least 1 kb. Further provided are cells wherein the first recorder sequence and the second recorder sequence are separated by less than 100 bp. Further provided are cells wherein the second recorder sequence is a barcode. Further provided are cells wherein the second modified sequence is within a coding sequence. Further provided are cells wherein the second modified sequence comprises at least one inserted, deleted, or substituted nucleotide compared to an unmodified sequence. Further provided are cells wherein the first recorder sequence and the second recorder sequence are immediately adjacent to each other or overlapping, thereby generating a combined recorder sequence. Further provided are cells wherein the combined recorder sequence comprises a selectable or screenable marker. Further provided are cells wherein the combined recorder sequence comprises a selectable or screenable marker by which the cells may be enriched or selected.


Provided herein are methods of genome engineering, the method comprising: a) introducing into a population of cells a plurality of polynucleotides, wherein each cell comprises a first target nucleic acid, a second target nucleic acid, and a targetable nuclease, wherein each polynucleotide comprises: i) a modified first target nucleic acid sequence; ii) a mutant protospacer adjacent motif (PAM) sequence; iii) a first guide nucleic acid sequence comprising a guide sequence complementary to a portion of the first target nucleic acid; and (iv) a recorder sequence; b) inserting the modified first target nucleic acid sequence within the first target nucleic acid; c) inserting the recorder sequence within the second target nucleic acid; d) cleaving the first target nucleic acid by the targetable nuclease in cells that do not comprise the mutant PAM sequence, thereby enriching for cells comprising the inserted modified first target nucleic acid sequence. Further provided are methods wherein the recorder sequence is linked to the modified first target nucleic acid. Further provided are methods wherein each polynucleotide further comprises a second mutant PAM sequence. Further provided are methods wherein each polynucleotide further comprises a second guide nucleic acid sequence comprising a guide sequence complementary to a portion of the second target nucleic acid. Further provided are methods wherein the recorder sequence comprises a unique sequence by which the modified first target nucleic acid is specifically identified upon sequencing the recorder sequence. Further provided are methods further comprising e) sequencing the recorder sequence, thereby identifying the modified first target nucleic acid that was inserted within the first target nucleic acid in step b). Further provided are methods wherein inserting the modified first target nucleic acid sequence comprises cleaving the first target nucleic acid by the nuclease complexed with the transcription product of the first guide nucleic acid sequence. Further provided are methods wherein inserting the modified first target nucleic acid sequence further comprises homology-directed repair. Further provided are methods wherein inserting the modified first target nucleic acid sequence further comprises homologous recombination. Further provided are methods wherein the polynucleotide further comprises a second guide nucleic acid sequence comprising a spacer region complementary to a portion of the second target nucleic acid. Further provided are methods wherein inserting the recorder sequence comprises cleaving the second target nucleic acid by the nuclease complexed with the transcription product of the second guide nucleic acid sequence. Further provided are methods wherein inserting the modified first target nucleic acid sequence further comprises homology-directed repair. Further provided are methods wherein inserting the modified first target nucleic acid sequence further comprises homologous recombination. Further provided are methods wherein the targetable nuclease is a Cas protein. Further provided are methods wherein the Cas protein is a Type II or Type V Cas protein. Further provided are methods wherein the Cas protein is Cas9 or Cpf1. Further provided are methods wherein the targetable nuclease is a nucleic acid-guided nuclease. Further provided are methods wherein the targetable nuclease is MAD2 or MAD7. Further provided are methods wherein the mutant PAM sequence is not recognized by the targetable nuclease. Further provided are methods wherein the targetable nuclease is an engineered targetable nuclease. Further provided are methods wherein the mutant PAM sequence is not recognized by the engineered targetable nuclease. Further provided are methods further comprising introducing a second plurality of polynucleotides into a second population of cells comprising the enriched cells from step d), wherein each cell within the second population of cells comprises a third nucleic acid, a fourth target nucleic acid, and a targetable nuclease. Further provided are methods wherein each of the second polynucleotides comprises: i) a modified third target nucleic acid sequence; ii) a third mutant protospacer adjacent motif (PAM) sequence; iii) a third guide nucleic acid sequence comprising a spacer region complementary to a portion of the third target nucleic acid; and (iv) a second recorder sequence. Further provided are methods wherein each second polynucleotide further comprises a fourth mutant PAM sequence. Further provided are methods wherein each second polynucleotide further comprises a fourth guide nucleic acid sequence comprising a guide sequence complementary to a portion of the fourth target nucleic acid. Further provided are methods further comprising: a) inserting the modified third target nucleic acid sequence within the third target nucleic acid; b) inserting the second recorder sequence within the fourth target nucleic acid; c) cleaving the third target nucleic acid by the nuclease in cells that do not comprise the second mutant PAM sequence, thereby enriching for cells comprising the inserted modified third target nucleic acid sequence. Further provided are methods wherein the fourth target nucleic acid is adjacent to the second target nucleic acid. Further provided are methods wherein the inserted first recorder sequence is adjacent to the second recorder sequence, such that sequencing information can be obtained for the first and second recorder sequence from a single sequencing read. Further provided are methods further comprising obtaining sequence information from the first and second recorder sequences within a single sequence read, thereby identifying the modified first and third target nucleic acid sequences inserted into the first and third target nucleic acids respectively.


Provided herein are methods of identifying engineered cells, the method comprising: a) providing cells, wherein each cell comprises a first target nucleic acid, a second target nucleic acid, and a targetable nuclease, b) introducing into the cells a polynucleotide comprising: 1) a first donor nucleic acid comprising i) a modified target nucleic acid sequence; ii) a mutant protospacer adjacent motif (PAM) sequence; and iii) a first guide nucleic acid sequence comprising a first guide sequence complementary to a portion of the first target nucleic acid; and 2) a second donor nucleic acid comprising i) a recorder sequence corresponding to the modified target nucleic acid sequence; and ii) a second guide nucleic acid sequence comprising a second guide sequence complementary to a portion of the second target nucleic acid, c) cleaving the first target nucleic acid by the nuclease in cells that do not comprise the mutant PAM sequence, thereby enriching for cells comprising the modified target nucleic acid sequence, d) repeating steps a)-c) at least one time using the cells enriched for in step c) as the cells for step a) of the following round, wherein the recorder sequence from each round is incorporated adjacent to the recorder sequence from the previous round, thereby generating a record sequence array comprising a plurality of traceable barcodes, and e) sequencing the record sequence, thereby identifying engineered cells comprising a desired combination of modified target nucleic acids. Further provided are methods wherein the second donor nucleic acid further comprises a second mutant PAM sequence. Further provided are methods wherein sequencing the record sequence array comprises obtaining sequence information for each of the plurality of recorder sequences within a single sequencing read. Further provided are methods wherein steps a)-c) are repeated at least once. Further provided are methods wherein steps a)-c) are repeated at least twice. Further provided are methods wherein the recorder sequence is a barcode. Further provided are methods where the first donor nucleic acid and the second donor nucleic acid are covalently linked. A first donor nucleic acid can be a cassette, such as an editing cassette as disclosed herein. A second donor nucleic acid can be a cassette, such as a recording cassette as disclosed herein. A first donor nucleic acid and a second donor nucleic acid can be comprised on a single cassette. A first donor nucleic acid and a second donor nucleic acid can be covalently linked. In any of these examples, the elements of the cassette or donor nucleic acids can be contiguous or non-contiguous.


Provided herein are methods of identifying engineered cells, the method comprising: a) providing cells, wherein each cell comprises a first target nucleic acid, a second target nucleic acid, and a targetable nuclease, b) introducing into the cells a polynucleotide comprising: 1) a first donor nucleic acid comprising i) a modified target nucleic acid sequence; ii) a mutant protospacer adjacent motif (PAM) sequence; and iii) a first guide nucleic acid sequence comprising a first guide sequence complementary to a portion of the first target nucleic acid; and 2) a second donor nucleic acid comprising i) a marker fragment corresponding to the modified target nucleic acid sequence; and ii) a second guide nucleic acid sequence comprising a second guide sequence complementary to a portion of the second target nucleic acid, c) cleaving the first target nucleic acid by the nuclease in cells that do not comprise the mutant PAM sequence, thereby enriching for cells comprising the modified target nucleic acid sequence, d) repeating steps a)-c) at least one time using the cells enriched for in step c) as the cells for step a) of the following round, wherein the marker fragment from each round is incorporated adjacent to the marker fragment from the previous round, thereby generating a complete marker, and e) identifying cells comprising the complete marker, thereby identifying engineered cells comprising a desired combination of modified target nucleic acids. Further provided are methods wherein the second donor nucleic acid further comprises a second mutant PAM sequence. Further provided are methods wherein the complete marker comprises a selectable marker. Further provided are methods wherein the selectable marker comprises an antibiotic resistance marker or an auxotrophic marker. Further provided are methods wherein the complete marker comprises a screenable reporter. Further provided are methods wherein the screenable reporter comprises a fluorescent reporter. Further provided are methods wherein the screenable reporter comprises a gene. Further provided are methods wherein the screenable reporter comprises a promotor or regulatory element. Further provided are methods wherein the promoter or regulatory element turns on or off transcription of a screenable or selectable element. Further provided are methods wherein the screenable reporter comprises a screenable or selectable element which alters a characteristic of a colony comprising the element compared to a colony that does not comprise the element. A first donor nucleic acid can be a cassette, such as an editing cassette as disclosed herein. A second donor nucleic acid can be a cassette, such as a recording cassette as disclosed herein. A first donor nucleic acid and a second donor nucleic acid can be comprised on a single cassette. A first donor nucleic acid and a second donor nucleic acid can be covalently linked. In any of these examples, the elements of the cassette or donor nucleic acids can be contiguous or non-contiguous.


Provided herein are methods of genome engineering, the method comprising: a) introducing into a population of cells a polynucleotide, wherein each cell comprises a first target nucleic acid, a second target nucleic acid, and a targetable nuclease, wherein the polynucleotide comprises: i) a modified first target nucleic acid sequence; ii) a mutant nuclease recognition sequence; iii) a recorder sequence; b) inserting the modified first target nucleic acid sequence within the first target nucleic acid; c) inserting the recorder sequence within the second target nucleic acid; and d) selecting for a phenotype of interest. Further provided are methods wherein the polynucleotide further comprises a second mutant nuclease recognition site. Further provided are methods wherein selecting for a phenotype of interest comprises cleaving the first target nucleic acid by the nuclease in cells that do not comprise the mutant nuclease recognition sequence, thereby enriching for cells comprising the inserted modified first target nucleic acid sequence. Further provided are methods wherein selecting for a phenotype of interest comprises cleaving the second target nucleic acid by the nuclease in cells that do not comprise the second mutant nuclease recognition sequence, thereby enriching for cells comprising the inserted modified first target nucleic acid sequence. Further provided are methods wherein the recorder sequence is linked to the modified first target nucleic acid. Further provided are methods wherein the recorder sequence comprises a unique sequence by which the modified first target nucleic acid is specifically identified upon sequencing the recorder sequence. Further provided are methods further comprising e) sequencing the recorder sequence, thereby identifying the modified first target nucleic acid that was inserted within the first target nucleic acid in step b). Further provided are methods wherein inserting the modified first target nucleic acid sequence comprises homology-directed repair. Further provided are methods wherein inserting the modified first target nucleic acid sequence comprises homologous recombination. Further provided are methods wherein the nuclease is a Cas protein. Further provided are methods wherein the polynucleotide further comprises a first guide nucleic acid sequence comprising a guide sequence complementary to a portion of the first target nucleic acid. Further provided are methods wherein inserting the modified first target nucleic acid sequence comprises cleaving the first target nucleic acid by the nuclease complexed with the transcription product of the first guide nucleic acid sequence. Further provided are methods wherein the polynucleotide further comprises a second guide nucleic acid sequence comprising a guide sequence complementary to a portion of the second target nucleic acid. Further provided are methods wherein inserting the recorder sequence comprises cleaving the second target nucleic acid by the nuclease complexed with the transcription product of the second guide nucleic acid sequence. Further provided are methods wherein inserting the modified first target nucleic acid sequence or the recorder sequence comprises homology-directed repair. Further provided are methods wherein inserting the modified first target nucleic acid sequence or the recorder sequence comprises homologous recombination. Further provided are methods wherein the mutant nuclease recognition sequence comprises a mutant PAM sequence not recognized by the targetable nuclease. Further provided are methods wherein the Cas protein is a Type II or Type V Cas protein. Further provided are methods wherein the targetable nuclease is MAD2. Further provided are methods wherein the mutant PAM sequence is not recognized by MAD2. Further provided are methods wherein the targetable nuclease is MAD7. Further provided are methods wherein the mutant PAM sequence is not recognized by MAD7. Further provided are methods wherein the Cas protein is Cas9. Further provided are methods wherein the mutant PAM sequence is not recognized by Cas9. Further provided are methods wherein the Cas protein is Cpf1. Further provided are methods wherein the mutant PAM sequence is not recognized by Cpf1. Further provided are methods wherein the nuclease is an Argonaute nuclease. Further provided are methods further comprising introducing guide DNA oligonucleotides comprising a guide sequence complementary to a portion of the first target nucleic acid prior to selecting for a phenotype. Further provided are methods wherein the mutant nuclease recognition sequence comprises a mutant target flanking sequence not recognized by the Argonaute nuclease. Further provided are methods wherein the nuclease is a zinc finger nuclease. Further provided are methods wherein the mutant nuclease recognition sequence is not recognized by the zinc finger nuclease. Further provided are methods wherein the nuclease is a transcription activator-like effector nuclease (TALEN). Further provided are methods wherein the mutant nuclease recognition sequence is not recognized by the TALEN.


INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

This patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.



FIGS. 1A-1C depict an example genetic engineering workflow including target design, plasmid design, and plasmid library generation. FIG. 1B discloses SEQ ID NOS 187-190, respectively, in order of appearance.



FIGS. 2A-2D depicts validation data for an example experiment using a disclosed engineering method.



FIGS. 3A-3C depict an example trackable genetic engineering workflow, including a plasmid comprising an editing cassette and a recording cassette, and downstream sequencing of barcodes in order to identify the incorporated edit or mutation. FIG. 3B discloses SEQ ID NOS 191-192, respectively, in order of appearance. FIG. 3B discloses SEQ ID NOS 191-192, respectively, in order of appearance.



FIGS. 3D-3E depict an example trackable genetic engineering workflow, including iterative rounds of engineering with a different editing cassette and recorder cassette with unique barcode (BC) at each round, followed by selection and tracking to confirm the successful engineering step at each round.



FIGS. 4A-4B depict an example of incorporation of a target mutation and PAM mutation using a plasmid comprising an editing cassette. FIG. 4B discloses SEQ ID NOS 193, 193, 194, 193, 194, 193, 193, 195, 193, 196, 193, 197, 194, 193 and 198, respectively, in order of appearance.



FIGS. 5A-5B depict an example of a plasmid comprising an editing cassette, designed to incorporate a target mutation and a PAM mutation into a first target sequence, and a recording cassette, designed to incorporate a barcode sequence into a second target sequence. FIG. 5B depicts example data validating incorporation of the editing cassette and recorder cassette and selection of the engineered bacterial cells. FIG. 5A discloses the left column sequences as SEQ ID NOS 199, 200, 201, 200, 200, 200, 200, 200, 200, 200, 200, 201, 202, 200, 200, 200, 200, 200, 200, 200, 202 and 200, respectively, in order of appearance and the right column sequences as SEQ ID NOS 203, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 203, 205, 205, 205, 205, 205, 205, 205, 205, 205 and 205, respectively, in order of appearance.



FIG. 6 depicts an example recursive engineering workflow.



FIGS. 7A-7B depict an example plasmid curing workflow for combinatorial engineering and validation of an example experiment using said workflow.



FIGS. 8A-8B depict an example genetic engineering workflow including target design, plasmid design, and plasmid library generation. FIG. 8A discloses SEQ ID NOS 187-190, respectively, in order of appearance.



FIGS. 9A-9D depicts validation data for an example genetic engineering experiment.



FIGS. 10A-10F depict an example data set from a genetic engineering experiment.



FIGS. 11A-11C depict an example design and data set from a genetic engineering experiment.



FIGS. 12A-12F depict an example design for a genetic engineering experiment.



FIGS. 13A-13D depict example designed edits to be made by a genetic engineering. FIG. 13A discloses SEQ ID NOS 187-190, respectively, in order of appearance. FIG. 13C discloses SEQ ID NOS 206 and 207, respectively, in order of appearance.



FIGS. 14A-14B depict an example design for a genetic engineering experiment.



FIGS. 15A-15D depict an example of Cas9 editing efficiency controls. FIG. 15D discloses SEQ ID NOS 208 and 209, respectively, in order of appearance.



FIGS. 16A-16E depict an examples of toxicity of dsDNA cleavage in E. coli.



FIG. 16F-16H depict an example of a transformation and survival assay, and editing and recording efficiencies, with low and high copy plasmids expressing Cas9.



FIGS. 17A-17D depict an example of genetic engineering strategy for gene deletion. FIGS. 17A and 17C disclose SEQ ID NO: 210.



FIGS. 18A-18B depicts an example of editing efficiency controls by cotransformation of guide nucleic acid and linear dsDNA cassettes.



FIGS. 19A-19D depict an example of library cloning analysis and statistics.



FIGS. 20A-20B depict an example of precision of editing cassette tracking of recombineered populations.



FIG. 21 depicts an example of growth characteristics of folA mutations in M9 minimal media



FIGS. 22A-22C depicts an example of enrichment profiles for folA editing cassettes in minimal media.



FIGS. 23A-23F depict an example of validation of identified acrB mutations for improved solvent and antibiotic tolerance.



FIGS. 24A-24D depict an example mutant variant assessment analysis.



FIG. 25 depicts an example of reconstruction of mutations identified by erythromycin selection.



FIGS. 26A-26B depict an example of validation of Crp S28P mutation for furfural or thermal tolerance.



FIGS. 27A-27C depict an example of edit and barcode correlation studies.



FIG. 28 depicts an example of a selectable recording strategy.



FIG. 29 depicts an example of a selectable recording strategy.



FIGS. 30A-30B depict data from a selectable recording experiment. FIG. 30A discloses SEQ ID NO: 211.



FIGS. 31A-31B depict editing and transformation efficiencies from various nucleic acid-guided nucleases from an example experiment.



FIG. 32 depict editing efficiencies of the MAD2 nuclease with various guide nucleic acids.



FIG. 33 depict editing efficiencies of the MAD7 nuclease with various guide nucleic acids.





DETAILED DESCRIPTION OF THE DISCLOSURE

While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention.


Methods and compositions for enabling sophisticated combinatorial engineering strategies to optimize and explore complex phenotypes are provided herein. Many phenotypes of interest to basic research and biotechnology are the result of combinations of mutations that occur at distal loci. For example, cancer is often linked to mutations that influence multiple hallmark gene functions rather than a single chromosomal edit. Likewise, many metabolic and regulatory processes that are the target of continuing engineering efforts require the activities of many proteins acting in concert to produce the phenotypic output of interest. Methods and compositions disclosed herein can provide ways of rapid engineering and prototyping of such functions since they can provide rapid construction and accurate reporting on the mutational effects at many sites in parallel.


The methods and compositions described herein can be carried out or used in any type of cell in which a nucleic acid-guided nuclease system, such as CRISPR or Argonaute, or other targetable nuclease systems, such as TALEN, ZFN, or meganuclease can function (e.g., target and cleave DNA), including prokaryotic, eukaryotic, or archaeal cells. The cell can be a bacterial cell, such as Escherichia spp. (e.g., E. coli). The cell can be a fungal cell, such as a yeast cell, e.g., Saccharomyces spp. The cell can be a human cell. The cell can be an algal cell, a plant cell, an insect cell, or a mammalian cell, including a human cell. Additionally or alternatively, the methods described herein can be carried out in vitro or in cell-free systems in which a nucleic acid guided nuclease system, such as CRISPR or Argonaute, or other nuclease systems, such as TALEN, ZFN, or meganuclease can function (e.g., target and cleave DNA).


Disclosed herein are compositions and methods for genetic engineering. Disclosed are methods and compositions suitable for trackable or recursive genetic engineering. Disclosed method and compositions can use massively multiplexed oligonucleotide synthesis and cloning to enable high fidelity, trackable, multiplexed genome editing at single nucleotide resolution on a whole genome scale.


Trackable Plasmids


Methods and compositions can be used to perform high-fidelity trackable editing, for example, at single-nucleotide resolution and can be used to perform editing at a whole genome scale or on episomal nucleic acid molecules. Massively multiplexed oligonucleotide synthesis and/or cloning can be used in combination with a targetable nuclease system, such as a CRISPR system, MAD2 system, MAD7 system, or other nucleic acid-guided nuclease system, for editing.


As used herein, “cassette” often refers to a single molecule polynucleotide. A cassette can comprise DNA. A cassette can comprise RNA. A cassette can comprise a combination of DNA and RNA. A cassette can comprise non-naturally occurring nucleotides or modified nucleotides. A cassette can be single stranded. A cassette can be double stranded. A cassette can be synthesized as a single molecule. A cassette can be assembled from other cassettes, oligonucleotides, or other nucleic acid molecules. A cassette can comprise one or more elements. Such elements can include, as non-limiting examples, one or more of any of editing sequences, recorder sequences, guide nucleic acids, promoters, regulatory elements, mutant PAM sequences, homology arms, primer sites, linker regions, unique landing sites, a cassette, and any other element disclosed herein. Such elements can be in any order or combination. Any two or more elements can be contiguous or non-contiguous. A cassette can be comprised within a larger polynucleic acid. Such a larger polynucleic acid can be linear or circular, such as a plasmid or viral vector. A cassette can be a synthesized cassette. A cassette can be a trackable cassette.


A cassette can be designed to be used in any method or composition disclosed herein, including multiplex engineering methods and trackable engineering methods. An exemplary cassette can couple two or more elements, such as 1) a guide nucleic acid (e.g. gRNAs or gDNAs) designed for targeting a user specified target sequence in the genome and 2) an editing sequence and/or recorder sequence as disclosed herein (e.g. FIG. 1B and FIG. 5A). A cassette comprising an editing sequence and guide nucleic acid can be referred to as an editing cassette. A cassette comprising an editing sequence can be referred to as an editing cassette. A cassette comprising a recorder sequence and a guide nucleic acid can be referred to as a recorder cassette. A cassette comprising a recorder sequence can be referred to as a recorder cassette. In a preferred embodiment, an editing cassette and a recorder cassette are delivered into the cell at the same time. Further, an editing cassette and a recorder cassette may be covalently linked. Further, these elements may be synthesized together by multiplexed oligonucleotide synthesis.


A cassette can comprise one or more guide nucleic acids and editing cassette as a contiguous polynucleotide. In other examples, one or more guide nucleic acids and editing cassette are contiguous. In other examples, one or more guide nucleic acids and editing cassette are non-contiguous. In other examples, two or more guide nucleic acids and editing cassette are non-contiguous.


A cassette can comprise one or more guide nucleic acids, an editing cassette, and a recorder cassette as a contiguous polynucleotide. In other examples, one or more guide nucleic acids, editing cassette, and recorder cassette are contiguous. In other examples, two or more guide nucleic acids, editing cassette, and recorder cassette are contiguous. In other examples, one or more guide nucleic acids, editing cassette, and recorder cassette are non-contiguous. In other examples, two or more guide nucleic acids, editing cassette, and recorder cassette are non-contiguous.


A cassette can comprise one or more guide nucleic acids, one or more editing cassettes, and one or more recorder cassettes as a contiguous polynucleotide. In other examples, one or more guide nucleic acids, one or more editing cassettes, and one or more recorder cassettes are contiguous. In other examples, two or more guide nucleic acids, two or more editing cassettes, and two or more recorder cassettes are contiguous. In other examples, one or more guide nucleic acids, one or more editing cassettes, and one or more recorder cassettes are non-contiguous. In other examples, two or more guide nucleic acids, two or more editing cassettes, and two or more recorder cassettes are non-contiguous.


A cassette can comprise one or more guide nucleic acids and editing sequence as a contiguous polynucleotide. In other examples, one or more guide nucleic acids and editing sequence are contiguous. In other examples, one or more guide nucleic acids and editing sequence are non-contiguous. In other examples, two or more guide nucleic acids and editing sequence are non-contiguous.


A cassette can comprise one or more guide nucleic acids, an editing sequence, and a recorder sequence as a contiguous polynucleotide. In other examples, one or more guide nucleic acids, editing sequence, and recorder sequence are contiguous. In other examples, two or more guide nucleic acids, editing sequence, and recorder sequence are contiguous. In other examples, one or more guide nucleic acids, editing sequence, and recorder sequence are non-contiguous. In other examples, two or more guide nucleic acids, editing sequence, and recorder sequence are non-contiguous.


A cassette can comprise one or more guide nucleic acids, one or more editing sequences, and one or more recorder sequences as a contiguous polynucleotide. In other examples, one or more guide nucleic acids, one or more editing sequences, and one or more recorder sequences are contiguous. In other examples, two or more guide nucleic acids, two or more editing sequences, and two or more recorder sequences are contiguous. In other examples, one or more guide nucleic acids, one or more editing sequences, and one or more recorder sequences are non-contiguous. In other examples, two or more guide nucleic acids, two or more editing sequences, and two or more recorder sequences are non-contiguous.


An editing cassette can comprise an editing sequence. An editing sequence can comprise a mutation, such as a synonymous or non-synonymous mutation, and homology arms (HAs). An editing sequence can comprise a mutation, such as a synonymous or non-synonymous mutation, and homology arms (HAs) designed to undergo homologous recombination with the target sequence at the site of nucleic acid-guided nuclease-mediated double strand break (e.g. FIG. 1B).


A recorder cassette can comprise a recorder sequence. A recorder sequence can comprise a trackable sequence, such as a barcode or marker, and homology arms (HAs). A recorder sequence can comprise a trackable sequence, such as a barcode or marker, and homology arms (HAs) designed to undergo homologous recombination with the chromosome at the site of nucleic acid-guided nuclease-mediated double strand break (e.g. FIG. 1B).


A cassette can encode machinery (e.g. targetable nuclease, guide nucleic acid, editing cassette, and/or recorder cassette as disclosed herein) necessary to induce strand breakage as well as designed repair that can be selectively enriched and/or tracked in cells. A cell can be any cell such as eukaryotic cell, archaeal cell, prokaryotic cell, or microorganisms such as E. coli (e.g. FIG. 2A-2D).


A cassette can comprise an editing cassette. A cassette can comprise a recorder cassette. A cassette can comprise a guide nucleic acid and an editing cassette. A cassette can comprise a guide nucleic acid and a recorder cassette. A cassette can comprise a guide nucleic acid, an editing cassette, and a recorder cassette. A cassette can comprise two guide nucleic acids, an editing cassette, and a recorder cassette. A cassette can comprise more than two guide nucleic acids, one or more editing cassettes, and one or more recorder cassettes. These elements of a cassette can be linked covalently. These elements of a cassette can be contiguous. These elements of a cassette can be contiguous.


A cassette can comprise an editing sequence. A cassette can comprise a recorder sequence. A cassette can comprise a guide nucleic acid and an editing sequence. A cassette can comprise a guide nucleic acid and a recorder sequence. A cassette can comprise a guide nucleic acid, an editing sequence, and a recorder sequence. A cassette can comprise two guide nucleic acids, an editing sequence, and a recorder sequence. A cassette can comprise more than two guide nucleic acids, one or more editing sequences, and one or more recorder sequences. These elements of a cassette can be linked covalently. These elements of a cassette can be contiguous. These elements of a cassette can be contiguous.


Single genome edits can be tracked using sequencing technologies, e.g. short read sequencing technologies (e.g. FIG. 1C), long read sequencing technologies, or any other sequencing technologies known in the art.


In some embodiments, upon transformation, each editing cassette generates the designed genetic modification within the transformed cell. In some examples, the editing cassette can act in trans as a barcode of the genetic mutation introduced by the editing cassette and can enable the tracking of this mutation frequency in a complex population over time and across many different growth conditions (e.g. FIGS. 2A-2D and FIG. 1C).


In some examples, a recording cassette inserts the designed trackable sequence, such as a marker or barcode sequence, within the transformed cell. In some examples, the recorder cassette can act in cis as a barcode of the chromosomal mutation and can enable the tracking of this mutation frequency in a complex population over time and across many different growth conditions.


By providing cis and/or trans tracking of designed genomic mutations, the methods provided herein simplify sample preparation and depth of coverage for mapping diversity genome wide, and provide powerful tools for engineering on a genome scale (e.g. FIG. 1C).


A plurality of cassettes can be pooled into a library of cassettes. A library of cassettes can comprise at least 2 cassettes. A library of cassettes can comprise from 5 to a million cassettes. A library of cassettes can comprise at least a million cassettes. It should be understood, that a library of cassettes can comprise any number of cassettes.


A library of cassettes can comprise cassettes that have any combination of common elements and non-common or unique elements as compared to the other cassettes within the pool. For example, a library of cassettes can comprise common priming sites or common homology arms while also containing non-common or unique barcodes. Common elements can be shared by a plurality, majority, or all of the cassettes within a library of cassettes. Non-common elements can be shared by a plurality, minority, or sub-population of cassettes within the library of cassettes. Unique elements can be shared by a one, a few, or a sub-population of cassettes within the library of cassettes, such that it is able to identify or distinguish the one, few, or sub-population of cassettes from the other cassettes within the library of cassettes. Such combinations of common and non-common are advantageous for multiplexing techniques as disclosed herein.


Cassettes disclosed herein can generate the designed genetic modification or insert the designed marker or barcode sequence with high efficiency within a transformed cell. In many examples, the efficiency is greater than 50%. In some examples the efficiency is 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, or 100% (e.g., FIGS. 32A, 32B, and 33).


In some examples, transformation, editing, and/or recording efficiency can be increased by modulating the expression of one or more components disclosed herein, such as a nucleic acid-guided nuclease. Methods for modulating components are disclosed herein and are known in the art. Such methods can include expressing a component, such as a nucleic acid-guided nuclease or CRISPR enzyme of a subject system on a low or high copy plasmid, depending on the experimental design.


Disclosed herein are methods and compositions for generating cassettes. A cassettes can comprise a cassettes as disclosed herein. For example, a cassette can comprise any combination of an editing cassette and/or recorder cassette disclosed herein. Such a cassette can be comprised on a larger polynucleic acid molecule. Such a larger polynucleic acid molecule can be linear or circular, such as a plasmid or viral vector.


An editing cassette can comprise a mutation relative to a target nucleic acid sequence. The editing cassette can comprise sequence homologous to the target sequence flanking the desired mutation or editing sequence. The editing cassette can comprise a region which recognizes, or hybridizes to, a target sequence of a nucleic acid in a cell or population of cells, is homologous to the target sequence of the nucleic acid of the cell and includes a mutation, or a desired mutation, of at least one nucleotide relative to the target sequence.


An editing cassette can comprise a first editing sequence comprising a first mutation relative to a target sequence. A first mutation can comprise a mutation such as an insertion, deletion, or substitution of at least one nucleotide compared to the non-editing target sequence. The mutation can be incorporated into a coding region or non-coding region.


An editing cassette can comprise a second editing sequence comprising a second mutation relative to a target sequence. The second mutation can be designed to mutate or otherwise silence a PAM sequence such that a corresponding nucleic acid guided nuclease or CRISPR nuclease is no longer able to cleave the target sequence. In such cases, this mutation or silencing of a PAM can serve as a method for selecting transformants in which the first editing sequence has been incorporated.


In some examples, an editing cassette comprises at least two mutations, wherein one mutation is a PAM mutation. In some examples, the PAM mutation can be in a second editing cassette. Such a second editing cassette can be covalently linked and can be continuous or non-contiguous to the other elements in the cassette.


An editing cassette can comprise a guide nucleic acid, such as a gRNA encoding gene, optionally operably linked to a promoter. The guide nucleic acid can be designed to hybridize with the targeted nucleic acid sequence in which the editing sequence will be incorporated.


A recording cassette can comprise a recording sequence. A recorder sequence can comprise a barcoding sequence, or other screenable or selectable marker or fragment thereof. The recording sequence can be comprised within a recorder cassette. Recorder cassettes can comprise regions homologous to an insertion site within a target nucleic acid sequence such that the recording sequence is incorporated by homologous recombination or homology-driven repair systems. The site of incorporation of the recording cassette can be comprised on the same DNA molecule as the target nucleic acid to be edited by an editing cassette. The recorder sequence can comprise a barcode, unique DNA sequence, and/or a complete copy or fragment of a selectable or screenable element or marker.


A recorder cassette can comprise a mutation relative to the target sequence. The mutation can be designed to mutate or otherwise silence a PAM sequence such that a corresponding nucleic acid guided nuclease or CRISPR nuclease is no longer able to cleave the target sequence. In such cases, this mutation or silencing of a PAM site can serve as a method for selecting transformants in which the first recording sequence has been incorporated. A recorder cassette can comprise a PAM mutation. The PAM mutation can be designed to mutate or otherwise silence a PAM site such that a corresponding CRISPR nuclease is no longer able to cleave the target sequence. In such cases, this mutation or silencing of a PAM site can serve as a method for selecting transformants in which the recorder sequence has been incorporated.


A recorder cassette can comprise a guide nucleic acid, such as a gene encoding a gRNA. A promoter can be operably linked to a nucleic acid sequence encoding a guide nucleic acid capable of targeting a nucleic acid-guided nuclease to the desired target sequence. A guide nucleic acid can target a unique site within the target site. In some cases, the guide nucleic acid targets a unique landing site that was incorporated in a prior round of engineering. In some cases, the guide nucleic acid targets a unique landing site that was incorporated by a recorder cassette in a prior round of engineering.


A recorder cassette can comprise a barcode. A barcode can be a unique barcode or relatively unique such that the corresponding mutation can be identified based on the barcode. In some examples, the barcode is a non-naturally occurring sequence that is not found in nature. In most examples, the combination of the desired mutation and the barcode within the editing cassette is non-naturally occurring and not found in nature. A barcode can be any number of nucleotides in length. A barcode can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more than 30 nucleotides in length. In some cases, the barcode is more than 30 nucleotides in length. A barcode can be generated by degenerate oligonucleotide synthesis. A barcode can be rationally designed or user-specified.


A recorder cassette can comprise a landing site. A landing site can serve as a target site for a recorder cassette for a successive engineering round. A landing site can comprise a PAM. A landing site can be a unique sequence. A landing site can be at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50 nucleotides in length. In some cases, the landing site is greater than 50 nucleotides in length.


A recorder cassette can comprise a selectable or screenable marker, or a regulatory sequence or mutation that turns a selectable or screenable marker on or off. In such cases, the turning on or off of a selectable marker can be used of selection or counter-selection, respectively, of iterative rounds of engineering. An example regulatory sequence includes a ribosome-binding site (RBS), though other such regulatory sequences are envisioned. Mutations that turn a selectable or screenable marker on can include any possible start codon that is recognized by the host transcription machinery. A mutation that turns off a selectable or screenable marker includes a mutation that deletes a start codon or one that inserts a premature stop codon or a reading frame shift mutation.


A recorder cassette can comprise one or more of a guide nucleic acid targeting a target site into which the recorder sequence is to be incorporated, a PAM mutation to silence a PAM used by the guide RNA, a barcode corresponding to an editing cassette, a unique site to serve as a landing site for a recorder cassette of a subsequent rounds of engineering, a regulatory sequence or mutation that turns a screenable or selectable marker on or off, these one or more elements being flanked by homology arms that are designed to promote recombination of these one or more elements into the cleaved target site that is targeted by the guide RNA.


A recorder cassette can comprise a first homology arm, a PAM mutation, a barcode, a unique landing site, a regulatory sequence or mutation for a screenable or selectable marker, a second homology arm, and guide RNA. The first homology arm can be an upstream homology arm. The second homology arm can be a downstream homology arm. The homology arms can be homologous to sequences flanking a cleavage site that is targeted by the guide RNA.


A cassette can comprise two guide nucleic acids designed to target two distinct target nucleic acid sequences. In any case, the guide nucleic acid can comprise a single gRNA or chimeric gRNA consisting of a crRNA and trRNA sequences, or alternatively, the gRNA can comprise separated crRNA and trRNAs, or a guide nucleic acid can comprise a crRNA. In other examples, guide nucleic acid can be introduced simultaneously with a trackable polynucleic acid or plasmid comprising an editing cassette and/or recorder cassette. In these cases, the guide nucleic acid can be encoded on a separate plasmid or be delivered in RNA form via delivery methods well known in the art.


A cassette can comprise a gene encoding a nucleic acid-guided nuclease, such as a CRISPR nuclease, functional with the chosen guide nucleic acid. A nucleic acid-guided nuclease or CRISPR nuclease gene can be provided on a separate plasmid. A nucleic acid-guided nuclease or CRISPR nuclease can be provided on the genome or episomal plasmid of a host organism to which a trackable polynucleic acid or plasmid will be introduced. In any of these examples, the nucleic acid-guided nuclease or CRISPR nuclease gene can be operably linked to a constitutive or inducible promotor. Examples of suitable constitutive and inducible promoters are well known in the art. A nucleic acid-guided nuclease or CRISPR nuclease can be provided as mRNA or polypeptide using delivery systems well known in the art. Such mRNA or polypeptide delivery systems can include, but are not limited to, nanoparticles, viral vectors, or other cell-permeable technologies.


A cassette can comprise a selectable or screenable marker, for example, such as that comprised within a recorder cassette. For example, the recorder cassette can comprise a barcode, such as trackable nucleic acid sequence which can be uniquely correlated with a genetic mutation of the corresponding editing cassette, or otherwise identifiably correlated with such a genetic mutation such that sequencing the barcode will allow identification of the corresponding genetic mutation introduced by the editing cassette. In other examples, recorder cassette can comprise a complete copy of or a fragment of a gene encoding an antibiotic resistance gene, auxotrophic marker, fluorescent protein, or other known selectable or screenable markers.


Trackable Plasmid Libraries


A trackable library can comprise a plurality of cassettes as disclosed herein. A trackable library can comprise a plurality of trackable polynucleic acids or plasmids comprising a cassette as disclosed herein. A cassette, polynucleotide, or plasmid comprising a recorder sequence or recorder cassette as disclosed herein can be referred to as a trackable cassette, polynucleotide, or plasmid. A cassette, polynucleotide, or plasmid comprising an editing sequence or editing cassette as disclosed herein can be referred to as a trackable cassette, polynucleotide, or plasmid.


In some cases, within the trackable library are distinct editing cassette and recorder cassette combinations that are sequenced to determine which editing sequence corresponds with a given marker or barcode sequence comprised within the recorder cassette. Therefore, when the editing and recorder sequences are incorporated into a target sequence, you can determine the edit that was incorporated by sequencing the recorder sequence. Sequence the recorder sequence or barcode can significantly cut down on sequencing time and cost.


Library size can depend on the experiment design. For example, if the aim is to edit each amino acid within a protein of interest, then the library size can depend on the number (N) of amino acids in a protein of interest, with a full saturation library (all 20 amino acids at each position or non-naturally occurring amino acids) scaling as 19 (or more)×N and an alanine-mapping library scaling as 1×N. Thus, screening of even very large proteins of more than 1,000 amino acids can be tractable given current multiplex oligo synthesis capabilities (e.g. 120,000 oligos). In addition to or as an alternative to activity screens, more general properties with developed high-throughput screens and selections can be efficiently tested using the libraries disclosed herein. It should be readily understood that libraries can be designed to mutate any number of amino acids within a target protein, including 1, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, etc. up to the total number of amino acids within a target protein. Additionally, select amino acids can be targeted, such as catalytically active amino acids, or those involved in protein-protein interactions. Each amino acid that is targeted for mutation can be mutated into any number of alternate amino acids, such as any other natural or non-naturally occurring amino acid or amino acid analog. In some examples, all targeted amino acids are mutated to the same amino acid, such as alanine. In other cases, the targeted amino acids are independently mutated to any other amino acid in any combination or permutation.


Trackable libraries can comprise trackable mutations in individual residues or sequences of interest. Trackable libraries can be generated using custom-synthesized oligonucleotide arrays. Trackable plasmids can be generated using any cloning or assembly methods known in the art. For example, CREATE-Recorder plasmids can be generated by chemical synthesis, Gibson assembly, SLIC, CPEC, PCA, ligation-free cloning, other in vitro oligo assembly techniques, traditional ligation-based cloning, or any combination thereof.


Recorder sequences, such as barcodes, can be designed in silico via standard code with a degenerate mutation at the target codon. The degenerate mutation can comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more than 30 nucleic acid residues. In some examples, the degenerate mutations can comprise 15 nucleic acid residues (N15).


Homology aims can be added to a recorder sequence and/or editing sequence to allow incorporation of the recorder and/or editing sequence into the desired location via homologous recombination or homology-driven repair. Homology arms can be added by synthesis, in vitro assembly, PCR, or other known methods in the art. For example, homology arms can be assembled via overlapping oligo extension, Gibson assembly, or any other method disclosed herein. A homology arm can be added to both ends of a recorder and/or editing sequence, thereby flanking the sequence with two distinct homology arms, for example, a 5′ homology arm and a 3′ homology arm.


The same 5′ and 3′ homology arms can be added to a plurality of distinct recorder sequences, thereby generating a library of unique recorder sequences that each have the same spacer target or targeted insertion site. The same 5′ and 3′ homology arms can be added to a plurality of distinct editing sequences, thereby generating a library of unique editing sequences that each have the same spacer target or targeted insertion site. In alternative examples, different or a variety of 5′ or 3′ homology arms can be added to a plurality of recorder sequences or editing sequences.


A recorder sequence library comprising flanking homology arms can be cloned into a vector backbone. In some examples, the recorder sequence and homology arms are cloned into a recorder cassette. Recorder cassettes can, in some cases, further comprise a nucleic acid sequence encoding a guide nucleic acid or gRNA engineered to target the desired site of recorder sequence insertion. In many cases, the nucleic acid sequences flanking the CRISPR/Cas-mediated cleavage site are homologous or substantially homologous to the homology arms comprised within the recorder cassette.


An editing sequence library comprising flanking homology arms can be cloned into a vector backbone. In some examples, the editing sequence and homology arms are cloned into an editing cassette. Editing cassettes can, in some cases, further comprise a nucleic acid sequence encoding a guide nucleic acid or gRNA engineered to target the desired site of editing sequence insertion. In many cases, the nucleic acid sequences flanking the CRISPR/Cas-mediated cleavage site are homologous or substantially homologous to the homology arms comprised within the editing cassette.


Gene-wide or genome-wide editing libraries can be subcloned into a vector backbone. In some cases, the vector backbone comprises a recorder cassette as disclosed herein. The editing sequence library can be inserted or assembled into a second site to generate competent trackable plasmids that can embed the recording barcode at a fixed locus while integrating the editing libraries at a wide variety of user defined sites.


A recorder sequence and/or cassette can be assembled or inserted into a vector backbone first, followed by insertion of an editing sequence and/or cassette. In other cases, an editing sequence and/or cassette can be inserted or assembled into a vector backbone first, followed by insertion of a recorder sequence and/or cassette. In other cases, a recorder sequence and/or cassette and an editing sequence and/or cassette are simultaneous inserted or assembled into a vector. In other cases, a recorder sequence and/or cassette and an editing sequence and/or cassette are comprised on the same cassette prior to simultaneous insertion or assembly into a vector. In other cases, a recorder sequence and/or cassette and an editing sequence and/or cassette are linked prior to simultaneous insertion or assembly into a vector. In other cases, a recorder sequence and/or cassette and an editing sequence and/or cassette are covalently linked prior to simultaneous insertion or assembly into a vector. In any of these cases, trackable plasmids or plasmid libraries can be generated.


A cassette or nucleic acid molecule can be synthesized which comprises one or more elements disclosed herein. For example, a nucleic acid molecule can be synthesized that comprises an editing cassette and a guide nucleic acid. A nucleic acid molecule can be synthesized that comprises an editing cassette and a recorder cassette. A nucleic acid molecule can be synthesized that comprises an editing cassette, a guide nucleic acid, and a recorder cassette. A nucleic acid molecule can be synthesized that comprises an editing cassette, a recorder cassette, and two guide nucleic acids. A nucleic acid molecule can be synthesized that comprises a recorder cassette and a guide nucleic acid. A nucleic acid molecule can be synthesized that comprises a recorder cassette. A nucleic acid molecule can be synthesized that comprises an editing cassette. In any of these cases, the guide nucleic acid can optionally be operably linked to a promoter. In any of these cases, the nucleic acid molecule can further include one or more barcodes.


Synthesized cassettes or synthesized nucleic acid molecules can be synthesized using any oligonucleotide synthesis method known in the art. For example, cassettes can be synthesized by array based oligonucleotide synthesis. In such examples, following synthesis of the oligonucleotides, the oligonucleotides can be cleaved from the array. Cleavage of oligonucleotides from an array can create a pool of oligonucleotides.


Software and automation methods can be used for multiplex synthesis and generation. For example, software and automation can be used to create 10, 102, 103, 104, 105, 106, or more cassettes, such as trackable cassettes. An automation method can generate trackable plasmids in rapid fashion. Trackable cassettes can be processed through a workflow with minimal steps to produce precisely defined genome-wide libraries.


Cassette libraries, such as trackable cassette libraries, can be generated which comprise two or more nucleic acid molecules or plasmids comprising any combination disclosed herein of recorder sequence, editing sequence, guide nucleic acid, and optional barcode, including combinations of one or more of any of the previously mentioned elements. For example, such a library can comprise at least 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 104, 105, 106, 107, 108, 109, 1010, or more nucleic acid molecules or plasmids of the present disclosure. It should be understood that such a library can include any number of nucleic acid molecules or plasmids, even if the specific number is not explicit listed above.


Cassettes or cassette libraries can be sequenced in order to determine the recorder sequence and editing sequence pair that is comprised on each cassette. In other cases, a known recorder sequence is paired with a known editing sequence during the library generation process. Other methods of determining the association between a recorder sequence and editing sequence comprised on a common nucleic acid molecule or plasmid are envisioned such that the editing sequence can be identified by identification or sequencing of the recorder sequence.


Methods and compositions for tracking edited episomal libraries that are shuttled between E. coli and other organisms/cell lines are provided herein. The libraries can be comprised on plasmids, Bacterial artificial chromosomes (BACs), Yeast artificial chromosomes (YACs), synthetic chromosomes, or viral or phage genomes. These methods and compositions can be used to generate portable barcoded libraries in host organisms, such as E. coli. Library generation in such organisms can offer the advantage of established techniques for performing homologous recombination. Barcoded plasmid libraries can be deep-sequenced at one site to track mutational diversity targeted across the remaining portions of the plasmid allowing dramatic improvements in the depth of library coverage (e.g. FIG. 3A).


Trackable Engineering Methods


An example of trackable engineering workflow is depicted in FIG. 3A. Each plasmid can encode a recorder cassette designed to edit a site in the target DNA (e.g. FIG. 3A, black cassette). Sites to be targeted can be functionally neutral sites, or they can be a screenable or selectable marker gene. The homology arm (HA) of the recorder cassette can contain a recorder sequence (e.g., FIG. 3B) that is inserted into the recording site during recombineering. Recombineering can comprise DNA cleavage, such as nucleic acid-guided nuclease-mediated DNA cleavage, and repair via homologous recombination. The recorder sequence can comprise a barcode, unique DNA sequence, or a complete copy or fragment of a screenable or selectable marker. In some examples, the recorder sequence is 15 nucleotides. The recorder sequence can comprise less than 10, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 88, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, or more than 200 nucleotides.


Through a multiplexed cloning approach, the recorder cassette can be covalently coupled to at least one editing cassette in a plasmid (e.g., FIG. 3A, green cassette) to generate trackable plasmid libraries that have a unique recorder and editing cassette combination. This trackable library can be sequenced to generate the recorder/edit mapping and used to track editing libraries across large segments of the target DNA (e.g., FIG. 3C). Recorder and editing sequences can be comprised on the same polynucleotide, in which case they are both incorporated into the target nucleic acid sequence, such as a genome or plasmid, by the same recombination event. In other examples, the recorder and editing sequences can be comprised on separate cassettes within the same trackable plasmid, in which case the recorder and editing sequences are incorporated into the target nucleic acid sequence by separate recombination events, either simultaneously or sequentially.


Methods are provided herein for combining multiplex oligonucleotide synthesis with recombineering, to create libraries of specifically designed and trackable mutations. Screens and/or selections followed by high-throughput sequencing and/or barcode microarray methods can allow for rapid mapping of mutations leading to a phenotype of interest.


Methods and compositions disclosed herein can be used to simultaneously engineer and track engineering events in a target nucleic acid sequence.


Trackable plasmids can be generated using in vitro assembly or cloning techniques. For example, the CREATE-Recorder plasmids can be generated using chemical synthesis, Gibson assembly, SLIC, CPEC, PCA, ligation-free cloning, other in vitro oligo assembly techniques, traditional ligation-based cloning, or any combination thereof.


Trackable plasmids can comprise at least one recording sequence, such as a barcode, and at least one editing sequence. In most cases, the recording sequence is used to record and track engineering events. Each editing sequence can be used to incorporate a desired edit into a target nucleic acid sequence. The desired edit can include insertion, deletion, substitution, or alteration of the target nucleic acid sequence. In some examples, the one or more recording sequence and editing sequences are comprised on a single cassette comprised within the trackable plasmid such that they are incorporated into the target nucleic acid sequence by the same engineering event. In other examples, the recording and editing sequences are comprised on separate cassettes within the trackable plasmid such that they are each incorporated into the target nucleic acid by distinct engineering events. In some examples, the trackable plasmid comprises two or more editing sequences. For example, one editing sequence can be used to alter or silence a PAM sequence while a second editing sequence can be used to incorporate a mutation into a distinct sequence.


Recorder sequences can be inserted into a site separated from the editing sequence insertion site. The inserted recorder sequence can be separated from the editing sequence by 1 bp or any number of base pairs. For example, the separation distance can be about 1 bp, 10 bp, 50 bp, 100 bp, 500 bp, 1 kp, 2 kb, 5 kb, 10 kb, or greater. The separation distance can be any discrete integer of base pairs. It should be readily understood that there the limit of the number of base pairs separating the two insertion sites can be limited by the size of the genome, chromosome, or polynucleotide into which the insertions are being made. In some examples, the maximum distance of separation depends on the size of the target nucleic acid or genome.


Recorder sequences can be inserted adjacent to editing sequences, or within proximity to the editing sequence. For example, the recorder sequence can be inserted outside of the open reading frame within which the editing sequence is inserted. Recorder sequence can be inserted into an untranslated region adjacent to an open reading frame within which an editing sequence has been inserted. The recorder sequence can be inserted into a functionally neutral or non-functional site. The recorder sequence can be inserted into a screenable or selectable marker gene.


In some examples, the target nucleic acid sequence is comprised within a genome, artificial chromosome, synthetic chromosome, or episomal plasmid. In various examples, the target nucleic acid sequence can be in vitro or in vivo. When the target nucleic acid sequence is in vivo, the CREATE-Recorder plasmid can be introduced into the host organisms by transformation, transfection, conjugation, biolistics, nanoparticles, cell-permeable technologies, or other known methods for DNA delivery, or any combination thereof. In such examples, the host organism can be a eukaryote, prokaryote, bacterium, archaea, yeast, or other fungi.


The engineering event can comprise recombineering, non-homologous end joining, homologous recombination, or homology-driven repair. In some examples, the engineering event is performed in vitro or in vivo.


The methods described herein can be carried out in any type of cell in which a nucleic acid-guided nuclease system can function (e.g., target and cleave DNA), including prokaryotic and eukaryotic cells or in vitro. In some embodiments the cell is a bacterial cell, such as Escherichia spp. (e.g., E. coli). In other embodiments, the cell is a fungal cell, such as a yeast cell, e.g., Saccharomyces spp. In other embodiments, the cell is an algal cell, a plant cell, an insect cell, or a mammalian cell, including a human cell.


In some examples, a cell is a recombinant organism. For example, the cell can comprise a non-native nucleic acid-guided nuclease system. Additionally or alternatively, the cell can comprise recombination system machinery. Such recombination systems can include lambda red recombination system, Cre/Lox, attB/attP, or other integrase systems. Where appropriate, the trackable plasmid can have the complementary components or machinery required for the selected recombination system to work correctly and efficiently.


A method for genome editing can comprise: (a) introducing a vector that encodes at least one editing cassette and at least one guide nucleic acid into a first population of cells, thereby producing a second population of cells comprising the vector; (b) maintaining the second population of cells under conditions in which a nucleic acid-guided nuclease is expressed or maintained, wherein the nucleic acid-guided nuclease is encoded on the vector, a second vector, on the genome of cells of the second population of cells, or otherwise introduced into the cell, resulting in DNA cleavage and incorporation of the editing cassette; (c) obtaining viable cells. Such a method can optionally further comprise (d) sequencing the target DNA molecule in at least one cell of the second population of cells to identify the mutation of at least one codon.


A method for genome editing can comprise: (a) introducing a vector that encodes at least one editing cassette comprising a PAM mutation as disclosed herein and at least one guide nucleic acid into a first population of cells, thereby producing a second population of cells comprising the vector; (b) maintaining the second population of cells under conditions in which nucleic acid-guided nuclease is expressed or maintained, wherein the nucleic acid-guided nuclease is encoded on the vector, a second vector, on the genome of cells of the second population of cells, or otherwise introduced into the cell, resulting in DNA cleavage, incorporation of the editing cassette, and death of cells of the second population of cells that do not comprise the PAM mutation, whereas cells of the second population of cells that comprise the PAM mutation are viable; (c) obtaining viable cells. Such a method can optionally further comprise (d) sequencing the target DNA in at least one cell of the second population of cells to identify the mutation of at least one codon.


Method for trackable genome editing can comprise: (a) introducing a vector that encodes at least one editing cassette, at least one recorder cassette, and at least two gRNA into a first population of cells, thereby producing a second population of cells comprising the vector; (b) maintaining the second population of cells under conditions in which a nucleic acid-guided nuclease is expressed or maintained, wherein the nucleic acid-guided nuclease is encoded on the vector, a second vector, on the genome of cells of the second population of cells, or otherwise introduced into the cell, resulting in DNA cleavage and incorporation of the editing and recorder cassettes; (c) obtaining viable cells. Such a method can optionally further comprise (d) sequencing the recorder sequence of the target DNA molecule in at least one cell of the second population of cells to identify the mutation of at least one codon.


In some examples where the trackable plasmid comprises an editing cassette designed to silence a PAM site, a method for trackable genome editing can comprise: (a) introducing a vector that encodes at least one editing cassette, a recorder cassette, and at least two gRNA into a first population of cells, thereby producing a second population of cells comprising the vector; (b) maintaining the second population of cells under conditions in which a nucleic acid-guided nuclease is expressed or maintained, wherein the nucleic acid-guided nuclease is encoded on the vector, a second vector, on the genome of cells of the second population of cells, or otherwise introduced into the cell, resulting in DNA cleavage, incorporation of the editing cassette and recorder cassette, and death of cells of the second population of cells that do not comprise the PAM mutation, whereas cells of the second population of cells that comprise the PAM mutation are viable; and (c) obtaining viable cells. Such a method can optionally further comprise (d) sequencing the recorder sequence of the target DNA in at least one cell of the second population of cells to identify the mutation of at least one codon. Such methods can also further comprise a recorder cassette comprising a second PAM mutation, such that both PAMs must be silences by the editing cassette PAM mutation and recorder cassette PAM mutation in order to escape cell death.


In some examples transformation efficiency is determined by using a non-targeting guide nucleic acid control, which allows for validation of the recombineering procedure and CFU/ng calculations. In some cases, absolute efficient is obtained by counting the total number of colonies on each transformation plate, for example, by counting both red and white colonies from a galK control. In some examples, relative efficiency is calculated by the total number of successful transformants (for example, white colonies) out of all colonies from a control (for example, galK control).


The methods of the disclosure can provide, for example, greater than 1000× improvements in the efficiency, scale, cost of generating a combinatorial library, and/or precision of such library generation.


The methods of the disclosure can provide, for example, greater than: 10×, 50×, 100×, 200×, 300×, 400×, 500×, 600×, 700×, 800×, 900×, 1000×, 1100×, 1200×, 1300×, 1400×, 1500×, 1600×, 1700×, 1800×, 1900×, 2000×, or greater improvements in the efficiency of generating genomic or combinatorial libraries.


The methods of the disclosure can provide, for example, greater than: 10×, 50×, 100×, 200×, 300×, 400×, 500×, 600×, 700×, 800×, 900×, 1000×, 1100×, 1200×, 1300×, 1400×, 1500×, 1600×, 1700×, 1800×, 1900×, 2000×, or greater improvements in the scale of generating genomic or combinatorial libraries.


The methods of the disclosure can provide, for example, greater than: 10×, 50×, 100×, 200×, 300×, 400×, 500×, 600×, 700×, 800×, 900×, 1000×, 1100×, 1200×, 1300×, 1400×, 1500×, 1600×, 1700×, 1800×, 1900×, 2000×, or greater decrease in the cost of generating genomic or combinatorial libraries.


The methods of the disclosure can provide, for example, greater than: 10×, 50×, 100×, 200×, 300×, 400×, 500×, 600×, 700×, 800×, 900×, 1000×, 1100×, 1200×, 1300×, 1400×, 1500×, 1600×, 1700×, 1800×, 1900×, 2000×, or greater improvements in the precision of genomic or combinatorial library generation.


Recursive Tracking for Combinatorial Engineering


Disclosed herein are methods and compositions for iterative rounds of engineering. Disclosed herein are recursive engineering strategies that allow implementation of trackable engineering at the single cell level through several serial engineering cycles (e.g., FIG. 3D or FIG. 6). These disclosed methods and compositions can enable search-based technologies that can effectively construct and explore complex genotypic space. The terms recursive and iterative can be used interchangeably.


Combinatorial engineering methods can comprise multiple rounds of engineering. Methods disclosed herein can comprise 2 or more rounds of engineering. For example, a method can comprise 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, or more than 30 rounds of engineering.


In some examples, during each round of engineering a new recorder sequence, such as a barcode, is incorporated at the same or nearby locus in a target site (e.g., FIG. 3D, green bars or FIG. 6, black bars) such that following multiple engineering cycles to construct combinatorial diversity throughout the genome (e.g., FIG. 3E, green bars or FIG. 6, grey bars) a PCR, or similar reaction, of the recording locus can be used to reconstruct each combinatorial genotype or to confirm that the engineered edit from each round has been incorporated into the target site.


Disclosed herein are methods for selecting for successive rounds of engineering. Selection can occur by a PAM mutation incorporated by an editing cassette. Selection can occur by a PAM mutation incorporated by a recorder cassette. Selection can occur using a screenable, selectable, or counter-selectable marker. Selection can occur by targeting a site for editing or recording that was incorporated by a prior round of engineering, thereby selecting for variants that successfully incorporated edits and recorder sequences from both rounds or all prior rounds of engineering.


Quantitation of these genotypes can be used for understanding combinatorial mutational effects on large populations and investigation of important biological phenomena such as epistasis.


Serial editing and combinatorial tracking can be implemented using recursive vector systems as disclosed herein. These recursive vector systems can be used to move rapidly through the transformation procedure (e.g., FIG. 7A). In some examples, these systems consist of two or more plasmids containing orthogonal replication origins, antibiotic markers, and gRNAs. The gRNA in each vector can be designed to target one of the other resistance markers for destruction by nucleic acid-guided nuclease-mediated cleavage. These systems can be used, in some examples, to perform transformations in which the antibiotic selection pressure is switched to remove the previous plasmid and drive enrichment of the next round of engineered genomes. Two or more passages through the transformation loop can be performed, or in other words, multiple rounds of engineering can be performed. Introducing the requisite recording cassettes and editing cassettes into recursive vectors as disclosed herein can be used for simultaneous genome editing and plasmid curing in each transformation step with high efficiencies.


In some examples, the recursive vector system disclosed herein comprises 2, 3, 4, 5, 6, 7, 8, 9, 10, or more than 10 unique plasmids. In some examples, the recursive vector system can use a particular plasmid more than once as long as a distinct plasmid is used in the previous round and in the subsequent round.


Recursive methods and compositions disclosed herein can be used to restore function to a selectable or screenable element in a targeted genome or plasmid. The selectable or screenable element can include an antibiotic resistance gene, a fluorescent gene, a unique DNA sequence or watermark, or other known reporter, screenable, or selectable gene. In some examples, each successive round of engineering can incorporate a fragment of the selectable or screenable element, such that at the end of the engineering rounds, the entire selectable or screenable element has been incorporated into the target genome or plasmid. In such examples, only those genome or plasmids, which have successfully incorporated all of the fragments, and therefore all of the desired corresponding mutations, can be selected or screened for. In this way, the selected or screened cells will be enriched for those that have incorporated the edits from each and every iterative round of engineering.


Recursive methods can be used to switch a selectable or screenable marker between an on and an off position, or between an off and an on position, with each successive round of engineering. Using such a method allows conservation of available selectable or screenable markers by requiring, for example, the use of only one screenable or selectable marker. Furthermore, short regulatory sequence or start codon or non-start codons can be used to turn the screenable or selectable marker on and off Such short sequences can easily fit within a cassette or polynucleotide, such as a synthesized cassette.


One or more rounds of engineering can be performed using the methods and compositions disclosed herein. In some examples, each round of engineering is used to incorporate an edit unique from that of previous rounds. Each round of engineering can incorporate a unique recording sequence. Each round of engineering can result in removal or curing of the CREATE plasmid used in the previous round of engineering. In some examples, successful incorporation of the recording sequence of each round of engineering results in a complete and functional screenable or selectable marker or unique sequence combination.


Unique recorder cassettes comprising recording sequences such as barcodes or screenable or selectable markers can be inserted with each round of engineering, thereby generating a recorder sequence that is indicative of the combination of edits or engineering steps performed. Successive recording sequences can be inserted adjacent to one another. Successive recording sequences can be inserted within proximity to one another. Successive sequences can be inserted at a distance from one another.


Successive sequences can be inserted at a distance from one another. For example, successive recorder sequences can be inserted and separated by 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, or greater than 100 bp. In some examples, successive recorder sequences are separated by about 10, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, or greater than 1500 bp.


Successive recorder sequences can be separated by any desired number of base pairs and can be dependent and limited on the number of successive recorder sequences to be inserted, the size of the target nucleic acid or target genomes, and/or the design of the desired final recorder sequence. For example, if the compiled recorder sequence is a functional screenable or selectable marker, than the successive recording sequences can be inserted within proximity and within the same reading frame from one another. If the compiled recorder sequence is a unique set of barcodes to be identified by sequencing and have no coding sequence element, then the successive recorder sequences can be inserted with any desired number of base pairs separating them. In these cases, the separation distance can be dependent on the sequencing technology to be used and the read length limit.


In some examples, a recorder cassette comprises a landing site to be used as a target site for the recorder cassette of the next round of engineering. By using such a method, successive rounds of recorder cassettes can only be introduced into the target site if the recorder cassette from the previous round was successfully incorporated, thereby providing the target site for the present engineering round (e.g., FIG. 28).


Guide Nucleic Acid


A guide nucleic acid can complex with a compatible nucleic acid-guided nuclease and can hybridize with a target sequence, thereby directing the nuclease to the target sequence. A subject nucleic acid-guided nuclease capable of complexing with a guide nucleic acid can be referred to as a nucleic acid-guided nuclease that is compatible with the guide nucleic acid. Likewise, a guide nucleic acid capable of complexing with a nucleic acid-guided nuclease can be referred to as a guide nucleic acid that is compatible with the nucleic acid-guided nucleases.


A guide nucleic acid can be DNA. A guide nucleic acid can be RNA. A guide nucleic acid can comprise both DNA and RNA. A guide nucleic acid can comprise modified of non-naturally occurring nucleotides. In cases where the guide nucleic acid comprises RNA, the RNA guide nucleic acid can be encoded by a DNA sequence on a polynucleotide molecule such as a plasmid, linear construct, or editing cassette as disclosed herein.


A guide nucleic acid can comprise a guide sequence. A guide sequence is a polynucleotide sequence having sufficient complementarity with a target polynucleotide sequence to hybridize with the target sequence and direct sequence-specific binding of a complexed nucleic acid-guided nuclease to the target sequence. The degree of complementarity between a guide sequence and its corresponding target sequence, when optimally aligned using a suitable alignment algorithm, is about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or more. Optimal alignment may be determined with the use of any suitable algorithm for aligning sequences. In some embodiments, a guide sequence is about or more than about 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 75, or more nucleotides in length. In some embodiments, a guide sequence is less than about 75, 50, 45, 40, 35, 30, 25, 20 nucleotides in length. Preferably the guide sequence is 10-30 nucleotides long. The guide sequence can be 15-20 nucleotides in length. The guide sequence can be 15 nucleotides in length. The guide sequence can be 16 nucleotides in length. The guide sequence can be 17 nucleotides in length. The guide sequence can be 18 nucleotides in length. The guide sequence can be 19 nucleotides in length. The guide sequence can be 20 nucleotides in length.


A guide nucleic acid can comprise a scaffold sequence. In general, a “scaffold sequence” includes any sequence that has sufficient sequence to promote formation of a targetable nuclease complex, wherein the targetable nuclease complex comprises a nucleic acid-guided nuclease and a guide nucleic acid comprising a scaffold sequence and a guide sequence. Sufficient sequence within the scaffold sequence to promote formation of a targetable nuclease complex may include a degree of complementarity along the length of two sequence regions within the scaffold sequence, such as one or two sequence regions involved in forming a secondary structure. In some cases, the one or two sequence regions are comprised or encoded on the same polynucleotide. In some cases, the one or two sequence regions are comprised or encoded on separate polynucleotides. Optimal alignment may be determined by any suitable alignment algorithm, and may further account for secondary structures, such as self-complementarity within either the one or two sequence regions. In some embodiments, the degree of complementarity between the one or two sequence regions along the length of the shorter of the two when optimally aligned is about or more than about 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 97.5%, 99%, or higher. In some embodiments, at least one of the two sequence regions is about or more than about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 50, or more nucleotides in length.


A scaffold sequence of a subject guide nucleic acid can comprise a secondary structure. A secondary structure can comprise a pseudoknot region. In some example, the compatibility of a guide nucleic acid and nucleic acid-guided nuclease is at least partially determined by sequence within or adjacent to a pseudoknot region of the guide RNA. In some cases, binding kinetics of a guide nucleic acid to a nucleic acid-guided nuclease is determined in part by secondary structures within the scaffold sequence. In some cases, binding kinetics of a guide nucleic acid to a nucleic acid-guided nuclease is determined in part by nucleic acid sequence with the scaffold sequence.


In aspects of the invention the terms “guide nucleic acid” refers to a polynucleotide comprising 1) a guide sequence capable of hybridizing to a target sequence and 2) a scaffold sequence capable of interacting with or complexing with an nucleic acid-guided nuclease as described herein.


A guide nucleic acid can be compatible with a nucleic acid-guided nuclease when the two elements can form a functional targetable nuclease complex capable of cleaving a target sequence. Often, a compatible scaffold sequence for a compatible guide nucleic acid can be found by scanning sequences adjacent to a native nucleic acid-guided nuclease loci. In other words, native nucleic acid-guided nucleases can be encoded on a genome within proximity to a corresponding compatible guide nucleic acid or scaffold sequence.


Nucleic acid-guided nucleases can be compatible with guide nucleic acids that are not found within the nucleases endogenous host. Such orthogonal guide nucleic acids can be determined by empirical testing. Orthogonal guide nucleic acids can come from different bacterial species or be synthetic or otherwise engineered to be non-naturally occurring.


Orthogonal guide nucleic acids that are compatible with a common nucleic acid-guided nuclease can comprise one or more common features. Common features can include sequence outside a pseudoknot region. Common features can include a pseudoknot region. Common features can include a primary sequence or secondary structure.


A guide nucleic acid can be engineered to target a desired target sequence by altering the guide sequence such that the guide sequence is complementary to the target sequence, thereby allowing hybridization between the guide sequence and the target sequence. A guide nucleic acid with an engineered guide sequence can be referred to as an engineered guide nucleic acid. Engineered guide nucleic acids are often non-naturally occurring and are not found in nature.


More Methods


Disclosed herein are methods for genome engineering that employ a nuclease, such as a nucleic acid-guided nuclease to perform directed genome evolution/produce changes (deletions, substitutions, additions) in a target sequence, such as DNA or RNA, for example, genomic DNA or episomal DNA. Suitable nucleases can include, for example, RNA-guided nucleases such as Cas9, Cpf1, MAD2, or MAD7, DNA-guided nucleases such as Argonaute, or other nucleases such as zinc-finger nucleases, TALENs, or meganucleases. Nuclease genes can be obtained from any source, such as from a bacterium, archaea, prokaryote, eukaryote, or virus. For example, a Cas9 gene can be obtained from a bacterium harboring the corresponding Type II CRISPR system, such as the bacterium S. pyogenes (SEQ ID NO: 110). The nucleic acid sequence and/or amino acid sequence of the nuclease may be mutated, relative to the sequence of a naturally occurring nuclease. A mutation can be, for example, one or more insertions, deletions, substitutions or any combination of two or three of the foregoing. In some cases, the resulting mutated nuclease can have enhanced or reduced nuclease activity relative to the naturally occurring nuclease. In some cases, the resulting mutated nuclease can have no nuclease activity relative to the naturally occurring nuclease.


Methods for nucleic acid-guided nuclease-mediated genome editing are provided herein. Some disclosed methods can include a two-stage construction process which relies on generation of cassette libraries that incorporate directed mutations from an editing cassettes directly into a genome, episomal nucleic acid molecule, or isolated nucleic acid molecule. In some examples, during the first stage of cassette library construction, rationally designed editing cassettes can be cotransformed into cells with a guide nucleic acid (e.g., guide RNA) that hybridizes to or targets a target DNA sequence. In some examples, the guide nucleic acid is introduced as an RNA molecule, or encoded on a DNA molecule.


Editing cassettes can be designed such that they couple deletion or mutation of a PAM site with the mutation of one or more desired codons or nucleic acid residues in the adjacent nucleic acid sequence. The deleted or mutated PAM site, in some cases, can no longer be recognized by the chosen nucleic acid-guided nuclease. In some examples, at least one PAM or more than one PAM can be deleted or mutated, such as two, three, four, or more PAMs.


Methods disclosed herein can enable generation of an entire cassette library in a single transformation. The cassette library can be retrieved, in some cases, by amplification of the recombinant chromosomes, e.g. by a PCR reaction, using a synthetic feature or priming site from the editing cassettes. In some examples, a second PAM deletion or mutation is simultaneously incorporated. This approach can covalently couple the codon-targeted mutations directly to a PAM deletion.


In some examples, there is a second stage to construction of cassette libraries. During the second stage the PCR amplified cassette libraries carrying the destination PAM deletion/mutation and the targeted mutations, such as a desired mutation of one or more nucleotides, such as one or more nucleotides in one or more codons, can be co-transformed into naive cells. The cells can be eukaryotic cell, archaeal cell, or prokaryotic cells. The cassette libraries can be co-transformed with a guide nucleic acid or plasmid encoding the same to generate a population of cells that express a rationally designed protein library. The libraries can be co-transformed with a guide nucleic acid such as a gRNA, chimeric gRNA, split gRNA, or a crRNA and trRNA set. The cassette library can comprise a plurality of cassettes wherein each cassette comprises an editing cassette and guide nucleic acid. The cassette library can comprise a plurality of cassettes wherein each cassette comprises an editing cassette, recorder cassettes and two guide nucleic acids.


In some targetable nuclease systems, the guide nucleic acid can guide selection of a target sequence. As used herein, a target sequence refers to any locus in vitro or in in vivo, or in the nucleic acid of a cell or population of cells in which a mutation of at least one nucleotide, such as a mutation of at least one nucleotide in at least one codon, is desired. The target sequence can be, for example, a genomic locus, target genomic sequence, or extrachromosomal locus. The guide nucleic acid can be expressed as a DNA molecule, referred to as a guide DNA, or as a RNA molecule, referred to as a guide RNA. A guide nucleic acid can comprise a guide sequence, that is complementary to a region of the target region. A guide nucleic acid can comprise a scaffold sequence that can interact with a compatible nucleic acid-guided nuclease, and can optionally form a secondary structure. A guide nucleic acid can functions to recruit a nucleic acid-guided nuclease to the target site. A guide sequence can be complementary to a region upstream of the target site. A guide sequence can be complementary to at least a portion of the target site. A guide sequence can be completely complementary (100% complementary) to the target site or include one or more mismatches, provided that it is sufficiently complementary to the target site to specifically hybridize/guide and recruit the nuclease. Suitable nucleic acid guided nuclease include, as non-limiting examples, CRISPR nucleases, Cas nucleases, such as Cas9 or Cpf1, MAD2, and MAD7.


In some CRISPR systems, the CRISPR RNA (crRNA or spacer-containing RNA) and trans-activating CRISPR RNA (tracrRNA or trRNA) can guide selection of a target sequence. As used herein, a target sequence refers to any locus in vitro or in in vivo, or in the nucleic acid of a cell or population of cells in which a mutation of at least one nucleotide, such as a mutation of at least one nucleotide in at least one codon, is desired. The target sequence can be, for example, a genomic locus, target genomic sequence, or extrachromosomal locus. The tracrRNA and crRNA can be expressed as a single, chimeric RNA molecule, referred to as a single-guide RNA, guide RNA, or gRNA. The nucleic acid sequence of the gRNA comprises a first nucleic acid sequence, also referred to as a first region, that is complementary to a region of the target region and a second nucleic acid sequence, also referred to a second region, that forms a stem loop structure and functions to recruit a CRISPR nuclease to the target region. The first region of the gRNA can be complementary to a region upstream of the target genomic sequence. The first region of the gRNA can be complementary to at least a portion of the target region. The first region of the gRNA can be completely complementary (100% complementary) to the target genomic sequence or include one or more mismatches, provided that it is sufficiently complementary to the target genomic sequence to specifically hybridize/guide and recruit a CRISPR nuclease, such as Cas9 or Cpf1.


A guide sequence or first region of the gRNA can be at least 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or at least 30 nucleotides in length. The guide sequence or first region of the gRNA can be at least 20 nucleotides in length.


A stem loop structure that can be formed by the scaffold sequence or second nucleic acid sequence of a gRNA can be at least 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 7, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 nucleotides in length. A stem loop structure can be from 80 to 90 or 82 to 85 nucleotides in length. A scaffold sequence or second region of the gRNA that forms a stem loop structure can be 83 nucleotides in length.


A guide nucleic acid of a cassette that is introduced into a first cell using the methods disclosed herein can be the same as the guide nucleic acid of a second cassette that is introduced into a second cell. More than one guide nucleic acid can be introduced into the population of first cells and/or the population of second cells. The more than one guide nucleic acids can comprise guide sequences that are complementary to more than one target region.


Methods disclosed herein can comprise using oligonucleotides. Such oligonucleotides can be obtained or derived from many sources. For example, an oligonucleotide can be derived from a nucleic acid library that has been diversified by nonhomologous random recombination (NRR); such a library is referred to as an NRR library. An oligonucleotide can be synthesized, for example by array-based synthesis or other known chemical synthesis method. The length of an oligonucleotide can be dependent on the method used in obtaining the oligonucleotide. An oligonucleotide can be approximately 50-200 nucleotides, 75-150 nucleotides, or between 80-120 nucleotides in length. An oligonucleotide can be about 10, 20, 30, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, or more nucleotides in length, including any integer, for example, 51, 52, 53, 54, 201, 202, etc. An oligonucleotide can be about 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1250, 1500, 1750, 2000, or more nucleotides in length, including any integer, for example, 101, 203, 1001, 2001, 2010, etc.


Oligonucleotides and/or other nucleic acid molecules can be combined or assembled to generate a cassette. Such a cassette can comprise (a) a region that is homologous to a target region of the nucleic acid of the cell and includes a desired mutation of at least one nucleotide or one codon relative to the target region, and (b) a protospacer adjacent motif (PAM) mutation. The PAM mutation can be any insertion, deletion or substitution of one or more nucleotides that mutates the sequence of the PAM such that it is no longer recognized by a nucleic acid-guided nuclease system or CRISPR nuclease system. A cell that comprises such a PAM mutation may be said to be “immune” to nuclease-mediated killing. The desired mutation relative to the sequence of the target region can be an insertion, deletion, and/or substitution of one or more nucleotides. In some examples, the insertion, deletion, and/or substitution of one or more nucleotides is in at least one codon of the target region. Alternatively, the cassette can be synthesized in a single synthesis, comprising (a) a region that is homologous to a target region of the nucleic acid of the cell and includes a desired mutation of at least one nucleotide or one codon relative to the target region, (b) a protospacer adjacent motif (PAM) mutation, and optionally (c) a region that is homologous to a second target region of the nucleic acid of the cell and includes a recorder sequence.


The methods disclosed herein can be applied to any target nucleic acid molecule of interest, from any prokaryote including bacteria and archaea, or any eukaryote, including yeast, mammalian, and human genes, or any viral particle. The nucleic acid module can be a non-coding nucleic acid sequence, gene, genome, chromosome, plasmid, episomal nucleic acid molecule, artificial chromosome, synthetic chromosome, or viral nucleic acid.


Methods for assessing recovery efficiency of donor strain libraries are disclosed herein. Recovery efficiency can be verified based on the presence of a PCR product or on changes in amplicon or PCR product sizes or sequence obtained with primers directed at the selected target locus. Primers can be designed to hybridize with endogenous sequences or heterologous sequences contained on the donor nucleic acid molecule. For example, the PCR primer can be designed to hybridize to a heterologous sequence such that PCR will only be possible if the donor nucleic acid is incorporated. Sequencing of PCR products from the recovered libraries indicates the heterologous sequence or synthetic priming site from the dsDNA cassettes or donor sequences can be incorporated with about 90-100% efficiency. In other examples, the efficiency can be about 5%, 10% 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 99% or 100%.


In some cases, the ability to improve final editing efficiencies of the methods disclosed herein can be assessed by carrying out cassette construction in gene deficient strains before transferring to a wild-type donor strain in an effort to prevent loss of mutations during the donor construction phase. Additionally or alternatively, efficiency of the disclosed methods can be assessed by targeting an essential gene. Essential genes can include any gene required for survival or replication of a viral particle, cell, or organism. In some examples, essential genes include dxs, metA, and folA. Essential genes have been effectively targeted using guide nucleic acid design strategies described. Other suitable essential genes are well known in the art.


Provided herein are method of increasing editing efficiencies by modulating the level of a nucleic acid-guided nuclease. This could be done by using copy control plasmids, such as high copy number plasmids or low copy number plasmids. Low copy number plasmids could be plasmids that can have about 20 or less copies per cell, as opposed to high copy number plasmids that can have about 1000 copies per cell. High copy number plasmids and low copy number plasmids are well known in the art and it is understood that an exact plasmid copy per cell does not need to be known in order to characterize a plasmid as either high or low copy number.


In some cases, the decreasing expression level of a nucleic acid-guided nuclease, such as Cas9, Cpf1, MAD2, or MAD7, can increase transformation, editing, and/or recording efficiencies. In some cases, decreasing expression level of the nucleic acid-guided nuclease is done by expressing the nucleic acid-guided nuclease on a low copy number plasmid.


In some cases, the increasing expression level of a nucleic acid-guided nuclease, such as Cas9, Cpf1, MAD2, or MAD7, can increase transformation, editing, and/or recording efficiencies. In some cases, increasing expression level of the nucleic acid-guided nuclease is done by expressing the nucleic acid-guided nuclease on a high copy number plasmid.


Other methods of modulating the expression level of a protein are also envisioned and are known in the art. Such methods include using a inducible or constitutive promoter, incorporating enhancers or other expression regulatory elements onto an expression plasmid, using RNAi, amiRNAi, or other RNA silencing techniques to modulate transcript level, fusing the protein of interest to a degradation domain, or any other method known in the art.


Provided herein are methods for generating mutant libraries. In some examples, the mutant library can be effectively constructed and retrieved within 1-3 hours post recombineering. In some examples, the mutant library is constructed within 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, or 24 hours post recombineering. In some examples, the mutant library can be retrieved within 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 24, 36, or 48 hours post recombineering and/or post-constructing by recombineering.


Some methods disclosed herein can be used for trackable, precision genome editing. In some examples, methods disclosed herein can achieve high efficiency editing/mutating using a single cassette that encodes both an editing cassette and guide nucleic acid, and optionally a recorder cassette and second guide nucleic acid. Alternatively, a single vector can encode an editing cassette while a guide nucleic acid is provided sequentially or concomitantly. When used with parallel DNA synthesis, such as array-based DNA synthesis, methods disclosed herein can provide single step generation of hundreds or thousands of precision edits/mutations. Mutations can be mapped by sequencing the editing cassette on the vector, rather than by sequencing of the genome or a section of the genome of the cell or organism.


The methods disclosed herein can have broad utility in protein and genome engineering applications, as well as for reconstruction of mutations, such as mutations identified in laboratory evolution experiments. In some examples, the methods and compositions disclosed here can combine an editing cassette, which could include a desired mutation and a PAM mutation, with a gene encoding a guide nucleic acid on a single vector.


In some examples, a trackable mutant library can be generated in a single transformation or single reaction.


Methods disclosed herein can comprise introducing a cassette comprising an editing cassette that includes the desired mutation and the PAM mutation into a cell or population of cells. In some embodiments, the cell into which the cassette or vector is introduced also comprises a nucleic acid-guided nuclease, such as Cas9, Cpf1, MAD2, or MAD7. In some embodiments, a gene or mRNA encoding the nucleic acid-guided nuclease is concomitantly, sequentially, or subsequently introduced into the cell or population of cells. Expression of a targetable nuclease system, including nucleic acid-guided nuclease and a guide nucleic acid, in the cell or cell population can be activated such that the guide nucleic acid recruits the nucleic acid-guided nuclease to the target region, where dsDNA cleavage occurs.


In some examples, without wishing to be bound by any particular theory, the homologous region of an editing cassette complementary to the target sequence mutates the PAM and the one or more codon of the target sequence. Cells of the population of cells that did not integrate the PAM mutation can undergo unedited cell death due to nucleic acid-guided nuclease mediated dsDNA cleavage. In some examples, cells of the population of cells that integrate the PAM mutation do not undergo cell death; they remain viable and are selectively enriched to high abundance. Viable cells can be obtained and can provide a library of trackable or targeted mutations.


In some examples, without wishing to be bound by any particular theory, the homologous region of a recorder cassette complementary to the target sequence mutates the PAM and introduces a barcode into a target sequence. Cells of the population of cells that did not integrate the PAM mutation can undergo unedited cell death due to nucleic acid-guided nuclease mediated dsDNA cleavage. In some examples, cells of the population of cells that integrate the PAM mutation do not undergo cell death; they remain viable and are selectively enriched to high abundance. Viable cells can be obtained and can provide a library of trackable mutations.


A separate vector or mRNA encoding a nucleic acid-guided nuclease can be introduced into the cell or population of cells. Introducing a vector or mRNA into a cell or population of cells can be performed using any method or technique known in the art. For example, vectors can be introduced by standard protocols, such as transformation including chemical transformation and electroporation, transduction and particle bombardment. Additionally or alternatively, mRNA can be introduced by standard protocols, such as transformation as disclosed herein, and/or by techniques involving cell permeable peptides or nanoparticles.


An editing cassette can include (a) a region, which recognizes (hybridizes to) a target region of a nucleic acid in a cell or population of cells, is homologous to the target region of the nucleic acid of the cell and includes a mutation, referred to a desired mutation, of at least one nucleotide that can be in at least one codon relative to the target region, and (b) a protospacer adjacent motif (PAM) mutation. In some examples, the editing cassette also comprises a barcode. The barcode can be a unique barcode or relatively unique such that the corresponding mutation can be identified based on the barcode. The PAM mutation may be any insertion, deletion or substitution of one or more nucleotides that mutates the sequence of the PAM such that the mutated PAM (PAM mutation) is not recognized by a chosen nucleic acid-guided nuclease system. A cell that comprises such as a PAM mutation may be said to be “immune” to nucleic acid-guided nuclease-mediated killing. The desired mutation relative to the sequence of the target region may be an insertion, deletion, and/or substitution of one or more nucleotides and may be at least one codon of the target region. In some embodiments, the distance between the PAM mutation and the desired mutation is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 50, 60, 70, 80, 90, or 100 nucleotides on the editing cassette. In some embodiments, the PAM mutation is located at least 9 nucleotides from the end of the editing cassette. In some embodiments, the desired mutation is located at least 9 nucleotides from the end of the editing cassette.


A desired mutation can be an insertion of a nucleic acid sequence relative to the sequence of the target sequence. The nucleic acid sequence inserted into the target sequence can be of any length. In some embodiments, the nucleic acid sequence inserted is at least 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or at least 2000 nucleotides in length. In embodiments in which a nucleic acid sequence is inserted into the target sequence, the editing cassette comprises a region that is at least 10, 15, 20, 25, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 51, 52, 53, 54, 55, 56, 57, 58, 59, or at least 60 nucleotides in length and homologous to the target sequence. The homology arms or homologous region can be about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, or more nucleotides in length, including any integer therein. The homology arms or homologous region can be over 200 nucleotides in length.


A barcode can be a unique barcode or relatively unique such that the corresponding mutation can be identified based on the barcode. In some examples, the barcode is a non-naturally occurring sequence that is not found in nature. In most examples, the combination of the desired mutation and the barcode within the editing cassette is non-naturally occurring and not found in nature. A barcode can be any number of nucleotides in length. A barcode can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more than 30 nucleotides in length. In some cases, the barcode is more than 30 nucleotides in length.


An editing cassette or recorder cassette can comprise at least a portion of a gene encoding a guide nucleic acid, and optionally a promoter operable linked to the encoded guide nucleic acid. In some embodiments, the portion of the gene encoding the guide nucleic acid encodes the portion of the guide nucleic acid that is complementary to the target sequence. The portion of the guide nucleic acid that is complementary to the target sequence, or the guide sequence, can be at least 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or at least 30 nucleotides in length. In some embodiments, the guide sequence is 24 nucleotides in length. In some embodiments, the guide sequence is 18 nucleotides in length.


In some embodiments, the editing cassette or recorder cassette further comprises at least two priming sites. The priming sites may be used to amplify the cassette, for example by PCR. In some embodiments, the portion of the guide sequence is used as a priming site.


Editing cassettes or recorder cassettes for use in the described methods can be obtained or derived from many sources. For example, the cassettes can be synthesized, for example by array-based synthesis, multiplex synthesis, multi-parallel synthesis, PCR assembly, in vitro assembly, Gibson assembly, or any other synthesis method known in the art. In some embodiments, the editing cassette or recorder cassette is synthesized, for example by array-based synthesis, multiplex synthesis, multi-parallel synthesis, PCR assembly, in vitro assembly, Gibson assembly, or any other synthesis method known in the art. The length of the editing cassette or recorder cassette may be dependent on the method used in obtaining said cassette.


An editing cassette can be approximately 50-300 nucleotides, 75-200 nucleotides, or between 80-120 nucleotides in length. In some embodiments, the editing cassette can be any discrete length between 50 nucleotide and 1 Mb.


A recorder cassette can be approximately 50-300 nucleotides, 75-200 nucleotides, or between 80-120 nucleotides in length. In some embodiments, the recorder cassette can be any discrete length between 50 nucleotide and 1 Mb.


Methods disclosed herein can also involve obtaining editing cassettes and recorder cassettes and constructing a trackable plasmid or vector. Methods of constructing a vector will be known to one ordinary skill in the art and may involve ligating the cassettes into a vector backbone. In some examples, plasmid construction occurs by in vitro DNA assembly methods, oligonucleotide assembly, PCR-based assembly, SLIC, CPEC, or other assembly methods well known in the art. In some embodiments, the cassettes or a subset (pool) of the cassettes can be amplified prior to construction of the vector, for example by PCR.


The cell or population of cells comprising a polynucleotide encoding a nucleic acid-guided nuclease can be maintained or cultured under conditions in which the nuclease is expressed. Nucleic acid-guided nuclease expression can be controlled or can be constitutively on. The methods described herein can involve maintaining cells under conditions in which nuclease expression is activated, resulting in production of the nuclease, for example, Cas9, Cpf1, MAD2, or MAD7. Specific conditions under which the nucleic acid-guided nuclease is expressed can depend on factors, such as the nature of the promoter used to regulate expression of the nuclease. Nucleic acid-guided nuclease expression can be induced in the presence of an inducer molecule, such as arabinose. When the cell or population of cells comprising nucleic acid-guided nuclease encoding DNA are in the presence of the inducer molecule, expression of the nuclease can occur. CRISPR-nuclease expression can be repressed in the presence of a repressor molecule. When the cell or population of cells comprising nucleic acid-guided nuclease encoding DNA are in the absence of a molecule that represses expression of the nuclease, expression of the nuclease can occur.


Cells or the population of cells that remain viable can be obtained or separated from the cells that undergo unedited cell death as a result of nucleic acid-guided nuclease-mediated killing; this can be done, for example, by spreading the population of cells on culture surface, allowing growth of the viable cells, which are then available for assessment.


Disclosed herein are methods for the identification of the mutation without the need to sequence the genome or large portions of the genome of the cell. The methods can involve sequencing of the editing cassette, recorder cassette, or barcode to identify the mutation of one of more codon. Sequencing of the editing cassette can be performed as a component of the vector or after its separation from the vector and, optionally, amplification. Sequencing can be performed using any sequencing method known in the art, such as by Sanger sequencing or next-generation sequencing methods.


Some methods described herein can be carried out in any type of cell in which a targetable nuclease system can function, or target and cleave DNA, including prokaryotic and eukaryotic cells. In some embodiments, the cell is a bacterial cell, such as Escherichia spp., e.g., E. coli. In other embodiments, the cell is a fungal cell, such as a yeast cell, e.g., Saccharomyces spp. In other embodiments, the cell is an algal cell, a plant cell, an insect cell, or a mammalian cell, including a human cell.


A “vector” is any of a variety of nucleic acids that comprise a desired sequence or sequences to be delivered to or expressed in a cell. A desired sequence can be included in a vector, such as by restriction and ligation or by recombination or assembly methods know in the art. Vectors are typically composed of DNA, although RNA vectors are also available. Vectors include, but are not limited to plasmids, fosmids, phagemids, virus genomes, artificial chromosomes, and synthetic nucleic acid molecules.


Vectors useful in the methods disclosed herein can comprise at least one editing cassette as described herein, at least one gene encoding a gRNA, and optionally a promoter and/or a barcode. More than one editing cassette can be included on the vector, for example 2, 3, 4, 5, 6, 7, 8, 9, 10 or more editing cassettes. The more than one editing cassettes can be designed to target different target regions, for example, there could be different editing cassettes, each of which contains at least one region homologous with a different target region. In other examples, each editing cassette target the same target region while each editing cassette comprises a different desired mutation relative to the target region. In other examples, the plurality of editing cassettes can comprise a combination of editing cassettes targeting the same target region and editing cassettes targeting different target regions. Each editing cassette can comprise an identifying barcode. Alternatively or additionally, the vector can include one or more genes encoding more than one gRNA, e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10 or more gRNAs. The more than one gRNAs can contain regions that are complementary to a portion of different target regions, for example, if there are different gRNAs, each of which can be complementary to a portion of a different target region. In other examples, the more than one gRNA can each target the same target region. In other examples, the more than one gRNA can be a combination of gRNAs targeting the same and different target regions.


A cassette comprising a gene encoding a portion of a guide nucleic acid, can be ligated or assembled into a vector that encodes another portion of a guide nucleic acid. Upon ligation or assembly, the portion of the guide nucleic acid from the cassette and the other portion of the guide nucleic acid can form a functional guide nucleic acid. A promoter and a gene encoding a guide nucleic acid can be operably linked.


In some embodiments, the methods involve introduction of a second vector encoding a nucleic acid-guided nuclease, such as Cas9, Cpf1, MAD2, or MAD7. The vector may further comprise one or more promoters operably linked to a gene encoding the nucleic acid-guided nuclease.


As used herein, “operably” linked can mean the promoter affects or regulates transcription of the DNA encoding a gene, such as the gene encoding the gRNA or the gene encoding a CRISPR nuclease.


A promoter can be a native promoter such as a promoter present in the cell into which the vector is introduced. A promoter can be an inducible or repressible promoter, for example, the promoter can be regulated allowing for inducible or repressible transcription of a gene, such as the gene encoding the guide nucleic acid or the gene encoding a nucleic acid-guided nuclease. Such promoters that are regulated by the presence or absence of a molecule can be referred to as an inducer or a repressor, respectively. The nature of the promoter needed for expression of the guide nucleic acid or nucleic acid-guided nuclease can vary based on the species or cell type and can be recognized by one of ordinary skill in the art.


A separate vector encoding a nucleic acid-guided nuclease can be introduced into a cell or population of cells before or at the same time as introduction of a trackable plasmid as disclosed herein. The gene encoding a nucleic acid-guided nuclease can be integrated into the genome of the cell or population of cells, or the gene can be maintained episomally. The nucleic acid-guided nuclease-encoding DNA can be integrated into the cellular genome before introduction of the trackable plasmid, or after introduction of the trackable plasmid. In some examples, a nucleic acid molecule, such as DNA-encoding a nucleic acid-guided nuclease, can be expressed from DNA integrated into the genome. In some embodiments, a gene encoding Cas9, Cpf1, MAD2, or MAD7 is integrated into the genome of the cell.


Vectors or cassettes useful in the methods described herein can further comprise two or more priming sites. In some embodiments, the presence of flanking priming sites allows amplification of the vector or cassette.


In some embodiments, a cassette or vector encodes a nucleic acid-guided nuclease comprising one or more nuclear localization sequences (NLSs), such as about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs. In some embodiments, the engineered nuclease comprises about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the amino-terminus, about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the carboxy-terminus, or a combination of these (e.g. one or more NLS at the amino-terminus and one or more NLS at the carboxy terminus). When more than one NLS is present, each may be selected independently of the others, such that a single NLS may be present in more than one copy and/or in combination with one or more other NLSs present in one or more copies. In a preferred embodiment of the invention, the engineered nuclease comprises at most 6 NLSs. In some embodiments, an NLS is considered near the N- or C-terminus when the nearest amino acid of the NLS is within about 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50, or more amino acids along the polypeptide chain from the N- or C-terminus. Non-limiting examples of NLSs include an NLS sequence derived from: the NLS of the SV40 virus large T-antigen, having the amino acid sequence PKKKRKV (SEQ ID NO: 111); the NLS from nucleoplasmin (e.g. the nucleoplasmin bipartite NLS with the sequence KRPAATKKAGQAKKKK (SEQ ID NO:112)); the c-myc NLS having the amino acid sequence PAAKRVKLD (SEQ ID NO:113) or RQRRNELKRSP (SEQ ID NO:114); the hRNPA1 M9 NLS having the sequence NQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGY (SEQ ID NO: 115); the sequence RMRIZFKNKGKDTAELRRRRVEVSVELRKAKKDEQILKRRNV (SEQ ID NO:1 116) of the IBB domain from importin-alpha; the sequences VSRKRPRP (SEQ ID NO:117) and PPKKARED (SEQ ID NO:118) of the myoma T protein; the sequence PQPKKKPL (SEQ ID NO:119) of human p53; the sequence SALIKKKKKMAP (SEQ ID NO:120) of mouse c-abl IV; the sequences DRLRR (SEQ ID NO:121) and PKQKKRK (SEQ ID NO:122) of the influenza virus NS1; the sequence RKLKKKIKKL (SEQ ID NO:123) of the Hepatitis virus delta antigen; the sequence REKKKFLKRR (SEQ ID NO: 124) of the mouse Mx1 protein; the sequence KRKGDEVDGVDEVAKKKSKK (SEQ ID NO: 125) of the human poly(ADP-ribose) polymerase; and the sequence RKCLQAGMNLEARKTKK (SEQ ID NO: 126) of the steroid hormone receptors (human) glucocorticoid.


In general, the one or more NLSs are of sufficient strength to drive accumulation of the nucleic acid-guided nuclease in a detectable amount in the nucleus of a eukaryotic cell. In general, strength of nuclear localization activity may derive from the number of NLSs, the particular NLS(s) used, or a combination of these factors. Detection of accumulation in the nucleus may be performed by any suitable technique. For example, a detectable marker may be fused to the nucleic acid-guided nuclease, such that location within a cell may be visualized, such as in combination with a means for detecting the location of the nucleus (e.g. a stain specific for the nucleus such as DAPI). Cell nuclei may also be isolated from cells, the contents of which may then be analyzed by any suitable process for detecting protein, such as immunohistochemistry, Western blot, or enzyme activity assay. Accumulation in the nucleus may also be determined indirectly, such as by an assay for the effect of the nucleic acid-guided nuclease complex formation (e.g. assay for DNA cleavage or mutation at the target sequence, or assay for altered gene expression activity affected by targetable nuclease complex formation and/or nucleic acid-guided nuclease activity), as compared to a control not exposed to the nucleic acid-guided nuclease or targetable nuclease complex, or exposed to a nucleic acid-guided nuclease lacking the one or more NLS s.


ProSAR


Methods disclosed herein are capable of engineering a few to hundreds of genetic sequence or proteins simultaneously. These methods can permit one to map in a single experiment many or all possible residue changes over a collection of desired proteins onto a trait of interest, as part of individual proteins of interest or as part of a pathway. This approach can be used at least for the following by mapping i) any number of residue changes for any number of proteins of interest in a specific biochemical pathway or that catalyze similar reactions or ii) any number of residues in the regulatory sites of any number of proteins or interest with a specific regulon or iii) any number of residues of a biological agent used to treat a health condition.


In some embodiments, methods described herein include identifying genetic variations of one or more target genes that affect any number or residues, such as one or more, or all residues of one or more target proteins. In accordance with these embodiments, compositions and methods disclosed herein permit parallel analysis of two or more target proteins or proteins that contribute to a trait. Parallel analysis of multiple proteins by a single experiment described can facilitate identification, modification and design of superior systems for example for producing a eukaryotic or prokaryotic byproduct, producing a eukaryotic byproduct, for example, a biological agent such as a growth factor or antibody, in a prokaryotic organism and the like. Relevant biologics used in analysis and treatment of disease can be produced in these genetically engineered environments that could reduce production time, increase quality all while reducing costs to the manufacturers and the consumers.


Some embodiments disclosed herein comprise constructs of use for studying genetic variations of a gene or gene segment wherein the gene or gene segment is capable of generating a protein. A construct can be generated for any number of residues, such as one, two, more than two, or all residue modifications of a target protein that is linked to a trackable agent such as a barcode. A barcode indicative of a genetic variation of a gene of a target protein can be located outside of the open reading frame of the gene. In some embodiments such a barcode can be located many hundreds or thousands of bases away from the gene. It is contemplated herein that these methods can be performed in vivo. In some examples, such a construct comprises a trackable polynucleic acid or plasmid as disclosed herein.


Constructs described herein can be used to compile a comprehensive library of genetic variations encompassing all residue changes of one target protein, more than one target protein or target proteins that contribute to a trait. In certain embodiments, libraries disclosed herein can be used to select proteins with improved qualities to create an improved single or multiple protein system for example for producing a byproduct, such as a chemical, biofuels, biological agent, pharmaceutical agent, or for biomass, or biologic compared to a non-selective system.


Protein Sequence-Activity Relationship (ProSAR) Mapping


Understanding the relationship between a protein's amino acid structure and its overall function continues to be of great practical, clinical, and scientific significance for biologists and engineers. Directed evolution can be a powerful engineering and discovery tool, but the random and often combinatorial nature of mutations makes their individual impacts difficult to quantify and thus challenges further engineering. More systematic analysis of contributions of individual residues or saturation mutagenesis remains labor- and time-intensive for entire proteins and simply is not possible on reasonable timescales for multiple proteins in parallel, such as metabolic pathways or multi-protein complexes, using standard methods.


Provided herein are methods which can be used to rapidly and efficiently examine the roles of some or all genes in a viral, microbial, or eukaryotic genome using mixtures of barcoded oligonucleotides. In some embodiments, these compositions and methods can be used to develop a powerful new technology for comprehensively mapping protein structure-activity relationships (ProSAR).


Using methods and compositions disclosed herein, multiplex cassette synthesis can be combined with recombineering, to create mutant libraries of specifically designed and barcoded mutations along one or more genes of interest in parallel. Screens and/or selections followed by high-throughput sequencing and/or barcode microarray methods can allow for rapid mapping of protein sequence-activity relationships (ProSAR). In some embodiments, systematic ProSAR mapping can elucidate individual amino acid mutations for improved function and/or activity and/or stability etc.


Methods can be iterated to combinatorially improve the function, activity, or stability. Cassettes can be generated by oligonucleotide synthesis. Given that existing capabilities of multiplex oligonucleotide synthesis can reach over 120,000 oligonucleotides per array, combined with recombineering, the methods disclosed herein can be scaled to construct mutant libraries for dozens to hundreds of proteins in a single experiment. In some examples, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 25, 50, 75, 100, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000, or more proteins can be partially or completely covered by mutant libraries generated by the methods disclosed herein.


Disclosed herein are strategies to construct barcoded substitution libraries for several different proteins at the same time. Using existing multiplex DNA synthesis technology, as disclosed, a partial or complete substitution library for one or more protein constructs can be barcoded, or non-barcoded if desired, for one or for several hundred proteins at the same time. In some examples, such libraries comprise trackable plasmids as disclosed herein.


Some embodiments herein apply to analysis and structure/function/stability library construction of any protein with a corresponding screen or selection for activity. Cassette library size can depend on the number (N) of amino acids in a protein of interest, with a full saturation library, including all 20 amino acids at each position and optionally non-naturally occurring amino acids, scaling as 19 (or more)×N and an alanine-mapping library scaling as 1×N. Thus, in some examples, screening of even very large proteins of more than 1,000 amino acids can be tractable given current multiplex oligo synthesis capabilities of at least 120,000 oligos per array.


In addition or as an alternative to activity screens, more general properties with developed high-throughput screens and selections can be efficiently tested using methods and cassettes disclosed herein. For example, universal protein folding and solubility reporters can be engineered for expression in the cytoplasm, periplasm, and the inner membrane. In some examples, a protein library can be screened under different conditions such as different temperatures, different substrates or co-factors, in order to identify residue changes required for expression of various traits. In other embodiments, because residues can be analyzed one at a time, mutations at residues important for a particular trait, such as thermostability, resistance to environmental pressures, or increases or decreases in functionality or production, can be combined via multiplex recombineering with mutations important for various other traits, such as catalytic activity, to create combinatorial libraries for multi-trait optimization.


Methods disclosed herein can provide for creating and/or evaluating comprehensive, in vivo, mutational libraries of one or more target protein(s). These approaches can be extended via a recorder cassettes or barcoding technology to generate trackable mutational libraries for any number of residues or every residue in a protein. This approach can be based on protein sequence-activity relationship mapping method extended to work in vivo, capable of working on one or a few to hundreds of proteins simultaneously depending on the technology selected. For example, these methods permit one to map in a single experiment any number of, the majority of, or all possible residue changes over a collection of desired proteins onto a trait of interest, as part of individual proteins of interest or as part of a pathway.


In some examples, these approaches can be used at least for the following by mapping i) any number of or all residue changes for any number of or all proteins in a specific biochemical pathway, such as lycopene production, or that catalyze similar reactions, such as dehydrogenases or other enzymes of a pathway of use to produce a desired effect or produce a product, or ii) any number of or all residues in the regulatory sites of any number of or all proteins with a specific regulatory mechanism, such as heat shock response, or iii) any number of or all residues of a biological agent used to treat a health condition, such as insulin, a growth factor (HCG), an anti-cancer biologic, or a replacement protein for a deficient population.


Scores related to various input parameters can be assigned in order to generate one or more composite score(s) for designing genomically-engineered organisms or systems. These scores can reflect quality of genetic variations in genes or genetic loci as they relate to selection of an organism or design of an organism for a predetermined production, trait or traits. Certain organisms or systems can be designed based on a need for improved organisms for biorefining, biomass, such as crops, trees, grasses, crop residues, or forest residues, biofuel production, and using biological conversion, fermentation, chemical conversion and catalysis to generate and use compounds, biopharmaceutical production and biologic production. In certain embodiments, this can be accomplished by modulating growth or production of microorganism through genetic manipulation methods disclosed herein.


Genetic manipulation by methods disclosed herein of genes encoding a protein can be used to make desired genetic changes that can result in desired phenotypes and can be accomplished through numerous techniques including but not limited to, i) introduction of new genetic material, ii) genetic insertion, disruption or removal of existing genetic material, as well as, iii) mutation of genetic material, such as a point mutation, or any combinations of i, ii, and iii, that results in desired genetic changes with desired phenotypic changes. Mutations can be directed or random, in addition to those including, but not limited to, error prone or directed mutagenesis through PCR, mutator strains, and random mutagenesis. Mutations can be incorporated using trackable plasmids and methods as disclosed herein.


Disclosed methods can be used for inserting and accumulating higher order modifications into a microorganism's genome or a target protein; for example, multiple different site-specified mutations in the same genome, at high efficiency to generate libraries of genomes with over 1, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, or more targeted modifications are described. In some examples, these mutations are within regulatory modules, regulatory elements, protein-coding regions, or non-coding regions. Protein coding modifications can include, but are not limited to, amino acid changes, codon optimization, and translation tuning.


In some instances, methods are provided for the co-delivery of reagents to a single biological cell. The methods generally involve the attachment or linkage of two or more cassettes, followed by delivery of the linked cassettes to a single cell. Generally, the methods provided herein involve the delivery of two or more cassettes to a single cell. In many cases, it is desirable that each individual cell receives the two or more cassettes. Traditional methods of reagent delivery may often be inefficient and/or inconsistent, leading to situations in which some cells receive only one of the cassettes. The methods provided herein may improve the efficiency and/or consistency of reagent delivery, such that a majority of cells in a cell population each receive the two or more cassettes. For example, more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% of the cells in a cell population may receive the two or more cassettes.


The two or more cassettes may be linked by any known method in the art and generally the method chosen will be commensurate with the chemistry of the cassettes. Generally, the two or more cassettes are linked by a covalent bond (i.e., covalently-linked), however, other types of non-covalent chemical bonds are envisioned, such as hydrogen bonds, ionic bonds, and metallic bonds. In this way, the editing cassette and the recorder cassette may be linked and delivered into a single cell. A known edit is then associated with a known recorder or barcode sequence for that cell.


In one example, the two or more cassettes are nucleic acids, such as two or more nucleic acids. The nucleic acids may be RNA, DNA, or a combination of both, and may contain any number of chemically-modified nucleotides or nucleotide analogues. In some cases, two or more RNA cassettes are linked for delivery to a single cell. In other cases, two or more DNA cassettes are linked for delivery to a single cell. In yet other cases, a DNA cassettes and an RNA cassettes are linked for delivery to a single cell. The nucleic acids may be derived from genomic RNA, complementary DNA (cDNA), or chemically or enzymatically synthesized DNA.


A cassettes may be of 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, about 110, about 120, about 130, about 140, about 150, about 160, about 170, about 180, about 190, about 200, about 210, about 220, about 230, about 240, about 250, about 275, about 300, about 325, about 350, about 375, about 400, about 425, about 450, about 475, about 500, about 525, about 550, about 575, about 600, about 625, about 650, about 675, about 700, about 725, about 750, about 775, about 800, about 825, about 850, about 875, about 900, about 925, about 950, about 975, about 1000, about 1100, about 1200, about 1300, about 1400, about 1500, about 1750, about 2000, about 2500, about 3000, about 4000, about 5000, about 6000, about 7000, about 8000, about 9000, about 10,000 or greater nucleotide residues in length, up to a full length protein encoding or regulatory genetic element.


Two or more cassettes may be linked on a linear nucleic acid molecule or may be linked on a plasmid or circular nucleic acid molecule. The two or more cassettes may be linked directly to one another or may be separated by one or more nucleotide spacers or linkers.


Two or more cassettes may be covalently linked on a linear cassettes or may be covalently linked on a plasmid or circular nucleic acid molecule. The two or more cassettes may be covalently linked directly to one another or may be separated by one or more nucleotide spacers or linkers.


Any number and variety of cassettes may be linked for co-delivery. For example, the two or more cassettes may include nucleic acids, lipids, proteins, peptides, small molecules, or any combination thereof. The two or more cassettes may be essentially any cassettes that are amenable to linkage.


In preferred examples, the two or more cassettes are covalently linked (e.g., by a chemical bond). Covalent linkage may help to ensure that the two or more cassettes are co-delivered to a single cell. Generally, the two or more cassettes are covalently linked prior to delivery to a cell. Any method of covalently linking two or more molecules may be utilized, and it should be understood that the methods used will be at least partly determined by the types of cassettes to be linked.


In some instances, methods are provided for the co-delivery of reagents to a single biological cell. The methods generally involve the covalent attachment or linkage of two or more cassettes, followed by delivery of the covalently-linked cassettes into a single cell. The methods provided may help to ensure that an individual cell receives the two or more cassettes. Any known method of reagent delivery may be utilized to deliver the linked cassettes to a cell and will at least partly depend on the chemistry of the cassettes to be delivered. Non-limiting examples of reagent delivery methods may include: transformation, lipofection, electroporation, transfection, nanoparticles, and the like.


In various embodiments, cassettes, or isolated, donor, or editing nucleic acids may be introduced to a cell or microorganism to alter or modulate an aspect of the cell or microorganism, for example survival or growth of the microorganism as disclosed herein. The isolated nucleic acid may be derived from genomic RNA, complementary DNA (cDNA), chemically or enzymatically synthesized DNA. Additionally or alternatively, isolated nucleic acids may be of use for capture probes, primers, labeled detection oligonucleotides, or fragments for DNA assembly.


A “nucleic acid” can include single-stranded and/or double-stranded molecules, as well as DNA, RNA, chemically modified nucleic acids and nucleic acid analogs. It is contemplated that a nucleic acid may be of 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, about 110, about 120, about 130, about 140, about 150, about 160, about 170, about 180, about 190, about 200, about 210, about 220, about 230, about 240, about 250, about 275, about 300, about 325, about 350, about 375, about 400, about 425, about 450, about 475, about 500, about 525, about 550, about 575, about 600, about 625, about 650, about 675, about 700, about 725, about 750, about 775, about 800, about 825, about 850, about 875, about 900, about 925, about 950, about 975, about 1000, about 1100, about 1200, about 1300, about 1400, about 1500, about 1750, about 2000, about 2500, about 3000, about 4000, about 5000, about 6000, about 7000, about 8000, about 9000, about 10,000 or greater nucleotide residues in length, up to a full length protein encoding or regulatory genetic element.


Isolated nucleic acids may be made by any method known in the art, for example using standard recombinant methods, assembly methods, synthetic techniques, or combinations thereof. In some embodiments, the nucleic acids may be cloned, amplified, assembled, or otherwise constructed.


The nucleic acids may conveniently comprise sequences in addition to a portion of a lysine riboswitch. For example, a multi-cloning site comprising one or more endonuclease restriction sites may be added. A nucleic acid may be attached to a vector, adapter, or linker for cloning of a nucleic acid. Additional sequences may be added to such cloning and sequences to optimize their function, to aid in isolation of the nucleic acid, or to improve the introduction of the nucleic acid into a cell. Use of cloning vectors, expression vectors, adapters, and linkers is well known in the art.


Isolated nucleic acids may be obtained from cellular, bacterial, or other sources using any number of cloning methodologies known in the art. In some embodiments, oligonucleotide probes which selectively hybridize, under stringent conditions, to other oligonucleotides or to the nucleic acids of an organism or cell. Methods for construction of nucleic acid libraries are known and any such known methods may be used.


Cellular genomic DNA, RNA, or cDNA may be screened for the presence of an identified genetic element of interest using a probe based upon one or more sequences. Various degrees of stringency of hybridization may be employed in the assay.


High stringency conditions for nucleic acid hybridization are well known in the art. For example, conditions may comprise low salt and/or high temperature conditions, such as provided by about 0.02 M to about 0.15 M NaCl at temperatures of about 50° C. to about 70° C. It is understood that the temperature and ionic strength of a desired stringency are determined in part by the length of the particular nucleic acid(s), the length and nucleotide content of the target sequence(s), the charge composition of the nucleic acid(s), and by the presence or concentration of formamide, tetramethylammonium chloride or other solvent(s) in a hybridization mixture. Nucleic acids may be completely complementary to a target sequence or may exhibit one or more mismatches.


Nucleic acids of interest may also be amplified using a variety of known amplification techniques. For instance, polymerase chain reaction (PCR) technology may be used to amplify target sequences directly from DNA, RNA, or cDNA. PCR and other in vitro amplification methods may also be useful, for example, to clone nucleic acid sequences, to make nucleic acids to use as probes for detecting the presence of a target nucleic acid in samples, for nucleic acid sequencing, or for other purposes.


Isolated nucleic acids may be prepared by direct chemical synthesis by methods such as the phosphotriester method, or using an automated synthesizer. Chemical synthesis generally produces a single stranded oligonucleotide. This may be converted into double stranded DNA by hybridization with a complementary sequence or by polymerization with a DNA polymerase using the single strand as a template.


Any method known in the art for identifying, isolating, purifying, using and assaying activities of target proteins contemplated herein are contemplated. Target proteins contemplated herein include protein agents used to treat a human condition or to regulate processes (e.g. part of a pathway such as an enzyme) involved in disease of a human or non-human mammal. Any method known for selection and production of antibodies or antibody fragments is also contemplated. Additionally or alternatively, target proteins can be proteins or enzymes involved in a pathway or process in a virus, cell, or organism.


Targetable Nucleic Acid Cleavage Systems


Some methods disclosed herein comprise targeting cleavage of specific nucleic acid sequences using a site-specific, targetable, and/or engineered nuclease or nuclease system. Such nucleases can create double-stranded break (DSBs) at desired locations in a genome or nucleic acid molecule. In other examples, a nuclease can create a single strand break. In some cases, two nucleases are used, each of which generates a single strand break.


The one or more double or single strand break can be repaired by natural processes of homologous recombination (HR) and non-homologous end-joining (NHEJ) using the cell's endogenous machinery. Additionally or alternatively, endogenous or heterologous recombination machinery can be used to repair the induced break or breaks.


Engineered nucleases such as zinc finger nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), engineered homing endonucleases, and RNA or DNA guided endonucleases, such as CRISPR/Cas such as Cas9 or CPF1, and/or Argonaute systems, are particularly appropriate to carry out some of the methods of the present invention. Additionally or alternatively, RNA targeting systems can use used, such as CRISPR/Cas systems including c2c2 nucleases.


Methods disclosed herein can comprise cleaving a target nucleic acid using a CRISPR systems, such as a Type I, Type II, Type III, Type IV, Type V, or Type VI CRISPR system. CRISPR/Cas systems can be multi-protein systems or single effector protein systems. Multi-protein, or Class 1, CRISPR systems include Type I, Type III, and Type IV systems. Alternatively, Class 2 systems include a single effector molecule and include Type II, Type VI, and Type VI.


CRISPR systems used in methods disclosed herein can comprise a single or multiple effector proteins. An effector protein can comprise one or multiple nuclease domains. An effector protein can target DNA or RNA, and the DNA or RNA may be single stranded or double stranded. Effector proteins can generate double strand or single strand breaks. Effector proteins can comprise mutations in a nuclease domain thereby generating a nickase protein. Effector proteins can comprise mutations in one or more nuclease domains, thereby generating a catalytically dead nuclease that is able to bind but not cleave a target sequence. CRISPR systems can comprise a single or multiple guiding RNAs. The gRNA can comprise a crRNA. The gRNA can comprise a chimeric RNA with crRNA and tracrRNA sequences. The gRNA can comprise a separate crRNA and tracrRNA. Target nucleic acid sequences can comprise a protospacer adjacent motif (PAM) or a protospacer flanking site (PFS). The PAM or PFS may be 3′ or 5′ of the target or protospacer site. Cleavage of a target sequence may generate blunt ends, 3′ overhangs, or 5′ overhangs.


A gRNA can comprise a spacer sequence. Spacer sequences can be complementary to target sequences or protospacer sequences. Spacer sequences can be 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, or 36 nucleotides in length. In some examples, the spacer sequence can be less than 10 or more than 36 nucleotides in length.


A gRNA can comprise a repeat sequence. In some cases, the repeat sequence is part of a double stranded portion of the gRNA. A repeat sequence can be 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides in length. In some examples, the spacer sequence can be less than 10 or more than 50 nucleotides in length.


A gRNA can comprise one or more synthetic nucleotides, non-naturally occurring nucleotides, nucleotides with a modification, deoxyribonucleotide, or any combination thereof. Additionally or alternatively, a gRNA may comprise a hairpin, linker region, single stranded region, double stranded region, or any combination thereof. Additionally or alternatively, a gRNA may comprise a signaling or reporter molecule.


A CRISPR nuclease can be endogenously or recombinantly expressed within a cell. A CRISPR nuclease can be encoded on a chromosome, extrachromosomally, or on a plasmid, synthetic chromosome, or artificial chromosome. A CRISPR nuclease can be provided or delivered to the cell as a polypeptide or mRNA encoding the polypeptide. In such examples, polypeptide or mRNA can be delivered through standard mechanisms known in the art, such as through the use of cell permeable peptides, nanoparticles, or viral particles.


gRNAs can be encoded by genetic or episomal DNA within a cell. In some examples, gRNAs can be provided or delivered to a cell expressing a CRISPR nuclease. gRNAs can be provided or delivered concomitantly with a CRISPR nuclease or sequentially. Guide RNAs can be chemically synthesized, in vitro transcribed, or otherwise generated using standard RNA generation techniques known in the art.


A CRISPR system can be a Type II CRISPR system, for example a Cas9 system. The Type II nuclease can comprise a single effector protein, which, in some cases, comprises a RuvC and HNH nuclease domains. In some cases a functional Type II nuclease can comprise two or more polypeptides, each of which comprises a nuclease domain or fragment thereof. The target nucleic acid sequences can comprise a 3′ protospacer adjacent motif (PAM). In some examples, the PAM may be 5′ of the target nucleic acid. Guide RNAs (gRNA) can comprise a single chimeric gRNA, which contains both crRNA and tracrRNA sequences. Alternatively, the gRNA can comprise a set of two RNAs, for example a crRNA and a tracrRNA. The Type II nuclease can generate a double strand break, which is some cases creates two blunt ends. In some cases, the Type II CRISPR nuclease is engineered to be a nickase such that the nuclease only generates a single strand break. In such cases, two distinct nucleic acid sequences can be targeted by gRNAs such that two single strand breaks are generated by the nickase. In some examples, the two single strand breaks effectively create a double strand break. In some cases where a Type II nickase is used to generate two single strand breaks, the resulting nucleic acid free ends can either be blunt, have a 3′ overhang, or a 5′ overhang. In some examples, a Type II nuclease may be catalytically dead such that it binds to a target sequence, but does not cleave. For example, a Type II nuclease could have mutations in both the RuvC and HNH domains, thereby rendering the both nuclease domains non-functional. A Type II CRISPR system can be one of three sub-types, namely Type II-A, Type II-B, or Type II-C.


A CRISPR system can be a Type V CRISPR system, for example a Cpf1, C2c1, or C2c3 system. The Type V nuclease can comprise a single effector protein, which in some cases comprises a single RuvC nuclease domain. In other cases, a function Type V nuclease comprises a RuvC domain split between two or more polypeptides. In such cases, the target nucleic acid sequences can comprise a 5′ PAM or 3′ PAM. Guide RNAs (gRNA) can comprise a single gRNA or single crRNA, such as can be the case with Cpf1. In some cases, a tracrRNA is not needed. In other examples, such as when C2c1 is used, a gRNA can comprise a single chimeric gRNA, which contains both crRNA and tracrRNA sequences or the gRNA can comprise a set of two RNAs, for example a crRNA and a tracrRNA. The Type V CRISPR nuclease can generate a double strand break, which in some cases generates a 5′ overhang. In some cases, the Type V CRISPR nuclease is engineered to be a nickase such that the nuclease only generates a single strand break. In such cases, two distinct nucleic acid sequences can be targeted by gRNAs such that two single strand breaks are generated by the nickase. In some examples, the two single strand breaks effectively create a double strand break. In some cases where a Type V nickase is used to generate two single strand breaks, the resulting nucleic acid free ends can either be blunt, have a 3′ overhang, or a 5′ overhang. In some examples, a Type V nuclease may be catalytically dead such that it binds to a target sequence, but does not cleave. For example, a Type V nuclease could have mutations a RuvC domain, thereby rendering the nuclease domain non-functional.


A CRISPR system can be a Type VI CRISPR system, for example a C2c2 system. A Type VI nuclease can comprise a HEPN domain. In some examples, the Type VI nuclease comprises two or more polypeptides, each of which comprises a HEPN nuclease domain or fragment thereof. In such cases, the target nucleic acid sequences can by RNA, such as single stranded RNA. When using Type VI CRISPR system, a target nucleic acid can comprise a protospacer flanking site (PFS). The PFS may be 3′ or 5′ or the target or protospacer sequence. Guide RNAs (gRNA) can comprise a single gRNA or single crRNA. In some cases, a tracrRNA is not needed. In other examples, a gRNA can comprise a single chimeric gRNA, which contains both crRNA and tracrRNA sequences or the gRNA can comprise a set of two RNAs, for example a crRNA and a tracrRNA. In some examples, a Type VI nuclease may be catalytically dead such that it binds to a target sequence, but does not cleave. For example, a Type VI nuclease could have mutations in a HUN domain, thereby rendering the nuclease domains non-functional.


Non-limiting examples of suitable nucleases, including nucleic acid-guided nucleases, for use in the present disclosure include C2c1, C2c2, C2c3, Cas1, Cas1B, Cast, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9 (also known as Csn1 and Csx12), Cas10, Cpf1, Csy1, Csy2, Csy3, Cse1, Cse2, Csc1, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, Cmr6, Csb1, Csb2, Csb3, Csx17, Csx14, Csx100, Csx16, CsaX, Csx3, Csx1, Csx15, Csf1, Csf2, Csf3, Csf4, homologues thereof, orthologues thereof, or modified versions thereof. Suitable nucleic acid-guided nucleases can be from an organism from a genus which includes but is not limited to Thiomicrospira, Succinivibrio, Candidatus, Porphyromonas, Acidomonococcus, Prevotella, Smithella, Moraxella, Synergistes, Francisella, Leptospira, Catenibacterium, Kandleria, Clostridium, Dorea, Coprococcus, Enterococcus, Fructobacillus, Weissella, Pediococcus, Corynebacter, Sutterella, Legionella, Treponema, Roseburia, Filifactor, Eubacterium, Streptococcus, Lactobacillus, Mycoplasma, Bacteroides, Flaviivola, Flavobacterium, Sphaerochaeta, Azospirillum, Gluconacetobacter, Neisseria, Roseburia, Parvibaculum, Staphylococcus, Nitratifractor, Mycoplasma, Alicyclobacillus, Brevibacilus, Bacillus, Bacteroidetes, Brevibacilus, Camobacterium, Clostridiaridium, Clostridium, Desulfonatronum, Desulfovibrio, Helcococcus, Leptotrichia, Listeria, Methanomethyophilus, Methylobacterium, Opitutaceae, Paludibacter, Rhodobacter, Sphaerochaeta, Tuberibacillus, and Campylobacter. Species of organism of such a genus can be as otherwise herein discussed. Suitable nucleic acid-guided nucleases can be from an organism from a genus or unclassified genus within a kingdom, which includes but is not limited to Firmicute, Actinobacteria, Bacteroidetes, Proteobacteria, Spirochates, and Tenericutes. Suitable nucleic acid-guided nucleases can be from an organism from a genus or unclassified genus within a phylum which includes but is not limited to Erysipelotrichia, Clostridia, Bacilli, Actinobacteria, Bacteroidetes, Flavobacteria, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Epsilonproteobacteria, Spirochaetes, and Mollicutes. Suitable nucleic acid-guided nucleases can be from an organism from a genus or unclassified genus within an order which includes but is not limited to Clostridiales, Lactobacillales, Actinomycetales, Bacteroidales, Flavobacteriales, Rhizobiales, Rhodospirillales, Burkholderiales, Neisseriales, Legionellales, Nautiliales, Campylobacterales, Spirochaetales, Mycoplasmatales, and Thiotrichales. Suitable nucleic acid-guided nucleases can be from an organism from a genus or unclassified genus within a family which includes but is not limited to Lachnospiraceae, Enterococcaceae, Leuconostocaceae, Lactobacillaceae, Streptococcaceae, Peptostreptococcaceae, Staphylococcaceae, Eubacteriaceae, Corynebacterineae, Bacteroidaceae, Flavobacterium, Cryomoorphaceae, Rhodobiaceae, Rhodospirillaceae, Acetobacteraceae, Sutterellaceae, Neisseriaceae, Legionellaceae, Nautiliaceae, Campylobacteraceae, Spirochaetaceae, Mycoplasmataceae, Pisciririckettsiaceae, and Francisellaceae.


Other nucleic acid-guided nucleases suitable for use in the methods, systems, and compositions of the present disclosure include those derived from an organism such as, but not limited to, Thiomicrospira sp. XS5, Eubacterium rectale, Succinivibrio dextrinosolvens, Candidatus Methanoplasma termitum, Candidatus Methanomethylophilus alvus, Porphyromonas crevioricanis, Flavobacterium branchiophilum, Acidomonococcus sp., Lachnospiraceae bacterium COE1, Prevotella brevis ATCC 19188, Smithella sp. SCADC, Moraxella bovoculi, Synergistes jonesii, Bacteroidetes oral taxon 274, Francisella tularensis, Leptospira inadai serovar Lyme str. 10, Acidomonococcus sp. crystal structure (5B43) S. mutans, S. agalactiae, S. equisimilis, S. sanguinis, S. pneumonia; C. jejuni, C. coli; N. salsuginis, N. tergarcus; S. auricularis, S. carnosus; N. meningitides, N. gonorrhoeae; L. monocytogenes, L. ivanovii; C. botulinum, C. difficile, C. tetani, C. sordellii; Francisella tularensis 1, Prevotella albensis, Lachnospiraceae bacterium MC2017 1, Butyrivibrio proteoclasticus, Peregrinibacteria bacterium GW2011_GWA2_33_10, Parcubacteria bacterium GW2011_GWC2_44_17, Smithella sp. SCADC, Acidaminococcus sp. BV3L6, Lachnospiraceae bacterium MA2020, Candidatus Methanoplasma termitum, Eubacterium eligens, Moraxella bovoculi 237, Leptospira inadai, Lachnospiraceae bacterium ND2006, Porphyromonas crevioricanis 3, Prevotella disiens, Porphyromonas macacae, Catenibacterium sp. CAG:290, Kandleria vitulina, Clostridiales bacterium KA00274, Lachnospiraceae bacterium 3-2, Dorea longicatena, Coprococcus catus GD/7, Enterococcus columbae DSM 7374, Fructobacillus sp. EFB-N1, Weissella halotolerans, Pediococcus acidilactici, Lactobacillus curvatus, Streptococcus pyogenes, Lactobacillus versmoldensis, and Filifactor alocis ATCC 35896.


Suitable nucleases for use in any of the methods disclosed herein include, but are not limited to, nucleases having the sequences listed in Table 1, or homologues having at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% sequence identity to any of the nucleases listed in Table 1.












TABLE 1







MAD nuclease
Amino acid sequence









MAD1
SEQ ID NO: 1



MAD2
SEQ ID NO: 2



MAD3
SEQ ID NO: 3



MAD4
SEQ ID NO: 4



MAD5
SEQ ID NO: 5



MAD6
SEQ ID NO: 6



MAD7
SEQ ID NO: 7



MAD8
SEQ ID NO: 8



MAD9
SEQ ID NO: 9



MAD10
SEQ ID NO: 10



MAD11
SEQ ID NO: 11



MAD12
SEQ ID NO: 12



MAD13
SEQ ID NO: 13



MAD14
SEQ ID NO: 14



MAD15
SEQ ID NO: 15



MAD16
SEQ ID NO: 16



MAD17
SEQ ID NO: 17



MAD18
SEQ ID NO: 18



MAD19
SEQ ID NO: 19



MAD20
SEQ ID NO: 20










In some methods disclosed herein, Argonaute (Ago) systems can be used to cleave target nucleic acid sequences. Ago protein can be derived from a prokaryote, eukaryote, or archaea. The target nucleic acid may be RNA or DNA. A DNA target may be single stranded or double stranded. In some examples, the target nucleic acid does not require a specific target flanking sequence, such as a sequence equivalent to a protospacer adjacent motif or protospacer flanking sequence. The Ago protein may create a double strand break or single strand break. In some examples, when a Ago protein forms a single strand break, two Ago proteins may be used in combination to generate a double strand break. In some examples, an Ago protein comprises one, two, or more nuclease domains. In some examples, an Ago protein comprises one, two, or more catalytic domains. One or more nuclease or catalytic domains may be mutated in the Ago protein, thereby generating a nickase protein capable of generating single strand breaks. In other examples, mutations in one or more nuclease or catalytic domains of an Ago protein generates a catalytically dead Ago protein that can bind but not cleave a target nucleic acid.


Ago proteins can be targeted to target nucleic acid sequences by a guiding nucleic acid. In many examples, the guiding nucleic acid is a guide DNA (gDNA). The gDNA can have a 5′ phosphorylated end. The gDNA can be single stranded or double stranded. Single stranded gDNA can be 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides in length. In some examples, the gDNA can be less than 10 nucleotides in length. In some examples, the gDNA can be more than 50 nucleotides in length.


Argonaute-mediated cleavage can generate blunt end, 5′ overhangs, or 3′ overhangs. In some examples, one or more nucleotides are removed from the target site during or following cleavage.


Argonaute protein can be endogenously or recombinantly expressed within a cell. Argonaute can be encoded on a chromosome, extrachromosomally, or on a plasmid, synthetic chromosome, or artificial chromosome. Additionally or alternatively, an Argonaute protein can be provided or delivered to the cell as a polypeptide or mRNA encoding the polypeptide. In such examples, polypeptide or mRNA can be delivered through standard mechanisms known in the art, such as through the use of cell permeable peptides, nanoparticles, or viral particles.


Guide DNAs can be provided by genetic or episomal DNA within a cell. In some examples, gDNA are reverse transcribed from RNA or mRNA within a cell. In some examples, gDNAs can be provided or delivered to a cell expressing an Ago protein. Guide DNAs can be provided or delivered concomitantly with an Ago protein or sequentially. Guide DNAs can be chemically synthesized, assembled, or otherwise generated using standard DNA generation techniques known in the art. Guide DNAs can be cleaved, released, or otherwise derived from genomic DNA, episomal DNA molecules, isolated nucleic acid molecules, or any other source of nucleic acid molecules.


In some instances, compositions are provided comprising a nuclease such as an nucleic acid-guided nuclease (e.g., Cas9, Cpf1, MAD2, or MAD7) or a DNA-guided nuclease (e.g., Ago), linked to a chromatin-remodeling enzyme. Without wishing to be bound by theory, a nuclease fusion protein as described herein may provide improved accessibility to regions of highly-structured DNA. Non-limiting examples of chromatin-remodeling enzymes that can be linked to a nucleic-acid guided nuclease may include: histone acetyl transferases (HATs), histone deacetylases (HDACs), histone methyltransferases (HMTs), chromatin remodeling complexes, and transcription activator-like (Tal) effector proteins. Histone deacetylases may include HDAC1, HDAC2, HDAC3, HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, HDAC9, HDAC10, HDAC11, sirtuin 1, sirtuin 2, sirtuin 3, sirtuin 4, sirtuin 5, sirtuin 6, and sirtuin 7. Histone acetyl transferases may include GCN5, PCAF, Hat1, Elp3, Hpa2, Hpa3, ATF-2, Nut1, Esa1, Sas2, Sas3, Tip60, MOF, MOZ, MORF, HBO1, p300, CBP, SRC-1, ACTR, TIF-2, SRC-3, TAFII250, TFIIIC, Rtt109, and CLOCK. Histone methyltransferases may include ASH1L, DOT1L, EHMT1, EHMT2, EZH1, EZH2, MLL, MLL2, MLL3, MLL4, MLL5, NSD1, PRDM2, SET, SETBP1, SETD1A, SETD1B, SETD2, SETD3, SETD4, SETD5, SETD6, SETD7, SETD8, SETD9, SETDB1, SETDB2, SETMAR, SMYD1, SMYD2, SMYD3, SMYD4, SMYD5, SUV39H1, SUV39H2, SUV420H1, and SUV420H2. Chromatin-remodeling complexes may include SWI/SNF, ISWI, NuRD/Mi-2/CHD, INO80 and SWR1.


In some instances, the nuclease is a wild-type nuclease. In other instances, the nuclease is a chimeric engineered nuclease. Chimeric engineered nucleases as disclosed herein can comprise one or more fragments or domains, and the fragments or domains can be of a nuclease, such as nucleic acid-guided nuclease, orthologs of organisms of genuses, species, or other phylogenetic groups disclosed herein; advantageously the fragments are from nuclease orthologs of different species. A chimeric engineered nuclease can be comprised of fragments or domains from at least two different nucleases. A chimeric engineered nuclease can be comprised of fragments or domains from at least two different species. A chimeric engineered nuclease can be comprised of fragments or domains from at least 2, 3, 4, 5, 6, 7, 8, 9, 10, or more different nucleases or different species. In some cases, more than one fragment or domain from one nuclease or species, wherein the more than one fragment or domain are separated by fragments or domains from a second nuclease or species. In some examples, a chimeric engineered nuclease comprises 2 fragments, each from a different protein or nuclease. In some examples, a chimeric engineered nuclease comprises 3 fragments, each from a different protein or nuclease. In some examples, a chimeric engineered nuclease comprises 4 fragments, each from a different protein or nuclease. In some examples, a chimeric engineered nuclease comprises 5 fragments, each from a different protein or nuclease.


Nuclease fusion proteins can be recombinantly expressed within a cell. A nuclease fusion protein can be encoded on a chromosome, extrachromosomally, or on a plasmid, synthetic chromosome, or artificial chromosome. A nuclease and a chromatin-remodeling enzyme may be engineered separately, and then covalently linked, prior to delivery to a cell. A nuclease fusion protein can be provided or delivered to the cell as a polypeptide or mRNA encoding the polypeptide. In such examples, polypeptide or mRNA can be delivered through standard mechanisms known in the art, such as through the use of cell permeable peptides, nanoparticles, or viral particles.


Cell-Cycle-Dependent Expression of Targeted Nucleases.


In some instances, compositions comprising a cell-cycle-dependent nuclease are provided. A cell-cycle dependent nuclease generally includes a targeted nuclease as described herein linked to an enzyme that leads to degradation of the targeted nuclease during G1 phase of the cell cycle, and expression of the targeted nuclease during G2/M phase of the cell cycle. Such cell-cycle dependent expression may, for example, bias the expression of the nuclease in cells where homology-directed repair (HDR) is most active (e.g., during G2/M phase). In some cases, the nuclease is covalently linked to cell-cycle regulated protein such as one that is actively degraded during G1 phase of the cell cycle and is actively expressed during G2/M phase of the cell cycle. In a non-limiting example, the cell-cycle regulated protein is Geminin. Other non-limiting examples of cell-cycle regulated proteins may include: Cyclin A, Cyclin B, Hs11, Cdc6, Fin1, p21 and Skp2.


In some instances, the nuclease is a wild-type nuclease.


In other instances, the nuclease is a engineered nuclease. Engineered nucleases can be non-naturally occurring.


Non-naturally occurring targetable nucleases and non-naturally occurring targetable nuclease systems can address many of these challenges and limitations.


Disclosed herein are non-naturally targetable nuclease systems. Such targetable nuclease systems are engineered to address one or more of the challenges described above and can be referred to as engineered nuclease systems. Engineered nuclease systems can comprise one or more of an engineered nuclease, such as an engineered nucleic acid-guided nuclease, an engineered guide nucleic acid, an engineered polynucleotides encoding said nuclease, or an engineered polynucleotides encoding said guide nucleic acid. Engineered nucleases, engineered guide nucleic acids, and engineered polynucleotides encoding the engineered nuclease or engineered guide nucleic acid are not naturally occurring and are not found in nature. It follows that engineered nuclease systems including one or more of these elements are non-naturally occurring.


Non-limiting examples of types of engineering that can be done to obtain a non-naturally occurring nuclease system are as follows. Engineering can include codon optimization to facilitate expression or improve expression in a host cell, such as a heterologous host cell. Engineering can reduce the size or molecular weight of the nuclease in order to facilitate expression or delivery. Engineering can alter PAM selection in order to change PAM specificity or to broaden the range of recognized PAMs. Engineering can alter, increase, or decrease stability, processivity, specificity, or efficiency of a targetable nuclease system. Engineering can alter, increase, or decrease protein stability. Engineering can alter, increase, or decrease processivity of nucleic acid scanning. Engineering can alter, increase, or decrease target sequence specificity. Engineering can alter, increase, or decrease nuclease activity. Engineering can alter, increase, or decrease editing efficiency. Engineering can alter, increase, or decrease transformation efficiency. Engineering can alter, increase, or decrease nuclease or guide nucleic acid expression.


Examples of non-naturally occurring nucleic acid sequences which are disclosed herein include sequences codon optimized for expression in bacteria, such as E. coli (e.g., SEQ ID NO: 41-60), sequences codon optimized for expression in single cell eukaryotes, such as yeast (e.g., SEQ ID NO: 127-146), sequences codon optimized for expression in multi cell eukaryotes, such as human cells (e.g., SEQ ID NO: 147-166), polynucleotides used for cloning or expression of any sequences disclosed herein (e.g., SEQ ID NO: 61-80), plasmids comprising nucleic acid sequences (e.g., SEQ ID NO: 21-40) operably linked to a heterologous promoter or nuclear localization signal or other heterologous element, proteins generated from engineered or codon optimized nucleic acid sequences (e.g., SEQ ID NO: 1-20), or engineered guide nucleic acids comprising any one of SEQ ID NO: 84-107. Such non-naturally occurring nucleic acid sequences can be amplified, cloned, assembled, synthesized, generated from synthesized oligonucleotides or dNTPs, or otherwise obtained using methods known by those skilled in the art.


Additional examples of non-naturally occurring nucleic acid sequences which are disclosed herein include sequences codon optimized for expression in bacteria, such as E. coli (e.g., SEQ ID NO: 168), sequences codon optimized for expression in single cell eukaryotes, such as yeast (e.g., SEQ ID NO: 169), sequences codon optimized for expression in multi cell eukaryotes, such as human cells (e.g., SEQ ID NO: 170), polynucleotides used for cloning or expression of any sequences disclosed herein (e.g., SEQ ID NO: 171), plasmids comprising nucleic acid sequences (e.g., SEQ ID NO: 167) operably linked to a heterologous promoter or nuclear localization signal or other heterologous element, proteins generated from engineered or codon optimized nucleic acid sequences (e.g., SEQ ID NO: 108-110), or engineered guide nucleic acids compatible with any targetable nuclease disclosed herein. Such non-naturally occurring nucleic acid sequences can be amplified, cloned, assembled, synthesized, generated from synthesized oligonucleotides or dNTPs, or otherwise obtained using methods known by those skilled in the art.


A guide nucleic acid can be DNA. A guide nucleic acid can be RNA. A guide nucleic acid can comprise both DNA and RNA. A guide nucleic acid can comprise modified of non-naturally occurring nucleotides. In cases where the guide nucleic acid comprises RNA, the RNA guide nucleic acid can be encoded by a DNA sequence on a polynucleotide molecule such as a plasmid, linear construct, or editing cassette as disclosed herein.


Nucleic acid-guided nucleases can be compatible with guide nucleic acids that are not found within the nucleases endogenous host. Such orthogonal guide nucleic acids can be determined by empirical testing. Orthogonal guide nucleic acids can come from different bacterial species or be synthetic or otherwise engineered to be non-naturally occurring.


Orthogonal guide nucleic acids that are compatible with a common nucleic acid-guided nuclease can comprise one or more common features. Common features can include sequence outside a pseudoknot region. Common features can include a pseudoknot region (e.g., 172-181). Common features can include a primary sequence or secondary structure.


A guide nucleic acid can be engineered to target a desired target sequence by altering the guide sequence such that the guide sequence is complementary to the target sequence, thereby allowing hybridization between the guide sequence and the target sequence. A guide nucleic acid with an engineered guide sequence can be referred to as an engineered guide nucleic acid. Engineered guide nucleic acids are often non-naturally occurring and are not found in nature.


In other instances, the nuclease is a chimeric nuclease. Chimeric nucleases can be engineered nucleases. Chimeric nucleases as disclosed herein can comprise one or more fragments or domains, and the fragments or domains can be of a nuclease, such as nucleic acid-guided nuclease, orthologs of organisms of genuses, species, or other phylogenetic groups; advantageously the fragments are from nuclease orthologs of different species. A chimeric nuclease can be comprised of fragments or domains from at least two different nucleases. A chimeric nuclease can be comprised of fragments or domains from at least two different species. A chimeric nuclease can be comprised of fragments or domains from at least 2, 3, 4, 5, 6, 7, 8, 9, 10, or more different nucleases or different species. In some cases, more than one fragment or domain from one nuclease or species, wherein the more than one fragment or domain are separated by fragments or domains from a second nuclease or species. In some examples, a chimeric nuclease comprises 2 fragments, each from a different protein or nuclease. In some examples, a chimeric nuclease comprises 3 fragments, each from a different protein or nuclease. In some examples, a chimeric nuclease comprises 4 fragments, each from a different protein or nuclease. In some examples, a chimeric nuclease comprises 5 fragments, each from a different protein or nuclease.


EXAMPLES
Example 1—CREATE-Plasmids and Libraries


FIGS. 1A-C depict an example of an overview of CRISPR EnAbled Trackable genome Engineering (CREATE) design and workflow. FIG. 1A shows an example of the CREATE methodology which allows programmatic genome modifications to be focused on key amino acid residues or promoter targets across the genome. Such libraries thus enable systematic assessment of sequence/activity relationships for a wide variety of genomic targets in parallel. FIG. 1B depicts an example of CREATE cassettes designed to encode both homology arm (HA) and guide RNA (gRNA) sequences to target a specific locus in the E. coli genome. The 100 bp homology arm was designed to introduce a specific codon mutation (target codon) that can be selectively enriched by a synonymous PAM mutation to rescue the sequence from Cas9 cleavage and allow highly efficient mutagenesis. The P1 and P2 sites (black) serve as general priming sites allowing multiplexed amplification, cloning and sequencing of many libraries in parallel. The promoter (J23119, green) is a constitutive promoter that drives expression of the gRNA. Detailed example the HA design for introducing a stop codon at residue 145 in the galK locus is also depicted at the bottom of FIG. 1B. The top sequence shows the wildtype genome sequence with the PAM (CCG; the reverse complement of which is CGG, which is recognized by S. pyogenes Cas9) and target codon (TAT, encoding Y) highlighted. The HA design introduces a “silent scar” at the PAM site (CgG, the reverse complement of which is CCG, which is not recognized by S. pyogenes Cas9) and a single nucleotide TAT>TAA mutation at codon 145 (resulting in a STOP). This design strategy was implemented programmatically for coding regions across the genome. FIG. 1C depicts an overview of an example CREATE workflow. CREATE cassettes are synthesized on a microarray delivered as large oligo pools (104 to 106 individual library members). Parallel cloning and recombineering allowed processing of these pools into genomic libraries, in some cases in 23 days. Deep sequencing of the CREATE plasmids can be used to track the fitness of thousands of precision mutations genome wide following selection or screening of the mutant libraries.


Example 2—CREATE Plasmid Validation


FIG. 2A-D depicts an example of the effect of Cas9 activity on transformation and editing efficiencies. The galK 120/17 CREATE cassette (120 bp HA and 17 bp PAM/codon spacing) targeting codon 145 in galK gene or a control non-targeting gRNA vector was transformed in cells carrying pSIM5 along with dCas9 (e.g. left set of bars in FIG. 2A) or Cas9 (e.g. right set of bars in FIG. 2A) plasmids. The pSIM5 plasmid carries lambda red recombination machinery. The cas9 gene was cloned into the pBTBX-2 backbone under the control of a pBAD promoter to allow control of the cleavage activity by addition of arabinose. Transformation efficiencies of each vector are shown with dark grey bars. The total number of recombinant cells (light grey bars) were calculated based on red/white colony screening on MacConkey agar. In cases where white colonies were undetectable by plate based screening we assumed 104 editing efficiencies. A 102 fold reduction in transformation efficiency compared to the non-targeting gRNA control was also observed for CREATE cassettes transformed into the Cas9 background.



FIG. 2B depicts an example of the characterization of CREATE cassette HA length and PAM/codon spacing on editing efficiency. All cassettes were designed to introduce a TAA stop at codon 145 in the gene using PAMs at the indicated distance (PAM/codon bottom) from the target codon and variable homology arms lengths (HA, bottom). Dark grey and light grey bars correspond to uninduced or induced expression of Cas9 under the pBAD promoter using 0.2% arabinose. In the majority of cases the editing efficiency appears to be unaffected by induction suggesting that low amounts of Cas9 due to leaky expression are sufficient for high efficiency editing.



FIG. 2C shows example data from sequencing of the genomic loci from CREATE recombineering reactions. The galK cassettes from FIG. 2B are labeled according to the HA length and PAM codon spacing. The other loci shown were cassettes isolated from multiplexed library cloning reactions. The bar plot (FIG. 2C) indicates the number of times each genotype was observed by genomic colony sequencing following recombineering with each CREATE cassette. The + and labels at the bottom indicate the presence or absence of the designed mutation at the two relevant sites in each clone. The circular inset indicates the relative position of each gene on the E. coli genome.



FIG. 2D depicts an example of library coverage from multiplexed cloning of CREATE plasmids. Deep sequencing counts each variant are shown with respect to their position on the genome. The inset shows a histogram of these plasmid counts for the entire library. The distribution follows expected Poisson distribution for low average counts.


Example 3—CREATE-Recording Used to Engineer Trackable Episomal DNA Libraries


FIG. 3A depicts an example of an overview of the method used to generate a trackable episomal DNA library. Transformation of a CREATE recorder plasmid generates modifications of the target DNA at two sites. One edit occurs to the desired target gene (gray) introducing a codon or promoter mutation designed to test specific engineering objectives. The second edit targets a functionally neutral site and introduces a 15 nucleotide barcode (BC, black). By virtue of coupling these libraries on a single CREATE plasmid the target DNA is edited at both sites and each unique barcode can be used to track edits throughout the rest of the plasmid.



FIG. 2B depicts an example of the CREATE barcode design. A degenerate library is constructed from overlapping oligos and cloned in a separate site of the CREATE vector to make a library of CREATE recorder cassettes that can be coupled to the designer editing libraries.



FIG. 2C depicts an exemplary CREATE record mapping strategy. Deep sequencing of both the target DNA (left) and CREATE plasmids allows a simple sequence mapping strategy by allowing each editing cassette to be uniquely assigned by the barcode sequence. This allows the relative fitness of each barcode (and thus edit) to be tracked during selection or screening processes and can be shuttled between different organisms using standard vectors.


Example 4—CREATE-Mediated Editing of Episomal DNA

Methods and compositions disclosed herein were used to mutate a key residue of the cas9 gene used for the CREATE process (e.g. FIG. 4A-4B). A cassette was designed to make an R1335K mutation in the Cas9 protein. This cassette was cloned into a CREATE plasmid and transformed into MG1655 E. coli carrying the pSIM5 and X2-Cas9 vectors. The pSIM5 vector comprises lambda red recombination machinery. The X2-Cas9 vector comprises an arabinose-inducible Cas9 expression cassette. Following three hours recovery in LB supplemented with 0.4% arabinose to induce Cas9 expression, the cells were plated on agar containing antibiotics that maintain selective pressure for replication of both the X2-Cas9 and CREATE plasmids. Colony PCR of random clones revealed the designed edits from the CREATE plasmid were efficiently transferred into the X2-Cas9 plasmid (e.g. FIG. 4B). Of the clones that were sequenced, 100% contained the silent PAM mutation in X2Cas9 and 6/14 (43%) also containing desired coding edit. This is the first demonstration that plasmid based editing using CREATE is robust despite higher copy numbers associated with the plasmid target as compared to previous genome engineering efforts.


Example 5—CREATE-Mediated Editing and Tracking of E. coli Genome—Double Cassette

To test the performance of the recording strategy in a genomic context we tested the ability to edit two distal genomic loci in the E. coli genome (e.g. FIG. 5A). To do so we cloned CREATE recording cassette libraries designed to embed the 15 nucleotide barcodes into the galK locus. After cloning, we isolated a few unique barcodes and cloned a second editing cassette designed to incorporate an F153R mutation in the dihydrofolate reductase (DHFR)/folA gene that was identified by our previous CREATE studies as conferring tolerance to the antibiotic trimethoprim. Genotyping of E. coli strains following transformation of the dual CREATE recording vector according to previously described protocols yielded the data in FIG. 5A. The efficiency of barcoding (100%) was higher than the target genome edit (80-90%), ensuring that edited genomes can be tracked. Of the transformed population we observed >80% of colonies contained the barcode edit in the galK locus as determined by red white colony screening (e.g. FIG. 5B). From the barcoded colonies we found that 85% of the colonies also encoded the DHFR F153R mutation indicating that we have a strong tracking between the barcode and codon edits. FIG. 5B depicts the total number of colonies (CFUs) in duplicate experiments that are edited and/or barcoded. The edited CFUs numbers were calculated by extrapolation of the data in FIG. 5A to the total number of CFUs on the plate. The barcoded CFUs numbers were calculated by counting the number of white colonies in a galK screening (site in which barcode is integrated). These data show that the majority of barcoded colonies contained the designed genomic edit.


Example 6—Plasmid Curing for Combinatorial Engineering


FIG. 6 depicts an example of combinatorial genome engineering and tracking. Three recursive CREATE plasmids are used, each with a gRNA targeting one of the other markers in this series (indicated by T-lines). During each transformation, an edit and barcode are incorporated into the genome and the previous CREATE plasmid is cured. In this way rapid iterative transformations can be performed to construct either a defined combination of mutations or a combinatorial library to search for improved phenotypes. The recording site is compatible with short read sequencing technologies that allow the fitness of combinations to be tracked across a population. Such an approach allows rapid investigation of genetic epistasis and optimization of phenotypes relevant to basic research or for commercial biological applications.



FIG. 3D and FIG. 3E depict another example of combinatorial genome engineering. With each round of engineering, an editing cassette (blue rectangle in FIG. 3D) is incorporated into the target sequence in the genome (blue star) and a recorder cassette (green rectangle in FIG. 3D) is incorporated into a different target sequence of the genome (green dash in middle panel of FIG. 3D). In this example, each recorder sequence comprises a 15 nucleotide barcode. As shown in the right panel of FIG. 3D, the recorder sequences are each inserted adjacent to the last recorder sequence, despite where the editing cassette was inserted. Each recorder cassette can simultaneously delete a PAM site. After completion of each round of engineering, the engineered cells can be selected and then the inserted mutations can be tracked by sequencing the recorder region that comprises all of the inserted recorder cassettes. By sequencing the starting plasmid library, each editing cassette can be linked or associated with one or more unique barcodes within the recorder cassette. Since each recorder cassette corresponds to the associate editing cassette, then the mutations incorporated by the editing cassettes can be tracked or identified by the sequence of the recorder cassette, or the sequence of the barcodes within the recorder cassette. As is demonstrated in FIG. 3E, by sequencing all of the recorder cassettes or barcodes within the recorder cassettes, each of the inserted mutations can be identified and tracked. The inserted recorder sequences can be referred to as a recorder site, recorder array, or barcode array. As a result, after recursive rounds of engineering, sequencing the barcode array or recorder site allows tracking of the history of genomic editing events in the strain. When the recorder cassettes are inserted in order as depicted, for example, in FIG. 3D, then the barcode array or recorder site can identify the order in which the mutations were inserted as well as what the mutation is.


Example 7—Recursive Engineering Using Iterative CREATE-Recording Engineering Events

The example of recursive engineering depicted in FIG. 7A was used for plasmid curing to demonstrate that the design is extremely efficient at eliminating previous vectors (FIG. 7B). Each CREATE plasmid can be positively selected for based on the indicated antibiotics (Trimeth: trimethoprim, Carb: carbenicillin, Tet: tetracycline) and contains a gRNA targeting one of the other antibiotic markers. For example, the reCREATE1 plasmid can be selected for on carbenicillin and encodes a gRNA that will selectively target the trimethoprim resistance gene for destruction. One pass through the carb/tetracycline/trimethoprim antibiotic marker series allows selective incorporation of up to three targeted edits. The recording function would be implemented as illustrated in FIG. 5, but is omitted here for simplicity.



FIG. 7B depicts an example of data from iterative rounds of CREATE engineering. A serial transformation series began with cells transformed with X2cas9 (kan) and the reCREATE1 vector. The spot plating results indicate that curing is 99.99% effective at each transformation step, ensuring highly efficient engineering in each round of transformation. Simultaneous genome editing and plasmid curing in each transformation step with high efficiencies was achieved by introducing the requisite recording and editing CREATE cassettes into recursive vectors as disclosed herein (e.g. FIG. 7B).


Example 8—CREATE Design and Workflow

An example overview of CRISPR EnAbled Trackable genome Engineering (CREATE) design workflow is depicted in FIGS. 8A-8B. FIG. 8A shows example anatomy of a CREATE cassette designed for protein engineering. Cassettes encode a spacer (red) along with part of a guide RNA (gRNA) sequence and a designer homology arm (HA) that can template homologous recombination at the genomic cut site. For protein engineering purposes the HA is designed to systematically couple mutations to a specified codon or target site (TS, blue) to a nearby synonymous PAM mutation (SPM, red) to rescue the sequence from Cas9 cleavage and allow highly efficient mutagenesis. The priming sites (P1 and P2, black) are designed to allow multiplexed amplification and cloning of specific subpools from massively parallel array based synthesis. A constitutive promoter (green) drives expression of the gRNA. FIG. 8A further shows a detailed example of HA design for introducing a stop codon at residue 145 in the galK locus. The top sequence shows is of the wt genome with the PAM and TS codon highlighted. The translation sequences are shown to illustrate that the resulting mutant contains a single nonsynonymous mutation at the target site. FIG. 8B shows an example overview of the CREATE workflow. CREATE oligos are synthesized on a microarray and delivered as large pools (104-106 individual library members). These cassettes are amplified and cloned in multiplex with the ability to subpool designs. After introduction of the CREATE plasmids into cells expressing Cas9 mutations are transferred to the genome with high efficiencies. Measurement of the frequency of each plasmid before (fi, t1) and after selection (fi, t2) by deep sequencing provides enrichment scores (Ei) for each CREATE cassette. These scores allow rapid identification of adaptive variants at up to single nucleotide or amino acid resolution for thousands loci in parallel.


Example 9—CREATE Design Validation


FIG. 9A depicts an example of the effects of Cas9 activity on transformation and editing efficiencies were measured using no a cassette with a spacer and 120 bp HA targeted to the galK (galK_Y145*_120/17) The total transformants (TT white) produced by this CREATE vector are shown in white and the total number of recombinants (TR) in dark blue. TR is calculated as the product of the editing efficiency and Tt. Asterisks indicate experiments in which recombinants could not be observed by plate based screening. FIG. 9B shows an example of characterization of CREATE cassette HA length and PAM/codon spacing on editing efficiency. All cassettes were designed to introduce a TAA stop at codon 145 in the gene using PAMs at the indicated distance (PAM/codon bottom) from the target codon and variable homology arms lengths (HA, bottom). White and blue bars correspond to uninduced or induced expression of Cas9 under the pBAD promoter using 0.2% arabinose. In the majority of cases the editing efficiency appears to be unaffected by induction suggesting that low amounts of Cas9 due to leaky expression are sufficient for high efficiency editing. FIG. 9C depicts an example of determination of editing efficiency for oligo derived cassettes by sequencing of the genomic loci. The galK_Y145*_120/17 cassette from FIGS. 9A and 9B is shown in white for reference. The bar plot indicates the number of times each genotype was observed by genomic colony sequencing following recombineering with each CREATE cassette. The circular inset indicates the relative position of each gene on the E. coli genome. FIG. 9D depicts distance between SPM and the TS (as exemplified in FIG. 8A) is strongly correlated with editing efficiency (correct edits/total sequences sampled). The galK cassettes with 44 and 59 bp in FIG. 9B were omitted from this analysis. The depicted error bars are derived from N=3 independent replicates of the indicated experiment.


Example 10—Scanning Saturation Mutagenesis of an Essential Chromosomal Gene


FIG. 10A-10C depict an example where CREATE was used to generate a full scanning saturation mutagenesis library of the folA gene for identification of mutations that can confer resistance to TMP. The count weighted average enrichment score from two trials of selection is plotted as a function of residue position (right). Cassettes encoding nonsynonymous mutations are shown in gray, and those encoding synonymous mutations in black. Cassettes with enrichment scores greater than 1.8 are highlighted in red and mutations that affect previously reported sites are labeled for reference. The dashed lines indicate enrichment values that are significantly different (p<0.05) from the synonymous dataset as determined by bootstrapping of the confidence intervals. These values are shown as a histogram for reference (middle). Mutations that appear to significantly impact DHFR resistance are highlighted as red spheres to the far right. FIGS. 10D-10F depict example growth analysis of wt (left) F153W (middle) and F153R (right) variants in the indicated range of TMP concentrations (shown right).


Example 11—Reconstruction of ALE Mutation Set and Forward Engineering of Thermotolerant Genotypes


FIG. 11A depicts example genomic plots of enrichment scores for CREATE libraries grown at 42.2° C. in minimal media conditions. The innermost plot illustrates the counts of the plasmid library before selection with labels for the top 20 representatives. The outer ring shows the fitness of pooled library variants after growth in minimal media at elevated temperature (42.2° C.). The bars are colored according to log 2 enrichment. Blue bars represent detrimental mutations, red bars represent significantly enriched mutations and gray bars indicate mutations that appear neutral in this assay. The 20 most enriched variants are labeled for reference and labels corresponding to ALE-derived variants are colored red. FIG. 11B shows a histogram of enrichment scores of all library variants (gray), ALE-derived mutants (red) and synonymous mutants (black) under 42.2° C. growth conditions. The dotted gray line indicates significant enrichment scores compared to the synonymous population. The histograms are normalized as a fraction of the total number of variants passing the counting threshold (number indicated in parentheses). Note that 231 of 251 unique nonsynonmous ALE cassettes sampled by this experiment appear to provide significant growth benefits. FIG. 11C depicts enrichment of mutations based on mutational distance from wt. Mutations that require 2 and 3 nucleotide (nt) transitions are exceedingly rare or absent in ALE approaches however we note that the two most enriched clones from the pooled library selection (targeting the Crp regulator) require two nucleotide substitutions and are highlighted at the far right.


Example 12—Genome Scale Mapping of Amino Acid Substitutions for the Study of Antibiotic Resistance and Tolerance


FIG. 12A depicts example genomic plots of enrichment (log 2) of library variants in the presence of erythromycin (outer) and rifampicin (middle). The innermost plot illustrates the count distribution of the input plasmids for reference. Coloring and labeling are as in FIG. 11A-11C. FIG. 12B depicts CREATE mutation mapping at the individual amino acid level. CREATE cassettes that introduce bulky side chains to amino acids 1572, S531 and L533 (red) of the RNA polymerase β subunit (rpoB) are highly enriched in the presence of rifampicin from genome wide targeting libraries. FIG. 11C depicts a zoomed in region of the MarA transcription factor bound to its cognate DNA target is shown for reference (PDB ID 1BL0). The wt Q89 residue protrudes away from the DNA binding interface due to unfavorable steric and electrostatic interactions between this side chain and the DNA. The Q89N substitution identified by selection introduces a H-donor and shortens the side chain such that productive H-bonding can occur between this residue and the DNA backbone. Such an interaction likely favors stronger DNA binding and induction of downstream resistance genes. FIG. 12D depicts enrichment plot of genome wide targeting libraries with 10 g/L acetate or 2 g/L furfural respectively. Coloring is the same as in FIG. 11A. FIG. 12E depicts CREATE mapping at a gene level reveals trends at the gene level. Strong enrichment fis metA and fadR targeting mutations in acetate suggests important roles for these genes in acetate tolerance, as depicted in FIG. 12F, same as in the furfural selections depicted in FIG. 12E.


Example 13—CREATE-Enabled Flexible Design Strategies

Illustration of example designs compatible with CREATE strategy are depicted in FIGS. 13A-13D. FIG. 13A shows protein engineering applications a silent codon approach is taken (top, see also FIG. 8A-8B). This mutation strategy allows targeted mutagenesis of key protein regions to alter features such as DNA binding, protein-protein interactions, catalysis, or allosteric regulation. Above an illustration of a DNA binding saturation mutagenesis library designed for the global transcription factor Fis designed for this study is illustrated. FIG. 13B shows promoter mutations PAM sites in proximity to a specified transcription start site (TSS) can be disrupted through nucleotide replacement or integration cassettes. To simplify this design procedure used in this study consensus CAP or UP elements were designed for integration at a fixed location relative to the TSS without taking into account possible effects of these mutations may have on proximal genes. FIG. 13C shows an example cassette design for mutagenizing a ribosome binding site (RBS). FIG. 13D depicts an example of a simple deletion design. Points a and b are included to illustrate distance between two sites at the gene deletion locus. In all cases cassette designs disrupt a targeted PAM to allow selective enrichment of the designed mutant.


Example 14—Engineering the Lycopene Pathway


FIGS. 14A-14B depict edits made the DMAPP pathway in E. coli which is the precursor to lycopene. Edits were made to the ORF's for 11 genes. Eight edits were designed to improve activity and 3 edits were designed to reduce activity of competitive enzymes. Approximately 10,000 variants within the lycopene pathway were constructed and screened.


Example 15—Cas9 Editing Efficiency Controls


FIG. 15 depicts Cas9 editing control experiments. The CREATE galK_120/17 off cassette (relevant edits shown in red at bottom) was transformed into different backgrounds to assess the efficiency of homologous recombination between the CREATE plasmid and the target genome. Red colonies represent unedited (wt) genomic variants and white colonies represent edited variants. Transformation into cells containing only pSIM5 or pSIM5/X2 and dCas9 plasmids exhibited no detectable recombination as indicated by the lack of white colonies. In the presence of active Cas9 (X2-Cas9 far right) we observe high efficiency editing (>80%), indicating the requirements for dsDNA cleavage to achieve high efficiency editing and library coverage.


Example 16—Toxicity of gRNA dsDNA Cleavage in E. coli


FIGS. 16A-16C depict experiments testing the toxicity of generating double strand breaks in E. coli. The toxicity of a single gRNA cut in E. coli as observed in control experiments with a gRNA targeting galK (spacer sequence TTAACTTTGCGTAACAACGC (SEQ ID NO: 182)) or folA (spacer sequence GTAATTTTGTATAGAATTTA (SEQ ID NO: 183)). In the absence of a repair template we observe strong killing from the gRNA. Rescue efficiencies of 103-104 are observed upon co-transformation of a single stranded donor oligo indicating the need for a homologous repair template to alleviate this toxicity. b) Toxicity of multiple CREATE edits. The targeted sites are illustrated graphically on the left and at the bottom of the bar graph. A non-targeting gRNA control was used to estimate transformation efficiency based on no edits (far left, no target sites). A CREATE cassette targeting either folA (green) or galK (red) or a combination of the two. Note the multiplicative toxicity in E. coli of having additional gRNAs expressed from the same plasmid. In this scenario there is homologous repair for each site suggesting that off-target gRNA cleavage would be highly lethal. These data suggest that off target cleavage by a CREATE cassette would be selectively removed from the population early in the library construction phase.



FIGS. 16D-16E depicts data from another such cell survival assay. The editing cassette contained a F153R mutation, which leads to temperature sensitivity of the folA gene. The recorder cassette contained a 15 nucleotide barcode designed to disrupt the galK gene, which allows screening of colonies on MacConkey agar plates. In this example, generating two cuts decreased cell survival compared to generating zero or one cut.



FIG. 16F depicts data from a transformation and survival assay comparing a low copy number plasmid (Ec23) expressing Cas9 and a high copy number plasmid (MG) expressing Cas9. Different vectors with distinct editing cassettes were used to target different gene target sites (folA, lacZ, xylA, and rhaA). The recorder cassettes were designed to target different sequences within the galK gene, either site S1, S2, or S3. The recursive vector used had a different vector backbone compared to the others and is part of a 3-vector system designed for iterative engineering that cures the cell of the previous round vector. The data indicates that lower Cas9 expression (Ec23 vector) increases survival and/or transformation efficiency. The decreased Cas9 expression increased transformation efficiency by orders of magnitude in cells undergoing two genomic cuts (editing cassette and recording cassette).



FIG. 16G shows the correlation between editing efficiency and recording efficiency in cells transformed with the low copy number plasmid (Ec23) expressing Cas9 and the high copy number plasmid (MG) expressing Cas9. Editing and recording efficiencies were similar for high (MG) and lower (Ec23) expression of cas9. Ec23 yielded more colonies and had better survival (as shown in FIG. 16E), while maintaining a high efficiency of dual editing (editing cassette and recorder cassette incorporation).


Example 17—CREATE Strategy for Gene Deletion


FIG. 17A-D depict an example CREATE strategy for gene deletion. FIG. 17A depicts an example cassette design for deleting 100 bp from the galK ORF. The HA is designed to recombine with regions of homology with the designated spacing, with each 50 bp side of the CREATE HA designed to recombine at the designated site (blue). The PAM/spacer location (red) is proximal to one of the homology arms and is deleted during recombination, allowing selectable enrichment of the deleted segment. FIG. 17B depicts electrophoresis of chromosomal PCR amplicons from clones recombineered with this cassette. FIG. 17C depicts design for 700 bp deletion as in a). FIG. 17D depicts colony PCR of 700 bp deletion cassettes as in FIG. 17B). The asterisks in FIGS. 17B and 17D indicate colonies that appear to have the designed deletion. Note that some clones appear to have bands pertaining to both wt and deletion sizes indicating that chromosome segregation in some of the colonies is incomplete when plated 3 hrs post recombineering.


Example 18—Editing Efficiency Controls by Cotransformation of gRNA and Linear dsDNA Cassettes


FIG. 18 depicts effect of PAM distance on editing efficiency using linear dsDNA PCR amplicons and co-transformation with a gRNA. On the left is an illustration of the experiments using PCR amplicons containing a dual (TAATAA) stop codon on one side (asterisk) and a PAM mutation just downstream of the galK gene (gray box) on the other end were co-transformed with a gRNA targeting the downstream galK PAM site. The primers were designed such that the mutations were 40 nt from the end of the amplicon to ensure enough homology for recombination. Data was obtained from these experiments by red/white colony screening. A linear fit to the data is shown at the bottom. Cassettes in which only the PAM mutation is present were included as assay controls were observed to have very low rates of GalK inactivation. These experiments were performed in a BW25113 strain of E. coli in which the mutS gene was knocked out to allow high efficiency editing with double stranded DNA templates. This approach in MG1655 did not achieve high efficiency editing due to the active mutS allele.


Example 19—Library Cloning Analysis and Statistics


FIG. 19A depicts reads from an example plasmid library following cloning are shown according to the number of total mismatches between the read and the target design sequence. The majority of plasmids are matches to the correct design. However, there are a large number of 4 base pair indel/mismatch mutants that were observed in this cloned population. FIG. 19B depicts a plot of the mutation profile for the plasmid pool as a function of cassette position. An increase in the mutation frequency is observed near the center of the homology arm (HA) indicating a small error bias in the sequencing or synthesis of this region. We suspect that this is due to the presence of sequences complementary to the spacer element in the gRNA. FIG. 19C depicts a histogram of the distances between the PAM and codon for the CREATE cassettes designed in this study. Large majority (>95%) were within the design constraints tested in FIG. 9A-9D. The small fraction that are beyond 60 bp were made in cases where there was no synonymous PAM mutation within closer proximity. FIG. 19D depicts library coverage from multiplexed cloning of CREATE plasmids. Deep sequencing counts each variant are shown with respect to their position on the genome. The inset shows a histogram of the number of variants having the indicated plasmid counts in the cloned libraries.


Example 20—Precision of CREATE Cassette Tracking of Recombineered Populations


FIG. 20A depicts a correlation plot of CREATE cassette read frequencies in the plasmid population prior to Cas9 exposure (x-axis) and after 3 hours post transformation into a Cas9 background. FIG. 20B depicts a correlation plot between replicate recombineering reactions following overnight recovery. The gray lines indicate the line of perfect correlation for reference. R2 and p values were calculated from a linear fit to the data using the Python SciPy statistics package. A counting threshold of 5 for each replicate experiment was applied to the data to filter out noise from each data set.


Example 21—Growth Characteristics of folA Mutations in M9 Minimal Media


FIG. 21 depicts growth characteristics of folA mutations in M9 minimal media. While F153R appears to maintain normal growth characteristics the growth rate of the F153W mutation is significantly slower under these conditions, suggesting that these two amino acid substitutions at the same site have very different effects on organismal fitness presumably due to different changes invoked in the stability/dynamics of this protein.


Example 22—Enrichment Profiles for folA CREATE Cassettes in Minimal Media


FIG. 22 depicts enrichment profiles for folA CREATE cassettes in minimal media. Cassettes that encode synonymous HA are shown in black and non-synonymous cassettes in gray, the dashed lines indicate enrichment scores with p<0.05 significance compared to the synonymous population mean as estimated from a bootstrap analysis. The enrichment score observed for each mutant cassette at each position in the protein sequence is shown to the left and a histogram of these enrichment scores as a fraction of the total variants to the right. The two populations appear to be largely similar. Conserved residues that are highly deleterious are shown in blue for reference.


Example 23—Validation of Newly Identified acrB Mutations for Improved Solvent and Antibiotic Tolerance


FIG. 23A depicts on the left a global overview of AcrB efflux pump. Substrates enter the pump through the openings in the periplasmic space and are extruded via the AcrB/AcrA/TolC complex across the outer membrane and into the extracellular space. Library targeted residues are highlighted by blue spheres for reference and the red dot indicates the region where many of the enriched variants clustered. On the right is a blow up of the loop-helix motif abutting the central funnel where enriched mutations in isobutanol were identified (red and teal spheres), presumably affecting solute transport from the periplasmic space. Mutants targeting the T60 position (teal spheres) was also enriched in the presence of erythromycin. FIG. 23B depicts confirmation of N70D and D73L mutations for tolerance to isobutanol. The N70D mutation in particular appears to improve the final OD to a significant degree. Reconstructed strains were measured for final OD in capped 1.5 mL eppendorf tubes following 48 hours incubation. Error bars are derived from N=3 trials and p-values derived from a one-tailed T-test. FIG. 23C depicts improved growth of the AcrB T60N mutant was observed in inhibitory concentrations of erythromycin (200 μg/mL) and isobutanol (1.2%) in shaking 96 well plate, indicating that this mutation may enhance the efflux activity of this pump towards many compounds. For these experiments CREATE cassette designs were individually synthesized, cloned and sequence verified before recombineering into E. coli MG1655 to reconstruct the mutations and the genomic modifications were sequence verified by colony PCR to confirm the genotype-phenotype association.


Example 24—Benefits of Rational Mutagenesis for Sampling Novel Adaptive Genotypes


FIGS. 24A-24D depict the number of variants detected in CREATE experiments involving 500 μg/mL rifampicin (FIG. 24A), 500 μg/mL erythromycin (FIG. 24B), 10 g/L acetate (FIG. 24C), and 2 g/L furfural (FIG. 24D). While naturally evolving systems or error-prone PCR are highly biased towards sampling single nucleotide polymorphisms (e.g. 1 nt mutations, red) these histograms illustrate the potential advantages for rational design approaches that can identify rare or inaccessible mutations (2 and 3 nt, green and blue respectively). For example, the highest fitness solutions appear to be biased toward these rare mutations in rifampicin, erythromycin and furfural selections to varying degrees. These results indicate that procedures such as CREATE should allow more rapid and thorough analysis of fitness improving mutations, in much the same way that computational approaches are being used to improve directed evolution for protein engineering.


Example 25—Reconstruction of Mutations Identified by Erythromycin Selection


FIG. 25 depicts reconstructed strains grown in 0.5 mL in capped 1.5 mL eppendorf tubes following 48 hours incubation in the presence of 200 μg/mL erythromycin and final OD measurements assessed. Error bars are derived from N=3 trials. A one tailed T-test was performed on each set of measurements to determine p-values indicated for significance of growth benefit.


Example 26—Validation of Crp S28P Mutation for Furfural or Thermal Tolerance


FIG. 26A depicts a crystal structure of the Crp regulatory protein with variants identified by furfural selection highlighted in red (PDB ID 3N4M). A number of the CREATE designs targeting residues near the cyclic-AMP binding site (aa. 28-30, 65) of this regulator were highly enriched in minimal media selections for furfural or thermal tolerance suggesting that these mutations may enhance E. coli growth in minimal media under a variety of stress conditions. FIG. 26B depicts validation the Crp S28P mutant identified in 2 g/L furfural selections in M9 media. This mutant was reconstructed as described for AcrB T60S in Example 23.


Example 27—Genome-Scale Sequence to Activity Relationship Mapping at Single Nucleotide Resolution

Advances in DNA synthesis and sequencing have motivated increasingly complex efforts to rationally program genomic modifications on laboratory timescales. Realization of such efforts requires strategies that span the design-build-test forward-engineering cycle by not only precisely and efficiently generating large numbers of mutant designs but also by mapping the effects of these mutations at similar throughputs. CRISPR EnAbled Trackable genome Engineering (CREATE) couples highly efficient CRISPR editing with massively parallel oligomer synthesis to enable trackable precision editing on a genome wide scale. This can be accomplished using synthetic cassettes that link a targeting guide RNA with rationally programmable homologous repair cassettes that can be systematically designed to edit loci across a genome and track their phenotypic effects. We demonstrated the flexibility and ease of use of CREATE for genome engineering by parallel mapping of sequence-activity relationships for applications ranging from site saturation mutagenesis, rational protein engineering, complete residue substitution libraries and reconstruction of prior adaptive laboratory evolution experiments.


Additional methods are described in Garst A D, et al.; Nature Biotechnol. 2017 January; 35(1)L48-55, which is incorporated herein by reference in its entirety. Additional methods are described in Garst, A, et al.; Microb Cell Fact. 2013 Oct. 30; 12:99, which is incorporated herein by reference in its entirety.


Validation of CREATE Cassette Design


In order to realize our engineering objectives we took into account a number of key design considerations to both maximize the editing efficiency as well as distill a complex design process into an easily executable workflow. For example, each CREATE cassette is designed to include both a targeting guide RNA (gRNA) and a homology arm (HA) that introduces rational mutations at the chromosomal cleavage site (e.g. FIG. 8A). The HA encodes both the genomic edit of interest coupled to a synonymous PAM mutation that is designed to abrogate Cas9 cleavage after repair (e.g. FIG. 8B). This arrangement not only ensures that the desired edit can be selectively enriched to high levels by Cas9 but also that the sequences required to guide cleavage and HR are covalently coupled during synthesis and thus delivered simultaneously to the same cell during transformation. The high efficiency editing of CRISPR based selection in E. coli should also ensure a strong correlation between the CREATE plasmid and genomic sequences and allow the plasmid sequence to serve as a trans-acting barcode or proxy for the genomic edit (e.g. FIG. 8C). Assuming that changes in the plasmid frequency under different selective pressures are correlated to their associated genomic edit thereby allows the impact of precise genomic modifications at many loci to be monitored in parallel using a simple downstream sequencing approach to map enriched genotypes on a population scale, analogous to previous genomic tracking methodologies.


To test this concept we first performed control experiments using a CREATE cassette designed to inactivate the galK gene by introducing a single point mutation to convert codon 145 from TAT to a TAA stop codon (e.g. FIG. 8B) using a 120 bp HA. The editing efficiency of this cassette using Cas9 and the nuclease deficient dCas9 control was evaluated using a red/white colony screening assay (e.g. FIG. 8A-B, FIG. 15A-15C). These experiments also indicated that HR between a circular double stranded plasmid and the chromosome is strongly dependent on the Cas9 cleavage as recombination is not observed in the absence of the active enzyme (e.g. FIG. 15A-15D). This is in contrast to single stranded recombineering approaches in which oligonucleotides anneal with high efficiency at the lagging strand of the replication fork. Cas9 also adversely impacts the overall transformation efficiency due to toxicity of dsDNA cleavage in E. coli (e.g. FIG. 9A-9D). This toxicity is further exacerbated when performing CREATE at two sites simultaneously in the same cell (e.g. FIG. 16A-16E); which when combined with the absence of an effective non-homologous end joining pathway strongly supports the fact that off target editing events should be rare within a recombineered library. Additionally, toxicity limits the size of library construction and coverage, however we note that the observed 104-105 variants/μg DNA (e.g. FIG. 9A) is on a scale compatible with current oligo synthesis capabilities (104-5 oligos per order). Thus, we anticipated that using the CREATE synthetic oligo design, we would be able to simultaneously generate ˜105 or more designer mutations at any location in the genome and precisely map such mutations onto a targeted phenotype.


To further characterize how changes in the CREATE cassette design influence the editing efficiency we varied the HA length (80-120 bp) and the distance between the PAM-codon/TS (17-59 bp) (e.g. FIG. 9B). Induction of Cas9 revealed that all of these cassette variants can support high efficiency HR. High efficiency conversion is also observed in the absence of Cas9 induction indicating that low level expression of Cas9, due to a leaky inducible promoter, is sufficient to drive cleavage and HR (e.g. FIG. 9B). To verify that the edits matched our intended design we sequenced the chromosome of randomly chosen clones and found that 71% (27/38) contained a perfect match to the CREATE design, while 26% (10/38) contained only the PAM edit and the remaining 3% (1/38) appeared to be wt escapers. As an additional test of design flexibility performed similar experiments using deletion cassettes that that introduce different sized deletions (e.g. FIGS. 17A-17D) and observed similar efficiencies (>70%) indicating that the same design automation and tracking capabilities should readily extend to a variety of design objectives (e.g. FIG. 13A-13D).


High-Throughput Design and Multiplexed Library Construction


To scale the CREATE process for genome-wide applications we developed a custom software to automate cassette design that takes into account the above mentioned criteria to systematically identify a PAM sequence nearest to a target site (TS) of interest and modify it to create a synonymous PAM mutation. This design software is part of a suite of web-based design tools that can be implemented for E. coli and is under further development for other organisms as well as an expanded set of CRISPR-Cas systems. This software platform enables high-throughput rational design of genomic libraries in a format that is compatible with parallelized array based oligo synthesis and simple homology based cloning methods that can be performed in batch for library construction (e.g. FIG. 8B).


Using this design software we generated a total of 52,356 CREATE cassettes for a range of applications where sequence to activity mapping by traditional methods would be time-consuming and prohibitively expensive. Briefly, the library designs included: 1) a complete saturation of the folA gene to map the entire mutational landscape of an essential gene in its chromosomal context 2) saturation mutagenesis of functional residues in 35 global regulators, efflux pumps and metabolic enzymes implicated in a wide range of tolerance and production phenotypes in E. coli 3) a reconstruction of the complete set of nonsynonymous mutations identified by a recent adaptive laboratory evolution (ALE) study of thermotolerance, and 4) promoter engineering libraries designed to incorporate UP elements or CAP binding elements at transcription start sites annotated in RegulonDB (e.g. FIG. 13A-13D).


The pooled oligo libraries were amplified and cloned in parallel and a subset of single variants were isolated to further characterize editing efficiency at different loci (e.g. FIG. 9C). Amplification and sequencing of the genomic loci after transformation with the CREATE plasmids revealed editing efficiencies of 70% on average (106 of 144 clones sampled at seven different loci), with a range of 30% for the metA_V20L cassette to 100% for the rpoH_V179H cassette. Interestingly, the differences in editing efficiency for each cassette were highly correlated with the distance between the PAM and target codon (e.g. FIG. 9D), a feature that also appears to affect the ability of linear DNA templates to effectively introduce targeted mutations (e.g. FIG. 18A-18B). This relationship suggests that subsequent CREATE designs should readily increase editing efficiency by optimizing PAM selection criteria. We also note that differences in editing efficiency may reflect detrimental effects of some mutations on organismal fitness (metA is considered an essential gene in most media conditions), and that there may be an upper bound on the number of mutations that can be observed for a particular protein. Finally, these data were obtained outside of any specific selective or screening steps that enrich for chromosomal mutants of interest, and as such demonstrate the ability of this approach to construct mutational libraries.


To further characterize the fidelity of the multiplexed synthesis and cloning procedures we performed deep sequencing on the pooled libraries (e.g. FIG. 19A-D). From 594,998 total reads of the cloned CREATE cassette libraries, 550,152 (92%) passed quality filtering and produced hits against the design database. Of these we observed a perfect match for 34,291 (65%) of the possible unique variants and note that many cassettes that were missing in this initial pool were observed in later selections, suggesting that at the cloning stage we can readily cover the majority of the intended design space. In depth analysis of these reads revealed that 46% of the reads passing quality filter were exact matches to their intended design, with the remainder containing 1-4 bp indels or mismatches, primarily in the HA region near the designed mutation site (e.g. FIG. 19A). The mutational bias in this region suggests that the repetitive spacer elements in the HA and gRNA portions of the cassette may form secondary structures that adversely affect sequencing or synthesis (e.g. FIG. 19B). We note that these variant designs are easily identified via the CREATE plasmid-barcoding strategy, and that in some cases it may be desired to have this added diversity in the generated library. We also observed significant (p<0.05) correlation between variant frequencies from the cloned pools and after overnight recovery following recombineering, as well as between replicate recombineering experiments (e.g. FIG. 20A-20B). These results suggest that well represented variants should be readily tracked by our methodology with a precision similar to previous CRISPR based saturation mutagenesis procedures performed at a single loci.


CREATE Based Protein Engineering


To test the robustness of the CREATE methodology for protein engineering at a single gene level we performed deep-scanning mutagenesis of the essential folA gene. This gene encodes the dihydrofolate reductase (DHFR) enzyme responsible for the production of tetrahydrofolate and the biosynthesis of pyrimidines, purines and nucleic acids. DHFR is also the primary target of the antibiotic trimethoprim (TMP) and other antifolates that are used as antibiotics or chemotherapeutics. The wealth of structural and biochemical data DHFR function and antibiotic resistance make it an ideal model for validation of the approach.


A CREATE library designed to saturate every codon from 2-158 of the DHFR enzyme was recombineered into E. coli MG1655 and allowed to recover overnight. Following recovery ˜109 cells (1 mL saturated culture) was transferred into media containing inhibitory TMP concentrations and allowed to grow for 48 hours. The resulting plasmid populations were then sequenced to assess our ability to capture information at the level of single amino acid substitutions that can confer TMP resistance (e.g. FIG. 10A-10B). Bootstrapped confidence intervals for mutational effect were derived using the enrichment data of the 158 synonymous mutations included in this experiment (e.g. FIG. 10A-10B). Using this criteria, we observed significant (P<0.05) levels of enrichment for 74 substitutions (2.3% of the design space) covering 49 aa positions in the protein. Although this degree of mutational flexibility of an essential enzyme may seem counterintuitive, it supports previous conclusions that this enzyme has not reached its evolutionary optimum and that many mutations that can improve TMP tolerance through enhancement of the endogenous enzymatic activity or alteration of the dynamic folding landscape of this enzyme.


These results also support the fact that we probe more deeply into the mutation space of improved fitness variants using rational mutagenesis strategies. For example, we observed 7 significantly enriched substitutions at position F153 (e.g. FIG. 10A-10B), none of which have been previously identified by error-prone PCR and adaptive laboratory evolution (ALE). To validate these specific mutations, we reconstructed F153R and F153W variants, which had not been previously reported in the literature and spanned a large range of the measured enrichment scale at this position (e.g. FIG. 10D-10F). We confirmed that the highly enriched F153R mutant grows rapidly under a large range of TMP concentrations while the F153W mutant demonstrates growth only at the moderate TMP concentration used in the selection, consistent with their respective enrichment scores (e.g. FIG. 10A-10F). Moreover, 6 of the 7 mutations we identified using CREATE require two nucleotide changes to convert the wt TTT codon to one of the observed amino acids (I: 1 nt,W: 2 nt,D: 2 nt,R: 2 nt,P: 2 nt,M: 2 nt,H: 2 nt). The F153R and F153W mutations also appear to impact the native enzyme activity in distinct ways (e.g. FIG. 21), implying that these substitutions may confer tolerance by altering the enzymatic cycle of this enzyme in distinct manners.


In addition to mapping substitutions that confer TMP resistance, we also attempted to identify substitutions that affect the native activity of DHFR. To do so, we compared the frequencies of each plasmid variant after overnight growth in M9 (e.g. FIG. 22A-22C). In this case, we observed similar overall enrichment profiles for both synonymous and nonsynonymous mutation sets, with very few mutations observed to have significant impact on growth. This unexpected result suggests a need for greater sequencing depth and/or alternate selection strategies to assign high confidence to low fitness variants.


As a separate validation of protein engineering applications, we generated a 4,240 variant library targeting the AcrB multidrug efflux pump in E. coli (e.g. FIG. 23A-23F). This protein acts as a proton exchange pump that exports a wide variety of chemicals including antibiotics, chemical mutagens, and short chain alcohols that are being pursued as next generation biofuels and motivating numerous engineering efforts. The library was designed to target the interior chamber, the exit funnel that channels substrates towards the outer-membrane component of the AcrB/AcrA/TolC complex, and key regions of the transmembrane domain where mutations conferring tolerance to isobutanol and longer chain alcohols have been identified (e.g. FIG. 23A-23C). We then constructed the AcrB CREATE library identically as for the FolA library and grew the library in the presence of 1.2% isobutanol. Sequencing identified multiple mutations to the loop-helix motif adjacent to the central efflux funnel that were significantly enriched, suggesting this substructure may provide a novel target for engineering enhanced efflux activity. Reconstruction of the AcrB N70D and D73L mutations also confirmed the ability of these mutations to enhance overall growth in the presence of this solvent stress (e.g. FIG. 23D).


Parallel Evaluation of Genotype Fitness from Large Scale Adaptation Studies


We next sought to expand our efforts from the single protein scale and validate the use of CREATE at the genome-scale. To do so we chose to reconstruct and map mutations resulting from a prior adaptive laboratory evolution study of E. coli thermal tolerance. ALE has been used extensively as a tool to study the bacterial adaptation in response to a broad range of environmental stressors. However, in the majority of cases the genome undergoes multiple mutations making it difficult to assess the contribution of each mutation to the phenotype in question. Here, we designed and constructed a CREATE library to include all 645 nonsynonymous mutants from the Tenaillon et al ALE experiment and then subjected this library to growth selection in minimal media at 42.2° C. To assess any possible effects that could arise from the synonymous PAM mutation we included redundancy in the design of this library such that each target codon was coupled to two different PAM mutations to provide a 4 fold design redundancy for each nonsynonymous mutation. For calibration purposes the ALE library was pooled with the protein targeting libraries to allow for relative enrichment comparisons from the non-ALE derived libraries as a benchmark (e.g. FIG. 11A-11C). Of the more than 50,000 cassettes in this experiment we observed 405 cassettes from the ALE derived library above the minimal counting threshold, pertaining to 252 unique variants (e.g. FIG. 11B). Of these 346 cassettes (encoding 231 nonsynonymous changes) were significantly enriched compared with the synonymous controls (e.g. FIG. 11B), suggesting that 92% (231/252) of the mutations sampled confer significant selective growth advantages as individual chromosomal mutations, consistent with their fixation during adaptive growth. Additionally we found that 141 mutations from the additional CREATE libraries were also significantly enriched, with 86 of these targeting residues in or around the cAMP binding site of Crp, a central regulator of carbon metabolism. The identification of such a large number of Crp mutants is highly suggestive of a role for Crp in thermal-tolerance in agreement with previous findings.


For each mutant we also calculated the number of mutations required to convert the wt codon to each of the other 19 amino acids (e.g. FIG. 11C). As with folA, we found that highly impactful mutations, such as the crp S28P and L30Y mutations, require more than a single nucleotide substitution and would therefore be inaccessible or exceedingly rare in naturally evolving systems under laboratory timescales. In fact, this seemed to be a recurrent theme across many of the selections we performed (e.g. FIG. 24A-24D) highlighting again the value of synthetic DNA driven search strategies for genomic engineering applications.


High-Throughput Mapping of Selectable Precision Edits on a Genome Wide Scale


To further validate the method for genome-scale mapping and exploration we challenged genome wide targeting libraries with antibiotics or solvents relevant to bioproduction (e.g. FIG. 12A-12F). In the case of selections performed with rifampicin, an antibiotic that inhibits transcription by the RNA polymerase (e.g. FIG. 12A, inner circle) we observed a number of enriched variants that highlighted the robustness of the CREATE approach for atomic resolution mapping. For example, 10 of the top 50 hits identified mutations to residues 1572, L533 and S531 of the RNA polymerase β subunit (encoded by rpoB) including variants that form part of the rifampicin binding site (e.g. FIG. 12B). In 6 of the 7 enriched variants the data suggest that a bulky substitution is necessary to sterically hinder 7 rifampicin binding. In addition to the β-subunit mutations the rifampicin selections enriched a number mutations to the MarA transcriptional activator, whose over-expression due to marR knockout is a well studied aspect of multiple antibiotic resistance (MAR) phenotypes in E. coli. In the DNA bound crystal structure of MarA, Q89 is positioned near the DNA backbone but pointed into solution due to a steric clash between other possible rotamers and nearest phosphate group on the DNA backbone (e.g. FIG. 12C). Modeling of the MarA Q89N and Q89D mutations identified by this selection suggests that shortening the side chain by a single carbon unit may enable new protein-DNA H-bonding interactions and thereby improve the overall MAR induction response.


To compare these results to an antibiotic that interferes with translation we performed another round of selections in the presence of erythromycin (e.g. outer circle FIG. 12A). The enrichment profiles from this selection again highlighted loci previously implicated in resistance to this antibiotic. For example, we observed strong enrichment of 4 different mutations to the AcrB efflux pump which acts as the primary exporter of this drug from the periplasmic space (e.g. FIG. 12A). Interestingly, one of the variants (AcrB T60N) appears at the same residue identified from isobutanol selections (e.g. FIG. 23A-23F). As with the other mutations, reconstruction validated that at least two of these mutations (e.g. T60N in FIGS. 23E-23F and D73L in FIG. 25) can significantly improve tolerance to both erythromycin as well as isobutanol isobutanol, further supporting the idea that this motif may provide a useful engineering target for broad range of tolerance phenotypes. In addition to AcrB we also observed enrichment of multiple soxR and rpoS mutants, both of which have been previously implicated in stress tolerance and general antibiotic resistance phenotypes. In total, we observed 136 of the 341 significantly enriched mutations (40%) were identified within the RpoB, MarA, MarR, SoxR, AcrB, or dxs proteins, each of which has extensive prior validation as antibiotic resistance genes.


Finally, we performed selections using furfural or acetate, common components of cellulosic hydrolysate that inhibit bacterial growth under industrial fermentation conditions and are thus the target of many strain engineering efforts (e.g. FIG. 12D-12F). In the presence of high acetate concentrations (10 g/L, e.g. inner plot FIG. 12D) the top 100 ranking mutations were predominated by cassettes targeting the fis, fadR, rho and fnr genes respectively (e.g. FIG. 12E). The Fis, Fnr and FadR regulators are all involved transcriptional regulation of the primary acetate utilization gene acs, and implicated in the so-called “acetate-switch” which allows the cell to effectively scavenge acetate. Knockout of these regulators leads to constitutive expression of the acetate utilization pathways and improved acetate growth phenotypes suggesting that the mutations identified in this study (e.g. FIG. 12E-12F) likely inhibit these regulatory functions by destabilizing their respective protein targets.


In contrast to the weak acid tolerance of acetate, the enrichment profiles obtained the presence of growth inhibiting concentrations of furfural (2 g/L) were significantly different with the most frequently observed mutations targeting the oxidative stress response regulator rpoS (e.g. FIG. 12F). Furfural growth inhibition is thought to occur through depletion of cellular NADPH pools, an important cofactor in the prevention of oxidative stress and anabolic pathways for cell growth. In line with our findings, previous studies of RpoS have demonstrated that inactive alleles are favored in such nutrient depleted scenarios. Interestingly, we also observed some of the same mutations in crp that were observed in the 42.2° C. selections (e.g. FIGS. 11A and 11C) and upon reconstruction confirmed that the Crp S28P mutant can substantially improve growth in the presence of furfural (e.g. FIG. 26A-26B). We also found that this selection uniquely enriched for variants of the PntA transhydrogenase, a membrane bound transhydrogenase that transfers hydride ions from NADH to NADP+ to maintain sufficient pools for anabolism. A mutation to I258A in close proximity to the substrate binding cleft may therefore impart enhanced NADPH production.


Collectively, these selections validate the CREATE strategy by demonstrating the ability to map known associations as well as highlight power of this method for rapid mapping of novel mutations to traits of interest. It is also important to note that in contrast to the most other functional genomics technologies that mainly identify loss of function mutations, the ability to perform such broad scale scanning mutagenesis opens the door for more general genomic searches that can also identify novel gain of function mutations.


In this work we have demonstrated that CREATE allows parallel mapping of tens of thousands of amino acid and promoter mutations in a single experiment. The construction, selection, and mapping of >50,000 genome-wide mutations (e.g. FIGS. 11A-11C and 12A-12F) can in some examples be accomplished in 1-2 weeks by a single researcher, offering orders of magnitude improvement in economics, throughput, and target scale over the current state of the art methods in synthetic biology. Importantly, the ability to track the enrichment of library variants allows multiplex sequence to activity mapping by a simple PCR based workflow using just a single set of primers as opposed to more complicated downstream sequencing approaches that are limited to a few dozen loci. In addition, the ability to map the effects of single nucleotide or amino acid level variation in coding regions or promoters allows CREATE to address a considerably more diverse set of design objectives than previous high-throughput genomic technologies such as trackable multiplexed recombineering (TRMR) or Tn-seq approaches that are limited to gene resolution analysis. Such capabilities enable new paradigms for deciphering gene function and engineering cellular traits including workflows in which iterative rounds of CREATE could be implemented to perform design-driven genome engineering and address a broad range of ambitions.


Notably, as a further distinction from prior approaches, the high efficiency mutagenesis (e.g. FIG. 9A-9D) reported in this work was not only an order of magnitude improved but was also achieved in a wild type MG1655 strain in which all of the native DNA repair pathways are intact. The majority of previously reported recombineering efforts in E. coli have used single-stranded oligo engineering which requires deletion of the mismatch repair genes or chemically modified oligonucleotides to achieve mutagenesis at 1-30% efficiency. The combination of plasmid based homologous recombination substrates and Cas9 dsDNA cleavage appears to circumvent these requirements (e.g. FIGS. 13A-13D and FIG. 9A-9D), eliminating the need for specialized genetic modifications outside of the Cas9 and λ-RED genes to perform efficient editing and tracking on a population scale (e.g. FIG. 9A-9D). This fact alongside the broad utility of CRISPR editing suggests that the CREATE approach will readily port to a wide range of microorganisms such as Saccharomyces cerevisiae and other recombinogenic bacteria for which high-efficiency transformation protocols are available. The CREATE strategy should also be compatible with a wide range of CRISPR/Cas systems using similar automation approaches to design and tracking. Extension of this methodology to higher eukaryotes however will require the development of strategies to overcome non-homologous end-joining as well as alternative tracking systems that can stably replicate.


The CREATE strategy provides a streamlined approach for sequence to activity mapping and directed evolution by integrating multiplexed oligo synthesis, CRISPR-CAS editing, and high-throughput sequencing.


Example 28—Genome-Scale Sequence to Activity Relationship Mapping at Single Nucleotide Resolution, Additional Examples

Possible Effects of Inconsistent Mapping of Plasmid Barcode to Genomic Edit


We note that the initial CREATE library included designs that we would expect to have low confidence mapping between the plasmid barcode and the genomic edit (as explained primarily by distance between the PAM and target mutation in the CREATE cassette, see FIG. 2d). We describe below the various scenarios that may arise in the fraction of cases where the plasmid tracking may lead to erroneous conclusions regarding a genomic variant. A few things to note in evaluating these scenarios include i) the plasmid cassette should have minimal or no functional influence relative to the genomic edit, ii) the genomic loci will only be either the WT sequence or the sequence from the editing cassette that we obtain via sequencing, and iii) offsite editing is highly unlikely given the toxicity of CRISPR-Cas editing of multiple sites (e.g. FIG. 16A-16E) or when performed in the absence of an added editing-repair template. Finally, we note that the use of replicate experiments and deeper sequencing can also address these issues.


Tracking of High Fitness Variants (Positive Enrichment Tracking)


In cases where there is a strong selective advantage for the genomic modification (and thus the associated plasmid) we will only observe cells with the edit in the chromosome post selection. Thus, this is almost always a true positive particularly when selection times are short, thus limiting the possibility of random mutations due to replication error sweeping the population. While this phenomenon may lead to a quantitative underestimation of the true fitness of a mutation due to an enrichment profile that represents the convolution of modified and wt fitness, it will not produce false positives. Moreover, the use of replicated experiments and/or longer selections can also address this potential issue and eliminate erroneous conclusions regarding a mutations impact on fitness.


Tracking of Low Fitness Variants (Negative Enrichment Tracking)


In cases where the encoded mutation has a negative fitness contribution but is linked to a PAM only or unmodified chromosome we would incorrectly overestimate the fitness of the mutant and assume that it is closer to wt, especially for longer selection times (e.g. see FIG. 22A-22C). However, any deep sequencing approach must deal with similar limitations due to the lack of information regarding such mutations following selection and the problems associated with counting statistics in these scenarios. Moreover, we would note that this scenario is only relevant to the subset of truly negative fitness mutants (which should be 10-20% based on historic directed evolution and ALE data) within the unedited fraction (˜30%) and that remain in the unedited fraction in multiple replicate transformations. In other words, it is a small percentage (4-5%) scenario that can be detected and/or addressed through replicate transformations where one would observe inconsistencies in the particular mutant showing up occasionally with WT fitness.


Incomplete Coverage


In cases where a variant is not present in the initial population (due to both low transformation efficiency and low editing efficiency) a couple of scenarios could arise. As implied by the points above, if the mutation is beneficial one could falsely conclude that it does not confer a fitness advantage, and if it is truly deleterious it also could be incorrectly assigned a neutral fitness score. This appears to be encountered sometimes in this work and impacts both the error associated with replicate measurements and our ability to distinguish low fitness variants from a synonymous control. However, our ability to identify beneficial mutants is robust despite these issues as evidenced by our ability to readily identify novel and previously validated mutations. Strategies to address this by overcoming Cas9 toxicity and improving recombineering efficiencies hold promise to largely eliminate such problems. Furthermore, increasing the number of replicates, increasing sequencing depth, and/or improving the library coverage by performing larger scale transformation also can help to address these issues.


Off Target gRNA Cleavage


Off target gRNA cleavage should be rare in E. coli due to the relatively small size of its genome (4 Mb), and thus lack of (non-targeted) regions of homology to the CREATE cassette. Moreover, the toxicity of gRNAs in the presence of Cas9 (e.g. FIG. 9A) ensures that cells survival is compromised in E. coli due to dsDNA breaks. Each additional cut introduced into E. coli appears to incur multiplicative toxicity effects, even when homologous repair templates are provided for each cut site (e.g. FIG. 16A-16E). This toxicity effect would be further exacerbated by the absence of a repair template to guide HR (e.g. FIG. 16A-16E), as would be the case for an off-target cleavage event from a single gRNA targeting two sites but containing only a single HA.


Random Off Target Mutagenesis (Evolution)


The probability that a CREATE variant is strongly enriched due to an off target mutation even is highly improbable due to 2 factors: 1) the toxicity effect for the reasons stated above and 2) the low mutation rates of MG1655 or other mutation repair proficient strains compared with the mutagenesis rates of CREATE, particularly in multiple replicates of selection. We also have validated that we can transfer the plasmid pool back into a naive parental background and rapidly verify the enrichment of fitness improving CREATE plasmids from the initial population. Like replicate data, this allows us to decouple each CREATE plasmid from the potential of background mutations that would interfere with our analysis. These factors simplify the assumptions made during our analysis, the validity of which is supported both by externally and internally validated genotypes that were identified during this work.


Possible Effects of Synonymous Mutations


Synonymous mutations (e.g. in the PAM region) can confer unexpected effects on phenotype. We have controlled for this in a number of manners. In every experiment we included an internal control that consists of a library of synonymous mutations (1/20 at each codon or 5% of total input), each of which samples different PAM and codon combinations and thus give us an idea of the range of possible effects we may have on a gene by measuring the enrichment profile of many synonymous changes. Using this population as a control we can accurately identify significant fitness changes at the resolution of single amino acids as the work suggests. We can also control for this effect by utilizing redundant sampling approaches where a site is coupled to multiple PAM mutations similar to what was done for the ALE study described herein.


CREATE Library Design Considerations


A variety of design principles were implemented in the gene targeting libraries described in some work disclosed herein. For example, the folA library (3140 cassettes) was designed to be an unbiased, exploratory library for full single site saturation mutagenesis and sequence activity. However, for the majority of the genes we sought to maximize the probability of interesting genotypes by choosing to focus the diversity of sites most likely to have a functional impact on the targeted protein (e.g. DNA binding sites, active sites, regions identified as mutational hotspots by previous selections). The sites that were included in these library designs were selected based on information deposited in databases including Ecocyc (biocyc.org/), Uniprot (uniprot.org/), and the PDB (rcsb.org/pdb) as well as relevant literature citations that identified residues or regions of interest using directed evolution approaches. The Uniprot and Ecocyc databases provide manually curated sequence features that indicate mutational effects and important domains of each protein. In cases where there was enough structural information to model ligand or DNA binding sites the relevant crystal structures were loaded into Pymol and manual residue selections were made and exported as numerical lists. For promoter libraries we took into account the spacing of these sites relative to the transcription start site and the canonical recognition sequence of either the CRP binding site (AAATGTGAtctagaTCACATTT (SEQ ID NO: 184) located between −72 and −40 relative to the transcription start site) or the UP element (AAAATTTTTTTTCAAAAGTA (SEQ ID NO: 185) −60 from the transcription start site) that directly recruit the alpha subunit of the RNA polymerase. These sequences were designed to integrate at these positions relative to the publicly available transcriptional start site annotations in RegulonDB using a variation of the automated CREATE design software designed for protein targeting (e.g. FIG. 13A-13D). These cassettes were made with the intent of assessing the effects of gene dosage and regulation on fitness. Finally, we designed a library to reconstruct all of the 645 non-synonymous mutations targeting 197 genes that were identified by a comprehensive ALE experiment in which the complete genomes of 115 isolates were sequenced after a year of adaptation to growth at elevated temperature (e.g. 42.2° C.). In all, we designed 52,356 oligomers, with 48,080 intended to saturate 2404 codon positions across 35 genes, 2,550 oligos were made for regenerating the ALE mutations, 379 UP promoter mutants and 772 CAP promoter mutations in a manner that would allow simultaneous sequence to activity relationship mapping.


Cassette Design and Automation Principles


Based on the control experiments with galK (e.g. FIGS. 9A-9D) and current maximal commercial synthesis length constraints (200 bp from Agilent) we developed a general design for each CREATE cassette (e.g. FIG. 8A-8B).


Design of the CREATE cassettes was automated using custom Python scripts. The basic algorithm takes a gene sequence, a list of target residues, and a list of codons as inputs. The gene sequence is searched for all available PAM sites with the corresponding spacer sequence. This list is then sorted according to relative proximity to the targeted codon position. For each PAM site in the initial list the algorithm checks for synonymous mutations that can be made in-frame that also directly disrupt the PAM site, in the event that this condition is met the algorithm proceeds to making the prescribed codon change and designing the full CREATE cassette with the accompanying spacer and iterates for each input codon and position respectively. For each PAM mutation, all possible synonymous codon substitutions are checked before proceeding to the next PAM site. For the codon saturation libraries in this study we chose the most frequent codons (genscript.com/cgi-bin/tools/codon_freq_table) for each designed amino acid substitution according to the E. coli usage statistics. The script can be run rapidly on a laptop computer and was used to generate the full design of these libraries in <10 minutes. The algorithm used in this study was designed to make the most conservative mutations possible by sometimes using only the PAM as the selectable mutation marker.


Plasmids


The X2-cas9 broad host range vector was constructed by amplifying the cas9 gene from genomic S. pyogenes DNA into the pBTBX2 backbone (Lucigen). A vector map and sequence of this vector and the galK_Y145*_120/17 CREATE cassette are provided at the following locations: benchling.com/s/3c941j/edit; benchling.com/s/xRBDwcMy/edit.


The editing experiments performed in some of this work employed the X2-cas9 vector in combination with the pS1M5 vector (redrecombineering.ncifcrf.gov/strains--plasmids.html) to achieve the reported efficiencies.


Recombineering of CREATE Libraries


Genomic libraries were prepared by transforming CREATE plasmid libraries into a wildtype E. coli MG1655 strain carrying the temperature sensitive pS1M5 plasmid (lambda RED) and a broad host range plasmid containing an inducible cas9 gene from cloned from S. pyogenes genomic DNA into the pBTBX-2 backbone (X2cas9, e.g. FIG. 15A-15D). pSIM5 was induced for 15 min at 42° C. followed by chilling on ice for 15 min. The cells were washed 3 times with ⅕ the initial culture volume of ddH2O (e.g. 10 mL washes for 50 mL culture). Following electroporation the cells were recovered in LB+0.4% arabinose to induce Cas9. The cells were recovered 1-2 hrs before spot plating to determine library coverage and transferred to a 10× volume for overnight recovery in LB+0.4% arabinose+50 μg/mL kanamycin+100 μg/mL carbenicillin. Saturated overnight cultures were pelleted and resuspended in 5 mL of LB. 1 mL was used to make glycerol stocks and the other 1 mL washed with the appropriate selection media before proceeding with selection.


For the control experiments with galK we used CREATE cassettes designed to convert Y145 (TAT) into a stop codon (TAA) with a single point mutation at this position and a second point mutation to make a synonymous mutation that abolishes the targeted PAM site (e.g. FIG. 8B and FIG. 13A-13D). Editing efficiencies (e.g. FIGS. 13A-13D and FIG. 9A-9B) were estimated using red/white plate based screening on 1% galactose supplemented MacConkey agar as previously described.


Selection Procedures


Following overnight recovery, the cells were harvested by pelleting and resuspension in fresh selection media. All selections were performed in shake flask and inoculated at an initial OD600 of 0.1. Three serial dilutions (48-96 hrs depending on growth rates in the target condition) were carried out for each selection by transferring 1/100th the media volume after the cultures reached stationary phase. The 42° C. selections were performed in M9 media+0.2% glucose to mimic low carbon availability from the initial adaptation. Antibiotic selections were carried out in LB+500 μg/mL rifampicin or erythromycin to ensure stringent selection. The solvent selections were performed in M9+0.4% glucose and either 10 g/L acetate (unbuffered) or 2 g/L furfural. Selections were harvested by pelleting 1 mL of the final culture and the cell pellet was boiled in 100 μL TE buffer to preserve both the plasmid and the genomic DNA for further desired analyses.


Library Preparation and Sequencing


Custom Illumina compatible primers were designed to allow a single amplification step from the CREATE plasmid and assignment of experimental reads using barcodes. The CREATE cassettes were amplified directly from the plasmid sequences of boiled cell lysates using 20 cycles of PCR with the Phusion (NEB) polymerase using 60° C. annealing and 1:30 minute extension times. As in the cloning procedure a minimal number of PCR cycles was maintained to prevent accumulation of mutations and recombined CREATE cassettes that were observed when an excessive number of PCR cycles was implemented (e.g. >25-30). Amplified fragments were verified and quantified by 1% agarose gel electrophoresis and pooled according to the desired read depth for each sample. The pooled library was cleaned using Qiaquick PCR cleanup kit and processed for NGS using standard Illumina preparation kits. The Illumina sequencing and sample preparation were performed with the primers.


Preprocessing of High-Throughput Sequencing and Count Generation


Paired-end Illumina sequencing reads were sorted according to the golay barcode index with allowance of up to 3 mismatches then merged using the usearch-fastq_merge algorithm. Sorted reads were then matched against the database of designed CREATE cassettes using the usearch_global algorithm at an identity threshold of 90% allowing up to 60 possible hits for each read. The resulting hits were further sorted according to percent identity and read assignment was made using the best matching CREATE cassette design at a final cutoff 98% identity to the initial design. It should be noted that this read assignment strategy attempts to identify correlations between the designed genotypes and may therefore miss other important features that arise due to mutations that could occur during the experimental procedure. This approach was taken both to simplify data analysis as well as evaluate the ‘forward’ design and annotation procedure and it's ability to accurately identify meaningful genetic phenomena.


Data Analysis and Fitness Calculation


Enrichment scores (or absolute fitness scores) were calculated as the log 2 enrichment score using the following equation:







W
=

log





2


(


F

x
,
f



F

x
,
i



)



,





where Fx,f is the frequency of cassette X at the final time point and Fx,i is the initial frequency of cassette X and W is the absolute fitness of each variant. Frequencies were determined by dividing the read counts for each variant by the total experimental counts including those that were lost to filtering. Each selection was performed in duplicate and the count weighted average of the two measurements was used to infer the average fitness score of each mutation as follows:







W
avg

=





i
=
1

N








counts
i

*

W
i







i
=
1

N







counts
i







These scores were used to rank and assess the fitness contributions of each mutation under the various selection pressures investigated. For all selections we took average absolute fitness scores for all of the synonymous mutants as a composite measure of the average growth rate. Absolute enrichment scores were considered significant if the mutant enrichment was at least +/−2*σ (e.g. p=0.05 assuming a normal distribution) of the wild-type value. We performed two replicates of each selection reported in this study to derive these figures and applied a cutoff threshold of 10 across the replicate experiments for inclusion in each analysis.


For every codon targeted our designs also included a synonymous variant to provide an internal experimental control. Thus 5% of the protein targeting cassettes encoded synonymous mutations that allow us to estimate confidence intervals for mutation effects using custom Python bootstrapping scripts. The enrichment data for each experiment was resampled with replacement 20000 to obtain 95% confidence interval estimations that were used to infer statistical significance of enrichment scores for each analysis presented in the manuscript.


Mutant Reconstructions and Growth Measurements


The AcrB T60N and Crp S28P and FolA F153R/W CREATE cassettes were ordered as separate gblocks from IDT, cloned and sequence verified. Each cassette was transformed into MG1655 and colony screened to identify a clone with the designed genomic edit. These strains (e.g. FIG. 21 and FIG. 22A-22C) were then subjected to the growth conditions from the pooled library selection as indicated. The growth curves were taken in triplicate for each condition in 100 μL in a 96 well plate reader set to measure absorbance at 600 nm. The plate was covered and water added to empty wells to reduce evaporation during the growth.


Software and Figure Generation


Circle plots were generated using Circos v0.67. Plots were generated in Python 2.7 using the matplotlib plotting libraries and figures were made using Adobe Illustrator CS5. Entropy scores for the FolA (FIG. 10A) were determined using the ProDy Python package and the Pfam accession PF00186 representative proteome alignment RP35.


Figures of the protein libraries and high fitness mutations were made using The PyMol Molecular Graphics System, Schrodinger, LLC. The following are the proteins and PDBs used in the figure generation: AcrB (3W9H, 4K7Q, 3AOC), Fis (3JR9), Ihf (1IHF), RNA polymerase (4KMU, 4IGC), Crp (3N4M), MarA (1BLO), and SoxR (2ZHG).


Example 29: Testing Edit-Barcode Correlation

A strain expressing a low copy number plasmid (Ec23) which is a Cas9-pS1M5 dual vector, was tested using different gene editing cassettes (lacZ, xylA, and rhaA) and recorder cassettes with different barcodes and insertion sites (galK site 1, galK site 2, and galK site 3) (Summarized in FIG. 27A). The possible outcomes are depicted in FIG. 27B. Pre-selection, all combinations of edit/barcode/WT are possible. After selection, edits cells could be enriched whether they are barcoded or not in this experimental design.


The transformations were plated on selective media that allowed for enrichment of cells containing the gene edits. 30 colonies from each combination transformation were sequenced to determine if they contained the desired barcode.



FIG. 27C shows the results from the sequencing data. Two of the edit/barcode combinations were found in 100% of the tested colonies (30/30 colonies), and the other edit/barcode combination transformation was found in approximately 97% of tested colonies (29/30 colonies). The single colony that was not properly engineered contained the gene edit, but not the barcode.


Overall, 89 out of 90 tested colonies has the designed gene edit and barcode.


Example 30: Selectable Recording

When a barcode is not selected for, it allows for enrichment of non-barcoded cells even if the corresponding gene edit is incorporated and selected for. FIG. 28 depicts an example strategy for selecting for the recording event (e.g., incorporation of the barcode by the recorder cassette), in addition to selecting for the editing cassette incorporation, thereby increasing the efficiency of recovering cells that have been both edited and barcoded.


As depicted in FIG. 28, sequences S0, S1, S2, etc. are designed to be targeted by the guide RNA associated with the recorder cassette of the next round. In the depicted example, in the first round of engineering, a PAM mutation, a barcode, S1 site, and regulatory elementary necessary to turn on a selectable marker are incorporated into the S0 site in the target region. This turns on the TetR selectable marker and allows for enrichment of barcoded mutants variants with the S1 site that have the first round PAM site deleted. In the second round of engineering, a new recorder cassette comprising a second PAM mutation, a second barcode, a S2 site, and a mutation that turns off the selectable marker is incorporated into the S1 site from the previous round. This allows for counter-selection of variants that have incorporated the second barcode and S2 site. The subsequent rounds continue to flip the selectable marker between an on and off state and using selection or counter-selection respectively to enrich the desired variants. The recorder cassette from each round is designed to incorporate into a unique sequence (e.g., S0, S1, etc.) that was incorporated in the previous round. This ensures that the last round of barcoding was successful so that all desired engineering steps are contained in the final product. The incorporation of PAM mutations at each step also helps ensure that the desired barcoded variants are selected for since cells having the unmodified PAM sequences will be killed as they can't escape CRISPR enzyme cleavage.


This strategy uses multiple methods to increase the efficiency of isolating desired variants that contain all of the engineered edits from each round of engineering. The PAM mutation, selectable marker switch, and unique landing site incorporated in each round separately increase efficiency and together increase efficiency as well. These tools allow for selection of each recording round and allow design of highly active recording guide RNAs. An array of equally spaced (or not equally spaced, depending on the design) barcodes is generated and facilitates downstream analysis such as sequencing the barcode array to determine which corresponding edits are incorporated throughout the genome.



FIG. 29 depicts an experimental design to test the selectable recorder strategy described above. A plasmid (pREC1) containing an editing cassette and a recorder cassette was transformed into cells. The editing cassette either contained a non-targeting editing cassette, or a mutation that incorporated a mutation (not TS) or a temperature sensitive mutation (TS) into a target gene. The recorder cassette was designed to incorporate into the S0 site in the target gene that originally had the tetR selectable marker turned off. The recorder cassette also contained a PAM mutation that deleted the S0 PAM site, first barcode (BC1), a unique S1 site for the subsequent engineering round recording cassette to incorporate into, and a corrective mutation that will turn on the TetR selectable marker. A guide RNA on the recorder cassette that targets a PAM site in the S0 site (S0-gRNA) allows a CRISPR enzyme, in this case Cas9, to cleave the S0 site. The recorder cassette recombines into the cleaved S0 site. The PAM mutation is incorporated, which means the S0-gRNA can no longer target the S0 site, thereby killing WT cells and enriching for cells that received the barcode. The TetR selectable marker was also turned on, allowing further selection of the barcoded variant.


The data in FIGS. 30A and 30B show the results from the experiment described above and depicted in FIG. 29. Of the Tet Resistant colonies that were recovered from the transformation and engineering round, 16 were sequence and determined to all contain the designed barcode (FIG. 30A). FIG. 30B shows that the control cells that did not contain the recorder target site (non-target) did not survive the presence of Tet, while cells that contained the target site were successfully barcoded as evidences by the turning on of TetR, allowing cells to be selected on Tet containing media. The Tet resistant colonies were confirmed at the genomic site to have TetR gene turned on. These data showed that selectable recording was successful.


Example 31: Expression of MAD Nucleases

Wild-type nucleic acid sequences for MAD1-MAD20 include SEQ ID NOs 21-40, respectively. These MAD nucleases were codon optimized for expression in E. coli and the codon optimized sequences are listed as SEQ ID NO: 41-60, respectively (summarized in Table 2). Codon optimized MAD1-MAD20 were cloned into an expression construct comprising a constitutive or inducible promoter (e.g., T7 promoter SEQ ID NO: 83, or pBAD promoter SEQ ID NO: 81 or SEQ ID NO: 82) and an optional 6×-His tag (SEQ ID NO: 186). The generated MAD1-MAD20 expression constructs are provided as SEQ ID NOs: 61-80, respectively.













TABLE 2






WT nucleic acid
Codon optimized
Amino acid
Expression


MAD nuclease
sequence
nucleic acid sequence
sequence
constructs







MAD1
SEQ ID NO: 21
SEQ ID NO: 41
SEQ ID NO: 1
SEQ ID NO: 61


MAD2
SEQ ID NO: 22
SEQ ID NO: 42
SEQ ID NO: 2
SEQ ID NO: 62


MAD3
SEQ ID NO: 23
SEQ ID NO: 43
SEQ ID NO: 3
SEQ ID NO: 63


MAD4
SEQ ID NO: 24
SEQ ID NO: 44
SEQ ID NO: 4
SEQ ID NO: 64


MAD5
SEQ ID NO: 25
SEQ ID NO: 45
SEQ ID NO: 5
SEQ ID NO: 65


MAD6
SEQ ID NO: 26
SEQ ID NO: 46
SEQ ID NO: 6
SEQ ID NO: 66


MAD7
SEQ ID NO: 27
SEQ ID NO: 47
SEQ ID NO: 7
SEQ ID NO: 67


MAD8
SEQ ID NO: 28
SEQ ID NO: 48
SEQ ID NO: 8
SEQ ID NO: 68


MAD9
SEQ ID NO: 29
SEQ ID NO: 49
SEQ ID NO: 9
SEQ ID NO: 69


MAD10
SEQ ID NO: 30
SEQ ID NO: 50
SEQ ID NO: 10
SEQ ID NO: 70


MAD11
SEQ ID NO: 31
SEQ ID NO: 51
SEQ ID NO: 11
SEQ ID NO: 71


MAD12
SEQ ID NO: 32
SEQ ID NO: 52
SEQ ID NO: 12
SEQ ID NO: 72


MAD13
SEQ ID NO: 33
SEQ ID NO: 53
SEQ ID NO: 13
SEQ ID NO: 73


MAD14
SEQ ID NO: 34
SEQ ID NO: 54
SEQ ID NO: 14
SEQ ID NO: 74


MAD15
SEQ ID NO: 35
SEQ ID NO: 55
SEQ ID NO: 15
SEQ ID NO: 75


MAD16
SEQ ID NO: 36
SEQ ID NO: 56
SEQ ID NO: 16
SEQ ID NO: 76


MAD17
SEQ ID NO: 37
SEQ ID NO: 57
SEQ ID NO: 17
SEQ ID NO: 77


MAD18
SEQ ID NO: 38
SEQ ID NO: 58
SEQ ID NO: 18
SEQ ID NO: 78


MAD19
SEQ ID NO: 39
SEQ ID NO: 59
SEQ ID NO: 19
SEQ ID NO: 79


MAD20
SEQ ID NO: 40
SEQ ID NO: 60
SEQ ID NO: 20
SEQ ID NO: 80









Example 32: MAD2 and MAD7 Nucleases

MAD2 and MAD7 nucleases are nucleic acid-guided nuclease that can be used in the methods disclosed herein. Nucleases Mad2 (SEQ ID NO: 2) and Mad 7 (SEQ ID NO: 7) were cloned and transformed into cells. Editing cassettes designed to mutate a target site in a galK gene were designed with mutations, which allowed for white/red screening of successfully editing colonies. The editing cassettes also encoded a guide nucleic acid designed to target galK. The editing cassettes were transformed into E. coli cells expressing MAD2, MAD7, or Cas9. FIG. 31A shows the editing efficiency of Mad2 and Mad7 compared to Cas9 (SEQ ID NO: 110). FIG. 31B shows the transformation efficiency as evidenced by cell survival rates. In this example, the guide nucleic acid used with MAD2 and MAD7 comprised a scaffold-12 sequence and a guide sequence targeting galK. The guide nucleic acid used with Cas9 comprised a sequence compatible with the S. pyogenes Cas9.



FIG. 32 and Table 3 show more examples of gene editing using the MAD2 nuclease. In this experiment, different guide nucleic acid sequences were tested. The guide sequence of the guide nucleic acids targeted the galK gene as described above. The scaffold sequence of the guide nucleic acids were one of various sequences tested as indicated. Guide nucleic acids with scaffold-5, scaffold-10, scaffold-11, and scaffold-12 were able to form functional complexes with MAD2.



FIG. 33 and Table 4 show more examples of gene editing using the MAD7 nuclease. In this experiment, different guide nucleic acid sequences were tested. The guide sequence of the guide nucleic acids targeted the galK gene as described above. The scaffold sequence of the guide nucleic acids were one of various sequences tested as indicated. Guide nucleic acids with scaffold-10, scaffold-11, and scaffold-12 (e.g., FIG. 31A) were able to form functional complexes with MAD7. Amino acid sequences are provided in Table 2 and scaffolding sequences are provided in Table 3 and Table 4. Table 3 and Table 4 also provided the designed mutations in the editing cassettes that were used to mutate the galK target gene.


Further details and characterization of MAD2, MAD7, and other MAD nucleases are described in U.S. application Ser. No. 15/631,989, filed Jun. 23, 2017, and U.S. application Ser. No. 15/632,001, filed Jun. 23, 2017, each of which are incorporated herein in their entirety.













TABLE 3






Nucleic acid-

Editing




guided
Guide nucleic acid scaffold
sequence
Target


#
nuclease
sequence
mutation
gene



















1
MAD2
Scaffold-12; SEQ ID NO: 95
N89KpnI
galK


2
MAD2
Scaffold-10; SEQ ID NO: 93
L80**
galK


3
MAD2
Scaffold-5; SEQ ID NO: 88
L80**
galK


4
MAD2
Scaffold-12; SEQ ID NO: 95
D70KpnI
galK


5
MAD2
Scaffold-12; SEQ ID NO: 95
Y145**
galK


6
MAD2
Scaffold-11; SEQ ID NO: 94
Y145**
galK


7
MAD2
Scaffold-10; SEQ ID NO: 93
Y145**
galK


8
MAD2
Scaffold-12; SEQ ID NO: 95
L10KpnI
galK


9
MAD2
Scaffold-11; SEQ ID NO: 94
L80**
galK


10
SpCas9

S. pyogenese gRNA

Y145**
galK


11
MAD2
Scaffold-2; SEQ ID NO: 85
Y145**
galK


12
MAD2
Scaffold-4; SEQ ID NO: 87
Y145**
galK


13
MAD2
Scaffold-1; SEQ ID NO: 84
L80**
galK


14
MAD2
Scaffold-13; SEQ ID NO: 96
Y145**
galK




















TABLE 4






Nucleic acid-

Editing




guided
Guide nucleic acid scaffold
sequence
Target


#
nuclease
sequence
mutation
gene



















1
MAD7
Scaffold-1; SEQ ID NO: 84
L80**
galK


2
MAD7
Scaffold-2; SEQ ID NO: 85
Y145**
galK


3
MAD7
Scaffold-4; SEQ ID NO: 87
Y145**
galK


4
MAD7
Scaffold-10; SEQ ID NO: 93
Y145**
galK


5
MAD7
Scaffold-11; SEQ ID NO: 95
L80**
galK









While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.









TABLE 5







SEQUENCE LISTING








SEQ



ID



NO:
Sequence





SEQ
MGKMYYLGLDIGTNSVGYAVTDPSYHLLKFKGEPMWGAHVFAAGNQSAERRSFRTSRRRLDRRQQRVKLV


ID
QEIFAPVISPIDPRFFIRLHESALWRDDVAETDKHIFFNDPTYTDKEYYSDYPTIHHLIVDLMESSEKHDPRLVY


NO:
LAVAWLVAHRGHFLNEVDKDNIGDVLSFDAFYPEFLAFLSDNGVSPWVCESKALQATLLSRNSVNDKYKAL


1
KSLIFGSQKPEDNFDANISEDGLIQLLAGKKVKVNKLFPQESNDASFTLNDKEDAIEEILGTLTPDECEWIAHIR



RLFDWAIMKHALKDGRTISESKVKLYEQHHHDLTQLKYFVKTYLAKEYDDIFRNVDSETTKNYVAYSYHVK



EVKGTLPKNKATQEEFCKYVLGKVKNIECSEADKVDFDEMIQRLTDNSFMPKQVSGENRVIPYQLYYYELKT



ILNKAASYLPFLTQCGKDAISNQDKLLSIMTFRIPYFVGPLRKDNSEHAWLERKAGKIYPWNFNDKVDLDKSE



EAFIRRMTNTCTYYPGEDVLPLDSLIYEKFMILNEINNIRIDGYPISVDVKQQVFGLFEKKRRVTVKDIQNLLLS



LGALDKHGKLTGIDTTIHSNYNTYHHFKSLMERGVLTRDDVERIVERMTYSDDTKRVRLWLNNNYGTLTAD



DVKHISRLRKHDFGRLSKMFLTGLKGVHKETGERASILDFMWNTNDNLMQLLSECYTFSDEITKLQEAYYA



KAQLSLNDFLDSMYISNAVKRPIYRTLAVVNDIRKACGTAPKRIFIEMARDGESKKKRSVTRREQIKNLYRSIR



KDFQQEVDFLEKILENKSDGQLQSDALYLYFAQLGRDMYTGDPIKLEHIKDQSFYNIDHIYPQSMVKDDSLD



NKVLVQSEINGEKSSRYPLDAAIRNKMKPLWDAYYNHGLISLKKYQRLTRSTPFTDDEKWDFINRQLVETRQ



STKALAILLKRKFPDTEIVYSKAGLSSDFRHEFGLVKSRNINDLHHAKDAFLAIVTGNVYHERFNRRWFMVN



QPYSVKTKTLFTHSIKNGNFVAWNGEEDLGRIVKMLKQNKNTIHFTRFSFDRKEGLFDIQPLKASTGLVPRKA



GLDVVKYGGYDKSTAAYYLLVRFTLEDKKTQHKLMMIPVEGLYKARIDHDKEFLTDYAQTTISEILQKDKQ



KVINIMFPMGTRHIKLNSMISIDGFYLSIGGKSSKGKSVLCHAMVPLIVPHKIECYIKAMESFARKFKENNKLRI



VEKFDKITVEDNLNLYELFLQKLQHNPYNKFFSTQFDVLTNGRSTFTKLSPEEQVQTLLNILSIFKTCRSSGCD



LKSINGSAQAARIMISADLTGLSKKYSDIRLVEQSASGLFVSKSQNLLEYL*





SEQ
MSSLTKFTNKYSKQLTIKNELIPVGKTLENIKENGLIDGDEQLNENYQKAKIIVDDFLRDFINKALNNTQIGNW


ID
RELADALNKEDEDNIEKLQDKIRGIIVSKFETFDLFSSYSIKKDEKIIDDDNDVEEEELDLGKKTSSFKYIFKKN


NO:
LFKLVLPSYLKTTNQDKLKIISSFDNFSTYFRGFFENRKNIFTKKPISTSIAYRIVHDNFPKFLDNIRCFNVWQTE


2
CPQLIVKADNYLKSKNVIAKDKSLANYFTVGAYDYFLSQNGIDFYNNIIGGLPAFAGHEKIQGLNEFINQECQ



KDSELKSKLKNRHAFKMAVLFKQILSDREKSFVIDEFESDAQVIDAVKNFYAEQCKDNNVIFNLLNLIKNIAF



LSDDELDGIFIEGKYLSSVSQKLYSDWSKLRNDIEDSANSKQGNKELAKKIKTNKGDVEKAISKYEFSLSELNS



IVHDNTKFSDLLSCTLHKVASEKLVKVNEGDWPKHLKNNEEKQKIKEPLDALLEIYNTLLIFNCKSFNKNGNF



YVDYDRCINELSSVVYLYNKTRNYCTKKPYNTDKFKLNFNSPQLGEGFSKSKENDCLTLLFKKDDNYYVGII



RKGAKINFDDTQAIADNTDNCIFKMNYFLLKDAKKFIPKCSIQLKEVKAHFKKSEDDYILSDKEKFASPLVIKK



STFLLATAHVKGKKGNIKKFQKEYSKENPTEYRNSLNEWIAFCKEFLKTYKAATIFDITTLKKAEEYADIVEF



YKDVDNLCYKLEFCPIKTSFIENLIDNGDLYLFRINNKDFSSKSTGTKNLHTLYLQAIFDERNLNNPTIMLNGG



AELFYRKESIEQKNRITHKAGSILVNKVCKDGTSLDDKIRNEIYQYENKFIDTLSDEAKKVLPNVIKKEATHDI



TKDKRFTSDKFFFHCPLTINYKEGDTKQFNNEVLSFLRGNPDINIIGIDRGERNLIYVTVINQKGEILDSVSFNT



VTNKSSKIEQTVDYEEKLAVREKERIEAKRSWDSISKIATLKEGYLSAIVHEICLLMIKHNAIVVLENLNAGFK



RIRGGLSEKSVYQKFEKMLINKLNYFVSKKESDWNKPSGLLNGLQLSDQFESFEKLGIQSGFIFYVPAAYTSKI



DPTTGFANVLNLSKVRNVDAIKSFFSNFNEISYSKKEALFKFSFDLDSLSKKGFSSFVKFSKSKWNVYTFGERII



KPKNKQGYREDKRINLTFEMKKLLNEYKVSFDLENNLIPNLTSANLKDTFWKELFFIFKTTLQLRNSVTNGKE



DVLISPVKNAKGEFFVSGTHNKTLPQDCDANGAYHIALKGLMILERNNLVREEKDTKKIMAISNVDWFEYVQ



KRRGVL*





SEQ
MNNYDEFTKLYPIQKTIRFELKPQGRTMEHLETFNFFEEDRDRAEKYKILKEAIDEYHKKFIDEHLTNMSLDW


ID
NSLKQISEKYYKSREEKDKKVFLSEQKRMRQEIVSEFKKDDRFKDLFSKKLFSELLKEEIYKKGNHQEIDALK


NO:
SFDKFSGYFIGLHENRKNMYSDGDEITAISNRIVNENFPKFLDNLQKYQEARKKYPEWIIKAESALVAHNIKM


3
DEVFSLEYFNKVLNQEGIQRYNLALGGYVTKSGEKMMGLNDALNLAHQSEKSSKGRIHMTPLFKQILSEKES



FSYIPDVFTEDSQLLPSIGGFFAQIENDKDGNIFDRALELISSYAEYDTERIYIRQADINRVSNVIFGEWGTLGGL



MREYKADSINDINLERTCKKVDKWLDSKEFALSDVLEAIKRTGNNDAFNEYISKMRTAREKIDAARKEMKFT



SEKISGDEESIHIIKTLLDSVQQFLHFFNLFKARQDIPLDGAFYAEFDEVHSKLFAIVPLYNKVRNYLTKNNLNT



KKIKLNFKNPTLANGWDQNKVYDYASLIFLRDGNYYLGIINPKRKKNIKFEQGSGNGPFYRKMVYKQIPGPN



KNLPRVFLTSTKGKKEYKPSKEIIEGYEADKHIRGDKFDLDFCHKLIDFFKESIEKHKDWSKFNFYFSPTESYG



DISEFYLDVEKQGYRMHFENISAETIDEYVEKGDLFLFQIYNKDFVKAATGKKDMHTIYWNAAFSPENLQDV



VVKLNGEAELFYRDKSDIKEIVHREGEILVNRTYNGRTPVPDKIHKKLTDYHNGRTKDLGEAKEYLDKVRYF



KAHYDITKDRRYLNDKIYFHVPLTLNFKANGKKNLNKMVIEKFLSDEKAHIIGIDRGERNLLYYSIIDRSGKII



DQQSLNVIDGFDYREKLNQREIEMKDARQSWNAIGKIKDLKEGYLSKAVHEITKMAIQYNAIVVMEELNYGF



KRGRFKVEKQIYQKFENMLIDKMNYLVFKDAPDESPGGVLNAYQLTNPLESFAKLGKQTGILFYVPAAYTSK



IDPTTGFVNLFNTSSKTNAQERKEFLQKFESISYSAKDGGIFAFAFDYRKFGTSKTDHKNVWTAYTNGERMR



YIKEKKRNELFDPSKEIKEALTSSGIKYDGGQNILPDILRSNNNGLIYTMYSSFIAAIQMRVYDGKEDYIISPIKN



SKGEFFRTDPKRRELPIDADANGAYNIALRGELTMRAIAEKFDPDSEKMAKLELKHKDWFEFMQTRGD*





SEQ
MTKTFDSEFFNLYSLQKTVRFELKPVGETASFVEDFKNEGLKRVVSEDERRAVDYQKVKEIIDDYHRDFIEES


ID
LNYFPEQVSKDALEQAFHLYQKLKAAKVEEREKALKEWEALQKKLREKVVKCFSDSNKARFSRIDKKELIK


NO:
EDLINWLVAQNREDDIPTVETFNNFTTYFTGFHENRKNIYSKDDHATAISFRLIHENLPKFFDNVISFNKLKEG


4
FPELKFDKVKEDLEVDYDLKHAFEIEYFVNFVTQAGIDQYNYLLGGKTLEDGTKKQGMNEQINLFKQQQTR



DKARQIPKLIPLFKQILSERTESQSFIPKQFESDQELFDSLQKLHNNCQDKFTVLQQAILGLAEADLKKVFIKTS



DLNALSNTIFGNYSVFSDALNLYKESEKTKKAQEAFEKLPAHSIHDLIQYLEQFNSSLDAEKQQSTDTVLNYFI



KTDELYSRFIKSTSEAFTQVQPLFELEALSSKRRPPESEDEGAKGQEGFEQIKRIKAYLDTLMEAVHFAKPLYL



VKGRKMIEGLDKDSFYEAFEMAYQELESLIIPIYNKARSYLSRKPFKADKFKINFDNNTLLSGWDANKETAN



ASILFKKDGLYYLGIMPKGKTFLFDYFVSSEDSEKLKQRRQKTAEEALAQDGESYFEKIRYKLLPGASKMLPK



VFFSNKNIGFYNPSDDILRIRNTASHTKNGTPQKGHSKVEFNLNDCHKMIDFFKSSIQKHPEWGSFGFTFSDTS



DFEDMSAFYREVENQGYVISFDKIKETYIQSQVEQGNLYLFQIYNKDFSPYSKGKPNLHTLYWKALFEEANL



NNVVAKLNGEAEIFFRRHSIKASDKVVHPANQAIDNKNPHTEKTQSTFEYDLVKDKRYTQDKFFFHVPISLNF



KAQGVSKFNDKVNGFLKGNPDVNIIGIDRGERHLLYFTVVNQKGEILVQESLNTLMSDKGHVNDYQQKLDK



KEQERDAARKSWTTVENIKELKEGYLSHVVHKLAHLIIKYNAIVCLEDLNFGFKRGRFKVEKQVYQKFEKAL



IDKLNYLVFKEKELGEVGHYLTAYQLTAPFESFKKLGKQSGILFYVPADYTSKIDPTTGFVNFLDLRYQSVEK



AKQLLSDFNAIRFNSVQNYFEFEIDYKKLTPKRKVGTSKWVICTYGDVRYQNRRNQKGHWETEEVNVTEK



LKALFASDSKTTTVIDYANDDNLIDVILEQDKASFFKELLWLLKLTMTLRHSKIKSEDDFILSPVKNEQGEFYD



SRKAGEVWPKDADANGAYHIALKGLWNLQQINQWEKGKTLNLAIKNQDWFSFIQEKPYQE*





SEQ
MHTGGLLSMDAKEFTGQYPLSKTLRFELRPIGRTWDNLEASGYLAEDRHRAECYPRAKELLDDNHRAFLNR


ID
VLPQIDMDWHPIAEAFCKVHKNPGNKELAQDYNLQLSKRRKEISAYLQDADGYKGLFAKPALDEAMKIAKE


NO:
NGNESDIEVLEAFNGFSVYFTGYHESRENIYSDEDMVSVAYRITEDNFPRFVSNALIFDKLNESHPDIISEVSGN


5
LGVDDIGKYFDVSNYNNFLSQAGIDDYNHIIGGHTTEDGLIQAFNVVLNLRHQKDPGFEKIQFKQLYKQILSV



RTSKSYIPKQFDNSKEMVDCICDYVSKIEKSETVERALKLVRNISSFDLRGIFVNKKNLRILSNKLIGDWDAIET



ALMHSSSSENDKKSVYDSAEAFTLDDIFSSVKKFSDASAEDIGNRAEDICRVISETAPFINDLRAVDLDSLNDD



GYEAAVSKIRESLEPYMDLFHELEIFSVGDEFPKCAAFYSELEEVSEQLIEIIPLFNKARSFCTRKRYSTDKIKVN



LKFPTLADGWDLNKERDNKAAILRKDGKYYLAILDMKKDLSSIRTSDEDESSFEKMEYKLLPSPVKMLPKIF



VKSKAAKEKYGLTDRMLECYDKGMHKSGSAFDLGFCHELIDYYKRCIAEYPGWDVFDFKFRETSDYGSMK



EFNEDVAGAGYYMSLRKIPCSEVYRLLDEKSIYLFQIYNKDYSENAHGNKNMHTMYWEGLFSPQNLESPVF



KLSGGAELFFRKSSIPNDAKTVHPKGSVLVPRNDVNGRRIPDSIYRELTRYFNRGDCRISDEAKSYLDKVKTK



KADHDIVKDRRFTVDKMMFHVPIAMNFKAISKPNLNKKVIDGIIDDQDLKIIGIDRGERNLIYVTMVDRKGNI



LYQDSLNILNGYDYRKALDVREYDNKEARRNWTKVEGIRKMKEGYLSLAVSKLADMIIENNAIIVMEDLNH



GFKAGRSKIEKQVYQKFESMLINKLGYMVLKDKSIDQGGALHGYQLANHVTTLASVGKQCGVIFYIPAAFT



SKIDPTTGFADLFALSNVKNVASMREFFSKMKSVIYDKAEGKFAFTFDYLDYNVKSECGRTLWTVYTVGERF



TYSRVNREYVRKVPTDIIYDALQKAGISVEGDLRDRIAESDGDTLKSIFYAFKYALDMRVENREEDYIQSPVK



NASGEFFCSKNAGKSLPQDSDANGAYNIALKGILQLRMLSEQYDPNAESIRLPLITNKAWLTFMQSGMKTWK



N*





SEQ
MDSLKDFTNLYPVSKTLRFELKPVGKTLENIEKAGILKEDEHRAESYRRVKKIIDTYHKVFIDSSLENMAKMG


ID
IENEIKAMLQSFCELYKKDHRTEGEDKALDKIRAVLRGLIVGAFTGVCGRRENTVQNEKYESLFKEKLIKEILP


NO:
DFVLSTEAESLPFSVEEATRSLKEFDSFTSYFAGFYENRKNIYSTKPQSTAIAYRLIHENLPKFIDNILVFQKIKE


6
PIAKELEHIRADFSAGGYIKKDERLEDIFSLNYYIHVLSQAGIEKYNALIGKIVTEGDGEMKGLNEHINLYNQQ



RGREDRLPLFRPLYKQILSDREQLSYLPESFEKDEELLRALKEFYDHIAEDILGRTQQLMTSISEYDLSRIYVRN



DSQLTDISKKMLGDWNAIYMARERAYDHEQAPKRITAKYERDRIKALKGEESISLANLNSCIAFLDNVRDCR



VDTYLSTLGQKEGPHGLSNLVENVFASYHEAEQLLSFPYPEENNLIQDKDNVVLIKNLLDNISDLQRFLKPLW



GMGDEPDKDERFYGEYNYIRGALDQVIPLYNKVRNYLTRKPYSTRKVKLNFGNSQLLSGWDRNKEKENSC



VILRKGQNFYLAIMNNRHKRSFENKVLPEYKEGEPYFEKMDYKFLPDPNKMLPKVFLSKKGIEIYKPSPKLLE



QYGHGTHKKGDTFSMDDLHELIDFFKHSIEAHEDWKQFGFKFSDTATYENVSSFYREVEDQGYKLSFRKVSE



SYVYSLIDQGKLYLFQIYNKDFSPCSKGTPNLHTLYWRMLFDERNLADVTYKLDGKAEIFFREKSLKNDHPTH



PAGKPIKKKSRQKKGEESLFEYDLVKDRHYTMDKFQFHVPITMNFKCSAGSKVNDMVNAHIREAKDMHVIG



IDRGERNLLYICVIDSRGTILDQISLNTINDIDYHDLLESRDKDRQQERRNWQTIEGIKELKQGYLSQAVHRIAE



LMVAYKAVVALEDLNMGFKRGRQKVESSVYQQFEKQLIDKLNYLVDKKKRPEDIGGLLRAYQFTAPFKSFK



EMGKQNGFLFYIPAWNTSNIDPITGFVNLFHAQYENVDKAKSFFQKFDSISYNPKKDWFEFAFDYKNFTKKA



EGSRSMWILCTHGSRIKNFRNSQKNGQWDSEEFALTEAFKSLFVRYEIDYTADLKTAIVDEKQKDFFVDLLKL



FKLTVQMRNSWKEKDLDYLISPVAGADGRFFDTREGNKSLPKDADANGAYNIALKGLWALRQIRQTSEGGK



LKLAISNKEWLQFVQERSYEKD*





SEQ
MNNGTNNFQNFIGISSLQKTLRNALIPTETTQQFIVKNGIIKEDELRGENRQILKDIMDDYYRGFISETLSSIDDI


ID
DWTSLFEKMEIQLKNGDNKDTLIKEQTEYRKAIHKKFANDDRFKNMFSAKLISDILPEFVIHNNNYSASEKEE


NO:
KTQVIKLFSRFATSFKDYFKNRANCFSADDISSSSCHRIVNDNAEIFFSNALVYRRIVKSLSNDDINKISGDMKD


7
SLKEMSLEEIYSYEKYGEFITQEGISFYNDICGKVNSFMNLYCQKNKENKNLYKLQKLHKQILCIADTSYEVP



YKFESDEEVYQSVNGFLDNISSKHIVERLRKIGDNYNGYNLDKIYIVSKFYESVSQKTYRDWETINTALEIHYN



NILPGNGKSKADKVKKAVKNDLQKSITEINELVSNYKLCSDDNIKAETYIHEISHILNNFEAQELKYNPEIHLV



ESELKASELKNVLDVIMNAFHWCSVFMTEELVDKDNNFYAELEEIYDEIYPVISLYNLVRNYVTQKPYSTKKI



KLNFGIPTLADGWSKSKEYSNNAIILMRDNLYYLGIFNAKNKPDKKIIEGNTSENKGDYKKMIYNLLPGPNK



MIPKVFLSSKTGVETYKPSAYILEGYKQNKHIKSSKDFDITFCHDLIDYFKNCIAIHPEWKNFGFDFSDTSTYED



ISGFYREVELQGYKIDWTYISEKDIDLLQEKGQLYLFQIYNKDFSKKSTGNDNLHTMYLKNLFSEENLKDIVL



KLNGEAEIFFRKSSIKNPIIHKKGSILVNRTYEAEEKDQFGNIQIVRKNIPENIYQELYKYFNDKSDKELSDEAA



KLKNVVGHHEAATNIVKDYRYTYDKYFLHMPITINIFKANKTGFINDRILQYIAKEKDLHVIGIDRGERNLIYV



SVIDTCGNIVEQKSFNIVNGYDYQIKLKQQEGARQIARKEWKEIGKIKEIKEGYLSLVIHEISKMVIKYNAIIAM



EDLSYGFKKGRFKVERQVYQKFETMLINKLNYLVFKDISITENGGLLKGYQLTYIPDKLKNVGHQCGCIFYVP



AAYTSKIDPTTGFVNIFKFKDLTVDAKREFIKKFDSIRYDSEKNLFCFTFDYNNFITQNTVMSKSSWSVYTYGV



RIKRRFVNGRFSNESDTIDITKDMEKTLEMTDINWRDGHDLRQDIIDYEIVQHIFEIFRLTVQMRNSLSELEDR



DYDRLISPVLNENNIFYDSAKAGDALPKDADANGAYCIALKGLYEIKQITENWKEDGKFSRDKLKISNKDWF



DFIQNKRYL*





SEQ
MTNKFTNQYSLSKTLRFELIPQGKTLEFIQEKGLLSQDKQRAESYQEMKKTIDKFHKYFIDLALSNAKLTHLE


ID
TYLELYNKSAETKKEQKFKDDLKKVQDNLRKEIVKSFSDGDAKSIFAILDKKELITVELEKWFENNEQKDIYF


NO:
DEKFKTFTTYFTGFHQNRKNMYSVEPNSTAIAYRLIHENLPKFLENAKAFEKIKQVESLQVNFRELMGEFGDE


8
GLIFVNELEEMFQINYYNDVLSQNGITIYNSIISGFTKNDIKYKGLNEYINNYNQTKDKKDRLPKLKQLYKQIL



SDRISLSFLPDAFTDGKQVLKAIFDFYKINLLSYTIEGQEESQNLLLLIRQTIENLSSFDTQKIYLKNDTHLTTISQ



QVFGDFSVFSTALNYWYETKVNPKFETEYSKANEKKREILDKAKAVFTKQDYFSIAFLQEVLSEYILTLDHTS



DIVKKHSSNCIADYFKNHFVAKKENETDKTFDFIANITAKYQCIQGILENADQYEDELKQDQKLIDNLKFFLD



AILELLHFIKPLHLKSESITEKDTAFYDVFENYYEALSLLTPLYNMVRNYVTQKPYSTEKIKLNFENAQLLNG



WDANKEGDYLTTILKKDGNYFLAIMDKKHNKAFQKFPEGKENYEKMVYKLLPGVNKMLPKVFFSNKNIAY



FNPSKELLENYKKETHKKGDTFNLEHCHTLIDFFKDSLNKHEDWKYFDFQFSETKSYQDLSGFYREVEHQGY



KINFKNIDSEYIDGLVNEGKLFLFQIYSKDFSPFSKGKPNMHTLYWKALFEEQNLQNVIYKLNGQAEIFFRKAS



IKPKNIILHKKKIKIAKKHFIDKKTKTSEIVPVQTIKNINMYYQGKISEKELTQDDLRYIDNFSIFNEKNKTIDIIK



DKRFTVDKFQFHVPITMNFKATGGSYINQTVLEYLQNNPEVKIIGLDRGERHLVYLTLIDQQGNILKQESLNTI



TDSKISTPYHKLLDNKENERDLARKNWGTVENIKELKEGYISQVVHKIATLMLEENAIVVMEDLNFGFKRGR



FKVEKQIYQKLEKMLIDKLNYLVLKDKQPQELGGLYNALQLTNKFESFQKMGKQSGFLFYVPAWNTSKIDP



TTGFVNYFYTKYENVDKAKAFFEKFEAIRFNAEKKYFEFEVKKYSDFNPKAEGTQQAWTICTYGERIETKRQ



KDQNNKFVSTPINLTEKIEDFLGKNQIVYGDGNCIKSQIASKDDKAFFETETLLYWFKMTLQMRNSETRTDIDYL



ISPVMNDNGTFYNSRDYEKLENPTLPKDADANGAYHIAKKGLMLLNKIDQADLTKKVDLSISNRDWLQFVQ



KNK*





SEQ
MEQEYYLGLDMGTGSVGWAVTDSEYHVLRKHGKALWGVRLFESASTAEERRMFRTSRRRLDRRNWRIEIL


ID
QEIFAEEISKKDPGFFLRMKESKYYPEDKRDINGNCPELPYALFVDDDFTDKDYHKKFPTTYHLRKMLMNTEE


NO:
TPDIRLVYLAIHHMMKHRGHFLLSGDINEIKEFGTTFSKLLENIKNEELDWNLELGKEEYAVVESILKDNMLN


9
RSTKKTRLIKALKAKSICEKAVLNLLAGGTVKLSDIFGLEELNETERPKISFADNGYDDYIGEVENELGEQFYII



ETAKAVYDWAVLVEILGKYTSISEAKVATYEKHKSDLQFLKKIVRKYLTKEEYKDIFVSTSDKLKNYSAYIG



MTKINGKKVDLQSKRCSKEEFYDFIKKNVLKKLEGQPEYEYLKEELERETFLPKQVNRDNGVIPYQIHLYELK



KILGNLRDKIDLIKENEDKLVQLFEFRIPYYVGPLNKIDDGKEGKFTWAVRKSNEKIYPWNFENVVDIEASAE



KFIRRMTNKCTYLMGEDVLPKDSLLYSKYMVLNELNNVKLDGEKLSVELKQRLYTDVFCKYRKVTVKKIK



NYLKCEGIISGNVEITGIDGDFKASLTAYHDFKEILTGTELAKKDKENIITNIVLFGDDKKLLKKRLNRLYPQIT



PNQLKKICALSYTGWGRFSKKFLEEITAPDPETGEVWNIITALWESNNNLMQLLSNEYRFMEEVETYNMGKQ



TKTLSYETVENMYVSPSVKRQIWQTLKIVKELEKVMKESEKRVFIEMAREKQESKRTESRKKQLIDLYKACK



NEEKDWVKELGDQEEQKLRSDKLYLYYTQKGRCMYSGEVIELKDLWDNTKYDIDHIYPQSKTMDDSLNNR



VLVKKKYNATKSDKYPLNENIRHERKGFWKSLLDGGFISKEKYERLIRNTELSPEELAGFIERQIVETRQSTKA



VAEILKQVFPESEIVYVKAGTVSRFRKDFELLKVREVNDLHHAKDAYLNIVVGNSYYVKFTKNASWFIKENP



GRTYNLKKMFTSGWNIERNGEVAWEVGKKGTIVTVKQIMNKNNILVTRQVHEAKGGLFDQQIMKKGKGQI



AIKETDERLASIEKYGGYNKAAGAYFMLVESKDKKGKTIRTIEFIPLYLKNKIESDESIALNFLEKGRGLKEPKI



LLKKIKIDTLFDVDGFKMWLSGRTGDRLLFKCANQLILDEKIIVTMKKIVKFIQRRQENRELKLSDKDGIDNE



VLMEIYNTFVDKLENTVYRIRLSEQAKTLIDKQKEFERESLEDKSSTLFEILHIFQCQSSAANLKMIGGPGKAGI



LVMNNNISKCNKISIINQSPTGIFENEIDLLK





SEQ
MNKFENFTGLYPISKTLRFELIPQGKTLEYIEKSEILENDNYRAEKYEEVKDIIDGYHKWFINETLHDLHINWSE


ID
LKVALENNRIEKSDASKKELQRVQKIKREEIYNAFIEHEAFQYLFKENLLSDLLPIQIEQSEDLDAEKKKQAVE


NO:
TFNRFSTYFTGFHENRKNIYSKEGISTSVTYRIVHDNFPKFLENMKVFEIERNECPEVISDTANELAPFIDGVRIE


10
DIFLIDFFNSTFSQNGIDYYNRILGGVTTETGEKYRGINEFTNLYRQQHPEFGKSKKATKMVVLFKQILSDRDT



LSFIPEMFGNDKQVQNSIQLFYNREISQFENEGVKTDVCTALATLTSKIAEFDTEKIYIQQPELPNVSQRLFGSW



NELNACLFKYAELKFGTAEKVANRKKIDKWLKSDLFSFTELNKALEFSGKDERIENYFSETGIFAQLVKTGFD



EAQSILETEYTSEVHLKDQQTDIEKIKTFLDALQNLMHLLKSLCVSEEADRDAAFYNEFDMLYNQLKLVVPL



YNKVRNYITQKLFRSDKIKIYFENKGQFEGGWVDSQTENSDNGTQAGGYIFRKENVINEYDYYLGICSDPKLF



RRTTIVSENDRSSFERLDYYQLKTASVYGNSYCGKHPYTEDKNELVNSIDRFVHLSGNNILIEKIAKDKVKSNP



TTNTPSGYLNFIHREAPNTYECLLQDENFVSLNQRVVSALKATLATLVRVPKALVYAKKDYHLFSEIINDIDE



LSYEKAFSYFPVSQTEFENSSNRTIKPLLLFKISNKDLSFAENFEKGNRQKIGKKNLHTLYFEALMKGNQDTIDI



GTGMVFHRVKSLNYNEKTLKYGHHSTQLNEKFSYPIIKDKRFASDKFLFHLSTEINYKEKRKPLNNSIIEFLTN



NPDINIIGLDRGERHLIYLTLINQKGEILRQKTFNIVGNTNYHEKLNQREKERDNARKSWATIGKIKELKEGFLS



LVIHEIAKIMVENNAIVVLEDLNFGFKRGRFKVEKQIYQKFEKMLIDKLNYLVFKDKKANEAGGVLKGYQLA



EKFESFQKMGKQSGFLFYVPAAYTSKIDPTTGFVNMLNLNYTNMKDAQTLLSGMDKISFNADANYFEFELD



YEKFKTNQTDHTNKWTICTVGEKRFTYNSATKETTTVNVTEDEKKLLDKFEVKYSNGDNIKDEICRQTDAKF



FEIILWLLKLTMQMRNSNTKTEEDFILSPVKNSNGEFERSNDDANGIWPADADANGAYHIALKGLYLVKECF



NKNEKSLKIEHKNWFKFAQTRFNGSLTKNG*





SEQ
MENFKNLYPINKTLRFELRPYGKTLENFKKSGLLEKDAFKANSRRSMQAIIDEKFKETIEERLKYTEFSECDLG


ID
NMTSKDKKITDKAATNLKKQVILSFDDEIFNNYLKPDKNIDALFKNDPSNPVISTFKGFTTYFVNFFEIRKHIFK


NO:
GESSGSMAYRIIDENLTTYLNNIEKIKKLPEELKSQLEGIDQIDKLNNYNEFITQSGITHYNEIIGGISKSENVKIQ


11
GINEGINLYCQKNKVKLPRLTPLYKMILSDRVSNSFVLDTIENDTELIEMISDLINKTEISQDVIMSDIQNIFIKY



KQLGNLPGISYSSIVNAICSDYDNNFGDGKRKKSYENDRKKHLETNVYSINYISELLTDTDVSSNIKMRYKEL



EQNYQVCKENFNATNWMNIKNIKQSEKTNLIKDLLDILKSIQRFYDLFDIVDEDKNPSAEFYTWLSKNAEKLD



FEFNSVYNKSRNYLTRKQYSDKKIKLNFDSPTLAKGWDANKEIDNSTIIMRKFNNDRGDYDYFLGIWNKSTP



ANEKIIPLEDNGLFEKMQYKLYPDPSKMLPKQFLSKIWKAKHPTTPEFDKKYKEGRHKKGPDFEKEFLHELID



CFKHGLVNHDEKYQDVFGFNLRNTEDYNSYTEFLEDVERCNYNLSFNKIADTSNLINDGKLYVFQIWSKDFSI



DSKGTKNLNTIYFESLFSEENMIEKMFKLSGEAEIFYRPASLNYCEDIIKKGHHHAELKDKFDYPIIKDKRYSQ



DKFFFHVPMVINYKSEKLNSKSLNNRTNENLGQFTHIIGIDRGERHLIYLTVVDVSTGEIVEQKHLDEIINTDTK



GVEHKTHYLNKLEEKSKTRDNERKSWEAIETIKELKEGYISHVINEIQKLQEKYNALIVMENLNYGFKNSRIK



VEKQVYQKFETALIKKFNYIIDKKDPETYIHGYQLTNPITTLDKIGNQSGIVLYIPAWNTSKIDPVTGFVNLLYA



DDLKYKNQEQAKSFIQKIDNIYFENGEFKFDIDFSKWNNRYSISKTKWTLTSYGTRIQTFRNPQKNNKWDSAE



YDLTEEFKLILNIDGTLKSQDVETYKKFMSLFKLMLQLRNSVTGTDIDYMISPVTDKTGTHFDSRENIKNLPA



DADANGAYNIARKGIMAIENIMNGISDPLKISNEDYLKYIQNQQE





SEQ
MTQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELKPIIDRIYKTYADQCLQLVQLDW


ID
ENLSAAIDSYRKEKTEETRNALIEEQATYRNAIHDYFIGRTDNLTDAINKRHAEIYKGLFKAELFNGKVLKQL


NO:
GTVTTTEHENALLRSFDKFTTYFSGFYENRKNVFSAEDISTAIPHRIVQDNFPKFKENCHIFTRLITAVPSLREH


12
FENVKKAIGIFVSTSIEEVFSFPFYNQLLTQTQIDLYNQLLGGISREAGTEKIKGLNEVLNLAIQKNDETAHIIAS



LPHRFIPLFKQILSDRNTLSFILEEFKSDEEVIQSFCKYKTLLRNENVLETAEALFNELNSIDLTHIFISHKKLETIS



SALCDHWDTLRNALYERRISELTGKITKSAKEKVQRSLKHEDINLQEIISAAGKELSEAFKQKTSEILSHAHAA



LDQPLPTTLKKQEEKEILKSQLDSLLGLYHLLDWFAVDESNEVDPEFSARLTGIKLEMEPSLSFYNKARNYAT



KKPYSVEKFKLNFQMPTLASGWDVNKEKNNGAILFVKNGLYYLGIMPKQKGRYKALSFEPTEKTSEGFDKM



YYDYFPDAAKMIPKCSTQLKAVTAHFQTHTTPILLSNNFIEPLEITKEIYDLNNPEKEPKKFQTAYAKKTGDQK



GYREALCKWIDFTRDFLSKYTKTTSIDLSSLRPSSQYKDLGEYYAELNPLLYHISFQRIAEKEIMDAVETGKLY



LFQIYNKDFAKGHHGKPNLHTLYWTGLFSPENLAKTSIKLNGQAELFYRPKSRMKRMAHRLGEKMLNKKLK



DQKTPIPDTLYQELYDYVNHRLSHDLSDEARALLPNVITKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPS



KFNQRVNAYLKEHPETPIIGIDRGERNLIYITVIDSTGKILEQRSLNTIQQFDYQKKLDNREKERVAARQAWSV



VGTIKDLKQGYLSQVIHEIVDLMIHYQAVVVLENLNFGFKSKRTGIAEKAVYQQFEKMLIDKLNCLVLKDYP



AEKVGGVLNPYQLTDQFTSFAKMGTQSGFLFYVPAPYTSKIDPLTGFVDPFVWKTIKNHESRKHFLEGFDFL



HYDVKTGDFILHFKMNRNLSFQRGLPGFMPAWDIVFEKNETQFDAKGTPFIAGKRIVPVIENHRFTGRYRDLY



PANELIALLEEKGIVFRDGSNILPKLLENDDSHAIDTMVALIRSVLQMRNSNAATGEDYINSPVRDLNGVCFDS



RFQNPEWPMDADANGAYHIALKGQLLLNHLKESKDLKLQNGISNQDWLAYIQELRN*





SEQ
MAVKSIKVKLRLDDMPEIRAGLWKLHKEVNAGVRYYTEWLSLLRQENLYRRSPNGDGEQECDKTAEECKA


ID
ELLERLRARQVENGHRGPAGSDDELLQLARQLYELLVPQAIGAKGDAQQIARKFLSPLADKDAVGGLGIAKA


NO:
GNKPRWVRMREAGEPGWEEEKEKAETRKSADRTADVLRALADFGLKPLMRVYTDSEMSSVEWKPLRKGQ


13
AVRTWDRDMFQQAIERMMSWESWNQRVGQEYAKLVEQKNRFEQKNFVGQEHLVHLVNQLQQDMKEASP



GLESKEQTAHYVTGRALRGSDKVFEKWGKLAPDAPFDLYDAEIKNVQRRNTRRFGSHDLFAKLAEPEYQAL



WREDASFLTRYAVYNSILRKLNHAKMFATFTLPDATAHPIWTRFDKLGGNLHQYTFLFNEFGERRHAIRFHK



LLKVENGVAREVDDVTVPISMSEQLDNLLPRDPNEPIALYFRDYGAEQHFTGEFGGAKIQCRRDQLAHMHRR



RGARDVYLNVSVRVSQSEARGERRPPYAAVFRLVGDNHRAFVHFDKLSDYLAEHPDDGKLGSEGLLSGLR



VMSVDLGLRTSASISVFRVARKDELKPNSKGRVPFFFPIKGNDNLVAVHERSQLLKLPGETESKDLRAIREER



QATLRQLRTQLAYLRLLVRCGSEDVGRRERSWAKLIEQPVDAANHMTPDWREAFENELQKLKSLHGICSDK



EWMDAVYESVRRVWRHMGKQVRDWRKDVRSGERPKIRGYAKDVVGGNSIEQIEYLERQYKFLKSWSFFG



KVSGQVIRAEKGSRFAITLREHIDHAKEDRLKKLADRIIMEALGYVYALDERGKGKWVAKYPPCQLILLEELS



EYQFNNDRPPSENNQLMQWSHRGVFQELINQAQVHDLLVGTMYAAFSSRFDARTGAPGIRCRRVPARCTQE



HNPEPFPWWLNKFVVEHTLDACPLRADDLIPTGEGEIFVSPFSAEEGDFHQIHADLNAAQNLQQRLWSDFDIS



QIRLRCDWGEVDGELVLIPRLTGKRTADSYSNKVFYTNTGVTYYERERGKKRRKVFAQEKLSEEEAELLVEA



DEAREKSVVLMRDPSGIINRGNWTRQKEFWSMVNQRIEGYLVKQIRSRVPLQDSACENTGDI*





SEQ
MATRSFILKIEPNEEVKKGLWKTHEVLNHGIAYYMNILKLIRQEAIYEHHEQDPKNPKKVSKAEIQAELWDFV


ID
LKMQKCNSFTHEVDKDVVFNILRELYEELVPSSVEKKGEANQLSNKFLYPLVDPNSQSGKGTASSGRKPRWY


NO:
NLKIAGDPSWEEEKKKWEEDKKKDPLAKILGKLAEYGLIPLFIPFTDSNEPIVKEIKWMEKSRNQSVRRLDKD


14
MFIQALERFLSWESWNLKVKEEYEKVEKEHKTLEERIKEDIQAFKSLEQYEKERQEQLLRDTLNTNEYRLSK



RGLRGWREIIQKWLKMDENEPSEKYLEVFKDYQRKHPREAGDYSVYEFLSKKENHFIWRNHPEYPYLYATF



CEIDKKKKDAKQQATFTLADPINHPLWVRFEERSGSNLNKYRILTEQLHTEKLKKKLTVQLDRLIYPTESGG



WEEKGKVDIVLLPSRQFYNQIFLDIEEKGKHAFTYKDESIKFPLKGTLGGARVQFDRDHLRRYPHKVESGNV



GRIYFNMTVNIEPTESPVSKSLKIHRDDFPKFVNFKPKELTEWIKDSKGKKLKSGIESLEIGLRVMSIDLGQRQA



AAASIFEVVDQKPDIEGKLFFPIKGTELYAVHRASFNIKLPGETLVKSREVLAKAREDNLKLMNQKLNFLRNV



LHFQQFEDITEREKRVTKWISRQENSDVPLVYQDELIQIRELMYKPYKDWVAFLKQLHKRLEVEIGKEVKHW



RKSLSDGRKGLYGISLKNIDEIDRTRKFLLRWSLRPTEPGEVRRLEPGQRFAIDQLNHLNALKEDRLKKMANT



IIMHALGYCYDVRKKKWQAKNPACQIILFEDLSNYNPYEERSRFENSKLMKWSRREIPRQVALQGEIYGLQV



GEVGAQFSSRFHAKTGSPGIRCSVVTKEKLQDNRFFKNLQREGRLTLDKIAVLKEGDLYPDKGGEKFISLSKD



RKLVTTHADINAAQNLQKRFWTRTHGFYKVYCKAYQVDGQTVYIPESKDQKQKIIEEFGEGYFILKDGVYE



WGNAGKLKIKKGSSKQSSSELVDSDILKDSFDLASELKGEKLMLYRDPSGNVFPSDKWMAAGVFFGKLERIL



ISKLTNQYSISTIEDDSSKQSM*





SEQ
MPTRTINLKLVLGKNPENATLRRALFSTHRLVNQATKRIEEFLLLCRGEAYRTVDNEGKEAEIPRHAVQEEAL


ID
AFAKAAQRHNGCISTYEDQEILDVLRQLYERLVPSVNENNEAGDAQAANAWVSPLMSAESEGGLSVYDKVL


NO:
DPPPVWMKLKEEKAPGWEAASQIWIQSDEGQSLLNKPGSPPRWIRKLRSGQPWQDDFVSDQKKKQDELTKG


15
NAPLIKQLKEMGLLPLVNPFFRHLLDPEGKGVSPWDRLAVRAAVAHFISWESWNHRTRAEYNSLKLRRDEFE



AASDEFKDDFTLLRQYEAKRHSTLKSIALADDSNPYRIGVRSLRAWNRVREEWIDKGATEEQRVTILSKLQT



QLRGKFGDPDLFNWLAQDRHVHLWSPRDSVTPLVRINAVDKVLRRRKPYALMTFAHPRFHPRWILYEAPGG



SNLRQYALDCTENALHITLPLLVDDAHGTWIEKKIRVPLAPSGQIQDLTLEKLEKKKNRLYYRSGFQQFAGLA



GGAEVLFHRPYMEHDERSEESLLERPGAVWFKLTLDVATQAPPNWLDGKGRVRTPPEVHHFKTALSNKSKH



TRTLQPGLRVLSVDLGMRTFASCSVFELIEGKPETGRAFPVADERSMDSPNKLWAKHERSFKLTLPGETPSRK



EEEERSIARAEIYALKRDIQRLKSLLRLGEEDNDNRRDALLEQFFKGWGEEDVVPGQAFPRSLFQGLGAAPFR



STPELWRQHCQTYYDKAEACLAKHISDWRKRTRPRPTSREMWYKTRSYHGGKSIWMLEYLDAVRKLLLSW



SLRGRTYGAINRQDTARFGSLASRLLHHINSLKEDRIKTGADSIVQAARGYIPLPHGKGWEQRYEPCQLILFED



LARYRFRVDRPRRENSQLMQWNHRAIVAETTMQAELYGQIVENTAAGFSSRFHAATGAPGVRCRFLLERDF



DNDLPKPYLLRELSWMLGNTKVESEEEKLRLLSEKIRPGSLVPWDGGEQFATLHPKRQTLCVIHADMNAAQ



NLQRRFFGRCGEAFRLVCQPHGDDVLRLASTPGARLLGALQQLENGQGAFELVRDMGSTSQMNRFVMKSL



GKKKIKPLQDNNGDDELEDVLSVLPEEDDTGRITVFRDSSGIFFPCNVWIPAKQFWPAVRAMIWKVMASHSL



G*





SEQ
MTKLRHRQKKLTHDWAGSKKREVLGSNGKLQNPLLMPVKKGQVTEFRKAFSAYARATKGEMTDGRKNMF


ID
THSFEPFKTKPSLHQCELADKAYQSLHSYLPGSLAHFLLSAHALGFRIFSKSGEATAFQASSKIEAYESKLASE


NO:
LACVDLSIQNLTISTLFNALTTSVRGKGEETSADPLIARFYTLLTGKPLSRDTQGPERDLAEVISRKIASSFGTW


16
KEMTANPLQSLQFFEEELHALDANVSLSPAFDVLIKMNDLQGDLKNRTIVFDPDAPVFEYNAEDPADIIIKLTA



RYAKEAVIKNQNVGNYVKNAITTTNANGLGWLLNKGLSLLPVSTDDELLEFIGVERSHPSCHALIELIAQLEA



PELFEKNVFSDTRSEVQGMIDSAVSNHIARLSSSRNSLSMDSEELERLIKSFQIHTPHCSLFIGAQSLSQQLESLP



EALQSGVNSADILLGSTQYMLTNSLVEESIATYQRTLNRINYLSGVAGQINGAIKRKAIDGEKIHLPAAWSELI



SLPFIGQPVIDVESDLAHLKNQYQTLSNEFDTLISALQKNFDLNFNKALLNRTQHFEAMCRSTKKNALSKPEIV



SYRDLLARLTSCLYRGSLVLRRAGIEVLKKHKIFESNSELREHVHERKHFVFVSPLDRKAKKLLRLTDSRPDL



LHVIDEILQHDNLENKDRESLWLVRSGYLLAGLPDQLSSSFINLPIITQKGDRRLIDLIQYDQINRDAFVMLVTS



AFKSNLSGLQYRANKQSFVVTRTLSPYLGSKLVYVPKDKDWLVPSQMFEGRFADILQSDYMVWKDAGRLC



VIDTAKHLSNIKKSVFSSEEVLAFLRELPHRTFIQTEVRELGVNVDGIAFNNGDIPSLKTFSNCVQVKVSRTNT



SLVQTLNRWFEGGKVSPPSIQFERAYYKKDDQIHEDAAKRKIRFQMPATELVHASDDAGWTPSYLLGIDPGE



YGMGLSLVSINNGEVLDSGFIHINSLINFASKKSNHQTKVVPRQQYKSPYANYLEQSKDSAAGDIAHILDRLIY



KLNALPVFEALSGNSQSAADQVWTKVLSFYTWGDNDAQNSIRKQHWFGASHWDIKGMLRQPPTEKKPKPYI



AFPGSQVSSYGNSQRCSCCGRNPIEQLREMAKDTSIKELKIRNSEIQLFDGLIKLFNPDPSTVIERRRHNLGPSRI



PVADRTFKNISPSSLEFKELITIVSRSIRHSPEFIAKKRGIGSEYFCAYSDCNSSLNSEANAAANVAQKFQKQLFF



EL*





SEQ
MKRILNSLKVAALRLLFRGKGSELVKTVKYPLVSPVQGAVEELAEAIRHDNLHLFGQKEIVDLMEKDEGTQV


ID
YSVVDFWLDTLRLGMFFSPSANALKITLGKFNSDQVSPFRKVLEQSPFFLAGRLKVEPAERILSVEIRKIGKRE


NO:
NRVENYAADVETCFIGQLSSDEKQSIQKLANDIWDSKDHEEQRMLKADFFAIPLIKDPKAVTEEDPENETAGK


17
QKPLELCVCLVPELYTRGFGSIADFLVQRLTLLRDKMSTDTAEDCLEYVGIEEEKGNGMNSLLGTFLKNLQG



DGFEQIFQFMLGSYVGWQGKEDVLRERLDLLAEKVKRLPKPKFAGEWSGHRMFLHGQLKSWSSNFFRLFNE



TRELLESIKSDIQHATMLISYVEEKGGYHPQLLSQYRKLMEQLPALRTKVLDPEIEMTHMSEAVRSYIMIHKS



VAGFLPDLLESLDRDKDREFLLSIFPRIPKIDKKTKEIVAWELPGEPEEGYLFTANNLFRNFLENPKHVPRFMA



ERIPEDWTRLRSAPVWFDGMVKQWQKVVNQLVESPGALYQFNESFLRQRLQAMLTVYKRDLQTEKFLKLL



ADVCRPLVDFFGLGGNDIIFKSCQDPRKQWQTVIPLSVPADVYTACEGLAIRLRETLGFEWKNLKGHEREDFL



RLHQLLGNLLFWIRDAKLVVKLEDWMNNPCVQEYVEARKAIDLPLEIFGFEVPIFLNGYLFSELRQLELLLAR



KSVMTSYSVKTTGSPNRLFQLVYLPLNPSDPEKKNSNNFQERLDTPTGLSRRFLDLTLDAFAGKLLTDPVTQE



LKTMAGFYDHLFGFKLPCKLAAMSNHPGSSSKMVVLAKPKKGVASNIGFEPIPDPAHPVFRVRSSWPELKYL



EGLLYLPEDTPLTIELAETSVSCQSVSSVAFDLKNLTTILGRVGEFRVTADQPFKLTPIIPEKEESFIGKTYLGLD



AGERSGVGFAIVTVDGDGYEVQRLGVHEDTQLMALQQVASKSLKEPVFQPLRKGTFRQQERIRKSLRGCYW



NFYHALMIKYRAKVVHEESVGSSGLVGQWLRAFQKDLKKADVLPKKGGKNGVDKKKRESSAQDTLWGGA



FSKKEEQQIAFEVQAAGSSQFCLKCGWWFQLGMREVNRVQESGVVLDWNRSIVTFLIESSGEKVYGFSPQQL



EKGFRPDIETFKKMVRDFMRPPMFDRKGRPAAAYERFVLGRRHRRYRFDKVFEERFGRSALFICPRVGCGNF



DHSSEQSAVVLALIGYIADKEGMSGKKLVYVRLAELMAEWKLKKLERSRVEEQSSAQ*





SEQ
MAESKQMQCRKCGASMKYEVIGLGKKSCRYMCPDCGNHTSARKIQNKKKRDKKYGSASKAQSQRIAVAG


ID
ALYPDKKVQTIKTYKYPADLNGEVHDSGVAEKIAQAIQEDEIGLLGPSSEYACWIASQKQSEPYSVVDFWFD


NO:
AVCAGGVFAYSGARLLSTVLQLSGEESVLRAALASSPFVDDINLAQAEKFLAVSRRTGQDKLGKRIGECFAE


18
GRLEALGIKDRMREFVQAIDVAQTAGQRFAAKLKIFGISQMPEAKQWNNDSGLTVCILPDYYVPEENRADQL



VVLLRRLREIAYCMGIEDEAGFEHLGIDPGALSNFSNGNPKRGFLGRLLNNDIIALANNMSAMTPYWEGRKG



ELIERLAWLKHRAEGLYLKEPHFGNSWADHRSRIFSRIAGWLSGCAGKLKIAKDQISGVRTDLFLLKRLLDAV



PQSAPSPDFIASISALDRFLEAAESSQDPAEQVRALYAFHLNAPAVRSIANKAVQRSDSQEWLIKELDAVDHL



EFNKAFPFFSDTGKKKKKGANSNGAPSEEEYTETESIQQPEDAEQEVNGQEGNGASKNQKKFQRIPRFFGEGS



RSEYRILTEAPQYFDMFCNNMRAIFMQLESQPRKAPRDFKCFLQNRLQKLYKQTFLNARSNKCRALLESVLIS



WGEFYTYGANEKKFRLRHEASERSSDPDYVVQQALEIARRLFLFGFEWRDCSAGERVDLVEIHKKAISFLLAI



TQAEVSVGSYNWLGNSTVSRYLSVAGTDTLYGTQLEEFLNATVLSQMRGLAIRLSSQELKDGFDVQLESSCQ



DNLQHLLVYRASRDLAACKRATCPAELDPKILVLPVGAFIASVMKMIERGDEPLAGAYLRHRPHSFGWQIRV



RGVAEVGMDQGTALAFQKPTESEPFKIKPFSAQYGPVLWLNSSSYSQSQYLDGFLSQPKNWSMRVLPQAGS



VRVEQRVALIWNLQAGKMRLERSGARAFFMPVPFSFRPSGSGDEAVLAPNRYLGLFPHSGGIEYAVVDVLDS



AGFKILERGTIAVNGFSQKRGERQEEAHREKQRRGISDIGRKKPVQAEVDAANELHRKYTDVATRLGCRIVV



QWAPQPKPGTAPTAQTVYARAVRTEAPRSGNQEDHARMKSSWGYTWGTYWEKRKPEDILGISTQVYWTG



GIGESCPAVAVALLGHIRATSTQTEWEKEEVVFGRLKKFFPS*





SEQ
MEKRINKIRKKLSADNATKPVSRSGPMKTLLVRVMTDDLKKRLEKRRKKPEVMPQVISNNAANNLRMLLDD


ID
YTKMKEAILQVYWQEFKDDHVGLMCKFAQPASKKIDQNKLKPEMDEKGNLTTAGFACSQCGQPLFVYKLE


NO:
QVSEKGKAYTNYFGRCNVAEHEKLILLAQLKPEKDSDEAVTYSLGKFGQRALDFYSIHVTKESTHPVKPLAQ


19
IAGNRYASGPVGKALSDACMGTIASFLSKYQDIIIEHQKVVKGNQKRLESLRELAGKENLEYPSVTLPPQPHT



KEGVDAYNEVIARVRMWVNLNLWQKLKLSRDDAKPLLRLKGFPSFPVVERRENEVDWWNTINEVKKLIDA



KRDMGRVFWSGVTAEKRNTILEGYNYLPNENDHKKREGSLENPKKPAKRQFGDLLLYLEKKYAGDWGKVF



DEAWERIDKKIAGLTSHIEREEARNAEDAQSKAVLTDWLRAKASFVLERLKEMDEKEFYACEIQLQKWYGD



LRGNPFAVEAENRVVDISGFSIGSDGHSIQYRNLLAWKYLENGKREFYLLMNYGKKGRIRFTDGTDIKKSGK



WQGLLYGGGKAKVIDLTFDPDDEQLIILPLAFGTRQGREFIWNDLLSLETGLIKLANGRVIEKTIYNKKIGRDE



PALFVALTFERREVVDPSNIKPVNLIGVDRGENIPAVIALTDPEGCPLPEFKDSSGGPTDILRIGEGYKEKQRAI



QAAKEVEQRRAGGYSRKFASKSRNLADDMVRNSARDLFYHAVTHDAVLVFENLSRGFGRQGKRTFMTERQ



YTKMEDWLTAKLAYEGLTSKTYLSKTLAQYTSKTCSNCGFTITTADYDGMLVRLKKTSDGWATTLNNKEL



KAEGQITYYNRYKRQTVEKELSAELDRLSEESGNNDISKWTKGRRDEALFLLKKRFSHRPVQEQFVCLDCGH



EVHADEQAALNIARSWLFLNSNSTEFKSYKSGKQPFVGAWQAFYKRRLKEVWKPNA





SEQ
MKRINKIRRRLVKDSNTKKAGKTGPMKTLLVRVMTPDLRERLENLRKKPENIPQPISNTSRANLNKLLTDYTE


ID
MKKAILHVYWEEFQKDPVGLMSRVAQPAPKNIDQRKLIPVKDGNERLTSSGFACSQCCQPLYVYKLEQVND


NO:
KGKPHTNYFGRCNVSEHERLILLSPHKPEANDELVTYSLGKFGQRALDFYSIHVTRESNHPVKPLEQIGGNSC


20
ASGPVGKALSDACMGAVASFLTKYQDIILEHQKVIKKNEKRLANLKDIASANGLAFPKITLPPQPHTKEGIEA



YNNVVAQIVIWVNLNLWQKLKIGRDEAKPLQRLKGFPSFPLVERQANEVDWWDMVCNVKKLINEKKEDGK



VFWQNLAGYKRQEALLPYLSSEEDRKKGKKFARYQFGDLLLHLEKKHGEDWGKVYDEAWERIDKKVEGLS



KHIKLEEERRSEDAQSKAALTDWLRAKASFVIEGLKEADKDEFCRCELKLQKWYGDLRGKPFAIEAENSILDI



SGFSKQYNCAFIWQKDGVKKLNLYLIINYFKGGKLRFKKIKPEAFEANRFYTVINKKSGEIVPMEVNFNFDDP



NLIILPLAFGKRQGREFIWNDLLSLETGSLKLANGRVIEKTLYNRRTRQDEPALFVALTFERREVLDSSNIKPM



NLIGIDRGENIPAVIALTDPEGCPLSRFKDSLGNPTHILRIGESYKEKQRTIQAAKEVEQRRAGGYSRKYASKA



KNLADDMVRNTARDLLYYAVTQDAMLIFENLSRGFGRQGKRTFMAERQYTRMEDWLTAKLAYEGLPSKT



YLSKTLAQYTSKTCSNCGFTITSADYDRVLEKLKKTATGWMTTINGKELKVEGQITYYNRYKRQNVVKDLS



VELDRLSEESVNNDISSWTKGRSGEALSLLKKRFSHRPVQEKFVCLNCGFETHADEQAALNIARSWLFLRSQE



YKKYQTNKTTGNTDKRAFVETWQSFYRKKLKEVWKP





SEQ
atgGGAAAAATGTATTATCTTGGTCTGGATATAGGAACAAATTCTGTTGGATATGCCGTAACCGACCCATC


ID
GTACCATTTGCTCAAATTTAAAGGCGAACCGATGTGGGGTGCCCACGTGTTTGCTGCGGGGAATCAATC


NO:
AGCTGAACGGAGAAGCTTTCGTACGAGCCGCAGACGCCTTGACCGCAGGCAACAGCGTGTCAAACTGGT


21
TCAAGAAATCTTTGCTCCCGTGATTAGTCCCATTGATCCACGTTTTTTTATCAGACTTCATGAGAGCGCTT



TATGGCGGGATGATGTGGCTGAAACGGATAAACATATTTTCTTTAATGACCCGACCTATACGGATAAGG



AATATTATTCTGACTATCCAACCATCCATCATCTCATTGTGGACCTTATGGAAAGCAGTGAAAAGCATGA



CCCGCGGCTTGTTTATTTGGCTGTTGCCTGGCTGGTTGCTCATCGTGGTCATTTCCTCAATGAAGTGGATA



AGGATAATATTGGGGATGTCCTGAGTTTTGACGCCTTTTATCCTGAGTTTCTGGCATTTCTTTCCGATAAT



GGGGTGTCACCTTGGGTATGTGAGTCAAAAGCACTCCAAGCGACCCTGCTTTCACGAAACTCCGTCAAC



GATAAGTATAAAGCCTTGAAGTCTCTGATCTTTGGCAGCCAAAAGCCGGAGGATAATTTTGATGCCAAT



ATCAGTGAAGATGGACTTATCCAACTTTTAGCAGGAAAAAAGGTCAAGGTCAATAAACTTTTTCCTCAA



GAAAGTAATGATGCTTCCTTTACACTCAATGATAAGGAAGATGCAATTGAGGAAATCTTAGGAACGCTT



ACACCGGATGAGTGTGAATGGATTGCGCATATTAGGAGGCTGTTTGATTGGGCCATCATGAAACATGCT



CTCAAAGATGGCAGAACAATCTCCGAATCGAAAGTAAAGCTCTATGAACAGCATCACCATGACTTGACA



CAGCTCAAGTATTTTGTGAAGACCTATCTAGCAAAGGAATATGATGACATTTTTCGAAACGTAGATAGT



GAAACAACCAAAAACTATGTCGCATATTCCTATCATGTAAAAGAAGTCAAGGGTACATTGCCCAAAAAT



AAGGCAACCCAAGAAGAATTTTGCAAGTATGTCCTTGGAAAGGTAAAGAACATCGAATGCAGTGAAGC



TGATAAGGTTGATTTTGATGAAATGATTCAGCGTCTTACAGACAATTCCTTTATGCCGAAACAAGTATCA



GGTGAAAACAGGGTTATCCCTTACCAGCTTTACTATTATGAACTAAAGACTATTTTGAATAAAGCCGCTT



CTTATCTGCCTTTTTTGACCCAATGCGGAAAAGATGCCATCTCCAATCAAGATAAGCTCCTTTCCATCAT



GACCTTTCGGATTCCGTATTTCGTTGGGCCCTTGCGCAAGGACAATTCAGAGCATGCCTGGCTGGAACGA



AAAGCAGGGAAAATCTATCCGTGGAATTTTAACGACAAAGTTGACCTTGATAAAAGTGAAGAAGCGTTC



ATTCGGAGAATGACGAATACCTGCACTTATTATCCCGGTGAAGATGTTTTGCCACTTGACTCCCTTATTT



ATGAAAAATTCATGATCCTCAATGAAATCAATAATATCCGAATTGATGGTTATCCTATTTCTGTAGATGT



AAAACAGCAGGTTTTTGGCCTCTTTGAAAAGAAGAGAAGAGTGACCGTAAAGGATATCCAGAATCTCCT



GCTTTCCTTGGGTGCCTTGGATAAGCATGGTAAATTGACGGGAATCGATACTACCATCCATAGCAATTAC



AATACATACCATCATTTTAAATCGCTCATGGAGCGTGGCGTTCTTACTCGTGATGATGTGGAACGCATTG



TGGAGCGTATGACCTATAGTGATGATACAAAACGCGTCCGTCTTTGGCTGAACAATAATTATGGAACGC



TCACTGCTGACGACGTAAAGCATATTTCAAGGCTCCGAAAGCATGATTTTGGCCGGCTTTCCAAAATGTT



CCTCACAGGCCTAAAGGGAGTTCATAAGGAAACGGGGGAACGAGCTTCCATTTTGGATTTTATGTGGAA



TACCAATGATAACTTGATGCAGCTTTTATCTGAATGTTATACTTTTTCGGATGAAATTACCAAGCTGCAG



GAAGCATACTATGCCAAGGCGCAGCTTTCCCTGAATGATTTTCTGGACTCCATGTATATTTCAAATGCTG



TCAAACGTCCTATCTATCGAACTCTTGCCGTTGTAAATGACATACGCAAAGCCTGTGGGACGGCGCCAA



AACGCATTTTTATCGAAATGGCAAGAGATGGGGAAAGCAAAAAGAAAAGGAGCGTAACAAGAAGAGA



ACAAATCAAGAATCTTTATAGGTCCATCCGCAAGGATTTTCAGCAGGAGGTAGATTTCCTTGAAAAAAT



CCTTGAAAACAAAAGCGATGGACAGCTGCAAAGCGATGCGCTCTATCTATACTTTGCGCAGCTTGGAAG



GGATATGTATACCGGGGACCCTATCAAGTTGGAGCATATCAAGGACCAGTCCTTCTATAATATTGATCAT



ATCTATCCCCAAAGCATGGTCAAGGACGATAGTCTTGATAACAAGGTGTTGGTTCAATCGGAAATTAAT



GGAGAGAAGAGCAGTCGATATCCTCTTGATGCTGCTATCCGTAATAAAATGAAGCCTCTTTGGGATGCTT



ATTATAACCATGGCCTGATTTCCCTCAAGAAGTATCAGCGTTTGACGCGGAGCACTCCCTTTACAGATGA



TGAAAAGTGGGATTTCATCAATCGGCAGCTTGTTGAGACAAGACAATCCACGAAGGCCTTGGCAATCTT



ACTAAAAAGGAAGTTCCCTGATACGGAGATTGTCTACTCCAAGGCAGGGCTTTCTTCTGATTTTCGGCAT



GAGTTTGGTCTCGTAAAATCGAGGAATATCAATGACCTGCACCATGCAAAGGACGCATTTCTTGCGATT



GTAACAGGAAATGTCTATCATGAACGCTTTAATCGCCGGTGGTTTATGGTGAACCAGCCCTATTCCGTCA



AGACCAAGACGTTGTTTACGCATTCTATTAAAAATGGTAATTTTGTAGCTTGGAATGGAGAAGAGGATC



TTGGCCGCATTGTTAAAATGTTAAAGCAAAATAAGAACACTATTCATTTCACGCGGTTCTCTTTTGATCG



AAAGGAAGGCCTGTTTGATATTCAGCCACTAAAAGCGTCAACCGGTCTTGTACCAAGAAAAGCCGGACT



AGACGTGGTAAAATATGGTGGCTATGACAAATCGACAGCAGCTTATTATCTCCTTGTTCGATTTACACTA



GAAGATAAAAAGACTCAACATAAATTGATGATGATTCCTGTAGAAGGCTTGTATAAAGCTCGAATTGAC



CATGATAAGGAATTCTTAACGGACTATGCACAAACTACAATCAGTGAAATCCTACAAAAAGATAAACAA



AAGGTGATAAATATAATGTTTCCAATGGGAACAAGGCACATTAAACTGAATTCCATGATTTCAATCGAT



GGTTTTTATCTTTCCATTGGAGGAAAGTCTAGTAAGGGAAAATCGGTGTTGTGTCATGCTATGGTACCTC



TTATTGTACCTCATAAGATAGAATGTTATATTAAGGCGATGGAGTCTTTTGCACGTAAATTTAAAGAAAA



TAATAAATTAAGGATTGTGGAAAAGTTTGATAAGATTACGGTGGAAGATAACTTGAACCTATACGAACT



ATTTTTACAAAAACTTCAACATAACCCATATAATAAGTTCTTCTCCACACAATTTGATGTGCTGACTAAT



GGAAGAAGTACATTTACTAAATTATCTCCAGAGGAACAAGTTCAAACGTTATTGAATATCTTATCAATTT



TTAAAACTTGTCGGAGCTCTGGCTGCGATTTAAAATCCATTAACGGTTCTGCTCAAGCTGCCAGAATTAT



GATCAGCGCAGATTTAACTGGACTCTCAAAAAAATATTCCGATATTCGGCTTGTTGAGCAATCAGCATCT



GGACTTTTTGTTAGTAAATCACAAAATCTTTTGGAGTATTTAtga





SEQ
atgtcttcattaacaaaatttacaaataaatacagtaagcagctaaccataaaaaatgaactcatcccagtaggaaagactctcgagaacattaaggaaaacggtctcatagat


ID
ggagatgaacagctaaacgagaattatcaaaaagcaaagataatcgttgatgattttctacgagatttcataaataaagctttaaataatacccaaataggaaattggagagaat


NO:
tagcagatgctttaaataaagaagatgaagataacatagaaaagctccaagacaaaatcagaggaataattgtaagtaaattcgagacatttgatttgttttcttcttactcgataa


22
agaaagacgaaaagataatagatgatgataatgatgttgaagaagaggagctagatctaggaaaaaaaacttcctcatttaaatatatttttaagaaaaacctttttaaattagtac



ttccttcttatttaaagacaacaaatcaggataaactgaaaataatctcttcttttgataatttttctacctatttcagaggattctttgagaacagaaaaaatattttcactaagaagcct



atatctacgtcaattgcctacagaattgtccatgataactttccaaagtttctagataacatcagatgttttaatgtgtggcaaacagaatgcccacagttaattgtaaaggctgata



attatttaaaatcaaagaacgtcatagctaaagataaatctttagcaaactattttactgtaggagcatatgattacttcttatcccagaatggcattgatttctacaacaacattatcg



gcggtctaccagcatttgctggtcatgagaaaatccaaggacttaatgaatttataaatcaagaatgccaaaaggacagcgaactaaaatctaaactgaaaaacagacatgct



ttcaaaatggctgttctatttaagcaaattctttcagatagagaaaaaagttttgttatagacgagttcgaatctgatgctcaggtcatagatgcggttaagaacttctatgcagaac



aatgtaaggataataatgttatttttaaccttctaaatcttatcaagaatatagcgttcttatctgatgatgaattagatggaatttttatagaaggcaagtatttaagactgtttcccaa



aagctatattcagattggtcgaagcttcgaaatgatattgaagatagtgcaaacagtaaacaaggaaataaagagttagcaaagaaaattaaaacaaataaaggcgatgttga



aaaggccataagtaaatatgagttttctttatcagaacttaactcaattgtacatgataatacaaaattcagtgaccttctttcttgtacgttacataaagtggctagcgaaaaactag



tgaaagttaatgaaggggactggccaaaacacctgaaaaataatgaagaaaaacaaaagataaaagagcctttagatgcattgttagaaatttataatacattgctgatattcaa



ctgcaagtcatttaataagaacggtaatttctatgttgattatgacagatgcataaatgagctttctagtgttgtttatttatataacaaaacaagaaattactgtacaaagaaacctta



taacacagacaaattcaaattaaactttaacagtcctcaattaggagagggctttagtaagtcgaaagaaaatgactgtctgacattattatttaaaaaagacgacaattactatgt



tggaattatcagaaaaggggcaaaaattaactttgatgatacacaagccattgcagacaatacagataactgtatatttaagatgaattatttcctattaaaagatgctaaaaagtt



tattcctaaatgttcaattcagttaaaagaagtaaaagcacattttaaaaaatcagaggatgattatatcctgagtgacaaagaaaaatttgcctctccccttgttattaagaaatca



acatttttattagcaacagcacatgtaaaaggaaagaaaggaaacataaaaaaattccaaaaggaatattctaaggaaaatccaacagaatatagaaattctctgaatgaatgg



attgcattttgtaaagaatttctaaaaacatataaggcggcaacaatctttgacattacaacgttaaaaaaagctgaagaatatgctgatattgttgagttttataaggatgtagata



atctttgttataaactagagttttgccctattaaaacatctttcattgagaatcttattgataatggggacttatatttattcagaatcaataataaagatttcagttcaaaatctactggta



caaagaatcttcatacgctctatcttcaggcaatctttgatgaaagaaacctcaataatcctactattatgttaaatggcggagcagagttattttatcgaaaagaaagcattgaac



agaaaaataggataactcataaggcaggatcaattcttgtaaacaaggtttgtaaggatggaacaagtctagatgacaaaatcagaaacgaaatatatcaatatgaaaacaag



tttattgatacattgtctgatgaagctaaaaaagttttacctaatgtaataaaaaaagaagcaactcacgacataacaaaagataagcgatttacatcagataagttctttttccattg



cccattaacaattaactataaggaaggagatacaaaacaatttaacaatgaggttttatctttccttagaggtaatccagacattaatatcatcggaattgacagaggagaaaga



aaccttatatacgtaactgttattaatcagaaaggcgaaatacttgacagcgtttcgtttaacacagtaacaaacaagtcgagcaaaattgaacaaactgttgattatgaggaaa



agcttgctgttagggaaaaagaaagaatagaagcaaaaagatcctgggattcaatatcaaagatagcaaccttaaaagaaggttatctatcagctattgttcatgagatatgcct



actgatgatcaaacacaacgcaatcgttgtacttgagaatctaaatgcaggatttaagagaattagaggaggattatcagaaaagtctgtttatcagaaattcgagaagatgctt



attaacaaactaaattactttgtatctaaaaaagaatcagactggaataaacctagtggacttttaaatggtttacaactttcagaccagttcgagtcatttgagaaattaggaattc



aatctgggttcatcttctatgttcctgcagcatatacatctaagattgatcctacaacaggatttgcaaatgttcttaacttatccaaggtaagaaatgttgatgcaataaagagttttt



tcagtaatttcaatgaaatttcatatagcaaaaaagaagctctctttaaattctcttttgatttagattccttatcaaagaagggcttcagctcatttgtaaaattcagtaaatctaaatg



gaatgtatatacatttggagagagaataataaaaccaaagaataagcaagggtatcgtgaagataagagaattaatttaacatttgaaatgaaaaaacttctgaatgaatataaa



gtaagttttgatcttgaaaacaacttaattccaaatctaacctctgcaaatctgaaagataccttctggaaagaactattctttatttttaaaacaactctgcagcttagaaacagtgt



aacaaatggcaaagaagatgtactgatttctccagtaaagaacgctaaaggagagttctttgtatcaggaactcataacaagacattacctcaagactgtgatgcaaatggag



catatcatatcgccctaaaaggtctgatgattcttgaacgtaacaatcttgttagagaagaaaaagacacaaagaagataatggcaatttctaatgttgactggtttgagtatgttc



aaaaaaggagaggtgtcctgtaa





SEQ
ATGAACAACTATGATGAGTTTACCAAACTGTACCCAATACAGAAAACGATAAGGTTCGAATTGAAGCCG


ID
CAGGGAAGAACGATGGAACACCTCGAAACATTCAACTTTTTCGAAGAGGACAGGGATAGAGCGGAGAA


NO:
ATATAAGATTTTAAAGGAAGCAATCGACGAGTATCATAAGAAGTTTATAGACGAACATCTAACAAATAT


23
GTCTCTTGACTGGAATTCTTTAAAACAGATTTCAGAGAAATACTATAAGAGTAGAGAGGAAAAAGACAA



GAAAGTTTTTCTGTCAGAACAGAAACGCATGAGGCAAGAGATAGTTTCTGAGTTCAAAAAAGACGATCG



GTTTAAAGATCTTTTTTCAAAAAAATTGTTTTCTGAACTTCTCAAGGAAGAGATTTACAAAAAAGGAAAC



CATCAGGAAATTGACGCATTGAAAAGTTTTGATAAATTCTCAGGCTATTTTATTGGGTTGCATGAGAACC



GAAAAAATATGTATTCTGACGGAGACGAGATCACGGCTATCTCTAACCGTATTGTAAATGAGAATTTCC



CGAAGTTCCTCGACAACCTTCAGAAATATCAGGAAGCTCGTAAAAAATATCCAGAGTGGATCATTAAGG



CAGAATCTGCTTTAGTTGCACATAATATCAAGATGGATGAAGTCTTTTCCTTAGAGTATTTCAACAAAGT



CCTGAATCAAGAAGGAATACAGAGATACAATCTCGCCCTAGGTGGCTATGTGACCAAAAGTGGTGAGA



AAATGATGGGGCTTAATGATGCACTTAATCTTGCCCATCAAAGTGAAAAAAGCAGCAAGGGAAGGATA



CACATGACTCCACTCTTCAAACAGATTCTGAGTGAAAAAGAGTCCTTTTCTTATATACCAGATGTTTTTA



CAGAAGACTCTCAACTTTTACCATCCATTGGTGGGTTCTTTGCACAAATAGAAAATGATAAGGACGGGA



ATATTTTTGACAGAGCATTAGAATTGATATCTTCTTATGCAGAATACGATACAGAAAGGATATATATCAG



GCAAGCGGACATAAACAGAGTTTCTAATGTTATTTTCGGGGAGTGGGGAACACTGGGGGGGTTAATGAG



GGAATACAAAGCAGACTCTATCAACGACATCAATTTGGAGAGAACATGCAAGAAGGTAGACAAGTGGC



TCGACTCAAAGGAGTTTGCGTTATCAGATGTATTAGAGGCAATAAAAAGAACCGGCAATAATGATGCTT



TTAATGAATATATCTCAAAGATGCGCACTGCCAGGGAAAAGATTGACGCTGCAAGAAAGGAAATGAAA



TTCATTTCGGAAAAAATATCTGGAGACGAAGAATCGATCCATATTATCAAAACCTTATTGGACTCGGTGC



AACAGTTTTTACATTTTTTCAATTTATTCAAAGCGCGTCAGGACATTCCTCTTGATGGAGCATTCTATGCG



GAGTTCGATGAAGTCCATAGCAAACTGTTTGCTATTGTTCCGTTGTATAATAAGGTTAGGAACTATCTTA



CGAAAAATAACCTTAACACGAAAAAGATAAAGCTAAACTTCAAGAATCCAACTCTGGCAAACGGATGG



GATCAAAACAAGGTATATGACTACGCCTCCTTAATCTTTCTCCGCGATGGTAATTATTATCTCGGAATAA



TAAATCCAAAAAGGAAAAAGAATATTAAATTCGAACAAGGGTCTGGAAATGGCCCATTCTACCGGAAG



ATGGTGTACAAACAAATTCCAGGGCCGAACAAGAACTTACCAAGAGTCTTCCTCACATCTACGAAAGGC



AAAAAAGAGTACAAGCCGTCAAAGGAGATAATAGAAGGATATGAAGCGGACAAACACATAAGAGGAG



ATAAATTCGATCTGGATTTCTGTCATAAGCTGATAGACTTCTTCAAGGAATCCATCGAGAAGCACAAGG



ACTGGAGTAAGTTCAACTTCTATTTCTCTCCAACTGAATCATATGGAGACATCAGCGAATTCTATCTGGA



TGTAGAAAAACAGGGATACCGGATGCATTTTGAGAATATTTCTGCCGAGACGATTGATGAGTATGTCGA



AAAGGGGGACTTATTCCTCTTCCAGATATACAACAAAGACTTTGTGAAAGCGGCAACCGGAAAAAAAG



ATATGCACACCATTTATTGGAACGCGGCATTCTCGCCCGAGAACCTTCAGGATGTGGTAGTGAAACTGA



ACGGTGAAGCAGAACTTTTCTACAGAGACAAGAGCGACATCAAGGAGATAGTTCACAGGGAGGGAGAG



ATACTGGTCAATCGTACCTACAACGGCAGGACACCTGTGCCTGACAAGATCCACAAAAAATTAACAGAT



TATCATAATGGCCGTACCAAAGATCTCGGAGAAGCAAAAGAATACCTCGATAAGGTCAGATATTTCAAA



GCGCACTACGACATCACAAAGGATCGCAGATACCTGAATGATAAAATATACTTCCATGTGCCTCTGACA



TTGAATTTCAAAGCAAACGGGAAGAAGAATCTCAATAAGATGGTAATTGAAAAGTTCCTCTCGGACGAA



AAAGCGCATATTATTGGGATTGATCGCGGGGAAAGGAATCTTCTTTACTATTCTATCATTGACAGGTCAG



GTAAAATAATCGATCAACAGAGCCTCAACGTCATCGATGGATTCGATTACCGAGAGAAACTGAATCAGA



GGGAGATCGAGATGAAGGATGCCAGACAAAGCTGGAATGCTATCGGGAAGATAAAGGACCTCAAGGAA



GGGTATCTTTCAAAAGCGGTCCACGAAATTACCAAGATGGCGATACAATACAATGCCATTGTTGTCATG



GAGGAACTCAATTATGGGTTCAAACGCGGACGTTTCAAAGTTGAGAAGCAGATATATCAGAAATTCGAG



AATATGCTGATTGACAAGATGAATTATCTGGTATTCAAGGATGCTCCGGATGAAAGTCCGGGAGGAGTC



CTCAATGCATATCAGCTTACTAATCCGCTTGAAAGTTTCGCTAAACTTGGGAAACAGACAGGAATTCTTT



TCTATGTTCCGGCAGCCTATACTTCGAAGATAGATCCGACGACCGGGTTTGTCAATCTTTTCAATACTTC



AAGTAAAACGAACGCACAGGAAAGAAAAGAATTCTTGCAAAAATTCGAGTCGATCTCCTATTCCGCTAA



AGACGGAGGAATATTCGCATTCGCGTTCGATTATCGGAAGTTCGGAACGTCAAAAACAGACCACAAAAA



TGTATGGACCGCATACACGAACGGGGAAAGGATGAGGTACATAAAAGAGAAAAAACGCAACGAACTGT



TCGACCCCTCGAAGGAGATCAAAGAGGCTCTCACTTCATCAGGAATCAAATATGACGGCGGACAGAACA



TATTGCCAGATATCCTGAGGAGCAACAATAACGGTCTGATCTACACAATGTATTCCTCTTTCATAGCGGC



CATTCAAATGAGGGTCTATGACGGGAAAGAAGACTATATCATCTCGCCGATAAAGAACAGCAAGGGAG



AGTTCTTCAGGACCGATCCGAAAAGAAGGGAACTTCCGATAGACGCGGATGCGAACGGCGCGTATAAC



ATTGCTCTCAGGGGCGAATTGACGATGCGTGCGATAGCGGAGAAGTTCGATCCGGACTCGGAAAAGATG



GCGAAGCTAGAACTGAAACATAAGGACTGGTTCGAATTCATGCAGACAAGGGGGGATTGA





SEQ
ATGACAAAAACATTTGATTCAGAATTTTTTAATTTATATTCTCTTCAAAAAACAGTTCGTTTTGAACTCAA


ID
GCCGGTTGGTGAAACAGCCTCGTTTGTTGAAGATTTTAAAAACGAAGGTTTGAAACGAGTTGTTTCAGA


NO:
GGATGAACGGCGTGCGGTTGATTACCAAAAAGTGAAAGAAATTATTGATGACTACCACCGAGATTTTAT


24
TGAAGAATCGCTGAACTATTTTCCTGAGCAGGTCTCAAAAGACGCTTTGGAACAAGCTTTTCACCTTTAT



CAAAAACTAAAAGCCGCTAAGGTTGAAGAGCGTGAAAAAGCATTGAAAGAATGGGAAGCCCTTCAGAA



AAAACTGCGCGAAAAAGTTGTTAAATGTTTTTCAGATTCAAACAAAGCACGCTTTCCCGCATTGATAAA



AAAGAACTGATTAAAGAAGATTTAATTAACTCGGTTGGTTGCACAAAATCGCGAAGATGACATTCCAACC



GTTGAAACCTTTAACAACTTTACGACTTATTTTACGGGGTTTCATGAAAACCGAAAAAACATTTATTCAA



AAGACGATCATGCCACAGCCATTCATTTCGACTCATTCATGAAAACCTGCCTAAGTTTTTTGATAATGT



GATCAGCTTTAATAAATTGAAGGAAGGATTTCCAGAGCTGAAATTTGATAAGGTTAAGGAAGATTTAGA



AGTTGATTATGACTTGAAACATGCCTTTGAAATCGAATACTTTGTCAATTTTGTTACCCAAGCCGGAATT



GACCAATATAACTATCTTTTGGGGGGTAAAACCTTAGAAGACGGCACCAAAAAGCAAGGCATGAATGA



ACAAATCAATCTGTTCAAGCAACAGCAAACCCGAGACAAAGCCCGACAAATTCCCAAACTCATACCATT



GTTTAAACAAATTCTAAGCGAACGAACGGAAAGCCAATCGTTTATTCCAAAACAATTTGAATCAGACCA



AGAGCTATTTGACTCACTGCAAAAACTGCATAACAACTGCCAAGATAAATTTACCGTACTGCAACAAGC



CATTTTAGGCTTAGCCGAAGCAGATCTGAAAAAAGTATTCATTAAAACATCTGATCTTAATGCGCTATCA



AATACCATTTTTGGAAATTACAGTGTGTTTTCGGATGCGTTGAATTTATACAAAGAATCGCTCAAAACAA



AAAAGGCGCAAGAAGCGTTTGAAAAACTACCCGCTCACAGCATTCATGACTTGATTCAATATTTGGAGC



AATTTAATAGCTCTTTGGATGCAGAAAAACAGCAATCAACTGACACCGTACTGAATTACTTTATTAAAAC



AGACGAGCTGTATTCTCGGTTCATAAAATCAACGAGCGAAGCCTTCACACAAGTACAACCACTCTTTGA



ATTGGAAGCATTAAGCTCAAAACGTCGTCCACCGGAAAGTGAAGACGAAGGCGCAAAAGGTCAGGAAG



GGTTTGAGCAAATTAAACGCATAAAAGCCTATTTGGATACCTTGATGGAGGCGGTGCATTTTGCAAAAC



CACTTTATCTGGTGAAGGGGCGCAAAATGATTGAAGGTCTGGACAAAGACCAAAGTTTCTATGAAGCCT



TTGAAATGGCTTACCAAGAACTAGAAAGTCTGATTATTCCAATCTACAACAAAGCTCGTAGTTATTTAAG



TCGTAAACCGTTTAAAGCGGACAAATTCAAAATTAATTTTGATAATAATACATTGCTTTCCGGTTGGGAT



GCTAATAAAGAAACGGCTAACGCTTCAATTTTGTTTAAGAAGGATGGTTTGTATTATTTAGGAATCATGC



CTAAAGGAAAAACGTTTTTGTTCGATTACTTCGTTTCATCGGAAGATTCTGAAAAGTTAAAACAAAGAA



GACAAAAAACCGCCGAAGAAGCGCTTGCGCAAGATGGCGAAAGCTACTTTGAAAAAATTCGTTACAAG



CTGTTACCTGGCGCCAGCAAAATGTTGCCGAAAGTATTTTTTTCCAACAAAAACATAGGGTTTTACAACC



CAAGTGATGACATACTTCGTATCAGGAATACAGCCTCTCACACTAAAAACGGAACACCGCAAAAAGGGC



ACTCTAAAGTAGAGTTTAATTTGAATGATTGTCATAAGATGATTGATTTCTTTAAATCAAGCATTCAAAA



GCATCCAGAGTGGGGAAGTTTTGGATTCACCTTTTCAGATACATCAGATTTTGAAGATATGAGCGCCTTT



TATCGAGAAGTCGAAAACCAAGGTTATGTCATTAGTTTCGATAAAATAAAAGAAACTTACATTCAGAGT



CAAGTTGAACAGGGGAACCTATATTTATTCCAAATCTACAATAAAGACTTCTCGCCCTACAGCAAAGGC



AAACCAAATTTACACACGCTTTACTGGAAAGCGTTGTTTGAGGAAGCCAACCTAAATAATGTGGTGGCA 



AAACTCAATGGTGAAGCTGAAATTTTCTTTAGGCGACACTCAATCAAAGCATCTGATAAAGTGGTGCAC



CCAGCGAATCAAGCCATTGACAATAAAAACCCGCATACCGAAAAAACGCAAAGCACCTTTGAATATGAT



CTTGTAAAAGACAAGCGCTATACCCAAGACAAATTCTTCTTCCATGTACCGATTTCATTGAACTTTAAGG



CACAAGGTGTTTCAAAATTTAACGATAAAGTGAATGGATTTTTAAAGGGTAACCCAGATGTCAATATTA



TTGGCATTGACCGAGGCGAACGACACCTTCTGTATTTCACTGTGGTGAATCAGAAAGGTGAAATTTTGGT



TCAAGAGTCGCTTAATACCCTAATGAGTGATAAAGGGCATGTGAATGACTACCAGCAAAAACTCGACAA



AAAAGAACAAGAACGCGATGCCGCTCGCAAAAGCTGGACGACGGTTGAAAATATCAAAGAATTAAAAG



AAGGCTATTTATCTCATGTTGTTCATAAGTTGGCACACCTGATTATTAAATACAATGCCATTGTTTGCTTG



GAAGACCTGAATTTTGGTTTCAAACGCGGGCGTTTTAAAGTGGAAAAACAAGTTTATCAGAAATTTGAA



AAAGCGCTTATTGATAAGCTTAACTACTTGGTATTTAAAGAAAAAGAGTTAGGCGAGGTGGGCCATTAT



CTAACCGCCTATCAGTTGACCGCACCGTTTGAAAGTTTCAAGAAGTTAGGCAAGCAAAGTGGCATATTG



TTTTATGTTCCGGCGGATTACACCTCCAAAATTGACCCAACCACCGGGTTTGTCAACTTTCTTGATCTGCG



TTATCAGAGTGTCGAAAAAGCCAAACAGCTCTTAAGCGACTTTAATGCCATTCGTTTTAATTCAGTACAA



AACTATTTTGAGTTCGAAATAGATTACAAAAAACTCACACCCAAACGTAAAGTTGGTACTCAGAGTAAA



TGGGTGATTTGTACCTATGGAGATGTCCGCTATCAAAATCGGCGTAATCAAAAAGGTCACTGGGAAACG



GAAGAAGTCAATGTGACTGAAAAACTAAAAGCCCTTTTCGCCAGTGATTCCAAAACTACAACCGTAATC



GATTACGCCAATGACGACAACCTAATTGACGTCATTCTGGAACAGGACAAAGCCAGCTTCTTCAAAGAA



CTGTTATGGTTATTAAAACTCACCATGACGCTCCGCCACAGCAAAATCAAAAGTGAAGACGACTTTATTC



TTTCACCCGTTAAAAACGAACAAGGCGAGTTTTACGATAGTCGAAAAGCGGGCGAGGTGTGGCCTAAAG



ATGCAGACGCCAATGGCGCTTATCACATAGCGTTGAAAGGCTTGTGGAATCTGCAACAGATCAATCAGT



GGGAAAAGGGTAAAACACTTAATCTGGCGATTAAAAACCAGGATTGGTTCAGTTTTATTCAAGAAAAGC



CCTATCAAGAATAA





SEQ
ATGCACACAGGCGGATTACTTAGCATGGATGCCAAGGAGTTTACCGGACAGTACCCCCTTTCGAAGACT


ID
CTGCGTTTTGAACTGAGACCGATAGGCAGAACGTGGGACAATCTCGAAGCATCGGGGTATCTTGCGGAG


NO:
GACAGACACCGTGCAGAATGCTATCCCAGGGCAAAAGAGCTCTTGGACGACAACCATCGTGCATTCCTC


25
AACCGTGTCCTGCCTCAGATCGATATGGATTGGCACCCGATCGCAGAGGCATTCTGCAAAGTCCACAAG



AATCCGGGAAACAAGGAATTGGCTCAGGATTACAATCTTCAGCTGTCCAAACGCAGAAAGGAGATTTCG



GCCTATCTGCAGGATGCGGACGGCTATAAAGGTCTGTTTGCCAAACCTGCATTGGATGAAGCAATGAAG



ATCGCGAAAGAAAACGGAAATGAATCGGACATAGAGGTTCTTGAGGCATTCAACGGTTTCTCCGTATAC



TTCACCGGATATCATGAGAGCAGGGAGAACATCTATTCGGACGAGGATATGGTGTCGGTAGCTTATCGC



ATCACCGAAGACAATTTCCCGAGATTCGTTTCCAATGCGCTTATATTCGATAAGCTGAATGAGTCGCACC



CCGATATAATCTCGGAAGTATCCGGAAATCTGGGCGTAGACGACATCGGAAAATATTTTGATGTGTCTA



ACTACAATAATTTCCTGTCGCAGGCCGGTATAGATGACTACAATCACATCATCGGCGGCCATACGACGG



AGGACGGTCTGATCCAGGCATTCAATGTTGTTCTGAATCTCAGGCATCAGAAAGACCCCGGATTCGAAA



AAATCCAATTCAAACAGCTGTACAAACAGATACTCAGCGTCCGTACATCCAAATCCTATATCCCGAAAC



AGTTCGATAATTCGAAGGAGATGGTGGACTGCATCTGCGACTATGTGTCCAAGATCGAAAAATCCGAAA



CGGTCGAGAGAGCATTGAAGCTGGTAAGGAACATATCTTCTTTTGATTTGCGCGGAATATTCGTAAACA



AGAAGAATCTCCGCATTCTTTCCAACAAACTGATTGGTGATTGGGACGCGATCGAAACCGCGCTGATGC



ACTCCTCCTCTTCGGAAAATGATAAGAAATCCGTCTACGACAGCGCCGAGGCATTTACGCTGGATGATA



TCTTTTCGTCCGTTAAAAAATTCTCAGATGCATCTGCAGAGGATATCGGAAACCGGGCGGAGGACATAT



GCAGAGTCATATCTGAGACCGCTCCGTTCATAAACGATCTGAGGGCTGTCGATTTGGACAGTTTGAATG



ACGACGGTTACGAGGCGGCGGTTTCCAAGATAAGGGAATCTCTGGAACCATATATGGATCTGTTTCATG



AACTGGAGATATTCTCCGTAGGCGATGAATTCCCGAAATGTGCAGCTTTCTACAGTGAACTTGAAGAAG



TCTCCGAACAGCTAATCGAGATTATACCGTTATTCAACAAGGCCCGTTCGTTCTGTACGCGCAAGAGATA



CAGTACGGACAAGATAAAGGTCAATTTGAAATTCCCGACACTCGCCGACGGATGGGATCTCAACAAAGA



ACGCGACAACAAAGCCGCAATACTCAGGAAAGACGGAAAGTACTACCTGGCCATACTGGATATGAAGA



AAGATCTTTCTTCGATCAGAACTTCGGATGAAGACGAATCCAGTTTTGAGAAAATGGAGTACAAGCTTC



TTCCGAGTCCGGTAAAGATGCTGCCAAAGATCTTCGTAAAATCGAAGGCGGCCAAGGAGAAGTACGGTC



TGACCGACCGTATGCTGGAGTGCTACGATAAAGGGATGCACAAGAGCGGCAGTGCATTCGATCTCGGAT



TTTGTCACGAATTGATCGATTACTACAAGAGGTGCATCGCAGAATATCCCGGCTGGGACGTCTTCGATTT



CAAGTTCAGGGAAACATCGGATTATGGCAGCATGAAGGAGTTCAATGAGGATGTTGCAGGGGCCGGAT



ACTATATGTCCCTCAGAAAGATCCCTTGTTCGGAGGTCTACAGGCTTCTTGATGAGAAATCGATATATCT



TTTCCAGATCTACAACAAAGATTATTCGGAAAACGCTCATGGGAATAAGAACATGCATACCATGTATTG



GGAAGGGCTCTTTTCCCCCCAGAATCTGGAATCCCCTGTGTTTAAACTCAGCGGCGGTGCGGAGCTTTTC



TTCCGTAAATCCTCCATACCCAATGACGCCAAAACGGTCCATCCGAAGGGAAGCGTCCTGGTTCCGCGC



AATGATGTAAACGGCCGCAGGATACCTGACAGCATATATCGGGAGCTCACCAGATATTTCAACCGCGGA



GATTGCCGCATAAGCGACGAGGCAAAGAGTTATCTGGACAAGGTGAAAACCAAGAAAGCTGACCACGA



TATCGTGAAAGACAGGAGGTTCACGGTGGACAAGATGATGTTCCACGTCCCTATCGCCATGAATTTCAA



AGCGATTTCGAAGCCGAATCTCAATAAAAAGGTGATTGACGGCATAATCGACGACCAAGATCTGAAGAT



CATCGGCATAGACCGCGGAGAGCGCAACCTCATCTACGTAACCATGGTGGATCGCAAAGGGAACATCCT



CTATCAGGATAGCCTCAATATTCTGAACGGATACGATTACCGTAAGGCCCTCGACGTCCGCGAATATGA



CAATAAAGAGGCTCGGAGGAACTGGACGAAGGTCGAAGGCATCCGTAAGATGAAAGAGGGGTATCTGT



CGCTTGCAGTCAGCAAATTGGCAGATATGATCATAGAGAACAATGCGATTATCGTCATGGAGGATCTCA



ATCACGGATTCAAGGCAGGGCGTTCGAAGATAGAGAAACAGGTCTATCAGAAGTTCGAATCCATGCTCA



TAAACAAACTCGGTTACATGGTCCTCAAGGATAAGTCTATCGATCAGAGCGGCGGAGCTCTCCACGGAT



ACCAGCTTGCCAACCATGTGACAACATTGGCATCTGTAGGTAAACAATGTGGAGTGATATTCTACATCCC



TGCTGCATTTACATCCAAGATAGATCCGACAACAGGATTTGCAGATCTGTTCGCCCTCAGCAATGTTAAA



AACGTGGCATCTATGAGAGAATTTTTCTCCAAGATGAAGTCTGTAATCTATGATAAGGCGGAGGGAAAA



TTCGCATTTACCTTCGACTATCTTGATTATAATGTGAAATCCGAGTGCGGAAGGACCCTTTGGACCGTGT



ATACGGTCGGAGAGAGATTCACATACAGCAGGGTCAATAGAGAATATGTCAGAAAAGTTCCGACAGAC



ATAATCTACGACGCATTGCAAAAGGCAGGAATATCTGTTGAAGGGGATCTCAGGGACAGGATTGCTGAA



TCGGATGGCGACACTCTGAAGAGCATATTCTATGCATTCAAGTATGCATTGGATATGAGAGTAGAGAAC



CGCGAAGAGGATTACATACAGTCTCCTGTCAAAAATGCCTCCGGAGAATTCTTCTGTTCCAAGAACGCA



GGCAAATCGCTCCCTCAGGATTCCGATGCGAACGGTGCATACAATATCGCACTCAAGGGGATCCTGCAG



CTACGTATGCTTTCCGAGCAGTATGATCCGAATGCAGAGAGCATACGGTTGCCACTGATAACCAACAAG



GCCTGGCTGACCTTTATGCAGTCCGGTATGAAGACATGGAAGAACTGA





SEQ
atgGATAGTTTGAAAGATTTCACCAATCTGTACCCTGTCAGTAAGACATTGAGATTTGAATTAAAGCCCGT


ID
TGGAAAGACTTTAGAAAATATCGAGAAAGCAGGTATTTTGAAAGAGGATGAGCATCGTGCAGAAAGTT


NO:
ATCGGAGGGTGAAGAAAATAATTGATACTTATCATAAGGTATTTATCGATTCTTCTCTTGAAAATATGGC


26
TAAAATGGGTATTGAGAATGAAATAAAAGCAATGCTCCAAAGTTTCTGCGAATTGTATAAAAAAGATCA



TCGCACTGAGGGTGAAGACAAGGCATTAGATAAAATTCGAGCAGTACTTCGTGGCCTGATTGTTGGGGC



TTTCACTGGTGTTTGCGGAAGACGGGAAAATACAGTCCAAAACGAGAAGTACGAGAGTTTGTTCAAAGA



AAAGTTGATAAAAGAAATTTTACCTGATTTTGTGCTCTCTACTGAGGCTGAAAGCTTGCCTTTCTCTGTTG



AAGAAGCTACGAGGTCACTGAAGGAGTTTGATAGCTTTACATCCTACTTTGCTGGTTTTTACGAGAATAG



AAAGAATATATACTCGACGAAACCTCAATCCACTGCCATTGCTTATCGTCTTATTCATGAGAACTTGCCG



AAGTTCATTGATAATATTCTTGTTTTTCAGAAGATCAAAGAGCCTATAGCCAAAGAGCTGGAACATATTC



GTGCGGACTTTTCTGCCGGGGGGTACATAAAAAAGGATGAGAGATTGGAGGATATTTTTTCGTTGAACT



ATTATATCCACGTGTTATCTCAGGCTGGGATCGAAAAATATAACGCATTGATTGGGAAGATTGTGACAG



AAGGAGATGGAGAGATGAAAGGGCTCAATGAACACATCAACCTTTACAACCAACAAAGAGGCAGAGAG



GATCGGCTCCCTCTTTTTAGGCCTCTTTATAAACAGATATTGAGTGACAGAGAGCAATTATCATACTTGC



CTGAGAGTTTTGAAAAAGATGAGGAGCTCCTCAGGGCTCTAAAAGAGTTCTATGATCATATCGCAGAAG



ACATTCTCGGACGTACTCAACAGTTGATGACTTCTATTTCAGAATATGATTTATCTCGGATATACGTAAG



GAACGATAGCCAATTGACTGATATATCAAAAAAAATGTTGGGAGATTGGAATGCTATCTACATGGCTAG



AGAACGAGCATATGACCACGAGCAGGCTCCCAAAAGAATCACGGCGAAATACGAGAGGGACAGGATTA



AAGCTCTTAAAGGAGAAGAGAGTATAAGTCTGGCAAATCTTAATAGTTGTATTGCCTTTCTGGACAATGT



TAGAGATTGCCGTGTAGATACTTATCTTTCCACACTGGGCCAGAAGGAAGGACCACATGGTCTATCTAAT



CTCGTTGAGAACGTTTTTGCCTCATACCATGAAGCAGAGCAATTGTTGAGCTTTCCATACCCCGAAGAGA



ATAATCTGATTCAGGACAAGGACAATGTGGTGTTAATTAAGAATCTTCTCGACAATATCAGTGATCTGCA



GAGGTTCTTGAAACCTCTTTGGGGTATGGGAGACGAACCCGATAAAGATGAAAGATTTTATGGAGAGTA



TAATTATATCCGAGGAGCTCTAGATCAGGTGATCCCTCTGTACAATAAGGTAAGGAACTACCTCACTCG



GAAGCCTTATTCGACCAGAAAAGTAAAACTCAATTTTGGGAATTCTCAATTGCTTAGTGGTTGGGATAG



AAATAAGGAAAAGGATAATAGCTGTGTGATTTTGCGTAAGGGGCAGAACTTCTATTTGGCTATTATGAA



CAATAGGCACAAAAGAAGTTTCGAAAACAAGGTGTTGCCCGAGTATAAGGAGGGAGAACCTTACTTCG



AAAAGATGGATTATAAATTTTTGCCTGATCCTAATAAAATGCTTCCTAAGGTTTTTCTTTCGAAAAAAGG



AATAGAGATATACAAACCAAGTCCGAAGCTTTTAGAACAATATGGACATGGAACTCACAAAAAGGGAG



ATACCTTTAGTATGGATGATTTGCACGAACTGATCGATTTCTTCAAACACTCAATCGAGGCTCATGAAGA



TTGGAAGCAATTCGGATTCAAATTTTCTGATACGGCTACTTATGAGAATGTATCTAGTTTCTATAGAGAA



GTTGAGGATCAGGGGTATAAGCTCTCTTTCCGAAAAGTTTCGGAATCTTATGTCTATTCATTAATAGATC



AAGGCAAGTTGTATTTATTTCAGATATACAACAAGGACTTTTCTCCCTGCAGCAAAGGGACACCTAATCT



GCATACCTTGTATTGGAGAATGCTTTTTGACGAGCGCAATTTGGCAGATGTCATATACAAACTGGATGGG



AAGGCTGAAATCTTTTTCCGAGAGAAGAGTTTGAAAAATGATCATCCCACGCATCCGGCTGGTAAGCCT



ATCAAAAAGAAAAGTCGACAAAAAAAAGGAGAGGAGAGTCTGTTTGAGTATGATTTAGTCAAGGATAG



GCACTATACGATGGATAAGTTCCAGTTTCATGTGCCTATTACTATGAATTTTAAATGTTCTGCAGGAAGC



AAAGTCAATGATATGGTTAATGCTCATATTCGAGAGGCAAAGGATATGCATGTCATTGGAATTGATCGT



GGAGAACGCAATCTGCTGTATATATGCGTGATAGATAGTCGAGGGACGATTTTGGATCAAATTTCTCTG



AATACGATTAACGATATAGACTATCATGATTTATTGGAGAGTCGAGACAAAGACCGTCAGCAGGAGCGC



CGAAACTGGCAAACTATCGAAGGGATCAAGGAGCTAAAACAAGGCTACCTTAGTCAGGCGGTTCATCG



GATAGCCGAACTGATGGTGGCTTATAAGGCTGTAGTTGCTTTGGAGGATTTGAATATGGGGTTCAAACG



TGGGCGGCAGAAAGTAGAAAGTTCTGTTTATCAGCAGTTTGAGAAACAGCTGATAGATAAGCTCAACTA



TCTTGTGGACAAGAAGAAAAGGCCTGAAGATATTGGAGGATTGTTGAGAGCCTATCAATTTACGGCCCC



ATTTAAGAGTTTTAAGGAAATGGGAAAGCAAAACGGCTTCTTGTTTTATATCCCGGCTTGGAACACGAG



CAACATAGATCCGACTACTGGATTTGTTAATTTATTTCATGCCCAGTATGAAAATGTAGATAAAGCGAAG



AGCTTCTTTCAAAAGTTTGATTCAATTAGTTACAACCCGAAGAAAGACTGGTTTGAGTTTGCATTCGATT



ATAAAAACTTTACTAAAAAGGCTGAAGGAAGTCGTTCTATGTGGATATTATGCACACATGGTTCCCGAA



TAAAGAATTTTAGAAATTCCCAGAAGAATGGTCAATGGGATTCCGAAGAATTCGCCTTGACGGAGGCTT



TTAAGTCTCTTTTTGTGCGATATGAGATAGATTATACCGCTGATTTGAAAACAGCTATTGTGGACGAAAA



GCAAAAAGACTTCTTCGTGGATCTTCTGAAGCTATTCAAATTGACAGTACAGATGCGCAACAGCTGGAA



AGAGAAGGATTTGGATTATCTAATCTCTCCTGTAGCAGGGGCTGATGGCCGTTTCTTCGATACAAGAGA



GGGAAATAAAAGTCTGCCTAAGGATGCAGATGCCAATGGAGCTTATAATATTGCCCTAAAAGGACTTTG



GGCTCTACGCCAGATTCGGCAAACTTCAGAAGGCGGTAAACTCAAATTGGCGATTTCCAATAAGGAATG



GCTACAGTTTGTGCAAGAGAGATCTTACGAGAAAGACtga





SEQ
atgaataatggaacaaataactttcagaattttatcggaatttcttctttgcagaagactcttaggaatgctctcattccaaccgaaacaacacagcaatttattgttaaaaacggaa


ID
taattaaagaagatgagctaagaggagaaaatcgtcagatacttaaagatatcatggatgattattacagaggtttcatttcagaaactttatcgtcaattgatgatattgactgga


NO:
cttctttatttgagaaaatggaaattcagttaaaaaatggagataacaaagacactcttataaaagaacagactgaataccgtaaggcaattcataaaaaatttgcaaatgatgat


27
agatttaaaaatatgttcagtgcaaaattaatctcagatattcttcctgaatttgtcattcataacaataattattctgcatcagaaaaggaagaaaaaacacaggtaattaaattattt



tccagatttgcaacgtcattcaaggactattttaaaaacagggctaattgtttttcggctgatgatatatcttcatcttcttgtcatagaatagttaatgataatgcagagatattttttag



taatgcattggtgtataggagaattgtaaaaagtctttcaaatgatgatataaataaaatatccggagatatgaaggattcattaaaggaaatgtactggaagaaatttattcttat



gaaaaatatggggaatttattacacaggaaggtatatctttttataatgatatatgtggtaaagtaaattcatttatgaatttatattgccagaaaaataaagaaaacaaaaatctcta



taagctgcaaaagcttcataaacagatactgtgcatagcagatacttcttatgaggtgccgtataaatttgaatcagatgaagaggtttatcaatcagtgaatggatttttggacaa



tattagttcgaaacatatcgttgaaagattgcgtaagattggagacaactataacggctacaatcttgataagatttatattgttagtaaattctatgaatcagtttcacaaaagacat



atagagattgggaaacaataaatactgcattagaaattcattacaacaatatattacccggaaatggtaaatctaaagagacaaggtaaaaaaagcggtaaagaatgatctgc



aaaaaagcattactgaaatcaatgagcttgttagcaattataaattatgttcggatgataatattaaagctgagacatatatacatgaaatatcacatattttgaataattttgaagca



caggagcttaagtataatcctgaaattcatctggtggaaagtgaattgaaagcatctgaattaaaaaatgttacgatgtaataatgaatgcttttcattggtgttcggttttcatgac



agaggagctggtagataaagataataatttttatgccgagttagaagagatatatgacgaaatatatccggtaatttcattgtataatatgtgcgtaattatgtaacgcagaagcc



atatagtacaaaaaaaattaaattgaattttggtattcctacactagcggatggatggagtaaaagtaaagaatatagtaataatgcaattattctcatgcgtgataatttgtactattt



aggaatatttaatgcaaaaaataagcctgacaaaaagataattgaaggtaatacatcagaaaataaaggggattataagaagatgatttataatcttctgccaggaccaaataa



aatgatccccaaggtattcctacttcaaaaaccggagtggaaacatataagccgtagcctatatattggagggctataaacaaaacaagcatattaaatcctctaaggattttg



atataacattttgtcacgatttgattattttaagaactgtatagcaatacatcctgaatggaagaattttggctttgatttttctgacacctccacatatgaagatatcagcggatt



ttacagagaagtcgaattacaaggttataaaatcgactggacatatatcagcgaaaaggatattgatttgttgcaggaaaaaggacagttatatttattccaaatatataacaaag



atttttccaagaaaagtaccggaaatgataatcttcatactatgtatttgaagaatttgtttagtgaagagaatttaaaggatattgtactgaaattaaacggtgaggcggaaatctt



ctttagaaaatcaagcataaagaatccaataattcataaaaaaggctctattcttgttaatagaacatatgaagcagaggaaaaagatcaatttggaaatatccagatagtcaga



aaaaacataccggaaaatatatatcaggagctttataaatatttcaatgataaaagtgataaagaactttcggatgaagcagctaagcttaagaatgtagtaggtcatcatgagg



ctgctacaaacatagtaaaagattatagatatacatatgataaatattttcttcatatgcctattacaatcaattttaaagccaataagacaggctttattaatgacagaatattacaat



atattgctaaagaaaaggatttgcatgtaataggcattgatcgtggtgaaagaaacctgatatatgtttcagtaattgatacttgtggaaatattgttgaacaaaaatcgtttaacatt



gttaatggatatgattatcagattaagctcaagcagcaggagggggcgcgacaaatcgcacgaaaagaatggaaagaaatcggcaaaataaaagaaattaaagaaggcta



tttatctcttgtaattcatgaaatttcaaagatggttattaaatataatgccataattgcaatggaggatttaagctacggatttaaaaaaggtcgtttcaaggttgagcgacaggttt



accagaagtttgagacaatgcttatcaacaaactcaactatctggtatttaaagatatatccataacggaaaacggtggtcttctaaagggataccagcttacatatattccagat



aaactgaaaaatgtgggtcatcaatgtggctgtatattttatgtacctgctgcctatacatcaaaaatagatcctacaaccggatttgtaaatatattcaaatttaaagatttaacagt



tgatgcgaagagagaatttataaaaaaatttgacagtatcagatatgattcagaaaaaaatctgttttgttttacattcgattataataactttattacgcaaaatactgttatgtcaaa



gtcaagctggagtgtatatacgtacggagttaggataaaaagaagatttgtcaatggcaggttctcaaatgaatcggatacaattgatataacaaaagatatggaaaaaacact



cgaaatgacagatataaattggagagatggtcatgatctgaggcaggatattattgattatgaaatcgtacaacacatatttgagatttttagattgactgtacaaatgagaaaca



gtttaagtgaattagaagacagggattatgaccgtttgatttctccggtgctcaatgaaaataatatattttatgattcagctaaagcaggagatgcgttacctaaagacgcagat



gctaatggtgcatattgtatagctctaaaaggcttgtatgaaatcaaacaaattacagagaattggaaagaagacggtaagttttcaagagataaacttaaaatttccaataagg



actggtttgactttattcaaaataaaaggtatttataa





SEQ
atgacaaacaaatttacaaaccagtactcgctttccaaaacacttcgatttgagttgattccacaaggaaaaacattggaatttattcaagaaaaaggattgctctctcaagataa


ID
acaacgagcggagagttatcaagaaatgaaaaaaactattgataaatttcataaatactttatcgatttagctttaagcaatgctaaactaactcatttagaaacttacttggaattat


NO:
acaataaaagtgctgaaacaaaaaaagaacaaaaatttaaagacgatttaaagaaagtacaagacaatttacgaaaagaaatcgttaaatctttttcagatggtgatgcaaaat


28
caatttttgcaattttggataaaaaagaactgattaccgtagaacttgaaaaatggtttgaaaacaacgaacaaaaagacatttattttgacgaaaaattcaaaacgtttactactta



ttttactggttttcatcaaaacagaaaaaacatgtattcggttgaacccaattctacagcaattgcttatcgattgattcatgaaaatttacctaaatttttagaaaatgctaaagcattt



gaaaaaataaaacaagtagaaagtttgcaagttaattttagagaattaatgggggaatttggagatgaagggctaattttcgtaaatgaattagaagaaatgtttcaaatcaattat



tataatgatgtgctttcacaaaatggaattacaatttataatagtataatttcaggatttaccaaaaatgatataaaatataaaggtctaaatgaatacataaataattacaatcaaac



caaagacaaaaaagaccgtttgccaaaattaaaacaattgtataaacagattttgagtgataggatttcactttcgtttttgcccgatgcttttacggatgggaaacaagttttgaa



agccatatttgacttttataaaatcaacttactttcttataccattgaaggacaggaagaaagccaaaatcttttactattaattcgtcagacaattgaaaacctttctagttttgatacc



caaaaaatttatctaaaaaatgatacccatttaaccactatttcacaacaagtatttggcgatttttcggtgttttcaactgctttaaattattggtatgaaactaaagtaaatccaaaat



ttgaaacggaatatagcaaagccaacgaaaaaaaacgagaaattttagataaagccaaagcggtatttacaaaacaagattatttttcaattgcttttttacaagaagtactttcg



gaatacattcttaccttagatcacacttctgatattgtaaaaaagcattcctccaactgtattgcggattattttaaaaatcattttgtagccaaaaaagaaaatgaaaccgacaaaa



cctttgattttattgctaatattactgcaaaataccaatgtattcaaggtattttagaaaatgcagaccaatacgaagacgaactcaaacaagaccaaaaattaattgataatttgaa



attctttttagatgctattttagaattgttgcattttattaaacctttgcatttaaaatcagaaagcattaccgaaaaagacactgctttttatgatgtgtttgaaaattattacgaagcatt



gagtttgttgaccccattatataatatggtgcgaaactatgtaacgcaaaagccgtacagcaccgaaaaaataaaattaaattttgaaaatgcacaattattgaatggttgggatg



ccaataaagaaggtgattacctaactaccattttgaaaaaagacggtaattattttttagccataatggataaaaagcataacaaagcgtttcaaaagtttccagaaggaaaaga



aaattatgaaaaaatggtgtataaactattgcctggagtaaataagatgttgccaaaagtatttttttccaataaaaatattgcttacttcaacccatcaaaagagttattagaaaact



ataaaaaagagacgcacaaaaaaggagacacattcaatttagaacattgtcatacgttgatcgattttttcaaggactctttaaacaaacatgaagactggaaatactttgattttc



aattttctgaaacaaaatcgtatcaagatttgagtggtttttatagagaagtagaacatcaaggctacaaaatcaattttaaaaatatcgattcagaatatattgatggtttggtgaac



gaaggtaaattgtttctatttcaaatttacagcaaagatttttcgcctttttccaaagggaaaccgaacatgcacactttgtattggaaagccttatttgaagaacaaaatttgcaaaa



tgtaatctataaattgaatggacaagccgaaatattttttagaaaagcctctataaaacctaaaaatataatattgcacaaaaagaaaattaaaattgccaaaaagcattttattgat



aaaaaaacaaaaacatctgaaattgttcctgttcaaacaataaaaaacctcaatatgtactaccaaggaaaaataagtgaaaaagaattaacacaagatgatttaaggtatattg



ataattttagcattttcaatgaaaaaaataaaacaattgatattataaaagacaaacgatttacggttgataaatttcagtttcatgtgccgattaccatgaactttaaagcaacggg



cggaagttatatcaatcaaaccgtattagaatatttgcaaaacaatcccgaagttaagattattggattggatagaggcgaacgccatttggtatatctgacactgatagaccag



caaggaaacatcttgaaacaagaaagtttgaatacaatcaccgattctaaaatctcgacaccttatcataagttgttggataacaaggaaaacgagcgtgacttggctcgaaaa



aattggggaacggtggaaaacatcaaagaactcaaagaaggctacatcagtcaagtggtgcataaaattgctacgttgatgctggaagaaaatgccattgtggtaatggaag



atttgaattttggatttaaacgtggacgttttaaagtggaaaaacaaatttatcaaaagctggaaaaaatgttgattgacaaattgaattatttggttttaaaagacaaacaacctca



ggaattaggcggattgtacaacgcattacaactcaccaataaatttgaaagtttccaaaaaatgggtaaacaatcgggctttttgttttatgtacccgcttggaacacctccaaaa



tagacccaaccacagggtttgtcaattatttttataccaaatatgaaaatgttgacaaagccaaagccttttttgaaaaatttgaggcgattcgtttcaatgcagaaaagaagtattt



tgaatttgaagtaaaaaaatatagcgattttaacccaaaagccgaaggcactcaacaagcctggaccatttgcacgtatggcgaacgaatagaaaccaaacgacaaaaaga



ccaaaacaacaaatttgtaagcactccaattaatctaaccgaaaagatagaagactttttgggtaaaaaccaaattgtttatggtgatggtaattgcatcaaatctcaaattgctag



caaagacgacaaggctttttttgaaaccttattgtattggttcaaaatgactttacaaatgcgaaacagcgaaacaagaacagatatagattatctaatttcgcccgtgatgaatg



acaacggaacattttacaacagccgagattatgaaaaattagaaaatccaactttgcccaaagatgccgatgccaacggagcgtatcatattgccaaaaaaggattgatgcttt



tgaataaaatagaccaagccgacttgacaaaaaaagtggatttatctattagtaacagagattggttgcaatttgtacaaaaaaataaataa





SEQ
atggaacaggagtactatttaggactggatatgggaaccggatctgtaggatgggctgttacagattcggaatatcatgtcttgcgtaaacatggaaaagcactatggggagt


ID
ccgattatttgaaagtgcatcgacagcagaagaacgaagaatgttccgaacatcaagaagaagactagatcgaagaaactggagaattgaaattttacaggaaatttttgcag


NO:
aggaaataagtaagaaagatccaggatttttcttgcgaatgaaagaaagcaaatattatccagaagataagcgagatatcaatggaaattgtccggaactgccatatgcattatt


29
tgttgatgacgattttacagataaagattatcataaaaaatttccgacaatttatcatctcaggaaaatgttgatgaatacagaggagacaccggatatccggttggtgtatctggc



aattcatcatatgatgaagcataggggccatttcttgttatctggtgacattaatgagattaaggagttcggaacgacattttcaaaattgttggagaatatcaaaaatgaggaatt



ggattggaatcttgaactgggaaaagaagaatatgctgttgtagaaagtattttaaaagataacatgttaaaccgatccacaaagaaaaccagattaataaaagcattaaaagc



aaaatcaatatgtgaaaaggctgtactgaatttattggctggtggaacggtgaaattgagtgatatatttggtcttgaagaattaaatgagacagaaagaccgaagatttcctttg



ctgataatggatacgatgattatatcggagaagttgaaaatgagctgggagaacaattctatattatagagacggcaaaagcagtgtatgactgggcggtattagttgaaatatt



gggaaaatatacgtcaatttcagaagcgaaagtagcaacgtatgaaaaacataaatcggatttacaatttttgaaaaagatagttcggaaatatctgacaaaggaggaatataa



agatatttttgtaagtacgagtgacaaattgaaaaattactctgcttatataggaatgacgaaaataaatggaaaaaaggttgatttgcagagcaaacggtgcagtaaagaaga



attctatgattttattaagaaaaacgtacttaaaaagctagaaggacaacctgaatatgaatatttgaaagaagagctagaaagagaaacatttctaccaaaacaggtgaacag



ggataatggtgtaataccgtatcagattcatttgtacgagttgaaaaagatattaggaaatttacgggataaaatagacctcattaaagagaacgaagataaactggttcaattat



ttgaattcagaattccgtattatgttggtccgctgaataagatagatgacggaaaagagggaaaatttacatgggctgtacggaaaagtaatgaaaagatatatccatggaatttt



gaaaatgtagttgatatagaagcaagtgcagaaaaatttatccggagaatgacaaataagtgtacatatctgatgggcgaagatgtattgccgaaggattcattgctttacagta



aatatatggttttaaatgaattaaataatgtaaagttggatggcgaaaaattatctgtagaattgaaacaacggttgtatacagatgtattttgtaagtatcggaaagtaactgtaaa



gaagataaaaaattacttgaaatgtgaaggtatcatatccggcaatgtcgaaataactggaattgatggtgattttaaggcatcgttaacggcatatcatgattttaaagaaatctt



gacaggaacagaattggctaaaaaggacaaagaaaatattattaccaatatagtattgtttggagatgataaaaagctgctgaaaaagagactgaatcgattatatcctcagatt



acgccgaatcagttgaagaaaatatgtgcgctatcctatacaggctggggaagattttctaaaaagttcttagaagaaataacagctccagatccggaaacgggagaggtat



ggaatatcattacggcattgtgggaatcgaataataatctgatgcaattattaagtaatgaatatcggtttatggaagaagtcgaaacatacaatatgggaaaacagactaaaac



attgtcgtacgaaacagtagagaatatgtatgtttctccatctgtgaaaagacagatatggcagacgctgaaaatcgtgaaagaattagaaaaagtaatgaaagaatctccgaa



acgtgtatttattgagatggcgagagaaaagcaagaaagtaagagaaccgaatcgcgtaaaaaacaactaatagatttgtataaggcttgtaaaaatgaagaaaaagattgg



gtaaaagaactgggagatcaggaagaacagaaattacgaagcgataagttgtacctatattatacgcaaaagggtcgttgtatgtattctggcgaggtaatagaactgaaaga



cttatgggataatacaaaatatgatattgatcatatatatccacaatctaaaacgatggatgacagtcttaataatcgcgtattggtaaaaaagaaatataatgcaacaaaatcaga



taagtatccattaaatgaaaatatacgacatgagagaaaaggcttttggaagtcactgttagatggagggtttataagtaaagaaaaatatgaacgcttaataagaaatacagaa



ttgagtccggaagaattagcaggatttattgaaaggcagattgttgaaacgaggcagagtacaaaagctgtagcggaaatattaaagcaagtgtttccggaaagtgaaattgt



atatgtcaaagcaggtacggtttcaagattcagaaaagattttgaattactgaaagttcgagaagtgaatgatttgcatcacgcaaaggatgcgtatttaaatattgtagttggtaa



tagttattatgtgaaatttactaagaatgcatcatggtttataaaagaaaatccgggacgtacttacaacttaaaaaagatgtttacatcaggttggaatattgaacgaaatggaga



agttgcatgggaagtcgggaaaaaaggaacaattgtaacggtaaaacaaataatgaataaaaataatatattggtgacaagacaggttcatgaagcgaaaggtgggctgttt



gatcagcagattatgaaaaaaggaaaaggtcagattgctataaaggaaactgatgaacgtcttgcatcaatagaaaagtatggaggctataataaagctgccggggcatattt



tatgctggtagaatctaaagataaaaaaggaaaaacaattcgaacgatagaatttataccattatatttaaagaataaaatcgagtcggatgaatcaatagcattgaactttttaga



aaaaggcagaggtttgaaagaaccaaagatactattgaaaaaaattaagattgatacattatttgatgtggacggattcaaaatgtggttgtctggaagaacaggggacagact



actatttaaatgtgcaaatcaattgattttggatgagaaaataattgtaacaatgaaaaaaattgtaaagtttattcaaaggagacaagaaaatagagaattaaaattatctgataaa



gatggaattgataatgaagtacttatggaaatatataacacttttgtggataagttagaaaacacagtgtatagaatacgattatccgaacaggcaaaaacgcttatagataaaca



aaaagaatttgaaaggttatcactagaggataaaagtagtactttgtttgaaattttacatatttttcagtgtcaaagtagtgcggccaatttaaaaatgataggcggacctggaaa



agcaggaatattagttatgaataataatataagtaagtgtaacaaaatttctattataaatcagtctccaacaggaattttcgaaaatgagattgatttgttaaagat





SEQ
ATGAAATCTTTCGATTCATTCACAAATCTTTATTCTCTTTCAAAAACCTTGAAATTTGAGATGAGACCTGT


ID
CGGAAATACCCAAAAAATGCTCGACAATGCAGGAGTATTTGAAAAAGACAAACTAATTCAAAAAAAGT


NO:
ACGGAAAAACAAAGCCGTATTTCGACAGACTCCACAGAGAATTTATAGAAGAAGCGCTCACGGGGGTA


30
GAGCTAATAGGACTAGATGAGAACTTTAGGACACTTGTTGACTGGCAAAAAGATAAGAAAAATAATGTC



GCAATGAAAGCGTATGAAAATAGTTTGCAGCGGCTGAGAACGGAAATAGGTAAAATATTTAACCTAAA



GGTGAGGATTGGGTAAAGAACAAATATCCAATATTAGGGCTGAAAAATAAAAATACCGATATTTTATT



CGAAGAGGCTGTATTCGGGATATTGAAAGCCCGATATGGAGAAGAAAAAGATACTTTTATAGAAGTAG



AGGAAATAGATAAAACCGGCAAATCAAAGATCAATCAAATATCAATTTTCGATAGTTGGAAAGGATTTA



CAGGATATTTCAAAAAATTTTTTGAAACCAGAAAGAATTTTTACAAAAACGACGGAACTTCTACAGCAA



TTGCTACAAGGATCATTGATCAAAATCTGAAAAGATTCATAGATAATCTGTCAATAGTTGAAAGTGTGA



GACAAAAGGTTGATCTCGCCGAGACAGAAAAATCTTTCAGCATATCTCTATCGCAATTCTTCTCAATAGA



CTTTTATAACAAGTGTCTCCTTCAAGATGGTATTGATTACTACAACAAGATAATCGGTGGAGAAACTCTC



AAAAATGGCGAAAAACTAATAGGTCTCAATGAACTAATAAATCAATATAGGCAGAATAATAAGGATCA



GAAAATCCCATTTTTCAAACTTCTTGATAAACAAATTTTGAGTGAAAAGATATTATTTTTGGATGAAATA



AAAAATGACACAGAACTGATCGAGGCGCTGAGTCAGTTCGCAAAAACAGCCGAAGAAAAAACAAAAAT



TGTCAAAAAGCTTTTTGCCGATTTTGTAGAAAATAATTCCAAATACGATCTTGCACAGATTTATATTTCC



CAAGAAGCATTCAATACTATATCAAACAAGTGGACAAGCGAAACTGAGACGTTCGCTAAATATCTATTC



GAAGCAATGAAGAGTGGAAAACTTGCAAAGTATGAGAAAAAAGATAATAGCTATAAATTTCCTGATTTT



ATTGCCCTTTCACAGATGAAGAGTGCTTTATTAAGTATCAGCCTTGAGGGACATTTTTGGAAAGAGAAAT



ACTACAAAATTTCAAAATTCCAAGAGAAGACCAATTGGGAGCAGTTTCTTGCAATTTTTCTATACGAGTT



TAACTCTCTTTTCAGCGACAAAATAAATACAAAAGATGGAGAAACAAAGCAAGTTGGATACTATCTATT



TGCCAAAGACCTGCATAATCTTATCTTAAGTGAGCAGATTGATATTCCAAAAGATTCAAAAGTCACAAT



AAAAGATTTTGCCGATTCTGTACTCACAATCTACCAAATGGCAAAATATTTTGCGGTAGAAAAAAAACG



AGCGTGGCTTGCCGAGTATGAACTAGATTCATTTTATACCCAGCCAGACACAGGCTATTTACAGTTTTAT



GATAACGCCTACGAGGATATTGTGCAGGTATACAACAAGCTTCGAAACTATCTGACCAAAAAGCCATAT



AGCGAGGAGAAATGGAAGTTGAATTTTGAAAATTCTACGCTGGCAAATGGATGGGATAAGAACAAAGA



ATCTGATAATTCAGCAGTTATTCTACAAAAAGGTGGAAAATATTATTTGGGACTGATTACTAAAGGACA



CAACAAAATTTTTGATGACCGTTTTCAAGAAAAATTTATTGTGGGAATTGAAGGTGGAAAATATGAAAA



AATAGTCTATAAATTTTTCCCCGACCAGGCAAAAATGTTTCCCAAAGTGTGCTTTTCTGCAAAAGGACTC



GAATTTTTTAGACCGTCTGAAGAAATTTTAAGAATTTATAACAATGCAGAGTTTAAAAAAGGAGAAACT



TATTCAATAGATAGTATGCAGAAGTTGATTGATTTTTATAAAGATTGCTTGACTAAATATGAAGGCTGGG



CATGTTATACCTTTCGGCATCTAAAACCCACAGAAGAATACCAAAACAATATTGGAGAGTTTTTTCGAG



ATGTTGCAGAGGACGGATACAGGATTGATTTTCAAGGCATTTCAGATCAATATATTCATGAAAAAAACG



AGAAAGGCGAACTTCACCTTTTTGAAATCCACAATAAAGATTGGAATTTGGATAAGGCACGAGACGGAA



AGTCAAAAACAACACAAAAAAACCTTCATACACTCTATTTCGAATCGCTCTTTTCAAACGATAATGTTGT



TCAAAACTTTCCAATAAAACTCAATGGTCAAGCTGAAATTTTTTATAGACCGAAAACGGAAAAAGACAA



ATTAGAATCAAAAAAAGATAAGAAAGGGAATAAAGTGATTGACCATAAACGCTATAGTGAGAATAAGA



TTTTTTTCATGTTCCTCTCACACTAAACCGCACTAAAAATGACTCATATCGCTTTAATGCTCAAATCAAC



AACTTTCTCGCAAATAATAAAGATATCAACATCATCGGTGTAGATAGGGGAGAAAAGCATTTAGTCTAT



TATTCGGTGATTACACAAGCTAGTGACATCTTAGAAAGTGGCTCACTAAATGAGCTAAATGGCGTGAAT



TATGCTGAAAAACTGGGAAAAAAGGCAGAAAATCGAGAACAAGCACGCAGAGACTGGCAAGACGTAC



AAGGGATCAAAGACCTCAAGAAAGGATATATTTCACAGGTGGTGCGAAAGCTTGCTGATTTAGCAATTA



AACACAATGCCATTATCATTCTTGAAGATTTGAATATGAGATTTAAACAAGTTCGGGGCGGTATCGAAA



AATCCATTTATCAACAGTTAGAAAAAGCACTGATAGATAAATTAAGCTTTCTTGTAGACAAAGGTGAAA



AAAATCCCGAGCAAGCAGGACATCTTCTGAAAGCATATCAGCTTTCGGCCCCATTTGAGACATTTCAAA



AAATGGGCAAACAGACGGGTATAATCTTTTATACACAAGCTTCGTATACCTCAAAAAGTGACCCTGTAA



CAGGTTGGCGACCACACCTGTATCTCAAATATTTCAGTGCCAAAAAAGCAAAAGACGATATTGCAAAGT



TTACAAAAATAGAATTTGTAAACGATAGGTTTGAGCTTACCTATGATATAAAGGACTTTCAGCAAGCAA



AAGAATATCCAAATAAAACTGTTTGGAAAGTTTGCTCAAATGTAGAGAGATTCAGGTGGGACAAAAACC



TCAATCAAAACAAAGGCGGATATACTCACTACACAAATATAACTGAGAATATCCAAGAGCTTTTTACAA



AATATGGAATTGATATCACAAAAGATTTGCTCACACAGATTTCTACAATTGATGAAAAACAAAATACCT



CATTTTTTAGAGATTTTATTTTTTATTTCAACCTTATTTGCCAAATCAGAAATACCGATGATTCTGAGATT



GCTAAAAAGAATGGGAAAGATGATTTTATACTGTCACCTGTTGAGCCGTTTTTCGATAGCCGAAAAGAC



AATGGAAATAAACTTCCTGAGAATGGAGATGATAACGGCGCGTATAACATAGCAAGAAAAGGGATTGT



CATACTCAACAAAATCTCACAATATTCAGAGAAAAACGAAAATTGCGAGAAAATGAAATGGGGGGATT



TGTATGTATCAAACATTGACTGGGACAATTTTGTAACCCAAGCTAATGCACGGCATTAA





SEQ
ATGATTATCTTATATATTAGTACCTCGAATATGAACATGGAAGGAGTATTTATGGAAAATTTTAAAAACT


ID
TGTATCCAATAAACAAAACACTTCGATTTGAATTAAGACCCTATGGAAAAACATTGGAAAATTTTAAAA


NO:
AATCCGGACTTTTAGAAAAAGATGCCTTTAAGGCAAATAGTAGACGAAGTATGCAAGCTATAATCGATG


31
AAAAATTCAAAGAGACTATCGAAGAACGCTTAAAGTACACTGAATTCAGTGAATGTGATCTTGGAAACA



TGACATCAAAAGATAAAAAAATAACTGATAAAGCAGCTACAAATTTAAAAAAGCAAGTTATCTTATCTT



TTGACGATGAAATATTTAATAATTACCTAAAACCTGATAAAAATATTGACGCATTATTTAAAAATGATCC



TTCAAATCCTGTAATCTCTACATTTAAAGGTTTTACGACATATTTTGTGAATTTTTTTGAAATTCGAAAAC



ATATTTTCAAGGGAGAATCATCAGGCTCAATGGCATACCGAATTATAGATGAAAACCTGACAACATACT



TGAATAATATTGAAAAAATAAAAAAACTGCCAGAAGAATTAAAATCACAGCTAGAAGGCATTGATCAG



ATTGATAAACTTAATAATTATAATGAGTTCATTACACAGTCAGGTATAACACACTATAATGAAATCATCG



GCGGTATATCAAAATCAGAGAATGTCAAAATACAGGGAATTAATGAAGGAATTAATCTATACTGTCAGA



AGAACAAAGTTAAACTTCCTCGACTGACTCCGCTATACAAAATGATATTATCAGACAGAGTTTCCAACTC



TTTTGTATTAGACACTATTGAAAATGACACAGAATTAATTGAAATGATAAGTGATTTGATTAATAAGACT



GAGATTTCGCAAGATGTTATAATGTCAGATATTCAAAATATTTTCATAAAATACAAACAACTTGGTAATT



TGCCGGGTATCTCATATTCTTCAATAGTTAATGCTATTTGCTCGGATTATGACAACAATTTCGGAGATGG



GAAGCGAAAAAAATCTTACGAAAATGATCGCAAAAAGCATTTGGAGACTAATGTATACTCCATAAATTA



TATTTCTGAATTGCTTACAGATACCGATGTTTCATCAAATATCAAGATGAGATATAAAGAGCTTGAGCAA



AATTATCAGGTTTGCAAAGAAAATTTTAATGCCACAAACTGGATGAATATTAAAAATATAAAACAATCT



GAAAAAACAAACCTTATTAAAGATTTGTTAGATATACTTAAATCGATTCAACGTTTCTATGATTTGTTTG



ATATTGTTGACGAAGATAAAAATCCAAGTGCTGAATTTTATACCTGGTTATCAAAAAATGCTGAAAAGC



TTGACTTTGAATTCAATTCTGTATATAACAAGTCACGAAACTATCTCACCAGGAAACAATACTCTGATAA



AAAAATCAAGCTGAATTTTGATTCTCCAACATTGGCCAAAGGGTGGGATGCTAACAAAGAAATAGATAA



CTCCACGATTATAATGCGTAAATTTAATAATGACAGAGGCGATTATGATTACTTCCTTGGCATATGGAAT



AAATCCACACCTGCAAATGAAAAAATAATCCCACTGGAGGATAATGGATTATTCGAAAAAATGCAATAT



AAGCTGTATCCAGATCCTAGTAAGATGTTACCGAAACAATTTCTATCAAAAATATGGAAGGCAAAGCAT



CCTACGACACCTGAATTTGATAAAAAATATAAAGAGGGAAGACATAAAAAAGGTCCTGATTTCGAAAA



AGAATTCCTGCATGAATTGATTGATTGCTTCAAACATGGTCTTGTTAATCACGATGAAAAATATCAGGAT



GTTTTTGGCTTCAATCTCCGTAACACTGAAGATTATAATTCATATACAGAGTTTCTCGAAGATGTGGAAA



GATGCAATTACAATCTTTCATTTAACAAAATTGCTGATACTTCAAACCTTATTAATGATGGGAAATTGTA



TGTATTTCAGATATGGTCAAAAGACTTTTCTATTGATTCAAAAGGTACTAAAAACTTGAATACAATCTAT



TTTGAATCACTATTTTCAGAAGAAAACATGATAGAAAAAATGTTCAAGCTTTCTGGAGAGGCTGAGATA



TTCTATCGACCAGCATCGTTGAATTATTGTGAAGATATCATAAAAAAAGGTCATCACCATGCAGAATTA



AAAGATAAGTTTGACTATCCTATAATAAAAGATAAGCGATATTCACAAGATAAGTTTTTCTTTCATGTGC



CAATGGTTATAAATTATAAATCTGAGAAACTGAATTCCAAAAGCCTTAACAACCGAACAAATGAAAACC



TGGGACAGTTTACACATATTATAGGTATAGACAGGGGCGAGCGGCACTTGATTTATTTAACTGTTGTTGA



TGTTTCCACTGGTGAAATCGTTGAACAGAAACATCTGGACGAAATTATCAATACTGATACCAAGGGAGT



TGAACACAAAACCCATTATTTGAATAAATTGGAAGAAAAATCTAAAACAAGAGATAACGAGCGTAAAT



CATGGGAAGCTATTGAAACTATCAAAGAATTAAAAGAAGGCTATATTTCTCATGTAATTAATGAAATAC



AAAAGCTGCAAGAAAAATATAATGCCTTAATCGTAATGGAAAATCTTAACTATGGGTTCAAAAACTCAC



GAATCAAAGTTGAAAAACAGGTTTATCAAAAATTCGAGACAGCATTGATTAAAAAGTTCAATTATATTA



TTGATAAAAAAGATCCAGAAACCTATATACATGGTTACCAGCTTACAAATCCTATTACCACTCTGGATAA



GATTGGAAATCAATCTGGAATAGTGCTGTATATTCCTGCGTGGAATACTTCTAAGATAGATCCCGTCACA



GGATTTGTAAACCTTCTGTACGCAGATGATTTGAAGTATAAAAATCAGGAGCAGGCCAAATCATTCATT



CAGAAAATAGACAACATATATTTTGAAAATGGAGAGTTTAAATTTGATATTGATTTTTCCAAATGGAATA



ATCGCTACTCAATAAGTAAAACTAAATGGACGTTAACAAGTTATGGGACTCGCATCCAGACATTTAGAA



ATCCCCAGAAAAACAATAAGTGGGATTCTGCTGAATATGATTTGACAGAAGAGTTTAAATTAATTTTAA



ATATAGACGGAACGTTAAAGTCACAGGACGTAGAAACATACAAAAAATTCATGTCTTTATTTAAACTAA



TGCTACAGCTTCGAAACTCTGTTACAGGAACCGACATTGATTATATGATCTCTCCTGTCACTGATAAAAC



AGGAACACATTTCGATTCAAGAGAAAATATTAAAAATCTTCCTGCCGATGCAGATGCCAATGGTGCCTA



CAACATTGCGCGCAAAGGAATAATGGCTATTGAAAATATAATGAACGGTATAAGCGATCCACTAAAAAT



AAGCAACGAAGACTATTTAAAGTATATTCAGAATCAACAGGAATAA





SEQ
ATGACCCAATTTGAAGGTTTTACCAATTTATACCAAGTTTCGAAGACCCTTCGTTTTGAACTGATTCCCC


ID
AAGGAAAAACACTCAAACATATCCAGGAGCAAGGGTTCATTGAGGAGGATAAAGCTCGCAATGACCAT


NO:
TACAAAGAGTTAAAACCAATCATTGACCGCATCTATAAGACTTATGCTGATCAATGTCTCCAACTGGTAC


32
AGCTTGACTGGGAGAATCTATCTGCAGCCATAGACTCCTATCGTAAGGAAAAAACCGAAGAAACACGA



AATGCGCTGATTGAGGAGCAAGCAACATATAGAAATGCGATTCATGACTACTTTATAGGTCGGACGGAT



AATCTGACAGATGCCATAAATAAGCGCCATGCTGAAATCTATAAAGGACTTTTTAAAGCTGAACTTTTCA



ATGGAAAAGTTTTAAAGCAATTAGGGACCGTAACCACGACAGAACATGAAAATGCTCTACTCCGTTCGT



TTGACAAATTTACGACCTATTTTTCCGGCTTTTATGAAAACCGAAAAAATGTCTTTAGCGCTGAAGATAT



CAGCACGGCAATTCCCCATCGAATCGTCCAGGACAATTTCCCTAAATTTAAGGAAAACTGCCATATTTTT



ACAAGATTGATAACCGCAGTTCCTTCTTTGCGGGAGCATTTTGAAAATGTCAAAAAGGCCATTGGAATCT



TTGTTAGTACGTCTATTGAAGAAGTCTTTTCCTTTCCCTTTTATAATCAACTTCTAACCCAAACGCAAATT



GATCTTTATAATCAACTTCTCGGCGGCATATCTAGGGAAGCAGGCACAGAAAAAATCAAGGGACTTAAT



GAAGTTCTCAATCTGGCTATCCAAAAAAATGATGAAACAGCCCATATAATCGCGTCCCTGCCGCATCGTT



TTATTCCTCTTTTTAAACAAATTCTTTCCGATCGAAATACGTTATCCTTTATTTTGGAAGAATTCAAAAGC



GATGAGGAAGTCATCCAATCCTTCTGCAAATATAAAACCCTCTTGAGAAACGAAAATGTACTGGAGACT



GCAGAAGCCCTTTTCAATGAATTAAATTCCATTGATTTGACTCATATCTTTATTTCCCATAAAAAGTTAG



AAACCATCTCTTCAGCGCTTTGTGACCATTGGGATACCTTGCGCAATGCACTTTACGAAAGACGGATTTC



TGAACTCACTGGCAAAATAACAAAAAGTGCCAAAGAAAAAGTTCAAAGGTCATTAAAACATGAGGATA



TAAATCTCCAAGAAATTATTTCTGCTGCAGGAAAAGAACTATCAGAAGCATTCAAACAAAAAACAAGTG



AAATTCTTTCCCATGCCCATGCTGCACTTGACCAGCCTCTTCCCACAACATTAAAAAAACAGGAAGAAA



AAGAAATCCTCAAATCACAGCTCGATTCGCTTTTAGGCCTTTATCATCTTCTTGATTGGTTTGCTGTCGAT



GAAAGCAATGAAGTCGACCCAGAATTCTCAGCACGGCTGACAGGCATTAAACTAGAAATGGAACCAAG



CCTTTCGTTTTATAATAAAGCAAGAAATTATGCGACAAAAAAGCCCTATTCGGTGGAAAAATTTAAATT



GAATTTTCAAATGCCAACCCTTGCCTCTGGTTGGGATGTCAATAAAGAAAAAAATAATGGAGCTATTTTA



TTCGTAAAAAATGGTCTCTATTACCTTGGTATCATGCCTAAACAGAAGGGGCGCTATAAAGCCCTGTCTT



TTGAGCCGACAGAAAAAACATCAGAAGGATTCGATAAGATGTACTATGACTACTTCCCAGATGCCGCAA



AAATGATTCCTAAGTGTTCCACTCAGCTAAAGGCTGTAACCGCTCATTTTCAAACTCATACCACCCCCAT



TCTTCTCTCAAATAATTTCATTGAACCTCTTGAAATCACAAAAGAAATTTATGACCTGAACAATCCTGAA



AAGGAGCCTAAAAAGTTTCAAACGGCTTATGCAAAGAAGACAGGCGATCAAAAAGGCTATAGAGAAGC



GCTTTGCAAATGGATTGACTTTACGCGGGATTTTCTCTCTAAATATACGAAAACAACTTCAATCGATTTA



TCTTCACTCCGCCCTTCTTCGCAATATAAAGATTTAGGGGAATATTACGCCGAACTGAATCCGCTTCTCT



ATCATATCTCCTTCCAACGAATTGCTGAAAAGGAAATCATGGATGCTGTAGAAACGGGAAAATTGTATC



TGTTCCAAATCTACAATAAGGATTTTGCGAAGGGCCATCACGGGAAACCAAATCTCCACACCCTGTATT



GGACAGGTCTCTTCAGTCCTGAAAACCTTGCGAAAACCAGCATCAAACTTAATGGTCAAGCAGAATTGT



TCTATCGACCTAAAAGCCGCATGAAGCGGATGGCCCATCGTCTTGGGGAAAAAATGCTGAACAAAAAAC



TAAAGGACCAGAAGACACCGATTCCAGATACCCTCTACCAAGAACTGTACGATTATGTCAACCACCGGC



TAAGCCATGATCTTTCCGATGAAGCAAGGGCCCTGCTTCCAAATGTTATCACCAAAGAAGTCTCCCATGA



AATTATAAAGGATCGGCGGTTTACTTCCGATAAATTTTTCTTCCATGTTCCCATTACACTGAATTATCAAG



CAGCCAATAGTCCCAGTAAATTCAACCAGCGTGTCAATGCCTACCTTAAGGAGCATCCGGAAACGCCCA



TCATTGGTATCGATCGTGGAGAACGCAATCTAATCTATATTACCGTCATTGACAGTACTGGGAAAATTTT



GGAGCAGCGTTCCCTGAATACCATCCAGCAATTTGACTACCAAAAAAAATTGGACAACAGGGAAAAAG



AGCGTGTTGCCGCCCGTCAAGCCTGGTCCGTCGTCGGAACGATCAAAGACCTTAAACAAGGCTACTTGT



CACAGGTCATCCATGAAATTGTAGACCTGATGATTCATTACCAAGCTGTTGTCGTCCTTGAAAACCTCAA



CTTCGGATTTAAATCAAAACGGACAGGCATTGCCGAAAAAGCAGTCTACCAACAATTTGAAAAGATGCT



AATAGATAAACTCAACTGTTTGGTTCTCAAAGATTATCCTGCTGAGAAAGTGGGAGGCGTCTTAAACCC



GTATCAACTTACAGATCAGTTCACGAGCTTTGCAAAAATGGGCACGCAAAGCGGCTTCCTTTTCTATGTA



CCGGCCCCTTATACCTCAAAGATTGATCCCCTGACTGGTTTTGTCGATCCCTTTGTATGGAAGACCATTA



AAAATCATGAAAGTCGGAAGCATTTCCTAGAAGGATTTGATTTCCTGCATTATGATGTCAAAACAGGTG



ATTTTATCCTCCATTTTAAAATGAATCGGAATCTCTCTTTCCAGAGAGGGCTTCCTGGCTTCATGCCAGCT



TGGGATATTGTTTTCGAAAAGAATGAAACCCAATTTGATGCAAAAGGGACGCCCTTCATTGCAGGAAAA



CGAATTGTTCCTGTAATCGAAAATCATCGTTTTACGGGTCGTTACAGAGACCTCTATCCCGCTAATGAAC



TCATTGCCCTTCTGGAAGAAAAAGGCATTGTCTTTAGAGACGGAAGTAATATATTACCCAAACTTTTAGA



AAATGATGATTCTCATGCAATTGATACGATGGTCGCCTTGATTCGCAGTGTACTCCAAATGAGAAACAG



CAATGCCGCAACGGGGGAAGACTACATCAACTCTCCCGTTAGGGATCTGAACGGGGTGTGTTTCGACAG



TCGATTCCAAAATCCAGAATGGCCAATGGATGCGGATGCCAACGGAGCTTATCATATTGCCTTAAAAGG



GCAGCTTCTTCTGAACCACCTCAAAGAAAGCAAAGATCTGAAATTACAAAACGGCATCAGCAACCAAGA



TTGGCTGGCCTACATTCAGGAACTGAGAAACTGA





SEQ
ATGGCCGTCAAATCCATCAAAGTGAAACTTCGTCTCGACGATATGCCGGAGATTCGGGCCGGTCTATGG


ID
AAACTTCATAAGGAAGTCAATGCGGGGGTTCGATATTACACGGAATGGCTCAGTCTTCTCCGTCAAGAG


NO:
AACTTGTATCGAAGAAGTCCGAATGGGGACGGAGAGCAAGAATGTGATAAGACTGCAGAAGAATGCAA


33
AGCCGAATTGTTGGAGCGGCTGCGCGCGCGTCAAGTGGAGAATGGACACCGTGGTCCGGCGGGATCGG



ACGATGAATTGCTGCAGTTGGCGCGTCAACTCTATGAGTTGTTGGTTCCGCAGGCGATAGGTGCGAAAG



GCGACGCGCAGCAAATTGCCCGCAAATTTTTGAGCCCCTTGGCCGACAAGGACGCAGTTGGTGGGCTTG



GAATCGCGAAGGCGGGGAACAAACCGCGGTGGGTTCGCATGCGCGAAGCGGGGGAACCAGGCTGGGAA



GAGGAGAAGGAGAAGGCTGAGACGAGGAAATCTGCGGATCGGACTGCGGATGTTTTGCGCGCGCTCGC



GGATTTTGGGTTAAAGCCACTGATGCGCGTATACACCGATTCTGAGATGTCATCGGTGGAGTGGAAACC



GCTTCGGAAGGGACAAGCCGTTCGGACGTGGGATAGGGACATGTTCCAACAAGCTATCGAACGGATGAT



GTCGTGGGAGTCGTGGAATCAGCGCGTTGGGCAAGAGTACGCGAAACTCGTAGAACAAAAAAATCGAT



TTGAGCAGAAGAATTTCGTCGGCCAGGAACATCTGGTCCATCTCGTCAATCAGTTGCAACAAGATATGA



AAGAAGCATCGCCCGGACTCGAATCGAAAGAGCAAACCGCGCACTATGTGACGGGACGGGCATTGCGC



GGATCGGACAAGGTATTTGAGAAGTGGGGGAAACTCGCCCCCGATGCACCTTTCGATTTGTACGACGCC



GAAATCAAGAATGTGCAGAGACGTAACACGAGACGATTCGGATCACATGACTTGTTCGCAAAATTGGCA



GAGCCAGAGTATCAGGCCCTGTGGCGCGAAGATGCTTCGTTTCTCACGCGTTACGCGGTGTACAACAGC



ATCCTTCGCAAACTGAATCACGCCAAAATGTTCGCGACGTTTACTTTGCCGGATGCAACGGCGCACCCG



ATTTGGACTCGCTTCGATAAATTGGGTGGGAATTTGCACCAGTACACCTTTTTGTTCAACGAATTTGGAG



AACGCAGGCACGCGATTCGTTTTCACAAGCTATTGAAAGTCGAGAATGGTGTCGCAAGAGAAGTTGATG



ATGTCACCGTGCCCATTTCAATGTCAGAGCAATTGGATAATCTGCTTCCCAGAGATCCCAATGAACCGAT



TGCGCTATATTTTCGAGATTACGGAGCCGAACAGCATTTCACAGGTGAATTTGGTGGCGCGAAGATCCA



GTGCCGCCGGGATCAGCTGGCTCATATGCACCGACGCAGAGGGGCGAGGGATGTTTATCTCAATGTCAG



CGTACGTGTGCAGAGTCAGTCTGAGGCGCGGGGAGAACGTCGCCCGCCGTATGCGGCAGTATTTCGTCT



GGTCGGGGACAACCATCGCGCGTTTGTCCATTTCGATAAACTATCGGATTATCTTGCGGAACATCCGGAT



GATGGGAAGCTCGGGTCGGAGGGGTTGCTTTCCGGGCTGCGGGTGATGAGTGTCGATCTCGGCCTTCGC



ACATCTGCATCGATTTCCGTTTTTCGCGTTGCCCGGAAGGACGAGTTGAAGCCGAACTCAAAAGGTCGTG



TACCGTTTTTCTTTCCGATAAAAGGGAATGACAATCTCGTCGCGGTTCATGAGCGATCACAACTCTTGAA



GCTGCCTGGCGAAACGGAGTCGAAGGACCTGCGTGCTATCCGAGAAGAACGCCAACGGACATTGCGGC



AGTTGCGGACGCAACTGGCGTATTTGCGGCTGCTCGTGCGGTGTGGGTCGGAAGATGTGGGGCGGCGTG



AACGGAGTTGGGCAAAGCTTATCGAGCAGCCGGTGGATGCGGCCAATCACATGACACCGGATTGGCGC



GAGGCTTTTGAAAACGAACTTCAGAAGCTTAAGTCACTCCATGGTATCTGTAGCGACAAGGAATGGATG



GATGCTGTCTACGAGAGCGTTCGCCGCGTGTGGCGTCACATGGGCAAACAGGTTCGCGATTGGCGAAAG



GACGTACGAAGCGGAGAGCGGCCCAAGATTCGCGGCTATGCGAAAGACGTGGTCGGTGGAAACTCGAT



TGAGCAAATCGAGTATCTGGAACGTCAGTACAAGTTCCTCAAGAGTTGGAGCTTCTTTGGTAAGGTGTC



GGGACAAGTGATTCGTGCGGAGAAGGGATCTCGTTTTGCGATCACGCTGCGCGAACACATTGATCACGC



GAAGGAAGATCGGCTGAAGAAATTGGCGGATCGCATCATTATGGAGGCTCTCGGCTATGTGTACGCGTT



GGATGAGCGCGGCAAAGGAAAGTGGGTTGCGAAGTATCCGCCGTGCCAGCTCATCCTGCTGGAGGAATT



GAGCGAGTACCAGTTCAATAACGACAGGCCTCCGAGCGAAAACAACCAGTTGATGCAATGGAGTCATC



GCGGCGTGTTCCAGGAGTTGATAAATCAGGCCCAAGTCCATGATTTACTCGTTGGGACGATGTATGCAG



CGTTCTCGTCGCGATTCGACGCGCGAACTGGGGCACCGGGTATCCGCTGTCGCCGGGTTCCGGCGCGTTG



CACCCAGGAGCACAATCCAGAACCATTTCCTTGGTGGCTGAACAAGTTTGTGGTGGAACATACGTTGGA



TGCTTGTCCCCTACGCGCAGACGACCTCATCCCAACGGGTGAAGGAGAGATTTTTGTCTCGCCGTTCAGC



GCGGAGGAGGGGGACTTTCATCAGATTCACGCCGACCTGAATGCGGCGCAAAATCTGCAGCAGCGACTC



TGGTCTGATTTTGATATCAGTCAAATTCGGTTGCGGTGTGATTGGGGTGAAGTGGACGGTGAACTCGTTC



TGATCCCAAGGCTTACAGGAAAACGAACGGCGGATTCATATAGCAACAAGGTGTTTTATACCAATACAG



GTGTCACCTATTATGAGCGAGAGCGGGGGAAGAAGCGGAGAAAGGTTTTCGCGCAAGAGAAATTGTCG



GAGGAAGAGGCGGAGTTGCTCGTGGAAGCAGACGAGGCGAGGGAGAAATCGGTCGTTTTGATGCGTGA



TCCGTCTGGCATCATCAATCGGGGAAATTGGACCAGGCAAAAGGAATTTTGGTCGATGGTGAACCAGCG



GATCGAAGGATACTTGGTCAAGCAGATTCGCTCGCGCGTTCCATTACAAGATAGTGCGTGTGAAAACAC



GGGGGATATTTAA





SEQ
ATGGCGACACGCAGTTTTATTTTAAAAATTGAACCAAATGAAGAAGTTAAAAAGGGATTATGGAAGACG


ID
CATGAGGTATTGAATCATGGAATTGCCTACTACATGAATATTCTGAAACTAATTAGACAGGAAGCTATTT


NO:
ATGAACATCATGAACAAGATCCTAAAAATCCGAAAAAAGTTTCAAAAGCAGAAATACAAGCCGAGTTA


34
TGGGATTTTGTTTTAAAAATGCAAAAATGTAATAGTTTTACACATGAAGTTGACAAAGATGTTGTTTTTA



ACATCCTGCGTGAACTATATGAAGAGTTGGTCCCTAGTTCAGTCGAGAAAAAGGGTGAAGCCAATCAAT



TATCGAATAAGTTTCTGTACCCGCTAGTTGATCCGAACAGTCAAAGTGGGAAAGGGACGGCATCATCCG



GACGTAAACCTCGGTGGTATAATTTAAAAATAGCAGGCGACCCATCGTGGGAGGAAGAAAAGAAAAAA



TGGGAAGAGGATAAAAAGAAAGATCCCCTTGCTAAAATCTTAGGTAAGTTAGCAGAATATGGGCTTATT



CCGCTATTTATTCCATTTACTGACAGCAACGAACCAATTGTAAAAGAAATTAAATGGATGGAAAAAAGT



CGTAATCAAAGTGTCCGGCGACTTGATAAGGATATGTTTATCCAAGCATTAGAGCGTTTTCTTTCATGGG



AAAGCTGGAACCTTAAAGTAAAGGAAGAGTATGAAAAAGTTGAAAAGGAACACAAAACACTAGAGGA



AAGGATAAAAGAGGACATTCAAGCATTTAAATCCCTTGAACAATATGAAAAAGAACGGCAGGAGCAAC



TTCTTAGAGATACATTGAATACAAATGAATACCGATTAAGCAAAAGAGGATTACGTGGTTGGCGTGAAA



TTATCCAAAAATGGCTAAAGATGGATGAAAATGAACCATCAGAAAAATATTTAGAAGTATTTAAAGATT



ATCAACGGAAACATCCACGAGAAGCCGGGGACTATTCTGTCTATGAATTTTTAAGCAAGAAAGAAAATC



ATTTTATTTGGCGAAATCATCCTGAATATCCTTATTTGTATGCTACATTTTGTGAAATTGACAAAAAAAA



GAAAGACGCTAAGCAACAGGCAACTTTTACTTTGGCTGACCCGATTAACCATCCGTTATGGGTACGATTT



GAAGAAAGAAGCGGTTCGAACTTAAACAAATATCGAATTTTAACAGAGCAATTACACACTGAAAAGTTA



AAAAAGAAATTAACAGTTCAACTTGATCGTTTAATTTATCCAACTGAATCCGGCGGTTGGGAGGAAAAA



GGTAAAGTAGATATCGTTTTGTTGCCGTCAAGACAATTTTATAATCAAATCTTCCTTGATATAGAAGAAA



AGGGGAAACATGCTTTTACTTATAAGGATGAAAGTATTAAATTCCCCCTTAAAGGTACACTTGGTGGTGC



AAGAGTGCAGTTTGACCGTGACCATTTGCGGAGATATCCGCATAAAGTAGAATCAGGAAATGTTGGACG



GATTTATTTTAACATGACAGTAAATATTGAACCAACTGAGAGCCCTGTTAGTAAGTCTTTGAAAATACAT



AGGGACGATTTCCCCAAGTTCGTTAATTTTAAACCGAAAGAGCTCACCGAATGGATAAAAGATAGTAAA



GGGAAAAAATTAAAAAGTGGTATAGAATCCCTTGAAATTGGTCTACGGGTGATGAGTATCGACTTAGGT



CAACGTCAAGCGGCTGCTGCATCGATTTTTGAAGTAGTTGATCAGAAACCGGATATTGAAGGGAAGTTA



TTTTTTCCAATCAAAGGAACTGAGCTTTATGCTGTTCACCGGGCAAGTTTTAACATTAAATTACCGGGTG



AAACATTAGTAAAATCACGGGAAGTATTGCGGAAAGCTCGGGAGGACAACTTAAAATTAATGAATCAA



AAGTTAAACTTTCTAAGAAATGTTCTACATTTCCAACAGTTTGAAGATATCACAGAAAGAGAGAAGCGT



GTAACTAAATGGATTTCTAGACAAGAAAATAGTGATGTTCCTCTTGTATATCAAGATGAGCTAATTCAAA



TTCGTGAATTAATGTATAAACCCTATAAAGATTGGGTTGCCTTTTTAAAACAACTCCATAAACGGCTAGA



AGTCGAGATTGGCAAAGAGGTTAAGCATTGGCGAAAATCATTAAGTGACGGGAGAAAAGGTCTTTACG



GAATCTCCCTAAAAAATATTGATGAAATTGATCGAACAAGGAAATTCCTTTTAAGATGGAGCTTACGTC



CAACAGAACCTGGGGAAGTAAGACGCTTGGAACCAGGACAGCGTTTTGCGATTGATCAATTAAACCACC



TAAATGCATTAAAAGAAGATCGATTAAAAAAGATGGCAAATACGATTATCATGCATGCCTTAGGTTACT



GTTATGATGTAAGAAAGAAAAAGTGGCAGGCAAAAAATCCAGCATGTCAAATTATTTTATTTGAAGATT



TATCTAACTACAATCCTTACGAGGAAAGGTCCCGTTTTGAAAACTCAAAACTGATGAAGTGGTCACGGA



GAGAAATTCCACGACAAGTCGCCTTACAAGGTGAAATTTACGGATTACAAGTTGGGGAAGTAGGTGCCC



AATTCAGTTCAAGATTCCATGCGAAAACCGGGTCGCCGGGAATTCGTTGCAGTGTTGTAACGAAAGAAA



AATTGCAGGATAATCGCTTTTTTAAAAATTTACAAAGAGAAGGACGACTTACTCTTGATAAAATCGCAG



TTTTAAAAGAAGGAGACTTATATCCAGATAAAGGTGGAGAAAAGTTTATTTCTTTATCAAAGGATCGAA



AGTTGGTAACTACGCATGCTGATATTAACGCGGCCCAAAATTTACAGAAGCGTTTTTGGACAAGAACAC



ATGGATTTTATAAAGTTTACTGCAAAGCCTATCAGGTTGATGGACAAACTGTTTATATTCCGGAGAGCAA



GGACCAAAAACAAAAAATAATTGAAGAATTTGGGGAAGGCTATTTTATTTTAAAAGATGGTGTATATGA



ATGGGGTAATGCGGGGAAACTAAAAATTAAAAAAGGTTCCTCTAAACAATCATCGAGTGAATTAGTAGA



TTCGGACATACTGAAAGATTCATTTGATTTAGCAAGTGAACTTAAGGGAGAGAAACTCATGTTATATCG



AGATCCGAGTGGAAACGTATTTCCTTCCGACAAGTGGATGGCAGCAGGAGTATTTTTTGGCAAATTAGA



AAGAATATTGATTTCTAAGTTAACAAATCAATACTCAATATCAACAATAGAAGATGATTCTTCAAAACA



ATCAATGTAA





SEQ
ATGCCCACCCGCACCATCAATCTGAAACTTGTTCTTGGGAAAAATCCTGAAAACGCAACATTGCGACGC


ID
GCCCTATTTTCGACACACCGTTTGGTTAACCAAGCGACGAAACGTATTGAGGAATTCTTGTTGCTGTGTC


NO:
GTGGAGAAGCCTACAGAACAGTGGATAATGAGGGGAAGGAAGCCGAGATTCCACGTCATGCAGTCCAA


35
GAAGAAGCTCTTGCCTTTGCCAAAGCTGCTCAACGCCACAACGGCTGTATATCCACCTATGAAGACCAA



GAGATTCTTGATGTACTGCGGCAACTGTACGAACGTCTTGTTCCTTCGGTCAACGAAAACAACGAGGCA



GGCGATGCTCAAGCTGCTAACGCCTGGGTCAGTCCGCTCATGTCGGCAGAAAGCGAAGGAGGCTTGTCG



GTCTACGACAAGGTGCTTGATCCACCGCCGGTTTGGATGAAGCTTAAAGAAGAAAAGGCTCCAGGATGG



GAAGCCGCTTCTCAAATTTGGATTCAGAGTGATGAGGGACAGTCGTTACTTAATAAGCCAGGTAGCCCT



CCCCGCTGGATTCGAAAACTGCGATCTGGGCAACCGTGGCAAGATGATTTCGTCAGTGACCAAAAGAAA



AAGCAAGATGAGCTGACCAAAGGGAACGCACCACTTATAAAACAACTCAAAGAAATGGGGTTGTTGCC



TCTTGTTAACCCATTTTTTAGACATCTTCTTGACCCTGAAGGTAAAGGCGTGAGTCCATGGGACCGTCTT



GCTGTACGCGCTGCAGTGGCTCACTTTATCTCCTGGGAAAGTTGGAATCATAGAACACGTGCAGAATAC



AATTCCTTGAAACTACGGCGAGACGAGTTTGAGGCAGCATCCGACGAATTCAAAGACGATTTTACTTTG



CTCCGACAATATGAAGCCAAACGCCATAGTACATTGAAAAGCATCGCGCTGGCCGACGATTCGAACCCT



TACCGGATTGGAGTACGTTCTCTGCGTGCCTGGAACCGCGTTCGTGAAGAATGGATAGACAAGGGTGCA



ACAGAAGAACAACGCGTGACCATATTGTCAAAGCTTCAAACACAACTTCGGGGAAAATTCGGCGATCCC



GATCTGTTCAACTGGCTAGCTCAGGATAGGCATGTCCATTTGTGGTCTCCTCGGGACAGCGTGACACCAT



TGGTTCGCATCAATGCGGTAGATAAAGTTCTGCGTCGACGAAAACCGTATGCATTGATGACCTTTGCCCA



TCCCCGCTTCCACCCTCGATGGATACTGTACGAGGCTCCAGGAGGAAGCAATCTCCGTCAATATGCATTG



GATTGTACAGAAAACGCTCTACACATCACGTTGCCTTTGCTTGTCGACGATGCGCACGGAACCTGGATTG



AAAAAAAGATCAGGGTGCCGCTGGCACCATCCGGACAAATTCAAGATTTAACTCTGGAAAAACTTGAGA



AGAAAAAAAATCGTTTATACTACCGTTCCGGTTTTCAGCAGTTTGCCGGCTTGGCTGGCGGAGCTGAGGT



TCTTTTCCACAGACCCTATATGGAACACGACGAACGCAGCGAGGAGTCTCTTTTGGAACGTCCGGGAGC



CGTTTGGTTCAAATTGACCCTGGATGTGGCAACACAGGCTCCCCCGAACTGGCTTGATGGTAAGGGCCG



TGTCCGTACACCGCCGGAGGTACATCATTTTAAAACCGCATTGTCGAATAAAAGCAAACATACACGTAC



GCTGCAGCCGGGTCTCCGTGTCTTGTCAGTAGACTTGGGCATGCGAACATTCGCCTCCTGCTCAGTATTT



GAACTCATCGAGGGAAAGCCTGAGACAGGCCGTGCCTTCCCTGTTGCCGATGAGAGATCAATGGACAGC



CCGAATAAACTGTGGGCCAAGCATGAACGTAGTTTTAAACTGACGCTCCCCGGCGAAACCCCTTCTCGA



AAGGAAGAGGAAGAGCGTAGCATAGCAAGAGCGGAAATTTATGCACTGAAACGCGACATACAACGCCT



CAAAAGCCTACTCCGCTTAGGTGAAGAAGATAACGATAACCGTCGTGATGCATTGCTTGAACAGTTCTTT



AAAGGATGGGGAGAAGAAGACGTTGTGCCTGGACAAGCGTTTCCACGCTCTCTTTTCCAAGGGTTGGGA



GCTGCCCCGTTTCGCTCAACTCCAGAGTTATGGCGTCAGCATTGCCAAACATATTATGACAAAGCGGAA



GCCTGTCTGGCTAAACATATCAGTGATTGGCGCAAGCGAACTCGTCCCCGTCCGACATCGCGGGAGATG



TGGTACAAAACACGTTCCTATCATGGCGGCAAGTCCATTTGGATGTTGGAATATCTTGATGCCGTTCGAA



AACTGCTTCTCAGTTGGAGCTTACGTGGTCGTACTTACGGTGCCATTAATCGCCAGGATACAGCCCGGTT



TGGTTCTTTGGCATCACGGCTGCTCCACCATATCAATTCCCTAAAGGAAGACCGCATCAAAACAGGAGC



CGACTCTATCGTTCAGGCTGCTCGCGGGTATATTCCTCTCCCTCATGGCAAGGGTTGGGAACAAAGATAT



GAGCCTTGTCAGCTCATATTATTTGAAGACCTCGCACGATATCGCTTTCGCGTGGATCGACCTCGTCGAG



AGAACAGCCAACTCATGCAGTGGAACCATCGAGCCATCGTGGCAGAAACAACGATGCAAGCCGAACTC



TACGGACAAATTGTCGAAAATACTGCAGCGGGGTTCAGCAGTCGTTTTCACGCGGCGACAGGTGCCCCC



GGTGTACGTTGTCGTTTTCTTCTAGAAAGAGACTTTGATAACGATTTGCCCAAACCGTACCTTCTCAGGG



AACTTTCTTGGATGCTCGGCAATACAAAAGTCGAGTCTGAAGAAGAAAAGCTTCGATTGCTGTCTGAAA



AAATCAGGCCAGGCAGTCTTGTTCCTTGGGATGGAGGCGAACAGTTCGCTACCCTGCATCCCAAAAGAC



AAACACTTTGCGTCATTCATGCCGATATGAATGCTGCCCAAAATTTACAACGCCGGTTTTTCGGTCGATG



CGGCGAGGCCTTTCGGCTTGTTTGTCAACCCCACGGTGACGACGTGTTACGACTCGCATCCACCCCAGGA



GCTCGTCTTCTTGGAGCCCTGCAGCAGCTTGAAAATGGACAAGGAGCTTTCGAGTTGGTTCGAGACATG



GGGTCAACAAGTCAAATGAACCGGTTCGTCATGAAGTCTTTGGGAAAAAAGAAAATAAAACCCCTTCAG



GACAACAATGGAGACGACGAGCTTGAAGACGTGTTGTCCGTACTCCCGGAGGAAGACGACACAGGACG



TATCACAGTCTTCCGCGATTCATCAGGAATCTTTTTTCCTTGCAACGTCTGGATACCGGCCAAACAGTTTT



GGCCAGCAGTACGCGCCATGATTTGGAAGGTCATGGCTTCCCATTCTTTGGGGTGA





SEQ
ATGACAAAGTTAAGACACCGACAGAAAAAATTAACACACGACTGGGCTGGCTCCAAAAAGAGGGAAGT


ID
ATTAGGCTCAAATGGCAAGCTTCAGAATCCGTTGTTAATGCCGGTTAAAAAAGGTCAGGTTACTGAGTT


NO:
CCGGAAAGCGTTTTCTGCGTATGCTCGCGCAACGAAAGGAGAAATGACTGACGGCCGAAAGAATATGTT


36
TACGCATAGTTTCGAGCCATTTAAGACAAAGCCCTCGCTTCATCAGTGTGAATTGGCAGATAAAGCATAT



CAATCTTTACATTCGTATCTGCCTGGTTCTCTTGCTCATTTTCTATTATCTGCTCACGCATTAGGTTTTCGT



ATTTTTTCAAAATCTGGTGAAGCAACTGCATTCCAGGCATCCTCTAAAATTGAAGCTTACGAATCAAAAT



TGGCAAGCGAATTAGCTTGTGTAGATTTATCTATTCAAAACTTGACTATTTCAACGCTTTTTAATGCGCTT



ACAACGTCTGTAAGAGGGAAGGGCGAAGAAACTAGCGCTGACCCCTTAATTGCACGATTTTACACCTTA



CTTACTGGCAAGCCTCTGTCTCGAGACACTCAAGGGCCTGAACGTGATTTAGCAGAAGTTATCTCGCGTA



AGATAGCTAGTTCTTTTGGCACATGGAAAGAAATGACGGCAAACCCTCTTCAGTCATTACAATTTTTTGA



AGAGGAACTCCATGCGCTGGATGCCAATGTCTCGCTCTCACCCGCCTTCGACGTTTTAATTAAAATGAAT



GATTTGCAGGGCGATTTAAAAAATCGAACCATTGTTTTTGATCCTGACGCCCCTGTTTTTGAATATAACG



CAGAAGACCCTGCCGACATAATTATTAAACTTACAGCTCGTTACGCTAAAGAAGCTGTCATCAAAAATC



AAAACGTAGGAAATTACGTTAAAAACGCTATTACTACCACAAATGCCAATGGTCTTGGTTGGCTTTTGA



ACAAAGGTTTGTCGTTACTCCCTGTCTCGACCGATGACGAATTGCTAGAGTTTATTGGCGTTGAACGATC



TCATCCCTCATGCCATGCCTTAATTGAATTGATTGCACAATTAGAAGCCCCCGAGCTCTTTGAGAAGAAC



GTATTTTCAGATACTCGTTCTGAAGTTCAAGGTATGATTGATTCAGCTGTTTCTAATCATATTGCTCGTCT



TTCCAGCTCTAGAAATAGCTTGTCAATGGATAGTGAAGAATTAGAACGTTTAATCAAAAGCTTTCAGAT



ACACACACCTCATTGCTCACTTTTTATTGGCGCCCAATCACTTTCACAGCAGTTAGAATCTTTGCCTGAA



GCCCTTCAATCGGGCGTTAATTCAGCCGATATTTTACTAGGCTCTACTCAATATATGCTCACCAATTCTTT



GGTTGAAGAGTCAATTGCAACTTATCAAAGAACACTTAATCGCATCAATTACTTGTCAGGTGTTGCAGGT



CAGATTAACGGCGCAATAAAGCGAAAAGCGATAGATGGAGAAAAAATTCACTTGCCTGCAGCTTGGTC



AGAGTTGATATCTTTACCATTTATAGGCCAGCCTGTTATAGATGTTGAAAGCGATTTAGCTCATCTAAAA



AATCAATACCAAACACTTTCAAATGAGTTTGATACTCTTATATCTGCTTTGCAAAAGAATTTTGATTTGA



ACTTTAATAAAGCGCTCCTTAATCGTACTCAGCATTTTGAAGCCATGTGTAGAAGCACTAAGAAAAACG



CTTTATCCAAACCAGAGATCGTTTCCTATCGCGACCTGCTTGCTCGATTAACTTCTTGTTTGTATCGAGGC



TCTTTAGTTTTGCGTCGTGCCGGCATTGAAGTGTTAAAAAAACATAAAATATTTGAGTCAAACAGCGAAC



TTCGTGAACATGTTCATGAAAGAAAGCATTTCGTGTTTGTTAGTCCTCTAGATCGCAAAGCCAAGAAACT



CCTTCGATTAACTGATTCGCGTCCAGACTTGTTACATGTTATTGATGAAATATTGCAGCACGATAATCTT



GAAAACAAAGACCGCGAGTCACTTTGGCTAGTTCGCTCTGGTTATTTGCTTGCAGGACTTCCAGATCAAC



TTTCTTCATCTTTTATTAACTTGCCTATCATTACTCAAAAAGGAGATAGACGCCTTATAGACCTGATTCAG



TATGATCAAATTAATCGTGATGCTTTTGTTATGTTAGTGACCTCTGCATTCAAGTCTAATTTGTCTGGTCT



GCAGTATCGTGCCAATAAGCAATCGTTCGTTGTTACTCGCACGCTAAGCCCTTATCTCGGCTCAAAACTT



GTCTACGTACCCAAGGATAAAGATTGGTTAGTTCCTTCTCAAATGTTTGAAGGACGATTTGCTGACATTC



TTCAATCAGATTATATGGTCTGGAAAGATGCCGGTCGTCTTTGTGTTATTGATACTGCAAAACACCTTTC



TAATATAAAGAAGTCTGTATTTTCATCCGAAGAAGTTCTCGCTTTTTTAAGAGAACTCCCTCACCGCACA



TTTATCCAGACCGAAGTTCGCGGCCTTGGCGTTAATGTCGATGGAATTGCATTTAATAATGGTGATATTC



CGTCATTAAAAACCTTTTCAAATTGCGTTCAGGTAAAAGTTTCTCGGACTAATACATCCCTAGTTCAAAC



ACTTAATCGTTGGTTTGAAGGAGGAAAAGTTTCTCCTCCGAGCATTCAATTTGAACGGGCGTATTATAAA



AAAGACGATCAAATTCATGAAGACGCAGCGAAAAGAAAGATACGATTCCAGATGCCCGCAACTGAGTT



GGTTCATGCTTCTGACGATGCGGGGTGGACACCAAGTTATTTGCTCGGCATTGATCCTGGCGAGTATGGA



ATGGGTCTTTCATTGGTTTCGATTAATAACGGAGAAGTCTTAGATTCAGGCTTTATTCATATTAATTCTCT



GATCAATTTTGCCTCTAAAAAGAGCAACCATCAAACTAAGGTTGTTCCGCGTCAGCAGTACAAATCTCCT



TATGCAAATTATTTAGAACAATCTAAAGATTCTGCTGCTGGTGATATTGCGCATATACTCGATCGACTTA



TATACAAATTAAATGCGTTGCCTGTTTTTGAGGCTCTTTCAGGTAATTCTCAGAGTGCTGCTGATCAAGTT



TGGACGAAAGTCTTATCGTTTTACACTTGGGGTGATAATGACGCTCAGAATTCTATTAGAAAGCAGCATT



GGTTTGGAGCCAGTCATTGGGATATCAAAGGTATGTTAAGGCAACCCCCTACGGAGAAGAAGCCTAAAC



CGTATATTGCTTTTCCTGGCTCTCAGGTTTCTTCGTATGGTAATTCCCAACGTTGCTCTTGCTGCGGTCGC



AATCCTATTGAACAACTTCGAGAAATGGCAAAGGATACCTCTATTAAAGAGCTAAAAATTCGCAATTCT



GAGATACAGCTTTTTGACGGAACCATTAAATTATTTAATCCAGACCCATCCACTGTGATAGAGAGAAGG



CGACATAATCTTGGTCCATCAAGAATTCCTGTTGCTGACCGTACTTTCAAAAACATCAGTCCATCAAGTC



TAGAATTTAAAGAATTGATTACTATCGTGTCTCGATCTATCCGTCATTCACCTGAGTTTATCGCTAAAAA



ACGCGGCATAGGGTCTGAGTATTTTTGCGCTTATTCCGATTGCAACTCATCCTTAAATTCTGAAGCTAAC



GCAGCTGCTAACGTAGCGCAAAAATTTCAAAAACAGTTATTTTTTGAGTTATAA





SEQ
ATGAAGAGAATTCTGAACAGTCTGAAAGTTGCTGCCTTGAGACTTCTGTTTCGAGGCAAAGGTTCTGAAT


ID
TAGTGAAGACAGTCAAATATCCATTGGTTTCCCCGGTTCAAGGCGCGGTTGAAGAACTTGCTGAAGCAA


NO:
TTCGGCACGACAACCTGCACCTTTTTGGGCAGAAGGAAATAGTGGATCTTATGGAGAAAGACGAAGGAA


37
CCCAGGTGTATTCGGTTGTGGATTTTTGGTTGGATACCCTGCGTTTAGGGATGTTTTTCTCACCATCAGCG



AATGCGTTGAAAATCACGCTGGGAAAATTCAATTCTGATCAGGTTTCACCTTTTCGTAAGGTTTTGGAGC



AGTCACCTTTTTTTCTTGCGGGTCGCTTGAAGGTTGAACCTGCGGAAAGGATACTTTCTGTTGAAATCAG



AAAGATTGGTAAAAGAGAAAACAGAGTTGAGAACTATGCCGCCGATGTGGAGACATGCTTCATTGGTCA



GCTTTCTTCAGATGAGAAACAGAGTATCCAGAAGCTGGCAAATGATATCTGGGATAGCAAGGATCATGA



GGAACAGAGAATGTTGAAGGCGGATTTTTTTGCTATACCTCTTATAAAAGACCCCAAAGCTGTCACAGA



AGAAGATCCTGAAAATGAAACGGCGGGAAAACAGAAACCGCTTGAATTATGTGTTTGTCTTGTTCCTGA



GTTGTATACCCGAGGTTTCGGCTCCATTGCTGATTTTCTGGTTCAGCGACTTACCTTGCTGCGTGACAAA



ATGAGTACCGACACGGCGGAAGATTGCCTCGAGTATGTTGGCATTGAGGAAGAAAAAGGCAATGGAAT



GAATTCCTTGCTCGGCACTTTTTTGAAGAACCTGCAGGGTGATGGTTTTGAACAGATTTTTCAGTTTATGC



TTGGGTCTTATGTTGGCTGGCAGGGGAAGGAAGATGTACTGCGCGAACGATTGGATTTGCTGGCCGAAA



AAGTCAAAAGATTACCAAAGCCAAAATTTGCCGGAGAATGGAGTGGTCATCGTATGTTTCTCCATGGTC



AGCTGAAAAGCTGGTCGTCGAATTTCTTCCGTCTTTTTAATGAGACGCGGGAACTTCTGGAAAGTATCAA



GAGTGATATTCAACATGCCACCATGCTCATTAGCTATGTGGAAGAGAAAGGAGGCTATCATCCACAGCT



GTTGAGTCAGTATCGGAAGTTAATGGAACAATTACCGGCGTTGCGGACTAAGGTTTTGGATCCTGAGAT



TGAGATGACGCATATGTCCGAGGCTGTTCGAAGTTACATTATGATACACAAGTCTGTAGCGGGATTTCTG



CCGGATTTACTCGAGTCTTTGGATCGAGATAAGGATAGGGAATTTTTGCTTTCCATCTTTCCTCGTATTCC



AAAGATAGATAAGAAGACGAAAGAGATCGTTGCATGGGAGCTACCGGGCGAGCCAGAGGAAGGCTATT



TGTTCACAGCAAACAACCTTTTCCGGAATTTTCTTGAGAATCCGAAACATGTGCCACGATTTATGGCAGA



GAGGATTCCCGAGGATTGGACGCGTTTGCGCTCGGCCCCTGTGTGGTTTGATGGGATGGTGAAGCAATG



GCAGAAGGTGGTGAATCAGTTGGTTGAATCTCCAGGCGCCCTTTATCAGTTCAATGAAAGTTTTTTGCGT



CAAAGACTGCAAGCAATGCTTACGGTCTATAAGCGGGATCTCCAGACTGAGAAGTTTCTGAAGCTGCTG



GCTGATGTCTGTCGTCCACTCGTTGATTTTTTCGGACTTGGAGGAAATGATATTATCTTCAAGTCATGTCA



GGATCCAAGAAAGCAATGGCAGACTGTTATTCCACTCAGTGTCCCAGCGGATGTTTATACAGCATGTGA



AGGCTTGGCTATTCGTCTCCGCGAAACTCTTGGATTCGAATGGAAAAATCTGAAAGGACACGAGCGGGA



AGATTTTTTACGGCTGCATCAGTTGCTGGGAAATCTGCTGTTCTGGATCAGGGATGCGAAACTTGTCGTG



AAGCTGGAAGACTGGATGAACAATCCTTGTGTTCAGGAGTATGTGGAAGCACGAAAAGCCATTGATCTT



CCCTTGGAGATTTTCGGATTTGAGGTGCCGATTTTTCTCAATGGCTATCTCTTTTCGGAACTGCGCCAGCT



GGAATTGTTGCTGAGGCGTAAGTCGGTGATGACGTCTTACAGCGTCAAAACGACAGGCTCGCCAAATAG



GCTCTTCCAGTTGGTTTACCTACCTCTAAACCCTTCAGATCCGGAAAAGAAAAATTCCAACAACTTTCAG



GAGCGCCTCGATACACCTACCGGTTTGTCGCGTCGTTTTCTGGATCTTACGCTGGATGCATTTGCTGGCA



AACTCTTGACGGATCCGGTAACTCAGGAACTGAAGACGATGGCCGGTTTTTACGATCATCTCTTTGGCTT



CAAGTTGCCGTGTAAACTGGCGGCGATGAGTAACCATCCAGGATCCTCTTCCAAAATGGTGGTTCTGGC



AAAACCAAAGAAGGGTGTTGCTAGTAACATCGGCTTTGAACCTATTCCCGATCCTGCTCATCCTGTGTTC



CGGGTGAGAAGTTCCTGGCCGGAGTTGAAGTACCTGGAGGGGTTGTTGTATCTTCCCGAAGATACACCA



CTGACCATTGAACTGGCGGAAACGTCGGTCAGTTGTCAGTCTGTGAGTTCAGTCGCTTTCGATTTGAAGA



ATCTGACGACTATCTTGGGTCGTGTTGGTGAATTCAGGGTGACGGCAGATCAACCTTTCAAGCTGACGCC



CATTATTCCTGAGAAAGAGGAATCCTTCATCGGGAAGACCTACCTCGGTCTTGATGCTGGAGAGCGATC



TGGCGTTGGTTTCGCGATTGTGACGGTTGACGGCGATGGGTATGAGGTGCAGAGGTTGGGTGTGCATGA



AGATACTCAGCTTATGGCGCTTCAGCAAGTCGCCAGCAAGTCTCTTAAGGAGCCGGTTTTCCAGCCACTC



CGTAAGGGCACATTTCGTCAGCAGGAGCGCATTCGCAAAAGCCTCCGCGGTTGCTACTGGAATTTCTATC



ATGCATTGATGATCAAGTACCGAGCTAAAGTTGTGCATGAGGAATCGGTGGGTTCATCCGGTCTGGTGG



GGCAGTGGCTGCGTGCATTTCAGAAGGATCTCAAAAAGGCTGATGTTCTGCCCAAGAAGGGTGGAAAAA



ATGGTGTAGACAAAAAAAAGAGAGAAAGCAGCGCTCAGGATACCTTATGGGGAGGAGCTTTCTCGAAG



AAGGAAGAGCAGCAGATAGCCTTTGAGGTTCAGGCAGCTGGATCAAGCCAGTTTTGTCTGAAGTGTGGT



TGGTGGTTTCAGTTGGGGATGCGGGAAGTAAATCGTGTGCAGGAGAGTGGCGTGGTGCTGGACTGGAAC



CGGTCCATTGTAACCTTCCTCATCGAATCCTCAGGAGAAAAGGTATATGGTTTCAGTCCTCAGCAACTGG



AAAAAGGCTTTCGTCCTGACATCGAAACGTTCAAAAAAATGGTAAGGGATTTTATGAGACCCCCCATGT



TTGATCGCAAAGGTCGGCCGGCCGCGGCGTATGAAAGATTCGTACTGGGACGTCGTCACCGTCGTTATC



GCTTTGATAAAGTTTTTGAAGAGAGATTTGGTCGCAGTGCTCTTTTCATCTGCCCGCGGGTCGGGTGTGG



GAATTTCGATCACTCCAGTGAGCAGTCAGCCGTTGTCCTTGCCCTTATTGGTTACATTGCTGATAAGGAA



GGGATGAGTGGTAAGAAGCTTGTTTATGTGAGGCTGGCTGAACTTATGGCTGAGTGGAAGCTGAAGAAA



CTGGAGAGATCAAGGGTGGAAGAACAGAGCTCGGCACAATAA





SEQ
ATGGCAGAAAGCAAGCAGATGCAATGCCGCAAGTGCGGCGCAAGCATGAAGTATGAAGTAATTGGATT


ID
GGGCAAGAAGTCATGCAGATATATGTGCCCAGATTGCGGCAATCACACCAGCGCGCGCAAGATTCAGA


NO:
ACAAGAAAAAGCGCGACAAAAAGTATGGATCCGCAAGCAAAGCGCAGAGCCAGAGGATAGCTGTGGCT


38
GGCGCGCTTTATCCAGACAAAAAAGTGCAGACCATAAAGACCTACAAATACCCAGCGGATCTTAATGGC



GAAGTTCATGACAGCGGCGTCGCAGAGAAGATTGCGCAGGCGATTCAGGAAGATGAGATCGGCCTGCTT



GGCCCGTCCAGCGAATACGCTTGCTGGATTGCTTCACAAAAACAGAGCGAGCCGTATTCAGTTGTAGAT



TTTTGGTTTGACGCGGTGTGCGCAGGCGGAGTATTCGCGTATTCTGGCGCGCGCCTGCTTTCCACAGTCC



TCCAGTTGAGTGGCGAGGAAAGCGTTTTGCGCGCTGCTTTAGCATCTAGCCCGTTTGTAGATGACATTAA



TTTGGCGCAAGCGGAAAAGTTCCTAGCCGTTAGCCGGCGCACAGGCCAAGATAAGCTAGGCAAGCGCAT



TGGAGAATGTTTTGCGGAAGGCCGGCTTGAAGCGCTTGGCATCAAAGATCGCATGCGCGAATTCGTGCA



AGCGATTGATGTGGCCCAAACCGCGGGCCAGCGGTTCGCGGCCAAGCTAAAGATATTCGGCATCAGTCA



GATGCCTGAAGCCAAGCAATGGAACAATGATTCCGGGCTCACTGTATGTATTTTGCCGGATTATTATGTC



CCGGAAGAAAACCGCGCGGACCAGCTGGTTGTTTTGCTTCGGCGCTTACGCGAGATCGCGTATTGCATG



GGAATTGAGGATGAAGCAGGATTTGAGCATCTAGGCATTGACCCTGGTGCTCTTTCCAATTTTTCCAATG



GCAATCCAAAGCGAGGATTTCTCGGCCGCCTGCTCAATAATGACATTATAGCGCTGGCAAACAACATGT



CAGCCATGACGCCGTATTGGGAAGGCAGAAAAGGCGAGTTGATTGAGCGCCTTGCATGGCTTAAACATC



GCGCTGAAGGATTGTATTTGAAAGAGCCACATTTCGGCAACTCCTGGGCAGACCACCGCAGCAGGATTT



TCAGTCGCATTGCGGGCTGGCTTTCCGGATGCGCGGGCAAGCTCAAGATTGCCAAGGATCAGATTTCAG



GCGTGCGTACGGATTTGTTTCTGCTCAAGCGCCTTCTGGATGCGGTACCGCAAAGCGCGCCGTCGCCGGA



CTTTATTGCTTCCATCAGCGCGCTGGATCGGTTTTTGGAAGCGGCAGAAAGCAGCCAGGATCCGGCAGA



ACAGGTACGCGCTTTGTACGCGTTTCATCTGAACGCGCCTGCGGTCCGATCCATCGCCAACAAGGCGGT



ACAGAGGTCTGATTCCCAGGAGTGGCTTATCAAGGAACTGGATGCTGTAGATCACCTTGAATTCAACAA



AGCATTTCCGTTTTTTTCGGATACAGGAAAGAAAAAGAAGAAAGGAGCGAATAGCAACGGAGCGCCTTC



TGAAGAAGAATACACGGAAACAGAATCCATTCAACAACCAGAAGATGCAGAGCAGGAAGTGAATGGTC



AAGAAGGAAATGGCGCTTCAAAGAACCAGAAAAAGTTTCAGCGCATTCCTCGATTTTTCGGGGAAGGGT



CAAGGAGTGAGTATCGAATTTTAACAGAAGCGCCGCAATATTTTGACATGTTCTGCAATAATATGCGCG



CGATCTTTATGCAGCTAGAGAGTCAGCCGCGCAAGGCGCCTCGTGATTTCAAATGCTTTCTGCAGAATCG



TTTGCAGAAGCTTTACAAGCAAACCTTTCTCAATGCTCGCAGTAATAAATGCCGCGCGCTTCTGGAATCC



GTCCTTATTTCATGGGGAGAATTTTATACTTATGGCGCGAATGAAAAGAAGTTTCGTCTGCGCCATGAAG



CGAGCGAGCGCAGCTCGGATCCGGACTATGTGGTTCAGCAGGCATTGGAAATCGCGCGCCGGCTTTTCT



TGTTCGGATTTGAGTGGCGCGATTGCTCTGCTGGAGAGCGCGTGGATTTGGTTGAAATCCACAAAAAAG



CAATCTCATTTTTGCTTGCAATCACTCAGGCCGAGGTTTCAGTTGGTTCCTATAACTGGCTTGGGAATAG



CACCGTGAGCCGGTATCTTTCGGTTGCTGGCACAGACACATTGTACGGCACTCAACTGGAGGAGTTTTTG



AACGCCACAGTGCTTTCACAGATGCGTGGGCTGGCGATTCGGCTTTCATCTCAGGAGTTAAAAGACGGA



TTTGATGTTCAGTTGGAGAGTTCGTGCCAGGACAATCTCCAGCATCTGCTGGTGTATCGCGCTTCGCGCG



ACTTGGCTGCGTGCAAACGCGCTACATGCCCGGCTGAATTGGATCCGAAAATTCTTGTTCTGCCGGTTGG



TGCGTTTATCGCGAGCGTAATGAAAATGATTGAGCGTGGCGATGAACCATTAGCAGGCGCGTATTTGCG



TCATCGGCCGCATTCATTCGGCTGGCAGATACGGGTTCGTGGAGTGGCGGAAGTAGGCATGGATCAGGG



CACAGCGCTAGCATTCCAGAAGCCGACTGAATCAGAGCCGTTTAAAATAAAGCCGTTTTCCGCTCAATA



CGGCCCAGTACTTTGGCTTAATTCTTCATCCTATAGCCAGAGCCAGTATCTGGATGGATTTTTAAGCCAG



CCAAAGAATTGGTCTATGCGGGTGCTACCTCAAGCCGGATCAGTGCGCGTGGAACAGCGCGTTGCTCTG



ATATGGAATTTGCAGGCAGGCAAGATGCGGCTGGAGCGCTCTGGAGCGCGCGCGTTTTTCATGCCAGTG



CCATTCAGCTTCAGGCCGTCTGGTTCAGGAGATGAAGCAGTATTGGCGCCGAATCGGTACTTGGGACTTT



TTCCGCATTCCGGAGGAATAGAATACGCGGTGGTGGATGTATTAGATTCCGCGGGTTTCAAAATTCTTGA



GCGCGGTACGATTGCGGTAAATGGCTTTTCCCAGAAGCGCGGCGAACGCCAAGAGGAGGCACACAGAG



AAAAACAGAGACGCGGAATTTCTGATATAGGCCGCAAGAAGCCGGTGCAAGCTGAAGTTGACGCAGCC



AATGAATTGCACCGCAAATACACCGATGTTGCCACTCGTTTAGGGTGCAGAATTGTGGTTCAGTGGGCG



CCCCAGCCAAAGCCGGGCACAGCGCCGACCGCGCAAACAGTATACGCGCGCGCAGTGCGGACCGAAGC



GCCGCGATCTGGAAATCAAGAGGATCATGCTCGTATGAAATCCTCTTGGGGATATACCTGGGGCACCTA



TTGGGAGAAGCGCAAACCAGAGGATATTTTGGGCATCTCAACCCAAGTATACTGGACCGGCGGTATAGG



CGAGTCATGTCCCGCAGTCGCGGTTGCGCTTTTGGGGCACATTAGGGCAACATCCACTCAAACTGAATG



GGAAAAAGAGGAGGTTGTATTCGGTCGACTGAAGAAGTTCTTTCCAAGCTAG





SEQ
ATGGAAAAGAGAATAAACAAGATACGAAAGAAACTATCGGCCGATAATGCCACAAAGCCTGTGAGCAG


ID
GAGCGGCCCCATGAAAACACTCCTTGTCCGGGTCATGACGGACGACTTGAAAAAAAGACTGGAGAAGC


NO:
GTCGGAAAAAGCCGGAAGTTATGCCGCAGGTTATTTCAAATAACGCAGCAAACAATCTTAGAATGCTCC


39
TTGATGACTATACAAAGATGAAGGAGGCGATACTACAAGTTTACTGGCAGGAATTTAAGGACGACCATG



TGGGCTTGATGTGCAAATTTGCCCAGCCTGCTTCCAAAAAAATTGACCAGAACAAACTAAAACCGGAAA



TGGATGAAAAAGGAAATCTAACAACTGCCGGTTTTGCATGTTCTCAATGCGGTCAGCCGCTATTTGTTTA



TAAGCTTGAACAGGTGAGTGAAAAAGGCAAGGCTTATACAAATTACTTCGGCCGGTGTAATGTGGCCGA



GCATGAGAAATTGATTCTTCTTGCTCAATTAAAACCTGAAAAAGACAGTGACGAAGCAGTGACATACTC



CCTTGGCAAATTCGGCCAGAGGGCATTGGACTTTTATTCAATCCACGTAACAAAAGAATCCACCCATCC



AGTAAAGCCCCTGGCACAGATTGCGGGCAACCGCTATGCAAGCGGACCTGTTGGCAAGGCCCTTTCCGA



TGCCTGTATGGGCACTATAGCCAGTTTTCTTTCGAAATATCAAGACATCATCATAGAACATCAAAAGGTT



GTGAAGGGTAATCAAAAGAGGTTAGAGAGTCTCAGGGAATTGGCAGGGAAAGAAAATCTTGAGTACCC



ATCGGTTACACTGCCGCCGCAGCCGCATACGAAAGAAGGGGTTGACGCTTATAACGAAGTTATTGCAAG



GGTACGTATGTGGGTTAATCTTAATCTGTGGCAAAAGCTGAAGCTCAGCCGTGATGACGCAAAACCGCT



ACTGCGGCTAAAAGGATTCCCATCTTTCCCTGTTGTGGAGCGGCGTGAAAACGAAGTTGACTGGTGGAA



TACGATTAATGAAGTAAAAAAACTGATTGACGCTAAACGAGATATGGGACGGGTATTCTGGAGCGGCGT



TACCGCAGAAAAGAGAAATACCATCCTTGAAGGATACAACTATCTGCCAAATGAGAATGACCATAAAA



AGAGAGAGGGCAGTTTGGAAAACCCTAAGAAGCCTGCCAAACGCCAGTTTGGAGACCTCTTGCTGTATC



TTGAAAAGAAATATGCCGGAGACTGGGGAAAGGTCTTCGATGAGGCATGGGAGAGGATAGATAAGAAA



ATAGCCGGACTCACAAGCCATATAGAGCGCGAAGAAGCAAGAAACGCGGAAGACGCTCAATCCAAAGC



CGTACTTACAGACTGGCTAAGGGCAAAGGCATCATTTGTTCTTGAAAGACTGAAGGAAATGGATGAAAA



GGAATTCTATGCGTGTGAAATCCAACTTCAAAAATGGTATGGCGATCTTCGAGGCAACCCGTTTGCCGTT



GAAGCTGAGAATAGAGTTGTTGATATAAGCGGGTTTTCTATCGGAAGCGATGGCCATTCAATCCAATAC



AGAAATCTCCTTGCCTGGAAATATCTGGAGAACGGCAAGCGTGAATTCTATCTGTTAATGAATTATGGC



AAGAAAGGGCGCATCAGATTTACAGATGGAACAGATATTAAAAAGAGCGGCAAATGGCAGGGACTATT



ATATGGCGGTGGCAAGGCAAAGGTTATTGATCTGACTTTCGACCCCGATGATGAACAGTTGATAATCCT



GCCGCTGGCCTTTGGCACAAGGCAAGGCCGCGAGTTTATCTGGAACGATTTGCTGAGTCTTGAAACAGG



CCTGATAAAGCTCGCAAACGGAAGAGTTATCGAAAAAACAATCTATAACAAAAAAATAGGGCGGGATG



AACCGGCTCTATTCGTTGCCTTAACATTTGAGCGCCGGGAAGTTGTTGATCCATCAAATATAAAGCCTGT



AAACCTTATAGGCGTTGACCGCGGCGAAAACATCCCGGCGGTTATTGCATTGACAGACCCTGAAGGTTG



TCCTTTACCGGAATTCAAGGATTCATCAGGGGGCCCAACAGACATCCTGCGAATAGGAGAAGGATATAA



GGAAAAGCAGAGGGCTATTCAGGCAGCAAAGGAGGTAGAGCAAAGGCGGGCTGGCGGTTATTCACGGA



AGTTTGCATCCAAGTCGAGGAACCTGGCGGACGACATGGTGAGAAATTCAGCGCGAGACCTTTTTTACC



ATGCCGTTACCCACGATGCCGTCCTTGTCTTTGAAAACCTGAGCAGGGGTTTTGGAAGGCAGGGCAAAA



GGACCTTCATGACGGAAAGACAATATACAAAGATGGAAGACTGGCTGACAGCGAAGCTCGCATACGAA



GGTCTTACGTCAAAAACCTACCTTTCAAAGACGCTGGCGCAATATACGTCAAAAACATGCTCCAACTGC



GGGTTTACTATAACGACTGCCGATTATGACGGGATGTTGGTAAGGCTTAAAAAGACTTCTGATGGATGG



GCAACTACCCTCAACAACAAAGAATTAAAAGCCGAAGGCCAGATAACGTATTATAACCGGTATAAAAG



GCAAACCGTGGAAAAAGAACTCTCCGCAGAGCTTGACAGGCTTTCAGAAGAGTCGGGCAATAATGATAT



TTCTAAGTGGACCAAGGGTCGCCGGGACGAGGCATTATTTTTGTTAAAGAAAAGATTCAGCCATCGGCC



TGTTCAGGAACAGTTTGTTTGCCTCGATTGCGGCCATGAAGTCCACGCCGATGAACAGGCAGCCTTGAAT



ATTGCAAGGTCATGGCTTTTTCTAAACTCAAATTCAACAGAATTCAAAAGTTATAAATCGGGTAAACAG



CCCTTCGTTGGTGCTTGGCAGGCCTTTTACAAAAGGAGGCTTAAAGAGGTATGGAAGCCCAACGCC





SEQ
ATGAAAAGGATAAATAAAATACGAAGGAGATTGGTAAAGGATAGCAACACGAAAAAAGCCGGCAAAA


ID
CCGGCCCTATGAAAACCTTGCTCGTTCGGGTTATGACACCTGACCTGAGAGAAAGGTTAGAGAATCTTC


NO:
GCAAAAAGCCGGAAAACATTCCTCAGCCCATTTCAAATACTTCACGTGCAAATTTAAATAAACTCCTCA


40
CTGACTATACGGAAATGAAGAAAGCAATCCTGCATGTTTATTGGGAAGAGTTCCAAAAAGACCCTGTCG



GATTGATGAGCAGGGTTGCACAACCAGCGCCCAAGAATATTGATCAGAGAAAATTGATTCCGGTGAAGG



ACGGAAATGAGAGACTAACAAGTTCTGGATTTGCCTGTTCTCAGTGCTGTCAACCCCTCTATGTTTATAA



GCTTGAACAAGTGAATGACAAGGGTAAGCCCCATACAAATTACTTTGGCCGTTGTAATGTCTCCGAGCA



TGAACGTTTGATATTGCTCTCGCCGCATAAACCGGAGGCAAATGACGAGCTAGTAACGTATTCGTTGGG



GAAGTTCGGTCAAAGGGCATTGGACTTTTATTCAATCCACGTAACAAGAGAATCGAACCATCCTGTAAA



GCCGCTAGAACAGATCGGTGGCAATAGCTGCGCAAGTGGTCCCGTTGGTAAGGCTTTATCTGATGCCTG



TATGGGAGCAGTAGCCAGTTTCCTTACAAAGTACCAGGACATCATCCTCGAACACCAAAAGGTTATAAA



AAAAAACGAAAAGAGATTGGCAAATCTAAAGGATATAGCAAGTGCAAACGGGCTTGCATTTCCTAAAA



TCACTCTTCCACCGCAACCGCATACAAAAGAAGGGATTGAAGCTTATAACAATGTTGTTGCTCAGATAG



TGATCTGGGTAAACCTGAATCTTTGGCAGAAACTCAAAATTGGCAGGGATGAGGCAAAGCCCTTACAGC



GGCTTAAGGGTTTTCCGTCCTTCCCTCTTGTTGAACGCCAGGCGAATGAGGTTGATTGGTGGGATATGGT



CTGTAATGTCAAAAAGTTGATTAACGAAAAGAAAGAGGACGGGAAGGTCTTCTGGCAAAATCTTGCTGG



ATATAAAAGGCAGGAAGCCTTGCTTCCATATCTTTCGTCTGAAGAAGACCGTAAAAAAGGAAAAAAGTT



TGCGCGTTATCAGTTTGGTGACCTTTTGCTTCACCTTGAAAAGAAACACGGTGAAGATTGGGGCAAAGTT



TATGATGAGGCATGGGAAAGAATAGATAAAAAAGTTGAAGGTCTGAGTAAGCACATAAAGTTGGAGGA



AGAAAGAAGGTCTGAAGATGCTCAATCAAAGGCTGCCCTCACTGATTGGCTCAGGGCAAAGGCCTCTTT



TGTTATTGAAGGGCTCAAAGAAGCTGATAAGGATGAGTTTTGCAGGTGTGAGTTAAAGCTTCAAAAGTG



GTATGGAGATTTGAGAGGAAAACCATTTGCTATAGAAGCAGAGAACAGCATTTTAGATATAAGCGGATT



TTCTAAACAGTATAATTGTGCATTTATATGGCAGAAAGACGGCGTAAAGAAGTTAAATCTTTATTTAATA



ATAAATTACTTCAAAGGTGGTAAGCTACGCTTCAAAAAAATCAAGCCAGAAGCTTTTGAAGCAAATAGG



TTTTATACAGTAATTAATAAAAAAAGCGGTGAGATTGTGCCTATGGAGGTCAACTTCAATTTTGATGACC



CGAATTTGATAATTCTGCCTTTGGCCTTTGGAAAAAGGCAGGGGAGGGAGTTTATCTGGAACGACCTATT



GAGCCTTGAGACGGGTTCATTGAAACTCGCCAATGGCAGGGTTATTGAAAAAACGCTCTATAACAGAAG



GACGAGACAGGATGAACCAGCACTTTTTGTTGCCCTGACATTTGAAAGAAGAGAGGTGCTTGACTCATC



GAATATAAAACCGATGAATCTGATAGGAATAGACCGGGGAGAAAATATCCCGGCAGTCATAGCATTAA



CAGACCCGGAAGGATGCCCCTTGTCAAGATTCAAAGATTCATTGGGCAATCCAACGCATATTTTGCGAA



TAGGAGAAAGTTATAAGGAAAAACAACGGACTATTCAGGCTGCTAAAGAAGTTGAACAAAGGCGGGCA



GGCGGATATTCGAGAAAATATGCATCAAAGGCGAAGAATCTGGCGGACGATATGGTAAGAAATACAGC



TCGTGACCTCTTATATTATGCTGTTACTCAAGATGCAATGCTCATTTTTGAAAATCTTTCCCGCGGTTTTG



GTAGACAAGGCAAGAGGACTTTTATGGCGGAAAGGCAGTACACGAGGATGGAAGACTGGCTGACTGCA



AAGCTTGCCTATGAAGGTCTGCCATCAAAAACCTATCTTTCAAAGACTCTGGCACAGTATACCTCAAAG



ACATGTTCTAATTGTGGTTTTACAATCACAAGTGCAGATTATGACAGGGTGCTCGAAAAGCTCAAGAAG



ACGGCTACTGGATGGATGACTACAATCAATGGAAAAGAGTTAAAAGTTGAAGGACAGATAACATACTA



TAACCGGTATAAAAGGCAGAATGTGGTAAAAGACCTCTCTGTAGAGCTGGATAGACTTTCGGAAGAGTC



GGTAAATAATGATATTTCTAGTTGGACAAAAGGCCGCAGTGGTGAAGCTTTATCTCTGCTAAAAAAGAG



ATTTAGTCACAGGCCGGTGCAGGAAAAGTTTGTTTGCCTGAACTGTGGTTTTGAAACCCATGCAGACGA



ACAAGCAGCACTGAATATTGCAAGGTCGTGGCTCTTTCTCCGTTCTCAAGAATATAAGAAGTATCAAAC



CAATAAAACGACCGGAAATACTGACAAAAGGGCATTTGTTGAAACATGGCAATCCTTTTACAGAAAGAA



GCTCAAAGAAGTATGGAAACCA





SEQ
ATGGGTAAAATGTATTACCTTGGTTTAGACATTGGCACGAATTCCGTGGGCTACGCGGTGACCGACCCCT


ID
CATACCACCTGCTGAAGTTTAAGGGGGAACCAATGTGGGGTGCGCACGTATTTGCCGCCGGTAATCAGA


NO:
GCGCGGAACGACGCTCGTTCCGCACATCGCGTCGTCGTTTGGACCGACGCCAACAGCGCGTTAAACTGG


41
TACAGGAGATTTTTGCCCCGGTGATTAGTCCGATCGACCCACGCTTCTTCATTCGTCTGCATGAATCCGC



CCTGTGGCGCGATGACGTCGCGGAGACGGATAAACATATCTTTTTCAATGATCCTACCTATACCGATAAG



GAATATTATAGCGATTACCCGACTATCCATCACCTGATCGTTGATCTGATGGAAAGCTCTGAGAAACAC



GATCCGCGGCTGGTGTACCTTGCAGTGGCGTGGTTAGTGGCACACCGTGGTCATTTTCTGAACGAGGTGG



ACAAGGATAATATTGGAGATGTGTTGTCGTTCGACGCATTTTATCCGGAGTTTCTCGCGTTCCTGTCGGA



CAACGGTGTATCACCGTGGGTGTGCGAAAGCAAAGCGCTGCAGGCGACCTTGCTGAGCCGTAACTCAGT



GAACGACAAATATAAAGCCCTTAAGTCTCTGATCTTCGGATCCCAGAAACCTGAAGATAACTTCGATGC



CAATATTTCGGAAGATGGACTCATTCAACTGCTGGCCGGCAAAAAGGTAAAAGTTAACAAACTGTTCCC



TCAGGAATCGAACGATGCATCCTTCACATTGAATGATAAAGAAGACGCGATAGAAGAAATCCTGGGTAC



GCTTACACCAGATGAATGTGAATGGATTGCGCATATACGCCGCCTTTTTGACTGGGCTATCATGAAACAT



GCTCTGAAAGATGGCAGGACTATTAGCGAGTCAAAAGTCAAACTGTATGAGCAGCACCATCACGATCTG



ACCCAACTTAAATACTTCGTGAAAACCTACCTTGCAAAAGAATACGACGATATTTTCCGCAACGTGGAT



AGCGAAACAACGAAAAACTATGTAGCGTATTCCTATCATGTGAAAGAGGTGAAAGGCACTCTGCCTAAA



AATAAGGCAACGCAAGAAGAGTTTTGTAAGTATGTCCTGGGCAAGGTTAAAAACATTGAATGCTCTGAA



GCAGACAAGGTTGACTTTGATGAGATGATTCAGCGTCTTACCGACAACTCTTTTATGCCTAAGCAGGTTT



CGGGCGAAAACCGCGTTATTCCTTATCAGTTATATTATTATGAACTGAAGACAATTCTGAATAAAGCAGC



CTCGTACCTGCCTTTCCTGACGCAGTGTGGAAAAGATGCAATTTCGAACCAGGACAAACTACTGTCGATC



ATGACGTTCCGTATTCCTTACTTCGTCGGACCCTTGCGAAAAGATAATTCGGAACATGCATGGCTCGAAC



GAAAGGCCGGTAAGATTTATCCGTGGAACTTTAACGACAAAGTGGACTTGGATAAATCAGAAGAAGCGT



TCATTCGCCGAATGACCAATACCTGTACCTATTATCCCGGCGAAGATGTTTTACCGTTGGATTCGCTGAT



CTATGAGAAATTTATGATTTTAAATGAAATCAATAATATTCGTATTGACGGCTACCCGATTAGTGTTGAC



GTTAAACAGCAGGTTTTTGGCTTGTTCGAAAAAAAACGACGCGTAACCGTGAAAGATATTCAGAACCTG



CTGCTGTCTCTCGGAGCTCTGGACAAACACGGGAAGCTGACAGGCATCGATACCACTATCCACTCAAAC



TATAATACGTATCACCATTTTAAATCTCTCATGGAACGCGGCGTCCTGACCCGGGATGACGTGGAACGC



ATCGTTGAAAGGATGACCTACAGCGACGATACTAAGCGTGTGCGTCTGTGGCTGAATAACAACTATGGT



ACTTTAACCGCCGACGATGTGAAACACATTTCGCGTCTGCGCAAACACGATTTTGGCCGTTTATCCAAAA



TGTTCTTAACAGGTCTGAAGGGTGTCCATAAGGAGACCGGTGAACGTGCCTCCATACTGGATTTCATGTG



GAACACGAACGATAACCTGATGCAGCTCCTTTCCGAATGCTACACGTTCAGTGATGAAATCACAAAGCT



GCAAGAGGCGTATTATGCAAAAGCCCAGTTGTCTTTAAACGATTTTTTAGACTCGATGTACATCTCTAAC



GCGGTGAAACGTCCGATTTACAGAACTCTGGCAGTGGTGAACGATATTCGAAAAGCATGTGGGACGGCC



CCTAAACGCATTTTCATCGAAATGGCTCGTGATGGTGAATCAAAAAAAAAGAGAAGTGTTACACGTCGC



GAGCAGATCAAAAACCTGTACCGCTCGATTCGTAAAGATTTCCAGCAGGAAGTTGATTTTCTGGAAAAG



ATCCTGGAAAATAAATCTGATGGTCAACTTCAGTCAGATGCTTTGTATCTTTACTTTGCACAATTAGGGC



GCGATATGTACACGGGCGATCCAATAAAGCTGGAGCACATCAAAGATCAGAGTTTCTATAACATAGACC



ATATTTACCCGCAGTCTATGGTGAAAGACGATTCCCTAGATAACAAAGTGCTGGTGCAAAGCGAAATTA



ACGGCGAGAAAAGCTCGCGATACCCTTTGGACGCCGCGATCCGCAATAAAATGAAGCCCCTTTGGGACG



CTTACTATAATCATGGCCTGATCTCCTTAAAGAAATACCAGCGTCTAACGCGCTCGACCCCGTTTACCGA



TGATGAAAAATGGGACTTTATTAATCGCCAGTTAGTGGAAACCCGTCAATCTACCAAAGCGCTGGCCAT



TTTGTTGAAGCGTAAGTTTCCAGACACCGAAATTGTGTATTCGAAGGCGGGGTTATCGTCCGACTTCAGA



CATGAATTCGGCCTTGTAAAAAGTCGCAATATTAATGATTTGCACCACGCTAAAGACGCATTCTTGGCTA



TCGTTACCGGCAATGTGTACCATGAAAGATTCAATCGCAGATGGTTTATGGTGAACCAGCCGTACTCAGT



TAAAACTAAAACTCTTTTTACCCACAGCATAAAGAATGGCAACTTCGTTGCCTGGAACGGCGAAGAAGA



TCTCGGTCGTATTGTAAAAATGCTGAAGCAAAACAAAAATACCATTCACTTCACGCGCTTCTCCTTCGAT



CGCAAAGAAGGATTATTTGATATCCAACCTCTGAAAGCCAGCACCGGCTTAGTCCCACGAAAAGCCGGT



CTGGATGTCGTTAAATACGGCGGATATGACAAATCTACCGCGGCCTATTACCTGCTGGTGAGGTTCACGC



TCGAGGACAAGAAAACCCAGCACAAGCTGATGATGATTCCTGTAGAAGGCCTGTACAAGGCTCGCATTG



ATCATGACAAGGAATTTCTTACCGATTATGCGCAAACGACTATAAGCGAAATCCTACAGAAAGATAAAC



AGAAAGTGATCAATATTATGTTTCCAATGGGTACGAGGCATATAAAACTCAATTCAATGATTAGTATCG



ATGGCTTCTATCTTAGTATCGGCGGAAAGTCCTCTAAAGGTAAGTCAGTTCTATGTCACGCAATGGTTCC



ACTGATCGTCCCTCACAAAATCGAATGTTACATTAAAGCAATGGAAAGCTTCGCCCGGAAGTTTAAAGA



AAACAACAAGCTGCGCATCGTAGAAAAATTCGATAAAATCACCGTTGAAGACAACCTGAATCTCTACGA



GCTCTTTCTCCAAAAACTGCAGCATAATCCCTATAATAAGTTTTTTTCGACACAGTTTGACGTACTGACG



AACGGCCGTTCTACTTTCACAAAACTGTCGCCGGAGGAACAGGTACAGACGCTCTTGAACATTTTAAGT



ATCTTTAAAACATGCCGCAGTTCGGGTTGCGACCTGAAATCCATCAACGGCAGTGCCCAGGCAGCGCGC



ATCATGATTAGCGCTGACTTAACTGGACTGTCGAAAAAATATTCAGATATTAGGTTGGTTGAACAGTCA



GCTTCTGGTTTGTTCGTATCCAAAAGTCAGAACTTACTGGAGTATCTCTAA





SEQ
ATGTCATCGCTCACGAAATTCACTAACAAATACTCTAAACAGCTCACCATTAAGAATGAACTCATCCCA


ID
GTTGGCAAAACACTGGAGAACATCAAAGAGAATGGTCTGATAGATGGCGACGAACAGCTGAATGAGAA


NO:
TTATCAGAAGGCGAAAATTATTGTGGATGATTTTCTGCGGGACTTCATTAATAAAGCACTGAATAATACG


42
CAGATCGGGAACTGGCGCGAACTGGCGGATGCCCTTAATAAAGAGGATGAAGATAACATCGAGAAATT



GCAGGATAAAATTCGGGGAATCATTGTATCCAAATTTGAAACGTTTGATCTGTTTAGCAGCTATTCTATT



AAGAAAGATGAAAAGATTATTGACGACGACAATGATGTTGAAGAAGAGGAACTGGATCTGGGCAAGAA



GACCAGCTCATTTAAATACATATTTAAAAAAAACCTGTTTAAGTTAGTGTTGCCATCCTACCTGAAAACC



ACAAACCAGGACAAGCTGAAGATTATTAGCTCGTTTGATAATTTTTCAACGTACTTCCGCGGGTTCTTTG



AAAACCGGAAAAACATTTTTACCAAGAAACCGATCTCCACAAGTATTGCGTATCGCATTGTTCATGATA



ACTTCCCGAAATTCCTTGATAACATTCGTTGTTTTAATGTGTGGCAGACGGAATGCCCGCAACTAATCGT



GAAAGCAGATAACTATCTGAAAAGCAAAAATGTTATAGCGAAAGATAAAAGTTTGGCAAACTATTTTAC



CGTGGGCGCGTATGACTATTTCCTGTCTCAGAATGGTATAGATTTTTACAACAATATTATAGGTGGACTG



CCAGCGTTCGCCGGCCATGAGAAAATCCAAGGTCTCAATGAATTCATCAATCAAGAGTGCCAAAAAGAC



AGCGAGCTGAAAAGTAAGCTGAAAAACCGTCACGCGTTCAAAATGGCGGTACTGTTCAAACAGATACTC



AGCGATCGTGAAAAAAGTTTTGTAATTGATGAGTTCGAGTCGGATGCTCAAGTTATTGACGCCGTTAAA



AACTTTTACGCCGAACAGTGCAAAGATAACAATGTTATTTTTAACTTATTAAATCTTATCAAGAATATCG



CTTTCTTAAGTGATGACGAACTGGACGGCATATTCATTGAAGGGAAATACCTGTCGAGCGTTAGTCAAA



AACTCTATAGCGATTGGTCAAAATTACGTAACGACATTGAGGATTCGGCTAACTCTAAACAAGGCAATA



AAGAGCTGGCCAAGAAGATCAAAACCAACAAAGGGGATGTAGAAAAAGCGATCTCGAAATATGAGTTC



TCGCTGTCGGAACTGAACTCGATTGTACATGATAACACCAAGTTTTCTGACCTCCTTAGTTGTACACTGC



ATAAGGTGGCTTCTGAGAAACTGGTGAAGGTCAATGAAGGCGACTGGCCGAAACATCTCAAGAATAAT



GAAGAGAAACAAAAAATCAAAGAGCCGCTTGATGCTCTGCTGGAGATCTATAATACACTTCTGATTTTT



AACTGCAAAAGCTTCAATAAAAACGGCAACTTCTATGTCGACTATGATCGTTGCATCAATGAACTGAGT



TCGGTCGTGTATCTGTATAATAAAACACGTAACTATTGCACTAAAAAACCCTATAACACGGACAAGTTC



AAACTCAATTTTAACAGTCCGCAGCTCGGTGAAGGCTTTTCCAAGTCGAAAGAAAATGACTGTCTGACT



CTTTTGTTTAAAAAAGACGACAACTATTATGTAGGCATTATCCGCAAAGGTGCAAAAATCAATTTTGATG



ATACACAAGCAATCGCCGATAACACCGACAATTGCATCTTTAAAATGAATTATTTCCTACTTAAAGACGC



AAAAAAATTTATCCCGAAATGTAGCATTCAGCTGAAAGAAGTCAAGGCCCATTTTAAGAAATCTGAAGA



TGATTACATTTTGTCTGATAAAGAGAAATTTGCTAGCCCGCTGGTCATTAAAAAGAGCACATTTTTGCTG



GCAACTGCACATGTGAAAGGGAAAAAAGGCAATATCAAGAAATTTCAGAAAGAATATTCGAAAGAAAA



CCCCACTGAGTATCGCAATTCTTTAAACGAATGGATTGCTTTTTGTAAAGAGTTCTTAAAAACTTATAAA



GCGGCTACCATTTTTGATATAACCACATTGAAAAAGGCAGAGGAATATGCTGATATTGTAGAATTCTAC



AAGGATGTCGATAATCTGTGCTACAAACTGGAGTTCTGCCCGATTAAAACCTCGTTTATAGAAAACCTG



ATAGATAACGGCGACCTGTATCTGTTTCGCATCAATAACAAAGACTTCAGCAGTAAATCGACCGGCACC



AAGAACCTTCATACGTTATATTTACAAGCTATATTCGATGAACGTAATCTGAACAATCCGACAATTATGC



TGAATGGGGGAGCAGAACTGTTCTATCGTAAAGAAAGTATTGAGCAGAAAAACCGTATCACACACAAA



GCCGGTTCAATTCTCGTGAATAAGGTGTGTAAAGACGGTACAAGCCTGGATGATAAGATACGTAATGAA



ATTTATCAATATGAGAATAAATTTATTGATACCCTGTCTGATGAAGCTAAAAAGGTGTTACCGAATGTCA



TTAAAAAGGAAGCTACCCATGACATTACAAAAGATAAACGTTTCACTAGTGACAAATTCTTCTTTCACTG



CCCCCTGACAATTAATTATAAGGAAGGCGATACCAAGCAGTTCAATAACGAAGTGCTGAGTTTTCTGCG



TGGAAATCCTGACATCAACATTATCGGCATTGACCGCGGAGAGCGTAATTTAATCTATGTAACGGTTATA



AACCAGAAAGGCGAGATTCTGGATTCGGTTTCATTCAATACCGTGACCAACAAGAGTTCAAAAATCGAG



CAGACAGTCGATTATGAAGAGAAATTGGCAGTCCGCGAGAAAGAGAGGATTGAAGCAAAACGTTCCTG



GGACTCTATCTCAAAAATTGCGACACTAAAGGAAGGTTATCTGAGCGCAATAGTTCACGAGATCTGTCT



GTTAATGATTAAACACAACGCGATCGTTGTCTTAGAGAATCTTAATGCAGGCTTTAAGCGTATTCGTGGC



GGTTTATCAGAAAAAAGTGTTTATCAAAAATTCGAAAAAATGTTGATTAACAAACTGAACTATTTTGTCA



GCAAGAAGGAATCCGACTGGAATAAACCGTCTGGTCTGCTGAATGGACTGCAGCTTTCGGATCAGTTTG



AAAGCTTCGAAAAACTGGGTATTCAGTCTGGTTTTATTTTTTACGTGCCGGCTGCATATACCTCAAAGAT



TGATCCGACCACGGGCTTCGCCAATGTTCTGAATCTGTCGAAGGTACGCAATGTTGATGCGATCAAAAG



CTTTTTTTCTAACTTCAACGAAATTAGTTATAGCAAGAAAGAAGCCCTTTTCAAATTCTCATTCGATCTGG



ATTCACTGAGTAAGAAAGGCTTTAGTAGCTTTGTGAAATTTAGTAAGAGTAAATGGAACGTCTACACCTT



TGGAGAACGTATCATAAAGCCAAAGAATAAGCAAGGTTATCGGGAGGACAAAAGAATCAACTTGACCT



TCGAGATGAAGAAGTTACTTAACGAGTATAAGGTTTCTTTTGATCTTGAAAATAACTTGATTCCGAATCT



CACGAGTGCCAACCTGAAGGATACTTTTTGGAAAGAGCTATTCTTTATCTTCAAGACTACGCTGCAGCTC



CGTAACAGCGTTACTAACGGTAAAGAAGATGTGCTCATCTCTCCGGTCAAAAATGCGAAGGGTGAATTC



TTCGTTTCGGGAACGCATAACAAGACTCTTCCGCAAGATTGCGATGCGAACGGTGCATACCATATTGCGT



TGAAAGGTCTGATGATACTCGAACGTAACAACCTTGTACGTGAGGAGAAAGATACGAAAAAGATTATG



GCGATTTCAAACGTGGATTGGTTCGAGTACGTGCAGAAACGTAGAGGCGTTCTGTAA





SEQ
ATGAACAACTACGACGAATTCACCAAACTGTACCCGATCCAGAAAACCATCCGTTTCGAACTGAAACCG


ID
CAGGGTCGTACCATGGAACACCTGGAAACCTTCAACTTCTTCGAAGAAGACCGTGACCGTGCGGAAAAA


NO:
TACAAAATCCTGAAAGAAGCGATCGACGAATACCACAAAAAATTCATCGACGAACACCTGACCAACAT


43
GTCTCTGGACTGGAACTCTCTGAAACAGATCTCTGAAAAATACTACAAATCTCGTGAAGAAAAAGACAA



AAAAGTTTTCCTGTCTGAACAGAAACGTATGCGTCAGGAAATCGTTTCTGAATTCAAAAAAGACGACCG



TTTCAAAGACCTGTTCTCTAAAAAACTGTTCTCTGAACTGCTGAAAGAAGAAATCTACAAAAAAGGTAA



CCACCAGGAAATCGACGCGCTGAAATCTTTCGACAAATTCTCTGGTTACTTCATCGGTCTGCACGAAAAC



CGTAAAAACATGTACTCTGACGGTGACGAAATCACCGCGATCTCTAACCGTATCGTTAACGAAAACTTC



CCGAAATTCCTGGACAACCTGCAGAAATACCAGGAAGCGCGTAAAAAATACCCGGAATGGATCATCAA



AGCGGAATCTGCGCTGGTTGCGCACAACATCAAAATGGACGAAGTTTTCTCTCTGGAATACTTCAACAA



AGTTCTGAACCAGGAAGGTATCCAGCGTTACAACCTGGCGCTGGGTGGTTACGTTACCAAATCTGGTGA



AAAAATGATGGGTCTGAACGACGCGCTGAACCTGGCGCACCAGTCTGAAAAATCTTCTAAAGGTCGTAT



CCACATGACCCCGCTGTTCAAACAGATCCTGTCTGAAAAAGAATCTTTCTCTTACATCCCGGACGTTTTC



ACCGAAGACTCTCAGCTGCTGCCGTCTATCGGTGGTTTCTTCGCGCAGATCGAAAACGACAAAGACGGT



AACATCTTCGACCGTGCGCTGGAACTGATCTCTTCTTACGCGGAATACGACACCGAACGTATCTACATCC



GTCAGGCGGACATCAACCGTGTTTCTAACGTTATCTTCGGTGAATGGGGTACCCTGGGTGGTCTGATGCG



TGAATACAAAGCGGACTCTATCAACGACATCAACCTGGAACGTACCTGCAAAAAAGTTGACAAATGGCT



GGACTCTAAAGAATTCGCGCTGTCTGACGTTCTGGAAGCGATCAAACGTACCGGTAACAACGACGCGTT



CAACGAATACATCTCTAAAATGCGTACCGCGCGTGAAAAAATCGACGCGGCGCGTAAAGAAATGAAAT



TCATCTCTGAAAAAATCTCTGGTGACGAAGAATCTATCCACATCATCAAAACCCTGCTGGACTCTGTTCA



GCAGTTCCTGCACTTCTTCAACCTGTTCAAAGCGCGTCAGGACATCCCGCTGGACGGTGCGTTCTACGCG



GAATTCGACGAAGTTCACTCTAAACTGTTCGCGATCGTTCCGCTGTACAACAAAGTTCGTAACTACCTGA



CCAAAAACAACCTGAACACCAAAAAAATCAAACTGAACTTCAAAAACCCGACCCTGGCGAACGGTTGG



GACCAGAACAAAGTTTACGACTACGCGTCTCTGATCTTCCTGCGTGACGGTAACTACTACCTGGGTATCA



TCAACCCGAAACGTAAAAAAAACATCAAATTCGAACAGGGTTCTGGTAACGGTCCGTTCTACCGTAAAA



TGGTTTACAAACAGATCCCGGGTCCGAACAAAAACCTGCCGCGTGTTTTCCTGACCTCTACCAAAGGTA



AAAAAGAATACAAACCGTCTAAAGAAATCATCGAAGGTTACGAAGCGGACAAACACATCCGTGGTGAC



AAATTCGACCTGGACTTCTGCCACAAACTGATCGACTTCTTCAAAGAATCTATCGAAAAACACAAAGAC



TGGTCTAAATTCAACTTCTACTTCTCTCCGACCGAATCTTACGGTGACATCTCTGAATTCTACCTGGACGT



TGAAAAACAGGGTTACCGTATGCACTTCGAAAACATCTCTGCGGAAACCATCGACGAATACGTTGAAAA



AGGTGACCTGTTCCTGTTCCAGATCTACAACAAAGACTTCGTTAAAGCGGCGACCGGTAAAAAAGACAT



GCACACCATCTACTGGAACGCGGCGTTCTCTCCGGAAAACCTGCAGGACGTTGTTGTTAAACTGAACGG



TGAAGCGGAACTGTTCTACCGTGACAAATCTGACATCAAAGAAATCGTTCACCGTGAAGGTGAAATCCT



GGTTAACCGTACCTACAACGGTCGTACCCCGGTTCCGGACAAAATCCACAAAAAACTGACCGACTACCA



CAACGGTCGTACCAAAGACCTGGGTGAAGCGAAAGAATACCTGGACAAAGTTCGTTACTTCAAAGCGCA



CTACGACATCACCAAAGACCGTCGTTACCTGAACGACAAAATCTACTTCCACGTTCCGCTGACCCTGAAC



TTCAAAGCGAACGGTAAAAAAAACCTGAACAAAATGGTTATCGAAAAATTCCTGTCTGACGAAAAAGC



GCACATCATCGGTATCGACCGTGGTGAACGTAACCTGCTGTACTACTCTATCATCGACCGTTCTGGTAAA



ATCATCGACCAGCAGTCTCTGAACGTTATCGACGGTTTCGACTACCGTGAAAAACTGAACCAGCGTGAA



ATCGAAATGAAAGACGCGCGTCAGTCTTGGAACGCGATCGGTAAAATCAAAGACCTGAAAGAAGGTTA



CCTGTCTAAAGCGGTTCACGAAATCACCAAAATGGCGATCCAGTACAACGCGATCGTTGTTATGGAAGA



ACTGAACTACGGTTTCAAACGTGGTCGTTTCAAAGTTGAAAAACAGATCTACCAGAAATTCGAAAACAT



GCTGATCGACAAAATGAACTACCTGGTTTTCAAAGACGCGCCGGACGAATCTCCGGGTGGTGTTCTGAA



CGCGTACCAGCTGACCAACCCGCTGGAATCTTTCGCGAAACTGGGTAAACAGACCGGTATCCTGTTCTA



CGTTCCGGCGGCGTACACCTCTAAAATCGACCCGACCACCGGTTTCGTTAACCTGTTCAACACCTCTTCT



AAAACCAACGCGCAGGAACGTAAAGAATTCCTGCAGAAATTCGAATCTATCTCTTACTCTGCGAAAGAC



GGTGGTATCTTCGCGTTCGCGTTCGACTACCGTAAATTCGGTACCTCTAAAACCGACCACAAAAACGTTT



GGACCGCGTACACCAACGGTGAACGTATGCGTTACATCAAAGAAAAAAAACGTAACGAACTGTTCGAC



CCGTCTAAAGAAATCAAAGAAGCGCTGACCTCTTCTGGTATCAAATACGACGGTGGTCAGAACATCCTG



CCGGACATCCTGCGTTCTAACAACAACGGTCTGATCTACACCATGTACTCTTCTTTCATCGCGGCGATCC



AGATGCGTGTTTACGACGGTAAAGAAGACTACATCATCTCTCCGATCAAAAACTCTAAAGGTGAATTCT



TCCGTACCGACCCGAAACGTCGTGAACTGCCGATCGACGCGGACGCGAACGGTGCGTACAACATCGCGC



TGCGTGGTGAACTGACCATGCGTGCGATCGCGGAAAAATTCGACCCGGACTCTGAAAAAATGGCGAAAC



TGGAACTGAAACACAAAGACTGGTTCGAATTCATGCAGACCCGTGGTGACTAA





SEQ
ATGACTAAAACATTTGATTCAGAGTTTTTTAATTTGTACTCGCTGCAAAAAACGGTACGCTTTGAGTTAA


ID
AACCCGTGGGAGAAACCGCGTCATTTGTGGAAGACTTTAAAAACGAGGGCTTGAAACGTGTTGTGAGCG


NO:
AAGATGAAAGGCGAGCCGTCGATTACCAGAAAGTTAAGGAAATAATTGACGATTACCATCGGGATTTCA


44
TTGAAGAAAGTTTAAATTATTTTCCGGAACAGGTGAGTAAAGATGCTCTTGAGCAGGCGTTTCATCTTTA



TCAGAAACTGAAGGCAGCAAAAGTTGAGGAAAGGGAAAAAGCGCTGAAAGAATGGGAAGCGCTGCAG



AAAAAGCTACGTGAAAAAGTGGTGAAATGCTTCTCGGACTCGAATAAAGCCCGCTTCTCAAGGATTGAT



AAAAAGGAACTGATTAAGGAAGACCTGATAAATTGGTTGGTCGCCCAGAATCGCGAGGATGATATCCCT



ACGGTCGAAACGTTTAACAACTTCACCACATATTTTACCGGCTTCCATGAGAATCGTAAAAATATTTACT



CCAAAGATGATCACGCCACCGCTATTAGCTTTCGCCTTATTCATGAAAATCTTCCAAAGTTTTTTGACAA



CGTGATTAGCTTCAATAAGTTGAAAGAGGGTTTCCCTGAATTAAAATTTGATAAAGTGAAAGAGGATTT



AGAAGTAGATTATGATCTGAAGCATGCGTTTGAAATAGAATATTTCGTTAACTTCGTGACCCAAGCGGG



CATAGATCAGTATAATTATCTGTTAGGAGGGAAAACCCTGGAGGACGGGACGAAAAAACAAGGGATGA



ATGAGCAAATTAATCTGTTCAAACAACAGCAAACGCGAGATAAAGCGCGTCAGATTCCCAAACTGATCC



CCCTGTTCAAACAGATTCTTAGCGAAAGGACTGAAAGCCAGTCCTTTATTCCTAAACAATTTGAAAGTGA



TCAGGAGTTGTTCGATTCACTGCAGAAGTTACATAATAACTGCCAGGATAAATTCACCGTGCTGCAACA



AGCCATTCTCGGTCTGGCAGAGGCGGATCTTAAGAAGGTCTTCATCAAAACCTCTGATTTAAATGCCTTA



TCTAACACCATTTTCGGGAATTACAGCGTCTTTTCCGATGCACTGAACCTGTATAAAGAAAGCCTGAAAA



CGAAAAAAGCGCAGGAGGCTTTTGAGAAACTACCGGCCCATTCTATTCACGACCTCATTCAATACTTGG



AACAGTTCAATTCCAGCCTGGACGCGGAAAAACAACAGAGCACCGACACCGTCCTGAACTACTTCATCA



AGACCGATGAATTATATTCTCGCTTCATTAAATCCACTAGCGAGGCTTTCACTCAGGTGCAGCCTTTGTT



CGAACTGGAAGCCCTGTCATCTAAGCGCCGCCCACCGGAATCGGAAGATGAAGGGGCAAAAGGGCAGG



AAGGCTTCGAGCAGATCAAGCGTATTAAAGCTTACCTGGATACGCTTATGGAAGCGGTACACTTTGCAA



AGCCGTTGTATCTTGTTAAGGGTCGTAAAATGATCGAAGGGCTCGATAAAGACCAGTCCTTTTATGAAG



CGTTTGAAATGGCGTACCAAGAACTTGAATCGTTAATCATTCCTATCTATAACAAAGCGCGGAGCTATCT



GTCGCGGAAACCTTTCAAGGCCGATAAATTCAAGATTAATTTTGACAACAACACGCTACTGAGCGGATG



GGATGCGAACAAGGAAACTGCTAACGCGTCCATTCTGTTTAAGAAAGACGGGTTATATTACCTTGGAAT



TATGCCGAAAGGTAAGACCTTTCTCTTTGACTACTTTGTATCGAGCGAGGATTCAGAGAAACTGAAACA



GCGTCGCCAGAAGACCGCCGAAGAAGCTCTGGCGCAGGATGGTGAAAGTTACTTCGAAAAAATTCGTTA



TAAACTGTTACCAGGGGCTTCAAAGATGTTACCGAAAGTCTTTTTTAGCAACAAAAATATTGGCTTTTAC



AACCCGTCGGATGACATTTTACGCATTCGCAACACAGCCTCTCACACCAAAAACGGGACCCCTCAGAAA



GGCCACTCAAAAGTTGAGTTTAACCTGAATGATTGTCATAAGATGATTGATTTCTTCAAATCATCAATTC



AGAAACACCCGGAATGGGGGTCTTTTGGCTTTACGTTTTCTGATACCAGTGATTTTGAAGACATGAGTGC



CTTCTACCGGGAAGTAGAAAACCAGGGTTACGTAATTAGCTTTGACAAAATCAAAGAGACCTATATACA



GAGCCAGGTGGAACAGGGTAATCTCTACTTATTCCAGATTTATAACAAGGATTTCTCGCCCTACAGCAA



AGGCAAACCAAACCTGCATACTCTGTACTGGAAAGCCCTGTTTGAAGAAGCGAACCTGAATAACGTAGT



GGCGAAGTTGAACGGTGAAGCGGAAATCTTCTTCCGTCGTCACTCCATTAAGGCCTCTGATAAAGTTGTC



CATCCGGCAAATCAGGCCATTGATAATAAGAATCCACACACGGAAAAAACGCAGTCAACCTTTGAATAT



GACCTCGTTAAAGACAAACGCTACACGCAAGATAAGTTCTTTTTCCACGTCCCAATCAGCCTCAACTTTA



AAGCACAAGGGGTTTCAAAGTTTAATGATAAAGTCAATGGGTTCCTCAAGGGCAACCCGGATGTCAACA



TTATAGGTATAGACAGGGGCGAACGCCATCTGCTTTACTTTACCGTAGTGAATCAGAAAGGTGAAATAC



TGGTTCAGGAATCATTAAATACCTTGATGTCGGACAAAGGGCACGTTAATGATTACCAGCAGAAACTGG



ATAAAAAAGAACAGGAACGTGATGCTGCGCGTAAATCGTGGACCACGGTTGAGAACATTAAAGAGCTG



AAAGAGGGGTATCTAAGCCATGTGGTACACAAACTGGCGCACCTCATCATTAAATATAACGCAATAGTC



TGCCTAGAAGACTTGAATTTTGGCTTTAAACGCGGCCGCTTCAAAGTGGAAAAACAAGTTTATCAAAAA



TTTGAAAAGGCGCTTATAGATAAACTGAATTATCTGGTTTTTAAAGAAAAGGAACTTGGTGAGGTAGGG



CACTACTTGACAGCTTATCAACTGACGGCCCCGTTCGAATCATTCAAAAAACTGGGCAAACAGTCTGGC



ATTCTGTTTTACGTGCCGGCAGATTATACTTCAAAAATCGATCCAACAACTGGCTTTGTGAACTTCCTGG



ACCTGAGATATCAGTCTGTAGAAAAAGCTAAACAACTTCTTAGCGATTTTAATGCCATTCGTTTTAACAG



CGTTCAGAATTACTTTGAATTCGAAATTGACTATAAAAAACTTACTCCGAAACGTAAAGTCGGAACCCA



AAGTAAATGGGTAATTTGTACGTATGGCGATGTCAGGTATCAGAACCGTCGGAATCAAAAAGGTCATTG



GGAGACCGAAGAAGTGAACGTGACCGAAAAGCTGAAGGCTCTGTTCGCCAGCGATTCAAAAACTACAA



CTGTGATCGATTACGCAAATGATGATAACCTGATAGATGTGATTTTAGAGCAGGATAAAGCCAGCTTTTT



TAAAGAACTGTTGTGGCTCCTGAAACTTACGATGACCTTACGACATTCCAAGATCAAATCGGAAGATGA



TTTTATTCTGTCACCGGTCAAGAATGAGCAGGGTGAATTCTATGATAGTAGGAAAGCCGGCGAAGTGTG



GCCGAAAGACGCCGACGCCAATGGCGCCTATCATATCGCGCTCAAAGGGCTTTGGAATTTGCAGCAGAT



TAACCAGTGGGAAAAAGGTAAAACCCTGAATCTGGCTATCAAAAACCAGGATTGGTTTAGCTTTATCCA



AGAGAAACCGTATCAGGAATGA





SEQ
ATGCATACAGGCGGTCTTCTTAGTATGGACGCGAAAGAGTTCACAGGTCAGTATCCGTTGTCGAAAACA


ID
TTACGATTCGAACTTCGGCCCATCGGCCGCACGTGGGATAACCTGGAGGCCTCAGGCTACTTAGCGGAA


NO:
GACCGCCATCGTGCCGAATGTTATCCTCGTGCGAAAGAGTTATTGGATGACAACCATCGTGCCTTCCTGA


45
ATCGTGTGTTGCCACAAATCGATATGGATTGGCACCCGATTGCGGAGGCCTTTTGTAAGGTACATAAAA



ACCCTGGTAATAAAGAACTTGCCCAGGATTACAACCTTCAGTTGTCAAAGCGCCGTAAGGAGATCAGCG



CATATCTTCAGGATGCAGATGGCTATAAAGGCCTGTTCGCGAAGCCCGCCTTAGACGAAGCTATGAAAA



TTGCGAAAGAAAACGGGAACGAAAGTGATATTGAGGTTCTCGAAGCGTTTAACGGTTTTAGCGTATACT



TCACCGGTTATCATGAGTCACGCGAGAACATTTATAGCGATGAGGATATGGTGAGCGTAGCCTACCGAA



TTACTGAGGATAATTTCCCGCGCTTTGTCTCAAACGCTTTGATCTTTGATAAATTAAACGAAAGCCATCC



GGATATTATCTCTGAAGTATCGGGCAATCTTGGAGTTGATGACATTGGTAAGTACTTTGACGTGTCGAAC



TATAACAATTTTCTTTCCCAGGCCGGTATAGATGACTACAATCACATTATTGGCGGCCATACAACCGAAG



ACGGACTGATACAAGCGTTTAATGTCGTATTGAACTTACGTCACCAAAAAGACCCTGGCTTTGAAAAAA



TTCAGTTCAAACAGCTCTACAAACAAATCCTGAGCGTGCGTACCAGCAAAAGCTACATCCCGAAACAGT



TTGACAACTCTAAGGAGATGGTTGACTGCATTTGCGATTATGTCAGCAAAATAGAGAAATCCGAAACAG



TAGAACGGGCCCTGAAACTAGTCCGTAATATCAGTTCTTTCGACTTGCGCGGGATCTTTGTCAATAAAAA



GAACTTGCGCATACTGAGCAACAAACTGATAGGAGATTGGGACGCGATCGAAACCGCATTGATGCATAG



TTCTTCATCAGAAAACGATAAGAAAAGCGTATATGATAGCGCGGAGGCTTTTACGTTGGATGACATCTTT



TCAAGCGTGAAAAAATTTTCTGATGCCTCTGCCGAAGATATTGGCAACAGGGCGGAAGACATCTGTAGA



GTGATAAGTGAGACGGCCCCTTTTATCAACGATCTGCGAGCGGTGGACCTGGATAGCCTGAACGACGAT



GGTTATGAAGCGGCCGTCTCAAAAATTCGGGAGTCGCTGGAGCCTTATATGGATCTTTTCCATGAACTGG



AAATTTTCTCGGTTGGCGATGAGTTCCCAAAATGCGCAGCATTTTACAGCGAACTGGAGGAAGTCAGCG



AACAGCTGATCGAAATTATTCCGTTATTCAACAAGGCGCGTTCGTTCTGCACCCGGAAACGCTATAGCAC



CGATAAGATTAAAGTGAACTTAAAATTCCCGACCTTGGCGGACGGGTGGGACCTGAACAAAGAGAGAG



ACAACAAAGCCGCGATTCTGCGGAAAGACGGTAAGTATTATCTGGCAATTCTGGATATGAAGAAAGATC



TGTCAAGCATTAGGACCAGCGACGAAGATGAATCCAGCTTCGAAAAGATGGAGTATAAACTGTTACCGA



GTCCAGTAAAAATGCTGCCAAAGATATTCGTAAAATCGAAAGCCGCTAAGGAAAAATATGGCCTGACA



GATCGTATGCTTGAATGCTACGATAAAGGTATGCATAAGTCGGGTAGTGCGTTTGATCTTGGCTTTTGCC



ATGAACTCATTGATTATTACAAGCGTTGTATCGCGGAGTACCCAGGCTGGGATGTGTTCGATTTCAAGTT



TCGCGAAACTTCCGATTATGGGTCCATGAAAGAGTTCAATGAAGATGTGGCCGGAGCCGGTTACTATAT



GAGTCTGAGAAAAATTCCGTGCAGCGAAGTGTACCGTCTGTTAGACGAGAAATCGATTTATCTATTTCA



AATTTATAACAAAGATTACTCTGAAAATGCACATGGTAATAAGAACATGCATACCATGTACTGGGAGGG



TCTCTTTTCCCCGCAAAACCTGGAGTCGCCCGTTTTCAAGTTGTCGGGTGGGGCAGAACTTTTCTTTCGA



AAATCCTCAATCCCTAACGATGCCAAAACAGTACACCCGAAAGGCTCAGTGCTGGTTCCACGTAATGAT



GTTAACGGTCGGCGTATTCCAGATTCAATCTACCGCGAACTGACACGCTATTTTAACCGTGGCGATTGCC



GAATCAGTGACGAAGCCAAAAGTTATCTTGACAAGGTTAAGACTAAAAAAGCGGACCATGACATTGTG



AAAGATCGCCGCTTTACCGTGGATAAAATGATGTTCCACGTCCCGATTGCGATGAACTTTAAGGCGATC



AGTAAACCGAACTTAAACAAAAAAGTCATTGATGGCATCATTGATGATCAGGATCTGAAAATCATTGGT



ATTGATCGTGGCGAGCGGAACTTAATTTACGTCACGATGGTTGACAGAAAAGGGAATATCTTATATCAG



GATTCTCTTAACATCCTCAATGGCTACGACTATCGTAAAGCTCTGGATGTGCGCGAATATGACAACAAG



GAAGCGCGTCGTAACTGGACTAAAGTGGAGGGCATTCGCAAAATGAAGGAAGGCTATCTGTCATTAGCG



GTCTCGAAATTAGCGGATATGATTATCGAAAATAACGCCATCATCGTTATGGAGGACCTGAACCACGGA



TTCAAAGCGGGCCGCTCAAAGATTGAAAAACAAGTTTATCAGAAATTTGAGAGTATGCTGATTAACAAA



CTGGGCTATATGGTGTTAAAAGACAAGTCAATTGACCAATCAGGTGGCGCGCTGCATGGATACCAGCTG



GCGAACCATGTTACCACCTTAGCATCAGTTGGAAAGCAGTGTGGGGTTATCTTTTATATACCGGCAGCGT



TCACTAGTAAAATAGATCCGACCACTGGTTTCGCCGATCTCTTTGCCCTGAGTAACGTTAAAAACGTAGC



GAGCATGCGTGAATTCTTTTCCAAAATGAAATCTGTCATTTATGATAAAGCTGAAGGCAAATTCGCATTC



ACCTTTGATTACTTGGATTACAACGTGAAGAGCGAATGTGGTCGTACGCTGTGGACCGTTTACACCGTTG



GTGAGCGCTTCACCTATTCCCGTGTGAACCGCGAATATGTACGTAAAGTCCCCACCGATATTATCTATGA



TGCCCTCCAGAAAGCAGGCATTAGCGTCGAAGGAGACTTAAGGGACAGAATTGCCGAAAGCGATGGCG



ATACGCTGAAGTCTATTTTTTACGCATTCAAATACGCGCTAGATATGCGCGTTGAGAATCGCGAGGAAG



ACTACATTCAATCACCTGTGAAAAATGCCTCTGGGGAATTTTTTTGTTCAAAAAATGCTGGTAAAAGCCT



CCCACAAGATAGCGATGCAAACGGTGCATATAACATTGCCCTGAAAGGTATTCTTCAATTACGCATGCT



GTCTGAGCAGTACGACCCCAACGCGGAATCTATTAGACTTCCGCTGATAACCAATAAAGCCTGGCTGAC



ATTCATGCAGTCTGGCATGAAGACCTGGAAAAATTAG





SEQ
ATGGATAGTTTAAAAGATTTTACGAATCTATATCCCGTAAGCAAAACTCTTCGTTTTGAACTGAAACCTG


ID
TTGGAAAAACGTTGGAGAATATCGAGAAAGCGGGCATCCTGAAAGAAGACGAGCACCGTGCCGAAAGC


NO:
TACAGGCGTGTCAAAAAGATTATCGATACTTATCACAAAGTGTTCATTGATAGCAGTCTGGAGAACATG


46
GCAAAAATGGGCATAGAAAATGAAATCAAAGCAATGCTGCAGAGCTTTTGCGAGCTCTACAAGAAAGA



TCACCGAACGGAAGGTGAAGATAAAGCACTGGACAAAATTCGCGCCGTTCTTCGCGGTCTGATTGTTGG



CGCGTTCACCGGCGTGTGCGGCCGCCGTGAAAACACCGTGCAGAACGAAAAGTACGAGTCGCTGTTCAA



AGAAAAACTGATAAAAGAAATTTTGCCTGACTTTGTGCTTTCGACCGAAGCGGAATCCCTGCCATTTTCT



GTCGAAGAAGCGACCCGCAGCCTGAAAGAATTTGACTCATTCACAAGTTACTTTGCAGGCTTCTACGAA



AACCGTAAAAACATCTACAGCACGAAGCCACAGAGCACGGCTATTGCTTATCGCCTGATTCATGAGAAC



CTGCCGAAGTTCATCGATAACATCCTTGTTTTTCAAAAAATTAAAGAGCCGATTGCGAAAGAGTTAGAA



CATATTCGAGCTGACTTTTCTGCGGGTGGGTACATTAAAAAAGATGAGCGGCTGGAAGACATCTTCAGT



CTAAACTATTATATCCACGTTCTGTCGCAGGCAGGCATTGAGAAATATAATGCGCTGATTGGTAAGATTG



TCACAGAAGGCGATGGTGAGATGAAAGGTCTTAATGAACATATCAATCTGTATAACCAGCAGCGTGGTC



GCGAAGACCGTCTTCCACTGTTCCGCCCACTGTATAAACAGATCCTGTCTGACCGGGAACAGCTGTCCTA



CCTGCCGGAAAGCTTTGAAAAGGATGAAGAGCTACTTCGCGCATTAAAGGAGTTTTACGACCATATTGC



GGAAGACATTTTGGGTAGAACGCAGCAACTGATGACGTCAATTTCTGAATACGATCTGAGTAGAATCTA



CGTTAGGAATGATAGCCAGCTGACCGATATTAGCAAAAAAATGCTGGGCGACTGGAACGCTATCTATAT



GGCACGTGAACGTGCATATGATCATGAACAAGCACCGAAACGTATAACCGCGAAATATGAGCGTGATC



GCATTAAGGCGCTAAAGGGAGAAGAAAGCATCTCACTCGCAAACCTGAACTCCTGTATCGCTTTCTTAG



ATAACGTGCGCGATTGTCGCGTCGACACGTATCTGTCAACCCTTGGGCAGAAAGAGGGTCCACATGGTC



TGTCTAACCTGGTGGAAAATGTCTTTGCGAGTTACCATGAAGCGGAACAACTGCTGTCTTTTCCATACCC



CGAAGAAAACAATCTAATACAGGATAAAGATAACGTGGTGTTAATCAAAAACCTGCTGGACAACATCA



GCGATCTGCAACGTTTCCTGAAACCTTTGTGGGGTATGGGTGACGAGCCAGACAAAGACGAACGTTTTT



ATGGTGAGTATAATTATATACGTGGCGCCCTTGACCAAGTTATTCCGCTGTATAACAAAGTACGGAACTA



TCTGACCCGTAAGCCATATTCTACCCGTAAAGTGAAACTGAACTTTGGCAACTCGCAACTGCTGTCGGGT



TGGGATCGTAACAAAGAAAAAGATAATAGTTGTGTTATCCTGCGTAAGGGACAAAATTTTTACCTCGCG



ATTATGAACAACAGACACAAGCGTTCATTTGAAAATAAGGTTCTGCCGGAGTATAAAGAGGGCGAACCG



TACTTCGAGAAAATGGATTATAAGTTCTTACCAGACCCTAATAAGATGTTACCGAAAGTCTTTCTTTCGA



AAAAAGGCATAGAAATCTATAAGCCGTCCCCGAAATTACTCGAACAGTATGGGCACGGGACCCACAAG



AAAGGGGATACTTTTAGCATGGACGATCTGCACGAACTGATCGATTTTTTTAAACACTCCATCGAAGCCC



ATGAAGACTGGAAACAGTTTGGGTTCAAGTTCTCTGATACAGCCACATACGAGAATGTGTCTAGTTTTTA



TCGGGAAGTGGAGGATCAGGGCTACAAACTTAGTTTTCGTAAAGTTTCAGAGAGTTATGTTTATAGTTTA



ATTGATCAGGGAAAACTTTACCTGTTCCAGATCTACAACAAAGATTTCTCGCCATGTAGTAAGGGTACCC



CGAATCTGCATACACTCTATTGGAGAATGTTATTCGATGAGCGTAACTTAGCGGATGTCATTTATAAATT



GGACGGGAAAGCAGAGATCTTTTTTCGTGAAAAATCACTGAAGAATGACCACCCGACTCATCCGGCCGG



GAAACCGATCAAAAAAAAATCCCGCCAGAAAAAAGGAGAAGAGTCTCTGTTTGAATATGATCTGGTGA



AAGACCGTCATTACACTATGGATAAATTTCAATTTCATGTTCCAATTACAATGAACTTCAAATGTTCGGC



GGGTTCCAAAGTAAATGATATGGTAAACGCCCATATTCGCGAAGCGAAAGATATGCATGTTATTGGCAT



CGATAGAGGCGAAAGAAACCTGCTTTATATTTGCGTAATTGACAGCCGTGGTACCATTCTGGACCAGAT



CTCTTTAAACACCATCAATGACATCGATTATCACGACCTGTTGGAGTCTCGGGACAAGGACCGCCAGCA



GGAGCGCCGTAATTGGCAGACAATTGAAGGCATAAAAGAATTAAAACAGGGTTACCTTTCCCAGGCCGT



ACACCGCATAGCGGAACTGATGGTGGCCTACAAAGCCGTAGTTGCCCTGGAAGACTTGAATATGGGGTT



TAAACGTGGCCGTCAAAAAGTCGAGAGCAGCGTGTATCAGCAATTTGAAAAACAGTTGATTGACAAGTT



GAATTATTTGGTTGATAAAAAGAAACGTCCAGAAGATATTGGTGGCTTACTGCGTGCATACCAGTTTAC



GGCACCTTTTAAGTCCTTCAAAGAAATGGGTAAACAGAACGGGTTTCTGTTTTACATCCCGGCCTGGAAT



ACATCCAACATCGATCCTACCACCGGGTTTGTCAACCTGTTTCATGCACAATATGAAAACGTGGATAAA



GCGAAGAGTTTTTTCCAAAAATTCGATAGTATTTCGTATAACCCAAAAAAAGATTGGTTTGAGTTTGCGT



TCGATTATAAAAATTTTACTAAAAAGGCTGAGGGATCCCGCAGTATGTGGATCCTCTGCACCCATGGCA



GTCGTATTAAAAATTTTCGTAATTCGCAAAAGAATGGCCAGTGGGACTCGGAAGAGTTTGCCCTGACCG



AAGCGTTCAAATCGCTGTTTGTACGCTACGAAATTGACTACACAGCAGATCTGAAAACAGCCATCGTCG



ATGAAAAACAGAAAGATTTTTTTGTAGATCTCCTAAAACTGTTCAAACTGACTGTTCAGATGCGCAATTC



CTGGAAAGAGAAAGACCTGGATTATCTGATTAGCCCGGTAGCCGGTGCTGATGGACGATTTTTCGATAC



TCGTGAAGGTAACAAAAGTCTCCCGAAAGATGCTGATGCCAATGGTGCATACAATATTGCATTAAAGGG



GCTATGGGCCTTGCGACAGATCCGCCAGACCAGCGAAGGCGGCAAGCTGAAATTGGCCATATCGAATAA



GGAATGGTTACAATTTGTTCAGGAACGTAGCTATGAAAAAGATTGA





SEQ
ATGAACAACGGCACAAATAATTTTCAGAACTTCATCGGGATCTCAAGTTTGCAGAAAACGCTGCGCAAT


ID
GCTCTGATCCCCACGGAAACCACGCAACAGTTCATCGTCAAGAACGGAATAATTAAAGAAGATGAGTTA


NO:
CGTGGCGAGAACCGCCAGATTCTGAAAGATATCATGGATGACTACTACCGCGGATTCATCTCTGAGACT


47
CTGAGTTCTATTGATGACATAGATTGGACTAGCCTGTTCGAAAAAATGGAAATTCAGCTGAAAAATGGT



GATAATAAAGATACCTTAATTAAGGAACAGACAGAGTATCGGAAAGCAATCCATAAAAAATTTGCGAA



CGACGATCGGTTTAAGAACATGTTTAGCGCCAAACTGATTAGTGACATATTACCTGAATTTGTCATCCAC



AACAATAATTATTCGGCATCAGAGAAAGAGGAAAAAACCCAGGTGATAAAATTGTTTTCGCGCTTTGCG



ACTAGCTTTAAAGATTACTTCAAGAACCGTGCAAATTGCTTTTCAGCGGACGATATTTCATCAAGCAGCT



GCCATCGCATCGTCAACGACAATGCAGAGATATTCTTTTCAAATGCGCTGGTCTACCGCCGGATCGTAAA



ATCGCTGAGCAATGACGATATCAACAAAATTTCGGGCGATATGAAAGATTCATTAAAAGAAATGAGTCT



GGAAGAAATATATTCTTACGAGAAGTATGGGGAATTTATTACCCAGGAAGGCATTAGCTTCTATAATGA



TATCTGTGGGAAAGTGAATTCTTTTATGAACCTGTATTGTCAGAAAAATAAAGAAAACAAAAATTTATA



CAAACTTCAGAAACTTCACAAACAGATTCTATGCATTGCGGACACTAGCTATGAGGTCCCGTATAAATTT



GAAAGTGACGAGGAAGTGTACCAATCAGTTAACGGCTTCCTTGATAACATTAGCAGCAAACATATAGTC



GAAAGATTACGCAAAATCGGCGATAACTATAACGGCTACAACCTGGATAAAATTTATATCGTGTCCAAA



TTTTACGAGAGCGTTAGCCAAAAAACCTACCGCGACTGGGAAACAATTAATACCGCCCTCGAAATTCAT



TACAATAATATCTTGCCGGGTAACGGTAAAAGTAAAGCCGACAAAGTAAAAAAAGCGGTTAAGAATGA



TTTACAGAAATCCATCACCGAAATAAATGAACTAGTGTCAAACTATAAGCTGTGCAGTGACGACAACAT



CAAAGCGGAGACTTATATACATGAGATTAGCCATATCTTGAATAACTTTGAAGCACAGGAATTGAAATA



CAATCCGGAAATTCACCTAGTTGAATCCGAGCTCAAAGCGAGTGAGCTTAAAAACGTGCTGGACGTGAT



CATGAATGCGTTTCATTGGTGTTCGGTTTTTATGACTGAGGAACTTGTTGATAAAGACAACAATTTTTAT



GCGGAACTGGAGGAGATTTACGATGAAATTTATCCAGTAATTAGTCTGTACAACCTGGTTCGTAACTAC



GTTACCCAGAAACCGTACAGCACGAAAAAGATTAAATTGAACTTTGGAATACCGACGTTAGCAGACGGT



TGGTCAAAGTCCAAAGAGTATTCTAATAACGCTATCATACTGATGCGCGACAATCTGTATTATCTGGGCA



TCTTTAATGCGAAGAATAAACCGGACAAGAAGATTATCGAGGGTAATACGTCAGAAAATAAGGGTGAC



TACAAAAAGATGATTTATAATTTGCTCCCGGGTCCCAACAAAATGATCCCGAAAGTTTTCTTGAGCAGCA



AGACGGGGGTGGAAACGTATAAACCGAGCGCCTATATCCTAGAGGGGTATAAACAGAATAAACATATC



AAGTCTTCAAAAGACTTTGATATCACTTTCTGTCATGATCTGATCGACTACTTCAAAAACTGTATTGCAA



TTCATCCCGAGTGGAAAAACTTCGGTTTTGATTTTAGCGACACCAGTACTTATGAAGACATTTCCGGGTT



TTATCGTGAGGTAGAGTTACAAGGTTACAAGATTGATTGGACATACATTAGCGAAAAAGACATTGATCT



GCTGCAGGAAAAAGGTCAACTGTATCTGTTCCAGATATATAACAAAGATTTTTCGAAAAAATCAACCGG



GAATGACAACCTTCACACCATGTACCTGAAAAATCTTTTCTCAGAAGAAAATCTTAAGGATATCGTCCTG



AAACTTAACGGCGAAGCGGAAATCTTCTTCAGGAAGAGCAGCATAAAGAACCCAATCATTCATAAAAA



AGGCTCGATTTTAGTCAACCGTACCTACGAAGCAGAAGAAAAAGACCAGTTTGGCAACATTCAAATTGT



GCGTAAAAATATTCCGGAAAACATTTATCAGGAGCTGTACAAATACTTCAACGATAAAAGCGACAAAGA



GCTGTCTGATGAAGCAGCCAAACTGAAGAATGTAGTGGGACACCACGAGGCAGCGACGAATATAGTCA



AGGACTATCGCTACACGTATGATAAATACTTCCTTCATATGCCTATTACGATCAATTTCAAAGCCAATAA



AACGGGTTTTATTAATGATAGGATCTTACAGTATATCGCTAAAGAAAAAGACTTACATGTGATCGGCATT



GATCGGGGCGAGCGTAACCTGATCTACGTGTCCGTGATTGATACTTGTGGTAATATAGTTGAACAGAAA



AGCTTTAACATTGTAAACGGCTACGACTATCAGATAAAACTGAAACAACAGGAGGGCGCTAGACAGATT



GCGCGGAAAGAATGGAAAGAAATTGGTAAAATTAAAGAGATCAAAGAGGGCTACCTGAGCTTAGTAAT



CCACGAGATCTCTAAAATGGTAATCAAATACAATGCAATTATAGCGATGGAGGATTTGTCTTATGGTTTT



AAAAAAGGGCGCTTTAAGGTCGAACGGCAAGTTTACCAGAAATTTGAAACCATGCTCATCAATAAACTC



AACTATCTGGTATTTAAAGATATTTCGATTACCGAGAATGGCGGTCTCCTGAAAGGTTATCAGCTGACAT



ACATTCCTGATAAACTTAAAAACGTGGGTCATCAGTGCGGCTGCATTTTTTATGTGCCTGCTGCATACAC



GAGCAAAATTGATCCGACCACCGGCTTTGTGAATATCTTTAAATTTAAAGACCTGACAGTGGACGCAAA



ACGTGAATTCATTAAAAAATTTGACTCAATTCGTTATGACAGTGAAAAAAATCTGTTCTGCTTTACATTT



GACTACAATAACTTTATTACGCAAAACACGGTCATGAGCAAATCATCGTGGAGTGTGTATACATACGGC



GTGCGCATCAAACGTCGCTTTGTGAACGGCCGCTTCTCAAACGAAAGTGATACCATTGACATAACCAAA



GATATGGAGAAAACGTTGGAAATGACGGACATTAACTGGCGCGATGGCCACGATCTTCGTCAAGACATT



ATAGATTATGAAATTGTTCAGCACATATTCGAAATTTTCCGTTTAACAGTGCAAATGCGTAACTCCTTGT



CTGAACTGGAGGACCGTGATTACGATCGTCTCATTTCACCTGTACTGAACGAAAATAACATTTTTTATGA



CAGCGCGAAAGCGGGGGATGCACTTCCTAAGGATGCCGATGCAAATGGTGCGTATTGTATTGCATTAAA



AGGGTTATATGAAATTAAACAAATTACCGAAAATTGGAAAGAAGATGGTAAATTTTCGCGCGATAAACT



CAAAATCAGCAATAAAGATTGGTTCGACTTTATCCAGAATAAGCGCTATCTCTAA





SEQ
ATGACCAATAAATTCACTAACCAGTATTCTCTCTCTAAGACCCTGCGCTTTGAACTGATTCCGCAGGGGA


ID
AAACCTTGGAGTTCATTCAAGAAAAAGGCCTCTTGTCTCAGGATAAACAGAGGGCTGAATCTTACCAAG


NO:
AAATGAAGAAAACTATTGATAAGTTTCATAAATATTTCATTGATTTAGCCTTGTCTAACGCCAAATTAAC


48
TCACTTGGAAACGTATCTGGAGTTATACAACAAATCTGCCGAAACTAAGAAAGAACAGAAATTTAAAGA



CGATTTGAAAAAAGTACAGGACAATCTGCGTAAAGAAATTGTCAAATCCTTCAGTGACGGCGATGCTAA



AAGCATTTTTGCCATTCTGGACAAAAAAGAGTTGATTACTGTGGAATTAGAAAAGTGGTTTGAAAACAA



TGAGCAGAAAGACATCTACTTCGATGAGAAATTCAAAACTTTCACCACCTATTTTACAGGATTTCATCAA



AACCGGAAGAACATGTACTCAGTAGAACCGAACTCCACGGCCATTGCGTATCGTTTGATCCATGAGAAT



CTGCCTAAATTTCTGGAGAATGCGAAAGCCTTTGAAAAGATTAAGCAGGTCGAATCGCTGCAAGTGAAT



TTTCGTGAACTCATGGGCGAATTTGGTGACGAAGGTCTAATCTTCGTTAACGAACTGGAAGAAATGTTTC



AGATTAATTACTACAATGACGTGCTATCGCAGAACGGTATCACAATCTACAATAGTATTATCTCAGGGTT



CACAAAAAACGATATAAAATACAAAGGCCTGAACGAGTATATCAATAACTACAACCAAACAAAGGACA



AAAAGGATAGGCTTCCGAAACTGAAGCAGTTATACAAACAGATTTTATCTGACAGAATCTCCCTGAGCT



TTCTGCCGGATGCTTTCACTGATGGGAAGCAGGTTCTGAAAGCGATTTTCGATTTTTATAAGATTAACTT



ACTGAGCTACACGATTGAAGGTCAAGAAGAATCTCAAAACTTACTGCTCTTGATCCGTCAAACCATTGA



AAATCTATCATCGTTCGATACGCAGAAAATCTACCTCAAAAACGATACTCACCTGACTACGATCTCTCAG



CAGGTTTTCGGGGATTTTAGTGTATTTTCAACAGCTCTGAACTACTGGTATGAAACCAAAGTCAATCCGA



AATTCGAGACGGAATATTCTAAGGCCAACGAAAAAAAACGTGAGATTCTTGATAAAGCTAAAGCCGTAT



TTACTAAACAGGATTACTTTTCTATTGCTTTCCTGCAGGAAGTTTTATCGGAGTATATCCTGACCCTGGAT



CATACATCTGATATCGTTAAAAAACACAGCAGCAATTGCATCGCTGACTATTTCAAAAACCACTTTGTCG



CCAAAAAAGAAAACGAAACAGACAAGACTTTCGATTTCATTGCTAACATCACCGCAAAATACCAGTGTA



TTCAGGGTATCTTGGAAAACGCCGACCAATACGAAGACGAACTGAAACAAGATCAGAAGCTGATCGAT



AATTTAAAATTCTTCTTAGATGCAATCCTGGAGCTGCTGCACTTCATCAAACCGCTTCATTTAAAGAGCG



AGTCCATTACCGAAAAGGACACCGCCTTCTATGACGTTTTTGAAAATTATTATGAAGCCCTCTCCTTGCT



GACTCCGCTGTATAATATGGTACGCAATTACGTAACCCAGAAACCATATTCTACCGAAAAAATTAAACT



GAACTTTGAAAACGCACAGCTGCTCAACGGTTGGGACGCGAATAAAGAAGGTGACTACCTCACCACCAT



CCTGAAAAAAGATGGTAACTATTTTCTGGCAATTATGGATAAGAAACATAATAAAGCATTCCAGAAATT



TCCTGAAGGGAAAGAAAATTACGAAAAGATGGTGTACAAACTCTTACCTGGAGTTAACAAAATGTTGCC



GAAAGTATTTTTTAGTAATAAGAACATCGCGTACTTTAACCCGTCCAAAGAACTGCTGGAAAATTATAA



AAAGGAGACGCATAAGAAAGGGGATACCTTTAACCTGGAACATTGCCATACCTTAATAGACTTCTTCAA



GGATTCCCTGAATAAACACGAGGATTGGAAATATTTCGATTTTCAGTTTAGTGAGACCAAGTCATACCA



GGATCTTAGCGGCTTTTATCGCGAAGTAGAACACCAAGGCTATAAAATTAACTTCAAAAACATCGACAG



CGAATACATCGACGGTTTAGTTAACGAGGGCAAACTGTTTCTGTTCCAGATCTATTCAAAGGATTTTAGC



CCGTTCTCTAAAGGCAAACCAAATATGCATACGTTGTACTGGAAAGCACTGTTTGAAGAGCAAAACCTG



CAGAATGTGATTTATAAACTGAACGGCCAAGCTGAGATTTTTTTCCGTAAAGCCTCGATTAAACCGAAA



AATATCATCCTTCATAAGAAGAAAATAAAGATCGCTAAAAAACACTTCATAGATAAAAAAACCAAAAC



CTCCGAAATAGTGCCTGTTCAAACAATTAAGAACTTGAATATGTACTACCAGGGCAAGATATCGGAAAA



GGAGTTGACTCAAGACGATCTTCGCTATATCGATAACTTTTCGATTTTTAACGAAAAAAACAAGACGATC



GACATCATCAAAGATAAACGCTTCACTGTAGATAAGTTCCAGTTTCATGTGCCGATTACTATGAACTTCA



AAGCTACCGGGGGTAGCTATATCAACCAAACGGTGTTGGAATACCTGCAGAATAACCCGGAAGTCAAA



ATCATTGGGCTGGACCGCGGAGAACGTCACCTTGTGTACTTGACCTTAATCGATCAGCAAGGCAACATC



TTAAAACAAGAATCGCTGAATACCATTACGGATTCAAAGATTAGCACCCCGTATCATAAGCTGCTCGAT



AACAAGGAGAATGAGCGCGACCTGGCCCGTAAAAACTGGGGCACGGTGGAAAACATTAAGGAGTTAAA



GGAGGGTTATATTTCCCAGGTAGTGCATAAGATCGCCACTCTCATGCTCGAGGAAAATGCGATCGTTGTC



ATGGAAGACTTAAACTTCGGATTTAAACGTGGGCGATTTAAAGTAGAGAAACAAATCTACCAGAAGTTA



GAAAAAATGCTGATTGACAAATTAAATTACTTGGTCCTAAAAGACAAACAGCCGCAAGAATTGGGTGGA



TTATACAACGCCCTCCAACTTACCAATAAATTCGAAAGTTTTCAGAAAATGGGTAAACAGTCAGGCTTTC



TTTTTTATGTTCCTGCGTGGAACACATCCAAAATCGACCCTACAACCGGCTTCGTCAATTACTTCTATACT



AAATATGAAAACGTCGACAAAGCAAAAGCATTCTTTGAAAAGTTCGAAGCAATACGTTTTAACGCTGAG



AAAAAATATTTCGAGTTCGAAGTCAAGAAATACTCAGACTTTAACCCCAAAGCTGAGGGCACACAGCAA



GCGTGGACAATCTGCACCTACGGCGAGCGCATCGAAACGAAGCGTCAAAAAGATCAGAATAACAAATT



TGTTTCAACACCTATCAACCTGACCGAGAAGATTGAAGACTTCTTAGGTAAAAATCAGATTGTTTATGGC



GACGGTAACTGTATAAAATCTCAAATAGCCTCAAAGGATGATAAAGCATTTTTCGAAACATTATTATATT



GGTTCAAAATGACACTGCAGATGCGCAATAGTGAGACGCGTACAGATATTGATTATCTTATCAGCCCGG



TCATGAACGACAACGGTACTTTTTACAACTCCAGAGACTATGAAAAACTTGAGAATCCAACTCTCCCCA



AAGATGCTGATGCGAACGGTGCTTATCACATCGCGAAAAAAGGTCTGATGCTGCTGAACAAAATCGACC



AAGCCGATCTGACTAAGAAAGTTGACCTAAGCATTTCAAATCGGGACTGGTTACAGTTTGTTCAAAAGA



ACAAATGA





SEQ
ATGGAACAGGAATATTATCTGGGCTTGGACATGGGCACCGGTTCCGTCGGCTGGGCTGTTACTGACAGT


ID
GAATATCACGTTCTAAGAAAGCATGGTAAGGCATTGTGGGGTGTAAGACTTTTCGAATCTGCTTCCACTG


NO:
CTGAAGAGCGTAGAATGTTTAGAACGAGTCGACGTAGGCTAGACAGGCGCAATTGGAGAATCGAAATTT


49
TACAAGAAATTTTTGCGGAAGAGATATCTAAGAAAGACCCAGGCTTTTTCCTGAGAATGAAGGAATCTA



AGTATTACCCTGAGGATAAAAGAGATATAAATGGTAACTGTCCCGAATTGCCTTACGCATTATTTGTGGA



CGATGATTTTACCGATAAGGATTACCATAAAAAGTTCCCAACTATCTACCATTTACGCAAAATGTTAATG



AATACAGAGGAAACCCCAGACATAAGACTAGTTTATCTGGCAATACACCATATGATGAAACATAGAGGC



CATTTCTTACTTTCCGGGGATATCAACGAAATCAAAGAGTTTGGTACCACATTTAGTAAGTTACTGGAAA



ACATAAAGAATGAAGAATTGGATTGGAACTTAGAACTCGGAAAAGAAGAATACGCGGTTGTCGAATCT



ATCCTGAAGGATAATATGCTGAATAGGTCGACCAAAAAAACTAGGCTGATCAAAGCACTGAAAGCCAA



ATCTATCTGCGAAAAAGCTGTTTTAAATTTACTTGCTGGTGGCACTGTTAAGTTATCAGACATTTTTGGTT



TGGAAGAATTGAACGAAACCGAGCGTCCAAAAATTAGTTTCGCTGATAATGGCTACGATGATTACATTG



GTGAGGTGGAAAACGAGTTGGGCGAACAATTTTATATTATAGAGACAGCTAAGGCAGTCTATGACTGGG



CTGTTTTAGTAGAAATCCTTGGTAAATACACATCTATCTCCGAAGCGAAAGTTGCTACTTACGAAAAGCA



CAAGTCCGATCTCCAGTTTTTGAAGAAAATTGTCAGGAAATATCTGACTAAGGAAGAATATAAAGATAT



TTTCGTTAGTACCTCTGACAAACTGAAAAATTACTCCGCTTACATCGGGATGACCAAGATTAATGGCAAA



AAAGTTGATCTGCAAAGCAAAAGGTGTTCGAAGGAAGAATTTTATGATTTCATTAAAAAGAATGTCTTA



AAAAAATTAGAAGGTCAGCCAGAATACGAATATTTGAAAGAAGAACTGGAAAGAGAGACATTCTTACC



AAAACAAGTCAACAGAGATAATGGGGTAATTCCATATCAAATTCACCTCTACGAATTAAAAAAAATTTT



AGGCAATTTACGCGATAAAATTGACCTTATCAAAGAAAATGAGGATAAGCTGGTTCAACTCTTTGAATT



CAGAATACCCTATTATGTGGGCCCACTGAACAAGATTGATGACGGCAAAGAAGGTAAATTCACATGGGC



CGTCCGCAAATCCAATGAAAAAATTTACCCATGGAACTTTGAAAATGTAGTAGATATTGAAGCGTCTGC



GGAGAAATTTATTCGAAGAATGACTAATAAATGCACTTACTTGATGGGAGAGGATGTTCTGCCTAAAGA



CAGCTTATTATACAGCAAGTACATGGTTCTAAACGAACTTAACAACGTTAAGTTGGACGGTGAGAAATT



AAGTGTAGAATTGAAACAAAGATTGTATACTGACGTCTTCTGCAAGTACAGAAAAGTGACAGTTAAAAA



AATTAAGAATTACTTGAAGTGCGAAGGTATAATTTCTGGAAACGTAGAGATTACTGGTATTGATGGTGA



TTTCAAAGCATCCCTAACAGCTTACCACGATTTCAAGGAAATCCTGACAGGAACTGAACTCGCAAAAAA



AGATAAAGAAAACATTATTACTAATATTGTTCTTTTCGGTGATGACAAGAAATTGTTGAAGAAAAGACT



GAATAGACTTTACCCCCAGATTACTCCCAATCAACTTAAGAAAATTTGTGCTTTGTCTTACACAGGATGG



GGTCGTTTTTCAAAAAAGTTCTTAGAAGAGATTACCGCACCTGATCCAGAAACAGGCGAAGTATGGAAT



ATAATTACCGCCTTATGGGAATCGAACAATAATCTTATGCAACTTCTGAGCAATGAATATCGTTTCATGG



AAGAAGTTGAGACTTACAACATGGGCAAACAGACGAAGACTTTATCCTATGAAACTGTGGAAAATATGT



ATGTATCACCTTCTGTCAAGAGACAAATTTGGCAAACCTTAAAAATTGTCAAAGAATTAGAAAAGGTAA



TGAAGGAGTCTCCTAAACGTGTGTTTATTGAAATGGCTAGAGAAAAACAAGAGTCAAAAAGAACCGAG



TCAAGAAAGAAGCAGTTAATCGATTTATATAAGGCTTGTAAAAACGAAGAGAAAGATTGGGTTAAAGA



ATTGGGGGACCAAGAGGAACAAAAACTACGGTCGGATAAGTTGTATTTATACTATACGCAAAAGGGAC



GATGTATGTATTCCGGCGAGGTAATAGAATTGAAGGATTTATGGGACAATACAAAATATGACATAGACC



ATATATATCCCCAATCAAAAACGATGGACGATAGCTTGAACAATAGAGTACTCGTGAAAAAAAAATATA



ATGCGACCAAATCTGATAAGTATCCTCTGAATGAAAATATCAGACATGAAAGAAAGGGGTTCTGGAAGT



CCTTGTTAGATGGTGGGTTTATAAGCAAAGAAAAGTACGAGCGTCTAATAAGAAACACGGAGTTATCGC



CAGAAGAACTCGCTGGTTTTATTGAGAGGCAAATCGTGGAAACGAGACAATCTACCAAAGCCGTTGCTG



AGATCCTAAAGCAAGTTTTCCCAGAGTCGGAGATTGTCTATGTCAAAGCTGGCACAGTGAGCAGGTTTA



GGAAAGACTTCGAACTATTAAAGGTAAGAGAAGTGAACGATTTACATCACGCAAAGGACGCTTACCTAA



ATATCGTTGTAGGTAACTCATATTATGTTAAATTTACCAAGAACGCCTCTTGGTTTATAAAGGAGAACCC



AGGTAGAACATATAACCTGAAAAAGATGTTCACCTCTGGTTGGAATATTGAGAGAAACGGAGAAGTCGC



ATGGGAAGTTGGTAAGAAAGGGACTATAGTGACAGTAAAGCAAATTATGAACAAAAATAATATCCTCG



TTACAAGGCAGGTTCATGAAGCAAAGGGCGGCCTTTTTGACCAACAAATTATGAAGAAAGGGAAAGGT



CAAATTGCAATAAAAGAAACCGATGAGAGACTAGCGTCAATAGAAAAGTATGGTGGCTATAATAAAGC



TGCGGGTGCATACTTTATGCTTGTTGAATCAAAAGACAAGAAAGGTAAGACTATTAGAACTATAGAATT



TATACCCCTGTACCTTAAAAACAAAATTGAATCGGATGAGTCAATCGCGTTAAATTTTCTAGAGAAAGG



AAGGGGTTTAAAAGAACCAAAGATCCTGTTAAAAAAGATTAAGATTGACACCTTGTTCGATGTAGATGG



ATTTAAAATGTGGTTATCTGGCAGAACAGGCGATAGACTTTTGTTTAAGTGCGCTAATCAATTAATTTTG



GATGAGAAAATCATTGTCACAATGAAAAAAATAGTTAAGTTTATTCAGAGAAGACAAGAAAACAGGGA



GTTGAAATTATCTGATAAAGATGGTATCGACAATGAAGTTTTAATGGAAATCTACAATACATTCGTTGAT



AAACTTGAAAATACCGTATATCGAATCAGGTTAAGTGAACAAGCCAAAACATTAATTGATAAACAAAAA



GAATTTGAAAGGCTATCACTGGAAGACAAATCCTCCACCCTATTTGAAATTTTGCATATATTCCAGTGCC



AATCTTCAGCAGCTAATTTAAAAATGATTGGCGGACCTGGGAAAGCCGGCATCCTAGTGATGAACAATA



ATATCTCCAAGTGTAACAAAATATCAATTATTAACCAATCTCCGACAGGTATTTTTGAAAATGAAATAGA



CTTGCTTAAGATATAA





SEQ
ATGTCTTTCGACTCTTTCACCAACCTGTACTCTCTGTCTAAAACCCTGAAATTCGAAATGCGTCCGGTTGG


ID
TAACACCCAGAAAATGCTGGACAACGCGGGTGTTTTCGAAAAAGACAAACTGATCCAGAAAAAATACG


NO:
GTAAAACCAAACCGTACTTCGACCGTCTGCACCGTGAATTCATCGAAGAAGCGCTGACCGGTGTTGAAC


50
TGATCGGTCTGGACGAAAACTTCCGTACCCTGGTTGACTGGCAGAAAGACAAAAAAAACAACGTTGCGA



TGAAAGCGTACGAAAACTCTCTGCAGCGTCTGCGTACCGAAATCGGTAAAATCTTCAACCTGAAAGCGG



AAGACTGGGTTAAAAACAAATACCCGATCCTGGGTCTGAAAAACAAAAACACCGACATCCTGTTCGAAG



AAGCGGTTTTCGGTATCCTGAAAGCGCGTTACGGTGAAGAAAAAGACACCTTCATCGAAGTTGAAGAAA



TCGACAAAACCGGTAAATCTAAAATCAACCAGATCTCTATCTTCGACTCTTGGAAAGGTTTCACCGGTTA



CTTCAAAAAATTCTTCGAAACCCGTAAAAACTTCTACAAAAACGACGGTACCTCTACCGCGATCGCGAC



CCGTATCATCGACCAGAACCTGAAACGTTTCATCGACAACCTGTCTATCGTTGAATCTGTTCGTCAGAAA



GTTGACCTGGCGGAAACCGAAAAATCTTTCTCTATCTCTCTGTCTCAGTTCTTCTCTATCGACTTCTACAA



CAAATGCCTGCTGCAGGACGGTATCGACTACTACAACAAAATCATCGGTGGTGAAACCCTGAAAAACGG



TGAAAAACTGATCGGTCTGAACGAACTGATCAACCAGTACCGTCAGAACAACAAAGACCAGAAAATCC



CGTTCTTCAAACTGCTGGACAAACAGATCCTGTCTGAAAAAATCCTGTTCCTGGACGAAATCAAAAACG



ACACCGAACTGATCGAAGCGCTGTCTCAGTTCGCGAAAACCGCGGAAGAAAAAACCAAAATCGTTAAA



AAACTGTTCGCGGACTTCGTTGAAAACAACTCTAAATACGACCTGGCGCAGATCTACATCTCTCAGGAA



GCGTTCAACACCATCTCTAACAAATGGACCTCTGAAACCGAAACCTTCGCGAAATACCTGTTCGAAGCG



ATGAAATCTGGTAAACTGGCGAAATACGAAAAAAAAGACAACTCTTACAAATTCCCGGACTTCATCGCG



CTGTCTCAGATGAAATCTGCGCTGCTGTCTATCTCTCTGGAAGGTCACTTCTGGAAAGAAAAATACTACA



AAATCTCTAAATTCCAGGAAAAAACCAACTGGGAACAGTTCCTGGCGATCTTCCTGTACGAATTCAACT



CTCTGTTCTCTGACAAAATCAACACCAAAGACGGTGAAACCAAACAGGTTGGTTACTACCTGTTCGCGA



AAGACCTGCACAACCTGATCCTGTCTGAACAGATCGACATCCCGAAAGACTCTAAAGTTACCATCAAAG



ACTTCGCGGACTCTGTTCTGACCATCTACCAGATGGCGAAATACTTCGCGGTTGAAAAAAAACGTGCGT



GGCTGGCGGAATACGAACTGGACTCTTTCTACACCCAGCCGGACACCGGTTACCTGCAGTTCTACGACA



ACGCGTACGAAGACATCGTTCAGGTTTACAACAAACTGCGTAACTACCTGACCAAAAAACCGTACTCTG



AAGAAAAATGGAAACTGAACTTCGAAAACTCTACCCTGGCGAACGGTTGGGACAAAAACAAAGAATCT



GACAACTCTGCGGTTATCCTGCAGAAAGGTGGTAAATACTACCTGGGTCTGATCACCAAAGGTCACAAC



AAAATCTTCGACGACCGTTTCCAGGAAAAATTCATCGTTGGTATCGAAGGTGGTAAATACGAAAAAATC



GTTTACAAATTCTTCCCGGACCAGGCGAAAATGTTCCCGAAAGTTTGCTTCTCTGCGAAAGGTCTGGAAT



TCTTCCGTCCGTCTGAAGAAATCCTGCGTATCTACAACAACGCGGAATTCAAAAAAGGTGAAACCTACT



CTATCGACTCTATGCAGAAACTGATCGACTTCTACAAAGACTGCCTGACCAAATACGAAGGTTGGGCGT



GCTACACCTTCCGTCACCTGAAACCGACCGAAGAATACCAGAACAACATCGGTGAATTCTTCCGTGACG



TTGCGGAAGACGGTTACCGTATCGACTTCCAGGGTATCTCTGACCAGTACATCCACGAAAAAAACGAAA



AAGGTGAACTGCACCTGTTCGAAATCCACAACAAAGACTGGAACCTGGACAAAGCGCGTGACGGTAAA



TCTAAAACCACCCAGAAAAACCTGCACACCCTGTACTTCGAATCTCTGTTCTCTAACGACAACGTTGTTC



AGAACTTCCCGATCAAACTGAACGGTCAGGCGGAAATCTTCTACCGTCCGAAAACCGAAAAAGACAAA



CTGGAATCTAAAAAAGACAAAAAAGGTAACAAAGTTATCGACCACAAACGTTACTCTGAAAACAAAAT



CTTCTTCCACGTTCCGCTGACCCTGAACCGTACCAAAAACGACTCTTACCGTTTCAACGCGCAGATCAAC



AACTTCCTGGCGAACAACAAAGACATCAACATCATCGGTGTTGACCGTGGTGAAAAACACCTGGTTTAC



TACTCTGTTATCACCCAGGCGTCTGACATCCTGGAATCTGGTTCTCTGAACGAACTGAACGGTGTTAACT



ACGCGGAAAAACTGGGTAAAAAAGCGGAAAACCGTGAACAGGCGCGTCGTGACTGGCAGGACGTTCAG



GGTATCAAAGACCTGAAAAAAGGTTACATCTCTCAGGTTGTTCGTAAACTGGCGGACCTGGCGATCAAA



CACAACGCGATCATCATCCTGGAAGACCTGAACATGCGTTTCAAACAGGTTCGTGGTGGTATCGAAAAA



TCTATCTACCAGCAGCTGGAAAAAGCGCTGATCGACAAACTGTCTTTCCTGGTTGACAAAGGTGAAAAA



AACCCGGAACAGGCGGGTCACCTGCTGAAAGCGTACCAGCTGTCTGCGCCGTTCGAAACCTTCCAGAAA



ATGGGTAAACAGACCGGTATCATCTTCTACACCCAGGCGTCTTACACCTCTAAATCTGACCCGGTTACCG



GTTGGCGTCCGCACCTGTACCTGAAATACTTCTCTGCGAAAAAAGCGAAAGACGACATCGCGAAATTCA



CCAAAATCGAATTCGTTAACGACCGTTTCGAACTGACCTACGACATCAAAGACTTCCAGCAGGCGAAAG



AATACCCGAACAAAACCGTTTGGAAAGTTTGCTCTAACGTTGAACGTTTCCGTTGGGACAAAAACCTGA



ACCAGAACAAAGGTGGTTACACCCACTACACCAACATCACCGAAAACATCCAGGAACTGTTCACCAAAT



ACGGTATCGACATCACCAAAGACCTGCTGACCCAGATCTCTACCATCGACGAAAAACAGAACACCTCTT



TCTTCCGTGACTTCATCTTCTACTTCAACCTGATCTGCCAGATCCGTAACACCGACGACTCTGAAATCGC



GAAAAAAAACGGTAAAGACGACTTCATCCTGTCTCCGGTTGAACCGTTCTTCGACTCTCGTAAAGACAA



CGGTAACAAACTGCCGGAAAACGGTGACGACAACGGTGCGTACAACATCGCGCGTAAAGGTATCGTTAT



CCTGAACAAAATCTCTCAGTACTCTGAAAAAAACGAAAACTGCGAAAAAATGAAATGGGGTGACCTGT



ACGTTTCTAACATCGACTGGGACAACTTCGTT





SEQ
ATGGAAAACTTTAAAAACTTATACCCAATAAACAAAACGTTACGTTTTGAACTGCGTCCATATGGTAAA


ID
ACACTGGAAAACTTTAAAAAAAGCGGTTTGTTGGAGAAGGATGCATTTAAAGCGAACTCTCGCAGATCC


NO:
ATGCAGGCCATCATTGATGAAAAATTTAAAGAGACGATCGAAGAACGTCTGAAATACACGGAATTTAGT


51
GAGTGTGACTTAGGTAATATGACTTCTAAAGATAAGAAAATCACCGATAAGGCGGCGACCAACCTGAAG



AAGCAAGTCATTTTATCTTTTGATGATGAAATCTTTAACAACTATTTGAAACCGGACAAAAACATCGATG



CCTTATTTAAAAATGACCCTTCGAACCCGGTGATTAGCACATTTAAGGGCTTCACAACGTATTTTGTCAA



TTTTTTTGAAATTCGTAAACATATCTTCAAAGGAGAATCAAGCGGCTCTATGGCTTATCGCATTATTGAT



GAAAACCTGACGACCTATTTGAATAACATTGAAAAAATCAAAAAACTGCCAGAGGAATTAAAGTCTCAG



TTAGAAGGCATCGACCAGATCGACAAACTCAACAACTATAACGAATTTATTACGCAGTCTGGTATCACC



CACTATAATGAAATTATTGGAGGTATCAGTAAATCAGAAAATGTGAAAATCCAAGGGATTAATGAAGGC



ATTAACCTCTATTGCCAGAAAAATAAAGTGAAACTGCCGAGGCTGACTCCACTCTACAAAATGATCCTG



TCTGACCGCGTCTCGAATAGCTTTGTCCTGGACACAATTGAAAACGATACGGAATTGATTGAGATGATA



AGCGATCTGATTAACAAAACCGAAATTTCACAGGATGTAATCATGAGTGATATACAAAACATCTTTATT



AAATATAAACAGCTTGGTAATCTGCCTGGAATTAGCTATTCGTCAATAGTGAACGCAATCTGTTCTGATT



ATGATAACAATTTTGGCGACGGTAAGCGTAAAAAGAGTTATGAAAACGATAGGAAAAAACACCTGGAA



ACTAACGTGTATTCTATCAACTATATCAGCGAACTGCTTACGGACACCGATGTGAGTTCAAACATTAAGA



TGCGGTATAAGGAGCTTGAACAGAACTACCAGGTCTGTAAGGAAAACTTCAACGCAACCAACTGGATGA



ACATTAAAAATATCAAACAATCCGAGAAGACCAACTTAATCAAAGATCTGCTGGATATTTTGAAGAGCA



TTCAACGTTTTTATGATCTGTTCGATATCGTTGATGAAGACAAGAATCCTAGTGCGGAATTTTATACATG



GCTGTCTAAAAATGCGGAGAAATTGGATTTCGAATTCAATTCTGTTTATAATAAATCACGCAACTATTTG



ACCCGCAAACAATACAGCGACAAAAAGATAAAACTAAACTTCGACAGTCCGACATTGGCAAAGGGCTG



GGACGCAAATAAGGAAATCGATAACTCTACGATAATTATGCGTAAGTTCAATAATGATCGAGGTGATTA



TGATTATTTCTTAGGCATTTGGAACAAAAGCACCCCGGCCAACGAAAAGATAATTCCACTGGAGGATAA



CGGTCTGTTCGAAAAAATGCAGTACAAATTATATCCGGATCCAAGCAAGATGCTTCCAAAGCAGTTTCT



GTCTAAAATTTGGAAAGCTAAGCATCCGACCACCCCAGAATTTGACAAGAAATATAAGGAAGGCCGCCA



TAAGAAAGGTCCCGATTTTGAAAAAGAATTCTTGCACGAACTGATTGATTGCTTTAAACATGGCTTAGTC



AATCACGATGAAAAGTATCAAGATGTTTTTGGATTCAATTTGAGAAACACAGAAGACTACAATTCCTAC



ACTGAGTTTCTCGAAGATGTGGAACGATGTAATTATAATCTGAGCTTTAACAAAATCGCGGACACCTCG



AATCTGATTAACGATGGTAAACTTTATGTTTTCCAGATCTGGAGCAAGGATTTCTCTATTGACAGCAAAG



GCACCAAAAACCTGAACACCATTTACTTTGAAAGTCTCTTCAGCGAAGAAAATATGATTGAGAAAATGT



TTAAACTTAGCGGTGAAGCTGAAATATTCTATCGCCCGGCAAGCCTGAACTATTGCGAAGACATTATCA



AAAAGGGTCATCACCACGCTGAACTGAAAGATAAATTTGATTATCCTATCATAAAAGATAAACGCTATA



GCCAGGATAAATTTTTTTTTCATGTTCCTATGGTCATTAACTACAAATCAGAAAAACTGAACTCTAAAAG



CCTCAATAATCGAACCAATGAAAACCTTGGGCAGTTTACCCATATAATTGGAATTGATCGCGGAGAGCG



TCATTTAATCTACCTGACCGTAGTCGATGTATCGACCGGCGAGATCGTCGAGCAGAAGCACTTAGACGA



GATTATCAACACTGATACCAAAGGTGTTGAGCATAAGACGCACTATCTAAACAAGCTGGAGGAAAAATC



GAAAACCCGTGATAATGAACGTAAGAGTTGGGAGGCAATTGAAACGATTAAAGAACTGAAGGAGGGTT



ATATCAGCCACGTAATCAATGAAATTCAAAAACTGCAGGAAAAATACAACGCCCTGATCGTTATGGAAA



ATCTGAATTACGGTTTCAAAAATTCTCGCATCAAAGTGGAAAAACAGGTATATCAGAAGTTCGAGACGG



CATTAATTAAAAAGTTTAATTACATCATTGACAAAAAAGATCCGGAAACTTATATTCATGGCTATCAGCT



GACGAACCCGATCACCACACTGGATAAAATTGGTAACCAGTCTGGTATCGTGCTTTACATCCCTGCCTGG



AATACCAGTAAAATCGATCCGGTAACGGGATTCGTCAACCTTCTATATGCAGATGACCTCAAATATAAG



AATCAGGAACAGGCCAAGTCTTTTATTCAGAAAATCGATAACATTTACTTTGAGAATGGGGAATTCAAA



TTTGATATTGATTTTTCTAAATGGAACAATCGTTATAGTATATCTAAGACGAAATGGACGCTCACCTCGT



ACGGAACCCGAATCCAGACATTCCGCAATCCGCAGAAGAACAATAAATGGGACAGCGCCGAGTATGAT



CTCACTGAAGAATTCAAATTGATTCTGAACATTGACGGTACCCTGAAAAGCCAGGATGTCGAAACCTAT



AAAAAATTTATGTCTCTGTTCAAGCTGATGCTGCAACTTAGGAACTCTGTTACCGGCACTGATATCGATT



ATATGATCTCCCCTGTCACTGATAAAACAGGTACGCATTTCGATTCGCGCGAAAATATCAAAAATCTGCC



CGCAGATGCCGACGCCAATGGGGCGTACAATATTGCACGCAAGGGTATCATGGCGATCGAAAACATTAT



GAATGGTATCAGCGACCCGCTGAAAATCTCAAACGAAGATTATTTGAAATATATCCAAAACCAGCAGGA



ATAA





SEQ
ATGACCCAGTTCGAAGGTTTCACCAACCTGTACCAGGTTTCTAAAACCCTGCGTTTCGAACTGATCCCGC


ID
AGGGTAAAACCCTGAAACACATCCAGGAACAGGGTTTCATCGAAGAAGACAAAGCGCGTAACGACCAC


NO:
TACAAAGAACTGAAACCGATCATCGACCGTATCTACAAAACCTACGCGGACCAGTGCCTGCAGCTGGTT


52
CAGCTGGACTGGGAAAACCTGTCTGCGGCGATCGACTCTTACCGTAAAGAAAAAACCGAAGAAACCCGT



AACGCGCTGATCGAAGAACAGGCGACCTACCGTAACGCGATCCACGACTACTTCATCGGTCGTACCGAC



AACCTGACCGACGCGATCAACAAACGTCACGCGGAAATCTACAAAGGTCTGTTCAAAGCGGAACTGTTC



AACGGTAAAGTTCTGAAACAGCTGGGTACCGTTACCACCACCGAACACGAAAACGCGCTGCTGCGTTCT



TTCGACAAATTCACCACCTACTTCTCTGGTTTCTACGAAAACCGTAAAAACGTTTTCTCTGCGGAAGACA



TCTCTACCGCGATCCCGCACCGTATCGTTCAGGACAACTTCCCGAAATTCAAAGAAAACTGCCACATCTT



CACCCGTCTGATCACCGCGGTTCCGTCTCTGCGTGAACACTTCGAAAACGTTAAAAAAGCGATCGGTATC



TTCGTTTCTACCTCTATCGAAGAAGTTTTCTCTTTCCCGTTCTACAACCAGCTGCTGACCCAGACCCAGAT



CGACCTGTACAACCAGCTGCTGGGTGGTATCTCTCGTGAAGCGGGTACCGAAAAAATCAAAGGTCTGAA



CGAAGTTCTGAACCTGGCGATCCAGAAAAACGACGAAACCGCGCACATCATCGCGTCTCTGCCGCACCG



TTTCATCCCGCTGTTCAAACAGATCCTGTCTGACCGTAACACCCTGTCTTTCATCCTGGAAGAATTCAAA



TCTGACGAAGAAGTTATCCAGTCTTTCTGCAAATACAAAACCCTGCTGCGTAACGAAAACGTTCTGGAA



ACCGCGGAAGCGCTGTTCAACGAACTGAACTCTATCGACCTGACCCACATCTTCATCTCTCACAAAAAA



CTGGAAACCATCTCTTCTGCGCTGTGCGACCACTGGGACACCCTGCGTAACGCGCTGTACGAACGTCGTA



TCTCTGAACTGACCGGTAAAATCACCAAATCTGCGAAAGAAAAAGTTCAGCGTTCTCTGAAACACGAAG



ACATCAACCTGCAGGAAATCATCTCTGCGGCGGGTAAAGAACTGTCTGAAGCGTTCAAACAGAAAACCT



CTGAAATCCTGTCTCACGCGCACGCGGCGCTGGACCAGCCGCTGCCGACCACCCTGAAAAAACAGGAAG



AAAAAGAAATCCTGAAATCTCAGCTGGACTCTCTGCTGGGTCTGTACCACCTGCTGGACTGGTTCGCGGT



TGACGAATCTAACGAAGTTGACCCGGAATTCTCTGCGCGTCTGACCGGTATCAAACTGGAAATGGAACC



GTCTCTGTCTTTCTACAACAAAGCGCGTAACTACGCGACCAAAAAACCGTACTCTGTTGAAAAATTCAA



ACTGAACTTCCAGATGCCGACCCTGGCGTCTGGTTGGGACGTTAACAAAGAAAAAAACAACGGTGCGAT



CCTGTTCGTTAAAAACGGTCTGTACTACCTGGGTATCATGCCGAAACAGAAAGGTCGTTACAAAGCGCT



GTCTTTCGAACCGACCGAAAAAACCTCTGAAGGTTTCGACAAAATGTACTACGACTACTTCCCGGACGC



GGCGAAAATGATCCCGAAATGCTCTACCCAGCTGAAAGCGGTTACCGCGCACTTCCAGACCCACACCAC



CCCGATCCTGCTGTCTAACAACTTCATCGAACCGCTGGAAATCACCAAAGAAATCTACGACCTGAACAA



CCCGGAAAAAGAACCGAAAAAATTCCAGACCGCGTACGCGAAAAAAACCGGTGACCAGAAAGGTTACC



GTGAAGCGCTGTGCAAATGGATCGACTTCACCCGTGACTTCCTGTCTAAATACACCAAAACCACCTCTAT



CGACCTGTCTTCTCTGCGTCCGTCTTCTCAGTACAAAGACCTGGGTGAATACTACGCGGAACTGAACCCG



CTGCTGTACCACATCTCTTTCCAGCGTATCGCGGAAAAAGAAATCATGGACGCGGTTGAAACCGGTAAA



CTGTACCTGTTCCAGATCTACAACAAAGACTTCGCGAAAGGTCACCACGGTAAACCGAACCTGCACACC



CTGTACTGGACCGGTCTGTTCTCTCCGGAAAACCTGGCGAAAACCTCTATCAAACTGAACGGTCAGGCG



GAACTGTTCTACCGTCCGAAATCTCGTATGAAACGTATGGCGCACCGTCTGGGTGAAAAAATGCTGAAC



AAAAAACTGAAAGACCAGAAAACCCCGATCCCGGACACCCTGTACCAGGAACTGTACGACTACGTTAA



CCACCGTCTGTCTCACGACCTGTCTGACGAAGCGCGTGCGCTGCTGCCGAACGTTATCACCAAAGAAGTT



TCTCACGAAATCATCAAAGACCGTCGTTTCACCTCTGACAAATTCTTCTTCCACGTTCCGATCACCCTGA



ACTACCAGGCGGCGAACTCTCCGTCTAAATTCAACCAGCGTGTTAACGCGTACCTGAAAGAACACCCGG



AAACCCCGATCATCGGTATCGACCGTGGTGAACGTAACCTGATCTACATCACCGTTATCGACTCTACCGG



TAAAATCCTGGAACAGCGTTCTCTGAACACCATCCAGCAGTTCGACTACCAGAAAAAACTGGACAACCG



TGAAAAAGAACGTGTTGCGGCGCGTCAGGCGTGGTCTGTTGTTGGTACCATCAAAGACCTGAAACAGGG



TTACCTGTCTCAGGTTATCCACGAAATCGTTGACCTGATGATCCACTACCAGGCGGTTGTTGTTCTGGAA



AACCTGAACTTCGGTTTCAAATCTAAACGTACCGGTATCGCGGAAAAAGCGGTTTACCAGCAGTTCGAA



AAAATGCTGATCGACAAACTGAACTGCCTGGTTCTGAAAGACTACCCGGCGGAAAAAGTTGGTGGTGTT



CTGAACCCGTACCAGCTGACCGACCAGTTCACCTCTTTCGCGAAAATGGGTACCCAGTCTGGTTTCCTGT



TCTACGTTCCGGCGCCGTACACCTCTAAAATCGACCCGCTGACCGGTTTCGTTGACCCGTTCGTTTGGAA



AACCATCAAAAACCACGAATCTCGTAAACACTTCCTGGAAGGTTTCGACTTCCTGCACTACGACGTTAA



AACCGGTGACTTCATCCTGCACTTCAAAATGAACCGTAACCTGTCTTTCCAGCGTGGTCTGCCGGGTTTC



ATGCCGGCGTGGGACATCGTTTTCGAAAAAAACGAAACCCAGTTCGACGCGAAAGGTACCCCGTTCATC



GCGGGTAAACGTATCGTTCCGGTTATCGAAAACCACCGTTTCACCGGTCGTTACCGTGACCTGTACCCGG



CGAACGAACTGATCGCGCTGCTGGAAGAAAAAGGTATCGTTTTCCGTGACGGTTCTAACATCCTGCCGA



AACTGCTGGAAAACGACGACTCTCACGCGATCGACACCATGGTTGCGCTGATCCGTTCTGTTCTGCAGAT



GCGTAACTCTAACGCGGCGACCGGTGAAGACTACATCAACTCTCCGGTTCGTGACCTGAACGGTGTTTG



CTTCGACTCTCGTTTCCAGAACCCGGAATGGCCGATGGACGCGGACGCGAACGGTGCGTACCACATCGC



GCTGAAAGGTCAGCTGCTGCTGAACCACCTGAAAGAATCTAAAGACCTGAAACTGCAGAACGGTATCTC



TAACCAGGACTGGCTGGCGTACATCCAGGAACTGCGTAACTA





SEQ
ATGGCGGTTAAATCTATCAAAGTTAAACTGCGTCTGGACGACATGCCGGAAATCCGTGCGGGTCTGTGG


ID
AAACTGCACAAAGAAGTTAACGCGGGTGTTCGTTACTACACCGAATGGCTGTCTCTGCTGCGTCAGGAA


NO:
AACCTGTACCGTCGTTCTCCGAACGGTGACGGTGAACAGGAATGCGACAAAACCGCGGAAGAATGCAA


53
AGCGGAACTGCTGGAACGTCTGCGTGCGCGTCAGGTTGAAAACGGTCACCGTGGTCCGGCGGGTTCTGA



CGACGAACTGCTGCAGCTGGCGCGTCAGCTGTACGAACTGCTGGTTCCGCAGGCGATCGGTGCGAAAGG



TGACGCGCAGCAGATCGCGCGTAAATTCCTGTCTCCGCTGGCGGACAAAGACGCGGTTGGTGGTCTGGG



TATCGCGAAAGCGGGTAACAAACCGCGTTGGGTTCGTATGCGTGAAGCGGGTGAACCGGGTTGGGAAG



AAGAAAAAGAAAAAGCGGAAACCCGTAAATCTGCGGACCGTACCGCGGACGTTCTGCGTGCGCTGGCG



GACTTCGGTCTGAAACCGCTGATGCGTGTTTACACCGACTCTGAAATGTCTTCTGTTGAATGGAAACCGC



TGCGTAAAGGTCAGGCGGTTCGTACCTGGGACCGTGACATGTTCCAGCAGGCGATCGAACGTATGATGT



CTTGGGAATCTTGGAACCAGCGTGTTGGTCAGGAATACGCGAAACTGGTTGAACAGAAAAACCGTTTCG



AACAGAAAAACTTCGTTGGTCAGGAACACCTGGTTCACCTGGTTAACCAGCTGCAGCAGGACATGAAAG



AAGCGTCTCCGGGTCTGGAATCTAAAGAACAGACCGCGCACTACGTTACCGGTCGTGCGCTGCGTGGTT



CTGACAAAGTTTTCGAAAAATGGGGTAAACTGGCGCCGGACGCGCCGTTCGACCTGTACGACGCGGAAA



TCAAAAACGTTCAGCGTCGTAACACCCGTCGTTTCGGTTCTCACGACCTGTTCGCGAAACTGGCGGAACC



GGAATACCAGGCGCTGTGGCGTGAAGACGCGTCTTTCCTGACCCGTTACGCGGTTTACAACTCTATCCTG



CGTAAACTGAACCACGCGAAAATGTTCGCGACCTTCACCCTGCCGGACGCGACCGCGCACCCGATCTGG



ACCCGTTTCGACAAACTGGGTGGTAACCTGCACCAGTACACCTTCCTGTTCAACGAATTCGGTGAACGTC



GTCACGCGATCCGTTTCCACAAACTGCTGAAAGTTGAAAACGGTGTTGCGCGTGAAGTTGACGACGTTA



CCGTTCCGATCTCTATGTCTGAACAGCTGGACAACCTGCTGCCGCGTGACCCGAACGAACCGATCGCGCT



GTACTTCCGTGACTACGGTGCGGAACAGCACTTCACCGGTGAATTCGGTGGTGCGAAAATCCAGTGCCG



TCGTGACCAGCTGGCGCACATGCACCGTCGTCGTGGTGCGCGTGACGTTTACCTGAACGTTTCTGTTCGT



GTTCAGTCTCAGTCTGAAGCGCGTGGTGAACGTCGTCCGCCGTACGCGGCGGTTTTCCGTCTGGTTGGTG



ACAACCACCGTGCGTTCGTTCACTTCGACAAACTGTCTGACTACCTGGCGGAACACCCGGACGACGGTA



AACTGGGTTCTGAAGGTCTGCTGTCTGGTCTGCGTGTTATGTCTGTTGACCTGGGTCTGCGTACCTCTGCG



TCTATCTCTGTTTTCCGTGTTGCGCGTAAAGACGAACTGAAACCGAACTCTAAAGGTCGTGTTCCGTTCT



TCTTCCCGATCAAAGGTAACGACAACCTGGTTGCGGTTCACGAACGTTCTCAGCTGCTGAAACTGCCGG



GTGAAACCGAATCTAAAGACCTGCGTGCGATCCGTGAAGAACGTCAGCGTACCCTGCGTCAGCTGCGTA



CCCAGCTGGCGTACCTGCGTCTGCTGGTTCGTTGCGGTTCTGAAGACGTTGGTCGTCGTGAACGTTCTTG



GGCGAAACTGATCGAACAGCCGGTTGACGCGGCGAACCACATGACCCCGGACTGGCGTGAAGCGTTCG



AAAACGAACTGCAGAAACTGAAATCTCTGCACGGTATCTGCTCTGACAAAGAATGGATGGACGCGGTTT



ACGAATCTGTTCGTCGTGTTTGGCGTCACATGGGTAAACAGGTTCGTGACTGGCGTAAAGACGTTCGTTC



TGGTGAACGTCCGAAAATCCGTGGTTACGCGAAAGACGTTGTTGGTGGTAACTCTATCGAACAGATCGA



ATACCTGGAACGTCAGTACAAATTCCTGAAATCTTGGTCTTTCTTCGGTAAAGTTTCTGGTCAGGTTATC



CGTGCGGAAAAAGGTTCTCGTTTCGCGATCACCCTGCGTGAACACATCGACCACGCGAAAGAAGACCGT



CTGAAAAAACTGGCGGACCGTATCATCATGGAAGCGCTGGGTTACGTTTACGCGCTGGACGAACGTGGT



AAAGGTAAATGGGTTGCGAAATACCCGCCGTGCCAGCTGATCCTGCTGGAAGAACTGTCTGAATACCAG



TTCAACAACGACCGTCCGCCGTCTGAAAACAACCAGCTGATGCAGTGGTCTCACCGTGGTGTTTTCCAGG



AACTGATCAACCAGGCGCAGGTTCACGACCTGCTGGTTGGTACCATGTACGCGGCGTTCTCTTCTCGTTT



CGACGCGCGTACCGGTGCGCCGGGTATCCGTTGCCGTCGTGTTCCGGCGCGTTGCACCCAGGAACACAA



CCCGGAACCGTTCCCGTGGTGGCTGAACAAATTCGTTGTTGAACACACCCTGGACGCGTGCCCGCTGCGT



GCGGACGACCTGATCCCGACCGGTGAAGGTGAAATCTTCGTTTCTCCGTTCTCTGCGGAAGAAGGTGAC



TTCCACCAGATCCACGCGGACCTGAACGCGGCGCAGAACCTGCAGCAGCGTCTGTGGTCTGACTTCGAC



ATCTCTCAGATCCGTCTGCGTTGCGACTGGGGTGAAGTTGACGGTGAACTGGTTCTGATCCCGCGTCTGA



CCGGTAAACGTACCGCGGACTCTTACTCTAACAAAGTTTTCTACACCAACACCGGTGTTACCTACTACGA



ACGTGAACGTGGTAAAAAACGTCGTAAAGTTTTCGCGCAGGAAAAACTGTCTGAAGAAGAAGCGGAAC



TGCTGGTTGAAGCGGACGAAGCGCGTGAAAAATCTGTTGTTCTGATGCGTGACCCGTCTGGTATCATCA



ACCGTGGTAACTGGACCCGTCAGAAAGAATTCTGGTCTATGGTTAACCAGCGTATCGAAGGTTACCTGG



TTAAACAGATCCGTTCTCGTGTTCCGCTGCAGGACTCTGCGTGCGAAAACACCGGTGACATCTAA





SEQ
ATGGCGACCCGTTCTTTCATCCTGAAAATCGAACCGAACGAAGAAGTTAAAAAAGGTCTGTGGAAAACC


ID
CACGAAGTTCTGAACCACGGTATCGCGTACTACATGAACATCCTGAAACTGATCCGTCAGGAAGCGATC


NO:
TACGAACACCACGAACAGGACCCGAAAAACCCGAAAAAAGTTTCTAAAGCGGAAATCCAGGCGGAACT


54
GTGGGACTTCGTTCTGAAAATGCAGAAATGCAACTCTTTCACCCACGAAGTTGACAAAGACGTTGTTTTC



AACATCCTGCGTGAACTGTACGAAGAACTGGTTCCGTCTTCTGTTGAAAAAAAAGGTGAAGCGAACCAG



CTGTCTAACAAATTCCTGTACCCGCTGGTTGACCCGAACTCTCAGTCTGGTAAAGGTACCGCGTCTTCTG



GTCGTAAACCGCGTTGGTACAACCTGAAAATCGCGGGTGACCCGTCTTGGGAAGAAGAAAAAAAAAAA



TGGGAAGAAGACAAAAAAAAAGACCCGCTGGCGAAAATCCTGGGTAAACTGGCGGAATACGGTCTGAT



CCCGCTGTTCATCCCGTTCACCGACTCTAACGAACCGATCGTTAAAGAAATCAAATGGATGGAAAAATC



TCGTAACCAGTCTGTTCGTCGTCTGGACAAAGACATGTTCATCCAGGCGCTGGAACGTTTCCTGTCTTGG



GAATCTTGGAACCTGAAAGTTAAAGAAGAATACGAAAAAGTTGAAAAAGAACACAAAACCCTGGAAGA



ACGTATCAAAGAAGACATCCAGGCGTTCAAATCTCTGGAACAGTACGAAAAAGAACGTCAGGAACAGC



TGCTGCGTGACACCCTGAACACCAACGAATACCGTCTGTCTAAACGTGGTCTGCGTGGTTGGCGTGAAA



TCATCCAGAAATGGCTGAAAATGGACGAAAACGAACCGTCTGAAAAATACCTGGAAGTTTTCAAAGACT



ACCAGCGTAAACACCCGCGTGAAGCGGGTGACTACTCTGTTTACGAATTCCTGTCTAAAAAAGAAAACC



ACTTCATCTGGCGTAACCACCCGGAATACCCGTACCTGTACGCGACCTTCTGCGAAATCGACAAAAAAA



AAAAAGACGCGAAACAGCAGGCGACCTTCACCCTGGCGGACCCGATCAACCACCCGCTGTGGGTTCGTT



TCGAAGAACGTTCTGGTTCTAACCTGAACAAATACCGTATCCTGACCGAACAGCTGCACACCGAAAAAC



TGAAAAAAAAACTGACCGTTCAGCTGGACCGTCTGATCTACCCGACCGAATCTGGTGGTTGGGAAGAAA



AAGGTAAAGTTGACATCGTTCTGCTGCCGTCTCGTCAGTTCTACAACCAGATCTTCCTGGACATCGAAGA



AAAAGGTAAACACGCGTTCACCTACAAAGACGAATCTATCAAATTCCCGCTGAAAGGTACCCTGGGTGG



TGCGCGTGTTCAGTTCGACCGTGACCACCTGCGTCGTTACCCGCACAAAGTTGAATCTGGTAACGTTGGT



CGTATCTACTTCAACATGACCGTTAACATCGAACCGACCGAATCTCCGGTTTCTAAATCTCTGAAAATCC



ACCGTGACGACTTCCCGAAATTCGTTAACTTCAAACCGAAAGAACTGACCGAATGGATCAAAGACTCTA



AAGGTAAAAAACTGAAATCTGGTATCGAATCTCTGGAAATCGGTCTGCGTGTTATGTCTATCGACCTGG



GTCAGCGTCAGGCGGCGGCGGCGTCTATCTTCGAAGTTGTTGACCAGAAACCGGACATCGAAGGTAAAC



TGTTCTTCCCGATCAAAGGTACCGAACTGTACGCGGTTCACCGTGCGTCTTTCAACATCAAACTGCCGGG



TGAAACCCTGGTTAAATCTCGTGAAGTTCTGCGTAAAGCGCGTGAAGACAACCTGAAACTGATGAACCA



GAAACTGAACTTCCTGCGTAACGTTCTGCACTTCCAGCAGTTCGAAGACATCACCGAACGTGAAAAACG



TGTTACCAAATGGATCTCTCGTCAGGAAAACTCTGACGTTCCGCTGGTTTACCAGGACGAACTGATCCAG



ATCCGTGAACTGATGTACAAACCGTACAAAGACTGGGTTGCGTTCCTGAAACAGCTGCACAAACGTCTG



GAAGTTGAAATCGGTAAAGAAGTTAAACACTGGCGTAAATCTCTGTCTGACGGTCGTAAAGGTCTGTAC



GGTATCTCTCTGAAAAACATCGACGAAATCGACCGTACCCGTAAATTCCTGCTGCGTTGGTCTCTGCGTC



CGACCGAACCGGGTGAAGTTCGTCGTCTGGAACCGGGTCAGCGTTTCGCGATCGACCAGCTGAACCACC



TGAACGCGCTGAAAGAAGACCGTCTGAAAAAAATGGCGAACACCATCATCATGCACGCGCTGGGTTACT



GCTACGACGTTCGTAAAAAAAAATGGCAGGCGAAAAACCCGGCGTGCCAGATCATCCTGTTCGAAGACC



TGTCTAACTACAACCCGTACGAAGAACGTTCTCGTTTCGAAAACTCTAAACTGATGAAATGGTCTCGTCG



TGAAATCCCGCGTCAGGTTGCGCTGCAGGGTGAAATCTACGGTCTGCAGGTTGGTGAAGTTGGTGCGCA



GTTCTCTTCTCGTTTCCACGCGAAAACCGGTTCTCCGGGTATCCGTTGCTCTGTTGTTACCAAAGAAAAA



CTGCAGGACAACCGTTTCTTCAAAAACCTGCAGCGTGAAGGTCGTCTGACCCTGGACAAAATCGCGGTT



CTGAAAGAAGGTGACCTGTACCCGGACAAAGGTGGTGAAAAATTCATCTCTCTGTCTAAAGACCGTAAA



CTGGTTACCACCCACGCGGACATCAACGCGGCGCAGAACCTGCAGAAACGTTTCTGGACCCGTACCCAC



GGTTTCTACAAAGTTTACTGCAAAGCGTACCAGGTTGACGGTCAGACCGTTTACATCCCGGAATCTAAA



GACCAGAAACAGAAAATCATCGAAGAATTCGGTGAAGGTTACTTCATCCTGAAAGACGGTGTTTACGAA



TGGGGTAACGCGGGTAAACTGAAAATCAAAAAAGGTTCTTCTAAACAGTCTTCTTCTGAACTGGTTGAC



TCTGACATCCTGAAAGACTCTTTCGACCTGGCGTCTGAACTGAAAGGTGAAAAACTGATGCTGTACCGT



GACCCGTCTGGTAACGTTTTCCCGTCTGACAAATGGATGGCGGCGGGTGTTTTCTTCGGTAAACTGGAAC



GTATCCTGATCTCTAAACTGACCAACCAGTACTCTATCTCTACCATCGAAGACGACTCTTCTAAACAGTC



TATGTAA





SEQ
ATGCCGACCCGTACCATCAACCTGAAACTGGTTCTGGGTAAAAACCCGGAAAACGCGACCCTGCGTCGT


ID
GCGCTGTTCTCTACCCACCGTCTGGTTAACCAGGCGACCAAACGTATCGAAGAATTCCTGCTGCTGTGCC


NO:
GTGGTGAAGCGTACCGTACCGTTGACAACGAAGGTAAAGAAGCGGAAATCCCGCGTCACGCGGTTCAG


55
GAAGAAGCGCTGGCGTTCGCGAAAGCGGCGCAGCGTCACAACGGTTGCATCTCTACCTACGAAGACCAG



GAAATCCTGGACGTTCTGCGTCAGCTGTACGAACGTCTGGTTCCGTCTGTTAACGAAAACAACGAAGCG



GGTGACGCGCAGGCGGCGAACGCGTGGGTTTCTCCGCTGATGTCTGCGGAATCTGAAGGTGGTCTGTCT



GTTTACGACAAAGTTCTGGACCCGCCGCCGGTTTGGATGAAACTGAAAGAAGAAAAAGCGCCGGGTTGG



GAAGCGGCGTCTCAGATCTGGATCCAGTCTGACGAAGGTCAGTCTCTGCTGAACAAACCGGGTTCTCCG



CCGCGTTGGATCCGTAAACTGCGTTCTGGTCAGCCGTGGCAGGACGACTTCGTTTCTGACCAGAAAAAA



AAACAGGACGAACTGACCAAAGGTAACGCGCCGCTGATCAAACAGCTGAAAGAAATGGGTCTGCTGCC



GCTGGTTAACCCGTTCTTCCGTCACCTGCTGGACCCGGAAGGTAAAGGTGTTTCTCCGTGGGACCGTCTG



GCGGTTCGTGCGGCGGTTGCGCACTTCATCTCTTGGGAATCTTGGAACCACCGTACCCGTGCGGAATACA



ACTCTCTGAAACTGCGTCGTGACGAATTCGAAGCGGCGTCTGACGAATTCAAAGACGACTTCACCCTGC



TGCGTCAGTACGAAGCGAAACGTCACTCTACCCTGAAATCTATCGCGCTGGCGGACGACTCTAACCCGT



ACCGTATCGGTGTTCGTTCTCTGCGTGCGTGGAACCGTGTTCGTGAAGAATGGATCGACAAAGGTGCGA



CCGAAGAACAGCGTGTTACCATCCTGTCTAAACTGCAGACCCAGCTGCGTGGTAAATTCGGTGACCCGG



ACCTGTTCAACTGGCTGGCGCAGGACCGTCACGTTCACCTGTGGTCTCCGCGTGACTCTGTTACCCCGCT



GGTTCGTATCAACGCGGTTGACAAAGTTCTGCGTCGTCGTAAACCGTACGCGCTGATGACCTTCGCGCAC



CCGCGTTTCCACCCGCGTTGGATCCTGTACGAAGCGCCGGGTGGTTCTAACCTGCGTCAGTACGCGCTGG



ACTGCACCGAAAACGCGCTGCACATCACCCTGCCGCTGCTGGTTGACGACGCGCACGGTACCTGGATCG



AAAAAAAAATCCGTGTTCCGCTGGCGCCGTCTGGTCAGATCCAGGACCTGACCCTGGAAAAACTGGAAA



AAAAAAAAAACCGTCTGTACTACCGTTCTGGTTTCCAGCAGTTCGCGGGTCTGGCGGGTGGTGCGGAAG



TTCTGTTCCACCGTCCGTACATGGAACACGACGAACGTTCTGAAGAATCTCTGCTGGAACGTCCGGGTGC



GGTTTGGTTCAAACTGACCCTGGACGTTGCGACCCAGGCGCCGCCGAACTGGCTGGACGGTAAAGGTCG



TGTTCGTACCCCGCCGGAAGTTCACCACTTCAAAACCGCGCTGTCTAACAAATCTAAACACACCCGTACC



CTGCAGCCGGGTCTGCGTGTTCTGTCTGTTGACCTGGGTATGCGTACCTTCGCGTCTTGCTCTGTTTTCGA



ACTGATCGAAGGTAAACCGGAAACCGGTCGTGCGTTCCCGGTTGCGGACGAACGTTCTATGGACTCTCC



GAACAAACTGTGGGCGAAACACGAACGTTCTTTCAAACTGACCCTGCCGGGTGAAACCCCGTCTCGTAA



AGAAGAAGAAGAACGTTCTATCGCGCGTGCGGAAATCTACGCGCTGAAACGTGACATCCAGCGTCTGAA



ATCTCTGCTGCGTCTGGGTGAAGAAGACAACGACAACCGTCGTGACGCGCTGCTGGAACAGTTCTTCAA



AGGTTGGGGTGAAGAAGACGTTGTTCCGGGTCAGGCGTTCCCGCGTTCTCTGTTCCAGGGTCTGGGTGCG



GCGCCGTTCCGTTCTACCCCGGAACTGTGGCGTCAGCACTGCCAGACCTACTACGACAAAGCGGAAGCG



TGCCTGGCGAAACACATCTCTGACTGGCGTAAACGTACCCGTCCGCGTCCGACCTCTCGTGAAATGTGGT



ACAAAACCCGTTCTTACCACGGTGGTAAATCTATCTGGATGCTGGAATACCTGGACGCGGTTCGTAAACT



GCTGCTGTCTTGGTCTCTGCGTGGTCGTACCTACGGTGCGATCAACCGTCAGGACACCGCGCGTTTCGGT



TCTCTGGCGTCTCGTCTGCTGCACCACATCAACTCTCTGAAAGAAGACCGTATCAAAACCGGTGCGGACT



CTATCGTTCAGGCGGCGCGTGGTTACATCCCGCTGCCGCACGGTAAAGGTTGGGAACAGCGTTACGAAC



CGTGCCAGCTGATCCTGTTCGAAGACCTGGCGCGTTACCGTTTCCGTGTTGACCGTCCGCGTCGTGAAAA



CTCTCAGCTGATGCAGTGGAACCACCGTGCGATCGTTGCGGAAACCACCATGCAGGCGGAACTGTACGG



TCAGATCGTTGAAAACACCGCGGCGGGTTTCTCTTCTCGTTTCCACGCGGCGACCGGTGCGCCGGGTGTT



CGTTGCCGTTTCCTGCTGGAACGTGACTTCGACAACGACCTGCCGAAACCGTACCTGCTGCGTGAACTGT



CTTGGATGCTGGGTAACACCAAAGTTGAATCTGAAGAAGAAAAACTGCGTCTGCTGTCTGAAAAAATCC



GTCCGGGTTCTCTGGTTCCGTGGGACGGTGGTGAACAGTTCGCGACCCTGCACCCGAAACGTCAGACCC



TGTGCGTTATCCACGCGGACATGAACGCGGCGCAGAACCTGCAGCGTCGTTTCTTCGGTCGTTGCGGTGA



AGCGTTCCGTCTGGTTTGCCAGCCGCACGGTGACGACGTTCTGCGTCTGGCGTCTACCCCGGGTGCGCGT



CTGCTGGGTGCGCTGCAGCAGCTGGAAAACGGTCAGGGTGCGTTCGAACTGGTTCGTGACATGGGTTCT



ACCTCTCAGATGAACCGTTTCGTTATGAAATCTCTGGGTAAAAAAAAAATCAAACCGCTGCAGGACAAC



AACGGTGACGACGAACTGGAAGACGTTCTGTCTGTTCTGCCGGAAGAAGACGACACCGGTCGTATCACC



GTTTTCCGTGACTCTTCTGGTATCTTCTTCCCGTGCAACGTTTGGATCCCGGCGAAACAGTTCTGGCCGGC



GGTTCGTGCGATGATCTGGAAAGTTATGGCGTCTCACTCTCTGGGTTAA





SEQ
ATGACCAAACTGCGTCACCGTCAGAAAAAACTGACCCACGACTGGGCGGGTTCTAAAAAACGTGAAGTT


ID
CTGGGTTCTAACGGTAAACTGCAGAACCCGCTGCTGATGCCGGTTAAAAAAGGTCAGGTTACCGAATTC


NO:
CGTAAAGCGTTCTCTGCGTACGCGCGTGCGACCAAAGGTGAAATGACCGACGGTCGTAAAAACATGTTC


56
ACCCACTCTTTCGAACCGTTCAAAACCAAACCGTCTCTGCACCAGTGCGAACTGGCGGACAAAGCGTAC



CAGTCTCTGCACTCTTACCTGCCGGGTTCTCTGGCGCACTTCCTGCTGTCTGCGCACGCGCTGGGTTTCCG



TATCTTCTCTAAATCTGGTGAAGCGACCGCGTTCCAGGCGTCTTCTAAAATCGAAGCGTACGAATCTAAA



CTGGCGTCTGAACTGGCGTGCGTTGACCTGTCTATCCAGAACCTGACCATCTCTACCCTGTTCAACGCGC



TGACCACCTCTGTTCGTGGTAAAGGTGAAGAAACCTCTGCGGACCCGCTGATCGCGCGTTTCTACACCCT



GCTGACCGGTAAACCGCTGTCTCGTGACACCCAGGGTCCGGAACGTGACCTGGCGGAAGTTATCTCTCG



TAAAATCGCGTCTTCTTTCGGTACCTGGAAAGAAATGACCGCGAACCCGCTGCAGTCTCTGCAGTTCTTC



GAAGAAGAACTGCACGCGCTGGACGCGAACGTTTCTCTGTCTCCGGCGTTCGACGTTCTGATCAAAATG



AACGACCTGCAGGGTGACCTGAAAAACCGTACCATCGTTTTCGACCCGGACGCGCCGGTTTTCGAATAC



AACGCGGAAGACCCGGCGGACATCATCATCAAACTGACCGCGCGTTACGCGAAAGAAGCGGTTATCAA



AAACCAGAACGTTGGTAACTACGTTAAAAACGCGATCACCACCACCAACGCGAACGGTCTGGGTTGGCT



GCTGAACAAAGGTCTGTCTCTGCTGCCGGTTTCTACCGACGACGAACTGCTGGAATTCATCGGTGTTGAA



CGTTCTCACCCGTCTTGCCACGCGCTGATCGAACTGATCGCGCAGCTGGAAGCGCCGGAACTGTTCGAA



AAAAACGTTTTCTCTGACACCCGTTCTGAAGTTCAGGGTATGATCGACTCTGCGGTTTCTAACCACATCG



CGCGTCTGTCTTCTTCTCGTAACTCTCTGTCTATGGACTCTGAAGAACTGGAACGTCTGATCAAATCTTTC



CAGATCCACACCCCGCACTGCTCTCTGTTCATCGGTGCGCAGTCTCTGTCTCAGCAGCTGGAATCTCTGC



CGGAAGCGCTGCAGTCTGGTGTTAACTCTGCGGACATCCTGCTGGGTTCTACCCAGTACATGCTGACCAA



CTCTCTGGTTGAAGAATCTATCGCGACCTACCAGCGTACCCTGAACCGTATCAACTACCTGTCTGGTGTT



GCGGGTCAGATCAACGGTGCGATCAAACGTAAAGCGATCGACGGTGAAAAAATCCACCTGCCGGCGGC



GTGGTCTGAACTGATCTCTCTGCCGTTCATCGGTCAGCCGGTTATCGACGTTGAATCTGACCTGGCGCAC



CTGAAAAACCAGTACCAGACCCTGTCTAACGAATTCGACACCCTGATCTCTGCGCTGCAGAAAAACTTC



GACCTGAACTTCAACAAAGCGCTGCTGAACCGTACCCAGCACTTCGAAGCGATGTGCCGTTCTACCAAA



AAAAACGCGCTGTCTAAACCGGAAATCGTTTCTTACCGTGACCTGCTGGCGCGTCTGACCTCTTGCCTGT



ACCGTGGTTCTCTGGTTCTGCGTCGTGCGGGTATCGAAGTTCTGAAAAAACACAAAATCTTCGAATCTAA



CTCTGAACTGCGTGAACACGTTCACGAACGTAAACACTTCGTTTTCGTTTCTCCGCTGGACCGTAAAGCG



AAAAAACTGCTGCGTCTGACCGACTCTCGTCCGGACCTGCTGCACGTTATCGACGAAATCCTGCAGCAC



GACAACCTGGAAAACAAAGACCGTGAATCTCTGTGGCTGGTTCGTTCTGGTTACCTGCTGGCGGGTCTGC



CGGACCAGCTGTCTTCTTCTTTCATCAACCTGCCGATCATCACCCAGAAAGGTGACCGTCGTCTGATCGA



CCTGATCCAGTACGACCAGATCAACCGTGACGCGTTCGTTATGCTGGTTACCTCTGCGTTCAAATCTAAC



CTGTCTGGTCTGCAGTACCGTGCGAACAAACAGTCTTTCGTTGTTACCCGTACCCTGTCTCCGTACCTGG



GTTCTAAACTGGTTTACGTTCCGAAAGACAAAGACTGGCTGGTTCCGTCTCAGATGTTCGAAGGTCGTTT



CGCGGACATCCTGCAGTCTGACTACATGGTTTGGAAAGACGCGGGTCGTCTGTGCGTTATCGACACCGC



GAAACACCTGTCTAACATCAAAAAATCTGTTTTCTCTTCTGAAGAAGTTCTGGCGTTCCTGCGTGAACTG



CCGCACCGTACCTTCATCCAGACCGAAGTTCGTGGTCTGGGTGTTAACGTTGACGGTATCGCGTTCAACA



ACGGTGACATCCCGTCTCTGAAAACCTTCTCTAACTGCGTTCAGGTTAAAGTTTCTCGTACCAACACCTC



TCTGGTTCAGACCCTGAACCGTTGGTTCGAAGGTGGTAAAGTTTCTCCGCCGTCTATCCAGTTCGAACGT



GCGTACTACAAAAAAGACGACCAGATCCACGAAGACGCGGCGAAACGTAAAATCCGTTTCCAGATGCC



GGCGACCGAACTGGTTCACGCGTCTGACGACGCGGGTTGGACCCCGTCTTACCTGCTGGGTATCGACCC



GGGTGAATACGGTATGGGTCTGTCTCTGGTTTCTATCAACAACGGTGAAGTTCTGGACTCTGGTTTCATC



CACATCAACTCTCTGATCAACTTCGCGTCTAAAAAATCTAACCACCAGACCAAAGTTGTTCCGCGTCAGC



AGTACAAATCTCCGTACGCGAACTACCTGGAACAGTCTAAAGACTCTGCGGCGGGTGACATCGCGCACA



TCCTGGACCGTCTGATCTACAAACTGAACGCGCTGCCGGTTTTCGAAGCGCTGTCTGGTAACTCTCAGTC



TGCGGCGGACCAGGTTTGGACCAAAGTTCTGTCTTTCTACACCTGGGGTGACAACGACGCGCAGAACTC



TATCCGTAAACAGCACTGGTTCGGTGCGTCTCACTGGGACATCAAAGGTATGCTGCGTCAGCCGCCGAC



CGAAAAAAAACCGAAACCGTACATCGCGTTCCCGGGTTCTCAGGTTTCTTCTTACGGTAACTCTCAGCGT



TGCTCTTGCTGCGGTCGTAACCCGATCGAACAGCTGCGTGAAATGGCGAAAGACACCTCTATCAAAGAA



CTGAAAATCCGTAACTCTGAAATCCAGCTGTTCGACGGTACCATCAAACTGTTCAACCCGGACCCGTCTA



CCGTTATCGAACGTCGTCGTCACAACCTGGGTCCGTCTCGTATCCCGGTTGCGGACCGTACCTTCAAAAA



CATCTCTCCGTCTTCTCTGGAATTCAAAGAACTGATCACCATCGTTTCTCGTTCTATCCGTCACTCTCCGG



AATTCATCGCGAAAAAACGTGGTATCGGTTCTGAATACTTCTGCGCGTACTCTGACTGCAACTCTTCTCT



GAACTCTGAAGCGAACGCGGCGGCGAACGTTGCGCAGAAATTCCAGAAACAGCTGTTCTTCGAACTGTA



A





SEQ
ATGAAACGTATCCTGAACTCTCTGAAAGTTGCGGCGCTGCGTCTGCTGTTCCGTGGTAAAGGTTCTGAAC


ID
TGGTTAAAACCGTTAAATACCCGCTGGTTTCTCCGGTTCAGGGTGCGGTTGAAGAACTGGCGGAAGCGA


NO:
TCCGTCACGACAACCTGCACCTGTTCGGTCAGAAAGAAATCGTTGACCTGATGGAAAAAGACGAAGGTA


57
CCCAGGTTTACTCTGTTGTTGACTTCTGGCTGGACACCCTGCGTCTGGGTATGTTCTTCTCTCCGTCTGCG



AACGCGCTGAAAATCACCCTGGGTAAATTCAACTCTGACCAGGTTTCTCCGTTCCGTAAAGTTCTGGAAC



AGTCTCCGTTCTTCCTGGCGGGTCGTCTGAAAGTTGAACCGGCGGAACGTATCCTGTCTGTTGAAATCCG



TAAAATCGGTAAACGTGAAAACCGTGTTGAAAACTACGCGGCGGACGTTGAAACCTGCTTCATCGGTCA



GCTGTCTTCTGACGAAAAACAGTCTATCCAGAAACTGGCGAACGACATCTGGGACTCTAAAGACCACGA



AGAACAGCGTATGCTGAAAGCGGACTTCTTCGCGATCCCGCTGATCAAAGACCCGAAAGCGGTTACCGA



AGAAGACCCGGAAAACGAAACCGCGGGTAAACAGAAACCGCTGGAACTGTGCGTTTGCCTGGTTCCGG



AACTGTACACCCGTGGTTTCGGTTCTATCGCGGACTTCCTGGTTCAGCGTCTGACCCTGCTGCGTGACAA



AATGTCTACCGACACCGCGGAAGACTGCCTGGAATACGTTGGTATCGAAGAAGAAAAAGGTAACGGTA



TGAACTCTCTGCTGGGTACCTTCCTGAAAAACCTGCAGGGTGACGGTTTCGAACAGATCTTCCAGTTCAT



GCTGGGTTCTTACGTTGGTTGGCAGGGTAAAGAAGACGTTCTGCGTGAACGTCTGGACCTGCTGGCGGA



AAAAGTTAAACGTCTGCCGAAACCGAAATTCGCGGGTGAATGGTCTGGTCACCGTATGTTCCTGCACGG



TCAGCTGAAATCTTGGTCTTCTAACTTCTTCCGTCTGTTCAACGAAACCCGTGAACTGCTGGAATCTATC



AAATCTGACATCCAGCACGCGACCATGCTGATCTCTTACGTTGAAGAAAAAGGTGGTTACCACCCGCAG



CTGCTGTCTCAGTACCGTAAACTGATGGAACAGCTGCCGGCGCTGCGTACCAAAGTTCTGGACCCGGAA



ATCGAAATGACCCACATGTCTGAAGCGGTTCGTTCTTACATCATGATCCACAAATCTGTTGCGGGTTTCC



TGCCGGACCTGCTGGAATCTCTGGACCGTGACAAAGACCGTGAATTCCTGCTGTCTATCTTCCCGCGTAT



CCCGAAAATCGACAAAAAAACCAAAGAAATCGTTGCGTGGGAACTGCCGGGTGAACCGGAAGAAGGTT



ACCTGTTCACCGCGAACAACCTGTTCCGTAACTTCCTGGAAAACCCGAAACACGTTCCGCGTTTCATGGC



GGAACGTATCCCGGAAGACTGGACCCGTCTGCGTTCTGCGCCGGTTTGGTTCGACGGTATGGTTAAACA



GTGGCAGAAAGTTGTTAACCAGCTGGTTGAATCTCCGGGTGCGCTGTACCAGTTCAACGAATCTTTCCTG



CGTCAGCGTCTGCAGGCGATGCTGACCGTTTACAAACGTGACCTGCAGACCGAAAAATTCCTGAAACTG



CTGGCGGACGTTTGCCGTCCGCTGGTTGACTTCTTCGGTCTGGGTGGTAACGACATCATCTTCAAATCTT



GCCAGGACCCGCGTAAACAGTGGCAGACCGTTATCCCGCTGTCTGTTCCGGCGGACGTTTACACCGCGT



GCGAAGGTCTGGCGATCCGTCTGCGTGAAACCCTGGGTTTCGAATGGAAAAACCTGAAAGGTCACGAAC



GTGAAGACTTCCTGCGTCTGCACCAGCTGCTGGGTAACCTGCTGTTCTGGATCCGTGACGCGAAACTGGT



TGTTAAACTGGAAGACTGGATGAACAACCCGTGCGTTCAGGAATACGTTGAAGCGCGTAAAGCGATCGA



CCTGCCGCTGGAAATCTTCGGTTTCGAAGTTCCGATCTTCCTGAACGGTTACCTGTTCTCTGAACTGCGTC



AGCTGGAACTGCTGCTGCGTCGTAAATCTGTTATGACCTCTTACTCTGTTAAAACCACCGGTTCTCCGAA



CCGTCTGTTCCAGCTGGTTTACCTGCCGCTGAACCCGTCTGACCCGGAAAAAAAAAACTCTAACAACTTC



CAGGAACGTCTGGACACCCCGACCGGTCTGTCTCGTCGTTTCCTGGACCTGACCCTGGACGCGTTCGCGG



GTAAACTGCTGACCGACCCGGTTACCCAGGAACTGAAAACCATGGCGGGTTTCTACGACCACCTGTTCG



GTTTCAAACTGCCGTGCAAACTGGCGGCGATGTCTAACCACCCGGGTTCTTCTTCTAAAATGGTTGTTCT



GGCGAAACCGAAAAAAGGTGTTGCGTCTAACATCGGTTTCGAACCGATCCCGGACCCGGCGCACCCGGT



TTTCCGTGTTCGTTCTTCTTGGCCGGAACTGAAATACCTGGAAGGTCTGCTGTACCTGCCGGAAGACACC



CCGCTGACCATCGAACTGGCGGAAACCTCTGTTTCTTGCCAGTCTGTTTCTTCTGTTGCGTTCGACCTGAA



AAACCTGACCACCATCCTGGGTCGTGTTGGTGAATTCCGTGTTACCGCGGACCAGCCGTTCAAACTGACC



CCGATCATCCCGGAAAAAGAAGAATCTTTCATCGGTAAAACCTACCTGGGTCTGGACGCGGGTGAACGT



TCTGGTGTTGGTTTCGCGATCGTTACCGTTGACGGTGACGGTTACGAAGTTCAGCGTCTGGGTGTTCACG



AAGACACCCAGCTGATGGCGCTGCAGCAGGTTGCGTCTAAATCTCTGAAAGAACCGGTTTTCCAGCCGC



TGCGTAAAGGTACCTTCCGTCAGCAGGAACGTATCCGTAAATCTCTGCGTGGTTGCTACTGGAACTTCTA



CCACGCGCTGATGATCAAATACCGTGCGAAAGTTGTTCACGAAGAATCTGTTGGTTCTTCTGGTCTGGTT



GGTCAGTGGCTGCGTGCGTTCCAGAAAGACCTGAAAAAAGCGGACGTTCTGCCGAAAAAAGGTGGTAA



AAACGGTGTTGACAAAAAAAAACGTGAATCTTCTGCGCAGGACACCCTGTGGGGTGGTGCGTTCTCTAA



AAAAGAAGAACAGCAGATCGCGTTCGAAGTTCAGGCGGCGGGTTCTTCTCAGTTCTGCCTGAAATGCGG



TTGGTGGTTCCAGCTGGGTATGCGTGAAGTTAACCGTGTTCAGGAATCTGGTGTTGTTCTGGACTGGAAC



CGTTCTATCGTTACCTTCCTGATCGAATCTTCTGGTGAAAAAGTTTACGGTTTCTCTCCGCAGCAGCTGGA



AAAAGGTTTCCGTCCGGACATCGAAACCTTCAAAAAAATGGTTCGTGACTTCATGCGTCCGCCGATGTTC



GACCGTAAAGGTCGTCCGGCGGCGGCGTACGAACGTTTCGTTCTGGGTCGTCGTCACCGTCGTTACCGTT



TCGACAAAGTTTTCGAAGAACGTTTCGGTCGTTCTGCGCTGTTCATCTGCCCGCGTGTTGGTTGCGGTAA



CTTCGACCACTCTTCTGAACAGTCTGCGGTTGTTCTGGCGCTGATCGGTTACATCGCGGACAAAGAAGGT



ATGTCTGGTAAAAAACTGGTTTACGTTCGTCTGGCGGAACTGATGGCGGAATGGAAACTGAAAAAACTG



GAACGTTCTCGTGTTGAAGAACAGTCTTCTGCGCAGTAA





SEQ
ATGGCGGAATCTAAACAGATGCAGTGCCGTAAATGCGGTGCGTCTATGAAATACGAAGTTATCGGTCTG


ID
GGTAAAAAATCTTGCCGTTACATGTGCCCGGACTGCGGTAACCACACCTCTGCGCGTAAAATCCAGAAC


NO:
AAAAAAAAACGTGACAAAAAATACGGTTCTGCGTCTAAAGCGCAGTCTCAGCGTATCGCGGTTGCGGGT


58
GCGCTGTACCCGGACAAAAAAGTTCAGACCATCAAAACCTACAAATACCCGGCGGACCTGAACGGTGA



AGTTCACGACTCTGGTGTTGCGGAAAAAATCGCGCAGGCGATCCAGGAAGACGAAATCGGTCTGCTGGG



TCCGTCTTCTGAATACGCGTGCTGGATCGCGTCTCAGAAACAGTCTGAACCGTACTCTGTTGTTGACTTC



TGGTTCGACGCGGTTTGCGCGGGTGGTGTTTTCGCGTACTCTGGTGCGCGTCTGCTGTCTACCGTTCTGCA



GCTGTCTGGTGAAGAATCTGTTCTGCGTGCGGCGCTGGCGTCTTCTCCGTTCGTTGACGACATCAACCTG



GCGCAGGCGGAAAAATTCCTGGCGGTTTCTCGTCGTACCGGTCAGGACAAACTGGGTAAACGTATCGGT



GAATGCTTCGCGGAAGGTCGTCTGGAAGCGCTGGGTATCAAAGACCGTATGCGTGAATTCGTTCAGGCG



ATCGACGTTGCGCAGACCGCGGGTCAGCGTTTCGCGGCGAAACTGAAAATCTTCGGTATCTCTCAGATG



CCGGAAGCGAAACAGTGGAACAACGACTCTGGTCTGACCGTTTGCATCCTGCCGGACTACTACGTTCCG



GAAGAAAACCGTGCGGACCAGCTGGTTGTTCTGCTGCGTCGTCTGCGTGAAATCGCGTACTGCATGGGT



ATCGAAGACGAAGCGGGTTTCGAACACCTGGGTATCGACCCGGGTGCGCTGTCTAACTTCTCTAACGGT



AACCCGAAACGTGGTTTCCTGGGTCGTCTGCTGAACAACGACATCATCGCGCTGGCGAACAACATGTCT



GCGATGACCCCGTACTGGGAAGGTCGTAAAGGTGAACTGATCGAACGTCTGGCGTGGCTGAAACACCGT



GCGGAAGGTCTGTACCTGAAAGAACCGCACTTCGGTAACTCTTGGGCGGACCACCGTTCTCGTATCTTCT



CTCGTATCGCGGGTTGGCTGTCTGGTTGCGCGGGTAAACTGAAAATCGCGAAAGACCAGATCTCTGGTG



TTCGTACCGACCTGTTCCTGCTGAAACGTCTGCTGGACGCGGTTCCGCAGTCTGCGCCGTCTCCGGACTT



CATCGCGTCTATCTCTGCGCTGGACCGTTTCCTGGAAGCGGCGGAATCTTCTCAGGACCCGGCGGAACA



GGTTCGTGCGCTGTACGCGTTCCACCTGAACGCGCCGGCGGTTCGTTCTATCGCGAACAAAGCGGTTCAG



CGTTCTGACTCTCAGGAATGGCTGATCAAAGAACTGGACGCGGTTGACCACCTGGAATTCAACAAAGCG



TTCCCGTTCTTCTCTGACACCGGTAAAAAAAAAAAAAAAGGTGCGAACTCTAACGGTGCGCCGTCTGAA



GAAGAATACACCGAAACCGAATCTATCCAGCAGCCGGAAGACGCGGAACAGGAAGTTAACGGTCAGGA



AGGTAACGGTGCGTCTAAAAACCAGAAAAAATTCCAGCGTATCCCGCGTTTCTTCGGTGAAGGTTCTCG



TTCTGAATACCGTATCCTGACCGAAGCGCCGCAGTACTTCGACATGTTCTGCAACAACATGCGTGCGATC



TTCATGCAGCTGGAATCTCAGCCGCGTAAAGCGCCGCGTGACTTCAAATGCTTCCTGCAGAACCGTCTGC



AGAAACTGTACAAACAGACCTTCCTGAACGCGCGTTCTAACAAATGCCGTGCGCTGCTGGAATCTGTTCT



GATCTCTTGGGGTGAATTCTACACCTACGGTGCGAACGAAAAAAAATTCCGTCTGCGTCACGAAGCGTC



TGAACGTTCTTCTGACCCGGACTACGTTGTTCAGCAGGCGCTGGAAATCGCGCGTCGTCTGTTCCTGTTC



GGTTTCGAATGGCGTGACTGCTCTGCGGGTGAACGTGTTGACCTGGTTGAAATCCACAAAAAAGCGATC



TCTTTCCTGCTGGCGATCACCCAGGCGGAAGTTTCTGTTGGTTCTTACAACTGGCTGGGTAACTCTACCG



TTTCTCGTTACCTGTCTGTTGCGGGTACCGACACCCTGTACGGTACCCAGCTGGAAGAATTCCTGAACGC



GACCGTTCTGTCTCAGATGCGTGGTCTGGCGATCCGTCTGTCTTCTCAGGAACTGAAAGACGGTTTCGAC



GTTCAGCTGGAATCTTCTTGCCAGGACAACCTGCAGCACCTGCTGGTTTACCGTGCGTCTCGTGACCTGG



CGGCGTGCAAACGTGCGACCTGCCCGGCGGAACTGGACCCGAAAATCCTGGTTCTGCCGGTTGGTGCGT



TCATCGCGTCTGTTATGAAAATGATCGAACGTGGTGACGAACCGCTGGCGGGTGCGTACCTGCGTCACC



GTCCGCACTCTTTCGGTTGGCAGATCCGTGTTCGTGGTGTTGCGGAAGTTGGTATGGACCAGGGTACCGC



GCTGGCGTTCCAGAAACCGACCGAATCTGAACCGTTCAAAATCAAACCGTTCTCTGCGCAGTACGGTCC



GGTTCTGTGGCTGAACTCTTCTTCTTACTCTCAGTCTCAGTACCTGGACGGTTTCCTGTCTCAGCCGAAAA



ACTGGTCTATGCGTGTTCTGCCGCAGGCGGGTTCTGTTCGTGTTGAACAGCGTGTTGCGCTGATCTGGAA



CCTGCAGGCGGGTAAAATGCGTCTGGAACGTTCTGGTGCGCGTGCGTTCTTCATGCCGGTTCCGTTCTCT



TTCCGTCCGTCTGGTTCTGGTGACGAAGCGGTTCTGGCGCCGAACCGTTACCTGGGTCTGTTCCCGCACT



CTGGTGGTATCGAATACGCGGTTGTTGACGTTCTGGACTCTGCGGGTTTCAAAATCCTGGAACGTGGTAC



CATCGCGGTTAACGGTTTCTCTCAGAAACGTGGTGAACGTCAGGAAGAAGCGCACCGTGAAAAACAGCG



TCGTGGTATCTCTGACATCGGTCGTAAAAAACCGGTTCAGGCGGAAGTTGACGCGGCGAACGAACTGCA



CCGTAAATACACCGACGTTGCGACCCGTCTGGGTTGCCGTATCGTTGTTCAGTGGGCGCCGCAGCCGAA



ACCGGGTACCGCGCCGACCGCGCAGACCGTTTACGCGCGTGCGGTTCGTACCGAAGCGCCGCGTTCTGG



TAACCAGGAAGACCACGCGCGTATGAAATCTTCTTGGGGTTACACCTGGGGTACCTACTGGGAAAAACG



TAAACCGGAAGACATCCTGGGTATCTCTACCCAGGTTTACTGGACCGGTGGTATCGGTGAATCTTGCCCG



GCGGTTGCGGTTGCGCTGCTGGGTCACATCCGTGCGACCTCTACCCAGACCGAATGGGAAAAAGAAGAA



GTTGTTTTCGGTCGTCTGAAAAAATTCTTCCCGTCTTAA





SEQ
ATGGAAAAACGTATCAACAAAATCCGTAAAAAACTGTCTGCGGACAACGCGACCAAACCGGTTTCTCGT


ID
TCTGGTCCGATGAAAACCCTGCTGGTTCGTGTTATGACCGACGACCTGAAAAAACGTCTGGAAAAACGT


NO:
CGTAAAAAACCGGAAGTTATGCCGCAGGTTATCTCTAACAACGCGGCGAACAACCTGCGTATGCTGCTG


59
GACGACTACACCAAAATGAAAGAAGCGATCCTGCAGGTTTACTGGCAGGAATTCAAAGACGACCACGTT



GGTCTGATGTGCAAATTCGCGCAGCCGGCGTCTAAAAAAATCGACCAGAACAAACTGAAACCGGAAAT



GGACGAAAAAGGTAACCTGACCACCGCGGGTTTCGCGTGCTCTCAGTGCGGTCAGCCGCTGTTCGTTTA



CAAACTGGAACAGGTTTCTGAAAAAGGTAAAGCGTACACCAACTACTTCGGTCGTTGCAACGTTGCGGA



ACACGAAAAACTGATCCTGCTGGCGCAGCTGAAACCGGAAAAAGACTCTGACGAAGCGGTTACCTACTC



TCTGGGTAAATTCGGTCAGCGTGCGCTGGACTTCTACTCTATCCACGTTACCAAAGAATCTACCCACCCG



GTTAAACCGCTGGCGCAGATCGCGGGTAACCGTTACGCGTCTGGTCCGGTTGGTAAAGCGCTGTCTGAC



GCGTGCATGGGTACCATCGCGTCTTTCCTGTCTAAATACCAGGACATCATCATCGAACACCAGAAAGTTG



TTAAAGGTAACCAGAAACGTCTGGAATCTCTGCGTGAACTGGCGGGTAAAGAAAACCTGGAATACCCGT



CTGTTACCCTGCCGCCGCAGCCGCACACCAAAGAAGGTGTTGACGCGTACAACGAAGTTATCGCGCGTG



TTCGTATGTGGGTTAACCTGAACCTGTGGCAGAAACTGAAACTGTCTCGTGACGACGCGAAACCGCTGC



TGCGTCTGAAAGGTTTCCCGTCTTTCCCGGTTGTTGAACGTCGTGAAAACGAAGTTGACTGGTGGAACAC



CATCAACGAAGTTAAAAAACTGATCGACGCGAAACGTGACATGGGTCGTGTTTTCTGGTCTGGTGTTAC



CGCGGAAAAACGTAACACCATCCTGGAAGGTTACAACTACCTGCCGAACGAAAACGACCACAAAAAAC



GTGAAGGTTCTCTGGAAAACCCGAAAAAACCGGCGAAACGTCAGTTCGGTGACCTGCTGCTGTACCTGG



AAAAAAAATACGCGGGTGACTGGGGTAAAGTTTTCGACGAAGCGTGGGAACGTATCGACAAAAAAATC



GCGGGTCTGACCTCTCACATCGAACGTGAAGAAGCGCGTAACGCGGAAGACGCGCAGTCTAAAGCGGTT



CTGACCGACTGGCTGCGTGCGAAAGCGTCTTTCGTTCTGGAACGTCTGAAAGAAATGGACGAAAAAGAA



TTCTACGCGTGCGAAATCCAGCTGCAGAAATGGTACGGTGACCTGCGTGGTAACCCGTTCGCGGTTGAA



GCGGAAAACCGTGTTGTTGACATCTCTGGTTTCTCTATCGGTTCTGACGGTCACTCTATCCAGTACCGTA



ACCTGCTGGCGTGGAAATACCTGGAAAACGGTAAACGTGAATTCTACCTGCTGATGAACTACGGTAAAA



AAGGTCGTATCCGTTTCACCGACGGTACCGACATCAAAAAATCTGGTAAATGGCAGGGTCTGCTGTACG



GTGGTGGTAAAGCGAAAGTTATCGACCTGACCTTCGACCCGGACGACGAACAGCTGATCATCCTGCCGC



TGGCGTTCGGTACCCGTCAGGGTCGTGAATTCATCTGGAACGACCTGCTGTCTCTGGAAACCGGTCTGAT



CAAACTGGCGAACGGTCGTGTTATCGAAAAAACCATCTACAACAAAAAAATCGGTCGTGACGAACCGG



CGCTGTTCGTTGCGCTGACCTTCGAACGTCGTGAAGTTGTTGACCCGTCTAACATCAAACCGGTTAACCT



GATCGGTGTTGACCGTGGTGAAAACATCCCGGCGGTTATCGCGCTGACCGACCCGGAAGGTTGCCCGCT



GCCGGAATTCAAAGACTCTTCTGGTGGTCCGACCGACATCCTGCGTATCGGTGAAGGTTACAAAGAAAA



ACAGCGTGCGATCCAGGCGGCGAAAGAAGTTGAACAGCGTCGTGCGGGTGGTTACTCTCGTAAATTCGC



GTCTAAATCTCGTAACCTGGCGGACGACATGGTTCGTAACTCTGCGCGTGACCTGTTCTACCACGCGGTT



ACCCACGACGCGGTTCTGGTTTTCGAAAACCTGTCTCGTGGTTTCGGTCGTCAGGGTAAACGTACCTTCA



TGACCGAACGTCAGTACACCAAAATGGAAGACTGGCTGACCGCGAAACTGGCGTACGAAGGTCTGACCT



CTAAAACCTACCTGTCTAAAACCCTGGCGCAGTACACCTCTAAAACCTGCTCTAACTGCGGTTTCACCAT



CACCACCGCGGACTACGACGGTATGCTGGTTCGTCTGAAAAAAACCTCTGACGGTTGGGCGACCACCCT



GAACAACAAAGAACTGAAAGCGGAAGGTCAGATCACCTACTACAACCGTTACAAACGTCAGACCGTTG



AAAAAGAACTGTCTGCGGAACTGGACCGTCTGTCTGAAGAATCTGGTAACAACGACATCTCTAAATGGA



CCAAAGGTCGTCGTGACGAAGCGCTGTTCCTGCTGAAAAAACGTTTCTCTCACCGTCCGGTTCAGGAAC



AGTTCGTTTGCCTGGACTGCGGTCACGAAGTTCACGCGGACGAACAGGCGGCGCTGAACATCGCGCGTT



CTTGGCTGTTCCTGAACTCTAACTCTACCGAATTCAAATCTTACAAATCTGGTAAACAGCCGTTCGTTGG



TGCGTGGCAGGCGTTCTACAAACGTCGTCTGAAAGAAGTTTGGAAACCGAACGCG





SEQ
ATGAAACGTATCAACAAAATCCGTCGTCGTCTGGTTAAAGACTCTAACACCAAAAAAGCGGGTAAAACC


ID
GGTCCGATGAAAACCCTGCTGGTTCGTGTTATGACCCCGGACCTGCGTGAACGTCTGGAAAACCTGCGT


NO:
AAAAAACCGGAAAACATCCCGCAGCCGATCTCTAACACCTCTCGTGCGAACCTGAACAAACTGCTGACC


60
GACTACACCGAAATGAAAAAAGCGATCCTGCACGTTTACTGGGAAGAATTCCAGAAAGACCCGGTTGGT



CTGATGTCTCGTGTTGCGCAGCCGGCGCCGAAAAACATCGACCAGCGTAAACTGATCCCGGTTAAAGAC



GGTAACGAACGTCTGACCTCTTCTGGTTTCGCGTGCTCTCAGTGCTGCCAGCCGCTGTACGTTTACAAAC



TGGAACAGGTTAACGACAAAGGTAAACCGCACACCAACTACTTCGGTCGTTGCAACGTTTCTGAACACG



AACGTCTGATCCTGCTGTCTCCGCACAAACCGGAAGCGAACGACGAACTGGTTACCTACTCTCTGGGTA



AATTCGGTCAGCGTGCGCTGGACTTCTACTCTATCCACGTTACCCGTGAATCTAACCACCCGGTTAAACC



GCTGGAACAGATCGGTGGTAACTCTTGCGCGTCTGGTCCGGTTGGTAAAGCGCTGTCTGACGCGTGCAT



GGGTGCGGTTGCGTCTTTCCTGACCAAATACCAGGACATCATCCTGGAACACCAGAAAGTTATCAAAAA



AAACGAAAAACGTCTGGCGAACCTGAAAGACATCGCGTCTGCGAACGGTCTGGCGTTCCCGAAAATCAC



CCTGCCGCCGCAGCCGCACACCAAAGAAGGTATCGAAGCGTACAACAACGTTGTTGCGCAGATCGTTAT



CTGGGTTAACCTGAACCTGTGGCAGAAACTGAAAATCGGTCGTGACGAAGCGAAACCGCTGCAGCGTCT



GAAAGGTTTCCCGTCTTTCCCGCTGGTTGAACGTCAGGCGAACGAAGTTGACTGGTGGGACATGGTTTGC



AACGTTAAAAAACTGATCAACGAAAAAAAAGAAGACGGTAAAGTTTTCTGGCAGAACCTGGCGGGTTA



CAAACGTCAGGAAGCGCTGCTGCCGTACCTGTCTTCTGAAGAAGACCGTAAAAAAGGTAAAAAATTCGC



GCGTTACCAGTTCGGTGACCTGCTGCTGCACCTGGAAAAAAAACACGGTGAAGACTGGGGTAAAGTTTA



CGACGAAGCGTGGGAACGTATCGACAAAAAAGTTGAAGGTCTGTCTAAACACATCAAACTGGAAGAAG



AACGTCGTTCTGAAGACGCGCAGTCTAAAGCGGCGCTGACCGACTGGCTGCGTGCGAAAGCGTCTTTCG



TTATCGAAGGTCTGAAAGAAGCGGACAAAGACGAATTCTGCCGTTGCGAACTGAAACTGCAGAAATGGT



ACGGTGACCTGCGTGGTAAACCGTTCGCGATCGAAGCGGAAAACTCTATCCTGGACATCTCTGGTTTCTC



TAAACAGTACAACTGCGCGTTCATCTGGCAGAAAGACGGTGTTAAAAAACTGAACCTGTACCTGATCAT



CAACTACTTCAAAGGTGGTAAACTGCGTTTCAAAAAAATCAAACCGGAAGCGTTCGAAGCGAACCGTTT



CTACACCGTTATCAACAAAAAATCTGGTGAAATCGTTCCGATGGAAGTTAACTTCAACTTCGACGACCC



GAACCTGATCATCCTGCCGCTGGCGTTCGGTAAACGTCAGGGTCGTGAATTCATCTGGAACGACCTGCTG



TCTCTGGAAACCGGTTCTCTGAAACTGGCGAACGGTCGTGTTATCGAAAAAACCCTGTACAACCGTCGT



ACCCGTCAGGACGAACCGGCGCTGTTCGTTGCGCTGACCTTCGAACGTCGTGAAGTTCTGGACTCTTCTA



ACATCAAACCGATGAACCTGATCGGTATCGACCGTGGTGAAAACATCCCGGCGGTTATCGCGCTGACCG



ACCCGGAAGGTTGCCCGCTGTCTCGTTTCAAAGACTCTCTGGGTAACCCGACCCACATCCTGCGTATCGG



TGAATCTTACAAAGAAAAACAGCGTACCATCCAGGCGGCGAAAGAAGTTGAACAGCGTCGTGCGGGTG



GTTACTCTCGTAAATACGCGTCTAAAGCGAAAAACCTGGCGGACGACATGGTTCGTAACACCGCGCGTG



ACCTGCTGTACTACGCGGTTACCCAGGACGCGATGCTGATCTTCGAAAACCTGTCTCGTGGTTTCGGTCG



TCAGGGTAAACGTACCTTCATGGCGGAACGTCAGTACACCCGTATGGAAGACTGGCTGACCGCGAAACT



GGCGTACGAAGGTCTGCCGTCTAAAACCTACCTGTCTAAAACCCTGGCGCAGTACACCTCTAAAACCTG



CTCTAACTGCGGTTTCACCATCACCTCTGCGGACTACGACCGTGTTCTGGAAAAACTGAAAAAAACCGC



GACCGGTTGGATGACCACCATCAACGGTAAAGAACTGAAAGTTGAAGGTCAGATCACCTACTACAACCG



TTACAAACGTCAGAACGTTGTTAAAGACCTGTCTGTTGAACTGGACCGTCTGTCTGAAGAATCTGTTAAC



AACGACATCTCTTCTTGGACCAAAGGTCGTTCTGGTGAAGCGCTGTCTCTGCTGAAAAAACGTTTCTCTC



ACCGTCCGGTTCAGGAAAAATTCGTTTGCCTGAACTGCGGTTTCGAAACCCACGCGGACGAACAGGCGG



CGCTGAACATCGCGCGTTCTTGGCTGTTCCTGCGTTCTCAGGAATACAAAAAATACCAGACCAACAAAA



CCACCGGTAACACCGACAAACGTGCGTTCGTTGAAACCTGGCAGTCTTTCTACCGTAAAAAACTGAAAG



AAGTTTGGAAACCG





SEQ
AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATTGATAATTGAGA


ID
TCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAATTATTTATTTATCCAGAAAAT


NO:
GAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTcaaaCAGGTtgccgtcactgc


61
gtcttttactggctcttctcgctaaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagccatgacaaaaacgcgtaacaaaagtgtctataat



cacggcagaaaagtccacattgattatttgcacggcgtcacactttgctatgccatagcatttttatccataagattagcggatcctacctgacgctttttatcgcaactctctactg



tttctccatacccgtttttttgggctagcaccgcctatctcgtgtgagataggcggagatacgaactttaagAAGGAGatataccATGGGTAAAATGTATT



ACCTTGGTTTAGACATTGGCACGAATTCCGTGGGCTACGCGGTGACCGACCCCTCATACCACCTGCTGAA



GTTTAAGGGGGAACCAATGTGGGGTGCGCACGTATTTGCCGCCGGTAATCAGAGCGCGGAACGACGCTC



GTTCCGCACATCGCGTCGTCGTTTGGACCGACGCCAACAGCGCGTTAAACTGGTACAGGAGATTTTTGCC



CCGGTGATTAGTCCGATCGACCCACGCTTCTTCATTCGTCTGCATGAATCCGCCCTGTGGCGCGATGACG



TCGCGGAGACGGATAAACATATCTTTTTCAATGATCCTACCTATACCGATAAGGAATATTATAGCGATTA



CCCGACTATCCATCACCTGATCGTTGATCTGATGGAAAGCTCTGAGAAACACGATCCGCGGCTGGTGTA



CCTTGCAGTGGCGTGGTTAGTGGCACACCGTGGTCATTTTCTGAACGAGGTGGACAAGGATAATATTGG



AGATGTGTTGTCGTTCGACGCATTTTATCCGGAGTTTCTCGCGTTCCTGTCGGACAACGGTGTATCACCG



TGGGTGTGCGAAAGCAAAGCGCTGCAGGCGACCTTGCTGAGCCGTAACTCAGTGAACGACAAATATAA



AGCCCTTAAGTCTCTGATCTTCGGATCCCAGAAACCTGAAGATAACTTCGATGCCAATATTTCGGAAGAT



GGACTCATTCAACTGCTGGCCGGCAAAAAGGTAAAAGTTAACAAACTGTTCCCTCAGGAATCGAACGAT



GCATCCTTCACATTGAATGATAAAGAAGACGCGATAGAAGAAATCCTGGGTACGCTTACACCAGATGAA



TGTGAATGGATTGCGCATATACGCCGCCTTTTTGACTGGGCTATCATGAAACATGCTCTGAAAGATGGCA



GGACTATTAGCGAGTCAAAAGTCAAACTGTATGAGCAGCACCATCACGATCTGACCCAACTTAAATACT



TCGTGAAAACCTACCTTGCAAAAGAATACGACGATATTTTCCGCAACGTGGATAGCGAAACAACGAAAA



ACTATGTAGCGTATTCCTATCATGTGAAAGAGGTGAAAGGCACTCTGCCTAAAAATAAGGCAACGCAAG



AAGAGTTTTGTAAGTATGTCCTGGGCAAGGTTAAAAACATTGAATGCTCTGAAGCAGACAAGGTTGACT



TTGATGAGATGATTCAGCGTCTTACCGACAACTCTTTTATGCCTAAGCAGGTTTCGGGCGAAAACCGCGT



TATTCCTTATCAGTTATATTATTATGAACTGAAGACAATTCTGAATAAAGCAGCCTCGTACCTGCCTTTCC



TGACGCAGTGTGGAAAAGATGCAATTTCGAACCAGGACAAACTACTGTCGATCATGACGTTCCGTATTC



CTTACTTCGTCGGACCCTTGCGAAAAGATAATTCGGAACATGCATGGCTCGAACGAAAGGCCGGTAAGA



TTTATCCGTGGAACTTTAACGACAAAGTGGACTTGGATAAATCAGAAGAAGCGTTCATTCGCCGAATGA



CCAATACCTGTACCTATTATCCCGGCGAAGATGTTTTACCGTTGGATTCGCTGATCTATGAGAAATTTAT



GATTTTAAATGAAATCAATAATATTCGTATTGACGGCTACCCGATTAGTGTTGACGTTAAACAGCAGGTT



TTTGGCTTGTTCGAAAAAAAACGACGCGTAACCGTGAAAGATATTCAGAACCTGCTGCTGTCTCTCGGA



GCTCTGGACAAACACGGGAAGCTGACAGGCATCGATACCACTATCCACTCAAACTATAATACGTATCAC



CATTTTAAATCTCTCATGGAACGCGGCGTCCTGACCCGGGATGACGTGGAACGCATCGTTGAAAGGATG



ACCTACAGCGACGATACTAAGCGTGTGCGTCTGTGGCTGAATAACAACTATGGTACTTTAACCGCCGAC



GATGTGAAACACATTTCGCGTCTGCGCAAACACGATTTTGGCCGTTTATCCAAAATGTTCTTAACAGGTC



TGAAGGGTGTCCATAAGGAGACCGGTGAACGTGCCTCCATACTGGATTTCATGTGGAACACGAACGATA



ACCTGATGCAGCTCCTTTCCGAATGCTACACGTTCAGTGATGAAATCACAAAGCTGCAAGAGGCGTATT



ATGCAAAAGCCCAGTTGTCTTTAAACGATTTTTTAGACTCGATGTACATCTCTAACGCGGTGAAACGTCC



GATTTACAGAACTCTGGCAGTGGTGAACGATATTCGAAAAGCATGTGGGACGGCCCCTAAACGCATTTT



CATCGAAATGGCTCGTGATGGTGAATCAAAAAAAAAGAGAAGTGTTACACGTCGCGAGCAGATCAAAA



ACCTGTACCGCTCGATTCGTAAAGATTTCCAGCAGGAAGTTGATTTTCTGGAAAAGATCCTGGAAAATA



AATCTGATGGTCAACTTCAGTCAGATGCTTTGTATCTTTACTTTGCACAATTAGGGCGCGATATGTACAC



GGGCGATCCAATAAAGCTGGAGCACATCAAAGATCAGAGTTTCTATAACATAGACCATATTTACCCGCA



GTCTATGGTGAAAGACGATTCCCTAGATAACAAAGTGCTGGTGCAAAGCGAAATTAACGGCGAGAAAA



GCTCGCGATACCCTTTGGACGCCGCGATCCGCAATAAAATGAAGCCCCTTTGGGACGCTTACTATAATCA



TGGCCTGATCTCCTTAAAGAAATACCAGCGTCTAACGCGCTCGACCCCGTTTACCGATGATGAAAAATG



GGACTTTATTAATCGCCAGTTAGTGGAAACCCGTCAATCTACCAAAGCGCTGGCCATTTTGTTGAAGCGT



AAGTTTCCAGACACCGAAATTGTGTATTCGAAGGCGGGGTTATCGTCCGACTTCAGACATGAATTCGGC



CTTGTAAAAAGTCGCAATATTAATGATTTGCACCACGCTAAAGACGCATTCTTGGCTATCGTTACCGGCA



ATGTGTACCATGAAAGATTCAATCGCAGATGGTTTATGGTGAACCAGCCGTACTCAGTTAAAACTAAAA



CTCTTTTTACCCACAGCATAAAGAATGGCAACTTCGTTGCCTGGAACGGCGAAGAAGATCTCGGTCGTAT



TGTAAAAATGCTGAAGCAAAACAAAAATACCATTCACTTCACGCGCTTCTCCTTCGATCGCAAAGAAGG



ATTATTTGATATCCAACCTCTGAAAGCCAGCACCGGCTTAGTCCCACGAAAAGCCGGTCTGGATGTCGTT



AAATACGGCGGATATGACAAATCTACCGCGGCCTATTACCTGCTGGTGAGGTTCACGCTCGAGGACAAG



AAAACCCAGCACAAGCTGATGATGATTCCTGTAGAAGGCCTGTACAAGGCTCGCATTGATCATGACAAG



GAATTTCTTACCGATTATGCGCAAACGACTATAAGCGAAATCCTACAGAAAGATAAACAGAAAGTGATC



AATATTATGTTTCCAATGGGTACGAGGCATATAAAACTCAATTCAATGATTAGTATCGATGGCTTCTATC



TTAGTATCGGCGGAAAGTCCTCTAAAGGTAAGTCAGTTCTATGTCACGCAATGGTTCCACTGATCGTCCC



TCACAAAATCGAATGTTACATTAAAGCAATGGAAAGCTTCGCCCGGAAGTTTAAAGAAAACAACAAGCT



GCGCATCGTAGAAAAATTCGATAAAATCACCGTTGAAGACAACCTGAATCTCTACGAGCTCTTTCTCCA



AAAACTGCAGCATAATCCCTATAATAAGTTTTTTTCGACACAGTTTGACGTACTGACGAACGGCCGTTCT



ACTTTCACAAAACTGTCGCCGGAGGAACAGGTACAGACGCTCTTGAACATTTTAAGTATCTTTAAAACAT



GCCGCAGTTCGGGTTGCGACCTGAAATCCATCAACGGCAGTGCCCAGGCAGCGCGCATCATGATTAGCG



CTGACTTAACTGGACTGTCGAAAAAATATTCAGATATTAGGTTGGTTGAACAGTCAGCTTCTGGTTTGTT



CGTATCCAAAAGTCAGAACTTACTGGAGTATCTCTAAGAAATCATCCTTAGCGAAAGCTAAGGATTTTTT



TTATCTGAAATTTATTATATCGCGTTGATTATTGATGCTGTTTTTAGTTTTAACGGCAATTAATATATGTG



TTATTAATTGAATGAATTTTATCATTCATAATAAGTATGTGTAGGATCAAGCTCAGGTTAAATATTCACT



CAGGAAGTTATTACTCAGGAAGCAAAGAGGATTACAGAATTATCTCATAACAAGTGTTAAGGGATGTTA



TTTCC





SEQ
AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATTGATAATTGAGA


ID
TCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAATTATTTATTTATCCAGAAAAT


NO:
GAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTcaaaCAGGTtgccgtcactgc


62
gtcttttactggctcttacgctaaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagccatgacaaaaacgcgtaacaaaagtgtctataat



cacggcagaaaagtccacattgattatttgcacggcgtcacactttgctatgccatagcatttttatccataagattagcggatcctacctgacgcttttttttcgcaactctctactg



tttctccatacccgtttttttgggctagcaccgcctatctcgtgtgagataggcggagatacgaactttaagAAGGAGatataccATGTCATCGCTCACGA



AATTCACTAACAAATACTCTAAACAGCTCACCATTAAGAATGAACTCATCCCAGTTGGCAAAACACTGG



AGAACATCAAAGAGAATGGTCTGATAGATGGCGACGAACAGCTGAATGAGAATTATCAGAAGGCGAAA



ATTATTGTGGATGATTTTCTGCGGGACTTCATTAATAAAGCACTGAATAATACGCAGATCGGGAACTGGC



GCGAACTGGCGGATGCCCTTAATAAAGAGGATGAAGATAACATCGAGAAATTGCAGGATAAAATTCGG



GGAATCATTGTATCCAAATTTGAAACGTTTGATCTGTTTAGCAGCTATTCTATTAAGAAAGATGAAAAGA



TTATTGACGACGACAATGATGTTGAAGAAGAGGAACTGGATCTGGGCAAGAAGACCAGCTCATTTAAAT



ACATATTTAAAAAAAACCTGTTTAAGTTAGTGTTGCCATCCTACCTGAAAACCACAAACCAGGACAAGC



TGAAGATTATTAGCTCGTTTGATAATTTTTCAACGTACTTCCGCGGGTTCTTTGAAAACCGGAAAAACAT



TTTTACCAAGAAACCGATCTCCACAAGTATTGCGTATCGCATTGTTCATGATAACTTCCCGAAATTCCTT



GATAACATTCGTTGTTTTAATGTGTGGCAGACGGAATGCCCGCAACTAATCGTGAAAGCAGATAACTAT



CTGAAAAGCAAAAATGTTATAGCGAAAGATAAAAGTTTGGCAAACTATTTTACCGTGGGCGCGTATGAC



TATTTCCTGTCTCAGAATGGTATAGATTTTTACAACAATATTATAGGTGGACTGCCAGCGTTCGCCGGCC



ATGAGAAAATCCAAGGTCTCAATGAATTCATCAATCAAGAGTGCCAAAAAGACAGCGAGCTGAAAAGT



AAGCTGAAAAACCGTCACGCGTTCAAAATGGCGGTACTGTTCAAACAGATACTCAGCGATCGTGAAAAA



AGTTTTGTAATTGATGAGTTCGAGTCGGATGCTCAAGTTATTGACGCCGTTAAAAACTTTTACGCCGAAC



AGTGCAAAGATAACAATGTTATTTTTAACTTATTAAATCTTATCAAGAATATCGCTTTCTTAAGTGATGA



CGAACTGGACGGCATATTCATTGAAGGGAAATACCTGTCGAGCGTTAGTCAAAAACTCTATAGCGATTG



GTCAAAATTACGTAACGACATTGAGGATTCGGCTAACTCTAAACAAGGCAATAAAGAGCTGGCCAAGA



AGATCAAAACCAACAAAGGGGATGTAGAAAAAGCGATCTCGAAATATGAGTTCTCGCTGTCGGAACTG



AACTCGATTGTACATGATAACACCAAGTTTTCTGACCTCCTTAGTTGTACACTGCATAAGGTGGCTTCTG



AGAAACTGGTGAAGGTCAATGAAGGCGACTGGCCGAAACATCTCAAGAATAATGAAGAGAAACAAAAA



ATCAAAGAGCCGCTTGATGCTCTGCTGGAGATCTATAATACACTTCTGATTTTTAACTGCAAAAGCTTCA



ATAAAAACGGCAACTTCTATGTCGACTATGATCGTTGCATCAATGAACTGAGTTCGGTCGTGTATCTGTA



TAATAAAACACGTAACTATTGCACTAAAAAACCCTATAACACGGACAAGTTCAAACTCAATTTTAACAG



TCCGCAGCTCGGTGAAGGCTTTTCCAAGTCGAAAGAAAATGACTGTCTGACTCTTTTGTTTAAAAAAGAC



GACAACTATTATGTAGGCATTATCCGCAAAGGTGCAAAAATCAATTTTGATGATACACAAGCAATCGCC



GATAACACCGACAATTGCATCTTTAAAATGAATTATTTCCTACTTAAAGACGCAAAAAAATTTATCCCGA



AATGTAGCATTCAGCTGAAAGAAGTCAAGGCCCATTTTAAGAAATCTGAAGATGATTACATTTTGTCTG



ATAAAGAGAAATTTGCTAGCCCGCTGGTCATTAAAAAGAGCACATTTTTGCTGGCAACTGCACATGTGA



AAGGGAAAAAAGGCAATATCAAGAAATTTCAGAAAGAATATTCGAAAGAAAACCCCACTGAGTATCGC



AATTCTTTAAACGAATGGATTGCTTTTTGTAAAGAGTTCTTAAAAACTTATAAAGCGGCTACCATTTTTG



ATATAACCACATTGAAAAAGGCAGAGGAATATGCTGATATTGTAGAATTCTACAAGGATGTCGATAATC



TGTGCTACAAACTGGAGTTCTGCCCGATTAAAACCTCGTTTATAGAAAACCTGATAGATAACGGCGACC



TGTATCTGTTTCGCATCAATAACAAAGACTTCAGCAGTAAATCGACCGGCACCAAGAACCTTCATACGTT



ATATTTACAAGCTATATTCGATGAACGTAATCTGAACAATCCGACAATTATGCTGAATGGGGGAGCAGA



ACTGTTCTATCGTAAAGAAAGTATTGAGCAGAAAAACCGTATCACACACAAAGCCGGTTCAATTCTCGT



GAATAAGGTGTGTAAAGACGGTACAAGCCTGGATGATAAGATACGTAATGAAATTTATCAATATGAGAA



TAAATTTATTGATACCCTGTCTGATGAAGCTAAAAAGGTGTTACCGAATGTCATTAAAAAGGAAGCTAC



CCATGACATTACAAAAGATAAACGTTTCACTAGTGACAAATTCTTCTTTCACTGCCCCCTGACAATTAAT



TATAAGGAAGGCGATACCAAGCAGTTCAATAACGAAGTGCTGAGTTTTCTGCGTGGAAATCCTGACATC



AACATTATCGGCATTGACCGCGGAGAGCGTAATTTAATCTATGTAACGGTTATAAACCAGAAAGGCGAG



ATTCTGGATTCGGTTTCATTCAATACCGTGACCAACAAGAGTTCAAAAATCGAGCAGACAGTCGATTAT



GAAGAGAAATTGGCAGTCCGCGAGAAAGAGAGGATTGAAGCAAAACGTTCCTGGGACTCTATCTCAAA



AATTGCGACACTAAAGGAAGGTTATCTGAGCGCAATAGTTCACGAGATCTGTCTGTTAATGATTAAACA



CAACGCGATCGTTGTCTTAGAGAATCTTAATGCAGGCTTTAAGCGTATTCGTGGCGGTTTATCAGAAAAA



AGTGTTTATCAAAAATTCGAAAAAATGTTGATTAACAAACTGAACTATTTTGTCAGCAAGAAGGAATCC



GACTGGAATAAACCGTCTGGTCTGCTGAATGGACTGCAGCTTTCGGATCAGTTTGAAAGCTTCGAAAAA



CTGGGTATTCAGTCTGGTTTTATTTTTTACGTGCCGGCTGCATATACCTCAAAGATTGATCCGACCACGG



GCTTCGCCAATGTTCTGAATCTGTCGAAGGTACGCAATGTTGATGCGATCAAAAGCTTTTTTTCTAACTT



CAACGAAATTAGTTATAGCAAGAAAGAAGCCCTTTTCAAATTCTCATTCGATCTGGATTCACTGAGTAAG



AAAGGCTTTAGTAGCTTTGTGAAATTTAGTAAGAGTAAATGGAACGTCTACACCTTTGGAGAACGTATC



ATAAAGCCAAAGAATAAGCAAGGTTATCGGGAGGACAAAAGAATCAACTTGACCTTCGAGATGAAGAA



GTTACTTAACGAGTATAAGGTTTCTTTTGATCTTGAAAATAACTTGATTCCGAATCTCACGAGTGCCAAC



CTGAAGGATACTTTTTGGAAAGAGCTATTCTTTATCTTCAAGACTACGCTGCAGCTCCGTAACAGCGTTA



CTAACGGTAAAGAAGATGTGCTCATCTCTCCGGTCAAAAATGCGAAGGGTGAATTCTTCGTTTCGGGAA



CGCATAACAAGACTCTTCCGCAAGATTGCGATGCGAACGGTGCATACCATATTGCGTTGAAAGGTCTGA



TGATACTCGAACGTAACAACCTTGTACGTGAGGAGAAAGATACGAAAAAGATTATGGCGATTTCAAACG



TGGATTGGTTCGAGTACGTGCAGAAACGTAGAGGCGTTCTGTAAGAAATCATCCTTAGCGAAAGCTAAG



GATTTTTTTTATCTGAAATTTATTATATCGCGTTGATTATTGATGCTGTTTTTAGTTTTAACGGCAATTAAT



ATATGTGTTATTAATTGAATGAATTTTATCATTCATAATAAGTATGTGTAGGATCAAGCTCAGGTTAAAT



ATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGATTACAGAATTATCTCATAACAAGTGTTAAGG



GATGTTATTTCC





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACTGCGTC


ID
TTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAACAAAGCGGGA


NO:
CCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAAGTCCACATTGATTATT


63
TGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTT



TTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGG



GTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCAT



CACCATAACAACTACGACGAATTCACCAAACTGTACCCGATCCAGAAAACCATCCGTTTCGAACTGAAA



CCGCAGGGTCGTACCATGGAACACCTGGAAACCTTCAACTTCTTCGAAGAAGACCGTGACCGTGCGGAA



AAATACAAAATCCTGAAAGAAGCGATCGACGAATACCACAAAAAATTCATCGACGAACACCTGACCAA



CATGTCTCTGGACTGGAACTCTCTGAAACAGATCTCTGAAAAATACTACAAATCTCGTGAAGAAAAAGA



CAAAAAAGTTTTCCTGTCTGAACAGAAACGTATGCGTCAGGAAATCGTTTCTGAATTCAAAAAAGACGA



CCGTTTCAAAGACCTGTTCTCTAAAAAACTGTTCTCTGAACTGCTGAAAGAAGAAATCTACAAAAAAGG



TAACCACCAGGAAATCGACGCGCTGAAATCTTTCGACAAATTCTCTGGTTACTTCATCGGTCTGCACGAA



AACCGTAAAAACATGTACTCTGACGGTGACGAAATCACCGCGATCTCTAACCGTATCGTTAACGAAAAC



TTCCCGAAATTCCTGGACAACCTGCAGAAATACCAGGAAGCGCGTAAAAAATACCCGGAATGGATCATC



AAAGCGGAATCTGCGCTGGTTGCGCACAACATCAAAATGGACGAAGTTTTCTCTCTGGAATACTTCAAC



AAAGTTCTGAACCAGGAAGGTATCCAGCGTTACAACCTGGCGCTGGGTGGTTACGTTACCAAATCTGGT



GAAAAAATGATGGGTCTGAACGACGCGCTGAACCTGGCGCACCAGTCTGAAAAATCTTCTAAAGGTCGT



ATCCACATGACCCCGCTGTTCAAACAGATCCTGTCTGAAAAAGAATCTTTCTCTTACATCCCGGACGTTT



TCACCGAAGACTCTCAGCTGCTGCCGTCTATCGGTGGTTTCTTCGCGCAGATCGAAAACGACAAAGACG



GTAACATCTTCGACCGTGCGCTGGAACTGATCTCTTCTTACGCGGAATACGACACCGAACGTATCTACAT



CCGTCAGGCGGACATCAACCGTGTTTCTAACGTTATCTTCGGTGAATGGGGTACCCTGGGTGGTCTGATG



CGTGAATACAAAGCGGACTCTATCAACGACATCAACCTGGAACGTACCTGCAAAAAAGTTGACAAATGG



CTGGACTCTAAAGAATTCGCGCTGTCTGACGTTCTGGAAGCGATCAAACGTACCGGTAACAACGACGCG



TTCAACGAATACATCTCTAAAATGCGTACCGCGCGTGAAAAAATCGACGCGGCGCGTAAAGAAATGAA



ATTCATCTCTGAAAAAATCTCTGGTGACGAAGAATCTATCCACATCATCAAAACCCTGCTGGACTCTGTT



CAGCAGTTCCTGCACTTCTTCAACCTGTTCAAAGCGCGTCAGGACATCCCGCTGGACGGTGCGTTCTACG



CGGAATTCGACGAAGTTCACTCTAAACTGTTCGCGATCGTTCCGCTGTACAACAAAGTTCGTAACTACCT



GACCAAAAACAACCTGAACACCAAAAAAATCAAACTGAACTTCAAAAACCCGACCCTGGCGAACGGTT



GGGACCAGAACAAAGTTTACGACTACGCGTCTCTGATCTTCCTGCGTGACGGTAACTACTACCTGGGTAT



CATCAACCCGAAACGTAAAAAAAACATCAAATTCGAACAGGGTTCTGGTAACGGTCCGTTCTACCGTAA



AATGGTTTACAAACAGATCCCGGGTCCGAACAAAAACCTGCCGCGTGTTTTCCTGACCTCTACCAAAGG



TAAAAAAGAATACAAACCGTCTAAAGAAATCATCGAAGGTTACGAAGCGGACAAACACATCCGTGGTG



ACAAATTCGACCTGGACTTCTGCCACAAACTGATCGACTTCTTCAAAGAATCTATCGAAAAACACAAAG



ACTGGTCTAAATTCAACTTCTACTTCTCTCCGACCGAATCTTACGGTGACATCTCTGAATTCTACCTGGAC



GTTGAAAAACAGGGTTACCGTATGCACTTCGAAAACATCTCTGCGGAAACCATCGACGAATACGTTGAA



AAAGGTGACCTGTTCCTGTTCCAGATCTACAACAAAGACTTCGTTAAAGCGGCGACCGGTAAAAAAGAC



ATGCACACCATCTACTGGAACGCGGCGTTCTCTCCGGAAAACCTGCAGGACGTTGTTGTTAAACTGAAC



GGTGAAGCGGAACTGTTCTACCGTGACAAATCTGACATCAAAGAAATCGTTCACCGTGAAGGTGAAATC



CTGGTTAACCGTACCTACAACGGTCGTACCCCGGTTCCGGACAAAATCCACAAAAAACTGACCGACTAC



CACAACGGTCGTACCAAAGACCTGGGTGAAGCGAAAGAATACCTGGACAAAGTTCGTTACTTCAAAGCG



CACTACGACATCACCAAAGACCGTCGTTACCTGAACGACAAAATCTACTTCCACGTTCCGCTGACCCTGA



ACTTCAAAGCGAACGGTAAAAAAAACCTGAACAAAATGGTTATCGAAAAATTCCTGTCTGACGAAAAA



GCGCACATCATCGGTATCGACCGTGGTGAACGTAACCTGCTGTACTACTCTATCATCGACCGTTCTGGTA



AAATCATCGACCAGCAGTCTCTGAACGTTATCGACGGTTTCGACTACCGTGAAAAACTGAACCAGCGTG



AAATCGAAATGAAAGACGCGCGTCAGTCTTGGAACGCGATCGGTAAAATCAAAGACCTGAAAGAAGGT



TACCTGTCTAAAGCGGTTCACGAAATCACCAAAATGGCGATCCAGTACAACGCGATCGTTGTTATGGAA



GAACTGAACTACGGTTTCAAACGTGGTCGTTTCAAAGTTGAAAAACAGATCTACCAGAAATTCGAAAAC



ATGCTGATCGACAAAATGAACTACCTGGTTTTCAAAGACGCGCCGGACGAATCTCCGGGTGGTGTTCTG



AACGCGTACCAGCTGACCAACCCGCTGGAATCTTTCGCGAAACTGGGTAAACAGACCGGTATCCTGTTC



TACGTTCCGGCGGCGTACACCTCTAAAATCGACCCGACCACCGGTTTCGTTAACCTGTTCAACACCTCTT



CTAAAACCAACGCGCAGGAACGTAAAGAATTCCTGCAGAAATTCGAATCTATCTCTTACTCTGCGAAAG



ACGGTGGTATCTTCGCGTTCGCGTTCGACTACCGTAAATTCGGTACCTCTAAAACCGACCACAAAAACGT



TTGGACCGCGTACACCAACGGTGAACGTATGCGTTACATCAAAGAAAAAAAACGTAACGAACTGTTCGA



CCCGTCTAAAGAAATCAAAGAAGCGCTGACCTCTTCTGGTATCAAATACGACGGTGGTCAGAACATCCT



GCCGGACATCCTGCGTTCTAACAACAACGGTCTGATCTACACCATGTACTCTTCTTTCATCGCGGCGATC



CAGATGCGTGTTTACGACGGTAAAGAAGACTACATCATCTCTCCGATCAAAAACTCTAAAGGTGAATTC



TTCCGTACCGACCCGAAACGTCGTGAACTGCCGATCGACGCGGACGCGAACGGTGCGTACAACATCGCG



CTGCGTGGTGAACTGACCATGCGTGCGATCGCGGAAAAATTCGACCCGGACTCTGAAAAAATGGCGAAA



CTGGAACTGAAACACAAAGACTGGTTCGAATTCATGCAGACCCGTGGTGACTAAGAAATCATCCTTAGC



GAAAGCTAAGGATTTTTTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTAT



TACTCAGGAAGCAAAGAGGATTACA





SEQ
AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATTGATAATTGAGA


ID
TCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAATTATTTATTTATCCAGAAAAT


NO:
GAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTcaaaCAGGTtgccgtcactgc


64
gtcttttactggctcttctcgctaaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagccatgacaaaaacgcgtaacaaaagtgtctataat



cacggcagaaaagtccacattgattatttgcacggcgtcacactttgctatgccatagcatttttatccataagattagcggatcctacctgacgctttttatcgcaactctctactg



tttctccatacccgtttttttgggctagcaccgcctatctcgtgtgagataggcggagatacgaactttaagAAGGAGatataccATGACTAAAACATTTG



ATTCAGAGTTTTTTAATTTGTACTCGCTGCAAAAAACGGTACGCTTTGAGTTAAAACCCGTGGGAGAAAC



CGCGTCATTTGTGGAAGACTTTAAAAACGAGGGCTTGAAACGTGTTGTGAGCGAAGATGAAAGGCGAGC



CGTCGATTACCAGAAAGTTAAGGAAATAATTGACGATTACCATCGGGATTTCATTGAAGAAAGTTTAAA



TTATTTTCCGGAACAGGTGAGTAAAGATGCTCTTGAGCAGGCGTTTCATCTTTATCAGAAACTGAAGGCA



GCAAAAGTTGAGGAAAGGGAAAAAGCGCTGAAAGAATGGGAAGCGCTGCAGAAAAAGCTACGTGAAA



AAGTGGTGAAATGCTTCTCGGACTCGAATAAAGCCCGCTTCTCAAGGATTGATAAAAAGGAACTGATTA



AGGAAGACCTGATAAATTGGTTGGTCGCCCAGAATCGCGAGGATGATATCCCTACGGTCGAAACGTTTA



ACAACTTCACCACATATTTTACCGGCTTCCATGAGAATCGTAAAAATATTTACTCCAAAGATGATCACGC



CACCGCTATTAGCTTTCGCCTTATTCATGAAAATCTTCCAAAGTTTTTTGACAACGTGATTAGCTTCAATA



AGTTGAAAGAGGGTTTCCCTGAATTAAAATTTGATAAAGTGAAAGAGGATTTAGAAGTAGATTATGATC



TGAAGCATGCGTTTGAAATAGAATATTTCGTTAACTTCGTGACCCAAGCGGGCATAGATCAGTATAATTA



TCTGTTAGGAGGGAAAACCCTGGAGGACGGGACGAAAAAACAAGGGATGAATGAGCAAATTAATCTGT



TCAAACAACAGCAAACGCGAGATAAAGCGCGTCAGATTCCCAAACTGATCCCCCTGTTCAAACAGATTC



TTAGCGAAAGGACTGAAAGCCAGTCCTTTATTCCTAAACAATTTGAAAGTGATCAGGAGTTGTTCGATTC



ACTGCAGAAGTTACATAATAACTGCCAGGATAAATTCACCGTGCTGCAACAAGCCATTCTCGGTCTGGC



AGAGGCGGATCTTAAGAAGGTCTTCATCAAAACCTCTGATTTAAATGCCTTATCTAACACCATTTTCGGG



AATTACAGCGTCTTTTCCGATGCACTGAACCTGTATAAAGAAAGCCTGAAAACGAAAAAAGCGCAGGAG



GCTTTTGAGAAACTACCGGCCCATTCTATTCACGACCTCATTCAATACTTGGAACAGTTCAATTCCAGCC



TGGACGCGGAAAAACAACAGAGCACCGACACCGTCCTGAACTACTTCATCAAGACCGATGAATTATATT



CTCGCTTCATTAAATCCACTAGCGAGGCTTTCACTCAGGTGCAGCCTTTGTTCGAACTGGAAGCCCTGTC



ATCTAAGCGCCGCCCACCGGAATCGGAAGATGAAGGGGCAAAAGGGCAGGAAGGCTTCGAGCAGATCA



AGCGTATTAAAGCTTACCTGGATACGCTTATGGAAGCGGTACACTTTGCAAAGCCGTTGTATCTTGTTAA



GGGTCGTAAAATGATCGAAGGGCTCGATAAAGACCAGTCCTTTTATGAAGCGTTTGAAATGGCGTACCA



AGAACTTGAATCGTTAATCATTCCTATCTATAACAAAGCGCGGAGCTATCTGTCGCGGAAACCTTTCAAG



GCCGATAAATTCAAGATTAATTTTGACAACAACACGCTACTGAGCGGATGGGATGCGAACAAGGAAACT



GCTAACGCGTCCATTCTGTTTAAGAAAGACGGGTTATATTACCTTGGAATTATGCCGAAAGGTAAGACCT



TTCTCTTTGACTACTTTGTATCGAGCGAGGATTCAGAGAAACTGAAACAGCGTCGCCAGAAGACCGCCG



AAGAAGCTCTGGCGCAGGATGGTGAAAGTTACTTCGAAAAAATTCGTTATAAACTGTTACCAGGGGCTT



CAAAGATGTTACCGAAAGTCTTTTTTAGCAACAAAAATATTGGCTTTTACAACCCGTCGGATGACATTTT



ACGCATTCGCAACACAGCCTCTCACACCAAAAACGGGACCCCTCAGAAAGGCCACTCAAAAGTTGAGTT



TAACCTGAATGATTGTCATAAGATGATTGATTTCTTCAAATCATCAATTCAGAAACACCCGGAATGGGG



GTCTTTTGGCTTTACGTTTTCTGATACCAGTGATTTTGAAGACATGAGTGCCTTCTACCGGGAAGTAGAA



AACCAGGGTTACGTAATTAGCTTTGACAAAATCAAAGAGACCTATATACAGAGCCAGGTGGAACAGGGT



AATCTCTACTTATTCCAGATTTATAACAAGGATTTCTCGCCCTACAGCAAAGGCAAACCAAACCTGCATA



CTCTGTACTGGAAAGCCCTGTTTGAAGAAGCGAACCTGAATAACGTAGTGGCGAAGTTGAACGGTGAAG



CGGAAATCTTCTTCCGTCGTCACTCCATTAAGGCCTCTGATAAAGTTGTCCATCCGGCAAATCAGGCCAT



TGATAATAAGAATCCACACACGGAAAAAACGCAGTCAACCTTTGAATATGACCTCGTTAAAGACAAACG



CTACACGCAAGATAAGTTCTTTTTCCACGTCCCAATCAGCCTCAACTTTAAAGCACAAGGGGTTTCAAAG



TTTAATGATAAAGTCAATGGGTTCCTCAAGGGCAACCCGGATGTCAACATTATAGGTATAGACAGGGGC



GAACGCCATCTGCTTTACTTTACCGTAGTGAATCAGAAAGGTGAAATACTGGTTCAGGAATCATTAAAT



ACCTTGATGTCGGACAAAGGGCACGTTAATGATTACCAGCAGAAACTGGATAAAAAAGAACAGGAACG



TGATGCTGCGCGTAAATCGTGGACCACGGTTGAGAACATTAAAGAGCTGAAAGAGGGGTATCTAAGCCA



TGTGGTACACAAACTGGCGCACCTCATCATTAAATATAACGCAATAGTCTGCCTAGAAGACTTGAATTTT



GGCTTTAAACGCGGCCGCTTCAAAGTGGAAAAACAAGTTTATCAAAAATTTGAAAAGGCGCTTATAGAT



AAACTGAATTATCTGGTTTTTAAAGAAAAGGAACTTGGTGAGGTAGGGCACTACTTGACAGCTTATCAA



CTGACGGCCCCGTTCGAATCATTCAAAAAACTGGGCAAACAGTCTGGCATTCTGTTTTACGTGCCGGCAG



ATTATACTTCAAAAATCGATCCAACAACTGGCTTTGTGAACTTCCTGGACCTGAGATATCAGTCTGTAGA



AAAAGCTAAACAACTTCTTAGCGATTTTAATGCCATTCGTTTTAACAGCGTTCAGAATTACTTTGAATTC



GAAATTGACTATAAAAAACTTACTCCGAAACGTAAAGTCGGAACCCAAAGTAAATGGGTAATTTGTACG



TATGGCGATGTCAGGTATCAGAACCGTCGGAATCAAAAAGGTCATTGGGAGACCGAAGAAGTGAACGT



GACCGAAAAGCTGAAGGCTCTGTTCGCCAGCGATTCAAAAACTACAACTGTGATCGATTACGCAAATGA



TGATAACCTGATAGATGTGATTTTAGAGCAGGATAAAGCCAGCTTTTTTAAAGAACTGTTGTGGCTCCTG



AAACTTACGATGACCTTACGACATTCCAAGATCAAATCGGAAGATGATTTTATTCTGTCACCGGTCAAGA



ATGAGCAGGGTGAATTCTATGATAGTAGGAAAGCCGGCGAAGTGTGGCCGAAAGACGCCGACGCCAAT



GGCGCCTATCATATCGCGCTCAAAGGGCTTTGGAATTTGCAGCAGATTAACCAGTGGGAAAAAGGTAAA



ACCCTGAATCTGGCTATCAAAAACCAGGATTGGTTTAGCTTTATCCAAGAGAAACCGTATCAGGAATGA



GAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATTTATTATATCGCGTTGATTATTGATGC



TGTTTTTAGTTTTAACGGCAATTAATATATGTGTTATTAATTGAATGAATTTTATCATTCATAATAAGTAT



GTGTAGGATCAAGCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGATTACAG



AATTATCTCATAACAAGTGTTAAGGGATGTTATTTCC





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACTGCGTC


ID
TTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAACAAAGCGGGA


NO:
CCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAAGTCCACATTGATTATT


65
TGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTT



TTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGG



GTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCAT



CACCATCATACAGGCGGTCTTCTTAGTATGGACGCGAAAGAGTTCACAGGTCAGTATCCGTTGTCGAAA



ACATTACGATTCGAACTTCGGCCCATCGGCCGCACGTGGGATAACCTGGAGGCCTCAGGCTACTTAGCG



GAAGACCGCCATCGTGCCGAATGTTATCCTCGTGCGAAAGAGTTATTGGATGACAACCATCGTGCCTTCC



TGAATCGTGTGTTGCCACAAATCGATATGGATTGGCACCCGATTGCGGAGGCCTTTTGTAAGGTACATAA



AAACCCTGGTAATAAAGAACTTGCCCAGGATTACAACCTTCAGTTGTCAAAGCGCCGTAAGGAGATCAG



CGCATATCTTCAGGATGCAGATGGCTATAAAGGCCTGTTCGCGAAGCCCGCCTTAGACGAAGCTATGAA



AATTGCGAAAGAAAACGGGAACGAAAGTGATATTGAGGTTCTCGAAGCGTTTAACGGTTTTAGCGTATA



CTTCACCGGTTATCATGAGTCACGCGAGAACATTTATAGCGATGAGGATATGGTGAGCGTAGCCTACCG



AATTACTGAGGATAATTTCCCGCGCTTTGTCTCAAACGCTTTGATCTTTGATAAATTAAACGAAAGCCAT



CCGGATATTATCTCTGAAGTATCGGGCAATCTTGGAGTTGATGACATTGGTAAGTACTTTGACGTGTCGA



ACTATAACAATTTTCTTTCCCAGGCCGGTATAGATGACTACAATCACATTATTGGCGGCCATACAACCGA



AGACGGACTGATACAAGCGTTTAATGTCGTATTGAACTTACGTCACCAAAAAGACCCTGGCTTTGAAAA



AATTCAGTTCAAACAGCTCTACAAACAAATCCTGAGCGTGCGTACCAGCAAAAGCTACATCCCGAAACA



GTTTGACAACTCTAAGGAGATGGTTGACTGCATTTGCGATTATGTCAGCAAAATAGAGAAATCCGAAAC



AGTAGAACGGGCCCTGAAACTAGTCCGTAATATCAGTTCTTTCGACTTGCGCGGGATCTTTGTCAATAAA



AAGAACTTGCGCATACTGAGCAACAAACTGATAGGAGATTGGGACGCGATCGAAACCGCATTGATGCAT



AGTTCTTCATCAGAAAACGATAAGAAAAGCGTATATGATAGCGCGGAGGCTTTTACGTTGGATGACATC



TTTTCAAGCGTGAAAAAATTTTCTGATGCCTCTGCCGAAGATATTGGCAACAGGGCGGAAGACATCTGT



AGAGTGATAAGTGAGACGGCCCCTTTTATCAACGATCTGCGAGCGGTGGACCTGGATAGCCTGAACGAC



GATGGTTATGAAGCGGCCGTCTCAAAAATTCGGGAGTCGCTGGAGCCTTATATGGATCTTTTCCATGAAC



TGGAAATTTTCTCGGTTGGCGATGAGTTCCCAAAATGCGCAGCATTTTACAGCGAACTGGAGGAAGTCA



GCGAACAGCTGATCGAAATTATTCCGTTATTCAACAAGGCGCGTTCGTTCTGCACCCGGAAACGCTATA



GCACCGATAAGATTAAAGTGAACTTAAAATTCCCGACCTTGGCGGACGGGTGGGACCTGAACAAAGAG



AGAGACAACAAAGCCGCGATTCTGCGGAAAGACGGTAAGTATTATCTGGCAATTCTGGATATGAAGAA



AGATCTGTCAAGCATTAGGACCAGCGACGAAGATGAATCCAGCTTCGAAAAGATGGAGTATAAACTGTT



ACCGAGTCCAGTAAAAATGCTGCCAAAGATATTCGTAAAATCGAAAGCCGCTAAGGAAAAATATGGCCT



GACAGATCGTATGCTTGAATGCTACGATAAAGGTATGCATAAGTCGGGTAGTGCGTTTGATCTTGGCTTT



TGCCATGAACTCATTGATTATTACAAGCGTTGTATCGCGGAGTACCCAGGCTGGGATGTGTTCGATTTCA



AGTTTCGCGAAACTTCCGATTATGGGTCCATGAAAGAGTTCAATGAAGATGTGGCCGGAGCCGGTTACT



ATATGAGTCTGAGAAAAATTCCGTGCAGCGAAGTGTACCGTCTGTTAGACGAGAAATCGATTTATCTATT



TCAAATTTATAACAAAGATTACTCTGAAAATGCACATGGTAATAAGAACATGCATACCATGTACTGGGA



GGGTCTCTTTTCCCCGCAAAACCTGGAGTCGCCCGTTTTCAAGTTGTCGGGTGGGGCAGAACTTTTCTTT



CGAAAATCCTCAATCCCTAACGATGCCAAAACAGTACACCCGAAAGGCTCAGTGCTGGTTCCACGTAAT



GATGTTAACGGTCGGCGTATTCCAGATTCAATCTACCGCGAACTGACACGCTATTTTAACCGTGGCGATT



GCCGAATCAGTGACGAAGCCAAAAGTTATCTTGACAAGGTTAAGACTAAAAAAGCGGACCATGACATT



GTGAAAGATCGCCGCTTTACCGTGGATAAAATGATGTTCCACGTCCCGATTGCGATGAACTTTAAGGCG



ATCAGTAAACCGAACTTAAACAAAAAAGTCATTGATGGCATCATTGATGATCAGGATCTGAAAATCATT



GGTATTGATCGTGGCGAGCGGAACTTAATTTACGTCACGATGGTTGACAGAAAAGGGAATATCTTATAT



CAGGATTCTCTTAACATCCTCAATGGCTACGACTATCGTAAAGCTCTGGATGTGCGCGAATATGACAACA



AGGAAGCGCGTCGTAACTGGACTAAAGTGGAGGGCATTCGCAAAATGAAGGAAGGCTATCTGTCATTA



GCGGTCTCGAAATTAGCGGATATGATTATCGAAAATAACGCCATCATCGTTATGGAGGACCTGAACCAC



GGATTCAAAGCGGGCCGCTCAAAGATTGAAAAACAAGTTTATCAGAAATTTGAGAGTATGCTGATTAAC



AAACTGGGCTATATGGTGTTAAAAGACAAGTCAATTGACCAATCAGGTGGCGCGCTGCATGGATACCAG



CTGGCGAACCATGTTACCACCTTAGCATCAGTTGGAAAGCAGTGTGGGGTTATCTTTTATATACCGGCAG



CGTTCACTAGTAAAATAGATCCGACCACTGGTTTCGCCGATCTCTTTGCCCTGAGTAACGTTAAAAACGT



AGCGAGCATGCGTGAATTCTTTTCCAAAATGAAATCTGTCATTTATGATAAAGCTGAAGGCAAATTCGC



ATTCACCTTTGATTACTTGGATTACAACGTGAAGAGCGAATGTGGTCGTACGCTGTGGACCGTTTACACC



GTTGGTGAGCGCTTCACCTATTCCCGTGTGAACCGCGAATATGTACGTAAAGTCCCCACCGATATTATCT



ATGATGCCCTCCAGAAAGCAGGCATTAGCGTCGAAGGAGACTTAAGGGACAGAATTGCCGAAAGCGAT



GGCGATACGCTGAAGTCTATTTTTTACGCATTCAAATACGCGCTAGATATGCGCGTTGAGAATCGCGAG



GAAGACTACATTCAATCACCTGTGAAAAATGCCTCTGGGGAATTTTTTTGTTCAAAAAATGCTGGTAAAA



GCCTCCCACAAGATAGCGATGCAAACGGTGCATATAACATTGCCCTGAAAGGTATTCTTCAATTACGCA



TGCTGTCTGAGCAGTACGACCCCAACGCGGAATCTATTAGACTTCCGCTGATAACCAATAAAGCCTGGC



TGACATTCATGCAGTCTGGCATGAAGACCTGGAAAAATTAGGAAATCATCCTTAGCGAAAGCTAAGGAT



TTTTTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCA



AAGAGGATTACA





SEQ
AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATTGATAATTGAGA


ID
TCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAATTATTTATTTATCCAGAAAAT


NO:
GAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTcaaaCAGGTtgccgtcactgc


66
gtcttttactggctcttctcgctaaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagccatgacaaaaacgcgtaacaaaagtgtctataat



cacggcagaaaagtccacattgattatttgcacggcgtcacactttgctatgccatagcatttttatccataagattagcggatcctacctgacgctttttatcgcaactctctactg



tttctccatacccgtttttttgggctagcaccgcctatctcgtgtgagataggcggagatacgaactttaagAAGGAGatataccatgGATAGTTTGAAAGA



TTTCACCAATCTGTACCCTGTCAGTAAGACATTGAGATTTGAATTAAAGCCCGTTGGAAAGACTTTAGAA



AATATCGAGAAAGCAGGTATTTTGAAAGAGGATGAGCATCGTGCAGAAAGTTATCGGAGGGTGAAGAA



AATAATTGATACTTATCATAAGGTATTTATCGATTCTTCTCTTGAAAATATGGCTAAAATGGGTATTGAG



AATGAAATAAAAGCAATGCTCCAAAGTTTCTGCGAATTGTATAAAAAAGATCATCGCACTGAGGGTGAA



GACAAGGCATTAGATAAAATTCGAGCAGTACTTCGTGGCCTGATTGTTGGGGCTTTCACTGGTGTTTGCG



GAAGACGGGAAAATACAGTCCAAAACGAGAAGTACGAGAGTTTGTTCAAAGAAAAGTTGATAAAAGAA



ATTTTACCTGATTTTGTGCTCTCTACTGAGGCTGAAAGCTTGCCTTTCTCTGTTGAAGAAGCTACGAGGTC



ACTGAAGGAGTTTGATAGCTTTACATCCTACTTTGCTGGTTTTTACGAGAATAGAAAGAATATATACTCG



ACGAAACCTCAATCCACTGCCATTGCTTATCGTCTTATTCATGAGAACTTGCCGAAGTTCATTGATAATA



TTCTTGTTTTTCAGAAGATCAAAGAGCCTATAGCCAAAGAGCTGGAACATATTCGTGCGGACTTTTCTGC



CGGGGGGTACATAAAAAAGGATGAGAGATTGGAGGATATTTTTTCGTTGAACTATTATATCCACGTGTT



ATCTCAGGCTGGGATCGAAAAATATAACGCATTGATTGGGAAGATTGTGACAGAAGGAGATGGAGAGA



TGAAAGGGCTCAATGAACACATCAACCTTTACAACCAACAAAGAGGCAGAGAGGATCGGCTCCCTCTTT



TTAGGCCTCTTTATAAACAGATATTGAGTGACAGAGAGCAATTATCATACTTGCCTGAGAGTTTTGAAAA



AGATGAGGAGCTCCTCAGGGCTCTAAAAGAGTTCTATGATCATATCGCAGAAGACATTCTCGGACGTAC



TCAACAGTTGATGACTTCTATTTCAGAATATGATTTATCTCGGATATACGTAAGGAACGATAGCCAATTG



ACTGATATATCAAAAAAAATGTTGGGAGATTGGAATGCTATCTACATGGCTAGAGAACGAGCATATGAC



CACGAGCAGGCTCCCAAAAGAATCACGGCGAAATACGAGAGGGACAGGATTAAAGCTCTTAAAGGAGA



AGAGAGTATAAGTCTGGCAAATCTTAATAGTTGTATTGCCTTTCTGGACAATGTTAGAGATTGCCGTGTA



GATACTTATCTTTCCACACTGGGCCAGAAGGAAGGACCACATGGTCTATCTAATCTCGTTGAGAACGTTT



TTGCCTCATACCATGAAGCAGAGCAATTGTTGAGCTTTCCATACCCCGAAGAGAATAATCTGATTCAGG



ACAAGGACAATGTGGTGTTAATTAAGAATCTTCTCGACAATATCAGTGATCTGCAGAGGTTCTTGAAAC



CTCTTTGGGGTATGGGAGACGAACCCGATAAAGATGAAAGATTTTATGGAGAGTATAATTATATCCGAG



GAGCTCTAGATCAGGTGATCCCTCTGTACAATAAGGTAAGGAACTACCTCACTCGGAAGCCTTATTCGA



CCAGAAAAGTAAAACTCAATTTTGGGAATTCTCAATTGCTTAGTGGTTGGGATAGAAATAAGGAAAAGG



ATAATAGCTGTGTGATTTTGCGTAAGGGGCAGAACTTCTATTTGGCTATTATGAACAATAGGCACAAAA



GAAGTTTCGAAAACAAGGTGTTGCCCGAGTATAAGGAGGGAGAACCTTACTTCGAAAAGATGGATTATA



AATTTTTGCCTGATCCTAATAAAATGCTTCCTAAGGTTTTTCTTTCGAAAAAAGGAATAGAGATATACAA



ACCAAGTCCGAAGCTTTTAGAACAATATGGACATGGAACTCACAAAAAGGGAGATACCTTTAGTATGGA



TGATTTGCACGAACTGATCGATTTCTTCAAACACTCAATCGAGGCTCATGAAGATTGGAAGCAATTCGG



ATTCAAATTTTCTGATACGGCTACTTATGAGAATGTATCTAGTTTCTATAGAGAAGTTGAGGATCAGGGG



TATAAGCTCTCTTTCCGAAAAGTTTCGGAATCTTATGTCTATTCATTAATAGATCAAGGCAAGTTGTATTT



ATTTCAGATATACAACAAGGACTTTTCTCCCTGCAGCAAAGGGACACCTAATCTGCATACCTTGTATTGG



AGAATGCTTTTTGACGAGCGCAATTTGGCAGATGTCATATACAAACTGGATGGGAAGGCTGAAATCTTT



TTCCGAGAGAAGAGTTTGAAAAATGATCATCCCACGCATCCGGCTGGTAAGCCTATCAAAAAGAAAAGT



CGACAAAAAAAAGGAGAGGAGAGTCTGTTTGAGTATGATTTAGTCAAGGATAGGCACTATACGATGGA



TAAGTTCCAGTTTCATGTGCCTATTACTATGAATTTTAAATGTTCTGCAGGAAGCAAAGTCAATGATATG



GTTAATGCTCATATTCGAGAGGCAAAGGATATGCATGTCATTGGAATTGATCGTGGAGAACGCAATCTG



CTGTATATATGCGTGATAGATAGTCGAGGGACGATTTTGGATCAAATTTCTCTGAATACGATTAACGATA



TAGACTATCATGATTTATTGGAGAGTCGAGACAAAGACCGTCAGCAGGAGCGCCGAAACTGGCAAACTA



TCGAAGGGATCAAGGAGCTAAAACAAGGCTACCTTAGTCAGGCGGTTCATCGGATAGCCGAACTGATGG



TGGCTTATAAGGCTGTAGTTGCTTTGGAGGATTTGAATATGGGGTTCAAACGTGGGCGGCAGAAAGTAG



AAAGTTCTGTTTATCAGCAGTTTGAGAAACAGCTGATAGATAAGCTCAACTATCTTGTGGACAAGAAGA



AAAGGCCTGAAGATATTGGAGGATTGTTGAGAGCCTATCAATTTACGGCCCCATTTAAGAGTTTTAAGG



AAATGGGAAAGCAAAACGGCTTCTTGTTTTATATCCCGGCTTGGAACACGAGCAACATAGATCCGACTA



CTGGATTTGTTAATTTATTTCATGCCCAGTATGAAAATGTAGATAAAGCGAAGAGCTTCTTTCAAAAGTT



TGATTCAATTAGTTACAACCCGAAGAAAGACTGGTTTGAGTTTGCATTCGATTATAAAAACTTTACTAAA



AAGGCTGAAGGAAGTCGTTCTATGTGGATATTATGCACACATGGTTCCCGAATAAAGAATTTTAGAAAT



TCCCAGAAGAATGGTCAATGGGATTCCGAAGAATTCGCCTTGACGGAGGCTTTTAAGTCTCTTTTTGTGC



GATATGAGATAGATTATACCGCTGATTTGAAAACAGCTATTGTGGACGAAAAGCAAAAAGACTTCTTCG



TGGATCTTCTGAAGCTATTCAAATTGACAGTACAGATGCGCAACAGCTGGAAAGAGAAGGATTTGGATT



ATCTAATCTCTCCTGTAGCAGGGGCTGATGGCCGTTTCTTCGATACAAGAGAGGGAAATAAAAGTCTGC



CTAAGGATGCAGATGCCAATGGAGCTTATAATATTGCCCTAAAAGGACTTTGGGCTCTACGCCAGATTC



GGCAAACTTCAGAAGGCGGTAAACTCAAATTGGCGATTTCCAATAAGGAATGGCTACAGTTTGTGCAAG



AGAGATCTTACGAGAAAGACtgaGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATTTAT



TATATCGCGTTGATTATTGATGCTGTTTTTAGTTTTAACGGCAATTAATATATGTGTTATTAATTGAATGA



ATTTTATCATTCATAATAAGTATGTGTAGGATCAAGCTCAGGTTAAATATTCACTCAGGAAGTTATTACT



CAGGAAGCAAAGAGGATTACAGAATTATCTCATAACAAGTGTTAAGGGATGTTATTTCC





SEQ
AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATTGATAATTGAGA


ID
TCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAATTATTTATTTATCCAGAAAAT


NO:
GAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTcaaaCAGGTtgccgtcactgc


67
gtcttttactggctcttctcgctaaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagccatgacaaaaacgcgtaacaaaagtgtctataat



cacggcagaaaagtccacattgattatttgcacggcgtcacactttgctatgccatagcatttttatccataagattagcggatcctacctgacgctttttatcgcaactctctactg



tttctccatacccgtttttttgggctagcaccgcctatctcgtgtgagataggcggagatacgaactttaagAAGGAGatataccATGAACAACGGCACAA



ATAATTTTCAGAACTTCATCGGGATCTCAAGTTTGCAGAAAACGCTGCGCAATGCTCTGATCCCCACGGA



AACCACGCAACAGTTCATCGTCAAGAACGGAATAATTAAAGAAGATGAGTTACGTGGCGAGAACCGCC



AGATTCTGAAAGATATCATGGATGACTACTACCGCGGATTCATCTCTGAGACTCTGAGTTCTATTGATGA



CATAGATTGGACTAGCCTGTTCGAAAAAATGGAAATTCAGCTGAAAAATGGTGATAATAAAGATACCTT



AATTAAGGAACAGACAGAGTATCGGAAAGCAATCCATAAAAAATTTGCGAACGACGATCGGTTTAAGA



ACATGTTTAGCGCCAAACTGATTAGTGACATATTACCTGAATTTGTCATCCACAACAATAATTATTCGGC



ATCAGAGAAAGAGGAAAAAACCCAGGTGATAAAATTGTTTTCGCGCTTTGCGACTAGCTTTAAAGATTA



CTTCAAGAACCGTGCAAATTGCTTTTCAGCGGACGATATTTCATCAAGCAGCTGCCATCGCATCGTCAAC



GACAATGCAGAGATATTCTTTTCAAATGCGCTGGTCTACCGCCGGATCGTAAAATCGCTGAGCAATGAC



GATATCAACAAAATTTCGGGCGATATGAAAGATTCATTAAAAGAAATGAGTCTGGAAGAAATATATTCT



TACGAGAAGTATGGGGAATTTATTACCCAGGAAGGCATTAGCTTCTATAATGATATCTGTGGGAAAGTG



AATTCTTTTATGAACCTGTATTGTCAGAAAAATAAAGAAAACAAAAATTTATACAAACTTCAGAAACTT



CACAAACAGATTCTATGCATTGCGGACACTAGCTATGAGGTCCCGTATAAATTTGAAAGTGACGAGGAA



GTGTACCAATCAGTTAACGGCTTCCTTGATAACATTAGCAGCAAACATATAGTCGAAAGATTACGCAAA



ATCGGCGATAACTATAACGGCTACAACCTGGATAAAATTTATATCGTGTCCAAATTTTACGAGAGCGTTA



GCCAAAAAACCTACCGCGACTGGGAAACAATTAATACCGCCCTCGAAATTCATTACAATAATATCTTGC



CGGGTAACGGTAAAAGTAAAGCCGACAAAGTAAAAAAAGCGGTTAAGAATGATTTACAGAAATCCATC



ACCGAAATAAATGAACTAGTGTCAAACTATAAGCTGTGCAGTGACGACAACATCAAAGCGGAGACTTAT



ATACATGAGATTAGCCATATCTTGAATAACTTTGAAGCACAGGAATTGAAATACAATCCGGAAATTCAC



CTAGTTGAATCCGAGCTCAAAGCGAGTGAGCTTAAAAACGTGCTGGACGTGATCATGAATGCGTTTCAT



TGGTGTTCGGTTTTTATGACTGAGGAACTTGTTGATAAAGACAACAATTTTTATGCGGAACTGGAGGAGA



TTTACGATGAAATTTATCCAGTAATTAGTCTGTACAACCTGGTTCGTAACTACGTTACCCAGAAACCGTA



CAGCACGAAAAAGATTAAATTGAACTTTGGAATACCGACGTTAGCAGACGGTTGGTCAAAGTCCAAAGA



GTATTCTAATAACGCTATCATACTGATGCGCGACAATCTGTATTATCTGGGCATCTTTAATGCGAAGAAT



AAACCGGACAAGAAGATTATCGAGGGTAATACGTCAGAAAATAAGGGTGACTACAAAAAGATGATTTA



TAATTTGCTCCCGGGTCCCAACAAAATGATCCCGAAAGTTTTCTTGAGCAGCAAGACGGGGGTGGAAAC



GTATAAACCGAGCGCCTATATCCTAGAGGGGTATAAACAGAATAAACATATCAAGTCTTCAAAAGACTT



TGATATCACTTTCTGTCATGATCTGATCGACTACTTCAAAAACTGTATTGCAATTCATCCCGAGTGGAAA



AACTTCGGTTTTGATTTTAGCGACACCAGTACTTATGAAGACATTTCCGGGTTTTATCGTGAGGTAGAGT



TACAAGGTTACAAGATTGATTGGACATACATTAGCGAAAAAGACATTGATCTGCTGCAGGAAAAAGGTC



AACTGTATCTGTTCCAGATATATAACAAAGATTTTTCGAAAAAATCAACCGGGAATGACAACCTTCACA



CCATGTACCTGAAAAATCTTTTCTCAGAAGAAAATCTTAAGGATATCGTCCTGAAACTTAACGGCGAAG



CGGAAATCTTCTTCAGGAAGAGCAGCATAAAGAACCCAATCATTCATAAAAAAGGCTCGATTTTAGTCA



ACCGTACCTACGAAGCAGAAGAAAAAGACCAGTTTGGCAACATTCAAATTGTGCGTAAAAATATTCCGG



AAAACATTTATCAGGAGCTGTACAAATACTTCAACGATAAAAGCGACAAAGAGCTGTCTGATGAAGCAG



CCAAACTGAAGAATGTAGTGGGACACCACGAGGCAGCGACGAATATAGTCAAGGACTATCGCTACACG



TATGATAAATACTTCCTTCATATGCCTATTACGATCAATTTCAAAGCCAATAAAACGGGTTTTATTAATG



ATAGGATCTTACAGTATATCGCTAAAGAAAAAGACTTACATGTGATCGGCATTGATCGGGGCGAGCGTA



ACCTGATCTACGTGTCCGTGATTGATACTTGTGGTAATATAGTTGAACAGAAAAGCTTTAACATTGTAAA



CGGCTACGACTATCAGATAAAACTGAAACAACAGGAGGGCGCTAGACAGATTGCGCGGAAAGAATGGA



AAGAAATTGGTAAAATTAAAGAGATCAAAGAGGGCTACCTGAGCTTAGTAATCCACGAGATCTCTAAAA



TGGTAATCAAATACAATGCAATTATAGCGATGGAGGATTTGTCTTATGGTTTTAAAAAAGGGCGCTTTAA



GGTCGAACGGCAAGTTTACCAGAAATTTGAAACCATGCTCATCAATAAACTCAACTATCTGGTATTTAA



AGATATTTCGATTACCGAGAATGGCGGTCTCCTGAAAGGTTATCAGCTGACATACATTCCTGATAAACTT



AAAAACGTGGGTCATCAGTGCGGCTGCATTTTTTATGTGCCTGCTGCATACACGAGCAAAATTGATCCGA



CCACCGGCTTTGTGAATATCTTTAAATTTAAAGACCTGACAGTGGACGCAAAACGTGAATTCATTAAAA



AATTTGACTCAATTCGTTATGACAGTGAAAAAAATCTGTTCTGCTTTACATTTGACTACAATAACTTTATT



ACGCAAAACACGGTCATGAGCAAATCATCGTGGAGTGTGTATACATACGGCGTGCGCATCAAACGTCGC



TTTGTGAACGGCCGCTTCTCAAACGAAAGTGATACCATTGACATAACCAAAGATATGGAGAAAACGTTG



GAAATGACGGACATTAACTGGCGCGATGGCCACGATCTTCGTCAAGACATTATAGATTATGAAATTGTT



CAGCACATATTCGAAATTTTCCGTTTAACAGTGCAAATGCGTAACTCCTTGTCTGAACTGGAGGACCGTG



ATTACGATCGTCTCATTTCACCTGTACTGAACGAAAATAACATTTTTTATGACAGCGCGAAAGCGGGGG



ATGCACTTCCTAAGGATGCCGATGCAAATGGTGCGTATTGTATTGCATTAAAAGGGTTATATGAAATTAA



ACAAATTACCGAAAATTGGAAAGAAGATGGTAAATTTTCGCGCGATAAACTCAAAATCAGCAATAAAG



ATTGGTTCGACTTTATCCAGAATAAGCGCTATCTCTAAGAAATCATCCTTAGCGAAAGCTAAGGATTTTT



TTTATCTGAAATTTATTATATCGCGTTGATTATTGATGCTGTTTTTAGTTTTAACGGCAATTAATATATGT



GTTATTAATTGAATGAATTTTATCATTCATAATAAGTATGTGTAGGATCAAGCTCAGGTTAAATATTCAC



TCAGGAAGTTATTACTCAGGAAGCAAAGAGGATTACAGAATTATCTCATAACAAGTGTTAAGGGATGTT



ATTTCC





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACTGCGTC


ID
TTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAACAAAGCGGGA


NO:
CCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAAGTCCACATTGATTATT


68
TGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTT



TTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGG



GTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCAT



CACCATACCAATAAATTCACTAACCAGTATTCTCTCTCTAAGACCCTGCGCTTTGAACTGATTCCGCAGG



GGAAAACCTTGGAGTTCATTCAAGAAAAAGGCCTCTTGTCTCAGGATAAACAGAGGGCTGAATCTTACC



AAGAAATGAAGAAAACTATTGATAAGTTTCATAAATATTTCATTGATTTAGCCTTGTCTAACGCCAAATT



AACTCACTTGGAAACGTATCTGGAGTTATACAACAAATCTGCCGAAACTAAGAAAGAACAGAAATTTAA



AGACGATTTGAAAAAAGTACAGGACAATCTGCGTAAAGAAATTGTCAAATCCTTCAGTGACGGCGATGC



TAAAAGCATTTTTGCCATTCTGGACAAAAAAGAGTTGATTACTGTGGAATTAGAAAAGTGGTTTGAAAA



CAATGAGCAGAAAGACATCTACTTCGATGAGAAATTCAAAACTTTCACCACCTATTTTACAGGATTTCAT



CAAAACCGGAAGAACATGTACTCAGTAGAACCGAACTCCACGGCCATTGCGTATCGTTTGATCCATGAG



AATCTGCCTAAATTTCTGGAGAATGCGAAAGCCTTTGAAAAGATTAAGCAGGTCGAATCGCTGCAAGTG



AATTTTCGTGAACTCATGGGCGAATTTGGTGACGAAGGTCTAATCTTCGTTAACGAACTGGAAGAAATG



TTTCAGATTAATTACTACAATGACGTGCTATCGCAGAACGGTATCACAATCTACAATAGTATTATCTCAG



GGTTCACAAAAAACGATATAAAATACAAAGGCCTGAACGAGTATATCAATAACTACAACCAAACAAAG



GACAAAAAGGATAGGCTTCCGAAACTGAAGCAGTTATACAAACAGATTTTATCTGACAGAATCTCCCTG



AGCTTTCTGCCGGATGCTTTCACTGATGGGAAGCAGGTTCTGAAAGCGATTTTCGATTTTTATAAGATTA



ACTTACTGAGCTACACGATTGAAGGTCAAGAAGAATCTCAAAACTTACTGCTCTTGATCCGTCAAACCAT



TGAAAATCTATCATCGTTCGATACGCAGAAAATCTACCTCAAAAACGATACTCACCTGACTACGATCTCT



CAGCAGGTTTTCGGGGATTTTAGTGTATTTTCAACAGCTCTGAACTACTGGTATGAAACCAAAGTCAATC



CGAAATTCGAGACGGAATATTCTAAGGCCAACGAAAAAAAACGTGAGATTCTTGATAAAGCTAAAGCC



GTATTTACTAAACAGGATTACTTTTCTATTGCTTTCCTGCAGGAAGTTTTATCGGAGTATATCCTGACCCT



GGATCATACATCTGATATCGTTAAAAAACACAGCAGCAATTGCATCGCTGACTATTTCAAAAACCACTTT



GTCGCCAAAAAAGAAAACGAAACAGACAAGACTTTCGATTTCATTGCTAACATCACCGCAAAATACCAG



TGTATTCAGGGTATCTTGGAAAACGCCGACCAATACGAAGACGAACTGAAACAAGATCAGAAGCTGATC



GATAATTTAAAATTCTTCTTAGATGCAATCCTGGAGCTGCTGCACTTCATCAAACCGCTTCATTTAAAGA



GCGAGTCCATTACCGAAAAGGACACCGCCTTCTATGACGTTTTTGAAAATTATTATGAAGCCCTCTCCTT



GCTGACTCCGCTGTATAATATGGTACGCAATTACGTAACCCAGAAACCATATTCTACCGAAAAAATTAA



ACTGAACTTTGAAAACGCACAGCTGCTCAACGGTTGGGACGCGAATAAAGAAGGTGACTACCTCACCAC



CATCCTGAAAAAAGATGGTAACTATTTTCTGGCAATTATGGATAAGAAACATAATAAAGCATTCCAGAA



ATTTCCTGAAGGGAAAGAAAATTACGAAAAGATGGTGTACAAACTCTTACCTGGAGTTAACAAAATGTT



GCCGAAAGTATTTTTTAGTAATAAGAACATCGCGTACTTTAACCCGTCCAAAGAACTGCTGGAAAATTAT



AAAAAGGAGACGCATAAGAAAGGGGATACCTTTAACCTGGAACATTGCCATACCTTAATAGACTTCTTC



AAGGATTCCCTGAATAAACACGAGGATTGGAAATATTTCGATTTTCAGTTTAGTGAGACCAAGTCATAC



CAGGATCTTAGCGGCTTTTATCGCGAAGTAGAACACCAAGGCTATAAAATTAACTTCAAAAACATCGAC



AGCGAATACATCGACGGTTTAGTTAACGAGGGCAAACTGTTTCTGTTCCAGATCTATTCAAAGGATTTTA



GCCCGTTCTCTAAAGGCAAACCAAATATGCATACGTTGTACTGGAAAGCACTGTTTGAAGAGCAAAACC



TGCAGAATGTGATTTATAAACTGAACGGCCAAGCTGAGATTTTTTTCCGTAAAGCCTCGATTAAACCGAA



AAATATCATCCTTCATAAGAAGAAAATAAAGATCGCTAAAAAACACTTCATAGATAAAAAAACCAAAA



CCTCCGAAATAGTGCCTGTTCAAACAATTAAGAACTTGAATATGTACTACCAGGGCAAGATATCGGAAA



AGGAGTTGACTCAAGACGATCTTCGCTATATCGATAACTTTTCGATTTTTAACGAAAAAAACAAGACGA



TCGACATCATCAAAGATAAACGCTTCACTGTAGATAAGTTCCAGTTTCATGTGCCGATTACTATGAACTT



CAAAGCTACCGGGGGTAGCTATATCAACCAAACGGTGTTGGAATACCTGCAGAATAACCCGGAAGTCAA



AATCATTGGGCTGGACCGCGGAGAACGTCACCTTGTGTACTTGACCTTAATCGATCAGCAAGGCAACAT



CTTAAAACAAGAATCGCTGAATACCATTACGGATTCAAAGATTAGCACCCCGTATCATAAGCTGCTCGA



TAACAAGGAGAATGAGCGCGACCTGGCCCGTAAAAACTGGGGCACGGTGGAAAACATTAAGGAGTTAA



AGGAGGGTTATATTTCCCAGGTAGTGCATAAGATCGCCACTCTCATGCTCGAGGAAAATGCGATCGTTG



TCATGGAAGACTTAAACTTCGGATTTAAACGTGGGCGATTTAAAGTAGAGAAACAAATCTACCAGAAGT



TAGAAAAAATGCTGATTGACAAATTAAATTACTTGGTCCTAAAAGACAAACAGCCGCAAGAATTGGGTG



GATTATACAACGCCCTCCAACTTACCAATAAATTCGAAAGTTTTCAGAAAATGGGTAAACAGTCAGGCT



TTCTTTTTTATGTTCCTGCGTGGAACACATCCAAAATCGACCCTACAACCGGCTTCGTCAATTACTTCTAT



ACTAAATATGAAAACGTCGACAAAGCAAAAGCATTCTTTGAAAAGTTCGAAGCAATACGTTTTAACGCT



GAGAAAAAATATTTCGAGTTCGAAGTCAAGAAATACTCAGACTTTAACCCCAAAGCTGAGGGCACACAG



CAAGCGTGGACAATCTGCACCTACGGCGAGCGCATCGAAACGAAGCGTCAAAAAGATCAGAATAACAA



ATTTGTTTCAACACCTATCAACCTGACCGAGAAGATTGAAGACTTCTTAGGTAAAAATCAGATTGTTTAT



GGCGACGGTAACTGTATAAAATCTCAAATAGCCTCAAAGGATGATAAAGCATTTTTCGAAACATTATTA



TATTGGTTCAAAATGACACTGCAGATGCGCAATAGTGAGACGCGTACAGATATTGATTATCTTATCAGCC



CGGTCATGAACGACAACGGTACTTTTTACAACTCCAGAGACTATGAAAAACTTGAGAATCCAACTCTCC



CCAAAGATGCTGATGCGAACGGTGCTTATCACATCGCGAAAAAAGGTCTGATGCTGCTGAACAAAATCG



ACCAAGCCGATCTGACTAAGAAAGTTGACCTAAGCATTTCAAATCGGGACTGGTTACAGTTTGTTCAAA



AGAACAAATGAGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATGTAGGGAGACCCTC



AGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGATTACA





SEQ
AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATTGATAATTGAGA


ID
TCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAATTATTTATTTATCCAGAAAAT


NO:
GAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTcaaaCAGGTtgccgtcactgc


69
gtcttttactggctcttctcgctaaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagccatgacaaaaacgcgtaacaaaagtgtctataat



cacggcagaaaagtccacattgattatttgcacggcgtcacactttgctatgccatagcatttttatccataagattagcggatcctacctgacgctttttatcgcaactctctactg



tttctccatacccgtttttttgggctagcaccgcctatctcgtgtgagataggcggagatacgaactttaagAAGGAGatataccATGGAACAGGAATATT



ATCTGGGCTTGGACATGGGCACCGGTTCCGTCGGCTGGGCTGTTACTGACAGTGAATATCACGTTCTAAG



AAAGCATGGTAAGGCATTGTGGGGTGTAAGACTTTTCGAATCTGCTTCCACTGCTGAAGAGCGTAGAAT



GTTTAGAACGAGTCGACGTAGGCTAGACAGGCGCAATTGGAGAATCGAAATTTTACAAGAAATTTTTGC



GGAAGAGATATCTAAGAAAGACCCAGGCTTTTTCCTGAGAATGAAGGAATCTAAGTATTACCCTGAGGA



TAAAAGAGATATAAATGGTAACTGTCCCGAATTGCCTTACGCATTATTTGTGGACGATGATTTTACCGAT



AAGGATTACCATAAAAAGTTCCCAACTATCTACCATTTACGCAAAATGTTAATGAATACAGAGGAAACC



CCAGACATAAGACTAGTTTATCTGGCAATACACCATATGATGAAACATAGAGGCCATTTCTTACTTTCCG



GGGATATCAACGAAATCAAAGAGTTTGGTACCACATTTAGTAAGTTACTGGAAAACATAAAGAATGAAG



AATTGGATTGGAACTTAGAACTCGGAAAAGAAGAATACGCGGTTGTCGAATCTATCCTGAAGGATAATA



TGCTGAATAGGTCGACCAAAAAAACTAGGCTGATCAAAGCACTGAAAGCCAAATCTATCTGCGAAAAA



GCTGTTTTAAATTTACTTGCTGGTGGCACTGTTAAGTTATCAGACATTTTTGGTTTGGAAGAATTGAACG



AAACCGAGCGTCCAAAAATTAGTTTCGCTGATAATGGCTACGATGATTACATTGGTGAGGTGGAAAACG



AGTTGGGCGAACAATTTTATATTATAGAGACAGCTAAGGCAGTCTATGACTGGGCTGTTTTAGTAGAAA



TCCTTGGTAAATACACATCTATCTCCGAAGCGAAAGTTGCTACTTACGAAAAGCACAAGTCCGATCTCCA



GTTTTTGAAGAAAATTGTCAGGAAATATCTGACTAAGGAAGAATATAAAGATATTTTCGTTAGTACCTCT



GACAAACTGAAAAATTACTCCGCTTACATCGGGATGACCAAGATTAATGGCAAAAAAGTTGATCTGCAA



AGCAAAAGGTGTTCGAAGGAAGAATTTTATGATTTCATTAAAAAGAATGTCTTAAAAAAATTAGAAGGT



CAGCCAGAATACGAATATTTGAAAGAAGAACTGGAAAGAGAGACATTCTTACCAAAACAAGTCAACAG



AGATAATGGGGTAATTCCATATCAAATTCACCTCTACGAATTAAAAAAAATTTTAGGCAATTTACGCGAT



AAAATTGACCTTATCAAAGAAAATGAGGATAAGCTGGTTCAACTCTTTGAATTCAGAATACCCTATTATG



TGGGCCCACTGAACAAGATTGATGACGGCAAAGAAGGTAAATTCACATGGGCCGTCCGCAAATCCAATG



AAAAAATTTACCCATGGAACTTTGAAAATGTAGTAGATATTGAAGCGTCTGCGGAGAAATTTATTCGAA



GAATGACTAATAAATGCACTTACTTGATGGGAGAGGATGTTCTGCCTAAAGACAGCTTATTATACAGCA



AGTACATGGTTCTAAACGAACTTAACAACGTTAAGTTGGACGGTGAGAAATTAAGTGTAGAATTGAAAC



AAAGATTGTATACTGACGTCTTCTGCAAGTACAGAAAAGTGACAGTTAAAAAAATTAAGAATTACTTGA



AGTGCGAAGGTATAATTTCTGGAAACGTAGAGATTACTGGTATTGATGGTGATTTCAAAGCATCCCTAA



CAGCTTACCACGATTTCAAGGAAATCCTGACAGGAACTGAACTCGCAAAAAAAGATAAAGAAAACATT



ATTACTAATATTGTTCTTTTCGGTGATGACAAGAAATTGTTGAAGAAAAGACTGAATAGACTTTACCCCC



AGATTACTCCCAATCAACTTAAGAAAATTTGTGCTTTGTCTTACACAGGATGGGGTCGTTTTTCAAAAAA



GTTCTTAGAAGAGATTACCGCACCTGATCCAGAAACAGGCGAAGTATGGAATATAATTACCGCCTTATG



GGAATCGAACAATAATCTTATGCAACTTCTGAGCAATGAATATCGTTTCATGGAAGAAGTTGAGACTTA



CAACATGGGCAAACAGACGAAGACTTTATCCTATGAAACTGTGGAAAATATGTATGTATCACCTTCTGT



CAAGAGACAAATTTGGCAAACCTTAAAAATTGTCAAAGAATTAGAAAAGGTAATGAAGGAGTCTCCTA



AACGTGTGTTTATTGAAATGGCTAGAGAAAAACAAGAGTCAAAAAGAACCGAGTCAAGAAAGAAGCAG



TTAATCGATTTATATAAGGCTTGTAAAAACGAAGAGAAAGATTGGGTTAAAGAATTGGGGGACCAAGA



GGAACAAAAACTACGGTCGGATAAGTTGTATTTATACTATACGCAAAAGGGACGATGTATGTATTCCGG



CGAGGTAATAGAATTGAAGGATTTATGGGACAATACAAAATATGACATAGACCATATATATCCCCAATC



AAAAACGATGGACGATAGCTTGAACAATAGAGTACTCGTGAAAAAAAAATATAATGCGACCAAATCTG



ATAAGTATCCTCTGAATGAAAATATCAGACATGAAAGAAAGGGGTTCTGGAAGTCCTTGTTAGATGGTG



GGTTTATAAGCAAAGAAAAGTACGAGCGTCTAATAAGAAACACGGAGTTATCGCCAGAAGAACTCGCT



GGTTTTATTGAGAGGCAAATCGTGGAAACGAGACAATCTACCAAAGCCGTTGCTGAGATCCTAAAGCAA



GTTTTCCCAGAGTCGGAGATTGTCTATGTCAAAGCTGGCACAGTGAGCAGGTTTAGGAAAGACTTCGAA



CTATTAAAGGTAAGAGAAGTGAACGATTTACATCACGCAAAGGACGCTTACCTAAATATCGTTGTAGGT



AACTCATATTATGTTAAATTTACCAAGAACGCCTCTTGGTTTATAAAGGAGAACCCAGGTAGAACATAT



AACCTGAAAAAGATGTTCACCTCTGGTTGGAATATTGAGAGAAACGGAGAAGTCGCATGGGAAGTTGGT



AAGAAAGGGACTATAGTGACAGTAAAGCAAATTATGAACAAAAATAATATCCTCGTTACAAGGCAGGT



TCATGAAGCAAAGGGCGGCCTTTTTGACCAACAAATTATGAAGAAAGGGAAAGGTCAAATTGCAATAA



AAGAAACCGATGAGAGACTAGCGTCAATAGAAAAGTATGGTGGCTATAATAAAGCTGCGGGTGCATAC



TTTATGCTTGTTGAATCAAAAGACAAGAAAGGTAAGACTATTAGAACTATAGAATTTATACCCCTGTACC



TTAAAAACAAAATTGAATCGGATGAGTCAATCGCGTTAAATTTTCTAGAGAAAGGAAGGGGTTTAAAAG



AACCAAAGATCCTGTTAAAAAAGATTAAGATTGACACCTTGTTCGATGTAGATGGATTTAAAATGTGGT



TATCTGGCAGAACAGGCGATAGACTTTTGTTTAAGTGCGCTAATCAATTAATTTTGGATGAGAAAATCAT



TGTCACAATGAAAAAAATAGTTAAGTTTATTCAGAGAAGACAAGAAAACAGGGAGTTGAAATTATCTGA



TAAAGATGGTATCGACAATGAAGTTTTAATGGAAATCTACAATACATTCGTTGATAAACTTGAAAATAC



CGTATATCGAATCAGGTTAAGTGAACAAGCCAAAACATTAATTGATAAACAAAAAGAATTTGAAAGGCT



ATCACTGGAAGACAAATCCTCCACCCTATTTGAAATTTTGCATATATTCCAGTGCCAATCTTCAGCAGCT



AATTTAAAAATGATTGGCGGACCTGGGAAAGCCGGCATCCTAGTGATGAACAATAATATCTCCAAGTGT



AACAAAATATCAATTATTAACCAATCTCCGACAGGTATTTTTGAAAATGAAATAGACTTGCTTAAGATAT



AAGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATTTATTATATCGCGTTGATTATTGAT



GCTGTTTTTAGTTTTAACGGCAATTAATATATGTGTTATTAATTGAATGAATTTTATCATTCATAATAAGT



ATGTGTAGGATCAAGCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGATTAC



AGAATTATCTCATAACAAGTGTTAAGGGATGTTATTTCC





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACTGCGTC


ID
TTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAACAAAGCGGGA


NO:
CCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAAGTCCACATTGATTATT


70
TGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTT



TTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGG



GTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCAT



CACCATTCTTTCGACTCTTTCACCAACCTGTACTCTCTGTCTAAAACCCTGAAATTCGAAATGCGTCCGGT



TGGTAACACCCAGAAAATGCTGGACAACGCGGGTGTTTTCGAAAAAGACAAACTGATCCAGAAAAAAT



ACGGTAAAACCAAACCGTACTTCGACCGTCTGCACCGTGAATTCATCGAAGAAGCGCTGACCGGTGTTG



AACTGATCGGTCTGGACGAAAACTTCCGTACCCTGGTTGACTGGCAGAAAGACAAAAAAAACAACGTTG



CGATGAAAGCGTACGAAAACTCTCTGCAGCGTCTGCGTACCGAAATCGGTAAAATCTTCAACCTGAAAG



CGGAAGACTGGGTTAAAAACAAATACCCGATCCTGGGTCTGAAAAACAAAAACACCGACATCCTGTTCG



AAGAAGCGGTTTTCGGTATCCTGAAAGCGCGTTACGGTGAAGAAAAAGACACCTTCATCGAAGTTGAAG



AAATCGACAAAACCGGTAAATCTAAAATCAACCAGATCTCTATCTTCGACTCTTGGAAAGGTTTCACCG



GTTACTTCAAAAAATTCTTCGAAACCCGTAAAAACTTCTACAAAAACGACGGTACCTCTACCGCGATCG



CGACCCGTATCATCGACCAGAACCTGAAACGTTTCATCGACAACCTGTCTATCGTTGAATCTGTTCGTCA



GAAAGTTGACCTGGCGGAAACCGAAAAATCTTTCTCTATCTCTCTGTCTCAGTTCTTCTCTATCGACTTCT



ACAACAAATGCCTGCTGCAGGACGGTATCGACTACTACAACAAAATCATCGGTGGTGAAACCCTGAAAA



ACGGTGAAAAACTGATCGGTCTGAACGAACTGATCAACCAGTACCGTCAGAACAACAAAGACCAGAAA



ATCCCGTTCTTCAAACTGCTGGACAAACAGATCCTGTCTGAAAAAATCCTGTTCCTGGACGAAATCAAA



AACGACACCGAACTGATCGAAGCGCTGTCTCAGTTCGCGAAAACCGCGGAAGAAAAAACCAAAATCGT



TAAAAAACTGTTCGCGGACTTCGTTGAAAACAACTCTAAATACGACCTGGCGCAGATCTACATCTCTCA



GGAAGCGTTCAACACCATCTCTAACAAATGGACCTCTGAAACCGAAACCTTCGCGAAATACCTGTTCGA



AGCGATGAAATCTGGTAAACTGGCGAAATACGAAAAAAAAGACAACTCTTACAAATTCCCGGACTTCAT



CGCGCTGTCTCAGATGAAATCTGCGCTGCTGTCTATCTCTCTGGAAGGTCACTTCTGGAAAGAAAAATAC



TACAAAATCTCTAAATTCCAGGAAAAAACCAACTGGGAACAGTTCCTGGCGATCTTCCTGTACGAATTC



AACTCTCTGTTCTCTGACAAAATCAACACCAAAGACGGTGAAACCAAACAGGTTGGTTACTACCTGTTC



GCGAAAGACCTGCACAACCTGATCCTGTCTGAACAGATCGACATCCCGAAAGACTCTAAAGTTACCATC



AAAGACTTCGCGGACTCTGTTCTGACCATCTACCAGATGGCGAAATACTTCGCGGTTGAAAAAAAACGT



GCGTGGCTGGCGGAATACGAACTGGACTCTTTCTACACCCAGCCGGACACCGGTTACCTGCAGTTCTAC



GACAACGCGTACGAAGACATCGTTCAGGTTTACAACAAACTGCGTAACTACCTGACCAAAAAACCGTAC



TCTGAAGAAAAATGGAAACTGAACTTCGAAAACTCTACCCTGGCGAACGGTTGGGACAAAAACAAAGA



ATCTGACAACTCTGCGGTTATCCTGCAGAAAGGTGGTAAATACTACCTGGGTCTGATCACCAAAGGTCA



CAACAAAATCTTCGACGACCGTTTCCAGGAAAAATTCATCGTTGGTATCGAAGGTGGTAAATACGAAAA



AATCGTTTACAAATTCTTCCCGGACCAGGCGAAAATGTTCCCGAAAGTTTGCTTCTCTGCGAAAGGTCTG



GAATTCTTCCGTCCGTCTGAAGAAATCCTGCGTATCTACAACAACGCGGAATTCAAAAAAGGTGAAACC



TACTCTATCGACTCTATGCAGAAACTGATCGACTTCTACAAAGACTGCCTGACCAAATACGAAGGTTGG



GCGTGCTACACCTTCCGTCACCTGAAACCGACCGAAGAATACCAGAACAACATCGGTGAATTCTTCCGT



GACGTTGCGGAAGACGGTTACCGTATCGACTTCCAGGGTATCTCTGACCAGTACATCCACGAAAAAAAC



GAAAAAGGTGAACTGCACCTGTTCGAAATCCACAACAAAGACTGGAACCTGGACAAAGCGCGTGACGG



TAAATCTAAAACCACCCAGAAAAACCTGCACACCCTGTACTTCGAATCTCTGTTCTCTAACGACAACGTT



GTTCAGAACTTCCCGATCAAACTGAACGGTCAGGCGGAAATCTTCTACCGTCCGAAAACCGAAAAAGAC



AAACTGGAATCTAAAAAAGACAAAAAAGGTAACAAAGTTATCGACCACAAACGTTACTCTGAAAACAA



AATCTTCTTCCACGTTCCGCTGACCCTGAACCGTACCAAAAACGACTCTTACCGTTTCAACGCGCAGATC



AACAACTTCCTGGCGAACAACAAAGACATCAACATCATCGGTGTTGACCGTGGTGAAAAACACCTGGTT



TACTACTCTGTTATCACCCAGGCGTCTGACATCCTGGAATCTGGTTCTCTGAACGAACTGAACGGTGTTA



ACTACGCGGAAAAACTGGGTAAAAAAGCGGAAAACCGTGAACAGGCGCGTCGTGACTGGCAGGACGTT



CAGGGTATCAAAGACCTGAAAAAAGGTTACATCTCTCAGGTTGTTCGTAAACTGGCGGACCTGGCGATC



AAACACAACGCGATCATCATCCTGGAAGACCTGAACATGCGTTTCAAACAGGTTCGTGGTGGTATCGAA



AAATCTATCTACCAGCAGCTGGAAAAAGCGCTGATCGACAAACTGTCTTTCCTGGTTGACAAAGGTGAA



AAAAACCCGGAACAGGCGGGTCACCTGCTGAAAGCGTACCAGCTGTCTGCGCCGTTCGAAACCTTCCAG



AAAATGGGTAAACAGACCGGTATCATCTTCTACACCCAGGCGTCTTACACCTCTAAATCTGACCCGGTTA



CCGGTTGGCGTCCGCACCTGTACCTGAAATACTTCTCTGCGAAAAAAGCGAAAGACGACATCGCGAAAT



TCACCAAAATCGAATTCGTTAACGACCGTTTCGAACTGACCTACGACATCAAAGACTTCCAGCAGGCGA



AAGAATACCCGAACAAAACCGTTTGGAAAGTTTGCTCTAACGTTGAACGTTTCCGTTGGGACAAAAACC



TGAACCAGAACAAAGGTGGTTACACCCACTACACCAACATCACCGAAAACATCCAGGAACTGTTCACCA



AATACGGTATCGACATCACCAAAGACCTGCTGACCCAGATCTCTACCATCGACGAAAAACAGAACACCT



CTTTCTTCCGTGACTTCATCTTCTACTTCAACCTGATCTGCCAGATCCGTAACACCGACGACTCTGAAATC



GCGAAAAAAAACGGTAAAGACGACTTCATCCTGTCTCCGGTTGAACCGTTCTTCGACTCTCGTAAAGAC



AACGGTAACAAACTGCCGGAAAACGGTGACGACAACGGTGCGTACAACATCGCGCGTAAAGGTATCGT



TATCCTGAACAAAATCTCTCAGTACTCTGAAAAAAACGAAAACTGCGAAAAAATGAAATGGGGTGACCT



GTACGTTTCTAACATCGACTGGGACAACTTCGTTGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTA



TCTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGA



TTACA





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACTGCGTC


ID
TTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAACAAAGCGGGA


NO:
CCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAAGTCCACATTGATTATT


71
TGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTT



TTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGG



GTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCAT



CACCATAACAAATTCGAAAACTTCACCGGTCTGTACCCGATCTCTAAAACCCTGCGTTTCGAACTGATCC



CGCAGGGTAAAACCCTGGAATACATCGAAAAATCTGAAATCCTGGAAAACGACAACTACCGTGCGGAA



AAATACGAAGAAGTTAAAGACATCATCGACGGTTACCACAAATGGTTCATCAACGAAACCCTGCACGAC



CTGCACATCAACTGGTCTGAACTGAAAGTTGCGCTGGAAAACAACCGTATCGAAAAATCTGACGCGTCT



AAAAAAGAACTGCAGCGTGTTCAGAAAATCAAACGTGAAGAAATCTACAACGCGTTCATCGAACACGA



AGCGTTCCAGTACCTGTTCAAAGAAAACCTGCTGTCTGACCTGCTGCCGATCCAGATCGAACAGTCTGA



AGACCTGGACGCGGAAAAAAAAAAACAGGCGGTTGAAACCTTCAACCGTTTCTCTACCTACTTCACCGG



TTTCCACGAAAACCGTAAAAACATCTACTCTAAAGAAGGTATCTCTACCTCTGTTACCTACCGTATCGTT



CACGACAACTTCCCGAAATTCCTGGAAAACATGAAAGTTTTCGAAATCCTGCGTAACGAATGCCCGGAA



GTTATCTCTGACACCGCGAACGAACTGGCGCCGTTCATCGACGGTGTTCGTATCGAAGACATCTTCCTGA



TCGACTTCTTCAACTCTACCTTCTCTCAGAACGGTATCGACTACTACAACCGTATCCTGGGTGGTGTTACC



ACCGAAACCGGTGAAAAATACCGTGGTATCAACGAATTCACCAACCTGTACCGTCAGCAGCACCCGGAA



TTCGGTAAATCTAAAAAAGCGACCAAAATGGTTGTTCTGTTCAAACAGATCCTGTCTGACCGTGACACCC



TGTCTTTCATCCCGGAAATGTTCGGTAACGACAAACAGGTTCAGAACTCTATCCAGCTGTTCTACAACCG



TGAAATCTCTCAGTTCGAAAACGAAGGTGTTAAAACCGACGTTTGCACCGCGCTGGCGACCCTGACCTC



TAAAATCGCGGAATTCGACACCGAAAAAATCTACATCCAGCAGCCGGAACTGCCGAACGTTTCTCAGCG



TCTGTTCGGTTCTTGGAACGAACTGAACGCGTGCCTGTTCAAATACGCGGAACTGAAATTCGGTACCGCG



GAAAAAGTTGCGAACCGTAAAAAAATCGACAAATGGCTGAAATCTGACCTGTTCTCTTTCACCGAACTG



AACAAAGCGCTGGAATTCTCTGGTAAAGACGAACGTATCGAAAACTACTTCTCTGAAACCGGTATCTTC



GCGCAGCTGGTTAAAACCGGTTTCGACGAAGCGCAGTCTATCCTGGAAACCGAATACACCTCTGAAGTT



CACCTGAAAGACCAGCAGACCGACATCGAAAAAATCAAAACCTTCCTGGACGCGCTGCAGAACCTGAT



GCACCTGCTGAAATCTCTGTGCGTTTCTGAAGAAGCGGACCGTGACGCGGCGTTCTACAACGAATTCGA



CATGCTGTACAACCAGCTGAAACTGGTTGTTCCGCTGTACAACAAAGTTCGTAACTACATCACCCAGAA



ACTGTTCCGTTCTGACAAAATCAAAATCTACTTCGAAAACAAAGGTCAGTTCCTGGGTGGTTGGGTTGAC



TCTCAGACCGAAAACTCTGACAACGGTACCCAGGCGGGTGGTTACATCTTCCGTAAAGAAAACGTTATC



AACGAATACGACTACTACCTGGGTATCTGCTCTGACCCGAAACTGTTCCGTCGTACCACCATCGTTTCTG



AAAACGACCGTTCTTCTTTCGAACGTCTGGACTACTACCAGCTGAAAACCGCGTCTGTTTACGGTAACTC



TTACTGCGGTAAACACCCGTACACCGAAGACAAAAACGAACTGGTTAACTCTATCGACCGTTTCGTTCA



CCTGTCTGGTAACAACATCCTGATCGAAAAAATCGCGAAAGACAAAGTTAAATCTAACCCGACCACCAA



CACCCCGTCTGGTTACCTGAACTTCATCCACCGTGAAGCGCCGAACACCTACGAATGCCTGCTGCAGGA



CGAAAACTTCGTTTCTCTGAACCAGCGTGTTGTTTCTGCGCTGAAAGCGACCCTGGCGACCCTGGTTCGT



GTTCCGAAAGCGCTGGTTTACGCGAAAAAAGACTACCACCTGTTCTCTGAAATCATCAACGACATCGAC



GAACTGTCTTACGAAAAAGCGTTCTCTTACTTCCCGGTTTCTCAGACCGAATTCGAAAACTCTTCTAACC



GTACCATCAAACCGCTGCTGCTGTTCAAAATCTCTAACAAAGACCTGTCTTTCGCGGAAAACTTCGAAAA



AGGTAACCGTCAGAAAATCGGTAAAAAAAACCTGCACACCCTGTACTTCGAAGCGCTGATGAAAGGTA



ACCAGGACACCATCGACATCGGTACCGGTATGGTTTTCCACCGTGTTAAATCTCTGAACTACAACGAAA



AAACCCTGAAATACGGTCACCACTCTACCCAGCTGAACGAAAAATTCTCTTACCCGATCATCAAAGACA



AACGTTTCGCGTCTGACAAATTCCTGTTCCACCTGTCTACCGAAATCAACTACAAAGAAAAACGTAAAC



CGCTGAACAACTCTATCATCGAATTCCTGACCAACAACCCGGACATCAACATCATCGGTCTGGACCGTG



GTGAACGTCACCTGATCTACCTGACCCTGATCAACCAGAAAGGTGAAATCCTGCGTCAGAAAACCTTCA



ACATCGTTGGTAACACCAACTACCACGAAAAACTGAACCAGCGTGAAAAAGAACGTGACAACGCGCGT



AAATCTTGGGCGACCATCGGTAAAATCAAAGAACTGAAAGAAGGTTTCCTGTCTCTGGTTATCCACGAA



ATCGCGAAAATCATGGTTGAAAACAACGCGATCGTTGTTCTGGAAGACCTGAACTTCGGTTTCAAACGT



GGTCGTTTCAAAGTTGAAAAACAGATCTACCAGAAATTCGAAAAAATGCTGATCGACAAACTGAACTAC



CTGGTTTTCAAAGACAAAAAAGCGAACGAAGCGGGTGGTGTTCTGAAAGGTTACCAGCTGGCGGAAAA



ATTCGAATCTTTCCAGAAAATGGGTAAACAGTCTGGTTTCCTGTTCTACGTTCCGGCGGCGTACACCTCT



AAAATCGACCCGACCACCGGTTTCGTTAACATGCTGAACCTGAACTACACCAACATGAAAGACGCGCAG



ACCCTGCTGTCTGGTATGGACAAAATCTCTTTCAACGCGGACGCGAACTACTTCGAATTCGAACTGGACT



ACGAAAAATTCAAAACCAACCAGACCGACCACACCAACAAATGGACCATCTGCACCGTTGGTGAAAAA



CGTTTCACCTACAACTCTGCGACCAAAGAAACCACCACCGTTAACGTTACCGAAGACCTGAAAAAACTG



CTGGACAAATTCGAAGTTAAATACTCTAACGGTGACAACATCAAAGACGAAATCTGCCGTCAGACCGAC



GCGAAATTCTTCGAAATCATCCTGTGGCTGCTGAAACTGACCATGCAGATGCGTAACTCTAACACCAAA



ACCGAAGAAGACTTCATCCTGTCTCCGGTTAAAAACTCTAACGGTGAATTCTTCCGTTCTAACGACGACG



CGAACGGTATCTGGCCGGCGGACGCGGACGCGAACGGTGCGTACCACATCGCGCTGAAAGGTCTGTACC



TGGTTAAAGAATGCTTCAACAAAAACGAAAAATCTCTGAAAATCGAACACAAAAACTGGTTCAAATTCG



CGCAGACCCGTTTCAACGGTTCTCTGACCAAAAACGGTTAAGAAATCATCCTTAGCGAAAGCTAAGGAT



TTTTTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCA



AAGAGGATTACA





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACTGCGTC


ID
TTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAACAAAGCGGGA


NO:
CCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAAGTCCACATTGATTATT


72
TGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTT



TTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGG



GTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCAT



CACCATACCCAGTTCGAAGGTTTCACCAACCTGTACCAGGTTTCTAAAACCCTGCGTTTCGAACTGATCC



CGCAGGGTAAAACCCTGAAACACATCCAGGAACAGGGTTTCATCGAAGAAGACAAAGCGCGTAACGAC



CACTACAAAGAACTGAAACCGATCATCGACCGTATCTACAAAACCTACGCGGACCAGTGCCTGCAGCTG



GTTCAGCTGGACTGGGAAAACCTGTCTGCGGCGATCGACTCTTACCGTAAAGAAAAAACCGAAGAAACC



CGTAACGCGCTGATCGAAGAACAGGCGACCTACCGTAACGCGATCCACGACTACTTCATCGGTCGTACC



GACAACCTGACCGACGCGATCAACAAACGTCACGCGGAAATCTACAAAGGTCTGTTCAAAGCGGAACT



GTTCAACGGTAAAGTTCTGAAACAGCTGGGTACCGTTACCACCACCGAACACGAAAACGCGCTGCTGCG



TTCTTTCGACAAATTCACCACCTACTTCTCTGGTTTCTACGAAAACCGTAAAAACGTTTTCTCTGCGGAA



GACATCTCTACCGCGATCCCGCACCGTATCGTTCAGGACAACTTCCCGAAATTCAAAGAAAACTGCCAC



ATCTTCACCCGTCTGATCACCGCGGTTCCGTCTCTGCGTGAACACTTCGAAAACGTTAAAAAAGCGATCG



GTATCTTCGTTTCTACCTCTATCGAAGAAGTTTTCTCTTTCCCGTTCTACAACCAGCTGCTGACCCAGACC



CAGATCGACCTGTACAACCAGCTGCTGGGTGGTATCTCTCGTGAAGCGGGTACCGAAAAAATCAAAGGT



CTGAACGAAGTTCTGAACCTGGCGATCCAGAAAAACGACGAAACCGCGCACATCATCGCGTCTCTGCCG



CACCGTTTCATCCCGCTGTTCAAACAGATCCTGTCTGACCGTAACACCCTGTCTTTCATCCTGGAAGAAT



TCAAATCTGACGAAGAAGTTATCCAGTCTTTCTGCAAATACAAAACCCTGCTGCGTAACGAAAACGTTCT



GGAAACCGCGGAAGCGCTGTTCAACGAACTGAACTCTATCGACCTGACCCACATCTTCATCTCTCACAA



AAAACTGGAAACCATCTCTTCTGCGCTGTGCGACCACTGGGACACCCTGCGTAACGCGCTGTACGAACG



TCGTATCTCTGAACTGACCGGTAAAATCACCAAATCTGCGAAAGAAAAAGTTCAGCGTTCTCTGAAACA



CGAAGACATCAACCTGCAGGAAATCATCTCTGCGGCGGGTAAAGAACTGTCTGAAGCGTTCAAACAGAA



AACCTCTGAAATCCTGTCTCACGCGCACGCGGCGCTGGACCAGCCGCTGCCGACCACCCTGAAAAAACA



GGAAGAAAAAGAAATCCTGAAATCTCAGCTGGACTCTCTGCTGGGTCTGTACCACCTGCTGGACTGGTT



CGCGGTTGACGAATCTAACGAAGTTGACCCGGAATTCTCTGCGCGTCTGACCGGTATCAAACTGGAAAT



GGAACCGTCTCTGTCTTTCTACAACAAAGCGCGTAACTACGCGACCAAAAAACCGTACTCTGTTGAAAA



ATTCAAACTGAACTTCCAGATGCCGACCCTGGCGTCTGGTTGGGACGTTAACAAAGAAAAAAACAACGG



TGCGATCCTGTTCGTTAAAAACGGTCTGTACTACCTGGGTATCATGCCGAAACAGAAAGGTCGTTACAA



AGCGCTGTCTTTCGAACCGACCGAAAAAACCTCTGAAGGTTTCGACAAAATGTACTACGACTACTTCCC



GGACGCGGCGAAAATGATCCCGAAATGCTCTACCCAGCTGAAAGCGGTTACCGCGCACTTCCAGACCCA



CACCACCCCGATCCTGCTGTCTAACAACTTCATCGAACCGCTGGAAATCACCAAAGAAATCTACGACCT



GAACAACCCGGAAAAAGAACCGAAAAAATTCCAGACCGCGTACGCGAAAAAAACCGGTGACCAGAAA



GGTTACCGTGAAGCGCTGTGCAAATGGATCGACTTCACCCGTGACTTCCTGTCTAAATACACCAAAACC



ACCTCTATCGACCTGTCTTCTCTGCGTCCGTCTTCTCAGTACAAAGACCTGGGTGAATACTACGCGGAAC



TGAACCCGCTGCTGTACCACATCTCTTTCCAGCGTATCGCGGAAAAAGAAATCATGGACGCGGTTGAAA



CCGGTAAACTGTACCTGTTCCAGATCTACAACAAAGACTTCGCGAAAGGTCACCACGGTAAACCGAACC



TGCACACCCTGTACTGGACCGGTCTGTTCTCTCCGGAAAACCTGGCGAAAACCTCTATCAAACTGAACG



GTCAGGCGGAACTGTTCTACCGTCCGAAATCTCGTATGAAACGTATGGCGCACCGTCTGGGTGAAAAAA



TGCTGAACAAAAAACTGAAAGACCAGAAAACCCCGATCCCGGACACCCTGTACCAGGAACTGTACGAC



TACGTTAACCACCGTCTGTCTCACGACCTGTCTGACGAAGCGCGTGCGCTGCTGCCGAACGTTATCACCA



AAGAAGTTTCTCACGAAATCATCAAAGACCGTCGTTTCACCTCTGACAAATTCTTCTTCCACGTTCCGAT



CACCCTGAACTACCAGGCGGCGAACTCTCCGTCTAAATTCAACCAGCGTGTTAACGCGTACCTGAAAGA



ACACCCGGAAACCCCGATCATCGGTATCGACCGTGGTGAACGTAACCTGATCTACATCACCGTTATCGA



CTCTACCGGTAAAATCCTGGAACAGCGTTCTCTGAACACCATCCAGCAGTTCGACTACCAGAAAAAACT



GGACAACCGTGAAAAAGAACGTGTTGCGGCGCGTCAGGCGTGGTCTGTTGTTGGTACCATCAAAGACCT



GAAACAGGGTTACCTGTCTCAGGTTATCCACGAAATCGTTGACCTGATGATCCACTACCAGGCGGTTGTT



GTTCTGGAAAACCTGAACTTCGGTTTCAAATCTAAACGTACCGGTATCGCGGAAAAAGCGGTTTACCAG



CAGTTCGAAAAAATGCTGATCGACAAACTGAACTGCCTGGTTCTGAAAGACTACCCGGCGGAAAAAGTT



GGTGGTGTTCTGAACCCGTACCAGCTGACCGACCAGTTCACCTCTTTCGCGAAAATGGGTACCCAGTCTG



GTTTCCTGTTCTACGTTCCGGCGCCGTACACCTCTAAAATCGACCCGCTGACCGGTTTCGTTGACCCGTTC



GTTTGGAAAACCATCAAAAACCACGAATCTCGTAAACACTTCCTGGAAGGTTTCGACTTCCTGCACTACG



ACGTTAAAACCGGTGACTTCATCCTGCACTTCAAAATGAACCGTAACCTGTCTTTCCAGCGTGGTCTGCC



GGGTTTCATGCCGGCGTGGGACATCGTTTTCGAAAAAAACGAAACCCAGTTCGACGCGAAAGGTACCCC



GTTCATCGCGGGTAAACGTATCGTTCCGGTTATCGAAAACCACCGTTTCACCGGTCGTTACCGTGACCTG



TACCCGGCGAACGAACTGATCGCGCTGCTGGAAGAAAAAGGTATCGTTTTCCGTGACGGTTCTAACATC



CTGCCGAAACTGCTGGAAAACGACGACTCTCACGCGATCGACACCATGGTTGCGCTGATCCGTTCTGTTC



TGCAGATGCGTAACTCTAACGCGGCGACCGGTGAAGACTACATCAACTCTCCGGTTCGTGACCTGAACG



GTGTTTGCTTCGACTCTCGTTTCCAGAACCCGGAATGGCCGATGGACGCGGACGCGAACGGTGCGTACC



ACATCGCGCTGAAAGGTCAGCTGCTGCTGAACCACCTGAAAGAATCTAAAGACCTGAAACTGCAGAACG



GTATCTCTAACCAGGACTGGCTGGCGTACATCCAGGAACTGCGTAACTAGAAATCATCCTTAGCGAAAG



CTAAGGATTTTTTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTATTACTC



AGGAAGCAAAGAGGATTACA





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACTGCGTC


ID
TTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAACAAAGCGGGA


NO:
CCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAAGTCCACATTGATTATT


73
TGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTT



TTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGG



GTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCAT



CACCATGCGGTTAAATCTATCAAAGTTAAACTGCGTCTGGACGACATGCCGGAAATCCGTGCGGGTCTG



TGGAAACTGCACAAAGAAGTTAACGCGGGTGTTCGTTACTACACCGAATGGCTGTCTCTGCTGCGTCAG



GAAAACCTGTACCGTCGTTCTCCGAACGGTGACGGTGAACAGGAATGCGACAAAACCGCGGAAGAATG



CAAAGCGGAACTGCTGGAACGTCTGCGTGCGCGTCAGGTTGAAAACGGTCACCGTGGTCCGGCGGGTTC



TGACGACGAACTGCTGCAGCTGGCGCGTCAGCTGTACGAACTGCTGGTTCCGCAGGCGATCGGTGCGAA



AGGTGACGCGCAGCAGATCGCGCGTAAATTCCTGTCTCCGCTGGCGGACAAAGACGCGGTTGGTGGTCT



GGGTATCGCGAAAGCGGGTAACAAACCGCGTTGGGTTCGTATGCGTGAAGCGGGTGAACCGGGTTGGG



AAGAAGAAAAAGAAAAAGCGGAAACCCGTAAATCTGCGGACCGTACCGCGGACGTTCTGCGTGCGCTG



GCGGACTTCGGTCTGAAACCGCTGATGCGTGTTTACACCGACTCTGAAATGTCTTCTGTTGAATGGAAAC



CGCTGCGTAAAGGTCAGGCGGTTCGTACCTGGGACCGTGACATGTTCCAGCAGGCGATCGAACGTATGA



TGTCTTGGGAATCTTGGAACCAGCGTGTTGGTCAGGAATACGCGAAACTGGTTGAACAGAAAAACCGTT



TCGAACAGAAAAACTTCGTTGGTCAGGAACACCTGGTTCACCTGGTTAACCAGCTGCAGCAGGACATGA



AAGAAGCGTCTCCGGGTCTGGAATCTAAAGAACAGACCGCGCACTACGTTACCGGTCGTGCGCTGCGTG



GTTCTGACAAAGTTTTCGAAAAATGGGGTAAACTGGCGCCGGACGCGCCGTTCGACCTGTACGACGCGG



AAATCAAAAACGTTCAGCGTCGTAACACCCGTCGTTTCGGTTCTCACGACCTGTTCGCGAAACTGGCGG



AACCGGAATACCAGGCGCTGTGGCGTGAAGACGCGTCTTTCCTGACCCGTTACGCGGTTTACAACTCTAT



CCTGCGTAAACTGAACCACGCGAAAATGTTCGCGACCTTCACCCTGCCGGACGCGACCGCGCACCCGAT



CTGGACCCGTTTCGACAAACTGGGTGGTAACCTGCACCAGTACACCTTCCTGTTCAACGAATTCGGTGAA



CGTCGTCACGCGATCCGTTTCCACAAACTGCTGAAAGTTGAAAACGGTGTTGCGCGTGAAGTTGACGAC



GTTACCGTTCCGATCTCTATGTCTGAACAGCTGGACAACCTGCTGCCGCGTGACCCGAACGAACCGATCG



CGCTGTACTTCCGTGACTACGGTGCGGAACAGCACTTCACCGGTGAATTCGGTGGTGCGAAAATCCAGT



GCCGTCGTGACCAGCTGGCGCACATGCACCGTCGTCGTGGTGCGCGTGACGTTTACCTGAACGTTTCTGT



TCGTGTTCAGTCTCAGTCTGAAGCGCGTGGTGAACGTCGTCCGCCGTACGCGGCGGTTTTCCGTCTGGTT



GGTGACAACCACCGTGCGTTCGTTCACTTCGACAAACTGTCTGACTACCTGGCGGAACACCCGGACGAC



GGTAAACTGGGTTCTGAAGGTCTGCTGTCTGGTCTGCGTGTTATGTCTGTTGACCTGGGTCTGCGTACCT



CTGCGTCTATCTCTGTTTTCCGTGTTGCGCGTAAAGACGAACTGAAACCGAACTCTAAAGGTCGTGTTCC



GTTCTTCTTCCCGATCAAAGGTAACGACAACCTGGTTGCGGTTCACGAACGTTCTCAGCTGCTGAAACTG



CCGGGTGAAACCGAATCTAAAGACCTGCGTGCGATCCGTGAAGAACGTCAGCGTACCCTGCGTCAGCTG



CGTACCCAGCTGGCGTACCTGCGTCTGCTGGTTCGTTGCGGTTCTGAAGACGTTGGTCGTCGTGAACGTT



CTTGGGCGAAACTGATCGAACAGCCGGTTGACGCGGCGAACCACATGACCCCGGACTGGCGTGAAGCGT



TCGAAAACGAACTGCAGAAACTGAAATCTCTGCACGGTATCTGCTCTGACAAAGAATGGATGGACGCGG



TTTACGAATCTGTTCGTCGTGTTTGGCGTCACATGGGTAAACAGGTTCGTGACTGGCGTAAAGACGTTCG



TTCTGGTGAACGTCCGAAAATCCGTGGTTACGCGAAAGACGTTGTTGGTGGTAACTCTATCGAACAGAT



CGAATACCTGGAACGTCAGTACAAATTCCTGAAATCTTGGTCTTTCTTCGGTAAAGTTTCTGGTCAGGTT



ATCCGTGCGGAAAAAGGTTCTCGTTTCGCGATCACCCTGCGTGAACACATCGACCACGCGAAAGAAGAC



CGTCTGAAAAAACTGGCGGACCGTATCATCATGGAAGCGCTGGGTTACGTTTACGCGCTGGACGAACGT



GGTAAAGGTAAATGGGTTGCGAAATACCCGCCGTGCCAGCTGATCCTGCTGGAAGAACTGTCTGAATAC



CAGTTCAACAACGACCGTCCGCCGTCTGAAAACAACCAGCTGATGCAGTGGTCTCACCGTGGTGTTTTCC



AGGAACTGATCAACCAGGCGCAGGTTCACGACCTGCTGGTTGGTACCATGTACGCGGCGTTCTCTTCTCG



TTTCGACGCGCGTACCGGTGCGCCGGGTATCCGTTGCCGTCGTGTTCCGGCGCGTTGCACCCAGGAACAC



AACCCGGAACCGTTCCCGTGGTGGCTGAACAAATTCGTTGTTGAACACACCCTGGACGCGTGCCCGCTG



CGTGCGGACGACCTGATCCCGACCGGTGAAGGTGAAATCTTCGTTTCTCCGTTCTCTGCGGAAGAAGGT



GACTTCCACCAGATCCACGCGGACCTGAACGCGGCGCAGAACCTGCAGCAGCGTCTGTGGTCTGACTTC



GACATCTCTCAGATCCGTCTGCGTTGCGACTGGGGTGAAGTTGACGGTGAACTGGTTCTGATCCCGCGTC



TGACCGGTAAACGTACCGCGGACTCTTACTCTAACAAAGTTTTCTACACCAACACCGGTGTTACCTACTA



CGAACGTGAACGTGGTAAAAAACGTCGTAAAGTTTTCGCGCAGGAAAAACTGTCTGAAGAAGAAGCGG



AACTGCTGGTTGAAGCGGACGAAGCGCGTGAAAAATCTGTTGTTCTGATGCGTGACCCGTCTGGTATCA



TCAACCGTGGTAACTGGACCCGTCAGAAAGAATTCTGGTCTATGGTTAACCAGCGTATCGAAGGTTACC



TGGTTAAACAGATCCGTTCTCGTGTTCCGCTGCAGGACTCTGCGTGCGAAAACACCGGTGACATCTAAG



AAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAATATTC



ACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGATTACA





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACTGCGTC


ID
TTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAACAAAGCGGGA


NO:
CCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAAGTCCACATTGATTATT


74
TGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTT



TTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGG



GTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCAT



CACCATGCGACCCGTTCTTTCATCCTGAAAATCGAACCGAACGAAGAAGTTAAAAAAGGTCTGTGGAAA



ACCCACGAAGTTCTGAACCACGGTATCGCGTACTACATGAACATCCTGAAACTGATCCGTCAGGAAGCG



ATCTACGAACACCACGAACAGGACCCGAAAAACCCGAAAAAAGTTTCTAAAGCGGAAATCCAGGCGGA



ACTGTGGGACTTCGTTCTGAAAATGCAGAAATGCAACTCTTTCACCCACGAAGTTGACAAAGACGTTGTT



TTCAACATCCTGCGTGAACTGTACGAAGAACTGGTTCCGTCTTCTGTTGAAAAAAAAGGTGAAGCGAAC



CAGCTGTCTAACAAATTCCTGTACCCGCTGGTTGACCCGAACTCTCAGTCTGGTAAAGGTACCGCGTCTT



CTGGTCGTAAACCGCGTTGGTACAACCTGAAAATCGCGGGTGACCCGTCTTGGGAAGAAGAAAAAAAA



AAATGGGAAGAAGACAAAAAAAAAGACCCGCTGGCGAAAATCCTGGGTAAACTGGCGGAATACGGTCT



GATCCCGCTGTTCATCCCGTTCACCGACTCTAACGAACCGATCGTTAAAGAAATCAAATGGATGGAAAA



ATCTCGTAACCAGTCTGTTCGTCGTCTGGACAAAGACATGTTCATCCAGGCGCTGGAACGTTTCCTGTCT



TGGGAATCTTGGAACCTGAAAGTTAAAGAAGAATACGAAAAAGTTGAAAAAGAACACAAAACCCTGGA



AGAACGTATCAAAGAAGACATCCAGGCGTTCAAATCTCTGGAACAGTACGAAAAAGAACGTCAGGAAC



AGCTGCTGCGTGACACCCTGAACACCAACGAATACCGTCTGTCTAAACGTGGTCTGCGTGGTTGGCGTG



AAATCATCCAGAAATGGCTGAAAATGGACGAAAACGAACCGTCTGAAAAATACCTGGAAGTTTTCAAA



GACTACCAGCGTAAACACCCGCGTGAAGCGGGTGACTACTCTGTTTACGAATTCCTGTCTAAAAAAGAA



AACCACTTCATCTGGCGTAACCACCCGGAATACCCGTACCTGTACGCGACCTTCTGCGAAATCGACAAA



AAAAAAAAAGACGCGAAACAGCAGGCGACCTTCACCCTGGCGGACCCGATCAACCACCCGCTGTGGGT



TCGTTTCGAAGAACGTTCTGGTTCTAACCTGAACAAATACCGTATCCTGACCGAACAGCTGCACACCGA



AAAACTGAAAAAAAAACTGACCGTTCAGCTGGACCGTCTGATCTACCCGACCGAATCTGGTGGTTGGGA



AGAAAAAGGTAAAGTTGACATCGTTCTGCTGCCGTCTCGTCAGTTCTACAACCAGATCTTCCTGGACATC



GAAGAAAAAGGTAAACACGCGTTCACCTACAAAGACGAATCTATCAAATTCCCGCTGAAAGGTACCCTG



GGTGGTGCGCGTGTTCAGTTCGACCGTGACCACCTGCGTCGTTACCCGCACAAAGTTGAATCTGGTAACG



TTGGTCGTATCTACTTCAACATGACCGTTAACATCGAACCGACCGAATCTCCGGTTTCTAAATCTCTGAA



AATCCACCGTGACGACTTCCCGAAATTCGTTAACTTCAAACCGAAAGAACTGACCGAATGGATCAAAGA



CTCTAAAGGTAAAAAACTGAAATCTGGTATCGAATCTCTGGAAATCGGTCTGCGTGTTATGTCTATCGAC



CTGGGTCAGCGTCAGGCGGCGGCGGCGTCTATCTTCGAAGTTGTTGACCAGAAACCGGACATCGAAGGT



AAACTGTTCTTCCCGATCAAAGGTACCGAACTGTACGCGGTTCACCGTGCGTCTTTCAACATCAAACTGC



CGGGTGAAACCCTGGTTAAATCTCGTGAAGTTCTGCGTAAAGCGCGTGAAGACAACCTGAAACTGATGA



ACCAGAAACTGAACTTCCTGCGTAACGTTCTGCACTTCCAGCAGTTCGAAGACATCACCGAACGTGAAA



AACGTGTTACCAAATGGATCTCTCGTCAGGAAAACTCTGACGTTCCGCTGGTTTACCAGGACGAACTGAT



CCAGATCCGTGAACTGATGTACAAACCGTACAAAGACTGGGTTGCGTTCCTGAAACAGCTGCACAAACG



TCTGGAAGTTGAAATCGGTAAAGAAGTTAAACACTGGCGTAAATCTCTGTCTGACGGTCGTAAAGGTCT



GTACGGTATCTCTCTGAAAAACATCGACGAAATCGACCGTACCCGTAAATTCCTGCTGCGTTGGTCTCTG



CGTCCGACCGAACCGGGTGAAGTTCGTCGTCTGGAACCGGGTCAGCGTTTCGCGATCGACCAGCTGAAC



CACCTGAACGCGCTGAAAGAAGACCGTCTGAAAAAAATGGCGAACACCATCATCATGCACGCGCTGGG



TTACTGCTACGACGTTCGTAAAAAAAAATGGCAGGCGAAAAACCCGGCGTGCCAGATCATCCTGTTCGA



AGACCTGTCTAACTACAACCCGTACGAAGAACGTTCTCGTTTCGAAAACTCTAAACTGATGAAATGGTCT



CGTCGTGAAATCCCGCGTCAGGTTGCGCTGCAGGGTGAAATCTACGGTCTGCAGGTTGGTGAAGTTGGT



GCGCAGTTCTCTTCTCGTTTCCACGCGAAAACCGGTTCTCCGGGTATCCGTTGCTCTGTTGTTACCAAAG



AAAAACTGCAGGACAACCGTTTCTTCAAAAACCTGCAGCGTGAAGGTCGTCTGACCCTGGACAAAATCG



CGGTTCTGAAAGAAGGTGACCTGTACCCGGACAAAGGTGGTGAAAAATTCATCTCTCTGTCTAAAGACC



GTAAACTGGTTACCACCCACGCGGACATCAACGCGGCGCAGAACCTGCAGAAACGTTTCTGGACCCGTA



CCCACGGTTTCTACAAAGTTTACTGCAAAGCGTACCAGGTTGACGGTCAGACCGTTTACATCCCGGAATC



TAAAGACCAGAAACAGAAAATCATCGAAGAATTCGGTGAAGGTTACTTCATCCTGAAAGACGGTGTTTA



CGAATGGGGTAACGCGGGTAAACTGAAAATCAAAAAAGGTTCTTCTAAACAGTCTTCTTCTGAACTGGT



TGACTCTGACATCCTGAAAGACTCTTTCGACCTGGCGTCTGAACTGAAAGGTGAAAAACTGATGCTGTA



CCGTGACCCGTCTGGTAACGTTTTCCCGTCTGACAAATGGATGGCGGCGGGTGTTTTCTTCGGTAAACTG



GAACGTATCCTGATCTCTAAACTGACCAACCAGTACTCTATCTCTACCATCGAAGACGACTCTTCTAAAC



AGTCTATGTAAGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATGTAGGGAGACCCTCA



GGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGATTACA





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACTGCGTC


ID
TTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAACAAAGCGGGA


NO:
CCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAAGTCCACATTGATTATT


75
TGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTT



TTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGG



GTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCAT



CACCATCCGACCCGTACCATCAACCTGAAACTGGTTCTGGGTAAAAACCCGGAAAACGCGACCCTGCGT



CGTGCGCTGTTCTCTACCCACCGTCTGGTTAACCAGGCGACCAAACGTATCGAAGAATTCCTGCTGCTGT



GCCGTGGTGAAGCGTACCGTACCGTTGACAACGAAGGTAAAGAAGCGGAAATCCCGCGTCACGCGGTTC



AGGAAGAAGCGCTGGCGTTCGCGAAAGCGGCGCAGCGTCACAACGGTTGCATCTCTACCTACGAAGACC



AGGAAATCCTGGACGTTCTGCGTCAGCTGTACGAACGTCTGGTTCCGTCTGTTAACGAAAACAACGAAG



CGGGTGACGCGCAGGCGGCGAACGCGTGGGTTTCTCCGCTGATGTCTGCGGAATCTGAAGGTGGTCTGT



CTGTTTACGACAAAGTTCTGGACCCGCCGCCGGTTTGGATGAAACTGAAAGAAGAAAAAGCGCCGGGTT



GGGAAGCGGCGTCTCAGATCTGGATCCAGTCTGACGAAGGTCAGTCTCTGCTGAACAAACCGGGTTCTC



CGCCGCGTTGGATCCGTAAACTGCGTTCTGGTCAGCCGTGGCAGGACGACTTCGTTTCTGACCAGAAAA



AAAAACAGGACGAACTGACCAAAGGTAACGCGCCGCTGATCAAACAGCTGAAAGAAATGGGTCTGCTG



CCGCTGGTTAACCCGTTCTTCCGTCACCTGCTGGACCCGGAAGGTAAAGGTGTTTCTCCGTGGGACCGTC



TGGCGGTTCGTGCGGCGGTTGCGCACTTCATCTCTTGGGAATCTTGGAACCACCGTACCCGTGCGGAATA



CAACTCTCTGAAACTGCGTCGTGACGAATTCGAAGCGGCGTCTGACGAATTCAAAGACGACTTCACCCT



GCTGCGTCAGTACGAAGCGAAACGTCACTCTACCCTGAAATCTATCGCGCTGGCGGACGACTCTAACCC



GTACCGTATCGGTGTTCGTTCTCTGCGTGCGTGGAACCGTGTTCGTGAAGAATGGATCGACAAAGGTGC



GACCGAAGAACAGCGTGTTACCATCCTGTCTAAACTGCAGACCCAGCTGCGTGGTAAATTCGGTGACCC



GGACCTGTTCAACTGGCTGGCGCAGGACCGTCACGTTCACCTGTGGTCTCCGCGTGACTCTGTTACCCCG



CTGGTTCGTATCAACGCGGTTGACAAAGTTCTGCGTCGTCGTAAACCGTACGCGCTGATGACCTTCGCGC



ACCCGCGTTTCCACCCGCGTTGGATCCTGTACGAAGCGCCGGGTGGTTCTAACCTGCGTCAGTACGCGCT



GGACTGCACCGAAAACGCGCTGCACATCACCCTGCCGCTGCTGGTTGACGACGCGCACGGTACCTGGAT



CGAAAAAAAAATCCGTGTTCCGCTGGCGCCGTCTGGTCAGATCCAGGACCTGACCCTGGAAAAACTGGA



AAAAAAAAAAAACCGTCTGTACTACCGTTCTGGTTTCCAGCAGTTCGCGGGTCTGGCGGGTGGTGCGGA



AGTTCTGTTCCACCGTCCGTACATGGAACACGACGAACGTTCTGAAGAATCTCTGCTGGAACGTCCGGGT



GCGGTTTGGTTCAAACTGACCCTGGACGTTGCGACCCAGGCGCCGCCGAACTGGCTGGACGGTAAAGGT



CGTGTTCGTACCCCGCCGGAAGTTCACCACTTCAAAACCGCGCTGTCTAACAAATCTAAACACACCCGTA



CCCTGCAGCCGGGTCTGCGTGTTCTGTCTGTTGACCTGGGTATGCGTACCTTCGCGTCTTGCTCTGTTTTC



GAACTGATCGAAGGTAAACCGGAAACCGGTCGTGCGTTCCCGGTTGCGGACGAACGTTCTATGGACTCT



CCGAACAAACTGTGGGCGAAACACGAACGTTCTTTCAAACTGACCCTGCCGGGTGAAACCCCGTCTCGT



AAAGAAGAAGAAGAACGTTCTATCGCGCGTGCGGAAATCTACGCGCTGAAACGTGACATCCAGCGTCTG



AAATCTCTGCTGCGTCTGGGTGAAGAAGACAACGACAACCGTCGTGACGCGCTGCTGGAACAGTTCTTC



AAAGGTTGGGGTGAAGAAGACGTTGTTCCGGGTCAGGCGTTCCCGCGTTCTCTGTTCCAGGGTCTGGGT



GCGGCGCCGTTCCGTTCTACCCCGGAACTGTGGCGTCAGCACTGCCAGACCTACTACGACAAAGCGGAA



GCGTGCCTGGCGAAACACATCTCTGACTGGCGTAAACGTACCCGTCCGCGTCCGACCTCTCGTGAAATGT



GGTACAAAACCCGTTCTTACCACGGTGGTAAATCTATCTGGATGCTGGAATACCTGGACGCGGTTCGTA



AACTGCTGCTGTCTTGGTCTCTGCGTGGTCGTACCTACGGTGCGATCAACCGTCAGGACACCGCGCGTTT



CGGTTCTCTGGCGTCTCGTCTGCTGCACCACATCAACTCTCTGAAAGAAGACCGTATCAAAACCGGTGCG



GACTCTATCGTTCAGGCGGCGCGTGGTTACATCCCGCTGCCGCACGGTAAAGGTTGGGAACAGCGTTAC



GAACCGTGCCAGCTGATCCTGTTCGAAGACCTGGCGCGTTACCGTTTCCGTGTTGACCGTCCGCGTCGTG



AAAACTCTCAGCTGATGCAGTGGAACCACCGTGCGATCGTTGCGGAAACCACCATGCAGGCGGAACTGT



ACGGTCAGATCGTTGAAAACACCGCGGCGGGTTTCTCTTCTCGTTTCCACGCGGCGACCGGTGCGCCGG



GTGTTCGTTGCCGTTTCCTGCTGGAACGTGACTTCGACAACGACCTGCCGAAACCGTACCTGCTGCGTGA



ACTGTCTTGGATGCTGGGTAACACCAAAGTTGAATCTGAAGAAGAAAAACTGCGTCTGCTGTCTGAAAA



AATCCGTCCGGGTTCTCTGGTTCCGTGGGACGGTGGTGAACAGTTCGCGACCCTGCACCCGAAACGTCA



GACCCTGTGCGTTATCCACGCGGACATGAACGCGGCGCAGAACCTGCAGCGTCGTTTCTTCGGTCGTTGC



GGTGAAGCGTTCCGTCTGGTTTGCCAGCCGCACGGTGACGACGTTCTGCGTCTGGCGTCTACCCCGGGTG



CGCGTCTGCTGGGTGCGCTGCAGCAGCTGGAAAACGGTCAGGGTGCGTTCGAACTGGTTCGTGACATGG



GTTCTACCTCTCAGATGAACCGTTTCGTTATGAAATCTCTGGGTAAAAAAAAAATCAAACCGCTGCAGG



ACAACAACGGTGACGACGAACTGGAAGACGTTCTGTCTGTTCTGCCGGAAGAAGACGACACCGGTCGTA



TCACCGTTTTCCGTGACTCTTCTGGTATCTTCTTCCCGTGCAACGTTTGGATCCCGGCGAAACAGTTCTGG



CCGGCGGTTCGTGCGATGATCTGGAAAGTTATGGCGTCTCACTCTCTGGGTTAAGAAATCATCCTTAGCG



AAAGCTAAGGATTTTTTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTATT



ACTCAGGAAGCAAAGAGGATTACA





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACTGCGTC


ID
TTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAACAAAGCGGGA


NO:
CCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAAGTCCACATTGATTATT


76
TGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTT



TTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGG



GTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCAT



CACCATACCAAACTGCGTCACCGTCAGAAAAAACTGACCCACGACTGGGCGGGTTCTAAAAAACGTGAA



GTTCTGGGTTCTAACGGTAAACTGCAGAACCCGCTGCTGATGCCGGTTAAAAAAGGTCAGGTTACCGAA



TTCCGTAAAGCGTTCTCTGCGTACGCGCGTGCGACCAAAGGTGAAATGACCGACGGTCGTAAAAACATG



TTCACCCACTCTTTCGAACCGTTCAAAACCAAACCGTCTCTGCACCAGTGCGAACTGGCGGACAAAGCG



TACCAGTCTCTGCACTCTTACCTGCCGGGTTCTCTGGCGCACTTCCTGCTGTCTGCGCACGCGCTGGGTTT



CCGTATCTTCTCTAAATCTGGTGAAGCGACCGCGTTCCAGGCGTCTTCTAAAATCGAAGCGTACGAATCT



AAACTGGCGTCTGAACTGGCGTGCGTTGACCTGTCTATCCAGAACCTGACCATCTCTACCCTGTTCAACG



CGCTGACCACCTCTGTTCGTGGTAAAGGTGAAGAAACCTCTGCGGACCCGCTGATCGCGCGTTTCTACAC



CCTGCTGACCGGTAAACCGCTGTCTCGTGACACCCAGGGTCCGGAACGTGACCTGGCGGAAGTTATCTC



TCGTAAAATCGCGTCTTCTTTCGGTACCTGGAAAGAAATGACCGCGAACCCGCTGCAGTCTCTGCAGTTC



TTCGAAGAAGAACTGCACGCGCTGGACGCGAACGTTTCTCTGTCTCCGGCGTTCGACGTTCTGATCAAAA



TGAACGACCTGCAGGGTGACCTGAAAAACCGTACCATCGTTTTCGACCCGGACGCGCCGGTTTTCGAAT



ACAACGCGGAAGACCCGGCGGACATCATCATCAAACTGACCGCGCGTTACGCGAAAGAAGCGGTTATC



AAAAACCAGAACGTTGGTAACTACGTTAAAAACGCGATCACCACCACCAACGCGAACGGTCTGGGTTGG



CTGCTGAACAAAGGTCTGTCTCTGCTGCCGGTTTCTACCGACGACGAACTGCTGGAATTCATCGGTGTTG



AACGTTCTCACCCGTCTTGCCACGCGCTGATCGAACTGATCGCGCAGCTGGAAGCGCCGGAACTGTTCG



AAAAAAACGTTTTCTCTGACACCCGTTCTGAAGTTCAGGGTATGATCGACTCTGCGGTTTCTAACCACAT



CGCGCGTCTGTCTTCTTCTCGTAACTCTCTGTCTATGGACTCTGAAGAACTGGAACGTCTGATCAAATCTT



TCCAGATCCACACCCCGCACTGCTCTCTGTTCATCGGTGCGCAGTCTCTGTCTCAGCAGCTGGAATCTCT



GCCGGAAGCGCTGCAGTCTGGTGTTAACTCTGCGGACATCCTGCTGGGTTCTACCCAGTACATGCTGACC



AACTCTCTGGTTGAAGAATCTATCGCGACCTACCAGCGTACCCTGAACCGTATCAACTACCTGTCTGGTG



TTGCGGGTCAGATCAACGGTGCGATCAAACGTAAAGCGATCGACGGTGAAAAAATCCACCTGCCGGCG



GCGTGGTCTGAACTGATCTCTCTGCCGTTCATCGGTCAGCCGGTTATCGACGTTGAATCTGACCTGGCGC



ACCTGAAAAACCAGTACCAGACCCTGTCTAACGAATTCGACACCCTGATCTCTGCGCTGCAGAAAAACT



TCGACCTGAACTTCAACAAAGCGCTGCTGAACCGTACCCAGCACTTCGAAGCGATGTGCCGTTCTACCA



AAAAAAACGCGCTGTCTAAACCGGAAATCGTTTCTTACCGTGACCTGCTGGCGCGTCTGACCTCTTGCCT



GTACCGTGGTTCTCTGGTTCTGCGTCGTGCGGGTATCGAAGTTCTGAAAAAACACAAAATCTTCGAATCT



AACTCTGAACTGCGTGAACACGTTCACGAACGTAAACACTTCGTTTTCGTTTCTCCGCTGGACCGTAAAG



CGAAAAAACTGCTGCGTCTGACCGACTCTCGTCCGGACCTGCTGCACGTTATCGACGAAATCCTGCAGC



ACGACAACCTGGAAAACAAAGACCGTGAATCTCTGTGGCTGGTTCGTTCTGGTTACCTGCTGGCGGGTCT



GCCGGACCAGCTGTCTTCTTCTTTCATCAACCTGCCGATCATCACCCAGAAAGGTGACCGTCGTCTGATC



GACCTGATCCAGTACGACCAGATCAACCGTGACGCGTTCGTTATGCTGGTTACCTCTGCGTTCAAATCTA



ACCTGTCTGGTCTGCAGTACCGTGCGAACAAACAGTCTTTCGTTGTTACCCGTACCCTGTCTCCGTACCT



GGGTTCTAAACTGGTTTACGTTCCGAAAGACAAAGACTGGCTGGTTCCGTCTCAGATGTTCGAAGGTCGT



TTCGCGGACATCCTGCAGTCTGACTACATGGTTTGGAAAGACGCGGGTCGTCTGTGCGTTATCGACACCG



CGAAACACCTGTCTAACATCAAAAAATCTGTTTTCTCTTCTGAAGAAGTTCTGGCGTTCCTGCGTGAACT



GCCGCACCGTACCTTCATCCAGACCGAAGTTCGTGGTCTGGGTGTTAACGTTGACGGTATCGCGTTCAAC



AACGGTGACATCCCGTCTCTGAAAACCTTCTCTAACTGCGTTCAGGTTAAAGTTTCTCGTACCAACACCT



CTCTGGTTCAGACCCTGAACCGTTGGTTCGAAGGTGGTAAAGTTTCTCCGCCGTCTATCCAGTTCGAACG



TGCGTACTACAAAAAAGACGACCAGATCCACGAAGACGCGGCGAAACGTAAAATCCGTTTCCAGATGC



CGGCGACCGAACTGGTTCACGCGTCTGACGACGCGGGTTGGACCCCGTCTTACCTGCTGGGTATCGACC



CGGGTGAATACGGTATGGGTCTGTCTCTGGTTTCTATCAACAACGGTGAAGTTCTGGACTCTGGTTTCAT



CCACATCAACTCTCTGATCAACTTCGCGTCTAAAAAATCTAACCACCAGACCAAAGTTGTTCCGCGTCAG



CAGTACAAATCTCCGTACGCGAACTACCTGGAACAGTCTAAAGACTCTGCGGCGGGTGACATCGCGCAC



ATCCTGGACCGTCTGATCTACAAACTGAACGCGCTGCCGGTTTTCGAAGCGCTGTCTGGTAACTCTCAGT



CTGCGGCGGACCAGGTTTGGACCAAAGTTCTGTCTTTCTACACCTGGGGTGACAACGACGCGCAGAACT



CTATCCGTAAACAGCACTGGTTCGGTGCGTCTCACTGGGACATCAAAGGTATGCTGCGTCAGCCGCCGA



CCGAAAAAAAACCGAAACCGTACATCGCGTTCCCGGGTTCTCAGGTTTCTTCTTACGGTAACTCTCAGCG



TTGCTCTTGCTGCGGTCGTAACCCGATCGAACAGCTGCGTGAAATGGCGAAAGACACCTCTATCAAAGA



ACTGAAAATCCGTAACTCTGAAATCCAGCTGTTCGACGGTACCATCAAACTGTTCAACCCGGACCCGTCT



ACCGTTATCGAACGTCGTCGTCACAACCTGGGTCCGTCTCGTATCCCGGTTGCGGACCGTACCTTCAAAA



ACATCTCTCCGTCTTCTCTGGAATTCAAAGAACTGATCACCATCGTTTCTCGTTCTATCCGTCACTCTCCG



GAATTCATCGCGAAAAAACGTGGTATCGGTTCTGAATACTTCTGCGCGTACTCTGACTGCAACTCTTCTC



TGAACTCTGAAGCGAACGCGGCGGCGAACGTTGCGCAGAAATTCCAGAAACAGCTGTTCTTCGAACTGT



AAGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAAT



ATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGATTACA





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACTGCGTC


ID
TTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAACAAAGCGGGA


NO:
CCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAAGTCCACATTGATTATT


77
TGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTT



TTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGG



GTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCAT



CACCATAAACGTATCCTGAACTCTCTGAAAGTTGCGGCGCTGCGTCTGCTGTTCCGTGGTAAAGGTTCTG



AACTGGTTAAAACCGTTAAATACCCGCTGGTTTCTCCGGTTCAGGGTGCGGTTGAAGAACTGGCGGAAG



CGATCCGTCACGACAACCTGCACCTGTTCGGTCAGAAAGAAATCGTTGACCTGATGGAAAAAGACGAAG



GTACCCAGGTTTACTCTGTTGTTGACTTCTGGCTGGACACCCTGCGTCTGGGTATGTTCTTCTCTCCGTCT



GCGAACGCGCTGAAAATCACCCTGGGTAAATTCAACTCTGACCAGGTTTCTCCGTTCCGTAAAGTTCTGG



AACAGTCTCCGTTCTTCCTGGCGGGTCGTCTGAAAGTTGAACCGGCGGAACGTATCCTGTCTGTTGAAAT



CCGTAAAATCGGTAAACGTGAAAACCGTGTTGAAAACTACGCGGCGGACGTTGAAACCTGCTTCATCGG



TCAGCTGTCTTCTGACGAAAAACAGTCTATCCAGAAACTGGCGAACGACATCTGGGACTCTAAAGACCA



CGAAGAACAGCGTATGCTGAAAGCGGACTTCTTCGCGATCCCGCTGATCAAAGACCCGAAAGCGGTTAC



CGAAGAAGACCCGGAAAACGAAACCGCGGGTAAACAGAAACCGCTGGAACTGTGCGTTTGCCTGGTTC



CGGAACTGTACACCCGTGGTTTCGGTTCTATCGCGGACTTCCTGGTTCAGCGTCTGACCCTGCTGCGTGA



CAAAATGTCTACCGACACCGCGGAAGACTGCCTGGAATACGTTGGTATCGAAGAAGAAAAAGGTAACG



GTATGAACTCTCTGCTGGGTACCTTCCTGAAAAACCTGCAGGGTGACGGTTTCGAACAGATCTTCCAGTT



CATGCTGGGTTCTTACGTTGGTTGGCAGGGTAAAGAAGACGTTCTGCGTGAACGTCTGGACCTGCTGGC



GGAAAAAGTTAAACGTCTGCCGAAACCGAAATTCGCGGGTGAATGGTCTGGTCACCGTATGTTCCTGCA



CGGTCAGCTGAAATCTTGGTCTTCTAACTTCTTCCGTCTGTTCAACGAAACCCGTGAACTGCTGGAATCT



ATCAAATCTGACATCCAGCACGCGACCATGCTGATCTCTTACGTTGAAGAAAAAGGTGGTTACCACCCG



CAGCTGCTGTCTCAGTACCGTAAACTGATGGAACAGCTGCCGGCGCTGCGTACCAAAGTTCTGGACCCG



GAAATCGAAATGACCCACATGTCTGAAGCGGTTCGTTCTTACATCATGATCCACAAATCTGTTGCGGGTT



TCCTGCCGGACCTGCTGGAATCTCTGGACCGTGACAAAGACCGTGAATTCCTGCTGTCTATCTTCCCGCG



TATCCCGAAAATCGACAAAAAAACCAAAGAAATCGTTGCGTGGGAACTGCCGGGTGAACCGGAAGAAG



GTTACCTGTTCACCGCGAACAACCTGTTCCGTAACTTCCTGGAAAACCCGAAACACGTTCCGCGTTTCAT



GGCGGAACGTATCCCGGAAGACTGGACCCGTCTGCGTTCTGCGCCGGTTTGGTTCGACGGTATGGTTAA



ACAGTGGCAGAAAGTTGTTAACCAGCTGGTTGAATCTCCGGGTGCGCTGTACCAGTTCAACGAATCTTTC



CTGCGTCAGCGTCTGCAGGCGATGCTGACCGTTTACAAACGTGACCTGCAGACCGAAAAATTCCTGAAA



CTGCTGGCGGACGTTTGCCGTCCGCTGGTTGACTTCTTCGGTCTGGGTGGTAACGACATCATCTTCAAAT



CTTGCCAGGACCCGCGTAAACAGTGGCAGACCGTTATCCCGCTGTCTGTTCCGGCGGACGTTTACACCGC



GTGCGAAGGTCTGGCGATCCGTCTGCGTGAAACCCTGGGTTTCGAATGGAAAAACCTGAAAGGTCACGA



ACGTGAAGACTTCCTGCGTCTGCACCAGCTGCTGGGTAACCTGCTGTTCTGGATCCGTGACGCGAAACTG



GTTGTTAAACTGGAAGACTGGATGAACAACCCGTGCGTTCAGGAATACGTTGAAGCGCGTAAAGCGATC



GACCTGCCGCTGGAAATCTTCGGTTTCGAAGTTCCGATCTTCCTGAACGGTTACCTGTTCTCTGAACTGC



GTCAGCTGGAACTGCTGCTGCGTCGTAAATCTGTTATGACCTCTTACTCTGTTAAAACCACCGGTTCTCC



GAACCGTCTGTTCCAGCTGGTTTACCTGCCGCTGAACCCGTCTGACCCGGAAAAAAAAAACTCTAACAA



CTTCCAGGAACGTCTGGACACCCCGACCGGTCTGTCTCGTCGTTTCCTGGACCTGACCCTGGACGCGTTC



GCGGGTAAACTGCTGACCGACCCGGTTACCCAGGAACTGAAAACCATGGCGGGTTTCTACGACCACCTG



TTCGGTTTCAAACTGCCGTGCAAACTGGCGGCGATGTCTAACCACCCGGGTTCTTCTTCTAAAATGGTTG



TTCTGGCGAAACCGAAAAAAGGTGTTGCGTCTAACATCGGTTTCGAACCGATCCCGGACCCGGCGCACC



CGGTTTTCCGTGTTCGTTCTTCTTGGCCGGAACTGAAATACCTGGAAGGTCTGCTGTACCTGCCGGAAGA



CACCCCGCTGACCATCGAACTGGCGGAAACCTCTGTTTCTTGCCAGTCTGTTTCTTCTGTTGCGTTCGACC



TGAAAAACCTGACCACCATCCTGGGTCGTGTTGGTGAATTCCGTGTTACCGCGGACCAGCCGTTCAAACT



GACCCCGATCATCCCGGAAAAAGAAGAATCTTTCATCGGTAAAACCTACCTGGGTCTGGACGCGGGTGA



ACGTTCTGGTGTTGGTTTCGCGATCGTTACCGTTGACGGTGACGGTTACGAAGTTCAGCGTCTGGGTGTT



CACGAAGACACCCAGCTGATGGCGCTGCAGCAGGTTGCGTCTAAATCTCTGAAAGAACCGGTTTTCCAG



CCGCTGCGTAAAGGTACCTTCCGTCAGCAGGAACGTATCCGTAAATCTCTGCGTGGTTGCTACTGGAACT



TCTACCACGCGCTGATGATCAAATACCGTGCGAAAGTTGTTCACGAAGAATCTGTTGGTTCTTCTGGTCT



GGTTGGTCAGTGGCTGCGTGCGTTCCAGAAAGACCTGAAAAAAGCGGACGTTCTGCCGAAAAAAGGTG



GTAAAAACGGTGTTGACAAAAAAAAACGTGAATCTTCTGCGCAGGACACCCTGTGGGGTGGTGCGTTCT



CTAAAAAAGAAGAACAGCAGATCGCGTTCGAAGTTCAGGCGGCGGGTTCTTCTCAGTTCTGCCTGAAAT



GCGGTTGGTGGTTCCAGCTGGGTATGCGTGAAGTTAACCGTGTTCAGGAATCTGGTGTTGTTCTGGACTG



GAACCGTTCTATCGTTACCTTCCTGATCGAATCTTCTGGTGAAAAAGTTTACGGTTTCTCTCCGCAGCAG



CTGGAAAAAGGTTTCCGTCCGGACATCGAAACCTTCAAAAAAATGGTTCGTGACTTCATGCGTCCGCCG



ATGTTCGACCGTAAAGGTCGTCCGGCGGCGGCGTACGAACGTTTCGTTCTGGGTCGTCGTCACCGTCGTT



ACCGTTTCGACAAAGTTTTCGAAGAACGTTTCGGTCGTTCTGCGCTGTTCATCTGCCCGCGTGTTGGTTGC



GGTAACTTCGACCACTCTTCTGAACAGTCTGCGGTTGTTCTGGCGCTGATCGGTTACATCGCGGACAAAG



AAGGTATGTCTGGTAAAAAACTGGTTTACGTTCGTCTGGCGGAACTGATGGCGGAATGGAAACTGAAAA



AACTGGAACGTTCTCGTGTTGAAGAACAGTCTTCTGCGCAGTAAGAAATCATCCTTAGCGAAAGCTAAG



GATTTTTTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAA



GCAAAGAGGATTACA





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACTGCGTC


ID
TTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAACAAAGCGGGA


NO:
CCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAAGTCCACATTGATTATT


78
TGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTT



TTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGG



GTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCAT



CACCATGCGGAATCTAAACAGATGCAGTGCCGTAAATGCGGTGCGTCTATGAAATACGAAGTTATCGGT



CTGGGTAAAAAATCTTGCCGTTACATGTGCCCGGACTGCGGTAACCACACCTCTGCGCGTAAAATCCAG



AACAAAAAAAAACGTGACAAAAAATACGGTTCTGCGTCTAAAGCGCAGTCTCAGCGTATCGCGGTTGCG



GGTGCGCTGTACCCGGACAAAAAAGTTCAGACCATCAAAACCTACAAATACCCGGCGGACCTGAACGGT



GAAGTTCACGACTCTGGTGTTGCGGAAAAAATCGCGCAGGCGATCCAGGAAGACGAAATCGGTCTGCTG



GGTCCGTCTTCTGAATACGCGTGCTGGATCGCGTCTCAGAAACAGTCTGAACCGTACTCTGTTGTTGACT



TCTGGTTCGACGCGGTTTGCGCGGGTGGTGTTTTCGCGTACTCTGGTGCGCGTCTGCTGTCTACCGTTCTG



CAGCTGTCTGGTGAAGAATCTGTTCTGCGTGCGGCGCTGGCGTCTTCTCCGTTCGTTGACGACATCAACC



TGGCGCAGGCGGAAAAATTCCTGGCGGTTTCTCGTCGTACCGGTCAGGACAAACTGGGTAAACGTATCG



GTGAATGCTTCGCGGAAGGTCGTCTGGAAGCGCTGGGTATCAAAGACCGTATGCGTGAATTCGTTCAGG



CGATCGACGTTGCGCAGACCGCGGGTCAGCGTTTCGCGGCGAAACTGAAAATCTTCGGTATCTCTCAGA



TGCCGGAAGCGAAACAGTGGAACAACGACTCTGGTCTGACCGTTTGCATCCTGCCGGACTACTACGTTC



CGGAAGAAAACCGTGCGGACCAGCTGGTTGTTCTGCTGCGTCGTCTGCGTGAAATCGCGTACTGCATGG



GTATCGAAGACGAAGCGGGTTTCGAACACCTGGGTATCGACCCGGGTGCGCTGTCTAACTTCTCTAACG



GTAACCCGAAACGTGGTTTCCTGGGTCGTCTGCTGAACAACGACATCATCGCGCTGGCGAACAACATGT



CTGCGATGACCCCGTACTGGGAAGGTCGTAAAGGTGAACTGATCGAACGTCTGGCGTGGCTGAAACACC



GTGCGGAAGGTCTGTACCTGAAAGAACCGCACTTCGGTAACTCTTGGGCGGACCACCGTTCTCGTATCTT



CTCTCGTATCGCGGGTTGGCTGTCTGGTTGCGCGGGTAAACTGAAAATCGCGAAAGACCAGATCTCTGG



TGTTCGTACCGACCTGTTCCTGCTGAAACGTCTGCTGGACGCGGTTCCGCAGTCTGCGCCGTCTCCGGAC



TTCATCGCGTCTATCTCTGCGCTGGACCGTTTCCTGGAAGCGGCGGAATCTTCTCAGGACCCGGCGGAAC



AGGTTCGTGCGCTGTACGCGTTCCACCTGAACGCGCCGGCGGTTCGTTCTATCGCGAACAAAGCGGTTCA



GCGTTCTGACTCTCAGGAATGGCTGATCAAAGAACTGGACGCGGTTGACCACCTGGAATTCAACAAAGC



GTTCCCGTTCTTCTCTGACACCGGTAAAAAAAAAAAAAAAGGTGCGAACTCTAACGQTGCGCCGTCTGA



AGAAGAATACACCGAAACCGAATCTATCCAGCAGCCGGAAGACGCGGAACAGGAAGTTAACGGTCAGG



AAGGTAACGGTGCGTCTAAAAACCAGAAAAAATTCCAGCGTATCCCGCGTTTCTTCGGTGAAGGTTCTC



GTTCTGAATACCGTATCCTGACCGAAGCGCCGCAGTACTTCGACATGTTCTGCAACAACATGCGTGCGAT



CTTCATGCAGCTGGAATCTCAGCCGCGTAAAGCGCCGCGTGACTTCAAATGCTTCCTGCAGAACCGTCTG



CAGAAACTGTACAAACAGACCTTCCTGAACGCGCGTTCTAACAAATGCCGTGCGCTGCTGGAATCTGTT



CTGATCTCTTGGGGTGAATTCTACACCTACGGTGCGAACGAAAAAAAATTCCGTCTGCGTCACGAAGCG



TCTGAACGTTCTTCTGACCCGGACTACGTTGTTCAGCAGGCGCTGGAAATCGCGCGTCGTCTGTTCCTGT



TCGGTTTCGAATGGCGTGACTGCTCTGCGGGTGAACGTGTTGACCTGGTTGAAATCCACAAAAAAGCGA



TCTCTTTCCTGCTGGCGATCACCCAGGCGGAAGTTTCTGTTGGTTCTTACAACTGGCTGGGTAACTCTACC



GTTTCTCGTTACCTGTCTGTTGCGGGTACCGACACCCTGTACGGTACCCAGCTGGAAGAATTCCTGAACG



CGACCGTTCTGTCTCAGATGCGTGGTCTGGCGATCCGTCTGTCTTCTCAGGAACTGAAAGACGGTTTCGA



CGTTCAGCTGGAATCTTCTTGCCAGGACAACCTGCAGCACCTGCTGGTTTACCGTGCGTCTCGTGACCTG



GCGGCGTGCAAACGTGCGACCTGCCCGGCGGAACTGGACCCGAAAATCCTGGTTCTGCCGGTTGGTGCG



TTCATCGCGTCTGTTATGAAAATGATCGAACGTGGTGACGAACCGCTGGCGGGTGCGTACCTGCGTCAC



CGTCCGCACTCTTTCGGTTGGCAGATCCGTGTTCGTGGTGTTGCGGAAGTTGGTATGGACCAGGGTACCG



CGCTGGCGTTCCAGAAACCGACCGAATCTGAACCGTTCAAAATCAAACCGTTCTCTGCGCAGTACGGTC



CGGTTCTGTGGCTGAACTCTTCTTCTTACTCTCAGTCTCAGTACCTGGACGGTTTCCTGTCTCAGCCGAAA



AACTGGTCTATGCGTGTTCTGCCGCAGGCGGGTTCTGTTCGTGTTGAACAGCGTGTTGCGCTGATCTGGA



ACCTGCAGGCGGGTAAAATGCGTCTGGAACGTTCTGGTGCGCGTGCGTTCTTCATGCCGGTTCCGTTCTC



TTTCCGTCCGTCTGGTTCTGGTGACGAAGCGGTTCTGGCGCCGAACCGTTACCTGGGTCTGTTCCCGCAC



TCTGGTGGTATCGAATACGCGGTTGTTGACGTTCTGGACTCTGCGGGTTTCAAAATCCTGGAACGTGGTA



CCATCGCGGTTAACGGTTTCTCTCAGAAACGTGGTGAACGTCAGGAAGAAGCGCACCGTGAAAAACAGC



GTCGTGGTATCTCTGACATCGGTCGTAAAAAACCGGTTCAGGCGGAAGTTGACGCGGCGAACGAACTGC



ACCGTAAATACACCGACGTTGCGACCCGTCTGGGTTGCCGTATCGTTGTTCAGTGGGCGCCGCAGCCGA



AACCGGGTACCGCGCCGACCGCGCAGACCGTTTACGCGCGTGCGGTTCGTACCGAAGCGCCGCGTTCTG



GTAACCAGGAAGACCACGCGCGTATGAAATCTTCTTGGGGTTACACCTGGGGTACCTACTGGGAAAAAC



GTAAACCGGAAGACATCCTGGGTATCTCTACCCAGGTTTACTGGACCGGTGGTATCGGTGAATCTTGCCC



GGCGGTTGCGGTTGCGCTGCTGGGTCACATCCGTGCGACCTCTACCCAGACCGAATGGGAAAAAGAAGA



AGTTGTTTTCGGTCGTCTGAAAAAATTCTTCCCGTCTTAAGAAATCATCCTTAGCGAAAGCTAAGGATTT



TTTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAA



GAGGATTACA





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACTGCGTC


ID
TTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAACAAAGCGGGA


NO:
CCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAAGTCCACATTGATTATT


79
TGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTT



TTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGG



GTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCAT



CACCATGAAAAACGTATCAACAAAATCCGTAAAAAACTGTCTGCGGACAACGCGACCAAACCGGTTTCT



CGTTCTGGTCCGATGAAAACCCTGCTGGTTCGTGTTATGACCGACGACCTGAAAAAACGTCTGGAAAAA



CGTCGTAAAAAACCGGAAGTTATGCCGCAGGTTATCTCTAACAACGCGGCGAACAACCTGCGTATGCTG



CTGGACGACTACACCAAAATGAAAGAAGCGATCCTGCAGGTTTACTGGCAGGAATTCAAAGACGACCA



CGTTGGTCTGATGTGCAAATTCGCGCAGCCGGCGTCTAAAAAAATCGACCAGAACAAACTGAAACCGGA



AATGGACGAAAAAGGTAACCTGACCACCGCGGGTTTCGCGTGCTCTCAGTGCGGTCAGCCGCTGTTCGT



TTACAAACTGGAACAGGTTTCTGAAAAAGGTAAAGCGTACACCAACTACTTCGGTCGTTGCAACGTTGC



GGAACACGAAAAACTGATCCTGCTGGCGCAGCTGAAACCGGAAAAAGACTCTGACGAAGCGGTTACCT



ACTCTCTGGGTAAATTCGGTCAGCGTGCGCTGGACTTCTACTCTATCCACGTTACCAAAGAATCTACCCA



CCCGGTTAAACCGCTGGCGCAGATCGCGGGTAACCGTTACGCGTCTGGTCCGGTTGGTAAAGCGCTGTC



TGACGCGTGCATGGGTACCATCGCGTCTTTCCTGTCTAAATACCAGGACATCATCATCGAACACCAGAA



AGTTGTTAAAGGTAACCAGAAACGTCTGGAATCTCTGCGTGAACTGGCGGGTAAAGAAAACCTGGAATA



CCCGTCTGTTACCCTGCCGCCGCAGCCGCACACCAAAGAAGGTGTTGACGCGTACAACGAAGTTATCGC



GCGTGTTCGTATGTGGGTTAACCTGAACCTGTGGCAGAAACTGAAACTGTCTCGTGACGACGCGAAACC



GCTGCTGCGTCTGAAAGGTTTCCCGTCTTTCCCGGTTGTTGAACGTCGTGAAAACGAAGTTGACTGGTGG



AACACCATCAACGAAGTTAAAAAACTGATCGACGCGAAACGTGACATGGGTCGTGTTTTCTGGTCTGGT



GTTACCGCGGAAAAACGTAACACCATCCTGGAAGGTTACAACTACCTGCCGAACGAAAACGACCACAA



AAAACGTGAAGGTTCTCTGGAAAACCCGAAAAAACCGGCGAAACGTCAGTTCGGTGACCTGCTGCTGTA



CCTGGAAAAAAAATACGCGGGTGACTGGGGTAAAGTTTTCGACGAAGCGTGGGAACGTATCGACAAAA



AAATCGCGGGTCTGACCTCTCACATCGAACGTGAAGAAGCGCGTAACGCGGAAGACGCGCAGTCTAAA



GCGGTTCTGACCGACTGGCTGCGTGCGAAAGCGTCTTTCGTTCTGGAACGTCTGAAAGAAATGGACGAA



AAAGAATTCTACGCGTGCGAAATCCAGCTGCAGAAATGGTACGGTGACCTGCGTGGTAACCCGTTCGCG



GTTGAAGCGGAAAACCGTGTTGTTGACATCTCTGGTTTCTCTATCGGTTCTGACGGTCACTCTATCCAGT



ACCGTAACCTGCTGGCGTGGAAATACCTGGAAAACGGTAAACGTGAATTCTACCTGCTGATGAACTACG



GTAAAAAAGGTCGTATCCGTTTCACCGACGGTACCGACATCAAAAAATCTGGTAAATGGCAGGGTCTGC



TGTACGGTGGTGGTAAAGCGAAAGTTATCGACCTGACCTTCGACCCGGACGACGAACAGCTGATCATCC



TGCCGCTGGCGTTCGGTACCCGTCAGGGTCGTGAATTCATCTGGAACGACCTGCTGTCTCTGGAAACCGG



TCTGATCAAACTGGCGAACGGTCGTGTTATCGAAAAAACCATCTACAACAAAAAAATCGGTCGTGACGA



ACCGGCGCTGTTCGTTGCGCTGACCTTCGAACGTCGTGAAGTTGTTGACCCGTCTAACATCAAACCGGTT



AACCTGATCGGTGTTGACCGTGGTGAAAACATCCCGGCGGTTATCGCGCTGACCGACCCGGAAGGTTGC



CCGCTGCCGGAATTCAAAGACTCTTCTGGTGGTCCGACCGACATCCTGCGTATCGGTGAAGGTTACAAA



GAAAAACAGCGTGCGATCCAGGCGGCGAAAGAAGTTGAACAGCGTCGTGCGGGTGGTTACTCTCGTAA



ATTCGCGTCTAAATCTCGTAACCTGGCGGACGACATGGTTCGTAACTCTGCGCGTGACCTGTTCTACCAC



GCGGTTACCCACGACGCGGTTCTGGTTTTCGAAAACCTGTCTCGTGGTTTCGGTCGTCAGGGTAAACGTA



CCTTCATGACCGAACGTCAGTACACCAAAATGGAAGACTGGCTGACCGCGAAACTGGCGTACGAAGGTC



TGACCTCTAAAACCTACCTGTCTAAAACCCTGGCGCAGTACACCTCTAAAACCTGCTCTAACTGCGGTTT



CACCATCACCACCGCGGACTACGACGGTATGCTGGTTCGTCTGAAAAAAACCTCTGACGGTTGGGCGAC



CACCCTGAACAACAAAGAACTGAAAGCGGAAGGTCAGATCACCTACTACAACCGTTACAAACGTCAGA



CCGTTGAAAAAGAACTGTCTGCGGAACTGGACCGTCTGTCTGAAGAATCTGGTAACAACGACATCTCTA



AATGGACCAAAGGTCGTCGTGACGAAGCGCTGTTCCTGCTGAAAAAACGTTTCTCTCACCGTCCGGTTCA



GGAACAGTTCGTTTGCCTGGACTGCGGTCACGAAGTTCACGCGGACGAACAGGCGGCGCTGAACATCGC



GCGTTCTTGGCTGTTCCTGAACTCTAACTCTACCGAATTCAAATCTTACAAATCTGGTAAACAGCCGTTC



GTTGGTGCGTGGCAGGCGTTCTACAAACGTCGTCTGAAAGAAGTTTGGAAACCGAACGCGTAAGAAATC



ATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATGTAGGGAGACCCTCAGGTTAAATATTCACTCA



GGAAGTTATTACTCAGGAAGCAAAGAGGATTACA





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTGCCGTCACTGCGTC


ID
TTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAACAAAGCGGGA


NO:
CCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAAGTCCACATTGATTATT


80
TGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATTAGCGGATCCTACCTGACGCTT



TTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGCTAGCAGTAATACGACTCACTATAGGG



GTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTTTAAGAGGAGGATATACCATGCACCATCATCAT



CACCATAAACGTATCAACAAAATCCGTCGTCGTCTGGTTAAAGACTCTAACACCAAAAAAGCGGGTAAA



ACCGGTCCGATGAAAACCCTGCTGGTTCGTGTTATGACCCCGGACCTGCGTGAACGTCTGGAAAACCTG



CGTAAAAAACCGGAAAACATCCCGCAGCCGATCTCTAACACCTCTCGTGCGAACCTGAACAAACTGCTG



ACCGACTACACCGAAATGAAAAAAGCGATCCTGCACGTTTACTGGGAAGAATTCCAGAAAGACCCGGTT



GGTCTGATGTCTCGTGTTGCGCAGCCGGCGCCGAAAAACATCGACCAGCGTAAACTGATCCCGGTTAAA



GACGGTAACGAACGTCTGACCTCTTCTGGTTTCGCGTGCTCTCAGTGCTGCCAGCCGCTGTACGTTTACA



AACTGGAACAGGTTAACGACAAAGGTAAACCGCACACCAACTACTTCGGTCGTTGCAACGTTTCTGAAC



ACGAACGTCTGATCCTGCTGTCTCCGCACAAACCGGAAGCGAACGACGAACTGGTTACCTACTCTCTGG



GTAAATTCGGTCAGCGTGCGCTGGACTTCTACTCTATCCACGTTACCCGTGAATCTAACCACCCGGTTAA



ACCGCTGGAACAGATCGGTGGTAACTCTTGCGCGTCTGGTCCGGTTGGTAAAGCGCTGTCTGACGCGTG



CATGGGTGCGGTTGCGTCTTTCCTGACCAAATACCAGGACATCATCCTGGAACACCAGAAAGTTATCAA



AAAAAACGAAAAACGTCTGGCGAACCTGAAAGACATCGCGTCTGCGAACGGTCTGGCGTTCCCGAAAA



TCACCCTGCCGCCGCAGCCGCACACCAAAGAAGGTATCGAAGCGTACAACAACGTTGTTGCGCAGATCG



TTATCTGGGTTAACCTGAACCTGTGGCAGAAACTGAAAATCGGTCGTGACGAAGCGAAACCGCTGCAGC



GTCTGAAAGGTTTCCCGTCTTTCCCGCTGGTTGAACGTCAGGCGAACGAAGTTGACTGGTGGGACATGGT



TTGCAACGTTAAAAAACTGATCAACGAAAAAAAAGAAGACGGTAAAGTTTTCTGGCAGAACCTGGCGG



GTTACAAACGTCAGGAAGCGCTGCTGCCGTACCTGTCTTCTGAAGAAGACCGTAAAAAAGGTAAAAAAT



TCGCGCGTTACCAGTTCGGTGACCTGCTGCTGCACCTGGAAAAAAAACACGGTGAAGACTGGGGTAAAG



TTTACGACGAAGCGTGGGAACGTATCGACAAAAAAGTTGAAGGTCTGTCTAAACACATCAAACTGGAAG



AAGAACGTCGTTCTGAAGACGCGCAGTCTAAAGCGGCGCTGACCGACTGGCTGCGTGCGAAAGCGTCTT



TCGTTATCGAAGGTCTGAAAGAAGCGGACAAAGACGAATTCTGCCGTTGCGAACTGAAACTGCAGAAAT



GGTACGGTGACCTGCGTGGTAAACCGTTCGCGATCGAAGCGGAAAACTCTATCCTGGACATCTCTGGTTT



CTCTAAACAGTACAACTGCGCGTTCATCTGGCAGAAAGACGGTGTTAAAAAACTGAACCTGTACCTGAT



CATCAACTACTTCAAAGGTGGTAAACTGCGTTTCAAAAAAATCAAACCGGAAGCGTTCGAAGCGAACCG



TTTCTACACCGTTATCAACAAAAAATCTGGTGAAATCGTTCCGATGGAAGTTAACTTCAACTTCGACGAC



CCGAACCTGATCATCCTGCCGCTGGCGTTCGGTAAACGTCAGGGTCGTGAATTCATCTGGAACGACCTGC



TGTCTCTGGAAACCGGTTCTCTGAAACTGGCGAACGGTCGTGTTATCGAAAAAACCCTGTACAACCGTC



GTACCCGTCAGGACGAACCGGCGCTGTTCGTTGCGCTGACCTTCGAACGTCGTGAAGTTCTGGACTCTTC



TAACATCAAACCGATGAACCTGATCGGTATCGACCGTGGTGAAAACATCCCGGCGGTTATCGCGCTGAC



CGACCCGGAAGGTTGCCCGCTGTCTCGTTTCAAAGACTCTCTGGGTAACCCGACCCACATCCTGCGTATC



GGTGAATCTTACAAAGAAAAACAGCGTACCATCCAGGCGGCGAAAGAAGTTGAACAGCGTCGTGCGGG



TGGTTACTCTCGTAAATACGCGTCTAAAGCGAAAAACCTGGCGGACGACATGGTTCGTAACACCGCGCG



TGACCTGCTGTACTACGCGGTTACCCAGGACGCGATGCTGATCTTCGAAAACCTGTCTCGTGGTTTCGGT



CGTCAGGGTAAACGTACCTTCATGGCGGAACGTCAGTACACCCGTATGGAAGACTGGCTGACCGCGAAA



CTGGCGTACGAAGGTCTGCCGTCTAAAACCTACCTGTCTAAAACCCTGGCGCAGTACACCTCTAAAACCT



GCTCTAACTGCGGTTTCACCATCACCTCTGCGGACTACGACCGTGTTCTGGAAAAACTGAAAAAAACCG



CGACCGGTTGGATGACCACCATCAACGGTAAAGAACTGAAAGTTGAAGGTCAGATCACCTACTACAACC



GTTACAAACGTCAGAACGTTGTTAAAGACCTGTCTGTTGAACTGGACCGTCTGTCTGAAGAATCTGTTAA



CAACGACATCTCTTCTTGGACCAAAGGTCGTTCTGGTGAAGCGCTGTCTCTGCTGAAAAAACGTTTCTCT



CACCGTCCGGTTCAGGAAAAATTCGTTTGCCTGAACTGCGGTTTCGAAACCCACGCGGACGAACAGGCG



GCGCTGAACATCGCGCGTTCTTGGCTGTTCCTGCGTTCTCAGGAATACAAAAAATACCAGACCAACAAA



ACCACCGGTAACACCGACAAACGTGCGTTCGTTGAAACCTGGCAGTCTTTCTACCGTAAAAAACTGAAA



GAAGTTTGGAAACCGGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATGTAGGGAGAC



CCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGATTACA





SEQ
tgccgtcactgcgtcttttactggctcttctcgctaaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagccatgacaaaaacgcgtaacaaa


ID
agtgtctataatcacggcagaaaagtccacattgattatttgcacggcgtcacactttgctatgccatagcatttttatccataagattagcggatcctacctgacgctttttatcgc


NO:
aactactactgtttctccatacccgtttttttgggctagcaccgcctatctcgtgtgagataggcggagatacgaactttaagAAGGAGatatacc


81






SEQ
TGCCGTCACTGCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCT


ID
GTAACAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAAG


NO:
TCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATTAGCGGAT


82
CCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGTAGCGGATCCTAC



CTGAC





SEQ
AATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTCAAACAGGTTTCTAGAGCACAGCT


ID
AACACCACGTCGTCCCTATCTGCTGCCCTAGGTCTATGAGTGGTTGCTGGATAACTTTACGGGCATGCAT


NO:
AAGGCTCGTAATATATATTCAGGGAGACCACAACGGTTTCCCTCTACAAATAATTTTGTTTAACTTTTAC


83
TAGAGCTAGCAGTAATACGACTCACTATAGGGGTCTCATCTCGTGTGAGATAGGCGGAGATACGAACTT



TAAGAGGAGGATATACCA





SEQ
GTTTGAGAGATATGTAAATTCAAAGGATAATCAAAC


ID



NO:



84






SEQ
actacattttttaagacctaattttgagt


ID



NO:



85






SEQ
ctcaaaactcattcgaatctctactctttgtagat


ID



NO:



86






SEQ
CTCTAGCAGGCCTGGCAAATTTCTACTGTTGTAGAT


ID



NO:



87






SEQ
CCGTCTAAAACTCATTCAGAATTTCTACTAGTGTAGAT


ID



NO:



88






SEQ
GTCTAGGTACTCTCTTTAATTTCTACTATTGT


ID



NO:



89






SEQ
gttaagttatatagaataatttctactgttgtaga


ID



NO:



90






SEQ
gtttaaaaccactttaaaatttctactattgta


ID



NO:



91






SEQ
GTTTGAGAATGATGTAAAAATGTATGGTACACAGAAATGTTTTAATACCATATTTTTACATCACTCTCAA


ID
ACATACATCTCTTGTTACTGTTTATCGTATCCAGATTAAATTTCACGTTTTT


NO:



92






SEQ
CTCTACAACTGATAAAGAATTTCTACTTTTGTAGAT


ID



NO:



93






SEQ
GTCTGGCCCCAAATTTTAATTTCTACTGTTGTAGAT


ID



NO:



94






SEQ
GTCAAAAGACCTTTTTAATTTCTACTCTTGTAGAT


ID



NO:



95






SEQ
GTCTAGAGGACAGAATTTTTCAACGGGTGTGCCAATGGCCACTTTCCAGGTGGCAAAGCCCGTTGAGCT


ID
TCTACGGAAGTGGCAC


NO:



96






SEQ
CGAGGTTCTGTCTTTTGGTCAGGACAACCGTCTAGCTATAAGTGCTGCAGGGGTGTGAGAAACTCCTATT


ID
GCTGGACGATGTCTCTTTTAACGAGGCATTAGCAC


NO:



97






SEQ
GAACGAGGGACGTTTTGTCTCCAATGATTTTGCTATGACGACCTCGAACTGTGCCTTCAAGTCTGAGGCG


ID
AAAAAGAAATGGAAAAAAGTGTCTCATCGCTCTACCTCGTAGTTAGAGG


NO:



98






SEQ
AATTACTGATGTTGTGATGAAGG


ID



NO:



99






SEQ
TATACCATAAGGATTTAAAGACT


ID



NO:



100






SEQ
GTCTTTACTCTCACCTTTCCACCTG


ID



NO:



101






SEQ
ATTTGAAGGTATCTCCGATAAGTAAAACGCATCAAAG


ID



NO:



102






SEQ
GTTTGAAGATATCTCCGATAAATAAGAAGCATCAAAG


ID



NO:



103






SEQ
TTGTTTTAATACCATATTTTTACATCACTCTCAAAC


ID



NO:



104






SEQ
AAAGAACGCTCGCTCAGTGTTCTGACCTTTCGAGCGCCTGTTCAGGGCGAAAACCCTGGGAGGCGCTCG


ID
AATCATAGGTGGGACAAGGGATTCGCGGCGAAAA


NO:



105






SEQ
GTTTGAGAATGATGTAAAAATGTATGGTACACAGAAATGTTTTAATACCATATTTTTACATCACTCTCAA


ID
ACATACATCTCTTGTTACTGTTTATCGTATCCAGATTAAATTTCACGTTTTT


NO:



106






SEQ
GTCTAGAGGACAGAATTTTTCAACGGGTGTGCCAATGGCCACTTTCCAGGTGGCAAAGCCCGTTGAGCT


ID
TCTACGGAAGTGGCAC


NO:



107






SEQ
MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVC


ID
ISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLIL


NO:
WLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPK


108
FLENKAKYESLKDKAPEAINYEQIKKDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITK



FNTIIGGKFVNGENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVT



TMQSFYEQIAAFKTVEEKSIKETESLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEY



ITQQIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFD



EIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHISQSEDKANILDKDEH



FYLVFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYL



GVMNKKNNKIFDDKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNESEDILRIRNHSTHTKN



GSPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENIS



ESYIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKK



ITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKAND



VHILESIDRGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEM



KEGYESQVVHEIAKLVIEYNAIVVFEDENFGFKRGRFKVEKQVYQKLEKMLIEKENYLVFKDNEEDKTGG



VLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICYNLD



KGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEYGHGEC



IKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDADANGAY



HIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN





SEQ
MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQFFIEEILSSVC


ID
ISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLIL


NO:
WLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGFHENRKNVYSSDDIPTSIIYRIVDDNLPK


109
FLENKAKYESLKDKAPEAINYEQIKKDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITK



FNTIIGGKFVNGENTKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVT



TMQSFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEY



ITQQVAPKNLDNPSKKEQDLIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIPMIFD



EIAQNKDNLAQISLKYQNQGKKDLLQASAEEDVKAIKDLLDQTNNLLHRLKIFHISQSEDKANILDKDEH



FYLVFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYL



GVMNKKNNKIFDDKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKN



GNPQKGYEKFEFNIEDCRKFIDFYKESISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLTFENIS



ESYIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDERNEQDVVYKLNGEAELFYRKQSIPKK



ITHPAKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKAND



VHILSIDRGERHLAYYTLVDGKGNIIKQDTNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEM



KEGYLSQVVHEIAKLVIEHNAIVVFEDLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEFDKTGG



VLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICYNLD



KGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEYGHGEC



IKAAICGESDKKFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDADANGAY



HIGLKGLMLLDRIKNNQEGKKLNLVIKNEEYFEFVQNRNN





SEQ
MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRY


ID
TRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTTYHLRKKLVDST


NO:
DKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSR


110
RLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLA



AKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDG



GASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREK



IEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSL



LYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED



RFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTG



WGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSP



AIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENT



QLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEV



VKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDEN



DKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDV



RKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQ



VNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKEL



LGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLY



LASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIH



LFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD





SEQ
PKKKRKV


ID



NO:



111






SEQ
KRPAATKKAGQAKKKK


ID



NO:



112






SEQ
PAAKRVKLD


ID



NO:



113






SEQ
RQRRNELKRSP


ID



NO:



114






SEQ
NQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGY


ID



NO:



115






SEQ
RMRIZFKNKGKDTAELRARRVEVSVELRKAKKDEQILKRRNV


ID



NO:



116






SEQ
VSRKRPRP


ID



NO:



117






SEQ
PPKKARED


ID



NO:



118






SEQ
PQPKKKPL


ID



NO:



119






SEQ
SALIKKKKKMAP


ID



NO:



120






SEQ
DRLRR


ID



NO:



121






SEQ
PKQKKRK


ID



NO:



122






SEQ
RKLKKKIKKL


ID



NO:



123






SEQ
REKKKFLKRR


ID



NO:



124






SEQ
KRKGDEVDGVDEVAKKKSKK


ID



NO:



125






SEQ
RKCLQAGMNLEARKTKK


ID



NO:



126






SEQ
ATGGGTAAGATGTATTATCTGGGTTTGGATATAGGCACTAACTCTGTGGGATATGCAGTAACTGATCCCT


ID
CGTATCACTTGTTAAAGTTCAAAGGCGAACCCATGTGGGGAGCACATGTATTTGCTGCGGGTAATCAGA


NO:
GTGCCGAAAGGCGATCTTTCAGAACATCCAGGAGGCGATTAGATAGGAGACAGCAAAGAGTAAAGCTT


127
GTGCAAGAGATCTTTGCTCCTGTCATTTCACCTATAGACCCTCGTTTTTTTATAAGATTGCACGAATCGGC



TCTATGGAGAGACGATGTTGCCGAAACAGATAAACATATCTTTTTCAATGATCCCACTTATACAGACAA



GGAATACTACTCCGACTACCCGACAATTCATCATTTGATCGTCGATCTTATGGAGAGCTCTGAAAAGCAT



GACCCCCGACTTGTCTATTTGGCTGTAGCTTGGTTAGTTGCTCATAGAGGTCATTTCTTGAATGAAGTAG



ATAAAGACAATATAGGTGATGTACTTTCTTTTGATGCTTTCTACCCGGAATTTTTGGCCTTTTTGTCAGAC



AATGGCGTCAGTCCCTGGGTCTGTGAGTCGAAGGCCCTTCAAGCTACTCTGCTGTCTAGGAATAGCGTCA



ACGACAAATATAAAGCATTAAAATCGCTGATATTCGGATCGCAAAAACCGGAAGATAACTTTGACGCTA



ACATCTCTGAAGATGGTTTAATCCAATTGCTGGCGGGTAAGAAAGTTAAAGTAAACAAACTATTCCCAC



AAGAGTCCAACGATGCTAGCTTTACGTTGAATGATAAAGAAGACGCTATTGAAGAAATTCTAGGTACTT



TAACGCCTGACGAGTGCGAATGGATCGCTCATATTCGCAGATTGTTCGATTGGGCCATCATGAAACACG



CGCTAAAGGATGGCAGGACGATATCTGAATCAAAAGTGAAGCTATACGAGCAGCATCATCATGACTTGA



CTCAGTTAAAGTACTTTGTGAAGACCTACCTAGCTAAAGAGTATGATGATATCTTCAGAAACGTAGACTC



CGAGACAACTAAAAATTATGTAGCTTATTCTTACCATGTGAAGGAAGTGAAAGGCACATTACCAAAAAA



TAAAGCAACGCAAGAAGAATTTTGTAAATACGTCCTTGGCAAAGTCAAAAACATTGAATGTTCCGAAGC



AGACAAGGTTGATTTTGATGAAATGATACAACGACTTACGGACAATTCTTTTATGCCAAAGCAAGTCTC



AGGTGAAAATAGAGTAATACCATACCAGTTGTACTACTATGAATTAAAGACAATTTTAAACAAAGCCGC



CTCATATCTACCTTTTTTGACACAATGCGGTAAAGATGCTATTTCTAACCAAGACAAATTACTGTCTATA



ATGACATTTCGCATACCATATTTCGTCGGCCCTTTAAGGAAAGATAATTCAGAACATGCCTGGTTGGAAC



GTAAAGCGGGTAAAATTTACCCGTGGAACTTTAATGATAAAGTAGATCTTGATAAATCGGAGGAAGCCT



TTATCCGTAGGATGACCAATACTTGCACGTATTACCCAGGAGAAGACGTGTTACCATTAGATTCACTTAT



CTATGAAAAGTTTATGATCTTGAATGAGATAAACAATATTAGGATTGACGGATACCCCATTTCTGTTGAT



GTGAAACAACAAGTATTTGGTTTATTTGAGAAGAAAAGGCGAGTAACAGTTAAGGATATTCAAAATCTA



CTATTATCTCTTGGAGCGTTGGATAAACACGGTAAGCTGACTGGTATTGACACGACAATACACTCTAATT



ATAACACTTATCATCATTTTAAATCTCTTATGGAGCGGGGAGTATTGACCAGAGATGATGTGGAAAGAA



TAGTGGAAAGAATGACATATTCTGACGATACTAAGAGGGTCAGACTGTGGTTAAATAATAATTATGGAA



CTCTAACAGCTGACGATGTTAAGCATATCTCAAGACTCAGAAAACACGATTTCGGCCGTTTGTCTAAAAT



GTTTTTGACAGGATTGAAAGGTGTTCATAAGGAGACAGGCGAGAGAGCAAGTATACTGGATTTTATGTG



GAATACTAACGACAATTTAATGCAACTACTGTCCGAATGTTACACATTCTCGGATGAGATCACCAAATTA



CAAGAGGCCTACTACGCAAAAGCTCAATTATCGCTAAATGACTTCTTGGACTCTATGTATATATCAAACG



CCGTTAAGAGACCTATTTATCGGACCTTAGCGGTAGTAAATGATATTAGAAAGGCATGCGGGACGGCAC



CTAAAAGAATTTTCATCGAGATGGCGCGAGATGGAGAGTCTAAGAAGAAAAGATCTGTGACTCGTAGA



GAGCAAATTAAAAATCTCTATAGATCAATTCGTAAAGACTTTCAACAAGAAGTTGATTTTCTGGAAAAG



ATATTGGAAAATAAGAGTGACGGGCAGCTTCAGTCTGACGCTTTATATTTGTATTTTGCTCAATTAGGCA



GAGACATGTACACAGGTGATCCAATCAAATTAGAACATATTAAAGACCAATCTTTTTACAACATTGATC



ATATTTATCCTCAATCGATGGTGAAAGATGACAGTTTGGATAACAAGGTACTAGTCCAAAGCGAAATCA



ATGGCGAAAAGAGTTCGCGCTATCCATTAGACGCAGCCATTAGAAACAAAATGAAGCCGTTGTGGGATG



CCTACTATAATCATGGATTAATTTCTCTTAAGAAATACCAGCGTTTGACGAGATCTACTCCATTTACGGA



CGACGAGAAGTGGGATTTTATCAATCGTCAGCTAGTTGAAACTAGGCAATCTACTAAAGCTTTAGCAAT



ATTGTTAAAGCGTAAGTTTCCAGATACTGAAATAGTTTACTCAAAGGCTGGACTATCCAGCGATTTTAGA



CATGAATTCGGCCTGGTTAAGAGTAGGAATATTAATGATCTACACCATGCTAAAGATGCCTTTCTCGCAA



TAGTTACTGGGAACGTTTATCATGAAAGATTTAATAGAAGATGGTTTATGGTTAACCAGCCATACTCTGT



GAAAACTAAGACATTGTTTACCCATTCAATTAAGAATGGCAACTTTGTCGCTTGGAATGGAGAAGAAGA



TCTTGGACGTATCGTAAAGATGTTGAAACAAAACAAGAACACAATCCACTTCACCAGGTTTTCCTTTGAT



AGGAAGGAGGGATTGTTCGATATTCAACCTCTCAAAGCTTCTACCGGATTGGTTCCACGAAAAGCAGGG



TTGGATGTTGTTAAATATGGAGGATACGATAAAAGCACTGCCGCGTATTATTTATTAGTACGTTTTACAC



TCGAGGATAAGAAGACTCAACACAAATTGATGATGATTCCTGTTGAAGGTCTCTACAAAGCACGTATTG



ACCATGATAAAGAGTTTTTAACAGATTATGCTCAGACCACGATCAGCGAAATTCTTCAAAAGGACAAGC



AGAAAGTGATCAACATCATGTTCCCTATGGGCACGAGACATATCAAACTGAATTCGATGATTTCTATTGA



TGGATTCTATCTTTCTATTGGTGGGAAGAGTAGCAAAGGTAAGTCAGTACTATGTCATGCTATGGTGCCA



TTAATCGTCCCACACAAGATAGAATGTTATATCAAGGCTATGGAATCGTTTGCAAGAAAATTCAAAGAA



AATAATAAATTGAGGATCGTTGAAAAGTTTGATAAAATAACTGTTGAAGATAACTTGAACTTATACGAG



CTTTTTCTACAAAAGTTGCAACATAACCCATATAATAAATTTTTCTCTACACAATTTGATGTGTTGACGA



ACGGTAGAAGTACATTCACCAAATTGTCTCCAGAGGAGCAAGTCCAGACTTTACTTAATATACTGAGTA



TATTTAAAACTTGTCGTTCTTCTGGGTGTGATTTAAAATCAATAAATGGTTCCGCTCAAGCGGCTAGAAT



TATGATATCCGCTGATTTAACTGGCTTATCAAAAAAGTATTCAGATATTAGATTAGTTGAGCAAAGCGCA



TCAGGTCTATTTGTTTCAAAATCTCAAAATCTCTTGGAATACTTGCCAAAAAAGAAAAGGAAAGTTTAG





SEQ
ATGAGTAGTTTAACAAAGTTTACCAATAAATATAGTAAGCAACTAACTATAAAGAACGAATTGATACCG


ID
GTCGGTAAGACTTTGGAAAACATAAAAGAAAATGGGTTGATTGATGGAGACGAGCAATTGAATGAGAA


NO:
TTATCAAAAAGCAAAGATAATAGTAGATGATTTTTTGAGAGACTTTATTAATAAAGCTCTAAATAACACT


128
CAAATTGGTAACTGGAGAGAGCTAGCCGACGCCTTGAACAAGGAAGATGAGGATAATATTGAGAAATT



ACAAGATAAGATTAGAGGGATTATCGTGTCTAAGTTTGAGACTTTTGATCTGTTCAGTTCGTATTCGATT



AAAAAGGACGAGAAAATCATCGATGATGATAACGATGTGGAAGAAGAGGAGCTAGACCTTGGGAAGAA



GACATCTAGCTTCAAATACATATTCAAGAAAAATTTGTTCAAACTTGTCCTTCCTTCATATTTAAAAACA



ACAAATCAAGATAAGTTAAAAATCATTTCTTCCTTCGATAATTTTAGTACTTATTTTCGTGGTTTTTTCGA



AAACAGGAAAAATATATTCACTAAAAAGCCTATATCTACCTCTATAGCTTATAGAATTGTTCACGATAAT



TTCCCAAAATTTCTAGATAATATCAGGTGTTTTAATGTTTGGCAAACCGAGTGTCCTCAGTTAATAGTCA



AGGCCGACAACTACCTTAAAAGCAAGAATGTGATTGCAAAAGATAAGTCTTTGGCTAACTATTTTACAG



TCGGTGCCTATGATTATTTTCTGAGTCAAAATGGTATCGATTTCTATAACAACATTATTGGCGGCTTACC



AGCTTTTGCCGGGCATGAGAAGATTCAGGGTTTGAACGAATTTATCAATCAAGAATGTCAAAAGGATTC



TGAATTAAAGTCTAAGCTCAAGAATAGGCACGCTTTCAAAATGGCAGTCTTATTCAAACAAATCCTTTCA



GACAGAGAAAAGTCATTTGTGATTGACGAGTTCGAATCAGACGCTCAGGTAATTGATGCTGTTAAAAAT



TTTTACGCGGAACAATGCAAAGATAATAACGTCATATTTAATTTATTGAATCTGATCAAGAATATTGCTT



TTTTGTCGGATGATGAGTTAGACGGCATTTTCATAGAGGGTAAATACCTGTCCTCTGTGTCTCAAAAATT



GTATAGTGATTGGTCAAAGTTGAGAAATGATATTGAAGATTCGGCTAATTCTAAACAGGGTAACAAAGA



ATTAGCGAAGAAAATCAAAACTAACAAGGGTGATGTTGAAAAGGCTATAAGTAAGTACGAGTTCAGTTT



ATCTGAACTAAATTCAATTGTTCATGATAACACAAAATTTTCCGATCTTTTATCATGCACATTACATAAA



GTTGCAAGTGAAAAATTAGTCAAAGTAAACGAAGGTGATTGGCCAAAACATCTAAAAAACAACGAGGA



AAAACAGAAGATAAAAGAACCTCTTGACGCTTTATTGGAAATATACAATACTCTATTAATATTTAACTGT



AAAAGTTTTAACAAAAATGGTAATTTCTATGTCGACTACGATCGCTGCATTAATGAGTTGTCCAGTGTTG



TGTACTTGTATAATAAAACTCGTAATTATTGTACGAAAAAGCCGTACAACACTGACAAATTTAAGTTGA



ATTTCAACTCCCCACAACTGGGTGAGGGCTTCTCTAAAAGTAAAGAGAATGATTGCCTTACATTATTATT



TAAAAAAGATGATAATTATTATGTCGGAATCATAAGAAAGGGGGCAAAGATCAACTTCGATGACACTCA



GGCCATAGCAGACAACACAGATAACTGTATATTCAAAATGAATTATTTTTTGCTGAAGGATGCTAAAAA



ATTTATCCCCAAATGTTCAATACAATTAAAAGAGGTTAAGGCCCATTTCAAAAAGTCGGAAGATGACTA



TATTTTGTCCGATAAGGAAAAATTCGCTAGTCCGCTTGTTATTAAAAAATCCACATTTCTTCTCGCTACG



GCTCATGTGAAAGGAAAGAAGGGCAATATTAAGAAATTTCAGAAAGAATACTCCAAAGAAAATCCTAC



GGAGTATAGAAATAGTCTGAACGAATGGATAGCATTCTGCAAAGAGTTCTTGAAGACCTATAAAGCTGC



CACCATCTTTGATATTACAACTTTGAAAAAGGCCGAGGAATACGCTGACATTGTGGAATTCTATAAGGA



TGTAGATAATCTTTGTTACAAGTTAGAATTTTGCCCTATCAAAACTTCTTTTATCGAAAATCTTATAGATA



ATGGCGATTTATACCTGTTTAGAATTAATAACAAGGACTTTTCTTCAAAAAGTACAGGCACGAAAAACTT



ACACACATTATACTTGCAGGCTATATTTGACGAGCGAAACTTAAACAACCCCACGATAATGTTGAATGG



AGGTGCAGAGTTATTCTACAGAAAAGAATCTATAGAACAGAAAAATCGGATCACGCACAAAGCCGGTA



GTATCTTAGTGAATAAAGTGTGCAAAGATGGTACAAGTCTAGATGACAAAATCCGTAACGAAATTTACC



AGTATGAAAACAAATTCATTGATACTCTTTCGGACGAAGCTAAAAAGGTTCTGCCAAACGTTATTAAGA



AAGAGGCTACGCATGATATAACAAAAGATAAACGTTTCACTAGCGACAAATTCTTCTTTCATTGTCCTTT



AACAATCAACTACAAGGAAGGTGACACCAAACAATTTAATAATGAAGTGCTCTCATTCCTTAGAGGTAA



CCCCGATATCAATATTATCGGCATTGATAGAGGAGAAAGAAACCTAATCTATGTAACAGTCATTAACCA



AAAAGGCGAAATATTGGATAGCGTCTCCTTCAATACTGTCACCAATAAGTCATCGAAGATAGAACAAAC



TGTTGATTACGAAGAAAAATTGGCCGTTAGAGAAAAGGAACGTATCGAAGCGAAGAGATCTTGGGATA



GCATATCCAAGATTGCCACCTTGAAGGAGGGTTATCTAAGCGCGATCGTACATGAAATCTGCTTATTAAT



GATTAAGCATAATGCTATTGTCGTGTTAGAAAACCTGAATGCCGGTTTTAAAAGGATTAGAGGTGGTTTG



TCAGAAAAGTCAGTATATCAAAAGTTTGAAAAGATGCTTATTAATAAACTCAACTACTTCGTTAGCAAG



AAAGAAAGTGATTGGAATAAACCGTCAGGTTTGCTCAATGGTCTTCAGTTAAGTGATCAATTTGAGTCTT



TCGAAAAATTAGGAATTCAAAGTGGATTCATTTTTTATGTACCAGCCGCGTACACTTCAAAAATTGACCC



TACGACCGGATTTGCCAACGTCTTGAATTTGTCCAAGGTCAGAAATGTTGACGCCATCAAAAGTTTTTTT



AGCAACTTCAATGAAATCTCTTATTCCAAAAAGGAAGCCCTTTTCAAGTTTTCTTTTGACCTAGACTCGTT



ATCGAAGAAAGGATTTTCATCTTTCGTAAAGTTTAGCAAGTCCAAGTGGAATGTATACACATTCGGCGA



GAGAATTATCAAGCCCAAGAACAAACAGGGCTATAGAGAAGACAAGAGAATCAACTTGACTTTTGAGA



TGAAAAAATTACTCAACGAATACAAGGTTTCATTTGATTTGGAGAACAACTTGATTCCCAATTTGACATC



AGCTAACTTGAAGGATACGTTCTGGAAGGAGTTATTCTTTATATTCAAAACGACATTACAACTGCGTAAT



AGTGTTACAAACGGTAAAGAAGATGTATTAATCTCACCTGTAAAGAATGCCAAAGGAGAATTTTTCGTA



TCCGGTACTCACAATAAGACACTACCACAGGATTGCGACGCTAACGGTGCGTATCATATTGCGTTGAAA



GGATTAATGATACTTGAAAGAAATAACCTTGTTCGCGAAGAAAAAGACACCAAGAAGATCATGGCTATT



AGCAATGTTGATTGGTTTGAATACGTGCAAAAGAGGAGAGGTGTTTTGTAA





SEQ
ATGAACAATTATGACGAGTTCACAAAGCTATACCCTATCCAAAAAACTATCAGGTTCGAATTGAAACCA


ID
CAAGGGAGAACAATGGAACATCTGGAGACATTCAACTTTTTTGAAGAGGACAGAGACAGAGCGGAGAA


NO:
ATACAAAATTTTAAAAGAGGCCATCGATGAATATCACAAAAAGTTTATCGACGAGCATTTAACAAACAT


129
GTCTTTGGACTGGAATTCACTTAAACAAATTTCTGAGAAATATTATAAGTCTCGGGAGGAAAAAGACAA



AAAGGTCTTTTTGTCCGAGCAAAAGAGAATGAGACAAGAAATTGTCTCGGAGTTTAAAAAAGATGATCG



GTTCAAAGATTTGTTTAGCAAGAAATTGTTTTCTGAATTGTTGAAGGAGGAGATATACAAGAAAGGCAA



CCATCAAGAAATAGATGCTTTGAAATCGTTTGACAAGTTCAGCGGTTACTTCATTGGTTTACATGAAAAT



AGGAAGAACATGTATAGCGACGGCGATGAGATCACCGCTATATCGAATAGAATCGTTAACGAAAATTTT



CCGAAATTTTTGGATAATTTGCAAAAATACCAGGAAGCTAGGAAAAAGTACCCTGAATGGATAATAAAG



GCGGAATCAGCTTTGGTGGCTCACAACATAAAGATGGATGAAGTCTTCTCGCTGGAATATTTTAACAAA



GTATTAAATCAGGAAGGAATCCAAAGATACAACTTAGCCTTGGGTGGATACGTAACCAAATCAGGTGAG



AAAATGATGGGCTTAAATGATGCACTTAATCTAGCTCACCAATCCGAAAAGTCCTCTAAAGGGAGGATA



CACATGACACCATTGTTTAAGCAAATCCTTTCGGAGAAAGAATCTTTTTCATATATCCCCGATGTTTTCA



CTGAGGATAGTCAATTGTTGCCCAGCATTGGTGGATTTTTTGCACAAATAGAAAATGATAAAGATGGTA



ACATCTTCGATAGAGCCTTGGAATTGATAAGCTCCTATGCAGAATACGATACGGAACGAATATACATTA



GACAAGCTGACATCAACAGAGTAAGCAATGTTATTTTTGGTGAGTGGGGAACTTTAGGTGGATTAATGC



GGGAGTACAAAGCTGACTCAATCAATGATATTAATTTGGAACGTACGTGCAAAAAAGTCGATAAGTGGC



TTGATAGTAAGGAGTTTGCTCTGTCGGATGTACTAGAAGCAATTAAGAGAACAGGAAACAATGATGCAT



TTAATGAATATATTAGTAAAATGAGGACGGCTAGAGAAAAGATAGACGCCGCACGTAAGGAAATGAAG



TTTATTTCCGAGAAAATATCTGGCGATGAAGAGTCGATTCACATCATCAAGACCCTACTCGATTCTGTTC



AGCAATTTCTCCATTTTTTTAACCTCTTCAAAGCAAGACAAGACATTCCCTTAGATGGGGCTTTTTATGCC



GAATTTGATGAAGTTCATTCAAAGTTGTTTGCTATTGTTCCTCTTTACAATAAGGTCCGTAATTACCTTAC



TAAAAATAACTTGAACACCAAGAAAATAAAGTTAAACTTCAAGAATCCGACTCTTGCCAACGGGTGGGA



TCAGAATAAAGTTTATGATTATGCTAGCTTAATATTTCTAAGAGATGGGAATTATTACTTAGGAATCATC



AATCCAAAGCGTAAGAAAAACATTAAATTTGAACAAGGGTCAGGCAATGGCCCATTCTATAGAAAAAT



GGTGTATAAGCAAATACCAGGACCTAACAAGAACTTGCCTCGCGTATTTTTAACTTCAACAAAGGGTAA



AAAAGAATATAAACCAAGCAAAGAAATTATTGAAGGTTACGAAGCAGATAAACACATCAGAGGTGATA



AGTTCGATCTGGATTTCTGCCATAAATTGATTGACTTTTTTAAGGAATCTATAGAAAAACATAAGGACTG



GTCCAAATTTAATTTCTACTTCTCACCTACAGAAAGTTATGGTGACATTTCAGAATTTTATTTAGACGTTG



AGAAACAAGGATATAGGATGCATTTTGAAAATATTTCAGCGGAAACCATCGACGAATACGTTGAGAAG



GGTGATTTATTCTTGTTCCAAATTTACAATAAAGACTTCGTTAAAGCTGCAACCGGAAAGAAGGATATGC



ATACCATATATTGGAACGCTGCATTCTCGCCAGAAAACTTACAAGATGTCGTTGTAAAGCTTAATGGAG



AAGCTGAGCTGTTCTATAGAGACAAGAGTGATATAAAAGAGATTGTGCATCGGGAAGGTGAAATTCTGG



TGAACAGAACTTACAATGGTCGTACACCCGTTCCAGACAAAATACATAAAAAACTGACCGATTATCATA



ATGGTAGGACAAAGGACTTGGGCGAGGCCAAGGAGTACCTCGATAAAGTTAGATATTTCAAGGCACACT



ATGATATTACGAAAGACAGGAGATATTTAAACGATAAAATTTACTTTCATGTCCCTTTGACCCTTAACTT



TAAAGCTAATGGTAAAAAGAATTTGAACAAAATGGTAATTGAGAAGTTTTTATCGGACGAAAAAGCTCA



CATAATCGGAATCGACCGCGGAGAGAGAAATTTACTGTATTATAGTATCATCGACAGAAGTGGAAAGAT



TATTGATCAGCAATCTTTGAACGTCATTGATGGGTTTGACTATCGGGAAAAGTTAAATCAAAGGGAAAT



TGAAATGAAGGATGCGAGACAATCATGGAATGCCATTGGTAAAATTAAAGATCTCAAGGAGGGGTACTT



ATCAAAAGCTGTACACGAGATAACTAAAATGGCTATCCAATATAATGCAATTGTTGTAATGGAAGAATT



GAATTATGGTTTTAAACGCGGCAGGTTTAAAGTCGAAAAACAAATATACCAAAAGTTTGAAAACATGTT



AATTGATAAGATGAACTATCTTGTTTTCAAAGATGCACCTGATGAGAGTCCTGGCGGTGTGCTGAACGCC



TATCAATTAACAAACCCATTAGAGTCCTTTGCTAAACTGGGTAAACAAACTGGCATTCTATTTTATGTTC



CAGCCGCTTACACCTCAAAGATCGATCCAACGACCGGTTTTGTAAACTTATTTAATACTTCTTCCAAAAC



AAACGCGCAAGAACGCAAAGAATTCCTACAAAAATTTGAATCAATATCCTATAGCGCAAAAGATGGAG



GTATATTCGCTTTCGCTTTTGACTACAGAAAGTTTGGCACTTCCAAGACAGATCATAAAAATGTGTGGAC



CGCTTATACCAACGGAGAAAGGATGCGTTATATTAAAGAAAAAAAGAGGAACGAACTATTTGATCCATC



GAAAGAAATTAAAGAAGCTTTGACAAGCAGCGGAATCAAATATGATGGAGGTCAAAACATACTTCCAG



ATATTCTCAGATCTAATAATAACGGTCTTATTTACACGATGTATTCATCTTTTATCGCTGCCATCCAAATG



CGTGTGTATGATGGCAAGGAAGATTATATTATATCTCCTATTAAAAATTCAAAGGGTGAATTTTTTCGCA



CGGATCCAAAAAGAAGAGAGCTTCCAATTGACGCCGATGCTAACGGTGCTTACAATATTGCATTGCGTG



GTGAACTTACTATGAGAGCCATCGCCGAAAAGTTTGATCCGGACAGTGAAAAAATGGCGAAATTGGAGC



TAAAGCACAAGGATTGGTTTGAATTCATGCAGACCCGTGGCGATTGA





SEQ
ATGACTAAAACGTTCGACTCCGAGTTTTTTAATCTCTATTCCTTGCAAAAGACCGTTAGGTTTGAATTGA


ID
AACCAGTTGGTGAAACTGCCTCATTTGTCGAAGACTTTAAAAACGAGGGATTGAAAAGAGTGGTTAGTG


NO:
AAGATGAAAGAAGGGCAGTAGACTATCAAAAGGTTAAAGAAATCATTGACGATTACCACAGAGATTTT


130
ATAGAAGAATCTCTGAACTATTTTCCAGAGCAGGTTTCAAAAGATGCTCTAGAGCAAGCGTTTCATTTGT



ATCAAAAGTTGAAAGCAGCGAAGGTGGAAGAAAGGGAAAAAGCTTTAAAAGAATGGGAAGCATTACA



GAAAAAATTGCGAGAAAAAGTCGTCAAATGTTTCAGCGACTCTAATAAAGCTCGCTTTTCTAGAATCGA



TAAAAAAGAATTGATTAAGGAAGATTTAATAAATTGGCTGGTAGCACAAAACAGAGAGGATGATATTCC



TACTGTTGAAACGTTCAATAATTTTACTACTTACTTCACTGGTTTCCATGAGAACAGGAAGAATATTTAC



TCTAAAGATGATCACGCTACTGCTATAAGTTTTAGGTTGATTCACGAAAACTTGCCTAAATTTTTTGACA



ATGTCATCAGTTTTAACAAGTTGAAAGAAGGTTTCCCGGAATTAAAATTCGACAAAGTTAAAGAAGATT



TAGAAGTAGATTACGACTTGAAGCATGCGTTTGAAATTGAATATTTCGTTAATTTCGTCACACAAGCTGG



TATCGACCAATATAATTACCTGCTTGGAGGCAAAACTCTAGAAGACGGTACGAAGAAACAAGGAATGA



ATGAACAGATTAATTTATTTAAGCAACAACAAACTCGCGATAAAGCTAGACAGATTCCAAAACTGATTC



CACTTTTCAAACAGATTCTATCTGAGAGAACTGAATCTCAGAGTTTTATCCCTAAGCAGTTCGAGTCTGA



TCAGGAACTATTCGATTCCCTGCAGAAATTGCATAACAACTGTCAAGATAAGTTTACCGTTTTGCAACAG



GCGATCTTGGGATTGGCTGAGGCAGATCTTAAAAAGGTCTTTATTAAAACTAGTGATCTAAACGCATTGT



CTAACACTATTTTTGGAAATTATTCTGTGTTCTCAGACGCGCTCAATTTATATAAAGAGTCGCTAAAAAC



TAAAAAGGCTCAAGAAGCTTTTGAAAAGTTGCCTGCACATAGTATTCATGATTTAATCCAATACTTAGAA



CAATTTAATTCGTCTCTCGATGCTGAAAAGCAACAGTCTACCGATACTGTATTAAACTACTTTATTAAAA



CCGACGAATTATATAGTCGTTTCATTAAATCCACCTCTGAGGCATTCACCCAAGTACAACCTCTCTTTGA



ACTGGAAGCTTTGAGCTCCAAAAGAAGACCCCCAGAAAGTGAAGATGAGGGGGCTAAAGGCCAAGAAG



GTTTCGAACAAATTAAGAGAATCAAAGCTTATCTAGACACTCTAATGGAGGCTGTCCACTTTGCTAAGCC



TTTGTATCTTGTCAAGGGTAGAAAGATGATAGAGGGTCTAGACAAGGATCAAAGCTTCTACGAAGCGTT



TGAAATGGCCTACCAGGAGTTGGAGTCTTTAATCATCCCCATTTACAATAAGGCCAGATCTTACCTGTCT



AGGAAGCCATTTAAAGCGGATAAATTCAAAATTAATTTTGACAATAATACACTTCTATCTGGGTGGGAT



GCTAACAAGGAGACGGCTAACGCCAGCATATTGTTTAAGAAGGATGGTTTATACTACCTGGGAATCATG



CCAAAAGGCAAAACTTTCTTGTTCGATTATTTCGTTAGTTCAGAAGATTCTGAAAAGTTGAAACAACGGA



GACAGAAAACCGCAGAGGAAGCGCTCGCACAGGATGGAGAATCCTATTTTGAAAAAATACGGTATAAA



CTCCTACCAGGTGCTAGTAAGATGTTGCCAAAGGTATTTTTTAGCAATAAAAATATTGGGTTTTACAATC



CCTCAGATGATATTCTACGAATTCGGAATACGGCCTCTCATACTAAGAATGGTACTCCCCAGAAGGGTC



ATTCCAAGGTAGAATTTAACTTGAATGACTGTCACAAAATGATTGATTTTTTTAAATCTTCCATACAGAA



ACATCCCGAGTGGGGATCCTTTGGTTTCACTTTTTCTGATACGTCGGACTTTGAAGATATGAGTGCTTTCT



ACCGAGAAGTTGAAAATCAAGGTTACGTTATAAGTTTTGATAAAATAAAAGAAACTTACATTCAGTCTC



AAGTTGAGCAAGGTAACTTATATTTATTTCAAATTTACAACAAAGATTTTAGTCCGTATTCAAAGGGAAA



GCCAAACCTGCACACTTTATACTGGAAAGCTCTGTTTGAAGAGGCTAATTTGAATAACGTAGTGGCTAA



GCTAAACGGCGAAGCAGAAATCTTTTTCAGAAGACACAGTATCAAAGCATCTGATAAAGTGGTACATCC



TGCTAATCAAGCTATAGATAATAAGAATCCCCATACTGAGAAGACGCAGTCCACATTTGAATATGACTT



GGTCAAAGACAAAAGATATACCCAAGACAAATTTTTTTTTCATGTACCGATATCTTTAAACTTTAAGGCT



CAGGGCGTTTCAAAGTTTAATGATAAGGTAAATGGATTCTTAAAGGGCAATCCCGACGTTAATATAATC



GGTATAGATCGAGGTGAGAGACATCTTTTATACTTTACCGTGGTGAATCAAAAAGGAGAAATATTAGTG



CAAGAGTCCTTGAATACATTAATGTCTGACAAGGGTCATGTCAACGATTATCAACAGAAATTGGACAAG



AAGGAACAGGAAAGGGACGCTGCCAGGAAGTCCTGGACGACAGTAGAAAATATTAAAGAATTAAAAGA



AGGTTATTTATCACATGTGGTTCATAAACTTGCACATTTAATCATCAAATATAACGCAATAGTGTGCTTG



GAAGATCTTAATTTTGGCTTCAAGAGGGGTAGGTTCAAGGTCGAAAAACAGGTCTACCAGAAGTTCGAG



AAAGCTCTGATCGATAAATTGAATTATCTTGTTTTCAAAGAAAAAGAATTAGGAGAAGTTGGTCATTATC



TTACAGCATACCAACTCACTGCACCATTTGAAAGCTTCAAAAAGCTAGGCAAGCAATCTGGGATTTTGTT



CTATGTTCCGGCTGATTATACATCAAAGATAGATCCTACCACAGGCTTTGTAAATTTTTTAGATCTTAGG



TACCAATCCGTTGAAAAAGCTAAACAGTTGCTGTCCGATTTTAATGCGATAAGATTTAATAGTGTTCAGA



ATTATTTTGAGTTCGAAATTGATTATAAAAAATTGACACCAAAACGTAAAGTAGGAACACAATCTAAAT



GGGTTATTTGTACCTATGGAGATGTTAGATACCAAAACAGAAGAAATCAGAAAGGTCACTGGGAAACTG



AAGAAGTTAACGTTACTGAAAAACTTAAAGCTCTATTTGCGAGCGATTCAAAAACGACGACGGTGATCG



ATTATGCAAATGATGATAACCTTATTGATGTAATTCTGGAACAAGATAAGGCATCATTTTTTAAAGAACT



ACTATGGTTGTTAAAGCTAACCATGACCCTAAGGCACTCCAAGATAAAGTCAGAGGATGATTTTATCCTC



TCTCCAGTGAAAAACGAACAAGGTGAGTTTTACGACTCAAGAAAGGCGGGTGAAGTCTGGCCTAAGGAT



GCTGATGCCAATGGAGCTTATCACATCGCTCTGAAGGGGCTATGGAACTTACAGCAAATTAACCAATGG



GAAAAAGGTAAAACTTTAAACCTCGCCATAAAGAACCAGGATTGGTTCAGCTTTATCCAAGAAAAACCA



TATCAAGAATAA





SEQ
ATGCACACAGGAGGTCTACTCTCGATGGATGCTAAGGAATTTACCGGTCAATATCCGCTGTCCAAAACTT


ID
TGCGTTTTGAGCTTAGACCTATTGGCCGAACGTGGGATAACCTAGAGGCTTCTGGTTATTTGGCGGAAGA


NO:
TAGACATAGAGCTGAGTGTTATCCCCGAGCTAAAGAATTGCTGGATGATAACCACAGGGCGTTCCTGAA


131
TAGAGTTCTACCGCAAATCGATATGGATTGGCATCCAATTGCTGAAGCTTTCTGCAAGGTGCACAAAAA



TCCAGGTAATAAAGAATTGGCTCAGGATTATAATTTGCAGCTTAGTAAGAGAAGAAAAGAAATTTCCGC



TTATTTGCAGGATGCTGATGGATACAAGGGGTTGTTCGCGAAACCTGCCCTGGACGAAGCTATGAAAAT



AGCTAAGGAAAACGGCAATGAATCTGATATTGAAGTTTTGGAAGCCTTCAATGGATTTTCCGTTTATTTC



ACTGGTTATCATGAGAGTAGGGAGAATATATACTCAGACGAAGATATGGTATCCGTCGCCTATCGCATA



ACTGAAGATAATTTTCCAAGGTTCGTGTCGAACGCGTTAATTTTTGATAAACTAAATGAATCGCACCCGG



ATATTATTTCGGAAGTGTCCGGTAATCTGGGGGTAGACGATATTGGTAAATATTTTGATGTGTCCAACTA



CAATAATTTCCTTAGTCAAGCAGGAATTGATGACTACAACCATATTATAGGAGGGCATACAACTGAAGA



CGGTCTCATTCAAGCTTTTAACGTAGTGTTAAACCTAAGGCACCAAAAAGACCCAGGTTTTGAGAAAAT



TCAATTTAAGCAACTCTACAAGCAGATACTGAGCGTTAGGACTAGTAAGTCATATATCCCAAAGCAATT



CGATAACTCAAAGGAAATGGTCGACTGTATATGCGACTACGTCTCAAAAATAGAAAAATCTGAAACAGT



AGAAAGAGCTCTGAAATTGGTAAGAAATATATCTTCTTTTGATTTAAGAGGTATTTTCGTAAATAAAAAA



AACCTTCGAATTTTGTCTAATAAGTTAATTGGAGACTGGGACGCAATAGAGACAGCTTTGATGCACAGTT



CCAGCAGTGAAAACGATAAGAAATCAGTGTATGACTCTGCAGAGGCATTCACCCTTGATGATATCTTCA



GTTCTGTGAAAAAGTTCAGCGACGCCTCCGCTGAGGATATAGGAAACCGCGCTGAAGACATATGTCGTG



TTATCTCAGAAACAGCTCCTTTCATTAACGACTTAAGGGCTGTAGATTTGGATTCTTTAAATGATGACGG



CTATGAAGCGGCCGTGTCTAAAATACGGGAATCTCTTGAACCCTACATGGATCTATTTCACGAATTGGAG



ATCTTTAGCGTGGGTGATGAGTTTCCTAAATGTGCTGCCTTTTATAGCGAGTTGGAAGAGGTCTCAGAAC



AACTGATTGAAATCATTCCTTTATTTAACAAAGCAAGAAGTTTTTGCACAAGGAAAAGGTATTCAACCG



ACAAAATCAAAGTCAATTTAAAATTCCCTACTCTGGCAGATGGATGGGATCTAAATAAAGAAAGGGATA



ACAAAGCCGCAATTCTAAGAAAAGACGGTAAATACTACCTGGCAATTTTAGACATGAAGAAAGATCTCA



GTAGTATTCGTACGAGCGATGAGGACGAGTCTTCTTTTGAAAAGATGGAATATAAATTGCTCCCTTCTCC



TGTGAAAATGCTTCCAAAAATTTTTGTTAAATCGAAAGCCGCCAAAGAAAAGTACGGGTTGACCGATAG



AATGTTAGAATGCTACGATAAAGGTATGCATAAGTCCGGGTAGTGCTTTTGATTTGGGTTTTTGTCATGAA



TTGATCGATTACTATAAGCGCTGCATTGCCGAGTACCCAGGCTGGGATGTTTTCGACTTTAAATTTCGTG



AGACAAGCGATTACGGATCCATGAAAGAATTTAATGAAGACGTCGCTGGCGCAGGTTACTATATGTCAC



TTAGAAAGATTCCATGTTCCGAAGTTTATCGTTTACTGGACGAGAAGTCAATTTACTTGTTTCAAATATA



TAATAAGGATTATAGCGAAAACGCACATGGGAATAAGAATATGCATACGATGTATTGGGAGGGCTTGTT



CTCACCACAAAATTTGGAATCACCAGTCTTCAAATTGTCCGGAGGCGCAGAACTTTTTTTCAGAAAGTCA



TCTATTCCTAATGACGCTAAAACGGTACATCCGAAAGGTTCAGTTCTTGTTCCCAGAAACGACGTCAATG



GTAGAAGAATACCAGACTCGATCTACAGAGAGTTGACAAGGTATTTTAACCGTGGGGATTGCAGGATCA



GTGATGAAGCTAAGTCTTACCTGGACAAGGTCAAGACAAAAAAAGCGGACCATGACATTGTTAAGGAT



AGAAGATTTACTGTAGATAAGATGATGTTCCATGTTCCGATTGCCATGAATTTTAAAGCTATAAGTAAAC



CAAATCTTAATAAGAAAGTTATTGATGGCATAATAGATGATCAAGATTTGAAAATCATCGGTATCGATC



GTGGTGAGAGAAATCTTATTTATGTGACCATGGTCGATAGGAAGGGGAATATATTGTATCAAGACAGTC



TTAATATTTTAAATGGATACGATTACCGCAAAGCTTTAGACGTGAGGGAATATGATAACAAAGAAGCTA



GAAGGAATTGGACTAAAGTAGAAGGTATTAGAAAAATGAAAGAAGGTTATTTATCTTTAGCTGTTAGTA



AATTGGCCGATATGATCATCGAAAATAATGCTATAATCGTAATGGAAGATTTGAATCACGGGTTTAAGG



CAGGTCGTTCCAAAATTGAAAAGCAGGTGTATCAAAAATTCGAATCAATGTTAATCAACAAGTTAGGAT



ACATGGTGCTAAAAGACAAGTCCATTGACCAGTCTGGTGGAGCCCTTCATGGTTACCAATTAGCCAATC



ATGTTACGACCTTAGCTAGCGTGGGTAAACAATGTGGAGTAATTTTTTACATACCTGCAGCTTTTACTTC



GAAGATTGATCCCACCACGGGCTTTGCTGATTTATTCGCTCTCTCTAATGTGAAGAATGTCGCTTCTATG



AGAGAGTTCTTCTCCAAAATGAAGTCAGTAATATATGACAAGGCGGAAGGCAAATTCGCCTTTACATTT



GATTATTTGGATTATAACGTTAAAAGCGAATGTGGACGTACCTTATGGACTGTGTATACAGTTGGTGAAC



GCTTCACCTACTCTAGAGTAAACCGAGAGTATGTTCGGAAAGTCCCAACAGATATCATCTATGATGCATT



ACAAAAAGCTGGTATTAGCGTCGAAGGTGACCTTAGAGATAGAATCGCGGAAAGCGACGGTGACACAT



TAAAGTCTATATTCTACGCTTTTAAATACGCGTTGGATATGAGAGTCGAAAACAGAGAGGAAGACTATA



TACAGTCACCTGTGAAGAATGCTTCTGGTGAGTTCTTTTGTTCAAAAAACGCCGGAAAGTCTTTGCCGCA



GGATTCAGATGCAAATGGTGCCTATAATATAGCTCTGAAAGGGATCCTACAACTCAGAATGTTGAGCGA



ACAATACGATCCAAATGCAGAATCGATTAGATTGCCACTTATAACTAACAAGGCATGGTTAACTTTTATG



CAATCCGGTATGAAAACTTGGAAGAATTAA





SEQ
ATGGATTCTCTTAAGGATTTCACTAATTTATATCCAGTCTCGAAAACATTGCGGTTCGAATTGAAACCAG


ID
TTGGGAAAACTCTAGAAAACATTGAAAAAGCCGGTATATTGAAAGAAGATGAACACAGAGCGGAATCC


NO:
TACCGCCGGGTAAAAAAGATAATTGACACATACCATAAAGTGTTTATTGACAGCTCCTTAGAGAACATG


132
GCTAAAATGGGGATAGAAAATGAAATCAAGGCTATGCTGCAGTCTTTTTGTGAACTCTATAAGAAAGAC



CACAGGACAGAAGGAGAAGATAAAGCTCTTGATAAAATTAGAGCTGTTCTTAGAGGTTTAATCGTTGGG



GCTTTCACTGGTGTATGTGGAAGACGAGAAAACACAGTACAAAATGAAAAGTACGAGAGTTTGTTCAAA



GAAAAATTGATAAAGGAAATTTTGCCAGATTTCGTGTTGTCCACCGAGGCTGAGTCTCTTCCATTCAGCG



TTGAAGAAGCAACAAGGAGCTTAAAAGAGTTTGACTCATTCACTTCTTATTTTGCTGGTTTTTACGAAAA



TAGAAAGAATATTTATTCCACGAAACCGCAAAGTACTGCGATAGCCTACAGATTAATTCATGAAAACTT



GCCTAAATTTATAGATAATATTTTGGTCTTCCAGAAGATTAAAGAACCAATCGCTAAAGAACTTGAGCA



CATAAGAGCAGATTTTAGCGCAGGCGGATATATCAAAAAAGATGAACGGCTAGAAGACATATTCTCATT



AAATTACTACATTCATGTCCTTTCTCAAGCTGGTATAGAAAAATATAATGCTTTAATCGGGAAGATAGTG



ACGGAAGGTGATGGTGAAATGAAAGGTCTTAATGAACATATTAACTTATATAACCAACAGAGGGGTCGA



GAGGATAGGTTGCCCTTGTTTAGGCCTCTATACAAGCAAATCCTGTCCGATAGAGAGCAATTGTCTTATT



TACCTGAATCATTTGAAAAAGATGAAGAGCTGCTTAGAGCACTTAAGGAATTTTACGATCACATCGCCG



AAGACATCTTGGGTAGAACACAGCAATTGATGACTTCAATTTCTGAATACGACTTGTCCCGTATTTATGT



CAGAAATGATTCTCAACTTACAGACATCTCGAAGAAAATGCTAGGAGATTGGAACGCCATTTATATGGC



TAGAGAACGAGCCTACGACCACGAACAGGCTCCTAAACGTATTACTGCTAAATACGAACGTGATAGAAT



CAAGGCCTTAAAAGGTGAAGAGTCAATTTCATTGGCGAATCTGAACAGCTGTATAGCTTTCTTGGACAA



TGTAAGGGATTGTCGAGTTGACACATACCTATCAACTTTGGGGCAGAAAGAGGGTCCTCATGGCTTAAG



TAACTTGGTGGAAAACGTCTTCGCCTCATATCATGAAGCAGAACAGTTATTGTCGTTTCCTTACCCCGAA



GAGAACAACCTTATTCAGGACAAAGACAATGTAGTTTTGATCAAAAACCTATTGGATAATATAAGTGAT



TTACAACGTTTCCTTAAACCTTTGTGGGGAATGGGCGATGAACCTGACAAAGACGAAAGGTTTTACGGT



GAATACAACTATATTAGAGGAGCGCTTGACCAGGTAATACCTTTGTACAATAAAGTAAGGAACTACTTG



ACTCGTAAACCATATTCTACTAGAAAAGTTAAATTGAACTTTGGTAATTCACAGCTGCTGAGTGGTTGGG



ATCGTAATAAAGAAAAAGATAACTCCTGTGTTATCTTGCGAAAAGGACAAAACTTTTACTTGGCAATTA



TGAACAACCGTCACAAAAGGTCCTTCGAGAACAAAGTTCTGCCTGAATACAAAGAAGGTGAACCATATT



TTGAAAAAATGGACTATAAATTCCTGCCAGATCCTAATAAAATGTTGCCTAAGGTCTTCTTGTCTAAAAA



AGGTATAGAAATATATAAACCATCCCCGAAGTTGCTGGAGCAATATGGTCATGGAACGCACAAAAAAG



GTGACACTTTTAGTATGGATGACTTGCACGAGTTGATTGATTTTTTTAAACATTCCATTGAAGCGCACGA



AGATTGGAAACAATTTGGTTTCAAGTTCTCTGACACAGCCACTTACGAAAATGTATCGTCCTTTTATAGA



GAAGTGGAAGATCAGGGTTATAAACTGTCATTCCGTAAGGTTAGTGAAAGCTATGTGTACTCGTTGATC



GATCAAGGGAAGCTTTATCTTTTTCAAATCTATAATAAAGATTTCTCTCCTTGTTCAAAGGGCACACCTA



ATCTTCATACACTATACTGGAGAATGCTTTTCGATGAAAGAAATTTGGCTGATGTGATCTATAAATTAGA



CGGTAAAGCTGAGATTTTTTTCAGAGAGAAATCCCTGAAAAACGACCATCCAACTCATCCGGCAGGTAA



ACCGATTAAAAAGAAATCCCGGCAAAAAAAGGGCGAAGAGAGTTTATTCGAGTATGATTTAGTTAAGG



ACAGACATTATACAATGGACAAATTTCAATTTCATGTGCCCATTACTATGAACTTTAAGTGTAGTGCAGG



GTCTAAGGTTAATGATATGGTAAACGCACATATTAGAGAAGCTAAAGATATGCACGTCATCGGTATTGA



TCGCGGAGAAAGAAATTTACTTTACATTTGCGTTATCGATTCTAGGGGCACCATCTTGGATCAAATCTCT



TTGAACACTATAAATGATATTGACTATCATGATCTACTAGAGAGTCGGGATAAAGACAGGCAACAAGAA



AGAAGAAATTGGCAAACAATTGAAGGTATTAAAGAATTAAAGCAAGGCTATCTAAGCCAGGCTGTACA



CAGAATTGCCGAATTAATGGTAGCATATAAAGCTGTCGTAGCTCTAGAAGACTTGAACATGGGTTTCAA



AAGAGGGCGCCAGAAGGTCGAAAGTAGTGTTTATCAACAATTTGAAAAACAGTTAATAGATAAGTTGA



ATTATCTAGTGGATAAAAAAAAGCGTCCTGAGGACATTGGCGGTTTATTAAGAGCCTACCAATTCACTG



CGCCATTTAAATCGTTCAAAGAAATGGGTAAACAAAACGGTTTTCTATTCTACATCCCCGCATGGAATAC



CTCAAATATAGATCCAACTACCGGTTTCGTCAACTTATTTCATGCTCAATATGAGAATGTGGACAAAGCA



AAATCATTCTTTCAAAAATTTGATAGCATTAGCTACAATCCTAAAAAAGATTGGTTTGAATTTGCGTTCG



ATTATAAAAATTTCACCAAGAAGGCTGAAGGTTCCAGATCTATGTGGATATTGTGCACCCACGGAAGTA



GAATTAAGAACTTCCGTAATTCACAGAAAAACGGCCAGTGGGACAGCGAAGAATTCGCCCTAACCGAA



GCTTTCAAAAGTCTTTTCGTAAGATACGAGATAGACTATACAGCTGATCTAAAGACAGCTATTGTGGATG



AGAAGCAAAAAGACTTCTTTGTCGACCTTCTTAAGTTGTTCAAGTTAACTGTGCAGATGAGAAATAGTTG



GAAGGAAAAAGACCTAGATTACTTGATTAGCCCAGTCGCTGGTGCAGATGGCAGATTTTTTGATACACG



TGAAGGCAATAAATCACTACCAAAAGACGCGGACGCTAATGGCGCATACAACATCGCATTGAAGGGTTT



GTGGGCTCTCAGGCAGATTAGGCAGACAAGTGAGGGTGGTAAGCTTAAGCTGGCGATTTCTAATAAGGA



ATGGTTACAGTTTGTTCAAGAAAGATCCTACGAAAAAGATTAA





SEQ
ATGAACAATGGTACTAATAATTTTCAAAACTTCATAGGGATTTCTAGCCTTCAAAAGACATTGAGAAAT


ID
GCTTTAATTCCAACAGAAACGACTCAACAATTCATAGTGAAAAATGGTATTATAAAAGAAGACGAGTTG


NO:
CGTGGCGAGAATAGACAAATTTTGAAAGATATCATGGATGACTACTACAGAGGGTTCATCTCCGAAACA


133
TTGTCTTCTATTGACGACATTGACTGGACCAGCTTATTCGAAAAAATGGAAATACAGCTGAAGAACGGA



GATAACAAGGACACTCTTATAAAGGAGCAAACGGAATATAGAAAGGCTATACACAAAAAGTTTGCTAA



TGACGATAGATTTAAAAACATGTTTAGTGCGAAGTTAATTTCTGATATTCTACCCGAGTTTGTCATTCAT



AATAATAACTACTCTGCATCTGAAAAAGAGGAGAAGACCCAGGTTATAAAGTTGTTTTCAAGATTTGCC



ACATCATTTAAAGACTACTTCAAGAACAGGGCGAATTGCTTCTCTGCTGATGATATTAGCTCTTCCAGCT



GTCATAGAATTGTTAACGATAATGCCGAAATTTTTTTTAGTAATGCCTTGGTATATAGACGCATAGTCAA



GTCACTAAGCAATGATGATATAAACAAGATTAGTGGTGATATGAAAGATAGCCTTAAAGAAATGAGCCT



TGAAGAGATATATTCATATGAGAAGTACGGTGAATTTATAACTCAAGAAGGAATTTCTTTTTATAACGAT



ATTTGTGGTAAGGTTAATTCTTTTATGAATTTGTATTGCCAGAAGAACAAGGAAAATAAGAATCTATATA



AACTACAAAAGTTGCATAAACAGATTTTGTGTATAGCTGATACATCCTACGAAGTTCCGTATAAATTTGA



ATCTGATGAGGAAGTTTATCAATCGGTAAACGGTTTTCTTGACAACATTTCCAGCAAACATATCGTTGAG



AGACTACGTAAAATTGGAGACAACTATAATGGTTACAATCTAGATAAAATATACATAGTGTCCAAGTTT



TATGAGTCTGTCTCTCAAAAGACATATCGTGATTGGGAGACCATTAATACTGCACTTGAAATTCATTATA



ACAACATATTGCCTGGTAACGGGAAGAGTAAAGCTGATAAGGTTAAAAAGGCCGTCAAAAACGACTTG



CAAAAGTCTATTACCGAGATAAATGAATTAGTGTCAAACTACAAACTATGCTCAGATGATAATATTAAA



GCGGAAACATACATCCACGAAATTTCCCACATACTGAATAACTTTGAAGCTCAGGAGCTTAAATATAAC



CCGGAAATACACTTGGTTGAGAGCGAGTTAAAAGCATCTGAGTTGAAAAATGTATTAGACGTCATCATG



AATGCGTTTCATTGGTGTTCAGTTTTCATGACTGAAGAATTAGTCGACAAAGATAACAATTTTTATGCCG



AATTAGAGGAAATATATGATGAAATTTATCCCGTAATTAGTTTATACAATCTAGTTAGAAATTATGTTAC



ACAAAAGCCGTATAGTACCAAGAAAATAAAGCTTAATTTCGGAATACCTACGCTTGCTGATGGTTGGTC



AAAAAGTAAAGAATATAGCAATAATGCAATAATTTTAATGAGAGATAACCTATATTATTTGGGTATTTTT



AACGCTAAGAACAAACCAGACAAGAAAATAATTGAAGGTAATACATCTGAAAACAAGGGCGACTATAA



AAAGATGATATACAATTTGCTCCCAGGTCCTAATAAAATGATTCCTAAGGTTTTCCTGAGTAGCAAGACT



GGCGTTGAAACTTACAAGCCTAGTGCGTATATCCTGGAGGGTTATAAACAGAACAAGCATATCAAATCC



TCTAAGGACTTCGATATCACCTTTTGCCATGACTTAATCGATTATTTTAAAAATTGTATCGCAATTCATCC



AGAATGGAAAAATTTCGGATTTGATTTTAGTGATACCAGCACTTACGAGGATATCTCTGGGTTCTACAGA



GAAGTGGAGTTGCAGGGCTACAAAATCGATTGGACTTACATATCTGAAAAGGACATAGATTTGCTGCAG



GAGAAAGGTCAGCTATATTTGTTTCAAATCTACAACAAAGACTTTTCTAAAAAGTCTACCGGTAATGAC



AATCTGCACACAATGTACTTGAAGAACTTATTCTCCGAGGAGAACTTAAAGGACATTGTACTCAAGTTG



AATGGAGAAGCCGAGATTTTTTTTAGAAAGAGCAGTATAAAGAATCCTATAATCCACAAGAAGGGCTCA



ATTCTCGTGAATAGGACGTATGAGGCAGAAGAAAAGGACCAATTTGGGAATATACAAATTGTAAGAAA



AAACATCCCAGAAAATATCTACCAGGAATTATATAAGTATTTTAATGACAAATCTGATAAGGAACTGTC



TGACGAAGCCGCTAAGCTCAAGAATGTTGTGGGCCACCATGAAGCTGCTACTAATATAGTGAAGGACTA



CAGATATACCTACGATAAATATTTCCTGCATATGCCAATTACTATAAACTTCAAAGCAAATAAAACAGG



TTTTATAAATGATAGAATCCTGCAGTATATTGCTAAAGAAAAGGATTTACATGTAATTGGGATTGATAGA



GGTGAACGCAATCTGATCTATGTCAGCGTAATAGATACTTGTGGTAATATTGTGGAACAAAAGTCCTTTA



ATATTGTGAACGGATATGATTACCAAATCAAGTTGAAACAACAAGAGGGAGCACGCCAAATTGCCCGTA



AGGAATGGAAAGAGATAGGTAAGATCAAGGAAATTAAGGAAGGTTATCTTTCATTAGTTATTCACGAAA



TTTCGAAGATGGTAATCAAATACAACGCAATAATTGCTATGGAGGACCTGTCATATGGATTTAAGAAAG



GTAGATTCAAGGTTGAGAGACAGGTATACCAGAAATTTGAAACTATGTTGATCAACAAATTAAATTACT



TAGTCTTTAAGGACATATCAATAACGGAAAACGGCGGGCTTTTAAAAGGGTATCAACTTACATACATAC



CTGATAAGTTGAAAAATGTGGGTCATCAGTGTGGGTGCATCTTTTATGTTCCAGCCGCTTACACATCAAA



AATCGATCCTACTACTGGGTTCGTAAACATATTTAAATTTAAAGATCTAACCGTTGATGCAAAAAGAGA



GTTTATCAAGAAATTTGATAGCATTAGGTACGATTCAGAAAAAAATCTATTCTGTTTTACTTTTGACTAC



AACAACTTTATAACGCAGAATACAGTGATGTCAAAATCGTCCTGGTCAGTGTATACTTATGGTGTTAGAA



TTAAGAGACGTTTCGTAAACGGTCGTTTTTCTAACGAGTCCGATACAATCGACATCACTAAAGATATGGA



AAAAACTTTGGAAATGACAGATATAAACTGGAGAGATGGTCACGACCTTAGACAAGATATAATCGATTA



TGAAATCGTACAGCATATTTTTGAAATTTTTCGCTTAACAGTTCAGATGCGTAACTCTCTTAGTGAGCTA



GAAGATAGAGATTATGATAGACTTATCTCGCCTGTTCTTAACGAAAATAATATCTTCTATGACTCGGCAA



AAGCCGGTGATGCACTTCCAAAAGATGCTGATGCAAATGGCGCGTACTGCATCGCATTGAAGGGGCTCT



ACGAGATTAAACAAATCACCGAAAACTGGAAAGAAGATGGTAAATTTTCTAGGGATAAGTTGAAAATC



AGTAATAAAGATTGGTTCGATTTTATACAAAATAAGCGATACTTATAG





SEQ
ATGACCAATAAGTTTACTAATCAATACTCATTGTCTAAAACGTTAAGATTCGAGTTAATTCCCCAGGGAA


ID
AGACACTAGAATTTATTCAAGAAAAAGGTCTTCTCTCTCAGGATAAACAAAGAGCAGAATCATACCAGG


NO:
AGATGAAAAAAACCATAGATAAATTTCATAAGTACTTCATCGACTTGGCACTATCGAACGCCAAGCTAA


134
CACATTTGGAAACCTACCTGGAGTTGTATAATAAATCGGCAGAGACGAAAAAGGAACAAAAATTCAAG



GATGACCTGAAGAAGGTTCAAGATAATCTGCGAAAGGAAATAGTGAAGTCGTTTAGTGATGGTGATGCA



AAGTCAATCTTTGCTATTTTAGACAAGAAGGAATTAATAACCGTGGAACTTGAAAAGTGGTTTGAAAAT



AACGAACAGAAAGATATTTACTTCGACGAAAAATTTAAAACGTTTACTACGTACTTTACAGGGTTCCATC



AGAACCGCAAAAACATGTACTCCGTTGAACCAAACTCTACTGCAATCGCCTACAGATTAATACACGAAA



ATTTGCCTAAGTTTTTAGAAAATGCAAAGGCTTTTGAAAAGATAAAGCAAGTCGAATCGTTACAGGTAA



ACTTTCGCGAATTAATGGGCGAATTTGGAGATGAAGGTCTTATTTTTGTCAATGAATTAGAGGAAATGTT



TCAAATTAATTATTATAACGATGTCTTGAGTCAGAACGGCATTACTATCTACAACTCAATTATCAGTGGT



TTCACTAAGAATGATATAAAATATAAAGGTTTGAATGAATACATTAATAATTATAATCAAACTAAAGAT



AAGAAGGACAGGCTTCCGAAATTGAAGCAATTGTACAAGCAGATTCTAAGTGATAGGATTAGTTTGTCT



TTCTTGCCAGACGCATTTACTGATGGCAAGCAAGTCTTAAAGGCTATATTCGATTTCTACAAGATTAACC



TACTTTCGTACACAATTGAAGGTCAAGAAGAATCTCAAAATCTGCTGCTTTTGATTAGGCAAACTATAGA



AAATTTGTCGTCCTTTGACACTCAAAAAATTTACCTGAAGAATGATACACACCTGACTACAATATCACAG



CAGGTCTTTGGGGATTTTTCTGTCTTCTCCACGGCCCTAAACTATTGGTATGAGACAAAAGTTAATCCAA



AATTTGAAACAGAATATAGTAAGGCGAATGAAAAAAAGAGAGAAATTTTGGATAAAGCGAAGGCAGTA



TTCACAAAACAAGACTATTTTTCTATCGCATTTCTCCAAGAAGTCTTATCCGAATATATTTTGACACTCGA



TCACACCTCTGATATAGTTAAGAAACATTCGTCCAACTGCATCGCAGATTACTTCAAGAATCACTTCGTG



GCTAAGAAAGAAAACGAAACGGATAAAACTTTTGACTTCATTGCTAACATAACCGCTAAATACCAATGT



ATTCAGGGCATATTAGAAAATGCAGACCAGTACGAAGACGAGTTAAAACAGGACCAAAAGTTAATAGA



TAATCTAAAGTTTTTCTTAGATGCTATACTTGAGTTATTACATTTTATAAAGCCATTGCATCTAAAATCGG



AAAGTATTACTGAAAAAGACACTGCGTTCTATGATGTGTTCGAAAATTATTATGAGGCTTTATCTTTATT



GACCCCCCTTTACAACATGGTCCGCAATTATGTTACTCAGAAGCCTTACTCTACTGAAAAGATCAAATTA



AACTTTGAAAATGCTCAGTTGCTGAATGGTTGGGATGCCAATAAGGAAGGTGACTACCTGACGACTATT



CTAAAAAAAGACGGTAATTATTTCTTAGCAATCATGGATAAAAAACATAACAAGGCATTTCAAAAATTT



CCAGAAGGAAAAGAAAACTATGAAAAGATGGTTTATAAATTGTTGCCTGGAGTTAATAAAATGTTGCCA



AAAGTTTTTTTTAGCAATAAGAACATAGCTTACTTTAATCCATCTAAGGAACTGCTCGAGAACTACAAGA



AGGAAACACATAAAAAAGGTGATACATTTAATTTGGAACATTGCCATACTCTGATTGATTTTTTTAAGGA



CTCTCTTAATAAACATGAAGACTGGAAATATTTTGATTTTCAATTTTCGGAAACTAAATCATACCAAGAT



CTAAGTGGATTTTACAGAGAAGTTGAACACCAAGGTTATAAGATTAACTTCAAGAATATAGATTCTGAA



TACATTGATGGTCTTGTAAACGAGGGTAAACTATTCCTGTTCCAAATCTACTCTAAGGACTTCTCACCTTT



TTCCAAAGGAAAACCTAATATGCATACGTTGTACTGGAAGGCTCTATTTGAAGAACAAAATTTGCAAAA



TGTAATCTACAAACTGAACGGCCAAGCTGAAATATTCTTCAGAAAAGCCTCAATTAAGCCAAAAAACAT



TATTCTTCATAAAAAGAAGATCAAGATTGCGAAGAAACATTTTATTGATAAGAAGACCAAGACTTCCGA



AATTGTACCAGTACAAACAATCAAGAATCTCAATATGTATTATCAAGGCAAGATAAGTGAGAAAGAGTT



AACCCAGGATGATTTACGTTATATAGACAATTTCTCTATATTCAACGAGAAGAACAAAACAATAGACAT



TATCAAAGATAAAAGGTTTACTGTTGACAAATTTCAATTTCATGTGCCTATCACAATGAACTTTAAGGCC



ACAGGTGGTTCGTACATTAATCAAACTGTTTTAGAATATCTGCAAAATAACCCAGAGGTCAAGATCATC



GGTCTTGATAGGGGTGAGAGACATCTGGTGTATCTAACACTCATTGATCAACAAGGCAACATCTTGAAG



CAAGAATCATTGAACACTATCACAGACTCCAAGATCTCGACTCCATATCACAAACTCCTTGACAATAAA



GAAAACGAAAGGGATCTTGCCAGAAAAAATTGGGGTACAGTTGAAAATATTAAGGAACTAAAAGAAGG



TTACATTTCGCAAGTAGTTCACAAGATTGCAACACTCATGTTGGAAGAAAACGCAATCGTTGTCATGGA



AGATTTAAATTTCGGATTTAAGAGAGGAAGATTTAAAGTAGAAAAGCAAATCTACCAGAAGTTGGAGA



AGATGTTAATTGACAAATTGAACTACTTAGTGCTGAAAGACAAACAGCCTCAAGAATTGGGCGGTCTAT



ACAACGCTTTACAACTGACAAATAAATTTGAGTCATTCCAAAAGATGGGTAAGCAGAGTGGTTTTTTGTT



TTATGTTCCGGCATGGAACACATCCAAAATCGATCCAACTACAGGCTTCGTGAATTATTTCTACACTAAA



TATGAAAATGTGGATAAAGCAAAAGCTTTCTTTGAGAAGTTCGAGGCGATCCGTTTTAACGCTGAAAAG



AAGTACTTCGAGTTCGAGGTCAAAAAGTATTCAGATTTTAACCCCAAGGCTGAAGGCACCCAGCAAGCA



TGGACTATTTGCACGTACGGTGAGCGAATCGAAACTAAAAGGCAAAAGGATCAAAATAATAAGTTTGTA



AGCACACCCATTAACTTGACAGAAAAGATAGAAGATTTTCTTGGAAAAAACCAAATTGTATATGGTGAC



GGTAACTGTATCAAGTCACAAATTGCTTCTAAAGACGATAAGGCCTTCTTCGAAACTCTGCTATACTGGT



TTAAAATGACGTTGCAAATGAGAAACAGTGAAACTAGAACTGATATCGACTATTTAATATCACCCGTGA



TGAACGATAATGGTACCTTTTACAATTCAAGAGATTACGAGAAATTGGAGAACCCCACACTACCAAAAG



ACGCAGACGCTAATGGTGCCTACCATATTGCTAAAAAGGGACTGATGTTGTTGAACAAGATAGATCAAG



CCGACTTAACTAAAAAAGTTGATTTGTCAATTTCGAATAGAGATTGGTTGCAATTCGTCCAGAAAAATA



AGTAA





SEQ
ATGGAACAGGAATACTACTTGGGTTTGGATATGGGAACTGGTTCAGTCGGTTGGGCTGTTACGGACTCC


ID
GAGTACCACGTGTTGAGAAAACACGGAAAGGCTTTATGGGGTGTCAGACTATTCGAATCAGCATCGACC


NO:
GCGGAAGAGAGAAGAATGTTTAGAACTTCAAGAAGAAGGCTGGATCGTAGGAATTGGCGGATAGAAAT


135
TTTACAAGAAATATTCGCCGAAGAAATCTCTAAAAAAGATCCAGGATTTTTTCTACGTATGAAGGAATC



CAAATACTATCCGGAAGATAAACGTGATATTAATGGCAATTGTCCAGAGTTACCCTATGCTTTATTTGTG



GACGACGATTTCACCGATAAAGATTACCATAAGAAGTTCCCAACAATTTACCATCTGAGAAAGATGTTA



ATGAACACTGAAGAAACCCCGGATATAAGACTGGTCTATCTAGCCATTCATCATATGATGAAACACAGG



GGACACTTCTTGCTATCAGGGGATATAAATGAAATTAAAGAATTTGGTACAACATTTTCTAAATTATTGG



AAAATATTAAAAACGAAGAATTAGATTGGAATTTAGAATTAGGCAAGGAGGAATACGCAGTTGTCGAA



TCGATTCTGAAAGATAACATGTTGAACAGATCAACGAAAAAAACAAGGCTGATCAAGGCTTTAAAAGC



GAAATCAATATGCGAAAAAGCAGTATTGAATTTGTTAGCTGGGGGGACTGTCAAGTTGTCTGATATTTTC



GGATTGGAAGAATTGAATGAAACAGAGAGACCGAAGATATCCTTCGCCGATAATGGCTACGATGATTAT



ATAGGCGAAGTCGAAAATGAGCTGGGCGAACAATTCTACATTATCGAGACTGCCAAGGCTGTTTATGAT



TGGGCGGTGTTAGTCGAAATCCTTGGCAAATACACTTCCATCTCCGAAGCTAAGGTGGCAACCTACGAA



AAGCATAAAAGTGATTTGCAATTCCTTAAGAAAATTGTCCGAAAGTACTTGACCAAAGAAGAGTACAAG



GATATTTTCGTATCAACATCGGACAAACTGAAGAATTATTCAGCTTATATTGGCATGACGAAAATTAATG



GTAAGAAAGTTGATTTGCAATCCAAGAGATGTTCTAAAGAAGAATTTTACGATTTCATTAAAAAAAATG



TCCTAAAAAAGTTGGAGGGACAACCTGAATATGAGTATTTAAAGGAAGAACTGGAAAGAGAAACTTTC



CTACCAAAGCAAGTTAATCGTGATAATGGCGTTATTCCATACCAAATACACTTGTACGAATTAAAGAAG



ATCTTGGGTAACTTGAGGGACAAAATTGATTTAATCAAGGAAAATGAAGACAAACTGGTACAATTATTT



GAATTTAGAATACCTTACTACGTGGGCCCTTTAAACAAAATAGACGATGGTAAGGAAGGGAAGTTCACA



TGGGCAGTCAGAAAGTCCAATGAAAAAATTTACCCATGGAATTTCGAAAACGTTGTAGATATTGAAGCT



TCTGCTGAGAAATTTATTAGGAGAATGACAAATAAATGCACTTATCTTATGGGGGAAGACGTGTTGCCT



AAAGATAGTTTATTATATTCAAAGTATATGGTCTTAAATGAATTAAACAATGTTAAATTAGATGGTGAAA



AACTTTCCGTCGAATTGAAACAAAGATTGTATACAGATGTATTCTGCAAATATAGAAAAGTAACTGTAA



AGAAGATTAAAAACTACCTTAAATGTGAAGGCATTATCAGCGGAAATGTTGAGATCACTGGTATCGATG



GTGATTTTAAGGCATCTTTAACCGCATATCACGACTTTAAGGAAATATTGACGGGTACTGAGCTTGCTAA



AAAAGACAAAGAGAACATTATCACCAATATCGTGCTCTTCGGAGACGACAAGAAATTATTGAAAAAGA



GATTGAACCGCCTATACCCTCAGATTACCCCTAACCAATTGAAGAAAATCTGCGCTCTGTCTTATACTGG



ATGGGGTCGTTTTAGCAAGAAGTTTCTAGAAGAAATTACTGCTCCGGATCCTGAAACTGGGGAAGTCTG



GAATATAATTACCGCGCTATGGGAATCGAATAATAATTTAATGCAATTACTATCTAATGAATACAGATTT



ATGGAAGAAGTCGAAACTTACAATATGGGAAAACAAACAAAAACTTTGAGCTACGAAACAGTAGAGAA



TATGTATGTCTCACCATCTGTAAAGCGGCAGATCTGGCAAACCTTGAAGATAGTTAAAGAATTAGAAAA



AGTGATGAAGGAAAGTCCAAAAAGGGTTTTTATTGAAATGGCCCGAGAAAAACAAGAATCTAAAAGGA



CGGAAAGTAGGAAAAAGCAACTTATAGATCTATATAAAGCCTGCAAAAATGAAGAAAAAGATTGGGTA



AAGGAATTAGGTGACCAGGAAGAGCAAAAATTGAGATCTGACAAGCTGTACTTGTATTATACGCAAAA



GGGCCGGTGTATGTATTCGGGTGAGGTAATAGAATTGAAAGATTTATGGGATAACACTAAGTATGACAT



TGACCATATTTACCCCCAGTCTAAGACAATGGACGATTCATTAAATAACCGAGTTCTTGTCAAAAAGAA



GTACAATGCCACAAAGAGCGATAAGTACCCATTGAACGAAAATATAAGACATGAACGAAAAGGTTTCT



GGAAATCATTGTTGGACGGTGGATTTATTTCCAAAGAAAAATACGAGAGATTGATTAGAAACACTGAAC



TATCTCCAGAGGAGTTAGCTGGCTTTATCGAAAGACAAATTGTTGAAACTAGACAGTCTACAAAAGCAG



TTGCAGAAATCTTAAAACAAGTATTTCCAGAATCCGAAATTGTGTACGTCAAAGCCGGAACAGTAAGTA



GATTTAGAAAAGACTTTGAATTATTGAAAGTACGAGAGGTTAACGACCTACATCATGCTAAGGATGCTT



ATTTAAATATAGTCGTTGGTAATTCGTATTACGTGAAATTCACAAAAAACGCATCTTGGTTCATCAAGGA



GAATCCTGGTAGGACATACAACTTGAAAAAGATGTTTACATCAGGATGGAATATCGAAAGAAATGGTGA



GGTTGCGTGGGAGGTAGGCAAGAAGGGAACCATTGTTACTGTAAAGCAAATTATGAATAAAAACAATA



TACTTGTTACGAGACAGGTGCACGAAGCCAAAGGAGGGTTGTTTGACCAGCAAATCATGAAGAAAGGT



AAAGGTCAGATAGCAATAAAAGAGACTGATGAGCGTTTAGCTAGTATAGAAAAATATGGGGGCTACAA



TAAGGCAGCTGGTGCTTACTTCATGTTGGTCGAATCAAAGGATAAAAAAGGGAAGACGATCCGGACCAT



AGAGTTTATCCCTCTGTACTTGAAGAATAAGATTGAGTCTGACGAAAGCATCGCATTGAATTTCTTGGAA



AAGGGGCGCGGTCTAAAGGAGCCAAAAATATTGTTAAAGAAAATTAAAATAGACACCCTATTCGACGTC



GATGGGTTTAAGATGTGGCTTAGTGGTCGTACTGGGGACAGATTATTATTCAAGTGTGCCAATCAGTTAA



TCCTTGACGAGAAAATCATTGTTACAATGAAAAAAATTGTTAAGTTTATTCAAAGGCGACAAGAAAATA



GAGAACTAAAGTTGAGTGATAAGGATGGAATCGATAATGAAGTGTTAATGGAGATTTATAACACTTTTG



TCGACAAATTGGAGAATACGGTGTACAGAATTAGGCTATCTGAACAGGCTAAAACCCTAATTGATAAAC



AGAAGGAGTTTGAGCGACTTTCTCTTGAAGACAAATCTTCAACTCTTTTCGAGATCCTACATATCTTTCA



GTGTCAATCTTCTGCAGCTAATTTGAAAATGATTGGAGGTCCTGGTAAGGCTGGTATATTAGTCATGAAC



AACAACATATCTAAGTGTAATAAGATTAGTATAATTAACCAATCACCGACAGGTATCTTTGAAAATGAA



ATTGATTTACTTAAA





SEQ
ATGAAATCATTCGACTCGTTCACCAACTTGTACTCCCTGTCTAAAACATTGAAATTTGAAATGCGACCTG


ID
TTGGTAACACCCAAAAGATGTTAGATAATGCAGGAGTTTTCGAAAAGGATAAACTGATCCAGAAAAAAT


NO:
ACGGTAAAACGAAACCATATTTCGATAGGTTGCATCGGGAATTTATAGAAGAAGCTTTGACTGGTGTAG


136
AATTAATTGGCTTAGATGAGAATTTCCGTACTCTAGTCGATTGGCAAAAAGATAAAAAGAACAATGTTG



CCATGAAGGCATACGAAAATAGTCTACAAAGACTAAGAACAGAGATCGGGAAAATTTTCAATTTGAAG



GCAGAAGACTGGGTGAAGAACAAATATCCAATATTGGGTCTTAAGAATAAGAATACTGATATATTGTTC



GAGGAGGCCGTTTTCGGTATTCTTAAGGCAAGATATGGTGAAGAGAAAGACACGTTTATTGAAGTTGAG



GAGATTGATAAAACCGGTAAGTCCAAAATCAACCAGATCTCTATCTTCGACAGTTGGAAGGGCTTCACT



GGTTATTTTAAGAAGTTCTTCGAAACTAGGAAGAACTTCTATAAAAACGATGGTACTTCCACGGCTATTG



CTACAAGAATTATCGACCAAAACCTTAAGCGTTTTATTGATAACCTATCAATTGTTGAAAGTGTTCGACA



GAAAGTAGATTTGGCTGAAACTGAAAAATCTTTTAGTATCTCCTTATCCCAGTTTTTCTCTATAGATTTTT



ATAATAAATGTTTGCTGCAAGATGGCATTGACTACTATAATAAAATAATTGGTGGAGAGACATTGAAAA



ACGGAGAGAAGCTGATTGGCCTTAATGAGTTGATAAATCAATATAGACAAAATAATAAGGACCAGAAA



ATCCCTTTCTTTAAATTGCTAGACAAACAGATTTTGTCTGAAAAGATCCTATTCTTGGATGAAATAAAGA



ACGATACTGAATTGATTGAAGCTTTGTCCCAGTTTGCTAAAACAGCTGAAGAAAAGACAAAGATTGTGA



AAAAATTGTTTGCTGATTTCGTAGAAAACAATTCTAAATATGATCTAGCCCAGATTTATATAAGTCAAGA



AGCTTTCAATACAATAAGTAATAAGTGGACAAGTGAAACAGAAACTTTTGCTAAGTATTTATTCGAAGC



CATGAAGTCTGGTAAACTTGCCAAATACGAAAAAAAAGATAACAGTTATAAATTTCCAGACTTTATAGC



CCTTTCACAGATGAAGTCTGCCTTATTGTCGATATCCTTAGAAGGTCATTTTTGGAAGGAAAAATATTAT



AAGATAAGCAAGTTCCAAGAAAAGACTAATTGGGAACAATTTTTGGCTATATTTCTATATGAGTTCAATT



CATTATTTTCCGATAAAATCAACACTAAGGATGGAGAGACTAAGCAAGTTGGCTACTATTTGTTCGCAA



AAGATCTGCACAATTTGATTCTATCAGAACAAATAGATATACCAAAAGATTCAAAGGTAACTATAAAGG



ATTTCGCAGATTCCGTCCTCACCATTTATCAAATGGCTAAATATTTTGCCGTTGAAAAAAAGAGAGCGTG



GTTAGCAGAATACGAGTTGGACTCGTTTTATACTCAGCCAGATACTGGATACTTGCAATTCTACGATAAT



GCATACGAAGACATTGTACAGGTATACAATAAACTTAGAAATTACTTAACCAAGAAGCCCTACAGTGAA



GAAAAATGGAAGCTGAACTTTGAAAATTCGACTTTGGCAAATGGTTGGGATAAAAATAAAGAAAGTGA



CAACTCCGCAGTGATTTTGCAAAAGGGTGGGAAATATTACTTGGGTTTAATCACAAAAGGCCACAATAA



GATTTTTGATGATAGATTTCAAGAAAAATTCATAGTTGGTATAGAAGGTGGCAAATACGAGAAAATTGT



CTATAAATTCTTCCCTGATCAAGCCAAAATGTTCCCAAAAGTTTGCTTTTCTGCTAAAGGATTGGAGTTTT



TCCGGCCTAGCGAGGAGATCCTTCGTATCTACAACAATGCTGAATTCAAAAAAGGAGAAACCTATAGCA



TAGATTCTATGCAAAAACTGATAGATTTTTATAAGGATTGTTTAACAAAGTACGAAGGCTGGGCCTGCTA



TACATTTAGACATTTAAAGCCCACAGAAGAATACCAAAATAACATTGGTGAATTCTTTCGGGACGTTGC



CGAAGACGGCTATAGGATCGATTTTCAAGGTATCTCAGATCAATATATCCACGAAAAGAACGAGAAGGG



TGAGCTGCACCTTTTCGAAATTCATAATAAGGACTGGAATTTGGATAAGGCGAGAGATGGTAAATCGAA



GACCACTCAAAAGAACTTGCATACTTTATATTTTGAGTCCTTGTTTTCTAATGATAACGTCGTCCAAAATT



TTCCAATAAAGTTGAATGGACAAGCGGAAATTTTCTATCGGCCTAAGACAGAGAAAGACAAATTAGAAT



CAAAGAAAGATAAAAAGGGAAATAAAGTCATTGATCACAAACGATACTCTGAGAATAAAATATTTTTCC



ACGTACCATTGACACTCAACAGGACTAAGAATGACTCTTATAGATTTAATGCTCAGATTAATAATTTTTT



GGCAAATAACAAGGATATTAACATAATTGGGGTGGATAGAGGTGAAAAGCACTTGGTATATTACTCTGT



CATCACTCAGGCTTCTGATATATTGGAAAGCGGGTCTCTAAATGAATTGAACGGTGTTAACTACGCCGA



AAAGCTAGGTAAAAAAGCTGAAAACAGAGAGCAGGCTCGGCGCGATTGGCAAGATGTTCAAGGAATTA



AAGACCTTAAAAAAGGCTACATTAGTCAAGTAGTTAGAAAGTTAGCCGATCTTGCTATTAAACATAACG



CAATCATTATTCTGGAGGACCTAAATATGCGTTTTAAGCAAGTTAGGGGTGGCATAGAAAAAAGTATTT



ATCAGCAGCTTGAGAAGGCTTTGATAGATAAGTTATCGTTCCTAGTTGACAAAGGTGAAAAAAATCCTG



AACAAGCTGGTCATCTGTTGAAAGCTTATCAGCTGAGCGCACCTTTTGAAACATTTCAAAAAATGGGAA



AACAAACAGGTATTATTTTCTATACTCAAGCGAGTTATACAAGTAAATCTGACCCAGTGACAGGATGGA



GACCACACCTTTATCTAAAATATTTTTCTGCTAAAAAGGCCAAAGATGACATCGCTAAGTTTACAAAAAT



AGAATTTGTCAACGATAGATTTGAATTGACTTACGATATTAAAGATTTTCAGCAAGCAAAAGAATACCC



AAATAAGACAGTGTGGAAAGTATGCTCCAATGTGGAGAGATTTAGATGGGATAAAAATCTCAATCAAA



ACAAGGGTGGTTACACACATTATACTAATATAACTGAAAATATTCAAGAATTGTTTACTAAGTACGGAA



TTGACATAACCAAAGACTTACTAACTCAGATTTCAACTATTGACGAAAAACAAAATACCTCATTTTTCCG



CGACTTTATTTTTTATTTCAACTTGATCTGTCAAATTCGTAACACGGATGATTCCGAAATTGCCAAGAAG



AACGGAAAAGATGATTTCATCCTATCTCCAGTGGAACCATTTTTTGACTCAAGAAAAGATAATGGTAAT



AAGTTGCCTGAGAACGGAGATGATAACGGCGCTTATAATATCGCTCGGAAGGGTATTGTAATTCTTAAT



AAAATATCTCAGTACTCTGAAAAGAACGAAAACTGCGAGAAAATGAAGTGGGGCGACTTGTATGTATCT



AATATAGATTGGGATAATTTCGTTACTCAAGCCAACGCGAGACATTGA





SEQ
ATGGAAAATTTTAAAAACCTATATCCAATTAATAAGACACTTAGATTCGAGCTTAGGCCATACGGCAAA


ID
ACACTAGAAAATTTTAAGAAGTCAGGCCTATTAGAAAAAGACGCCTTTAAGGCAAATTCCAGAAGATCA


NO:
ATGCAGGCAATTATTGATGAGAAATTTAAAGAGACTATCGAGGAAAGGTTGAAATACACTGAATTCTCT


137
GAGTGCGATCTGGGAAACATGACTTCCAAGGATAAAAAGATTACCGATAAGGCTGCTACCAACCTCAAA



AAGCAAGTCATCTTATCGTTTGATGATGAAATTTTTAATAACTACTTAAAGCCGGACAAAAACATTGACG



CCCTATTCAAAAATGATCCGTCCAACCCCGTAATTTCAACTTTTAAGGGTTTTACCACGTACTTTGTAAAT



TTTTTTGAGATTCGTAAACATATCTTCAAAGGAGAATCGTCGGGTTCCATGGCCTATAGGATAATTGATG



AAAATCTTACGACTTACTTAAACAATATCGAAAAGATAAAAAAGTTACCAGAAGAATTAAAGTCTCAAT



TGGAAGGTATTGACCAAATAGACAAATTAAATAACTATAATGAGTTCATAACTCAAAGCGGTATCACAC



ATTACAATGAAATTATCGGTGGTATATCTAAAAGTGAGAACGTAAAAATACAGGGAATAAACGAGGGG



ATCAATCTATACTGTCAGAAGAATAAAGTAAAATTACCAAGACTAACGCCATTATACAAAATGATTCTG



TCTGATAGAGTTTCCAACTCGTTCGTGCTTGATACTATAGAAAATGATACTGAATTAATTGAGATGATTA



GCGACTTGATTAATAAAACAGAAATATCTCAAGACGTAATAATGTCAGACATTCAGAACATTTTCATAA



AATATAAACAGCTTGGTAATTTACCGGGGATAAGTTACTCTAGCATCGTGAATGCTATTTGCTCCGATTA



TGACAATAATTTTGGTGACGGAAAAAGAAAAAAATCATATGAGAACGATAGGAAGAAACACCTTGAAA



CAAACGTATACTCAATTAACTATATATCGGAACTGTTAACAGACACCGATGTATCATCTAATATAAAAAT



GAGATATAAGGAACTTGAACAAAATTACCAGGTGTGTAAGGAGAATTTCAATGCTACCAACTGGATGAA



CATTAAGAATATTAAACAGAGTGAAAAGACAAACTTGATTAAAGATCTACTAGATATACTGAAATCAAT



ACAGAGATTCTACGATCTGTTTGATATAGTTGATGAAGACAAAAATCCTAGTGCTGAGTTTTACACGTGG



CTAAGTAAAAATGCGGAAAAGTTAGATTTCGAGTTCAACTCTGTTTATAATAAATCTAGGAATTATTTAA



CTAGAAAGCAGTATTCTGATAAAAAGATAAAATTGAACTTCGACTCCCCTACGTTGGCAAAGGGTTGGG



ATGCAAACAAAGAAATCGATAACTCCACCATAATAATGCGTAAGTTTAACAATGATAGGGGGGATTACG



ATTATTTTTTGGGAATTTGGAACAAATCTACCCCAGCGAATGAAAAAATTATTCCCCTTGAAGACAATGG



TCTTTTTGAAAAAATGCAGTATAAATTATATCCAGACCCATCCAAGATGCTTCCAAAGCAATTTCTGTCA



AAAATTTGGAAGGCTAAACACCCTACTACTCCTGAATTTGATAAGAAGTATAAGGAGGGCCGACACAAA



AAGGGTCCAGATTTTGAAAAAGAATTCCTGCATGAATTGATAGATTGTTTTAAGCATGGTTTGGTAAATC



ATGATGAAAAATATCAGGATGTCTTTGGATTCAATTTGAGAAATACAGAGGATTACAACTCATATACAG



AATTTCTCGAGGACGTCGAACGTTGCAATTATAATCTCAGTTTCAACAAGATCGCAGACACTTCAAACTT



AATTAACGACGGAAAATTGTACGTTTTTCAAATCTGGTCGAAAGACTTTAGTATTGATTCAAAGGGTACA



AAAAACCTAAATACAATATATTTCGAAAGTCTATTCTCGGAAGAAAACATGATCGAAAAAATGTTCAAA



CTGTCAGGCGAAGCTGAAATATTCTACCGTCCCGCAAGCCTTAATTATTGTGAGGATATCATTAAAAAA



GGACATCACCATGCAGAGTTAAAAGATAAATTCGATTACCCAATAATTAAAGATAAAAGATACTCCCAG



GATAAGTTCTTTTTCCATGTACCTATGGTTATTAACTACAAGTCGGAAAAACTAAACTCGAAGTCATTAA



ATAATAGAACTAACGAGAACTTGGGACAATTCACACATATAATTGGTATTGATCGTGGCGAAAGACATT



TAATATATCTGACTGTTGTTGATGTTTCAACAGGAGAAATTGTTGAACAGAAACATCTTGATGAAATTAT



AAACACAGATACAAAAGGCGTTGAGCATAAAACTCATTATCTAAATAAATTGGAGGAAAAGTCGAAGA



CTCGCGATAACGAGAGAAAGAGTTGGGAAGCAATTGAAACCATAAAAGAGCTTAAAGAAGGTTACATT



AGTCACGTCATCAATGAAATACAAAAGTTACAAGAAAAGTATAACGCTTTGATTGTAATGGAAAATCTA



AATTATGGTTTTAAGAATTCAAGAATCAAAGTCGAAAAGCAGGTCTATCAGAAATTTGAAACGGCACTT



ATTAAAAAGTTTAACTACATTATTGATAAAAAGGACCCAGAAACTTATATTCATGGTTACCAACTGACG



AACCCAATCACAACATTGGACAAAATTGGAAACCAAAGTGGAATTGTTTTATACATTCCAGCTTGGAAT



ACATCCAAAATAGACCCTGTCACGGGGTTTGTCAACTTGTTATATGCCGACGATTTAAAGTATAAAAACC



AAGAACAAGCAAAGTCTTTTATTCAAAAGATTGATAATATTTATTTCGAAAACGGTGAATTTAAATTCGA



CATAGATTTTTCTAAATGGAACAACCGTTATTCAATAAGTAAAACTAAATGGACACTCACCTCATACGGC



ACTCGTATCCAAACCTTTCGGAATCCCCAAAAAAATAACAAATGGGATTCTGCAGAATACGACTTGACC



GAGGAATTTAAATTAATTCTTAATATAGACGGTACACTCAAAAGTCAAGACGTGGAGACATACAAGAAG



TTTATGTCGTTATTCAAGCTTATGCTTCAGTTGAGGAACTCCGTTACAGGCACTGATATTGATTACATGAT



TTCACCAGTAACGGATAAGACTGGGACTCATTTCGATTCTAGGGAAAATATTAAAAATTTACCTGCTGAC



GCAGACGCAAACGGCGCATACAATATAGCAAGAAAAGGGATTATGGCCATTGAGAATATTATGAATGG



CATATCAGATCCATTAAAGATAAGCAATGAAGACTACTTAAAATACATTCAGAATCAGCAAGAATAA





SEQ
ATGACCCAGTTTGAAGGTTTCACCAATTTGTACCAAGTAAGTAAAACCTTGAGGTTCGAATTGATCCCAC


ID
AGGGCAAGACATTGAAGCATATTCAAGAGCAAGGATTTATAGAAGAAGATAAAGCGAGAAACGATCAC


NO:
TATAAAGAGTTAAAACCCATTATTGACAGGATCTATAAAACATACGCCGATCAATGCCTTCAATTAGTG


138
CAATTAGATTGGGAAAACTTGAGCGCTGCCATCGATTCCTACAGGAAGGAAAAAACAGAAGAAACAAG



AAATGCCTTAATCGAGGAACAAGCAACCTATAGAAACGCTATACACGATTACTTCATCGGTAGAACTGA



TAATCTAACAGATGCAATAAATAAGAGACATGCTGAGATATATAAAGGACTATTTAAAGCAGAATTATT



CAACGGAAAGGTGTTGAAACAGTTAGGTACCGTTACAACTACTGAGCATGAAAATGCCTTGCTGAGAAG



CTTTGACAAGTTTACTACCTACTTTTCGGGTTTCTACGAAAATCGCAAAAATGTATTTTCTGCGGAAGAT



ATTTCAACTGCAATCCCTCATAGGATTGTTCAAGATAATTTCCCTAAGTTTAAAGAGAACTGTCACATTT



TTACAAGGTTAATTACTGCGGTTCCAAGTCTAAGAGAACATTTTGAGAATGTAAAAAAAGCGATTGGTA



TATTTGTATCCACTAGCATTGAAGAGGTTTTCAGCTTCCCTTTTTATAACCAATTACTTACCCAAACACAG



ATCGACCTGTACAACCAATTGTTAGGTGGTATATCGAGGGAGGCTGGTACGGAAAAGATTAAAGGATTA



AATGAAGTTCTTAATTTGGCCATACAAAAAAATGATGAAACCGCGCACATTATCGCATCTTTACCACATA



GGTTTATACCGTTATTCAAGCAAATATTATCTGATCGTAATACCTTATCGTTCATATTAGAGGAGTTTAA



ATCTGACGAAGAAGTTATACAATCTTTTTGCAAGTATAAGACGCTATTGAGAAACGAAAACGTTCTGGA



AACAGCCGAAGCACTGTTCAATGAATTAAACAGTATCGACTTGACTCATATTTTTATATCGCATAAAAAG



TTGGAGACAATTTCTTCAGCATTGTGCGATCACTGGGACACTTTAAGGAACGCACTATATGAACGTAGG



ATCTCAGAATTGACAGGTAAGATAACGAAGTCTGCTAAAGAGAAAGTGCAGAGATCCCTAAAACACGA



GGATATAAATTTGCAGGAGATAATTTCAGCTGCAGGTAAAGAGTTGTCTGAAGCGTTCAAGCAAAAGAC



TTCCGAAATCTTGTCACACGCACACGCCGCATTAGATCAACCTTTACCCACTACTTTGAAAAAACAAGAA



GAGAAGGAGATATTAAAATCACAACTTGATTCTTTACTTGGCCTTTATCATCTTTTAGATTGGTTCGCTGT



TGACGAGAGCAATGAAGTGGATCCAGAGTTTTCCGCAAGATTGACCGGTATAAAGTTGGAAATGGAACC



TTCGTTATCATTTTACAACAAAGCTAGGAACTATGCTACAAAAAAACCTTATTCTGTCGAAAAATTTAAA



CTGAACTTCCAAATGCCTACTCTAGCAAGTGGCTGGGATGTTAATAAAGAAAAGAACAATGGCGCTATT



TTGTTTGTAAAAAATGGCCTATACTATCTTGGAATTATGCCTAAACAAAAAGGTCGCTACAAGGCTTTGT



CATTTGAACCTACTGAAAAGACTAGCGAAGGTTTCGATAAGATGTATTACGATTATTTCCCGGATGCCGC



TAAAATGATCCCCAAGTGCTCTACTCAATTGAAGGCAGTAACTGCTCATTTCCAAACGCATACCACGCCA



ATACTGCTTTCTAACAACTTTATAGAACCACTAGAAATAACGAAAGAAATTTACGACCTAAATAACCCA



GAGAAAGAACCAAAAAAGTTCCAGACGGCCTACGCCAAAAAGACAGGGGACCAAAAAGGTTACCGCG



AGGCGTTATGTAAATGGATTGATTTTACTAGGGACTTTTTATCAAAATACACTAAAACGACGTCTATTGA



TCTTAGCTCCTTACGCCCGTCCTCCCAATACAAGGATCTAGGTGAGTATTACGCAGAGTTGAACCCGCTA



TTATACCATATTTCCTTCCAAAGGATTGCTGAAAAGGAAATTATGGACGCTGTTGAAACTGGGAAATTGT



ACCTGTTTCAGATTTATAATAAGGACTTCGCAAAGGGTCACCATGGTAAGCCTAACCTTCACACTTTGTA



CTGGACCGGACTATTCTCGCCTGAAAATTTGGCTAAAACAAGTATCAAGTTAAACGGTCAGGCCGAGTT



ATTTTATAGACCCAAATCTAGAATGAAAAGAATGGCCCATAGATTAGGCGAAAAGATGTTAAACAAGA



AATTAAAGGACCAAAAAACCCCGATACCAGACACTCTATACCAAGAACTGTACGACTATGTGAATCACA



GGCTTAGTCACGATTTATCAGATGAAGCGAGGGCTTTATTGCCAAATGTCATCACCAAGGAAGTATCAC



ATGAAATAATTAAGGATAGAAGGTTCACATCTGATAAATTCTTTTTTCATGTCCCAATTACATTGAATTA



TCAAGCAGCGAACTCACCATCTAAATTTAATCAGCGCGTCAACGCCTATTTGAAAGAACATCCCGAAAC



ACCAATCATCGGCATAGATCGAGGTGAGAGAAACTTAATATATATAACTGTGATTGATTCTACAGGAAA



AATCCTGGAGCAACGATCTTTAAATACCATACAACAGTTTGATTATCAAAAAAAGTTGGATAACAGAGA



AAAAGAACGTGTTGCCGCTAGGCAGGCTTGGTCTGTGGTAGGAACAATTAAGGACTTAAAGCAGGGCTA



TCTGTCCCAAGTTATTCATGAAATAGTCGATCTGATGATACATTATCAGGCAGTTGTCGTGTTGGAAAAT



TTGAATTTTGGCTTTAAATCAAAAAGAACTGGCATAGCAGAAAAAGCTGTGTACCAGCAGTTTGAAAAG



ATGTTAATCGATAAGCTAAACTGCCTTGTTCTTAAAGATTACCCCGCAGAAAAAGTAGGTGGTGTTCTTA



ATCCATATCAGTTGACAGACCAATTTACATCCTTTGCGAAAATGGGTACGCAAAGCGGGTTCTTATTCTA



CGTACCGGCCCCCTATACTTCTAAGATCGACCCACTAACAGGTTTTGTGGACCCTTTTGTTTGGAAGACG



ATAAAGAACCACGAGTCACGCAAACATTTCTTAGAGGGCTTTGATTTCTTGCACTACGACGTGAAAACT



GGTGATTTTATCTTACACTTTAAAATGAACAGAAATCTCTCTTTCCAACGTGGACTGCCCGGATTCATGC



CGGCTTGGGACATCGTTTTTGAAAAGAATGAAACGCAGTTTGACGCCAAAGGTACACCATTTATAGCGG



GTAAGAGAATTGTGCCGGTCATAGAAAACCATAGATTTACAGGTAGATATAGGGATCTGTACCCTGCTA



ATGAATTGATTGCATTACTCGAAGAGAAAGGAATTGTGTTTCGAGATGGATCGAATATTTTACCTAAGTT



GTTGGAAAATGATGATTCACACGCAATTGATACTATGGTTGCCCTCATAAGATCGGTATTGCAAATGAG



AAACTCAAATGCTGCTACGGGAGAGGATTATATAAACAGCCCCGTTCGCGATCTTAATGGTGTTTGTTTT



GATTCACGTTTTCAGAACCCCGAATGGCCAATGGATGCCGACGCAAACGGAGCATATCATATTGCTCTT



AAAGGCCAACTACTATTAAATCACTTAAAGGAATCCAAAGACCTAAAATTGCAAAACGGGATATCTAAT



CAGGATTGGCTGGCTTACATACAAGAACTACGTAACTAG





SEQ
ATGGCCGTTAAGTCAATCAAAGTGAAACTTAGACTGGATGACATGCCAGAGATTCGTGCGGGGTTATGG


ID
AAACTTCATAAGGAAGTTAACGCAGGGGTAAGATATTATACCGAATGGTTATCATTACTTCGACAAGAG


NO:
AATTTGTACAGAAGGTCCCCGAACGGCGACGGTGAGCAAGAATGCGATAAGACGGCTGAAGAATGTAA


139
GGCAGAACTTTTGGAGCGCCTGAGAGCCCGTCAGGTTGAAAATGGCCATAGAGGTCCTGCGGGATCTGA



TGATGAGCTTTTACAGCTAGCTAGACAATTGTATGAATTGTTGGTCCCTCAGGCTATTGGGGCTAAAGGA



GACGCTCAACAAATCGCCAGAAAGTTCTTGTCACCTCTGGCTGACAAAGATGCCGTGGGAGGATTAGGT



ATCGCTAAAGCAGGTAATAAACCAAGATGGGTTAGAATGAGAGAAGCAGGCGAACCTGGTTGGGAAGA



AGAGAAAGAAAAGGCCGAAACTAGAAAAAGCGCTGACAGAACCGCAGATGTTTTACGGGCCTTGGCTG



ATTTTGGACTGAAGCCTTTGATGAGAGTGTATACTGATTCAGAAATGTCTTCCGTTGAATGGAAGCCCCT



AAGGAAGGGACAAGCGGTCAGAACCTGGGATAGGGATATGTTTCAACAGGCTATTGAAAGGATGATGT



CATGGGAATCCTGGAATCAAAGAGTAGGTCAAGAATACGCTAAACTGGTCGAACAAAAGAATAGATTT



GAACAAAAAAATTTTGTAGGTCAAGAACATTTAGTACATTTGGTTAATCAACTTCAACAAGATATGAAA



GAGGCATCTCCTGGTTTGGAATCAAAAGAACAAACAGCACACTATGTTACCGGCCGAGCTTTGCGAGGT



TCTGACAAAGTATTTGAAAAGTGGGGGAAATTAGCTCCCGATGCCCCCTTTGATCTATATGATGCTGAAA



TTAAAAACGTTCAAAGAAGGAACACTAGACGTTTTGGATCCCATGATCTTTTTGCAAAGCTAGCTGAGC



CAGAATACCAGGCTCTATGGCGTGAAGACGCCTCGTTTTTGACTAGATACGCAGTATACAATTCAATACT



CAGAAAACTAAACCATGCCAAGATGTTTGCTACATTCACCCTGCCCGATGCTACCGCTCATCCTATTTGG



ACTAGATTTGACAAGTTGGGGGGGAATCTACATCAGTACACATTTTTATTTAATGAATTCGGTGAAAGA



AGACACGCTATTAGATTCCACAAGCTCCTAAAGGTTGAAAACGGCGTTGCGAGAGAAGTTGATGATGTA



ACAGTTCCCATTTCTATGTCGGAGCAATTGGATAATCTATTGCCTAGAGACCCTAATGAACCAATTGCTT



TGTACTTTCGTGACTACGGTGCAGAACAACACTTTACAGGTGAATTCGGCGGAGCCAAGATTCAATGTA



GACGTGATCAACTCGCACACATGCATAGAAGAAGAGGCGCTCGTGATGTTTATTTAAATGTGTCTGTTA



GAGTTCAATCCCAATCGGAGGCTAGAGGTGAAAGAAGGCCACCATACGCAGCAGTTTTTAGGTTAGTAG



GTGATAATCATAGGGCATTTGTCCACTTCGACAAATTAAGTGATTATTTAGCAGAGCACCCTGATGATGG



AAAGTTGGGCAGTGAGGGATTATTAAGTGGGTTGAGGGTAATGTCTGTAGATCTTGGTCTTCGTACTTCT



GCGAGTATCTCTGTCTTTAGAGTAGCACGTAAGGATGAGTTGAAACCTAATAGCAAAGGAAGAGTCCCG



TTTTTTTTTCCTATTAAGGGTAACGATAACCTGGTGGCCGTGCATGAAAGATCACAACTTTTGAAATTGC



CAGGAGAAACGGAGTCCAAGGACTTGAGGGCAATTAGAGAGGAACGTCAGCGTACATTGCGACAGCTG



AGAACTCAATTGGCTTATTTGAGGTTGTTGGTTAGGTGTGGTTCCGAGGATGTTGGCAGAAGAGAAAGG



TCTTGGGCCAAATTGATAGAACAACCAGTGGACGCCGCAAATCACATGACACCAGATTGGAGAGAAGCT



TTCGAAAATGAACTCCAGAAATTAAAGAGCCTACATGGCATATGCTCTGATAAAGAGTGGATGGATGCC



GTATACGAATCCGTTCGTAGAGTCTGGCGCCACATGGGTAAGCAAGTACGGGACTGGAGAAAGGATGTT



CGTTCCGGCGAAAGACCGAAGATAAGGGGGTATGCAAAGGACGTTGTAGGCGGTAATTCTATTGAACA



GATTGAGTATTTGGAAAGGCAGTACAAATTTCTTAAATCCTGGAGCTTCTTCGGCAAAGTGTCAGGACA



AGTCATCAGGGCTGAAAAAGGTTCCAGATTTGCTATTACGCTAAGGGAACATATTGATCATGCGAAAGA



AGATAGACTGAAAAAACTAGCAGATAGAATAATTATGGAAGCACTTGGTTACGTCTATGCACTTGATGA



AAGAGGCAAGGGGAAATGGGTAGCTAAATACCCGCCTTGTCAACTTATTTTATTAGAAGAATTAAGCGA



GTACCAATTTAACAACGATAGACCTCCATCCGAAAATAATCAGCTGATGCAATGGTCCCATAGGGGTGT



TTTTCAAGAATTGATAAATCAAGCTCAAGTACACGATTTGCTGGTAGGTACTATGTACGCAGCGTTTTCG



AGCCGTTTTGATGCAAGAACTGGTGCCCCAGGTATCAGATGTCGACGTGTTCCGGCCAGATGTACACAG



GAACATAACCCTGAGCCATTTCCGTGGTGGCTTAATAAGTTTGTTGTCGAGCACACATTAGACGCATGCC



CTCTGAGAGCAGATGACCTTATACCCACTGGAGAAGGCGAAATATTTGTTAGTCCATTCTCTGCAGAAG



AAGGTGACTTTCACCAGATACATGCAGACTTAAATGCAGCACAGAATCTCCAACAAAGGTTGTGGTCGG



ATTTTGATATTTCGCAAATAAGACTAAGATGCGATTGGGGAGAGGTTGATGGAGAATTGGTGCTGATTC



CAAGATTAACCGGAAAGCGAACTGCCGATTCCTATTCTAACAAGGTGTTTTACACAAATACTGGTGTTAC



CTATTACGAAAGAGAAAGGGGTAAGAAGAGACGTAAAGTATTTGCTCAAGAAAAATTGTCAGAAGAGG



AGGCAGAACTGTTAGTAGAAGCAGACGAAGCCAGAGAAAAATCAGTTGTGCTTATGCGTGACCCTTCCG



GCATTATAAATCGTGGTAATTGGACACGACAAAAAGAATTTTGGTCTATGGTCAATCAACGTATCGAAG



GCTACCTAGTTAAGCAAATCAGGTCTAGGGTTCCACTACAAGATAGCGCATGTGAAAATACGGGTGATA



TATAA





SEQ
ATGGCTACTAGATCTTTCATTTTAAAAATTGAACCTAATGAAGAAGTGAAGAAGGGTCTCTGGAAAACT


ID
CACGAAGTACTTAATCATGGCATTGCCTATTATATGAATATCCTGAAGCTTATTCGTCAAGAAGCTATAT


NO:
ACGAGCATCATGAGCAAGATCCTAAGAACCCTAAGAAAGTAAGCAAAGCGGAAATTCAGGCTGAATTG


140
TGGGACTTCGTCTTGAAGATGCAGAAGTGTAACAGTTTTACGCACGAAGTTGATAAAGATGTGGTGTTT



AATATTTTGAGGGAGCTATATGAGGAGTTGGTGCCCTCGAGTGTCGAAAAAAAAGGAGAAGCTAATCAG



CTGTCAAATAAATTTTTATATCCTCTGGTGGATCCAAACTCTCAATCAGGTAAAGGCACTGCCAGTAGTG



GTCGAAAACCGAGATGGTATAATTTGAAAATCGCAGGTGATCCATCGTGGGAAGAAGAAAAAAAAAAA



TGGGAAGAAGATAAAAAAAAAGATCCCCTTGCCAAAATACTAGGTAAGCTAGCCGAGTATGGACTTAT



ACCATTATTCATTCCTTTCACGGACTCTAATGAACCAATTGTGAAGGAAATCAAATGGATGGAAAAATC



ACGTAATCAGTCTGTTAGGAGGTTGGACAAAGATATGTTTATACAGGCTCTTGAGAGGTTTTTGTCGTGG



GAGTCCTGGAATTTGAAAGTGAAAGAAGAATATGAAAAAGTGGAAAAGGAGCATAAGACGTTGGAAGA



AAGGATTAAGGAAGATATTCAGGCCTTTAAGAGTCTGGAACAGTACGAAAAAGAAAGACAGGAACAGT



TATTGAGAGATACTCTAAACACTAATGAATATAGGCTTTCCAAGAGGGGCTTGCGAGGATGGAGAGAGA



TAATTCAGAAATGGTTGAAAATGGATGAGAACGAGCCATCGGAGAAATATCTAGAGGTGTTTAAAGATT



ACCAAAGAAAGCACCCTCGCGAAGCTGGTGATTACTCTGTTTATGAATTCCTTTCGAAGAAGGAAAATC



ACTTCATCTGGCGAAATCATCCAGAGTACCCATATTTATATGCTACATTTTGCGAAATTGACAAGAAAAA



AAAAGATGCTAAACAGCAAGCGACATTCACCCTCGCTGATCCCATCAACCACCCATTATGGGTCAGGTT



CGAAGAGAGATCAGGCTCGAACCTGAATAAGTACAGGATCTTGACTGAGCAATTGCATACTGAGAAGTT



AAAAAAGAAATTGACGGTCCAACTTGACAGATTGATTTATCCCACTGAATCTGGTGGATGGGAGGAGAA



AGGTAAGGTTGATATTGTCCTATTGCCTTCTCGTCAATTTTACAACCAAATATTTCTGGACATCGAAGAG



AAGGGTAAACATGCTTTTACCTATAAGGATGAGAGTATTAAATTTCCATTGAAGGGAACGCTTGGCGGC



GCTAGAGTTCAGTTCGATAGAGATCATTTGAGAAGATACCCGCATAAAGTGGAATCTGGTAATGTAGGT



CGGATCTACTTTAACATGACGGTAAATATTGAACCTACCGAGTCACCAGTCAGTAAGTCTTTAAAGATTC



ATAGGGATGATTTCCCTAAATTTGTCAACTTCAAGCCTAAGGAACTAACCGAGTGGATCAAAGACAGTA



AAGGCAAAAAGTTAAAGAGCGGTATTGAGTCCCTGGAGATAGGTCTTAGAGTCATGTCTATCGATTTGG



GTCAAAGACAAGCAGCCGCAGCATCTATTTTCGAAGTTGTTGACCAAAAACCGGATATCGAGGGGAAAT



TATTTTTTCCAATAAAAGGAACTGAGCTATACGCTGTGCATCGCGCATCCTTCAATATAAAACTGCCAGG



AGAAACACTAGTAAAATCTAGAGAGGTCTTGCGTAAAGCACGTGAGGACAATCTCAAATTAATGAATCA



GAAGTTAAATTTCCTTAGGAACGTGTTGCATTTCCAACAGTTCGAGGACATAACTGAACGCGAGAAAAG



AGTCACTAAGTGGATCTCAAGACAAGAAAATAGTGATGTGCCATTAGTGTATCAAGACGAACTTATTCA



AATAAGAGAGCTAATGTATAAACCATATAAAGACTGGGTGGCATTCTTAAAACAATTACACAAGCGGCT



TGAAGTAGAAATAGGAAAAGAAGTAAAGCATTGGAGGAAGAGTCTGTCCGATGGTCGCAAAGGCCTGT



ACGGGATATCACTTAAAAATATTGATGAAATTGACAGAACACGAAAATTTTTGTTAAGATGGTCATTGA



GACCAACCGAACCAGGTGAGGTTAGAAGGTTGGAACCAGGCCAAAGGTTTGCCATCGATCAATTAAACC



ATCTTAACGCACTGAAAGAAGATAGATTGAAGAAGATGGCGAACACTATTATTATGCACGCTCTAGGTT



ATTGCTATGATGTGAGAAAGAAAAAATGGCAAGCCAAGAACCCTGCATGCCAAATTATTTTGTTTGAAG



ATCTTTCTAATTACAATCCATACGAAGAGCGTTCACGTTTTGAAAACTCTAAATTGATGAAATGGTCTAG



AAGAGAGATTCCGAGACAGGTCGCTCTACAAGGGGAGATTTACGGTCTTCAAGTCGGTGAGGTTGGTGC



TCAATTTTCTTCCAGATTTCATGCAAAAACTGGGTCTCCAGGCATTAGGTGTTCGGTCGTTACTAAGGAA



AAGTTACAGGACAACCGTTTCTTCAAAAATTTGCAACGTGAAGGCCGTTTAACACTTGATAAGATAGCT



GTCCTTAAGGAAGGCGATCTGTACCCAGATAAAGGTGGTGAGAAATTCATATCTTTGAGTAAAGACAGG



AAACTGGTTACAACACACGCCGACATTAACGCAGCTCAGAACTTGCAAAAGAGATTCTGGACAAGGACC



CACGGCTTCTATAAGGTGTACTGTAAAGCTTATCAAGTAGATGGACAAACGGTTTATATTCCTGAATCAA



AGGACCAGAAACAAAAAATTATAGAAGAATTTGGTGAAGGATACTTTATCTTGAAGGATGGAGTTTATG



AGTGGGGCAATGCAGGTAAGTTAAAGATAAAGAAAGGTTCATCAAAGCAATCAAGTAGCGAACTGGTC



GATTCGGATATTTTAAAGGATAGCTTTGATCTAGCTAGTGAATTGAAGGGAGAAAAGTTAATGTTATAC



AGAGATCCCAGTGGGAATGTATTTCCATCTGATAAGTGGATGGCCGCCGGAGTGTTTTTTGGCAAATTAG



AGAGAATCTTGATTTCTAAACTGACCAATCAATACTCAATTTCGACCATCGAAGACGACTCTTCAAAACA



ATCCATGTGA





SEQ
ATGCCTACTCGCACCATCAATCTGAAGTTAGTTTTGGGGAAGAACCCAGAAAATGCGACTCTAAGACGG


ID
GCACTATTCTCTACACATAGACTTGTCAACCAAGCGACTAAGAGAATTGAAGAATTTTTACTGTTGTGTA


NO:
GAGGAGAAGCTTATCGTACCGTAGATAATGAAGGTAAAGAAGCTGAGATCCCACGCCATGCTGTTCAAG


141
AAGAGGCGCTTGCTTTTGCAAAAGCTGCACAACGACATAACGGCTGTATCTCCACATATGAGGACCAGG



AAATCTTGGATGTGCTTAGACAATTGTATGAAAGATTAGTACCTAGCGTCAATGAAAACAACGAGGCTG



GGGATGCCCAAGCCGCTAACGCTTGGGTGAGTCCATTAATGAGTGCAGAGTCCGAAGGTGGACTATCGG



TCTATGATAAAGTGTTAGACCCGCCGCCAGTATGGATGAAACTCAAAGAAGAGAAAGCGCCTGGTTGGG



AAGCTGCTTCTCAGATTTGGATACAGTCCGACGAAGGTCAATCGCTGCTAAATAAACCGGGTAGCCCAC



CACGTTGGATTAGAAAACTTAGATCTGGTCAACCGTGGCAAGATGACTTCGTTTCAGACCAAAAAAAAA



AGCAAGATGAACTAACGAAAGGTAACGCACCACTCATAAAACAATTGAAAGAGATGGGCCTCTTGCCTT



TAGTTAATCCCTTTTTTAGACATTTGTTGGATCCCGAGGGTAAGGGTGTATCCCCATGGGACAGATTGGC



CGTAAGGGCCGCGGTGGCGCACTTCATCTCTTGGGAAAGTTGGAACCACAGAACAAGAGCTGAGTATAA



CAGTTTGAAACTGCGAAGAGATGAATTTGAGGCCGCATCTGATGAATTCAAGGACGATTTTACATTGCT



ACGACAATATGAGGCTAAGCGACATAGTACGCTTAAGTCAATTGCCTTAGCTGATGACTCTAACCCGTA



CCGAATTGGTGTAAGGTCCTTGAGAGCCTGGAATAGGGTTAGAGAAGAATGGATTGACAAAGGCGCAA



CCGAGGAACAAAGGGTTACCATCCTTAGTAAGCTTCAAACACAATTACGGGGTAAATTCGGTGATCCAG



ACCTATTTAATTGGCTAGCCCAAGATAGACACGTACACCTGTGGTCCCCGAGAGATTCCGTCACGCCCCT



CGTAAGGATTAATGCCGTCGACAAAGTGCTTAGAAGACGTAAGCCTTATGCACTGATGACTTTTGCACA



TCCGAGATTCCATCCAAGATGGATTCTATACGAAGCGCCTGGTGGTTCTAACTTGCGACAATACGCTTTA



GATTGTACTGAAAATGCTCTGCATATTACACTTCCATTACTCGTCGACGACGCCCATGGTACATGGATTG



AGAAAAAAATCCGCGTACCACTCGCTCCTAGTGGACAAATACAAGATTTAACTTTAGAAAAACTTGAAA



AGAAAAAAAACAGATTATACTATAGATCAGGATTCCAACAATTTGCTGGATTAGCCGGTGGTGCTGAGG



TGTTGTTTCATAGGCCGTATATGGAACATGATGAGAGATCAGAAGAATCTCTGTTGGAAAGGCCAGGCG



CTGTGTGGTTCAAATTAACCTTAGATGTTGCTACCCAAGCACCACCTAACTGGTTAGATGGTAAAGGCAG



AGTTAGGACACCTCCAGAAGTTCATCATTTCAAAACCGCTCTGTCAAATAAATCTAAACATACGAGAAC



CTTGCAACCAGGATTGAGAGTCCTTTCTGTTGATTTGGGTATGAGAACATTTGCTTCTTGTTCTGTTTTCG



AATTGATCGAAGGTAAACCTGAAACAGGTAGAGCATTCCCTGTTGCTGACGAAAGATCAATGGATAGTC



CAAATAAGTTATGGGCCAAGCACGAGAGAAGCTTTAAACTAACTCTGCCTGGAGAAACACCGAGCAGA



AAGGAGGAAGAAGAGAGAAGCATTGCTAGGGCAGAGATTTACGCGCTGAAAAGAGATATTCAAAGACT



GAAATCACTCCTAAGATTAGGTGAGGAAGATAATGATAATAGAAGAGATGCTTTGTTAGAGCAATTCTT



TAAAGGATGGGGTGAAGAGGACGTAGTTCCTGGTCAAGCTTTCCCTAGAAGCCTCTTTCAGGGATTAGG



CGCTGCACCCTTTAGGTCAACACCCGAATTGTGGAGACAGCACTGTCAGACGTATTACGACAAAGCGGA



AGCTTGCCTGGCAAAGCATATTTCCGACTGGAGGAAGAGAACTAGACCTCGTCCGACTTCGAGAGAGAT



GTGGTATAAGACAAGATCTTACCATGGTGGCAAAAGTATTTGGATGCTAGAATACTTAGATGCTGTCCG



CAAATTACTACTTTCATGGTCGTTAAGAGGTCGTACTTACGGAGCTATTAATAGACAAGACACCGCTCGT



TTTGGTTCCTTAGCTTCTAGATTGTTGCATCATATCAACTCTTTAAAGGAAGACCGCATCAAAACCGGTG



CAGATAGTATTGTGCAGGCCGCAAGGGGCTATATTCCTCTCCCACATGGCAAGGGTTGGGAACAGCGTT



ATGAACCCTGTCAGTTGATATTATTTGAAGATCTAGCTAGGTACAGATTTCGTGTAGACAGACCTCGGAG



AGAGAATTCGCAATTGATGCAGTGGAATCATCGAGCTATAGTAGCAGAAACGACGATGCAAGCTGAACT



ATACGGTCAAATAGTCGAAAATACCGCTGCTGGTTTCTCCTCAAGATTTCATGCTGCAACTGGTGCTCCT



GGTGTCAGATGTCGCTTTTTGTTAGAACGAGATTTCGATAATGACCTACCAAAGCCGTACTTACTGAGAG



AACTAAGTTGGATGTTAGGTAACACAAAGGTTGAATCAGAGGAAGAAAAATTGCGTCTTCTAAGCGAGA



AAATTAGACCAGGTTCATTAGTCCCTTGGGATGGGGGTGAACAATTCGCGACATTACACCCGAAAAGAC



AAACTCTTTGTGTCATTCACGCAGATATGAACGCTGCTCAAAACCTGCAACGCAGATTTTTCGGAAGGTG



TGGGGAAGCCTTTCGCCTTGTGTGTCAGCCACATGGTGATGATGTTTTGAGGCTAGCGTCTACACCAGGT



GCAAGACTTTTGGGTGCATTACAACAACTGGAAAATGGTCAGGGAGCTTTCGAATTAGTTCGTGATATG



GGTAGCACATCACAAATGAATCGTTTCGTCATGAAGTCGTTGGGCAAAAAAAAGATCAAGCCATTACAA



GACAATAACGGGGATGATGAACTAGAAGACGTGCTATCTGTTTTACCTGAAGAAGATGATACCGGACGA



ATTACTGTATTTCGGGACTCTTCGGGTATATTCTTCCCTTGTAACGTTTGGATCCCGGCAAAACAGTTCTG



GCCTGCGGTCCGTGCTATGATTTGGAAGGTTATGGCATCACATTCATTGGGTTAG





SEQ
ATGACAAAGTTAAGGCATAGACAGAAGAAGTTAACTCACGATTGGGCGGGGTCTAAAAAGAGAGAAGT


ID
TCTAGGGAGCAATGGTAAATTACAGAATCCATTGCTAATGCCCGTCAAAAAAGGTCAGGTGACAGAATT


NO:
TCGAAAAGCATTTTCCGCATACGCCCGAGCAACCAAAGGGGAAATGACGGATGGCAGAAAAAATATGT


142
TTACTCACTCATTTGAACCATTCAAGACCAAGCCTTCGTTACATCAGTGCGAACTGGCTGACAAAGCCTA



CCAGAGCTTGCATTCATATTTACCGGGTTCTTTGGCGCATTTTCTTTTATCTGCCCATGCACTTGGTTTTA



GGATTTTTAGCAAATCAGGGGAAGCCACTGCATTCCAAGCGTCCTCAAAGATTGAAGCTTACGAAAGCA



AGTTAGCTAGCGAGCTTGCTTGTGTTGATTTGTCTATTCAGAACTTGACTATTTCAACTTTGTTCAACGCA



TTAACGACTTCCGTAAGAGGTAAAGGTGAGGAGACATCGGCAGATCCACTGATAGCTAGATTTTACACC



TTACTTACCGGTAAACCACTAAGCAGAGACACTCAGGGCCCAGAACGAGATTTAGCCGAGGTGATAAGC



AGAAAAATTGCAAGTTCTTTTGGAACTTGGAAGGAGATGACTGCCAATCCACTTCAATCTCTTCAATTTT



TTGAAGAGGAGTTGCATGCGCTAGATGCAAATGTTAGTTTGTCACCTGCCTTCGATGTTCTGATTAAGAT



GAACGACCTGCAGGGTGACTTGAAGAACAGAACGATAGTTTTTGATCCAGATGCTCCTGTGTTTGAATA



TAATGCTGAGGATCCTGCTGACATCATCATTAAACTGACAGCTAGATATGCGAAAGAAGCAGTGATTAA



AAATCAAAATGTCGGGAATTATGTTAAGAACGCTATTACGACAACTAACGCAAACGGACTAGGTTGGTT



GCTGAACAAAGGCCTTTCCTTATTGCCTGTCTCCACTGATGACGAACTATTGGAGTTTATTGGGGTCGAG



AGATCCCATCCTAGCTGTCATGCGTTGATAGAACTTATCGCTCAGTTAGAAGCACCTGAACTGTTCGAAA



AAAATGTTTTTTCTGATACTCGTTCCGAGGTTCAAGGTATGATAGATTCAGCTGTAAGCAATCATATCGC



CAGGCTGTCAAGCTCTCGTAATTCATTGAGCATGGACTCAGAGGAACTTGAGAGATTGATAAAATCTTTT



CAAATTCATACACCACATTGTTCATTATTTATAGGGGCTCAATCCTTATCTCAACAATTGGAAAGCCTAC



CCGAAGCATTGCAGTCAGGAGTGAACAGTGCTGATATTCTGCTCGGCTCAACCCAATACATGTTGACAA



ATTCTTTGGTCGAGGAGTCAATCGCTACGTATCAGAGAACCTTAAATAGAATTAACTACCTGTCCGGCGT



TGCAGGACAGATTAACGGTGCTATTAAGAGGAAAGCTATTGATGGTGAGAAGATACATTTACCCGCTGC



TTGGTCAGAGTTAATTTCTTTACCCTTTATTGGGCAACCAGTGATTGATGTTGAATCAGATTTAGCCCACT



TAAAGAACCAATACCAGACATTGTCTAACGAATTTGATACGCTGATTTCCGCACTGCAAAAGAATTTCG



ACTTAAATTTTAATAAAGCCTTGCTTAATCGAACACAACATTTCGAGGCTATGTGTAGATCAACAAAAA



AGAATGCCCTTTCTAAGCCTGAGATCGTTAGTTATAGAGATTTGCTAGCCAGGTTGACTTCTTGTCTTTAT



AGGGGCTCTCTAGTCTTGAGGAGGGCGGGTATAGAAGTACTGAAAAAGCACAAGATATTTGAGTCCAAC



TCTGAATTAAGAGAGCACGTTCATGAAAGAAAACACTTCGTATTTGTTTCTCCGCTCGATAGAAAAGCC



AAGAAGCTCCTACGTTTGACTGACTCTAGGCCTGATTTATTGCACGTAATTGATGAAATACTACAACATG



ATAATTTAGAGAACAAGGATAGAGAATCTTTGTGGTTAGTTCGATCTGGTTATTTACTGGCCGGCCTACC



AGACCAACTCTCCTCTTCCTTTATAAATCTTCCAATCATTACTCAAAAAGGCGATCGTCGCTTGATAGAT



CTCATTCAATACGACCAAATTAATAGAGATGCTTTTGTGATGTTGGTAACTTCCGCTTTTAAGTCGAACT



TAAGTGGGCTGCAGTACAGAGCAAACAAACAATCTTTTGTGGTTACGCGCACTTTGTCACCATATTTGGG



ATCTAAATTGGTTTATGTGCCCAAAGATAAAGATTGGCTGGTCCCTTCCCAAATGTTCGAGGGGAGATTT



GCGGACATTTTGCAATCCGATTATATGGTGTGGAAGGACGCTGGAAGATTGTGTGTTATTGACACAGCT



AAGCATTTGTCTAACATTAAAAAATCTGTATTCTCAAGTGAAGAAGTCCTCGCGTTTTTAAGAGAATTGC



CACACCGTACGTTTATCCAAACTGAGGTCAGGGGTTTAGGGGTGAATGTGGACGGTATTGCATTTAATA



ACGGGGATATACCCTCTCTGAAGACGTTTAGCAATTGCGTGCAAGTCAAAGTGAGTCGGACAAACACTA



GTCTGGTCCAAACATTAAATAGATGGTTTGAAGGCGGTAAGGTCTCGCCGCCTAGCATCCAATTTGAGA



GAGCATATTACAAAAAAGATGATCAAATCCACGAGGACGCTGCAAAAAGGAAGATAAGGTTTCAAATG



CCAGCTACAGAGTTGGTACACGCGTCAGACGACGCAGGATGGACCCCCTCCTATTTACTTGGTATCGATC



CCGGTGAATATGGTATGGGTTTGTCATTGGTCTCAATAAATAATGGCGAAGTTTTAGATAGCGGATTTAT



ACACATAAATTCATTGATAAATTTCGCTTCTAAGAAATCAAATCATCAAACCAAAGTTGTTCCGAGGCA



GCAATACAAGTCACCATACGCCAACTATCTAGAACAATCTAAAGATTCTGCAGCAGGAGACATAGCTCA



TATTTTGGATAGACTTATCTACAAGTTGAACGCCCTACCCGTTTTCGAAGCTCTATCTGGCAATAGTCAA



AGCGCAGCGGATCAGGTTTGGACAAAAGTCCTCAGCTTCTACACCTGGGGAGATAATGATGCACAAAAT



TCAATTCGTAAGCAACATTGGTTCGGTGCTTCACACTGGGACATTAAAGGCATGTTGAGGCAACCGCCA



ACAGAAAAAAAGCCCAAACCATACATTGCCTTTCCCGGTTCACAAGTTTCTTCTTATGGTAATTCTCAAA



GGTGTTCATGTTGTGGACGTAACCCAATTGAACAATTGCGCGAAATGGCGAAGGACACATCCATTAAGG



AGTTGAAGATTAGAAATTCAGAAATTCAATTGTTCGACGGTACTATAAAGTTATTTAATCCAGACCCGTC



AACGGTCATAGAAAGAAGAAGACATAATTTAGGGCCATCAAGAATTCCTGTAGCTGATAGAACTTTCAA



AAATATAAGTCCAAGCTCACTAGAATTCAAAGAACTAATAACGATTGTGTCACGGTCTATACGTCATTCC



CCAGAATTTATTGCTAAAAAAAGAGGTATAGGTAGTGAGTACTTTTGTGCTTATAGTGATTGTAATTCCT



CCTTAAATTCAGAAGCAAATGCGGCTGCGAACGTTGCCCAAAAGTTCCAAAAGCAATTGTTTTTCGAATT



ATAG





SEQ
ATGAAAAGAATCTTGAACTCTTTAAAGGTTGCCGCCCTGCGTTTGTTATTTAGAGGTAAAGGATCTGAAC


ID
TTGTCAAGACTGTTAAATACCCTTTGGTCTCGCCGGTTCAGGGTGCAGTTGAGGAGTTAGCTGAGGCGAT


NO:
CCGCCATGATAACCTACATCTGTTTGGTCAAAAAGAAATTGTTGACCTTATGGAAAAGGATGAAGGTAC


143
GCAAGTTTACTCAGTGGTTGATTTCTGGTTAGATACCCTTCGTTTGGGGATGTTTTTCAGTCCATCAGCAA



ACGCATTAAAAATCACGCTGGGTAAGTTTAATTCTGATCAGGTTAGCCCTTTTAGGAAAGTGTTAGAGCA



GTCTCCATTCTTCTTGGCTGGTAGGCTGAAGGTTGAACCGGCAGAACGTATATTATCTGTCGAGATCCGT



AAGATTGGGAAGAGGGAAAACAGAGTTGAGAACTATGCTGCTGACGTAGAAACGTGTTTTATAGGCCA



ATTAAGTTCAGATGAGAAACAGTCAATACAAAAATTAGCTAATGATATCTGGGATAGTAAAGATCATGA



AGAGCAAAGAATGTTAAAGGCAGATTTCTTCGCTATCCCTTTGATTAAGGATCCAAAGGCTGTGACCGA



AGAGGATCCTGAAAATGAAACTGCTGGTAAACAAAAACCCTTGGAGTTGTGTGTCTGCCTTGTCCCAGA



ACTTTACACAAGAGGATTCGGGTCAATAGCCGATTTTTTGGTTCAACGCTTAACTCTTTTAAGGGATAAA



ATGTCTACAGATACTGCAGAAGATTGTTTAGAATATGTCGGGATTGAGGAGGAAAAAGGTAACGGCATG



AACTCATTGTTGGGAACGTTCTTAAAGAATTTGCAAGGCGATGGATTTGAGCAGATTTTCCAATTTATGT



TAGGGAGCTATGTCGGTTGGCAAGGGAAGGAAGATGTTTTAAGAGAGAGATTAGACTTATTGGCTGAAA



AAGTGAAGAGGTTACCGAAACCAAAATTTGCTGGCGAATGGTCTGGTCATAGGATGTTCTTGCATGGCC



AATTGAAGTCTTGGTCTTCAAATTTTTTTAGACTATTTAACGAGACAAGGGAACTTCTAGAGTCTATTAA



GTCAGATATACAGCATGCCACAATGCTAATATCATATGTAGAAGAAAAAGGTGGTTATCATCCTCAATT



ACTTAGTCAATATAGAAAACTTATGGAACAACTACCAGCTTTGCGTACCAAGGTATTGGACCCTGAGAT



TGAAATGACACATATGTCCGAAGCAGTTCGCTCTTATATAATGATACATAAATCTGTTGCGGGTTTTTTA



CCGGATTTATTAGAATCATTAGATAGAGACAAGGATCGTGAGTTTCTGCTTAGTATTTTTCCAAGAATCC



CAAAAATTGATAAAAAAACCAAGGAAATTGTAGCTTGGGAACTGCCGGGAGAACCAGAAGAAGGTTAT



TTATTTACTGCTAATAACTTGTTCAGAAACTTCTTAGAGAATCCGAAACATGTCCCGAGATTTATGGCCG



AAAGGATCCCAGAAGATTGGACTCGATTACGCTCTGCTCCTGTCTGGTTCGATGGAATGGTAAAACAAT



GGCAAAAAGTCGTTAACCAGTTAGTAGAATCACCAGGTGCTTTATATCAATTTAACGAATCCTTCTTGAG



ACAAAGGTTACAGGCCATGTTAACTGTGTATAAGAGGGACTTACAAACTGAAAAATTTCTTAAACTTTT



GGCGGATGTTTGTAGGCCTCTTGTAGATTTTTTTGGTTTGGGTGGAAATGATATTATTTTTAAGAGCTGTC



AAGACCCAAGAAAACAATGGCAAACCGTTATTCCTCTCTCTGTTCCGGCAGATGTCTATACTGCTTGCGA



AGGTTTGGCGATTAGACTAAGGGAGACATTAGGATTCGAATGGAAGAATTTGAAAGGTCACGAGAGAG



AAGATTTCTTAAGATTGCACCAGTTATTGGGCAATTTACTTTTCTGGATTCGTGATGCTAAATTGGTAGT



AAAATTAGAGGATTGGATGAACAACCCATGTGTTCAGGAATATGTAGAAGCCCGGAAAGCTATCGATCT



TCCACTAGAAATATTCGGTTTTGAAGTGCCTATCTTCCTGAATGGCTATCTATTTTCGGAGTTGAGACAA



TTAGAACTTTTGCTTAGGAGAAAAAGTGTGATGACTAGCTACAGTGTAAAGACTACTGGATCTCCTAAT



AGGCTATTTCAGCTAGTTTATTTACCTCTAAACCCTAGTGACCCCGAAAAGAAGAACTCAAATAACTTTC



AAGAACGTTTGGATACCCCAACTGGTTTGTCCCGTCGTTTCCTAGACCTAACCCTTGATGCATTCGCAGG



TAAGTTACTTACCGATCCAGTTACACAAGAATTGAAGACAATGGCAGGTTTTTACGATCATCTTTTTGGA



TTCAAATTGCCATGTAAACTCGCCGCCATGTCGAATCATCCAGGTTCTTCTTCAAAGATGGTTGTGTTAG



CGAAACCCAAAAAAGGTGTTGCTTCTAATATAGGGTTTGAACCGATCCCAGATCCCGCTCATCCCGTATT



TAGGGTTAGATCCAGTTGGCCAGAGTTGAAGTACCTCGAGGGGCTATTGTATTTGCCAGAAGACACACC



TTTGACCATCGAATTAGCAGAGACCTCCGTATCGTGCCAAAGTGTCTCGTCAGTTGCATTCGATTTGAAA



AACTTGACAACGATCTTAGGTCGTGTGGGAGAATTTAGGGTCACAGCTGATCAACCCTTTAAACTAACG



CCTATAATCCCGGAGAAAGAAGAATCTTTTATTGGTAAAACTTATTTGGGTCTCGACGCGGGTGAAAGG



AGCGGCGTCGGTTTCGCTATTGTTACAGTGGACGGAGATGGGTACGAAGTGCAAAGATTGGGGGTCCAC



GAGGATACACAGCTTATGGCCTTGCAGCAAGTTGCTAGTAAATCCTTAAAAGAGCCAGTATTTCAGCCT



CTAAGAAAAGGCACCTTTAGACAACAAGAAAGAATACGGAAATCCTTACGTGGTTGCTACTGGAATTTT



TATCATGCCTTGATGATAAAATATAGGGCCAAAGTAGTACATGAGGAATCTGTCGGAAGTAGTGGTCTT



GTGGGTCAATGGTTGAGGGCTTTTCAGAAGGATTTGAAGAAAGCCGATGTTCTCCCCAAGAAGGGCGGT



AAAAACGGTGTAGATAAGAAGAAGAGAGAGTCCTCAGCTCAAGACACTCTTTGGGGTGGTGCTTTCTCT



AAAAAGGAGGAGCAACAGATTGCGTTTGAGGTGCAAGCTGCAGGTTCTTCGCAATTTTGTTTGAAGTGC



GGATGGTGGTTCCAACTAGGCATGCGTGAAGTAAACAGGGTACAAGAATCGGGCGTCGTGTTAGATTGG



AATAGAAGCATAGTTACCTTTTTAATAGAATCATCCGGCGAAAAAGTTTATGGTTTCTCCCCACAGCAAT



TAGAGAAGGGTTTCAGACCAGACATCGAAACTTTTAAAAAGATGGTAAGAGACTTTATGAGACCTCCTA



TGTTTGATAGAAAAGGCAGACCGGCCGCAGCTTACGAGAGATTTGTTTTAGGAAGGAGACATCGAAGGT



ACAGGTTTGATAAAGTATTTGAGGAAAGATTTGGGAGGTCTGCTCTTTTCATTTGTCCTAGAGTAGGTTG



TGGAAATTTTGACCACAGCTCCGAACAGTCCGCGGTTGTTTTGGCCTTGATCGGATATATTGCCGATAAG



GAGGGAATGTCAGGTAAGAAGTTGGTTTATGTACGGCTGGCCGAACTTATGGCCGAATGGAAACTAAAA



AAATTAGAAAGATCCAGAGTTGAAGAACAATCATCCGCTCAATAA





SEQ
ATGGCAGAAAGCAAACAAATGCAGTGTAGGAAATGTGGAGCTAGTATGAAGTACGAAGTCATCGGTTT


ID
GGGTAAAAAGTCATGTAGATACATGTGTCCCGATTGTGGCAACCATACCTCGGCAAGAAAGATACAAAA


NO:
CAAAAAAAAAAGAGATAAAAAATATGGGTCAGCCAGTAAAGCCCAATCTCAAAGAATTGCTGTAGCAG


144
GTGCTCTTTACCCTGACAAAAAAGTACAAACTATCAAAACCTATAAATATCCAGCAGACTTGAATGGTG



AGGTGCATGATAGCGGTGTTGCCGAGAAAATCGCACAAGCAATACAAGAGGACGAGATTGGACTTTTG



GGACCAAGCTCAGAATATGCATGCTGGATTGCATCTCAAAAACAGTCTGAGCCTTACAGTGTAGTCGAT



TTCTGGTTTGATGCAGTGTGCGCAGGGGGAGTCTTCGCCTACTCTGGCGCTAGATTATTGAGTACAGTTT



TACAGTTATCCGGTGAGGAATCGGTGCTTAGAGCTGCCTTAGCCTCGTCTCCATTCGTTGACGATATAAA



CTTAGCGCAAGCCGAAAAGTTTTTGGCGGTTAGCAGGCGTACAGGTCAAGATAAGTTAGGTAAGAGAAT



TGGGGAGTGCTTTGCAGAAGGAAGATTGGAAGCTTTAGGGATAAAAGATAGAATGAGGGAATTTGTTCA



AGCTATCGATGTTGCACAGACCGCCGGACAACGTTTCGCTGCCAAATTGAAGATATTCGGTATAAGTCA



GATGCCAGAAGCTAAGCAATGGAATAACGATTCCGGACTGACTGTCTGTATACTACCTGATTATTATGTT



CCCGAAGAGAATCGCGCGGACCAACTTGTAGTGTTGTTAAGAAGACTTCGCGAGATTGCATATTGCATG



GGTATTGAAGATGAAGCGGGTTTCGAACATCTTGGAATAGATCCTGGTGCTCTTTCGAATTTTTCAAACG



GTAACCCTAAGAGAGGATTTCTAGGGAGGCTGTTAAATAACGATATTATTGCGTTGGCAAACAATATGA



GTGCGATGACTCCATATTGGGAAGGGCGTAAGGGTGAACTCATAGAAAGGCTTGCGTGGTTAAAGCACA



GGGCAGAAGGGCTGTATCTTAAAGAACCTCATTTCGGTAACTCCTGGGCCGATCATAGGTCACGAATTTT



CTCAAGGATCGCAGGCTGGTTATCTGGTTGCGCTGGCAAGTTGAAAATTGCGAAAGACCAAATTTCTGG



AGTACGTACAGATCTATTTCTGCTAAAAAGACTGCTGGACGCAGTTCCGCAATCGGCGCCATCCCCCGAT



TTTATTGCGTCAATTTCGGCACTTGACAGGTTTTTAGAAGCTGCAGAATCGAGCCAGGACCCTGCTGAAC



AAGTGAGGGCTCTCTACGCTTTTCACTTGAACGCACCTGCAGTCCGAAGTATAGCCAATAAAGCAGTGC



AAAGGTCCGACAGCCAAGAATGGCTGATAAAAGAACTAGACGCTGTTGACCATTTAGAATTTAACAAAG



CGTTCCCATTTTTCTCTGACACAGGAAAAAAAAAAAAAAAAGGTGCTAATAGCAACGGTGCTCCATCGG



AAGAAGAGTACACTGAAACGGAATCAATACAACAACCTGAGGACGCGGAACAGGAAGTAAACGGACA



AGAAGGGAACGGAGCGTCTAAAAATCAAAAGAAATTTCAAAGAATACCTAGATTCTTCGGTGAAGGCT



CCAGATCTGAATACAGAATTTTAACGGAAGCTCCACAGTATTTCGATATGTTTTGTAATAACATGAGGGC



TATATTTATGCAGTTAGAAAGTCAACCCCGTAAAGCTCCCAGAGATTTTAAATGTTTCCTACAAAATCGA



TTACAAAAATTATACAAACAGACTTTCTTGAATGCACGAAGCAACAAGTGTCGCGCTCTGCTTGAGTCA



GTTTTAATCTCTTGGGGAGAATTTTATACATACGGTGCCAACGAAAAGAAATTTAGATTAAGACATGAA



GCTTCAGAACGCAGCAGTGACCCAGATTACGTAGTTCAGCAAGCCTTGGAAATCGCGCGTCGTCTATTC



CTTTTTGGCTTCGAATGGAGAGATTGCTCCGCTGGTGAAAGAGTGGATTTGGTTGAAATTCACAAAAAG



GCTATCAGTTTTTTGTTGGCTATTACTCAAGCTGAGGTCTCTGTTGGTTCATACAATTGGCTTGGCAACTC



AACAGTATCGAGATATTTATCCGTTGCGGGAACTGATACCTTATACGGTACCCAATTGGAAGAATTCCTG



AACGCTACAGTGTTGAGTCAAATGCGTGGTCTGGCCATTAGATTGAGTTCTCAAGAACTTAAGGACGGT



TTTGATGTGCAGCTCGAGTCTTCCTGCCAGGACAATCTGCAACACCTATTGGTGTATAGGGCTTCGAGAG



ATTTGGCGGCTTGCAAGCGCGCTACTTGTCCAGCCGAACTCGATCCTAAGATTTTAGTTTTACCGGTAGG



TGCATTCATCGCTTCCGTAATGAAAATGATAGAAAGAGGTGACGAACCTTTAGCTGGTGCTTATTTACGG



CATAGGCCACACTCTTTCGGATGGCAAATTAGGGTCCGCGGTGTTGCTGAGGTAGGGATGGATCAGGGT



ACAGCATTGGCCTTTCAAAAGCCAACAGAGTCAGAACCTTTTAAAATTAAGCCCTTCTCTGCACAGTATG



GACCAGTTCTGTGGTTGAACAGTAGTAGTTATTCTCAATCACAATATTTGGACGGTTTTCTATCTCAACC



AAAAAATTGGAGTATGAGGGTGTTGCCTCAGGCGGGTTCAGTTCGCGTCGAACAACGAGTTGCTTTGAT



ATGGAACTTACAAGCAGGCAAGATGAGACTAGAACGCTCCGGTGCGAGGGCCTTTTTCATGCCTGTACC



GTTTTCATTTAGGCCATCCGGCAGTGGGGACGAAGCAGTTTTGGCGCCCAACCGGTACTTGGGTCTGTTC



CCTCATTCCGGAGGTATAGAATACGCTGTAGTGGATGTCCTGGATTCTGCTGGATTTAAAATTCTTGAAA



GAGGCACTATTGCTGTCAATGGTTTCTCTCAGAAAAGGGGAGAGCGCCAAGAAGAAGCCCATCGTGAAA



AACAAAGAAGGGGGATAAGTGATATAGGGCGAAAGAAGCCTGTGCAGGCAGAAGTCGATGCGGCGAA



CGAATTGCATAGAAAGTACACTGATGTTGCCACAAGATTAGGTTGTAGAATCGTCGTTCAATGGGCACC



ACAACCTAAACCAGGGACAGCACCGACAGCGCAAACTGTTTACGCGAGGGCTGTTAGGACAGAAGCTC



CGAGGAGCGGCAACCAAGAAGATCATGCAAGAATGAAAAGTTCTTGGGGTTACACCTGGGGTACGTATT



GGGAGAAACGAAAACCAGAAGATATTTTAGGGATTTCTACACAGGTGTATTGGACAGGAGGTATAGGC



GAATCCTGTCCTGCTGTAGCAGTCGCTTTATTAGGTCATATTAGAGCAACTTCAACACAAACGGAGTGGG



AAAAGGAAGAAGTTGTCTTTGGAAGACTGAAGAAGTTCTTTCCGAGTTAA





SEQ
ATGGAGAAGAGAATTAATAAGATACGGAAAAAATTATCTGCGGATAATGCAACAAAGCCAGTCTCTCGT


ID
TCAGGCCCCATGAAAACCCTGCTTGTAAGAGTAATGACGGATGATTTAAAAAAGAGGTTGGAAAAGCGT


NO:
AGAAAAAAACCAGAAGTGATGCCGCAAGTGATCTCAAATAACGCAGCTAATAATCTAAGGATGCTACTT


145
GATGATTATACAAAAATGAAAGAAGCAATCCTGCAAGTTTACTGGCAGGAATTCAAGGATGACCATGTT



GGACTAATGTGCAAATTCGCACAACCAGCGTCTAAGAAAATTGACCAAAATAAATTGAAACCCGAAATG



GACGAAAAAGGGAATTTAACAACTGCCGGGTTTGCCTGCTCGCAATGTGGGCAACCATTATTTGTTTATA



AATTAGAGCAGGTTTCGGAAAAAGGAAAGGCTTACACAAATTACTTCGGCAGATGTAATGTTGCCGAAC



ACGAAAAACTCATATTGTTAGCTCAGTTGAAGCCTGAGAAAGACTCTGATGAGGCCGTTACTTACTCGTT



GGGGAAGTTTGGTCAAAGAGCTCTCGATTTTTATTCTATTCATGTGACAAAGGAGTCCACACATCCCGTC



AAGCCCTTGGCACAAATTGCGGGTAATAGATACGCTTCGGGTCCAGTTGGGAAGGCCCTTTCTGATGCA



TGTATGGGCACAATTGCTAGCTTTCTTAGTAAATACCAGGATATCATAATAGAGCATCAAAAAGTTGTA



AAGGGTAACCAAAAGAGATTAGAATCGCTGCGTGAGTTGGCGGGTAAAGAAAACTTGGAATATCCATCT



GTCACTCTGCCTCCTCAACCTCATACTAAGGAAGGTGTAGATGCGTACAATGAAGTTATCGCTAGAGTCC



GTATGTGGGTGAATTTAAATTTGTGGCAAAAATTGAAGTTATCGCGTGATGATGCAAAACCTCTTCTTAG



ACTAAAGGGCTTTCCTAGCTTCCCTGTAGTGGAAAGACGCGAAAATGAAGTCGATTGGTGGAATACAAT



TAACGAAGTCAAAAAACTGATCGATGCAAAGCGAGATATGGGTCGAGTTTTTTGGTCTGGTGTTACAGC



TGAAAAAAGGAATACGATCTTAGAAGGTTACAACTACTTGCCAAATGAGAACGATCATAAAAAAAGAG



AAGGCAGTTTAGAAAATCCAAAAAAGCCAGCTAAGAGACAATTTGGTGATTTGCTACTTTACCTAGAAA



AAAAGTACGCCGGAGATTGGGGGAAAGTCTTTGACGAAGCTTGGGAGAGAATAGATAAAAAAATAGCA



GGATTGACGTCACACATTGAAAGAGAAGAGGCGAGAAATGCAGAAGATGCTCAGTCCAAAGCTGTCCT



CACCGACTGGTTGAGAGCCAAAGCGTCCTTTGTTCTCGAACGCCTAAAAGAAATGGATGAGAAGGAATT



TTATGCCTGCGAAATCCAGCTACAAAAATGGTACGGAGACTTGAGAGGTAACCCCTTTGCCGTGGAAGC



AGAGAACCGTGTTGTAGATATCTCCGGTTTCTCAATCGGTAGCGATGGACACTCCATTCAGTATCGCAAC



TTGTTGGCCTGGAAATATTTGGAAAACGGTAAGAGGGAATTCTATTTACTTATGAATTATGGCAAGAAA



GGTAGAATCAGGTTTACTGACGGAACAGACATTAAAAAGAGTGGTAAGTGGCAAGGCCTTTTGTACGGT



GGTGGCAAGGCCAAAGTAATAGACTTAACATTTGACCCCGACGACGAACAACTGATAATACTGCCTTTA



GCTTTTGGTACTCGACAGGGGCGAGAGTTCATTTGGAATGATCTTTTGTCACTCGAGACTGGTTTGATAA



AACTTGCAAATGGAAGAGTCATCGAGAAGACAATTTACAACAAAAAGATAGGTCGCGATGAGCCTGCA



CTATTTGTGGCCTTGACCTTTGAGAGAAGGGAAGTTGTCGACCCATCCAATATTAAACCAGTCAACCTAA



TCGGTGTAGATAGAGGTGAAAACATCCCAGCTGTTATCGCTCTGACAGACCCTGAAGGTTGCCCTTTGCC



AGAATTTAAAGATTCGTCTGGTGGACCAACAGATATATTACGTATTGGGGAAGGCTATAAAGAGAAACA



ACGTGCTATTCAGGCTGCAAAAGAAGTTGAACAGAGGAGAGCTGGAGGTTACAGTAGAAAATTCGCCA



GTAAAAGTAGAAACTTAGCAGATGACATGGTTAGAAACTCTGCCCGGGATTTGTTCTATCATGCGGTTA



CTCACGATGCAGTCTTAGTCTTTGAAAATCTATCGCGCGGTTTTGGTAGGCAAGGCAAGAGGACTTTTAT



GACAGAGAGACAATATACAAAAATGGAAGATTGGTTAACCGCGAAGCTCGCATATGAAGGTCTTACTTC



GAAAACGTACCTCAGCAAAACGCTGGCTCAATATACTTCTAAAACTTGTTCAAATTGTGGTTTTACTATT



ACCACGGCAGACTACGACGGGATGTTGGTGAGATTGAAGAAGACGAGCGATGGTTGGGCAACAACATT



GAATAATAAGGAATTAAAAGCAGAAGGACAGATTACGTATTACAATCGTTATAAACGCCAAACGGTTG



AGAAAGAGTTGTCAGCCGAGTTGGATAGACTAAGTGAAGAGAGCGGTAACAATGATATCTCAAAGTGG



ACTAAAGGGAGGCGGGATGAAGCCCTCTTTTTACTAAAGAAGAGATTCTCACATAGACCTGTGCAAGAA



CAATTCGTTTGTTTAGATTGTGGCCATGAGGTTCATGCAGACGAACAGGCTGCGTTAAATATTGCGAGAA



GCTGGCTATTTCTAAATTCTAATTCAACAGAGTTCAAGAGCTATAAATCCGGAAAACAACCTTTCGTAGG



CGCGTGGCAAGCCTTCTATAAAAGGAGATTAAAAGAGGTTTGGAAACCAAATGCA





SEQ
ATGAAAAGAATTAACAAAATTAGAAGGAGGCTGGTCAAAGATTCTAATACCAAGAAAGCTGGTAAGAC


ID
TGGTCCGATGAAAACCCTATTAGTCAGAGTTATGACCCCAGATTTGAGAGAAAGATTGGAGAACCTCAG


NO:
GAAAAAGCCCGAAAACATCCCACAACCCATTAGTAACACATCAAGAGCTAATTTAAACAAGTTATTAAC


146
TGACTACACTGAAATGAAAAAAGCAATATTGCATGTTTACTGGGAAGAGTTCCAGAAAGATCCTGTTGG



GTTGATGTCTAGAGTTGCTCAACCGGCCCCAAAGAATATAGATCAAAGGAAACTTATTCCTGTGAAGGA



CGGCAATGAAAGATTAACCAGCTCCGGTTTCGCTTGCTCCCAGTGCTGCCAACCCCTGTATGTATACAAA



CTGGAACAAGTAAATGATAAAGGTAAGCCACATACTAACTACTTTGGTAGGTGTAATGTATCCGAGCAT



GAAAGATTGATCTTGTTAAGTCCCCATAAACCAGAAGCTAATGATGAGTTAGTAACTTATAGTTTAGGTA



AGTTCGGACAACGAGCTTTAGATTTCTATAGCATCCATGTTACAAGAGAAAGCAATCACCCCGTCAAAC



CACTGGAACAAATCGGTGGTAATAGTTGTGCGTCAGGTCCAGTAGGCAAAGCTTTATCAGACGCTTGCA



TGGGTGCCGTGGCTAGTTTTTTGACGAAATACCAAGATATTATACTGGAACATCAAAAGGTAATTAAAA



AGAATGAAAAGAGACTCGCTAACTTAAAAGATATTGCAAGTGCCAATGGTTTAGCTTTTCCTAAAATTA



CCTTGCCACCTCAGCCACATACAAAGGAGGGAATTGAAGCTTACAATAATGTAGTAGCCCAAATAGTTA



TTTGGGTGAACCTTAACCTATGGCAAAAGTTAAAAATTGGTAGAGACGAAGCCAAACCCCTGCAGAGGC



TGAAGGGTTTTCCCTCCTTCCCCTTAGTAGAGAGACAAGCTAATGAAGTGGACTGGTGGGATATGGTGT



GCAATGTTAAAAAATTGATTAATGAGAAGAAAGAGGATGGTAAAGTGTTTTGGCAGAATCTTGCTGGCT



ACAAGAGACAGGAAGCTTTACTGCCTTATTTATCTTCTGAGGAAGATAGGAAAAAAGGTAAAAAATTTG



CTAGATATCAATTCGGAGACCTACTTCTGCATTTAGAAAAAAAACATGGCGAAGATTGGGGTAAAGTTT



ATGATGAAGCCTGGGAAAGAATTGATAAGAAGGTAGAAGGTCTCTCCAAACATATTAAATTAGAGGAA



GAACGTAGGTCCGAAGACGCTCAATCAAAGGCAGCATTAACTGATTGGTTGAGAGCAAAAGCCTCTTTC



GTTATTGAAGGATTAAAAGAAGCCGACAAAGATGAATTTTGTAGATGTGAGTTAAAGTTGCAAAAGTGG



TATGGAGACCTCCGTGGTAAACCTTTTGCTATTGAGGCTGAAAATTCTATACTCGATATCTCTGGATTTTC



AAAACAATATAACTGCGCATTTATATGGCAGAAAGATGGTGTTAAAAAGCTAAATCTATACTTAATTAT



CAATTACTTTAAAGGTGGTAAATTGCGTTTTAAGAAGATAAAGCCTGAAGCCTTTGAGGCAAACCGTTTT



TACACTGTTATCAATAAAAAATCTGGGGAAATCGTACCAATGGAAGTTAATTTCAATTTCGATGATCCTA



ATCTTATTATTTTACCTCTTGCTTTCGGCAAAAGGCAAGGTAGGGAGTTTATTTGGAATGATTTATTGTCG



CTGGAAACGGGGTCTCTCAAACTCGCAAACGGTAGGGTGATAGAAAAAACATTATACAACAGGAGAAC



TCGGCAGGATGAGCCAGCTCTTTTTGTGGCTCTGACATTCGAGAGAAGGGAAGTTTTAGATTCATCTAAC



ATCAAACCAATGAATTTAATAGGTATTGACCGGGGTGAAAATATACCTGCAGTTATTGCTTTAACTGATC



CTGAGGGATGTCCTCTTAGCAGATTCAAGGACTCGTTGGGTAACCCTACTCACATCTTAAGGATTGGAGA



AAGTTACAAGGAGAAACAAAGGACAATACAAGCTGCTAAAGAAGTAGAACAAAGGAGGGCGGGTGGA



TATAGTCGGAAATATGCCAGCAAGGCCAAGAATTTAGCTGACGACATGGTTAGGAATACAGCTAGAGAC



CTTTTATACTATGCCGTCACCCAGGATGCCATGTTGATATTTGAAAATTTAAGTAGAGGCTTCGGTAGAC



AAGGTAAGCGCACCTTCATGGCAGAGAGACAATATACTAGAATGGAAGATTGGTTGACTGCCAAATTGG



CATACGAAGGTCTACCTAGTAAGACGTACTTATCTAAAACACTAGCGCAGTATACTTCCAAGACATGCA



GTAATTGTGGTTTCACAATCACTTCTGCCGATTACGATCGCGTCTTGGAAAAACTAAAAAAAACAGCGA



CAGGTTGGATGACTACTATTAATGGGAAAGAATTGAAGGTCGAAGGACAAATAACTTACTATAATAGAT



ATAAACGGCAAAACGTTGTAAAAGACCTGTCAGTCGAACTCGATCGACTTAGTGAAGAATCTGTTAATA



ATGATATTAGTTCGTGGACAAAAGGTAGATCCGGTGAAGCTTTGAGCCTCCTGAAAAAACGTTTTAGCC



ATAGGCCTGTCCAAGAAAAGTTTGTATGTTTAAACTGTGGTTTTGAGACCCATGCAGACGAGCAGGCCG



CTCTTAATATTGCTAGATCATGGTTATTTTTAAGATCTCAGGAATACAAGAAGTACCAGACTAACAAGAC



AACAGGCAACACAGATAAGCGAGCATTCGTTGAGACTTGGCAATCTTTTTATAGAAAGAAATTGAAGGA



AGTCTGGAAACCA





SEQ
ATGGGAAAAATGTATTATCTAGGCCTGGACATAGGGACCAATTCAGTAGGCTACGCTGTCACTGACCCC


ID
TCCTACCATTTGCTGAAGTTCAAGGGGGAACCCATGTGGGGAGCACACGTGTTTGCGGCCGGCAACCAG


NO:
AGCGCAGAGCGGAGAAGCTTCCGCACCTCCAGGAGAAGGCTGGATCGCAGGCAGCAGCGTGTGAAGCT


147
GGTCCAAGAGATATTTGCCCCAGTGATTTCCCCCATCGATCCGCGCTTCTTTATTAGGCTCCACGAGTCC



GCTCTCTGGCGCGACGACGTGGCCGAAACTGATAAACATATTTTCTTTAATGACCCAACATACACTGACA



AGGAGTACTATTCAGATTACCCAACAATTCACCATTTGATCGTGGACCTTATGGAAAGTTCGGAGAAGC



ATGATCCTCGACTTGTCTATTTGGCCGTGGCGTGGCTCGTGGCACATAGGGGCCACTTCTTGAACGAGGT



GGACAAGGATAACATCGGGGATGTGTTATCTTTCGACGCTTTCTATCCTGAATTCCTTGCTTTTCTGTCTG



ACAATGGCGTCAGCCCGTGGGTCTGCGAATCCAAGGCCCTCCAGGCTACGCTATTGTCAAGAAATAGCG



TGAACGACAAGTACAAGGCTCTTAAGTCTTTGATTTTTGGAAGCCAGAAGCCCGAGGACAACTTTGATG



CAAATATCTCGGAGGACGGGCTGATTCAGCTCCTCGCTGGGAAAAAGGTCAAGGTCAATAAGCTGTTTC



CACAGGAGTCAAATGACGCGAGCTTCACCCTTAACGACAAAGAGGATGCCATTGAAGAGATCCTGGGG



ACACTCACCCCAGACGAGTGCGAGTGGATAGCCCATATTAGGCGCCTCTTTGATTGGGCCATAATGAAA



CATGCGCTTAAGGACGGGCGCACGATATCCGAAAGCAAGGTCAAATTGTACGAGCAGCACCACCATGAT



CTGACCCAGCTAAAATATTTTGTAAAAACATATCTGGCCAAGGAGTACGATGATATCTTCCGCAACGTG



GATAGTGAGACCACCAAAAACTACGTCGCGTACTCATACCACGTGAAAGAAGTTAAGGGCACGCTGCCT



AAGAACAAGGCAACACAAGAGGAGTTCTGCAAGTACGTTCTCGGGAAAGTTAAAAATATAGAGTGCAG



CGAGGCCGACAAAGTGGATTTTGACGAGATGATTCAACGCCTGACCGACAATTCGTTTATGCCTAAACA



GGTGAGTGGAGAGAATCGCGTGATTCCATATCAGCTCTATTACTATGAACTCAAGACTATTCTGAATAA



GGCCGCTAGCTATTTACCCTTCCTTACGCAGTGCGGGAAGGATGCCATTTCTAACCAGGATAAACTCTTG



AGTATAATGACATTTCGAATTCCCTATTTCGTGGGTCCGCTTCGTAAGGATAACAGTGAGCACGCTTGGC



TGGAGCGGAAGGCTGGCAAAATTTATCCATGGAATTTCAACGACAAGGTGGATCTGGACAAATCCGAAG



AAGCCTTTATCCGCAGGATGACCAATACTTGCACATACTATCCTGGGGAGGATGTCCTTCCACTGGACTC



TCTGATCTACGAAAAGTTCATGATTTTGAATGAAATTAACAACATAAGGATCGATGGGTATCCTATTTCC



GTCGACGTGAAGCAGCAGGTGTTCGGGCTCTTTGAGAAGAAGCGACGGGTGACCGTGAAGGATATTCAG



AATCTTCTCTTATCGCTGGGAGCCCTGGATAAACACGGAAAACTGACCGGGATAGATACTACGATTCAT



TCTAATTACAACACGTATCACCATTTTAAGTCACTGATGGAGAGGGGCGTCCTAACAAGAGATGACGTG



GAGAGAATAGTGGAACGAATGACATATTCTGATGACACCAAGAGAGTGCGGCTTTGGCTGAATAACAA



CTACGGCACTCTGACGGCGGATGATGTAAAGCATATTTCCCGACTCCGTAAGCATGACTTCGGGCGGCT



GTCTAAGATGTTTCTAACAGGCCTCAAGGGTGTGCATAAGGAAACTGGGGAGCGCGCTAGCATCCTGGA



TTTTATGTGGAACACCAATGATAACCTGATGCAGCTCCTGTCAGAATGCTACACATTTTCGGACGAAATC



ACCAAGCTGCAGGAGGCTTACTATGCCAAGGCCCAACTAAGCTTGAATGATTTCCTGGATTCTATGTACA



TCAGCAACGCCGTAAAACGACCAATTTATAGGACACTGGCAGTGGTTAACGACATTAGGAAAGCATGCG



GAACAGCTCCCAAGCGAATCTTTATCGAGATGGCCCGCGACGGCGAGAGTAAGAAGAAAAGGTCAGTG



ACTAGGCGGGAGCAGATCAAGAACCTTTACCGCTCTATCCGAAAAGACTTCCAGCAAGAGGTTGATTTC



CTTGAGAAGATCTTAGAGAACAAGTCAGATGGACAGCTCCAATCCGATGCTCTGTATCTGTACTTCGCTC



AGCTGGGACGAGATATGTACACTGGCGACCCCATTAAACTAGAACATATCAAGGACCAATCGTTTTATA



ATATCGACCACATCTACCCTCAGTCCATGGTGAAAGACGATAGTCTGGACAATAAGGTGCTCGTCCAAA



GTGAGATTAACGGAGAAAAGTCGAGCAGATATCCTTTGGACGCTGCGATCCGCAACAAGATGAAGCCCC



TGTGGGATGCTTACTACAATCATGGACTGATCAGCCTGAAGAAGTATCAGAGACTGACCCGGAGTACCC



CTTTCACAGACGATGAGAAGTGGGATTTTATCAATAGACAACTGGTGGAAACCAGGCAGTCCACGAAAG



CTCTGGCCATTCTTCTGAAGAGAAAGTTTCCAGACACAGAGATCGTCTATTCAAAGGCCGGCCTCAGTTC



CGACTTTAGACATGAGTTCGGACTCGTTAAATCACGAAATATAAACGATCTCCACCATGCAAAGGACGC



ATTCCTCGCGATTGTGACTGGAAATGTCTATCACGAAAGATTTAATAGGCGGTGGTTCATGGTTAACCAG



CCATACTCAGTGAAGACCAAGACCCTTTTCACTCACTCTATTAAAAATGGCAACTTCGTGGCTTGGAATG



GTGAGGAGGATCTTGGAAGAATTGTGAAGATGTTAAAACAGAATAAGAATACCATCCACTTTACTAGAT



TCAGCTTTGACCGAAAAGAGGGGCTATTCGATATTCAACCGTTAAAGGCTTCAACAGGTCTCGTTCCACG



AAAGGCCGGACTGGACGTAGTGAAATACGGCGGCTATGATAAGAGCACCGCAGCTTACTACCTCCTTGT



GCGATTTACGCTCGAGGATAAGAAGACCCAACACAAGCTGATGATGATTCCCGTGGAGGGACTGTACAA



AGCTCGAATTGACCATGATAAAGAGTTTCTCACAGATTACGCACAAACCACCATCTCTGAGATTCTCCAG



AAAGACAAACAAAAAGTTATAAACATAATGTTTCCAATGGGTACAAGGCATATTAAACTGAACAGCATG



ATCTCCATTGATGGCTTTTATTTGTCCATTGGAGGAAAGTCTAGTAAAGGCAAGTCTGTCCTCTGCCATG



CCATGGTACCCCTAATCGTCCCACACAAGATTGAATGCTACATCAAGGCTATGGAGAGTTTTGCTCGGA



AATTTAAAGAGAATAATAAGCTGCGTATTGTGGAAAAATTCGACAAGATAACCGTTGAAGACAATCTGA



ATCTGTACGAGCTCTTTCTGCAGAAGCTGCAGCATAACCCCTATAATAAGTTCTTCTCCACACAGTTCGA



TGTACTGACCAACGGGCGATCAACTTTCACAAAGCTAAGTCCTGAGGAACAGGTGCAAACACTCCTAAA



CATTCTTTCCATTTTTAAGACCTGCAGATCTTCAGGATGCGACTTGAAGAGCATTAACGGGAGCGCACAG



GCAGCTAGGATCATGATCTCAGCTGACCTGACAGGGCTGAGTAAAAAATACTCCGACATTCGGCTTGTA



GAGCAAAGCGCCAGTGGGTTGTTCGTTAGTAAGTCGCAGAACCTGCTGGAATACCTGTAA





SEQ
ATGTCTTCTTTGACGAAGTTTACAAACAAATACTCTAAGCAGCTTACAATTAAGAACGAACTGATTCCCG


ID
TAGGAAAGACTCTGGAAAACATCAAAGAGAATGGGCTGATAGACGGCGACGAACAACTGAATGAGAAC


NO:
TATCAGAAGGCCAAAATTATCGTGGATGACTTCCTGAGGGATTTTATTAACAAGGCCCTGAATAATACC


148
CAGATCGGCAATTGGCGGGAACTGGCCGACGCTCTGAACAAAGAAGATGAGGACAATATCGAAAAATT



ACAAGACAAAATCAGGGGCATTATTGTCAGTAAGTTCGAGACATTCGATCTGTTCTCTTCGTACTCCATT



AAGAAGGACGAGAAAATCATCGATGATGACAATGACGTTGAGGAAGAAGAACTGGACTTGGGTAAAAA



GACCTCATCCTTCAAGTATATTTTTAAAAAAAATCTGTTTAAATTAGTGCTCCCCAGTTATTTAAAGACA



ACTAACCAGGACAAGCTTAAGATTATCTCCTCTTTTGACAACTTTAGCACCTATTTTAGAGGCTTCTTTGA



AAATCGCAAGAATATTTTCACTAAGAAGCCCATAAGCACCTCTATTGCCTACAGAATCGTACATGATAA



CTTCCCAAAATTTTTGGATAACATTAGATGTTTTAATGTATGGCAGACCGAATGTCCTCAGTTAATTGTG



AAGGCGGATAACTACCTCAAATCCAAGAATGTGATCGCCAAAGATAAGTCTCTTGCTAACTACTTTACG



GTCGGAGCCTACGATTACTTCTTATCTCAAAACGGTATTGACTTTTACAATAACATTATCGGGGGATTGC



CTGCCTTCGCCGGCCATGAGAAAATTCAGGGCTTAAACGAGTTCATAAATCAGGAATGTCAAAAGGACT



CAGAGCTGAAATCAAAGCTTAAGAATCGACACGCATTTAAAATGGCGGTCTTGTTCAAACAGATCCTCA



GCGATAGAGAGAAAAGCTTCGTTATTGATGAATTCGAGAGCGACGCACAGGTGATTGATGCCGTGAAGA



ACTTCTATGCGGAACAGTGTAAAGACAATAATGTTATTTTCAACCTATTAAACTTGATTAAGAATATCGC



GTTTTTAAGTGACGATGAACTCGACGGTATCTTTATAGAAGGCAAGTACCTGTCCTCTGTCAGCCAAAAA



CTCTACTCAGATTGGTCCAAGCTAAGAAATGACATCGAGGACAGTGCTAACAGCAAACAGGGCAATAA



AGAGCTGGCAAAGAAAATCAAGACTAATAAAGGGGATGTGGAGAAGGCGATATCTAAATATGAGTTCT



CCCTCTCCGAACTGAACTCCATCGTCCACGATAATACCAAGTTTAGTGATCTGTTGTCGTGTACACTGCA



CAAAGTGGCCAGTGAAAAACTCGTCAAGGTGAACGAAGGCGATTGGCCCAAACACCTGAAAAATAATG



AGGAGAAACAGAAGATCAAAGAACCTTTGGATGCGTTGCTCGAAATATATAACACACTGTTGATCTTCA



ACTGTAAAAGCTTCAACAAGAACGGGAACTTTTATGTAGACTACGATCGATGTATAAATGAACTGAGCA



GCGTCGTTTACCTGTACAACAAGACTCGCAATTATTGTACGAAAAAACCATATAACACCGATAAGTTCA



AGCTTAATTTCAACAGTCCCCAGCTGGGAGAAGGGTTCAGCAAATCAAAAGAAAACGATTGCCTGACAT



TACTCTTTAAAAAGGATGATAATTATTATGTTGGGATTATTAGGAAAGGCGCTAAGATCAACTTTGACGA



CACACAGGCCATAGCTGACAACACTGATAACTGCATCTTTAAAATGAATTACTTTCTGTTGAAGGACGCC



AAAAAATTCATTCCAAAATGCTCTATTCAGCTCAAGGAGGTTAAGGCCCATTTCAAGAAGTCTGAAGAT



GACTACATCCTCTCTGACAAGGAAAAATTCGCTAGTCCTCTGGTTATCAAAAAAAGTACCTTCTTGCTGG



CTACAGCTCACGTGAAAGGCAAGAAAGGGAACATTAAGAAGTTCCAAAAGGAATACAGCAAAGAGAAT



CCAACCGAGTACAGAAATTCTCTGAACGAATGGATCGCATTCTGTAAAGAATTTCTAAAGACGTACAAG



GCCGCTACCATTTTCGATATTACCACCTTGAAAAAAGCCGAGGAGTACGCCGACATCGTCGAATTCTATA



AAGACGTGGATAACCTGTGTTACAAATTGGAATTCTGCCCAATTAAGACCTCTTTCATTGAAAACCTCAT



CGACAATGGGGACCTCTACTTATTTAGAATTAACAATAAGGATTTTTCTTCGAAATCTACCGGAACTAAA



AATCTGCACACACTGTATCTGCAAGCAATCTTCGATGAACGTAATCTCAACAACCCTACAATAATGCTGA



ACGGCGGTGCTGAACTGTTCTACCGTAAAGAGAGTATTGAACAGAAGAATCGAATCACACACAAAGCG



GGCAGTATTCTCGTCAATAAGGTGTGCAAAGACGGGACCAGCCTGGACGATAAGATCAGGAATGAAAT



ATATCAGTATGAGAACAAGTTTATCGACACCTTGTCGGATGAGGCAAAGAAGGTGCTACCTAACGTTAT



CAAGAAGGAAGCTACCCATGACATAACCAAGGATAAGCGGTTCACTTCTGACAAGTTCTTCTTCCACTG



TCCTCTGACCATTAACTACAAGGAAGGAGACACTAAACAATTCAATAATGAAGTACTTAGCTTTTTGCG



GGGTAATCCCGATATTAACATAATTGGTATCGACCGGGGAGAACGGAACCTGATATACGTGACAGTAAT



TAATCAGAAAGGAGAAATCCTGGATTCCGTATCCTTCAATACCGTGACTAATAAATCTAGTAAAATCGA



GCAGACGGTCGACTACGAGGAAAAGTTAGCAGTCAGAGAGAAGGAGAGAATCGAGGCCAAACGTTCCT



GGGATAGTATCAGCAAGATTGCTACTCTGAAAGAAGGATATCTGTCCGCTATCGTCCATGAGATCTGTTT



GTTGATGATCAAGCACAATGCTATAGTGGTTCTGGAGAACCTGAACGCAGGCTTCAAGCGAATTAGAGG



GGGCCTGTCGGAAAAAAGCGTTTACCAGAAGTTTGAAAAGATGCTAATCAATAAGTTAAATTACTTTGT



AAGTAAAAAAGAAAGCGATTGGAATAAGCCATCAGGACTTTTAAACGGGCTGCAACTGAGCGACCAGT



TTGAGTCATTCGAAAAACTGGGTATTCAGAGTGGTTTCATATTCTACGTACCTGCCGCTTACACTTCAAA



GATCGATCCTACAACTGGTTTTGCGAATGTCCTGAATCTGTCTAAGGTGAGGAATGTGGACGCAATCAA



GTCTTTCTTCAGCAACTTCAACGAGATATCTTACAGCAAGAAAGAGGCTCTGTTTAAATTCAGTTTTGAT



CTGGATAGCCTGAGCAAGAAAGGATTCTCTTCTTTCGTAAAGTTTTCTAAGTCCAAATGGAACGTCTACA



CGTTCGGAGAGAGAATCATTAAACCAAAGAACAAGCAGGGGTATCGGGAAGACAAAAGGATCAATCTG



ACTTTCGAAATGAAGAAACTATTGAATGAGTACAAAGTCTCATTCGATTTGGAGAACAATCTGATCCCC



AATCTGACCAGCGCTAACCTCAAAGACACATTCTGGAAGGAGCTGTTTTTCATCTTTAAGACCACCCTGC



AGCTACGGAATAGTGTCACAAATGGGAAAGAGGATGTACTGATCTCACCTGTGAAAAACGCCAAGGGG



GAGTTCTTTGTGTCCGGCACCCATAACAAAACCCTGCCTCAGGACTGTGACGCGAACGGGGCCTACCAC



ATCGCGCTAAAGGGGTTAATGATTCTCGAACGTAATAATCTGGTGCGCGAAGAAAAAGACACAAAGAA



AATTATGGCCATCAGCAACGTTGACTGGTTTGAGTACGTGCAGAAGCGTCGAGGAGTTTTGTAA





SEQ
ATGAACAACTATGACGAGTTCACTAAACTTTACCCCATTCAGAAAACCATCAGATTTGAACTGAAGCCT


ID
CAGGGTCGTACCATGGAACACTTGGAAACTTTCAACTTTTTCGAGGAGGACAGGGATAGAGCTGAGAAA


NO:
TACAAGATCTTGAAAGAGGCCATCGACGAGTATCACAAAAAATTCATCGATGAGCATCTCACCAACATG


149
TCGCTGGATTGGAACAGTCTCAAGCAGATTTCCGAGAAGTACTATAAATCTCGGGAGGAGAAAGATAAA



AAGGTGTTTTTGAGCGAGCAAAAGCGAATGCGACAGGAGATAGTCTCTGAATTTAAGAAAGATGATCGG



TTTAAAGACCTATTTTCCAAAAAGCTTTTTTCAGAGCTGCTGAAGGAAGAGATCTATAAAAAAGGCAAT



CACCAAGAAATTGATGCCCTGAAATCATTCGACAAATTCAGTGGGTATTTCATAGGACTGCATGAGAAC



CGGAAGAATATGTATAGTGATGGAGACGAGATCACAGCCATAAGCAATCGAATCGTTAACGAGAATTTC



CCGAAGTTCCTGGATAACCTGCAGAAGTATCAAGAGGCTAGGAAAAAGTACCCTGAGTGGATCATCAAG



GCTGAATCAGCTCTGGTGGCTCACAATATCAAGATGGATGAAGTCTTTAGTCTTGAGTACTTTAATAAAG



TCCTTAACCAGGAGGGCATCCAGCGCTATAACCTGGCTCTCGGTGGCTACGTCACAAAAAGCGGAGAAA



AGATGATGGGTCTCAACGATGCACTGAATTTGGCTCATCAGTCGGAGAAGTCATCTAAGGGACGCATAC



ACATGACACCACTGTTTAAACAAATCCTGAGCGAAAAGGAATCATTTTCCTACATTCCCGACGTATTCAC



CGAGGACTCACAACTGCTGCCTAGTATAGGGGGGTTTTTCGCTCAGATAGAGAACGACAAAGATGGCAA



CATTTTTGACAGAGCCTTGGAGTTGATTTCATCTTACGCCGAGTACGATACGGAGCGCATTTATATTCGC



CAGGCGGATATCAACAGGGTTTCCAATGTGATCTTTGGCGAGTGGGGAACGCTGGGCGGGCTGATGCGG



GAATACAAAGCCGACTCGATCAATGACATCAACCTGGAGAGAACATGCAAGAAGGTCGATAAATGGTT



GGATAGCAAAGAGTTCGCCCTGAGTGACGTCTTGGAAGCTATCAAAAGAACCGGAAATAATGACGCGTT



CAACGAGTATATCTCTAAAATGAGGACCGCGAGAGAAAAAATTGATGCAGCAAGGAAGGAGATGAAGT



TTATATCTGAGAAGATCTCAGGCGATGAAGAGTCCATCCATATTATTAAAACTCTTCTGGACTCAGTGCA



GCAATTCCTGCACTTTTTTAACCTCTTCAAGGCCAGGCAGGATATACCGTTAGACGGGGCTTTTTATGCC



GAGTTTGATGAAGTTCATTCGAAACTTTTTGCTATAGTGCCTCTCTATAATAAAGTTCGCAATTACCTGA



CAAAGAATAACTTAAACACAAAGAAAATCAAGCTCAACTTCAAAAACCCAACACTGGCAAACGGATGG



GATCAGAACAAGGTATATGATTACGCCTCATTGATTTTCCTCCGGGACGGGAATTACTATCTGGGGATCA



TCAACCCTAAGCGCAAAAAGAACATTAAGTTCGAACAGGGATCTGGCAATGGTCCCTTCTATAGGAAAA



TGGTATACAAACAGATTCCTGGCCCCAACAAGAATCTCCCACGCGTCTTTCTGACGTCCACTAAGGGAA



AGAAGGAGTACAAGCCGTCTAAAGAAATTATCGAGGGCTATGAGGCAGACAAGCATATTAGGGGTGAC



AAGTTTGACCTAGACTTTTGTCATAAGCTTATCGACTTTTTCAAGGAGTCCATAGAGAAGCACAAAGATT



GGTCAAAGTTTAATTTCTATTTTTCTCCAACAGAGTCCTACGGGGATATCTCTGAGTTCTATCTGGATGTT



GAAAAGCAGGGGTACAGAATGCACTTCGAAAATATCTCAGCAGAAACTATCGATGAGTACGTAGAGAA



AGGAGATCTGTTTCTTTTCCAAATCTACAATAAGGATTTTGTGAAGGCCGCCACTGGGAAGAAGGACAT



GCACACTATTTACTGGAACGCTGCATTTTCCCCTGAAAATCTGCAGGACGTAGTAGTGAAATTAAATGGT



GAGGCAGAACTGTTTTACCGCGATAAATCAGACATCAAGGAAATAGTGCACCGGGAAGGCGAGATTCTT



GTTAACCGAACATATAATGGCAGGACACCTGTCCCTGATAAAATTCATAAGAAACTGACCGATTACCAC



AACGGTCGAACCAAGGATCTGGGCGAGGCCAAGGAATACCTCGATAAGGTGAGGTACTTCAAAGCCCA



TTATGACATCACCAAGGACCGAAGATACCTTAACGACAAAATCTACTTCCATGTCCCACTCACCTTGAAC



TTCAAAGCTAACGGTAAGAAGAACCTCAATAAAATGGTGATTGAAAAATTTCTGTCCGATGAGAAGGCC



CATATCATCGGCATTGATCGCGGCGAGAGAAATCTCCTTTACTATTCTATCATTGATCGGTCGGGAAAGA



TTATCGACCAACAATCACTGAATGTCATCGACGGATTCGACTATAGAGAGAAGCTGAACCAACGGGAAA



TCGAGATGAAGGACGCGCGCCAGTCCTGGAACGCTATCGGCAAAATTAAAGATTTGAAAGAAGGTTACC



TCTCCAAAGCAGTGCACGAAATTACCAAAATGGCAATCCAGTACAATGCTATTGTGGTAATGGAGGAGT



TAAATTACGGATTTAAGCGCGGGAGGTTCAAGGTTGAAAAGCAAATTTACCAAAAATTTGAGAACATGT



TGATTGATAAGATGAACTACCTGGTGTTCAAGGACGCACCTGACGAGTCGCCAGGCGGCGTGTTAAATG



CATATCAGCTGACAAATCCACTGGAGAGCTTTGCCAAGCTAGGAAAGCAGACTGGCATTCTCTTTTACGT



CCCTGCAGCGTATACATCCAAAATTGACCCCACCACTGGCTTCGTCAATCTGTTTAACACCTCCTCCAAA



ACCAACGCACAAGAACGGAAAGAATTTTTGCAAAAGTTTGAGTCCATTAGCTACTCTGCCAAAGACGGC



GGGATCTTTGCTTTCGCATTCGACTACAGGAAATTCGGGACGAGTAAGACAGACCACAAGAACGTCTGG



ACCGCGTACACTAATGGGGAACGCATGCGCTACATCAAAGAGAAAAAGAGGAATGAACTTTTTGACCCT



TCAAAGGAAATCAAGGAAGCTCTCACCTCAAGCGGTATCAAATACGATGGCGGGCAGAATATTTTGCCA



GATATCCTCAGATCGAACAATAATGGACTTATCTATACTATGTACTCCTCCTTCATTGCAGCAATTCAAA



TGAGAGTGTACGATGGAAAGGAGGATTACATTATATCGCCAATTAAGAACTCCAAAGGCGAATTCTTCC



GCACGGATCCTAAGCGAAGAGAACTCCCAATCGACGCTGATGCGAACGGCGCCTATAATATAGCCCTGC



GGGGTGAATTAACAATGCGCGCTATTGCCGAGAAGTTCGACCCCGATTCAGAAAAAATGGCTAAGCTTG



AGCTGAAACACAAAGATTGGTTCGAATTCATGCAGACAAGAGGCGACTAA





SEQ
ATGACTAAGACCTTCGATTCCGAGTTCTTCAACCTTTATTCCCTGCAGAAAACTGTAAGGTTTGAGCTGA


ID
AGCCGGTGGGCGAGACAGCCAGCTTCGTAGAGGATTTCAAGAATGAGGGTCTCAAACGGGTAGTTAGTG


NO:
AGGATGAGAGGAGAGCAGTGGACTATCAGAAGGTGAAAGAGATCATCGATGACTATCACCGGGATTTC


150
ATAGAGGAGTCGTTGAATTACTTCCCTGAGCAAGTATCCAAAGACGCGCTGGAACAGGCCTTTCATCTTT



ACCAGAAACTGAAGGCAGCGAAGGTTGAGGAGCGGGAAAAGGCCTTGAAAGAGTGGGAAGCCCTGCA



GAAAAAGCTCAGAGAAAAGGTTGTCAAATGCTTCAGCGACAGCAACAAAGCCAGGTTCAGTAGGATCG



ATAAGAAAGAACTGATCAAAGAAGACTTGATCAATTGGCTGGTTGCACAGAACCGGGAAGATGATATTC



CCACCGTAGAGACCTTCAACAACTTCACAACTTACTTCACCGGCTTCCATGAGAATCGTAAAAACATCTA



CAGTAAAGATGATCATGCAACCGCCATCTCCTTCCGGTTGATCCACGAGAATCTCCCCAAGTTCTTTGAC



AACGTGATAAGTTTCAATAAGTTGAAAGAGGGATTTCCCGAACTCAAGTTCGATAAAGTGAAGGAGGAT



CTGGAAGTGGATTATGACCTTAAGCACGCTTTCGAGATAGAGTACTTCGTGAACTTTGTGACTCAGGCCG



GCATCGATCAGTATAACTACCTCCTCGGGGGTAAGACGCTCGAGGACGGTACTAAGAAGCAAGGAATG



AATGAGCAAATTAATCTATTTAAACAGCAGCAGACCAGGGATAAGGCTAGACAGATCCCCAAGCTTATT



CCTCTTTTTAAACAGATCCTAAGTGAAAGGACAGAAAGTCAAAGCTTCATACCTAAGCAATTTGAAAGT



GATCAGGAGCTGTTTGACTCCCTGCAAAAGCTGCACAACAATTGCCAGGACAAGTTTACCGTGCTGCAG



CAGGCTATCCTCGGACTGGCTGAGGCGGATCTTAAGAAGGTATTCATTAAGACTAGCGACCTCAATGCC



CTTAGTAACACCATCTTTGGAAATTACTCCGTTTTCAGCGATGCCCTCAATCTATACAAAGAGAGCTTGA



AGACTAAAAAAGCTCAGGAAGCTTTTGAAAAATTACCGGCACATTCTATACACGACCTTATACAATACT



TAGAGCAGTTCAACAGCAGCCTCGACGCTGAGAAACAGCAATCCACAGACACCGTCCTGAATTACTTCA



TCAAAACCGATGAACTGTACTCCCGATTTATCAAGAGCACTTCAGAAGCCTTCACGCAAGTTCAGCCTCT



GTTCGAGCTGGAGGCACTGTCCAGCAAGAGACGACCGCCAGAGTCTGAAGACGAGGGAGCCAAGGGTC



AAGAGGGGTTTGAACAGATAAAGCGAATTAAGGCTTACTTGGATACTCTCATGGAGGCGGTGCATTTCG



CTAAGCCTTTGTACCTGGTTAAAGGCCGAAAAATGATTGAGGGGCTAGATAAGGATCAGTCTTTTTACG



AGGCTTTTGAAATGGCCTACCAGGAATTGGAATCCTTGATCATTCCAATCTATAATAAAGCCCGGAGTTA



TCTGAGCAGGAAGCCCTTCAAAGCCGACAAGTTCAAAATAAATTTTGACAATAATACGCTACTGTCTGG



TTGGGACGCTAACAAGGAAACAGCCAATGCTTCCATCCTGTTTAAGAAAGACGGCCTGTACTACCTGGG



AATTATGCCAAAAGGCAAAACTTTTTTGTTCGATTACTTTGTGTCATCAGAGGATAGCGAGAAGTTAAAG



CAAAGACGGCAGAAGACCGCCGAAGAAGCCCTCGCACAAGACGGAGAATCATATTTCGAGAAAATTCG



ATATAAGCTCCTGCCTGGCGCATCAAAGATGTTGCCAAAAGTCTTCTTTTCCAACAAAAACATCGGCTTT



TATAACCCCAGCGATGATATCCTTCGCATCCGGAACACCGCCTCACATACCAAAAATGGAACTCCACAG



AAGGGCCACTCGAAGGTTGAATTCAACCTTAACGATTGTCACAAAATGATTGATTTTTTTAAGAGCTCCA



TTCAGAAACACCCCGAATGGGGGTCCTTTGGCTTCACCTTTTCTGATACTTCAGACTTCGAGGACATGTC



CGCCTTCTACAGGGAGGTGGAGAACCAGGGCTATGTCATCTCCTTCGACAAAATAAAAGAGACATACAT



TCAGAGCCAGGTCGAGCAGGGAAATCTGTACCTGTTTCAGATCTATAACAAGGATTTCAGTCCCTATAG



CAAGGGCAAGCCCAATTTACATACCCTGTACTGGAAGGCCCTGTTCGAAGAGGCAAACCTTAACAATGT



AGTTGCTAAGCTGAATGGGGAAGCAGAGATCTTCTTCCGAAGGCACAGCATCAAGGCAAGCGACAAAG



TTGTACATCCTGCTAACCAGGCCATCGATAACAAGAACCCGCATACAGAAAAGACACAGTCAACCTTTG



AATACGACCTCGTGAAGGACAAGAGGTACACACAAGATAAATTCTTCTTCCACGTGCCCATCAGCTTGA



ATTTTAAAGCGCAGGGAGTGAGCAAATTTAACGACAAGGTCAACGGCTTCCTGAAGGGAAACCCCGAC



GTGAATATCATCGGAATTGATCGCGGTGAAAGACATCTCCTCTACTTTACTGTGGTGAACCAGAAGGGT



GAGATCCTAGTACAGGAGAGCCTGAACACCCTTATGAGTGATAAGGGCCATGTGAATGATTACCAGCAG



AAGCTGGACAAGAAGGAACAGGAAAGGGACGCAGCGCGGAAGTCCTGGACCACTGTTGAGAATATCAA



AGAACTGAAGGAGGGATATCTTAGCCATGTGGTACACAAACTTGCACATCTGATTATCAAGTATAATGC



CATAGTCTGCCTGGAAGACTTGAACTTCGGTTTCAAGCGAGGAAGGTTTAAAGTGGAGAAGCAGGTGTA



CCAGAAGTTTGAGAAAGCCCTTATTGATAAGCTAAACTACCTTGTCTTTAAGGAAAAAGAACTCGGCGA



AGTTGGCCACTATTTAACCGCCTACCAACTAACCGCCCCTTTCGAGTCTTTTAAGAAACTGGGAAAGCAG



AGCGGAATACTCTTCTATGTGCCTGCAGACTACACCTCTAAGATCGACCCCACTACCGGCTTTGTAAACT



TTCTAGATCTCCGCTATCAGTCAGTAGAAAAAGCCAAACAGCTCTTGTCAGATTTTAACGCCATCCGATT



TAATTCCGTCCAAAATTACTTCGAGTTCGAAATCGACTATAAAAAACTTACCCCCAAGAGAAAGGTTGG



GACGCAGTCTAAGTGGGTAATCTGCACTTACGGTGACGTGAGATACCAGAACCGCCGAAACCAGAAAG



GTCATTGGGAAACCGAGGAAGTGAATGTGACTGAGAAGCTCAAGGCCCTCTTCGCTAGCGACAGTAAAA



CAACAACAGTTATCGATTACGCCAATGACGATAATCTTATAGACGTGATCTTGGAACAAGACAAAGCCT



CTTTTTTTAAGGAATTGTTGTGGTTGCTGAAACTTACAATGACCCTTAGGCACAGCAAGATCAAATCAGA



GGATGACTTCATCCTCAGCCCGGTGAAGAATGAACAGGGAGAGTTCTACGATTCACGGAAGGCTGGAGA



GGTGTGGCCCAAGGATGCCGACGCGAACGGGGCCTACCACATAGCTCTAAAAGGTCTGTGGAACCTGCA



ACAAATCAATCAATGGGAGAAAGGTAAGACACTGAACCTGGCCATCAAAAATCAAGATTGGTTCTCATT



CATCCAGGAAAAGCCTTATCAAGAGTGA





SEQ
ATGCATACGGGAGGCCTTTTATCAATGGACGCAAAAGAGTTCACCGGGCAGTATCCATTATCTAAGACA


ID
CTCCGCTTCGAGCTGAGGCCCATTGGCAGGACCTGGGACAACCTGGAGGCGTCGGGCTACCTGGCTGAG


NO:
GACAGACATCGCGCAGAATGCTATCCGAGAGCTAAGGAGCTTTTGGACGACAATCATCGCGCGTTCCTT


151
AACCGGGTGCTCCCACAGATCGATATGGACTGGCACCCGATCGCTGAGGCTTTTTGCAAGGTCCATAAG



AACCCTGGGAACAAAGAGCTCGCCCAGGACTACAACTTGCAGCTGAGCAAGCGACGGAAAGAGATTTC



TGCCTACCTTCAAGACGCCGATGGCTACAAAGGGCTCTTCGCAAAGCCCGCATTGGATGAGGCCATGAA



AATCGCCAAGGAGAACGGGAATGAAAGTGACATCGAAGTTCTCGAAGCGTTTAACGGATTTAGCGTGTA



CTTTACCGGCTATCATGAGTCAAGGGAGAATATTTATAGCGATGAGGACATGGTCTCTGTGGCCTACCG



GATTACCGAGGATAATTTCCCGAGGTTTGTTTCAAATGCACTAATATTCGACAAGTTAAATGAGAGCCAC



CCAGACATCATCTCGGAGGTCAGCGGCAACCTCGGAGTTGACGATATTGGCAAATACTTCGACGTGAGC



AACTATAACAACTTCCTCTCACAGGCTGGCATCGACGACTATAATCATATTATAGGCGGCCACACTACTG



AGGATGGTCTCATTCAGGCATTCAATGTAGTCTTGAATCTTAGGCACCAGAAGGACCCTGGGTTTGAAA



AGATACAGTTCAAGCAGCTGTATAAGCAGATATTATCCGTGCGAACATCTAAAAGTTACATCCCCAAAC



AGTTTGATAACTCAAAGGAGATGGTGGATTGCATATGCGATTATGTGTCAAAAATTGAAAAGAGCGAGA



CTGTGGAGCGGGCTCTGAAGCTCGTCAGGAACATTAGCTCCTTTGACCTTAGAGGAATTTTCGTCAATAA



AAAGAATCTGAGGATCCTGAGCAATAAGCTAATAGGAGATTGGGACGCCATAGAGACAGCATTGATGC



ATTCCAGCTCAAGCGAGAATGATAAGAAGTCTGTCTACGATAGCGCTGAAGCCTTCACGCTGGACGATA



TCTTCTCTTCCGTGAAAAAATTTAGTGATGCGTCCGCAGAAGATATCGGGAATCGAGCCGAAGATATCT



GCAGGGTAATTTCAGAGACCGCCCCTTTCATCAATGACCTGCGCGCCGTGGACCTGGATAGCCTGAATG



ACGATGGTTACGAAGCTGCAGTTTCTAAGATCAGGGAGTCTCTGGAGCCATATATGGACTTGTTTCACGA



ACTTGAGATCTTTAGCGTGGGCGACGAGTTCCCGAAATGCGCAGCTTTCTATAGCGAGTTAGAGGAGGT



CAGCGAGCAATTAATCGAGATCATACCCCTGTTTAATAAGGCACGGAGCTTTTGTACTCGCAAGCGCTA



CAGCACCGACAAGATTAAAGTTAATCTGAAATTTCCAACTCTCGCAGACGGGTGGGACCTAAACAAGGA



ACGCGATAATAAAGCCGCCATCCTTAGAAAGGACGGAAAGTACTATCTTGCCATCCTAGATATGAAAAA



AGATCTGAGTTCCATTCGTACTAGCGATGAAGACGAATCTTCTTTCGAAAAAATGGAGTATAAGCTGCTC



CCCTCGCCAGTCAAGATGCTACCCAAGATCTTTGTGAAGAGCAAAGCAGCCAAGGAAAAGTACGGGCTG



ACGGACAGGATGCTGGAGTGCTACGATAAGGGAATGCATAAATCAGGGTCAGCTTTTGACTTGGGCTTT



TGCCATGAGCTAATCGATTACTACAAGCGCTGTATCGCCGAGTATCCAGGATGGGACGTTTTCGACTTTA



AATTTCGGGAGACTTCTGATTATGGTTCAATGAAGGAGTTCAACGAAGATGTCGCTGGTGCCGGTTACTA



CATGAGCCTTCGCAAGATTCCTTGTTCCGAAGTCTACCGGCTACTGGACGAGAAATCTATATATTTGTTC



CAGATATATAACAAGGACTACAGTGAGAATGCACATGGGAATAAGAATATGCATACTATGTATTGGGAA



GGTCTCTTTTCACCCCAAAATTTGGAGTCACCCGTGTTCAAACTTAGCGGTGGCGCAGAGCTGTTCTTTA



GGAAATCCAGTATACCCAATGACGCCAAGACAGTCCACCCAAAGGGTAGCGTCCTGGTGCCCAGAAAC



GATGTGAACGGCAGGAGAATCCCTGACAGCATTTACCGAGAACTTACCAGGTACTTCAACCGCGGCGAC



TGTAGAATCTCTGATGAGGCAAAGTCTTATCTGGATAAGGTGAAGACTAAGAAGGCAGATCATGACATT



GTGAAAGACCGCCGCTTTACTGTCGACAAAATGATGTTTCACGTGCCTATCGCAATGAATTTTAAGGCAA



TCTCAAAACCGAATCTGAACAAGAAGGTGATAGATGGCATTATCGATGACCAGGACCTCAAGATCATCG



GAATCGACAGAGGTGAGCGAAACCTGATATACGTCACAATGGTAGATCGGAAGGGTAATATTCTGTACC



AGGATTCACTAAACATCCTCAATGGATATGACTATCGAAAAGCTCTCGATGTCAGGGAATACGACAACA



AGGAGGCGCGACGGAATTGGACAAAGGTGGAAGGCATACGGAAGATGAAGGAAGGCTATCTGTCACTA



GCTGTCTCCAAATTGGCTGATATGATTATAGAGAACAACGCCATTATCGTGATGGAAGATCTCAACCAT



GGATTCAAGGCAGGAAGAAGTAAAATTGAGAAGCAGGTGTATCAGAAGTTCGAAAGCATGCTTATTAA



TAAGTTGGGTTATATGGTCTTAAAGGACAAGTCTATCGATCAGAGCGGCGGCGCACTCCATGGGTATCA



GCTGGCTAACCATGTCACCACACTAGCATCCGTAGGCAAACAGTGTGGCGTGATTTTCTACATTCCTGCT



GCGTTCACTTCTAAGATCGATCCTACCACGGGATTCGCAGACCTGTTCGCACTGAGCAATGTTAAAAACG



TGGCCTCCATGAGGGAGTTCTTTAGCAAAATGAAAAGCGTGATTTATGACAAGGCCGAGGGCAAGTTCG



CTTTCACATTTGACTACCTGGACTACAATGTGAAATCAGAGTGCGGGAGAACCCTGTGGACCGTATACA



CGGTAGGGGAAAGATTCACTTACAGTCGAGTTAATCGGGAGTATGTCCGTAAAGTGCCAACTGACATCA



TCTACGATGCCCTTCAGAAGGCTGGCATAAGTGTTGAGGGGGATCTAAGGGACAGGATCGCTGAATCGG



ATGGCGATACTCTCAAATCAATCTTCTACGCCTTCAAGTATGCCCTCGACATGAGGGTAGAGAACCGGG



AGGAGGACTATATACAGTCTCCCGTGAAGAATGCGTCGGGAGAGTTCTTCTGCTCAAAAAACGCCGGGA



AATCTTTGCCGCAGGATTCTGATGCAAATGGGGCTTATAACATTGCTCTCAAAGGCATCCTGCAGCTGCG



CATGCTATCTGAACAATATGACCCAAACGCTGAAAGCATTAGATTGCCATTGATCACCAATAAGGCTTG



GCTGACTTTCATGCAGAGCGGTATGAAGACATGGAAAAACTAA





SEQ
ATGGATTCCCTTAAGGACTTCACAAATCTTTACCCCGTGAGTAAAACCCTGAGATTTGAACTCAAGCCCG


ID
TGGGAAAGACTCTCGAGAATATCGAGAAGGCCGGGATTTTGAAGGAAGACGAGCATCGGGCGGAAAGT


NO:
TACAGACGGGTGAAGAAGATTATAGATACTTATCACAAGGTCTTTATAGACAGCTCTTTAGAGAACATG


152
GCAAAGATGGGCATCGAGAACGAAATCAAGGCCATGCTGCAGTCCTTCTGCGAGCTGTATAAAAAGGAT



CATCGGACCGAAGGCGAAGACAAGGCGCTGGATAAGATCAGGGCAGTGCTGCGCGGCCTCATTGTGGG



TGCCTTCACTGGGGTGTGCGGGCGGAGAGAGAACACTGTGCAGAATGAGAAATACGAGAGTTTGTTCAA



AGAGAAACTCATCAAGGAAATCCTGCCCGACTTCGTCTTAAGCACAGAAGCCGAATCTCTCCCATTTTCT



GTCGAGGAGGCCACGCGTTCCCTTAAAGAGTTCGACAGTTTCACTTCATACTTTGCCGGATTTTATGAAA



ACCGTAAAAATATATACTCCACTAAACCACAGTCAACTGCAATAGCTTACAGGTTAATCCACGAAAACC



TGCCAAAATTCATCGACAATATACTCGTCTTTCAAAAAATCAAGGAACCAATCGCGAAGGAACTTGAAC



ACATCCGGGCTGACTTTAGTGCGGGAGGATACATCAAAAAAGACGAGCGCCTGGAGGATATATTTTCAC



TAAATTATTATATTCATGTACTGAGCCAGGCTGGCATAGAAAAGTACAACGCTCTAATTGGGAAAATCG



TGACAGAAGGTGACGGGGAAATGAAAGGGCTAAACGAACATATTAACTTATATAACCAACAGCGGGGT



CGAGAAGATCGTCTGCCCCTGTTCAGACCTCTGTATAAGCAAATACTCTCCGACAGAGAGCAGCTATCA



TATCTGCCCGAGTCCTTTGAGAAAGATGAAGAGCTGCTCCGGGCGCTCAAGGAGTTCTATGATCATATA



GCCGAGGACATTTTGGGCAGAACTCAGCAACTCATGACGTCTATTTCTGAATATGATCTGTCTCGTATCT



ATGTCAGGAATGATAGCCAGCTGACCGATATATCCAAGAAGATGCTGGGGGACTGGAACGCCATTTATA



TGGCGAGGGAGCGAGCATACGATCACGAGCAGGCACCCAAGAGAATCACAGCCAAATATGAGAGAGAC



CGCATTAAGGCGCTGAAGGGCGAAGAAAGTATCAGTCTGGCCAATCTGAACTCCTGCATAGCTTTCCTT



GATAACGTGAGGGATTGCAGAGTTGATACTTACCTGAGTACCCTGGGCCAGAAGGAAGGGCCTCACGGC



CTCTCTAATCTAGTGGAGAATGTATTTGCCTCCTACCACGAAGCTGAGCAGCTGCTGTCATTTCCGTACC



CAGAGGAAAATAATTTAATACAGGATAAGGACAACGTAGTGCTTATCAAAAATCTACTGGATAACATTT



CCGACCTCCAGCGCTTTCTCAAACCACTTTGGGGGATGGGCGACGAGCCTGATAAGGATGAGCGCTTTT



ACGGCGAGTACAACTACATCAGGGGCGCCTTGGACCAGGTGATTCCCCTCTATAATAAAGTCAGGAATT



ACCTGACCCGAAAGCCATACAGTACAAGAAAGGTGAAATTAAATTTCGGCAATAGTCAGCTGCTGTCTG



GTTGGGACCGAAATAAGGAGAAAGACAACAGCTGCGTAATTCTCAGAAAAGGACAGAACTTTTATTTGG



CCATCATGAATAACAGACACAAGAGATCTTTCGAGAACAAAGTGCTCCCTGAGTATAAGGAGGGGGAA



CCCTACTTCGAGAAGATGGACTATAAATTCCTTCCTGATCCAAATAAAATGCTGCCTAAAGTATTTCTGT



CAAAAAAAGGTATAGAAATCTACAAACCTTCACCTAAGCTACTTGAACAGTATGGCCACGGCACCCATA



AAAAAGGGGACACGTTCAGCATGGACGACCTACACGAACTGATTGACTTCTTTAAGCACAGCATAGAAG



CTCATGAGGACTGGAAACAGTTCGGATTCAAATTCTCAGATACCGCGACCTACGAAAACGTGTCTAGTT



TTTACCGGGAAGTCGAGGACCAGGGCTACAAGCTCAGCTTCAGAAAAGTTAGCGAATCTTACGTCTACT



CCCTTATAGATCAAGGTAAGCTGTATCTCTTTCAAATCTACAACAAGGACTTTTCCCCATGTAGCAAGGG



CACCCCCAATCTGCACACTCTCTACTGGCGGATGCTGTTCGACGAGCGTAACCTGGCAGACGTGATCTAC



AAATTAGATGGTAAAGCTGAGATCTTCTTTCGTGAAAAGAGCCTAAAGAACGATCACCCCACTCACCCC



GCCGGAAAGCCCATTAAGAAGAAAAGTAGGCAGAAGAAAGGAGAAGAATCGCTATTTGAGTACGACCT



CGTCAAGGATCGGCATTATACAATGGATAAGTTCCAGTTCCATGTGCCAATAACTATGAATTTCAAGTGC



AGTGCTGGCAGTAAGGTGAATGACATGGTAAACGCTCATATCCGGGAGGCAAAGGACATGCATGTTATT



GGAATTGATAGGGGTGAGCGTAATCTCCTCTACATCTGTGTTATTGACTCCCGCGGCACAATCCTCGATC



AGATTTCCTTGAATACAATTAATGATATAGACTACCATGACTTGCTTGAGTCTCGCGACAAAGATAGACA



GCAGGAGAGAAGAAATTGGCAGACCATCGAAGGCATCAAGGAACTCAAGCAAGGCTACCTTTCTCAGG



CAGTGCATCGAATAGCCGAGCTGATGGTGGCTTATAAAGCCGTCGTGGCACTAGAAGACCTAAATATGG



GATTTAAACGAGGCAGGCAGAAGGTGGAATCATCCGTATACCAGCAGTTCGAAAAACAGTTGATAGAC



AAACTCAATTACCTTGTAGACAAGAAGAAGCGGCCTGAGGACATAGGGGGCCTGCTTAGAGCGTATCAA



TTTACAGCCCCATTCAAGTCTTTCAAAGAAATGGGTAAACAGAACGGTTTTCTGTTTTACATCCCAGCGT



GGAACACCAGCAATATAGATCCAACCACTGGCTTCGTCAATCTGTTTCATGCTCAGTATGAAAATGTGG



ACAAGGCCAAATCCTTCTTTCAGAAATTTGACAGCATCTCCTATAACCCAAAGAAAGACTGGTTTGAATT



CGCCTTTGACTATAAGAATTTCACTAAGAAGGCCGAGGGATCAAGAAGCATGTGGATATTGTGCACGCA



TGGCTCACGTATAAAGAACTTTAGAAACTCGCAAAAAAACGGGCAGTGGGACTCAGAAGAATTCGCACT



CACCGAGGCTTTCAAATCCCTCTTCGTCCGGTATGAGATCGATTACACCGCCGATCTGAAGACGGCAATC



GTCGACGAGAAACAGAAAGACTTCTTTGTAGATCTACTTAAGCTCTTTAAGCTAACCGTTCAGATGCGA



AACAGTTGGAAAGAAAAGGATCTCGACTATCTCATTAGTCCAGTGGCTGGCGCGGATGGTAGATTTTTC



GATACCCGGGAAGGTAACAAGTCCCTTCCCAAAGACGCCGACGCGAATGGTGCCTACAATATTGCACTA



AAGGGGCTCTGGGCGCTGCGGCAAATTAGACAGACATCTGAAGGGGGCAAGCTTAAGCTGGCTATTTCT



AATAAAGAGTGGTTGCAGTTTGTGCAGGAAAGGAGTTATGAGAAGGACTAG





SEQ
ATGAACAACGGCACCAACAACTTCCAGAACTTCATCGGCATATCGTCTCTGCAGAAAACACTTAGGAAT


ID
GCCCTGATTCCAACTGAGACAACACAGCAGTTTATTGTGAAGAATGGGATCATCAAAGAGGACGAATTG


NO:
CGCGGGGAGAATAGGCAGATCCTGAAGGACATCATGGACGATTACTACAGGGGTTTTATCTCCGAAACG


153
CTGAGCTCGATTGACGATATTGACTGGACGTCCCTCTTTGAGAAGATGGAAATCCAACTTAAAAATGGC



GATAATAAAGATACCCTGATAAAGGAACAAACCGAATATAGAAAGGCTATACACAAAAAATTCGCAAA



TGACGACCGCTTTAAGAACATGTTTTCTGCAAAACTGATTAGCGATATTCTGCCCGAGTTTGTGATTCAC



AATAATAACTATTCCGCTTCGGAGAAGGAGGAAAAGACTCAGGTGATTAAACTGTTTTCTCGGTTCGCC



ACTTCTTTCAAAGATTATTTCAAAAATCGCGCCAACTGTTTTTCCGCTGACGACATCTCCTCCTCTTCCTG



CCACCGGATCGTAAACGACAATGCCGAGATCTTTTTTAGTAACGCCCTTGTGTATCGGAGGATAGTGAA



GAGCCTGTCCAATGATGACATAAACAAAATTTCTGGCGATATGAAGGATAGCCTCAAAGAGATGAGCCT



TGAAGAAATTTACTCCTACGAGAAGTATGGGGAGTTCATCACCCAGGAGGGGATTTCCTTCTATAATGA



CATCTGTGGCAAGGTGAACAGCTTCATGAACCTGTACTGCCAGAAGAATAAGGAAAACAAAAATCTGTA



CAAGCTTCAGAAGTTACATAAGCAGATCCTGTGTATCGCGGATACCTCATATGAGGTTCCTTATAAGTTC



GAGAGTGATGAAGAAGTGTACCAGTCTGTAAATGGATTCTTAGACAATATTTCGTCCAAACATATAGTG



GAGAGACTGAGAAAGATCGGGGACAATTACAATGGGTACAATCTCGACAAGATTTATATCGTGTCGAAG



TTTTACGAATCTGTGAGCCAGAAAACATACAGGGATTGGGAAACCATTAATACCGCGCTTGAAATTCAC



TACAATAATATTCTGCCTGGCAACGGAAAAAGCAAGGCCGATAAGGTAAAAAAGGCAGTCAAAAATGA



CCTTCAGAAAAGTATCACCGAAATCAATGAGTTGGTGAGCAACTACAAATTGTGTTCAGACGATAATAT



TAAAGCGGAAACGTACATACATGAAATTAGCCATATTCTGAATAACTTTGAGGCGCAGGAACTTAAGTA



CAACCCTGAAATTCATCTCGTCGAAAGCGAATTGAAGGCCTCTGAATTGAAAAACGTTCTTGACGTGAT



AATGAACGCTTTCCATTGGTGCTCTGTGTTTATGACTGAAGAGCTGGTTGATAAGGACAACAACTTTTAT



GCTGAACTTGAGGAAATCTACGACGAGATCTACCCTGTGATTAGCTTGTATAACCTCGTCAGAAACTAC



GTTACCCAGAAGCCGTACAGCACGAAAAAAATAAAGCTGAACTTTGGTATTCCGACTCTCGCCGATGGA



TGGAGCAAGTCGAAGGAATATTCCAACAATGCCATCATTCTTATGCGAGACAATCTGTATTACCTCGGC



ATCTTTAACGCCAAAAACAAGCCGGATAAGAAAATCATTGAAGGGAATACGAGCGAGAATAAGGGCGA



CTATAAGAAAATGATCTACAACTTACTGCCAGGTCCCAATAAAATGATTCCTAAGGTGTTTCTGTCATCG



AAAACAGGTGTAGAAACATATAAGCCCAGCGCATACATCCTGGAAGGCTACAAGCAAAACAAACACAT



CAAAAGCAGCAAGGACTTTGATATCACATTCTGCCACGATCTAATCGACTACTTCAAAAATTGCATCGCC



ATTCACCCTGAGTGGAAGAACTTCGGCTTTGACTTCTCCGACACCAGTACCTACGAAGACATTTCTGGAT



TCTACCGTGAGGTTGAGCTGCAGGGTTATAAAATTGACTGGACATACATCAGTGAAAAAGACATCGATC



TACTGCAGGAGAAGGGGCAGCTCTATCTCTTCCAGATTTATAATAAGGATTTCAGCAAGAAGTCCACTG



GAAACGACAATCTGCATACAATGTATCTTAAGAACTTGTTTAGCGAAGAGAATTTGAAAGATATCGTTC



TAAAGTTAAACGGGGAAGCCGAGATTTTCTTTCGAAAGTCTTCCATTAAGAATCCAATTATTCACAAGA



AGGGCAGTATCCTGGTCAACAGAACCTATGAGGCCGAGGAAAAGGACCAGTTCGGTAATATACAAATT



GTGCGCAAGAACATCCCCGAGAACATTTACCAGGAGCTCTATAAATACTTCAACGACAAAAGCGATAAG



GAGCTTTCCGACGAGGCTGCCAAGCTGAAAAACGTGGTGGGACACCATGAAGCAGCCACCAACATCGTC



AAAGATTATCGTTATACATATGACAAATATTTTCTGCACATGCCTATTACAATAAACTTTAAGGCAAACA



AGACCGGGTTCATCAATGACCGGATACTCCAGTACATCGCAAAAGAGAAGGACCTGCATGTGATCGGCA



TCGACCGCGGTGAAAGAAATCTCATTTACGTCAGCGTTATCGACACTTGTGGAAACATTGTGGAGCAGA



AGTCCTTCAACATTGTTAACGGCTATGACTATCAGATCAAGCTCAAACAGCAGGAAGGTGCTCGTCAGA



TTGCGAGGAAAGAATGGAAAGAGATCGGCAAGATCAAGGAGATCAAAGAAGGGTATCTGAGCTTGGTC



ATTCACGAGATCTCCAAAATGGTCATCAAGTACAACGCTATTATCGCGATGGAAGACCTCTCTTACGGCT



TTAAGAAGGGGCGCTTTAAAGTGGAGCGCCAGGTCTATCAGAAGTTCGAGACTATGCTTATCAATAAGC



TGAATTACTTGGTCTTTAAGGATATCAGTATCACCGAGAACGGAGGACTGCTGAAAGGTTACCAGCTCA



CATATATTCCCGATAAGCTCAAGAATGTGGGCCACCAATGCGGTTGTATTTTTTACGTTCCAGCTGCCTA



CACATCTAAGATCGATCCTACCACCGGATTCGTCAATATATTTAAATTTAAAGATCTAACCGTTGATGCC



AAGCGTGAGTTTATTAAGAAATTTGATTCAATCAGGTACGACAGCGAAAAGAACCTCTTCTGTTTCACTT



TCGACTACAACAACTTCATCACACAAAATACTGTGATGAGCAAGTCATCATGGAGCGTTTATACTTATGG



TGTAAGGATAAAAAGGCGCTTTGTTAATGGAAGGTTTTCCAATGAAAGCGATACAATAGACATCACAAA



AGACATGGAGAAGACACTGGAGATGACAGATATTAATTGGAGGGACGGGCATGACCTTAGACAGGACA



TCATCGACTACGAAATCGTCCAACACATTTTTGAGATATTCAGACTCACTGTCCAGATGCGAAACAGCCT



GTCGGAACTCGAAGACCGGGACTACGATAGACTGATCTCCCCGGTGTTAAACGAAAATAATATTTTCTA



CGATTCTGCTAAGGCAGGAGACGCTCTTCCTAAAGATGCGGACGCCAATGGCGCTTACTGTATAGCGTT



GAAGGGATTGTATGAGATTAAACAGATCACTGAGAATTGGAAAGAAGACGGTAAATTCTCCAGAGACA



AGCTGAAAATCTCCAACAAAGACTGGTTTGATTTTATTCAAAATAAGCGCTACCTGTAA





SEQ
ATGACAAACAAATTTACTAATCAGTACAGCCTGTCAAAGACCCTCCGCTTCGAACTGATTCCACAAGGG


ID
AAGACCCTTGAATTCATCCAGGAAAAGGGTTTATTATCCCAGGATAAACAACGCGCAGAAAGCTATCAA


NO:
GAGATGAAGAAGACGATCGATAAATTTCATAAGTATTTCATAGATTTAGCCCTGAGCAACGCTAAATTG


154
ACCCACCTGGAAACCTATTTGGAGCTGTACAACAAGTCAGCCGAGACAAAGAAAGAGCAGAAGTTTAA



GGACGACCTGAAAAAAGTACAGGACAATTTGCGAAAAGAGATCGTCAAGTCTTTTTCCGACGGAGACGC



CAAGTCAATATTTGCCATCCTGGACAAAAAGGAACTCATCACTGTGGAGTTGGAGAAGTGGTTTGAGAA



TAATGAGCAGAAGGACATCTATTTTGACGAAAAGTTCAAGACATTTACTACTTACTTCACCGGATTTCAC



CAAAACCGGAAGAACATGTACTCTGTTGAGCCGAACTCAACCGCCATCGCCTACCGCCTTATTCACGAA



AATCTGCCAAAGTTTCTCGAGAATGCTAAAGCCTTTGAGAAAATTAAGCAGGTCGAGTCGCTCCAGGTG



AACTTTCGAGAGCTGATGGGTGAATTCGGGGACGAGGGCCTGATTTTCGTGAATGAACTCGAAGAGATG



TTTCAGATCAACTACTATAATGATGTACTCTCACAGAACGGGATCACTATCTACAACAGCATTATCTCTG



GATTCACTAAGAACGATATCAAGTATAAAGGGCTGAATGAATACATCAACAATTATAATCAGACTAAGG



ACAAAAAGGACAGGCTGCCTAAATTGAAACAGCTGTATAAGCAGATCCTCAGTGATAGAATTAGCTTGT



CATTTCTCCCAGATGCCTTCACTGACGGAAAGCAGGTGCTTAAGGCGATATTCGATTTCTATAAGATCAA



CCTCCTCTCTTATACAATCGAGGGCCAGGAGGAGTCACAGAACCTCCTGCTCCTGATTCGACAAACTATT



GAAAATCTGTCCTCTTTCGATACGCAGAAGATATACCTGAAAAATGACACCCATCTCACTACAATATCCC



AACAGGTATTCGGAGATTTCTCCGTCTTCAGTACAGCCCTGAATTACTGGTACGAGACAAAGGTGAACC



CTAAGTTCGAAACAGAGTACAGCAAGGCGAACGAAAAGAAGAGGGAGATCCTGGACAAAGCCAAAGC



CGTTTTCACCAAGCAAGATTACTTTAGCATCGCATTTCTGCAGGAAGTCCTGTCTGAGTACATACTGACA



CTCGATCACACAAGCGACATAGTTAAGAAGCACTCTTCCAATTGTATCGCGGACTACTTCAAAAATCATT



TTGTCGCGAAAAAGGAGAACGAGACAGATAAGACCTTCGATTTTATCGCGAATATTACCGCAAAGTATC



AATGCATTCAGGGTATCTTGGAGAACGCCGACCAGTACGAAGACGAGCTTAAACAGGATCAGAAGCTC



ATCGACAACCTAAAGTTCTTTTTGGACGCTATACTGGAACTCCTTCATTTTATTAAGCCACTACATCTGA



AGAGTGAGTCTATCACTGAGAAGGACACTGCTTTTTACGACGTTTTCGAGAATTACTACGAAGCACTGTC



TCTGCTAACCCCTCTGTATAACATGGTGAGAAACTATGTGACACAGAAACCTTATAGTACCGAGAAGAT



TAAGTTGAACTTCGAGAACGCACAATTGCTGAATGGGTGGGATGCAAACAAAGAGGGTGATTACCTCAC



AACAATCCTCAAGAAAGATGGCAATTACTTCCTGGCCATTATGGATAAAAAACATAACAAGGCATTTCA



GAAATTTCCCGAGGGGAAGGAAAATTATGAAAAGATGGTATACAAGTTGCTGCCCGGGGTGAACAAAA



TGCTCCCGAAGGTGTTTTTCTCGAATAAGAATATCGCGTACTTTAACCCGTCCAAGGAACTGTTGGAAAA



TTATAAAAAGGAAACACACAAGAAGGGGGACACTTTTAATTTGGAGCACTGCCACACACTCATTGACTT



CTTTAAAGATAGTCTCAACAAACATGAGGATTGGAAATATTTTGACTTTCAGTTTAGCGAGACCAAGTCT



TATCAGGATCTGTCGGGATTTTATAGGGAAGTTGAGCACCAGGGTTACAAGATAAATTTCAAGAACATC



GATAGCGAGTACATTGACGGACTGGTGAACGAAGGGAAGCTGTTCCTGTTTCAGATTTACAGCAAAGAT



TTCTCTCCTTTCTCAAAAGGCAAGCCGAACATGCATACCCTGTATTGGAAGGCCCTGTTCGAGGAGCAAA



ACCTTCAGAATGTGATTTACAAGCTGAACGGTCAGGCCGAGATTTTTTTTAGGAAGGCCTCTATCAAGCC



CAAAAACATCATTCTGCACAAGAAAAAGATAAAGATCGCCAAAAAACACTTCATTGATAAAAAGACAA



AGACTTCTGAGATCGTACCTGTTCAGACAATCAAGAATCTCAACATGTATTATCAGGGGAAGATTAGCG



AGAAAGAGCTGACACAGGACGATTTGAGGTACATCGACAACTTCTCTATCTTTAACGAGAAGAACAAGA



CAATCGATATCATCAAGGACAAGCGGTTTACCGTCGATAAATTCCAGTTCCATGTGCCTATCACGATGAA



TTTCAAGGCCACCGGTGGGAGTTATATCAACCAGACTGTGCTGGAGTATCTGCAGAACAACCCCGAAGT



AAAAATTATTGGCCTGGACAGAGGAGAGCGGCATCTGGTGTACTTGACCCTCATCGATCAGCAGGGAAA



TATCCTGAAACAAGAATCTCTGAATACTATTACGGACTCCAAAATCAGCACACCTTACCACAAGCTGCTT



GATAATAAAGAGAATGAGAGGGACTTGGCCCGCAAAAATTGGGGCACCGTCGAGAATATTAAGGAATT



GAAAGAAGGATACATCTCACAGGTGGTTCACAAAATCGCAACCCTGATGTTAGAAGAGAACGCTATTGT



GGTGATGGAGGACTTAAACTTCGGATTTAAAAGAGGAAGATTTAAAGTCGAGAAACAGATTTATCAGAA



ACTGGAAAAAATGCTCATTGACAAATTAAATTACCTGGTGCTGAAAGATAAACAGCCACAGGAGCTGGG



TGGCCTGTATAATGCTCTGCAGCTGACCAACAAGTTCGAGTCGTTTCAGAAAATGGGCAAGCAGTCAGG



CTTCCTTTTTTACGTGCCCGCTTGGAACACCTCAAAAATCGACCCTACAACAGGCTTTGTGAATTATTTCT



ATACCAAGTATGAAAACGTGGACAAGGCAAAGGCCTTTTTCGAGAAGTTTGAAGCAATCAGGTTCAATG



CCGAGAAAAAATACTTTGAGTTCGAGGTCAAAAAATATAGCGACTTCAACCCTAAGGCCGAAGGCACGC



AACAAGCCTGGACAATATGCACGTATGGGGAGAGAATTGAGACTAAGCGGCAGAAGGATCAGAATAAC



AAATTCGTGAGCACACCGATTAACCTGACAGAGAAGATAGAGGACTTCCTCGGCAAGAATCAGATCGTG



TACGGCGACGGCAATTGCATCAAGTCACAAATTGCATCTAAAGATGACAAAGCATTCTTCGAAACACTG



CTGTATTGGTTCAAGATGACACTCCAGATGCGAAATAGCGAAACAAGAACAGATATTGACTACCTCATC



AGCCCTGTGATGAATGATAACGGCACGTTTTACAATTCCCGGGACTATGAAAAATTAGAGAACCCGACA



CTGCCAAAAGACGCCGACGCAAATGGTGCATATCACATCGCAAAGAAAGGTTTGATGCTGTTGAACAAA



ATTGATCAGGCTGATCTGACAAAAAAGGTCGATCTGAGTATCAGTAACCGCGACTGGTTGCAGTTTGTC



CAGAAGAACAAATAA





SEQ
ATGGAACAAGAGTACTATCTGGGCCTGGACATGGGCACCGGGAGTGTCGGATGGGCAGTCACCGACTCA


ID
GAGTACCACGTCCTCAGAAAGCACGGTAAGGCACTTTGGGGAGTGCGACTCTTCGAGTCCGCTAGTACT


NO:
GCTGAAGAGAGGAGGATGTTTCGAACTTCCAGGCGCAGGCTGGATCGGCGAAACTGGAGAATAGAGAT


155
TCTCCAGGAGATATTTGCTGAAGAGATTTCAAAGAAGGATCCTGGTTTTTTCCTGCGCATGAAAGAATCT



AAGTATTACCCCGAAGATAAACGCGACATCAACGGCAATTGTCCTGAACTGCCCTATGCTCTGTTTGTCG



ACGACGATTTCACCGACAAAGATTACCACAAGAAATTCCCCACCATATACCACCTGAGAAAGATGTTGA



TGAACACCGAGGAGACACCCGACATACGTCTGGTTTACCTGGCTATCCATCATATGATGAAGCACCGCG



GGCATTTCCTGCTGTCTGGAGACATCAATGAGATAAAGGAATTTGGTACTACGTTCTCCAAGTTGTTAGA



AAACATTAAGAATGAAGAGTTGGACTGGAATCTTGAACTGGGAAAGGAAGAGTATGCAGTTGTAGAGT



CGATTTTGAAAGATAACATGTTAAACCGGTCAACTAAGAAAACCAGGTTAATTAAGGCACTAAAGGCCA



AATCGATATGCGAGAAGGCTGTGCTAAATCTGCTGGCTGGAGGCACCGTGAAACTGTCTGATATTTTCG



GCCTGGAAGAGCTCAATGAAACCGAGCGGCCTAAAATTTCTTTCGCCGATAACGGATACGATGACTATA



TTGGGGAGGTGGAAAACGAGCTCGGAGAACAATTCTACATTATTGAAACCGCTAAGGCAGTCTATGACT



GGGCCGTGCTCGTCGAGATTTTAGGCAAGTACACCAGCATTAGCGAAGCAAAGGTGGCTACCTATGAAA



AGCACAAATCTGACCTCCAGTTTCTGAAAAAGATTGTGCGCAAATACTTAACAAAAGAAGAGTACAAGG



ACATCTTTGTGAGCACATCAGATAAGCTCAAGAATTACTCAGCATACATTGGAATGACAAAGATTAACG



GGAAGAAGGTGGATCTCCAAAGCAAACGTTGTTCAAAGGAGGAGTTTTACGATTTCATAAAGAAGAAC



GTGCTGAAGAAACTGGAGGGACAACCGGAGTACGAGTATTTAAAGGAGGAGCTCGAGCGAGAAACTTT



CCTGCCCAAGCAAGTGAACAGAGACAATGGTGTCATTCCTTACCAGATTCACTTATATGAGCTGAAGAA



AATCCTGGGGAACTTGAGAGACAAGATAGACCTCATCAAGGAAAATGAAGATAAGTTGGTCCAGTTGTT



CGAATTCAGAATCCCATATTACGTCGGCCCGCTCAATAAGATCGACGACGGCAAGGAAGGCAAATTCAC



TTGGGCGGTGCGAAAAAGCAACGAAAAAATATACCCATGGAACTTTGAGAACGTCGTTGACATCGAGG



CCAGCGCCGAGAAATTTATAAGACGCATGACTAATAAGTGTACTTACCTCATGGGCGAGGATGTTCTGC



CCAAGGACAGCCTGCTGTATTCCAAGTACATGGTGCTTAACGAGCTGAATAATGTAAAGTTAGATGGTG



AGAAGCTCAGCGTGGAGCTTAAACAGAGGCTGTACACTGATGTGTTTTGCAAGTATCGGAAAGTTACCG



TTAAGAAGATAAAGAATTACCTGAAATGCGAAGGGATCATTTCCGGCAACGTGGAAATTACCGGAATCG



ACGGCGATTTTAAGGCGTCGTTGACCGCTTATCATGATTTCAAGGAGATTTTAACCGGCACGGAGCTCGC



GAAGAAAGACAAGGAGAACATAATCACGAATATAGTTCTGTTTGGGGACGATAAAAAACTTCTTAAAA



AACGACTCAATCGACTGTATCCGCAGATTACCCCCAACCAGCTGAAGAAGATTTGCGCTCTGAGCTATA



CCGGGTGGGGCCGGTTCTCTAAGAAATTCCTCGAGGAGATCACAGCACCAGACCCAGAGACTGGTGAGG



TGTGGAATATTATTACAGCTCTGTGGGAATCCAATAATAACCTTATGCAATTGTTGAGCAATGAATATAG



GTTCATGGAGGAAGTGGAAACCTACAATATGGGCAAGCAGACAAAGACCCTATCTTACGAGACCGTTGA



GAATATGTATGTCTCCCCTTCAGTGAAACGGCAAATCTGGCAAACTTTGAAGATCGTGAAGGAGCTCGA



AAAGGTGATGAAAGAGAGCCCGAAGAGGGTTTTTATTGAAATGGCCAGAGAGAAACAGGAGAGCAAGA



GAACAGAGTCTAGGAAGAAGCAGCTAATCGATTTGTATAAAGCCTGCAAGAACGAGGAAAAAGACTGG



GTCAAGGAGCTAGGCGATCAGGAAGAACAGAAGTTGCGCTCTGATAAGCTGTACTTATATTATACCCAG



AAAGGACGGTGCATGTACTCAGGTGAGGTCATTGAGCTGAAAGATCTGTGGGACAATACTAAGTATGAT



ATTGATCACATCTACCCTCAGTCAAAAACTATGGACGACTCCCTCAACAACAGGGTGTTGGTTAAGAAG



AAATACAATGCTACAAAGTCCGATAAATACCCTCTTAACGAAAACATCCGGCACGAAAGAAAGGGCTTC



TGGAAGTCCCTGCTGGATGGGGGTTTTATCAGTAAAGAAAAGTATGAGAGGCTGATCCGAAATACCGAG



CTCTCCCCCGAGGAACTGGCTGGCTTTATCGAAAGGCAGATCGTAGAGACTAGGCAATCTACAAAGGCA



GTCGCTGAGATCCTGAAGCAAGTGTTTCCTGAGTCAGAAATCGTGTACGTCAAAGCTGGCACAGTGTCA



CGGTTCCGAAAGGACTTTGAGTTGTTAAAAGTTCGGGAGGTGAATGACCTGCACCACGCTAAAGACGCC



TATCTGAATATCGTTGTGGGGAACTCCTATTATGTTAAGTTTACTAAGAATGCGTCCTGGTTTATTAAGG



AGAACCCGGGGCGCACCTATAACCTGAAGAAGATGTTCACCTCCGGCTGGAACATAGAACGGAACGGA



GAAGTCGCGTGGGAGGTGGGTAAGAAAGGGACCATTGTGACCGTCAAACAGATTATGAACAAAAACAA



CATATTGGTAACTCGCCAGGTGCATGAGGCCAAAGGGGGCCTCTTTGATCAGCAGATTATGAAAAAGGG



CAAAGGACAGATCGCAATCAAGGAAACCGACGAGCGCCTGGCATCCATTGAGAAGTACGGAGGCTACA



ACAAGGCGGCAGGTGCGTACTTCATGCTCGTCGAGTCCAAAGATAAGAAAGGCAAAACTATTAGAACA



ATCGAGTTCATCCCTCTATATTTGAAAAATAAGATCGAAAGTGACGAAAGCATCGCCCTTAACTTCTTGG



AGAAGGGCCGGGGCTTAAAGGAACCAAAGATTCTGCTCAAGAAGATCAAGATCGACACACTCTTCGAT



GTGGATGGTTTTAAGATGTGGCTGTCAGGCAGGACAGGGGATCGCTTGCTGTTCAAATGCGCAAATCAG



TTGATTCTGGACGAAAAGATCATTGTGACGATGAAGAAGATCGTTAAATTCATTCAGCGGAGACAGGAA



AACAGAGAACTGAAACTCTCCGATAAGGATGGAATTGACAATGAAGTCCTCATGGAGATTTACAATACC



TTTGTGGACAAGCTTGAGAACACAGTCTATCGGATCCGACTGTCCGAACAGGCAAAGACTCTGATCGAC



AAACAGAAAGAATTCGAAAGACTAAGCTTAGAGGACAAAAGTTCAACTCTCTTTGAAATTCTCCACATC



TTCCAATGTCAAAGTAGTGCAGCCAACTTGAAGATGATCGGGGGTCCCGGCAAGGCTGGAATCTTAGTC



ATGAACAACAACATCTCCAAATGTAACAAAATCTCCATCATAAACCAGTCTCCCACCGGCATTTTCGAG



AACGAAATTGATTTACTCAAG





SEQ
ATGAAATCTTTCGATTCTTTCACCAACCTCTACTCCCTTAGCAAAACCCTTAAGTTTGAAATGAGGCCGG


ID
TGGGGAATACACAGAAGATGCTTGACAATGCTGGCGTCTTTGAAAAGGACAAATTAATCCAGAAGAAGT


NO:
ATGGTAAAACAAAGCCATATTTTGACCGATTGCATCGGGAATTCATTGAAGAGGCTCTTACAGGAGTAG


156
AATTGATCGGACTGGACGAGAACTTCCGTACCTTAGTAGACTGGCAGAAGGACAAGAAGAACAACGTG



GCAATGAAGGCCTATGAGAACTCACTCCAGCGCCTTAGAACCGAGATCGGAAAGATCTTTAATCTTAAG



GCGGAAGATTGGGTAAAAAATAAGTACCCGATCCTGGGACTGAAAAACAAAAACACAGACATCCTGTT



TGAAGAAGCCGTCTTTGGTATCTTGAAGGCCAGGTATGGAGAGGAGAAAGACACGTTTATAGAGGTAGA



GGAGATTGATAAAACAGGCAAGAGTAAGATTAATCAGATCAGTATCTTTGATTCTTGGAAGGGGTTCAC



AGGCTACTTTAAGAAGTTTTTCGAAACCAGGAAAAATTTCTATAAGAACGATGGCACCTCCACAGCTAT



CGCGACACGCATCATAGATCAGAATCTGAAACGGTTCATTGATAATCTGAGCATTGTTGAATCCGTGCG



CCAGAAGGTCGACCTAGCTGAGACTGAGAAGTCTTTCTCTATATCACTCTCCCAGTTCTTCTCAATAGAT



TTTTATAATAAGTGCCTTCTGCAAGATGGCATAGACTACTATAACAAGATCATCGGCGGCGAAACTCTCA



AAAACGGTGAAAAGCTCATTGGCCTGAATGAGCTCATCAACCAATATAGACAAAATAACAAGGATCAG



AAAATCCCATTCTTTAAGCTGCTAGATAAACAGATCCTATCAGAAAAAATCCTGTTCCTCGACGAAATCA



AAAACGACACCGAACTCATCGAGGCTCTCTCGCAGTTTGCCAAGACGGCTGAGGAGAAGACGAAGATT



GTGAAAAAGCTGTTTGCAGACTTTGTGGAGAACAACTCTAAATACGATTTGGCTCAGATTTATATCTCCC



AGGAAGCATTTAACACAATCTCCAATAAGTGGACTAGCGAGACTGAAACCTTCGCCAAATACCTGTTCG



AGGCCATGAAAAGCGGCAAGCTCGCCAAATACGAGAAGAAGGACAATTCCTATAAGTTTCCCGATTTCA



TCGCATTATCTCAGATGAAGTCCGCGCTACTTAGCATTAGCCTGGAAGGCCATTTTTGGAAGGAGAAAT



ACTATAAGATTTCCAAATTCCAAGAAAAGACCAATTGGGAGCAGTTCTTGGCTATTTTTCTATACGAGTT



CAACTCTTTGTTCAGTGACAAGATCAACACTAAGGACGGTGAGACCAAACAAGTGGGGTACTACCTCTT



CGCCAAAGATCTTCATAACCTGATACTGTCCGAACAGATCGACATACCCAAGGATTCAAAGGTGACCAT



CAAGGATTTTGCGGATTCGGTATTGACGATCTATCAGATGGCGAAGTATTTCGCTGTCGAGAAAAAGCG



GGCATGGCTGGCCGAATACGAGTTGGACTCCTTCTATACTCAACCCGATACAGGGTACCTGCAGTTTTAC



GATAATGCATACGAGGATATAGTCCAGGTGTACAATAAACTCAGGAACTACCTCACTAAGAAACCATAC



TCCGAAGAAAAATGGAAACTTAATTTTGAGAATAGTACACTGGCCAATGGATGGGACAAGAACAAGGA



ATCAGACAACTCCGCTGTAATTCTCCAGAAGGGTGGCAAGTATTATCTGGGACTGATAACAAAGGGCCA



TAACAAGATTTTCGATGACCGTTTTCAGGAGAAGTTTATAGTGGGCATAGAGGGTGGCAAGTATGAAAA



AATAGTCTACAAGTTCTTTCCCGATCAGGCGAAGATGTTCCCCAAAGTATGCTTCAGTGCTAAAGGCCTC



GAGTTTTTCCGGCCATCTGAAGAGATACTCCGCATCTATAATAACGCAGAGTTTAAAAAGGGAGAGACG



TACTCAATCGACTCGATGCAGAAACTCATTGACTTCTACAAAGATTGTCTCACAAAATACGAGGGCTGG



GCTTGCTACACGTTTCGGCACTTGAAGCCAACCGAGGAATATCAAAACAACATCGGGGAGTTCTTCCGT



GACGTCGCCGAAGACGGCTATAGAATTGACTTTCAGGGCATAAGTGATCAGTATATTCACGAGAAGAAT



GAGAAAGGTGAGTTGCATCTTTTCGAAATCCACAATAAAGACTGGAATCTTGACAAGGCTCGCGATGGA



AAATCAAAGACTACCCAGAAGAATCTTCATACACTTTACTTCGAGTCCCTCTTTTCCAACGACAACGTCG



TACAGAATTTCCCAATAAAACTGAACGGCCAGGCCGAAATTTTTTACAGGCCCAAAACCGAAAAAGATA



AACTGGAATCCAAGAAAGACAAGAAGGGAAATAAGGTGATAGATCACAAAAGGTATTCCGAGAACAAG



ATTTTTTTCCACGTACCTCTTACCCTGAACAGAACGAAGAACGACTCTTATAGATTCAATGCCCAGATAA



ACAACTTTCTCGCAAACAACAAAGATATCAATATTATCGGCGTCGATAGAGGTGAGAAGCACTTGGTAT



ATTATTCTGTGATCACGCAAGCATCCGATATCTTGGAGTCCGGTTCTTTGAACGAACTGAATGGTGTCAA



CTACGCCGAGAAACTCGGTAAGAAAGCTGAGAATCGGGAGCAGGCTAGAAGGGACTGGCAGGACGTTC



AGGGTATCAAGGACCTGAAGAAGGGCTACATTTCTCAGGTGGTTCGAAAACTGGCTGATTTGGCCATTA



AGCACAATGCAATCATCATTTTAGAAGATTTGAACATGCGGTTTAAACAAGTCAGGGGGGGGATAGAGA



AATCAATTTACCAACAGCTGGAAAAAGCTCTGATTGATAAACTCTCTTTTTTGGTTGATAAGGGCGAAAA



GAACCCCGAGCAAGCAGGACATCTCCTTAAAGCCTATCAACTGAGCGCACCTTTCGAGACATTCCAGAA



GATGGGAAAGCAAACCGGCATCATTTTCTATACCCAGGCTTCCTATACATCCAAGTCTGATCCAGTGACT



GGGTGGAGACCCCATCTCTACCTCAAGTACTTTTCTGCCAAAAAAGCTAAGGACGACATTGCTAAGTTC



ACAAAAATCGAGTTCGTGAACGACAGGTTCGAGCTGACTTATGACATAAAAGATTTCCAGCAGGCCAAG



GAGTACCCAAACAAGACAGTTTGGAAAGTGTGTTCCAATGTGGAGAGGTTTCGGTGGGACAAGAATCTG



AATCAGAATAAAGGGGGATATACTCACTACACCAACATTACCGAGAACATCCAAGAGTTGTTCACCAAA



TACGGCATCGACATTACTAAAGATCTGCTGACACAGATCTCCACCATCGATGAGAAGCAGAACACATCT



TTCTTCCGGGATTTCATCTTTTATTTTAACTTGATCTGTCAGATTAGAAATACCGACGACAGTGAGATAG



CTAAAAAAAACGGGAAAGACGATTTCATTCTCTCTCCCGTGGAGCCGTTTTTTGACTCCCGCAAAGACA



ATGGCAATAAGCTTCCGGAAAACGGGGACGATAACGGCGCCTACAACATCGCTCGTAAGGGAATCGTTA



TCCTCAATAAAATAAGCCAGTATTCCGAGAAGAACGAGAATTGTGAAAAAATGAAGTGGGGGGACCTTT



ACGTCAGCAACATCGATTGGGATAACTTTGTGACACAAGCCAATGCGAGACACTAG





SEQ
ATGGAAAACTTCAAAAACCTCTACCCCATCAACAAGACCTTGAGGTTTGAGCTCCGGCCATATGGGAAG


ID
ACACTGGAGAACTTCAAAAAGTCCGGTCTGCTGGAAAAGGATGCTTTTAAGGCTAACTCTAGGAGGTCT


NO:
ATGCAGGCCATTATCGATGAGAAATTCAAGGAGACCATAGAGGAGCGTCTGAAATATACTGAGTTTTCC


157
GAGTGTGACCTAGGAAATATGACCAGTAAGGACAAAAAGATCACCGACAAGGCAGCGACAAACCTGAA



GAAACAGGTGATTTTAAGCTTTGATGATGAGATTTTCAATAACTACTTGAAGCCGGACAAAAACATCGA



CGCTCTGTTCAAGAATGATCCAAGCAACCCGGTCATCTCTACTTTCAAGGGCTTCACCACATACTTTGTA



AATTTCTTCGAAATACGGAAACACATCTTCAAGGGAGAGTCTTCCGGTAGCATGGCTTACAGAATAATC



GATGAGAACCTAACTACATATCTAAACAATATCGAGAAGATCAAGAAATTGCCTGAAGAACTGAAATCT



CAGCTTGAGGGAATCGATCAAATTGACAAACTGAACAACTATAACGAGTTCATCACCCAGTCCGGCATT



ACTCATTATAACGAAATTATTGGAGGGATTTCGAAGTCTGAAAATGTCAAAATTCAAGGCATTAACGAA



GGGATTAATCTTTACTGTCAAAAGAATAAAGTGAAGCTACCACGCTTAACTCCTCTGTATAAGATGATTC



TCTCTGATCGGGTCTCTAATTCCTTTGTGCTGGATACCATTGAAAATGATACCGAGTTAATTGAAATGAT



CTCTGATCTGATAAATAAGACAGAGATAAGTCAGGATGTTATTATGTCCGACATCCAAAATATTTTCATC



AAATATAAACAACTCGGCAACTTGCCGGGGATTAGCTACTCATCTATAGTGAATGCTATCTGTTCGGATT



ACGACAATAACTTTGGTGACGGCAAACGTAAAAAAAGCTATGAGAATGATCGCAAAAAACACCTCGAG



ACTAACGTGTATAGCATTAACTATATCTCAGAGTTACTGACAGACACCGACGTCTCCAGCAACATAAAG



ATGCGGTACAAAGAGCTGGAGCAGAATTATCAGGTATGCAAGGAAAATTTCAACGCCACTAACTGGATG



AACATCAAAAACATTAAGCAGTCTGAGAAAACCAATCTGATCAAGGACCTTCTTGACATCCTCAAGAGC



ATCCAGCGGTTTTATGATTTGTTTGACATCGTGGATGAAGACAAAAATCCTAGTGCTGAGTTCTATACCT



GGCTGTCTAAAAACGCGGAGAAACTGGACTTCGAGTTTAATTCAGTGTACAACAAGAGCAGGAACTACC



TCACGAGAAAGCAGTACTCCGATAAAAAGATTAAGTTGAACTTCGATAGTCCTACTCTCGCCAAGGGGT



GGGATGCGAACAAAGAAATTGATAATAGCACAATTATCATGAGGAAGTTCAACAACGACCGGGGCGAT



TACGATTACTTCTTGGGGATCTGGAATAAGAGCACACCTGCCAACGAAAAGATCATCCCATTAGAGGAT



AATGGACTGTTTGAAAAAATGCAATATAAGCTGTATCCCGATCCTAGTAAAATGCTGCCAAAGCAATTC



CTTTCTAAGATCTGGAAAGCTAAACATCCAACTACACCCGAGTTTGATAAGAAGTACAAAGAAGGTCGG



CACAAGAAGGGGCCTGATTTTGAGAAAGAGTTTCTGCACGAGTTGATCGATTGCTTTAAGCATGGATTG



GTAAACCACGACGAAAAATATCAGGATGTGTTCGGGTTCAATCTGCGCAACACGGAAGACTACAACTCT



TATACAGAGTTTCTGGAGGACGTCGAAAGGTGCAACTATAATCTTAGTTTCAATAAAATCGCTGACACG



TCTAACTTGATAAATGATGGGAAACTCTATGTTTTTCAGATCTGGAGCAAGGATTTCAGCATAGATAGCA



AGGGAACAAAAAACTTGAACACAATATACTTTGAATCCCTCTTCTCGGAGGAAAATATGATCGAGAAGA



TGTTCAAGCTCTCAGGGGAAGCCGAAATATTCTATCGTCCAGCAAGTTTGAATTATTGTGAAGATATTAT



CAAGAAGGGACACCACCACGCCGAACTGAAGGACAAATTCGACTATCCCATCATCAAGGACAAGCGAT



ATAGCCAGGACAAATTTTTTTTTCATGTCCCCATGGTTATCAACTACAAAAGCGAGAAGTTAAACTCCAA



ATCACTTAACAATAGGACGAACGAAAATTTAGGCCAATTCACGCACATCATCGGTATCGACCGCGGAGA



GCGACATCTCATCTACCTGACCGTGGTGGATGTGTCCACCGGTGAGATCGTTGAGCAAAAGCACCTGGA



TGAAATTATAAATACAGATACAAAAGGCGTCGAGCATAAAACTCATTATCTCAATAAATTAGAAGAGAA



GTCCAAGACGCGGGATAATGAAAGAAAGTCCTGGGAAGCAATCGAGACGATTAAGGAGCTGAAAGAAG



GCTATATTAGCCACGTGATCAATGAAATCCAGAAATTGCAGGAAAAGTATAACGCACTGATAGTGATGG



AGAACCTCAATTATGGGTTTAAGAACTCGCGTATCAAAGTGGAAAAGCAGGTCTACCAGAAATTCGAGA



CCGCCCTGATTAAAAAGTTTAATTACATCATTGACAAGAAAGATCCTGAAACCTACATTCATGGATACC



AACTGACGAATCCAATCACTACACTCGATAAAATTGGTAACCAGAGCGGTATTGTGTTGTACATTCCGG



CTTGGAATACAAGCAAGATTGATCCAGTCACTGGTTTCGTTAACCTCCTGTATGCAGACGATTTGAAATA



CAAGAACCAGGAGCAGGCTAAAAGCTTTATCCAGAAAATCGATAATATCTACTTCGAAAATGGTGAGTT



TAAATTTGATATAGATTTCAGCAAATGGAACAACCGCTACTCAATTAGCAAGACGAAATGGACACTGAC



AAGCTACGGAACCCGGATACAGACGTTCCGAAACCCCCAGAAAAATAACAAGTGGGACAGCGCCGAGT



ATGACCTGACCGAAGAGTTTAAATTAATCCTGAACATCGATGGTACTCTGAAATCTCAGGATGTGGAAA



CCTATAAGAAATTCATGTCTTTATTCAAGCTGATGTTGCAGCTGCGAAACTCCGTTACTGGAACAGACAT



TGACTACATGATTAGCCCTGTGACAGATAAAACTGGAACCCACTTTGATTCACGGGAGAATATCAAGAA



CCTGCCCGCCGATGCTGATGCGAACGGAGCTTACAACATTGCTAGGAAGGGCATCATGGCAATCGAGAA



TATTATGAACGGCATTAGCGACCCTCTGAAGATCAGTAATGAGGACTACCTGAAGTACATTCAGAACCA



ACAAGAGTAA





SEQ
ATGACCCAGTTTGAGGGTTTCACCAATCTTTATCAGGTGTCAAAAACACTCAGATTTGAGCTCATCCCAC


ID
AGGGTAAAACTTTAAAGCATATTCAAGAGCAGGGCTTTATAGAGGAAGACAAAGCCAGAAACGACCAT


NO:
TATAAGGAACTAAAACCGATCATTGACCGCATCTACAAAACCTATGCCGACCAATGCCTTCAGCTCGTC


158
CAACTCGATTGGGAGAATCTGAGCGCCGCTATTGACAGCTACAGGAAGGAGAAGACCGAGGAGACTAG



AAACGCCCTGATCGAGGAGCAGGCGACCTATAGAAACGCTATTCACGATTATTTTATCGGCCGCACCGA



CAATTTGACAGATGCCATCAACAAGCGGCACGCCGAAATTTATAAGGGGTTATTTAAGGCCGAGCTGTT



CAATGGAAAAGTACTGAAACAGCTGGGCACCGTAACAACCACCGAACACGAGAATGCTCTGTTGAGGT



CCTTCGACAAGTTTACTACCTACTTTAGCGGCTTCTACGAAAACCGTAAAAACGTGTTTTCCGCGGAGGA



TATTTCAACAGCCATTCCTCATAGGATCGTGCAGGATAATTTCCCCAAGTTTAAGGAGAACTGCCATATC



TTTACCAGACTTATCACTGCTGTGCCAAGTTTACGAGAACACTTCGAGAATGTTAAGAAGGCTATAGGC



ATATTCGTTTCCACCTCCATCGAAGAAGTATTCAGTTTTCCATTCTACAATCAGTTACTCACGCAGACCC



AGATAGATCTCTACAATCAGCTGCTCGGAGGCATTTCTAGAGAAGCAGGCACGGAAAAGATCAAGGGCT



TAAATGAAGTACTCAATCTTGCAATTCAGAAGAACGATGAGACAGCACACATTATTGCATCTCTCCCTCA



CAGATTCATTCCCCTGTTCAAACAGATCCTGTCCGATCGCAACACACTAAGCTTTATACTTGAGGAGTTT



AAGTCAGATGAGGAAGTGATCCAGAGCTTCTGTAAGTATAAGACTTTGCTCCGTAATGAAAACGTGCTT



GAGACAGCAGAGGCTCTCTTTAACGAGTTGAATTCCATCGACCTGACACACATTTTTATCAGCCATAAAA



AGCTGGAAACGATTAGCTCTGCCTTGTGCGACCACTGGGACACCCTGCGTAACGCCCTCTATGAAAGGC



GCATTTCCGAGCTCACCGGGAAGATCACAAAAAGTGCCAAGGAAAAAGTCCAGAGGTCCCTTAAACAT



GAAGACATCAACCTACAAGAGATCATCTCTGCGGCTGGGAAAGAGCTGTCAGAAGCATTTAAACAGAA



GACTTCCGAGATCCTGAGCCACGCACACGCCGCATTAGACCAGCCCCTGCCTACAACTCTTAAAAAACA



GGAGGAGAAGGAGATTTTAAAGAGCCAGCTGGACTCATTACTCGGCCTGTATCATCTCCTGGACTGGTT



CGCCGTGGACGAATCCAACGAGGTGGACCCAGAATTTAGCGCCAGGCTGACAGGAATTAAACTGGAAA



TGGAGCCAAGTTTGAGCTTTTACAACAAGGCTCGGAACTATGCCACTAAAAAGCCCTACAGCGTGGAAA



AGTTCAAGCTGAATTTTCAGATGCCGACCCTGGCTTCCGGGTGGGATGTTAATAAGGAAAAGAATAATG



GGGCTATACTGTTCGTCAAAAATGGTCTCTACTACCTGGGAATCATGCCCAAACAGAAGGGCAGGTACA



AAGCCCTTTCGTTTGAGCCGACCGAAAAAACCAGCGAAGGCTTTGATAAGATGTATTACGACTATTTCCC



AGATGCAGCCAAGATGATCCCAAAATGTAGCACTCAGTTGAAGGCGGTAACCGCTCACTTTCAGACACA



CACCACTCCTATCTTGCTCTCCAACAACTTTATTGAGCCGCTGGAGATCACGAAGGAAATCTACGACCTT



AACAACCCAGAGAAGGAACCCAAGAAATTCCAAACAGCTTATGCTAAGAAGACTGGGGATCAAAAGGG



CTATCGAGAGGCTTTGTGTAAGTGGATTGACTTTACACGGGATTTCCTGAGTAAGTATACCAAGACCACA



TCTATTGACCTGTCCTCACTGAGACCTTCCTCACAATATAAGGATCTCGGAGAGTATTATGCCGAACTCA



ACCCTCTACTCTATCACATCTCTTTCCAGAGGATCGCCGAAAAGGAAATTATGGACGCCGTCGAGACAG



GCAAGCTGTACCTCTTCCAGATTTACAACAAGGATTTCGCAAAGGGCCACCACGGAAAACCCAATTTGC



ACACTTTGTACTGGACAGGGCTCTTCTCTCCCGAAAATTTGGCCAAAACTTCAATAAAACTGAACGGGC



AAGCCGAGCTGTTCTATCGGCCCAAGTCACGTATGAAGCGGATGGCCCACCGGCTGGGCGAGAAGATGC



TCAACAAGAAACTGAAGGATCAGAAGACGCCCATACCAGACACTCTTTACCAAGAGCTGTATGACTACG



TGAATCACAGACTGAGTCACGACCTGTCTGATGAAGCCCGGGCTCTTCTTCCAAATGTGATTACCAAAG



AAGTTTCCCACGAAATTATCAAGGACCGGCGCTTCACCTCTGACAAATTCTTTTTCCACGTCCCAATCAC



CCTCAACTACCAGGCAGCCAATTCCCCTTCAAAGTTTAACCAGCGTGTGAATGCCTACCTGAAAGAGCA



TCCGGAGACCCCCATCATAGGGATAGACAGAGGAGAGCGGAATCTTATCTACATTACTGTGATTGACAG



CACAGGTAAGATCTTGGAGCAGAGATCTTTAAATACAATCCAGCAGTTTGACTACCAGAAGAAACTGGA



TAACCGAGAGAAGGAAAGGGTTGCTGCAAGACAGGCCTGGTCAGTGGTCGGCACCATCAAAGACCTGA



AGCAGGGCTACTTATCCCAAGTAATTCACGAAATTGTCGATCTTATGATTCATTATCAAGCCGTTGTTGT



GCTGGAGAACCTGAATTTTGGCTTCAAAAGCAAACGAACAGGTATCGCCGAGAAAGCCGTGTATCAGCA



GTTCGAAAAGATGCTCATAGACAAGCTGAACTGCTTAGTGCTGAAGGATTATCCTGCTGAGAAGGTCGG



CGGCGTACTTAACCCATACCAGCTGACCGATCAGTTCACTAGTTTCGCCAAGATGGGAACGCAAAGTGG



CTTCCTTTTCTACGTGCCCGCTCCCTACACGAGTAAGATCGACCCTCTGACCGGCTTCGTCGACCCATTCG



TCTGGAAGACCATCAAGAATCACGAATCACGGAAACACTTCTTAGAGGGGTTTGACTTCCTGCACTACG



ACGTGAAGACAGGGGACTTCATCTTACACTTTAAGATGAATCGAAACCTCTCCTTCCAGCGGGGCCTGC



CTGGTTTCATGCCCGCATGGGACATCGTGTTTGAGAAAAACGAGACACAGTTTGACGCTAAGGGAACCC



CCTTTATTGCGGGGAAGCGGATTGTCCCAGTCATCGAAAACCATCGGTTCACCGGGCGATACCGGGATC



TGTACCCGGCCAACGAGCTCATCGCGCTGCTGGAGGAGAAGGGTATTGTGTTTAGGGATGGATCCAACA



TTCTGCCTAAGTTGCTGGAAAATGATGATTCGCACGCCATTGATACCATGGTTGCACTGATTAGATCCGT



ACTGCAGATGAGGAATAGCAATGCTGCAACCGGGGAGGATTATATTAATTCCCCAGTGCGAGATCTGAA



TGGTGTCTGTTTTGACTCGCGCTTTCAGAATCCAGAATGGCCAATGGATGCAGACGCTAACGGGGCGTA



CCACATTGCTCTGAAAGGCCAGCTACTCCTGAACCACCTCAAGGAGAGCAAAGATCTGAAGCTGCAGAA



CGGCATTTCCAACCAAGACTGGCTCGCCTACATACAAGAACTGCGCAATTAA





SEQ
ATGGCTGTCAAATCCATCAAGGTTAAATTACGGCTTGATGACATGCCCGAGATCCGCGCCGGGCTCTGG


ID
AAACTCCATAAAGAAGTGAATGCTGGCGTTAGATACTACACAGAATGGCTCTCCCTGCTGCGCCAGGAA


NO:
AATTTGTACCGCCGGTCACCTAATGGAGATGGAGAGCAGGAATGCGATAAAACAGCAGAAGAGTGCAA


159
AGCCGAATTGCTGGAGCGACTGCGGGCACGGCAGGTTGAGAATGGACACCGAGGTCCGGCGGGATCGG



ACGACGAGCTGCTCCAGCTCGCCAGACAATTATATGAACTGCTGGTGCCTCAGGCTATTGGGGCAAAGG



GTGACGCACAGCAGATTGCTAGAAAATTTCTGTCTCCCCTCGCCGACAAAGACGCTGTCGGCGGCCTTG



GGATAGCCAAAGCCGGCAACAAACCCCGATGGGTGCGCATGAGGGAGGCTGGTGAGCCTGGCTGGGAG



GAAGAAAAGGAAAAGGCCGAAACCAGAAAGTCCGCCGACAGGACCGCGGACGTACTCCGAGCATTGGC



CGATTTTGGGCTGAAGCCCTTAATGCGAGTCTACACCGATAGTGAAATGTCTAGCGTGGAGTGGAAGCC



ATTACGCAAAGGGCAGGCAGTGCGGACGTGGGACCGTGACATGTTCCAGCAAGCCATCGAGCGAATGA



TGAGCTGGGAGAGCTGGAACCAGAGAGTGGGGCAGGAGTATGCCAAGCTGGTCGAGCAGAAAAACCGG



TTTGAGCAAAAAAATTTTGTAGGTCAGGAACACCTGGTGCATCTCGTTAACCAGCTCCAGCAAGATATG



AAGGAAGCTTCGCCTGGATTAGAGAGCAAAGAGCAGACTGCACACTATGTAACCGGAAGAGCACTGAG



GGGCAGTGACAAAGTGTTCGAAAAATGGGGAAAACTGGCTCCCGATGCCCCCTTTGACCTGTACGACGC



AGAAATAAAAAACGTGCAGCGGCGAAACACCAGGCGATTTGGTAGCCATGATCTGTTCGCCAAATTGGC



AGAGCCGGAATATCAGGCTCTTTGGCGAGAAGACGCATCATTTCTCACTAGGTACGCGGTCTATAACTC



CATTTTGAGGAAATTGAACCACGCAAAAATGTTTGCCACCTTCACGTTGCCTGACGCCACCGCTCATCCC



ATTTGGACACGGTTTGATAAGCTGGGCGGCAATCTGCATCAGTATACATTCCTGTTTAACGAGTTTGGAG



AGCGAAGACATGCGATACGATTCCACAAGCTACTGAAGGTCGAAAATGGCGTGGCACGTGAGGTGGAC



GATGTCACCGTGCCCATCAGCATGAGCGAACAGCTGGATAATTTGTTGCCGCGGGACCCAAATGAACCT



ATAGCCCTTTATTTTAGGGACTACGGGGCGGAGCAACATTTCACTGGGGAGTTTGGCGGCGCAAAAATT



CAGTGCCGACGCGACCAGCTCGCCCACATGCATAGAAGACGCGGGGCCCGGGACGTATACCTTAACGTC



TCTGTGAGGGTGCAGTCCCAGTCAGAGGCAAGAGGGGAACGCAGACCACCTTACGCAGCAGTATTCAG



GCTGGTAGGCGATAACCACCGGGCGTTTGTACACTTTGATAAACTTTCTGACTACCTGGCCGAACACCCG



GATGACGGCAAATTAGGATCGGAGGGGCTGCTTAGCGGCCTGCGTGTGATGAGCGTCGATCTGGGGCTA



CGGACCTCTGCTTCCATCTCTGTGTTCCGTGTGGCCCGAAAGGACGAGTTGAAACCTAATTCGAAGGGCC



GTGTACCATTCTTTTTCCCTATTAAGGGAAATGATAATCTCGTCGCGGTGCACGAGCGTTCCCAACTGCT



GAAACTGCCTGGCGAGACCGAGTCCAAAGATCTCAGAGCAATCCGGGAGGAGCGACAACGTACACTTA



GGCAACTCCGCACCCAGCTGGCCTATCTGCGCTTGCTGGTGCGGTGCGGCTCCGAGGATGTAGGGAGAA



GAGAGCGAAGCTGGGCAAAGCTGATAGAGCAACCAGTTGACGCCGCGAATCACATGACCCCCGACTGG



CGCGAAGCGTTTGAAAATGAGCTGCAGAAGTTGAAATCTCTGCATGGGATTTGCTCAGATAAGGAGTGG



ATGGACGCCGTATACGAGTCTGTTCGCCGGGTATGGCGGCACATGGGGAAGCAGGTGAGAGATTGGAG



AAAGGACGTTCGCTCTGGGGAACGGCCGAAAATTCGGGGATACGCAAAGGATGTCGTGGGCGGCAATA



GCATTGAGCAGATCGAGTACCTGGAAAGGCAATACAAATTTCTGAAATCTTGGTCTTTCTTTGGGAAGGT



AAGCGGACAAGTTATCAGAGCCGAAAAGGGATCTCGCTTTGCTATCACATTGAGGGAACACATTGATCA



CGCCAAAGAAGACAGGTTGAAAAAGTTGGCTGATCGCATTATCATGGAAGCACTCGGTTACGTCTACGC



CCTTGATGAGCGCGGTAAAGGGAAGTGGGTAGCCAAGTATCCCCCATGTCAGCTGATCCTGCTCGAGGA



ACTTTCTGAGTATCAGTTCAATAACGACCGTCCTCCCTCCGAAAATAATCAGCTCATGCAATGGTCCCAC



CGGGGTGTGTTCCAAGAACTGATCAATCAGGCTCAGGTGCACGACCTCCTCGTAGGCACTATGTATGCA



GCCTTTAGCTCCCGTTTTGACGCGCGCACAGGCGCCCCTGGAATACGATGTAGGCGAGTTCCCGCACGGT



GCACTCAAGAACATAACCCGGAGCCTTTCCCATGGTGGCTCAATAAGTTTGTTGTGGAGCATACCCTCGA



CGCTTGCCCATTGAGGGCGGATGACTTGATTCCCACAGGCGAGGGGGAGATCTTCGTGAGCCCATTTTCT



GCCGAAGAAGGGGATTTCCACCAAATACATGCCGACTTGAATGCTGCCCAAAATCTGCAGCAAAGGCTG



TGGTCAGACTTCGACATCTCGCAAATCAGACTGCGGTGTGACTGGGGCGAAGTAGACGGCGAGCTGGTG



CTGATACCTAGACTGACGGGTAAGCGTACCGCCGATAGCTATAGTAATAAGGTTTTTTATACGAATACG



GGGGTGACATATTACGAGCGTGAGAGAGGCAAGAAGCGTCGGAAGGTGTTCGCGCAGGAGAAGCTGAG



CGAAGAGGAGGCGGAGCTACTGGTAGAGGCAGATGAGGCAAGAGAAAAGTCCGTCGTCCTGATGCGGG



ATCCTAGCGGGATTATTAACAGAGGTAATTGGACACGGCAGAAAGAATTCTGGAGCATGGTGAATCAAA



GAATCGAGGGTTACCTGGTGAAGCAAATTCGAAGCCGGGTGCCCCTTCAAGACAGCGCATGTGAAAACA



CTGGGGACATCTAG





SEQ
ATGGCTACTCGGTCCTTCATCCTGAAAATCGAGCCAAATGAAGAGGTGAAAAAGGGCCTGTGGAAGACC


ID
CATGAGGTACTTAACCACGGCATAGCATACTATATGAATATCCTAAAACTTATACGGCAGGAGGCTATC


NO:
TACGAGCATCACGAGCAAGATCCTAAAAATCCAAAGAAGGTTAGTAAGGCTGAAATCCAGGCTGAATT


160
GTGGGACTTCGTGCTGAAGATGCAGAAATGCAACAGTTTCACGCATGAAGTTGATAAGGACGTCGTGTT



TAATATACTCCGGGAGCTGTACGAAGAACTGGTACCAAGCTCTGTGGAAAAGAAAGGAGAGGCCAACC



AGCTAAGTAATAAGTTCCTCTATCCTCTCGTGGACCCCAATTCACAGAGCGGCAAAGGTACCGCATCTTC



TGGGAGGAAACCACGCTGGTACAACTTGAAGATCGCTGGCGATCCCAGCTGGGAGGAGGAAAAGAAGA



AATGGGAAGAGGATAAAAAGAAAGACCCCCTGGCCAAAATCTTAGGCAAGCTCGCCGAGTACGGTCTG



ATTCCACTTTTCATCCCGTTCACAGATAGCAATGAGCCGATCGTCAAGGAGATTAAGTGGATGGAAAAG



AGCCGCAATCAGAGTGTGCGGAGGCTGGACAAAGACATGTTTATTCAGGCCCTGGAACGCTTCCTTAGC



TGGGAAAGCTGGAACCTGAAGGTTAAGGAAGAGTACGAAAAAGTCGAGAAGGAGCATAAGACTTTGGA



GGAGCGCATCAAAGAAGACATCCAGGCCTTTAAGTCTCTAGAACAGTATGAGAAAGAACGGCAGGAAC



AGCTGCTGCGTGATACACTGAACACAAACGAATATCGCCTGAGCAAGAGGGGACTCAGAGGCTGGAGA



GAAATCATTCAAAAGTGGCTCAAAATGGATGAAAATGAGCCGTCTGAAAAATACCTTGAAGTTTTCAAG



GACTACCAGCGGAAGCACCCTAGAGAAGCCGGCGACTATAGTGTTTACGAATTCTTGAGCAAGAAGGA



GAATCATTTTATATGGAGGAATCACCCGGAGTACCCATATCTGTACGCAACCTTCTGCGAAATCGACAA



GAAAAAAAAAGACGCCAAGCAACAGGCTACATTTACTCTGGCCGACCCTATCAATCACCCTCTATGGGT



CCGGTTTGAGGAGCGCTCCGGAAGCAATCTGAATAAATATCGTATTCTGACTGAACAGTTACACACAGA



GAAGCTCAAGAAGAAACTTACGGTGCAGCTGGACCGCCTGATATACCCAACAGAGTCCGGAGGATGGG



AAGAGAAAGGAAAGGTTGACATCGTACTGCTTCCATCTCGTCAGTTTTACAACCAGATATTCCTGGACAT



CGAGGAGAAGGGGAAACACGCCTTCACATACAAGGACGAGTCCATAAAGTTCCCACTGAAGGGTACTTT



AGGCGGTGCTAGGGTGCAGTTCGACCGCGATCACCTGAGACGGTACCCCCACAAGGTGGAGAGCGGGA



ACGTGGGACGAATCTACTTTAATATGACAGTGAACATTGAACCCACAGAGAGTCCAGTTAGTAAATCCC



TGAAAATTCACCGTGACGACTTTCCGAAATTTGTGAATTTCAAGCCAAAGGAGCTTACGGAGTGGATCA



AGGATTCAAAGGGAAAGAAGCTGAAATCTGGTATCGAATCTCTCGAGATCGGTCTCCGTGTCATGAGCA



TCGATCTGGGACAGCGCCAGGCAGCTGCCGCCAGTATATTCGAGGTGGTAGACCAAAAGCCTGACATCG



AGGGAAAGCTCTTCTTCCCAATCAAAGGCACAGAGCTGTATGCGGTGCACCGGGCGTCCTTTAATATAA



AGCTGCCCGGTGAAACCCTGGTGAAGTCACGGGAGGTGCTTAGAAAAGCGCGAGAGGATAACCTCAAA



CTGATGAACCAAAAACTGAACTTTCTGAGGAACGTCCTGCACTTTCAGCAGTTCGAAGATATTACCGAA



CGCGAAAAGAGAGTAACCAAGTGGATATCTCGTCAAGAGAACAGCGACGTCCCGTTAGTCTATCAGGAC



GAACTCATCCAAATACGGGAGTTGATGTATAAGCCCTACAAGGATTGGGTCGCCTTTCTTAAGCAGCTTC



ACAAACGCCTAGAGGTCGAAATAGGTAAAGAGGTGAAACATTGGCGGAAGTCGCTCAGCGACGGGAGG



AAGGGACTTTATGGCATCTCTTTGAAGAACATTGACGAAATCGATAGAACCAGAAAATTTTTGTTGAGA



TGGTCCCTCCGACCCACCGAGCCTGGAGAGGTGAGGCGGTTAGAACCAGGACAGAGGTTCGCTATCGAT



CAGCTGAATCACCTCAATGCTCTGAAGGAGGACCGCCTCAAGAAAATGGCCAATACAATCATAATGCAC



GCCCTTGGCTACTGCTACGACGTCCGAAAGAAGAAGTGGCAGGCCAAGAATCCCGCCTGTCAAATTATC



CTTTTTGAGGATCTTAGCAATTACAACCCCTATGAAGAGCGGTCCAGATTCGAAAATAGTAAGCTCATG



AAGTGGAGCCGCAGGGAGATCCCGCGCCAAGTGGCCCTTCAGGGGGAAATTTATGGGCTGCAGGTAGG



CGAGGTCGGGGCCCAATTCTCCTCGCGCTTTCATGCGAAAACTGGAAGTCCTGGAATCCGGTGCTCAGT



GGTGACAAAGGAGAAGTTGCAAGACAATCGGTTTTTTAAAAACTTACAGCGGGAGGGAAGGCTGACCC



TGGATAAGATAGCCGTACTTAAGGAAGGAGATCTGTACCCTGACAAAGGCGGTGAAAAGTTCATTAGCT



TGAGCAAGGACCGAAAACTTGTGACCACCCACGCTGACATCAATGCGGCACAGAACCTGCAGAAGAGA



TTTTGGACTCGCACCCACGGATTCTACAAAGTTTACTGCAAAGCATATCAAGTAGACGGACAGACCGTA



TACATCCCCGAGTCCAAAGATCAGAAGCAGAAAATTATTGAAGAGTTTGGGGAAGGGTACTTTATCCTG



AAGGATGGTGTCTACGAATGGGGCAACGCTGGTAAACTTAAAATTAAGAAGGGCAGCTCTAAACAGTCC



TCCAGCGAGTTAGTTGATTCTGATATTCTGAAAGACAGTTTCGACCTGGCCAGCGAACTTAAAGGGGAA



AAATTAATGCTGTACCGGGACCCCAGCGGAAACGTCTTTCCATCCGATAAGTGGATGGCCGCTGGAGTG



TTCTTTGGCAAGTTAGAGAGGATTCTCATAAGTAAGCTGACCAACCAATACTCAATCTCCACAATCGAG



GATGACTCATCCAAGCAGTCTATGTGA





SEQ
ATGCCTACACGCACTATCAACCTGAAACTGGTTCTTGGCAAGAATCCAGAGAATGCTACCCTTCGTCGG


ID
GCACTATTTTCAACGCATAGACTGGTGAATCAGGCTACCAAACGGATTGAAGAGTTCCTCTTGCTTTGTC


NO:
GGGGGGAAGCATATAGGACGGTGGATAATGAGGGGAAAGAGGCTGAAATTCCGAGACACGCCGTGCAG


161
GAGGAAGCTCTTGCGTTTGCAAAGGCCGCTCAACGGCACAATGGTTGCATCTCTACTTATGAAGACCAG



GAAATCCTGGATGTGCTCCGGCAACTGTATGAAAGGCTGGTGCCTTCTGTGAATGAAAATAATGAAGCA



GGGGACGCTCAAGCCGCAAACGCGTGGGTGTCGCCACTGATGTCCGCCGAGTCCGAGGGAGGGCTCAG



CGTTTACGACAAGGTGCTGGACCCACCCCCAGTGTGGATGAAACTCAAAGAGGAAAAAGCTCCGGGCTG



GGAGGCTGCTTCCCAGATCTGGATCCAGTCCGACGAAGGGCAGTCCCTTCTTAACAAGCCTGGTTCGCCC



CCGCGGTGGATTAGGAAACTGAGGTCAGGCCAGCCTTGGCAGGACGATTTTGTTAGCGACCAGAAAAAG



AAGCAGGACGAGCTGACAAAGGGGAATGCGCCACTGATCAAACAATTAAAGGAAATGGGCTTATTGCC



TCTTGTGAATCCCTTTTTTAGACATCTGCTTGACCCGGAGGGGAAGGGGGTGTCACCTTGGGACAGACTC



GCTGTTAGGGCCGCTGTCGCTCATTTCATATCATGGGAATCATGGAACCACCGGACACGCGCCGAATAC



AATAGTTTGAAGCTGCGGAGGGATGAGTTCGAAGCAGCTTCCGACGAATTCAAGGACGACTTCACGCTG



CTTCGGCAGTACGAGGCTAAGAGGCACTCCACACTGAAGAGTATAGCTTTAGCCGATGATTCAAACCCT



TATAGGATCGGCGTACGCTCCCTCCGCGCTTGGAACCGCGTCCGCGAGGAGTGGATCGACAAGGGAGCG



ACCGAGGAGCAGCGGGTCACCATTCTCAGCAAGTTGCAGACCCAACTAAGGGGCAAATTTGGAGATCCT



GACTTGTTCAACTGGCTGGCGCAGGACCGGCACGTGCACCTCTGGAGCCCTAGAGATAGTGTTACCCCA



CTGGTTAGGATCAACGCTGTTGACAAAGTATTGCGACGGAGAAAACCGTACGCCTTGATGACTTTTGCC



CACCCAAGATTCCACCCTCGGTGGATACTTTACGAAGCCCCAGGGGGCAGCAATCTCCGCCAGTATGCA



CTGGATTGTACCGAAAATGCTCTGCACATTACACTGCCTCTGCTGGTTGACGATGCACATGGCACATGGA



TTGAGAAAAAAATTAGGGTTCCTCTTGCCCCCAGCGGCCAGATTCAGGACCTGACACTAGAAAAGCTCG



AGAAGAAGAAAAATCGTCTCTACTACCGTTCTGGGTTCCAGCAGTTTGCCGGCCTGGCCGGAGGTGCCG



AGGTGCTTTTCCATCGACCATACATGGAGCACGATGAGAGGAGCGAGGAGAGCTTATTAGAACGCCCTG



GTGCTGTTTGGTTCAAACTCACCTTGGACGTGGCAACCCAGGCCCCTCCAAACTGGTTGGACGGAAAGG



GCCGCGTCCGAACGCCCCCCGAGGTTCACCACTTCAAGACAGCCCTCAGTAACAAGTCTAAGCACACAC



GGACCCTCCAGCCCGGACTCAGAGTGTTATCCGTGGATCTGGGAATGCGCACCTTCGCCTCTTGCTCCGT



ATTTGAGCTGATCGAGGGCAAACCAGAGACTGGCAGAGCGTTCCCTGTGGCCGACGAACGTTCCATGGA



TTCACCAAACAAGCTGTGGGCCAAGCACGAAAGATCCTTTAAACTCACGCTCCCCGGCGAAACCCCCAG



TCGGAAAGAAGAGGAGGAACGGAGCATTGCAAGAGCCGAAATCTATGCGTTGAAAAGAGATATTCAGA



GATTAAAAAGTCTTCTGCGCCTGGGGGAAGAGGATAACGATAATAGACGCGATGCACTTCTTGAGCAAT



TTTTCAAGGGCTGGGGCGAGGAAGACGTGGTTCCAGGTCAGGCCTTTCCCCGGAGTCTGTTCCAGGGGC



TGGGGGCCGCCCCATTCAGATCCACCCCTGAGTTGTGGAGACAACACTGTCAAACCTATTATGATAAAG



CAGAGGCGTGCCTGGCTAAACACATCAGCGATTGGCGCAAGAGAACCAGGCCTAGGCCTACCTCACGTG



AGATGTGGTACAAGACACGCTCTTATCACGGCGGAAAGTCAATCTGGATGCTGGAATACCTCGACGCTG



TGAGGAAACTGCTCTTATCCTGGAGCCTCAGAGGCCGGACCTACGGGGCTATCAACAGACAGGACACAG



CAAGGTTCGGGAGCTTAGCCAGCCGGCTCCTTCACCACATTAACTCACTCAAAGAGGATCGAATAAAGA



CCGGAGCCGACTCGATCGTGCAGGCAGCCCGAGGGTACATCCCCCTGCCTCATGGGAAGGGCTGGGAGC



AGCGATATGAACCCTGCCAGCTGATCTTGTTTGAGGACCTTGCCCGTTATAGATTTCGCGTTGATAGACC



TCGCCGTGAGAATTCTCAGCTGATGCAGTGGAACCACAGAGCGATCGTGGCTGAGACCACTATGCAGGC



CGAGCTGTATGGACAGATCGTGGAGAACACCGCCGCAGGGTTCAGTTCTCGGTTTCATGCTGCCACCGG



AGCTCCCGGCGTCCGGTGCCGCTTCCTCTTAGAGCGTGATTTTGACAATGACCTCCCAAAGCCCTATCTG



CTGAGGGAACTGAGCTGGATGCTGGGGAACACAAAAGTAGAATCGGAGGAGGAGAAGCTACGGCTCCT



CTCCGAAAAGATACGTCCAGGCTCTCTGGTACCATGGGACGGAGGAGAGCAGTTCGCGACACTGCATCC



TAAGAGACAGACGTTATGTGTGATTCACGCCGATATGAACGCCGCTCAGAATCTGCAGCGAAGATTCTT



TGGCCGCTGCGGCGAAGCCTTCAGGCTGGTATGTCAGCCCCACGGGGATGATGTGCTGCGGCTGGCCTC



AACCCCTGGGGCTAGACTCTTGGGGGCACTCCAGCAGCTGGAAAATGGCCAAGGGGCTTTCGAACTCGT



TCGGGACATGGGCAGCACAAGCCAGATGAACAGATTCGTCATGAAGAGCCTGGGAAAGAAAAAGATCA



AACCCTTACAGGACAATAATGGCGACGACGAACTGGAGGACGTGTTGTCCGTGCTGCCAGAGGAAGAC



GACACAGGCCGCATCACTGTCTTCCGCGACTCAAGTGGGATATTCTTTCCTTGCAACGTGTGGATTCCGG



CCAAACAGTTCTGGCCTGCCGTCAGAGCCATGATTTGGAAAGTGATGGCTAGTCATTCATTGGGATGA





SEQ
ATGACAAAGCTGAGGCACAGACAAAAGAAGCTTACACACGACTGGGCAGGGAGCAAGAAACGTGAGGT


ID
CCTTGGGTCAAATGGAAAACTGCAGAACCCCTTGCTCATGCCTGTAAAGAAGGGGCAGGTAACAGAATT


NO:
TAGAAAAGCATTCTCCGCGTACGCTCGGGCAACTAAGGGGGAAATGACCGATGGACGGAAGAACATGT


162
TCACCCATTCTTTCGAGCCATTCAAAACAAAGCCGTCATTGCACCAATGCGAGCTGGCCGATAAGGCTTA



CCAGTCTTTGCATAGTTACCTCCCCGGTTCCCTGGCCCATTTCTTGCTTTCCGCACACGCACTGGGCTTTC



GTATTTTCTCTAAATCTGGGGAGGCAACTGCCTTCCAGGCCAGCTCAAAAATCGAGGCCTATGAGTCCA



AGCTCGCTTCGGAGCTAGCCTGTGTCGATTTGAGTATCCAGAATTTGACGATTAGTACTCTTTTCAACGC



TCTCACAACTTCAGTTCGGGGCAAGGGGGAGGAAACTTCAGCAGATCCCCTTATCGCACGGTTCTACAC



TCTCCTGACGGGCAAGCCCCTGAGCCGAGACACACAGGGCCCAGAACGGGACTTGGCAGAGGTCATCTC



CAGAAAGATCGCCTCGTCCTTCGGCACATGGAAGGAAATGACTGCCAACCCTCTGCAGAGCCTCCAGTT



CTTCGAAGAAGAGCTTCATGCACTAGATGCCAACGTGTCTTTATCTCCAGCTTTTGATGTGTTAATCAAG



ATGAATGATCTCCAAGGTGATCTGAAGAACCGTACTATAGTGTTCGACCCAGATGCACCCGTGTTCGAG



TACAACGCTGAGGATCCAGCCGATATCATCATAAAGCTGACAGCTCGGTATGCGAAGGAGGCCGTCATC



AAGAATCAGAACGTGGGCAATTATGTGAAAAACGCCATTACCACCACTAATGCCAATGGGCTGGGGTGG



CTCCTCAATAAAGGGCTTTCACTACTGCCAGTTTCTACTGACGATGAGCTGCTCGAATTCATTGGGGTGG



AGAGAAGCCATCCCAGCTGTCACGCGCTGATAGAGCTGATTGCCCAGCTAGAGGCGCCGGAACTGTTTG



AGAAGAATGTGTTTAGTGACACCCGTTCCGAGGTTCAGGGTATGATCGACAGTGCAGTGTCGAACCACA



TTGCTCGGCTGTCCAGCAGCCGAAACTCCCTGAGCATGGACAGCGAGGAATTGGAACGCTTGATTAAAT



CTTTCCAGATTCATACTCCCCATTGTTCTCTGTTCATAGGCGCTCAGTCCTTATCTCAGCAGCTGGAGAGC



TTACCTGAGGCGCTGCAGTCCGGAGTGAACAGCGCTGATATCTTATTAGGCAGCACACAGTATATGCTG



ACCAACTCTCTCGTTGAAGAGTCAATTGCAACATATCAAAGGACATTAAATAGGATCAATTACCTGAGT



GGGGTGGCTGGGCAGATTAACGGTGCTATCAAAAGAAAGGCAATCGACGGCGAAAAAATACACCTGCC



TGCCGCCTGGAGTGAGCTCATCTCCTTACCTTTCATTGGACAGCCGGTGATTGATGTGGAGAGCGACCTG



GCACACTTAAAAAACCAGTACCAGACCCTGTCCAATGAATTTGACACCCTCATTTCGGCCCTGCAGAAG



AACTTCGATTTGAATTTCAACAAAGCACTCCTTAACCGCACGCAGCATTTCGAGGCAATGTGCCGGAGC



ACAAAAAAAAATGCTTTATCTAAGCCCGAGATCGTGTCCTACAGAGATCTGCTGGCGCGGCTGACCAGT



TGCCTTTATCGAGGCTCGCTGGTTCTCAGAAGGGCGGGAATCGAAGTTCTGAAAAAGCACAAAATCTTT



GAGTCGAATAGTGAGCTGAGAGAACACGTCCACGAGCGAAAGCACTTCGTGTTCGTTAGTCCATTGGAC



AGAAAGGCAAAAAAACTGTTGCGCCTGACCGATTCCCGCCCTGACTTGCTCCATGTGATCGATGAGATC



CTGCAACATGACAATCTGGAGAATAAGGACAGAGAGTCCCTTTGGCTGGTCCGGTCTGGGTACCTCCTT



GCTGGTCTGCCGGACCAGCTGAGTTCTTCGTTTATCAATCTCCCCATAATCACGCAAAAGGGCGATCGCC



GGCTGATTGACCTGATTCAGTATGACCAGATCAATCGCGATGCTTTCGTAATGTTGGTGACAAGTGCTTT



CAAAAGCAATCTCTCTGGGTTGCAGTACCGCGCTAACAAGCAGTCTTTCGTGGTCACCCGCACCCTGTCT



CCTTACCTGGGTAGTAAGCTCGTATACGTCCCTAAAGACAAAGATTGGCTGGTCCCATCCCAGATGTTTG



AGGGAAGATTCGCCGATATTCTGCAGAGTGACTACATGGTCTGGAAGGATGCCGGACGCCTGTGCGTGA



TCGACACTGCCAAACATCTCTCTAACATTAAAAAAAGCGTGTTTAGTAGCGAAGAAGTCCTTGCTTTTCT



TCGAGAGCTGCCTCACCGGACCTTCATCCAGACCGAGGTACGGGGGTTAGGAGTGAACGTCGATGGAAT



CGCATTTAATAACGGGGATATCCCGAGCTTGAAGACATTCTCGAATTGTGTGCAGGTGAAGGTGAGTAG



GACTAATACTAGTCTCGTGCAGACTCTAAACAGGTGGTTCGAGGGTGGCAAAGTGTCACCTCCCTCTATT



CAGTTCGAAAGAGCTTACTACAAAAAAGACGATCAGATTCACGAGGACGCAGCCAAGAGAAAGATACG



CTTCCAGATGCCAGCAACGGAATTAGTGCACGCCAGCGATGACGCTGGTTGGACCCCCAGCTACCTGCT



GGGCATCGACCCCGGTGAGTACGGAATGGGTCTCAGTTTGGTGTCCATCAACAATGGAGAGGTCCTGGA



TTCTGGATTCATCCACATTAATTCCCTGATCAATTTCGCGTCCAAAAAAAGCAATCACCAGACCAAAGTA



GTCCCCCGCCAGCAGTACAAGTCCCCCTACGCGAATTATCTCGAGCAGTCAAAGGATTCAGCAGCAGGG



GATATAGCTCACATTCTGGATCGGCTAATCTACAAATTGAACGCCTTGCCTGTGTTCGAGGCGCTGTCTG



GCAACAGTCAGAGTGCTGCTGATCAGGTATGGACCAAAGTTCTATCCTTCTATACATGGGGAGACAACG



ACGCACAGAACAGTATACGGAAGCAGCACTGGTTCGGTGCCTCACACTGGGATATTAAGGGGATGCTGC



GCCAACCCCCAACCGAAAAAAAACCCAAACCATATATAGCCTTTCCCGGGAGTCAAGTGTCATCCTATG



GAAATAGTCAAAGGTGTAGTTGTTGCGGCCGCAATCCCATTGAGCAGTTGCGTGAGATGGCAAAGGACA



CGAGTATCAAGGAGCTGAAAATCCGAAATAGTGAGATCCAACTATTCGATGGTACAATCAAGCTGTTTA



ACCCCGACCCTTCCACCGTCATCGAGAGGCGGCGGCATAACCTAGGACCCTCACGCATTCCTGTGGCAG



ACCGAACTTTCAAGAATATTAGCCCTTCTTCGTTAGAGTTCAAGGAGCTCATTACTATCGTTTCTCGAAG



CATCCGCCATAGCCCCGAATTTATTGCTAAGAAACGGGGTATCGGGTCTGAGTACTTTTGTGCTTATTCT



GACTGCAACTCCTCACTGAACTCAGAGGCCAATGCCGCGGCCAATGTGGCACAGAAGTTTCAGAAGCAA



CTCTTTTTCGAACTCTGA





SEQ
ATGAAACGTATTCTGAACTCTCTGAAAGTCGCCGCACTGAGGCTGCTGTTTCGAGGAAAGGGCTCAGAG


ID
CTGGTGAAGACCGTCAAGTACCCTCTGGTTTCGCCCGTCCAGGGTGCTGTGGAAGAACTCGCCGAAGCA


NO:
ATACGCCACGACAACCTACATTTATTTGGGCAGAAGGAAATCGTAGATCTGATGGAGAAGGACGAGGG


163
CACCCAGGTCTACTCGGTGGTGGACTTTTGGCTCGACACACTCCGTCTAGGGATGTTCTTCAGTCCAAGT



GCTAATGCCCTTAAGATCACTCTGGGGAAGTTTAACAGCGACCAAGTTTCCCCTTTCAGGAAGGTTCTGG



AGCAGTCCCCTTTCTTTCTCGCGGGTAGACTCAAAGTGGAGCCCGCTGAACGTATCCTCAGCGTGGAGAT



CCGCAAGATCGGTAAGAGGGAGAATAGAGTGGAGAACTACGCCGCAGATGTAGAGACTTGTTTTATCG



GTCAGCTGTCTAGTGATGAAAAGCAGTCTATCCAGAAGCTCGCTAACGATATCTGGGACTCTAAGGATC



ACGAAGAGCAAAGGATGCTTAAGGCGGATTTCTTTGCCATTCCCCTCATCAAAGACCCAAAGGCAGTGA



CCGAGGAAGATCCCGAGAATGAAACCGCAGGCAAACAGAAGCCTCTCGAATTATGTGTGTGCTTAGTGC



CCGAGTTGTACACCCGCGGGTTCGGTTCAATAGCGGACTTCCTGGTCCAGCGTCTGACACTATTAAGAGA



CAAAATGAGCACAGACACAGCAGAAGACTGCCTTGAGTATGTCGGCATAGAGGAGGAGAAGGGTAATG



GGATGAACTCGCTGCTGGGGACGTTCCTCAAGAACCTGCAGGGAGACGGGTTCGAACAGATCTTCCAAT



TTATGCTCGGCAGTTACGTGGGATGGCAAGGTAAGGAAGACGTCCTACGCGAACGGCTTGATTTGCTAG



CGGAGAAGGTTAAAAGACTGCCGAAACCTAAGTTTGCCGGCGAGTGGTCCGGCCATCGGATGTTCCTGC



ATGGTCAATTGAAGAGCTGGTCCTCTAACTTTTTCCGCCTGTTTAACGAGACTAGGGAGCTCCTCGAAAG



CATAAAATCCGACATCCAACACGCGACCATGTTAATCAGCTACGTCGAAGAGAAAGGGGGATACCACCC



ACAACTCTTGTCACAGTACAGGAAACTAATGGAGCAGCTGCCAGCTCTCAGAACAAAGGTGTTAGATCC



AGAGATAGAAATGACTCACATGAGCGAGGCGGTAAGGTCGTACATTATGATCCACAAGTCGGTAGCAG



GATTTCTGCCTGACTTACTCGAGTCCCTCGATAGGGACAAGGACAGGGAATTCCTGCTGAGTATATTTCC



AAGGATCCCCAAAATTGACAAAAAAACTAAGGAAATCGTGGCCTGGGAGCTCCCAGGCGAGCCCGAAG



AAGGATACCTGTTCACTGCCAATAATCTTTTTCGCAACTTTCTGGAGAATCCTAAACATGTTCCACGTTTC



ATGGCAGAAAGGATCCCGGAAGATTGGACGCGCCTGCGGTCCGCTCCCGTATGGTTTGACGGCATGGTG



AAACAATGGCAGAAAGTGGTAAACCAGCTGGTGGAGTCACCTGGAGCATTGTATCAGTTCAATGAAAGC



TTTCTCCGACAACGTTTACAGGCAATGCTGACAGTGTATAAGAGAGACCTGCAGACAGAGAAATTCCTT



AAGTTGTTGGCTGATGTCTGCAGGCCTCTGGTGGACTTCTTTGGGCTGGGGGGAAACGATATCATCTTCA



AAAGCTGCCAGGACCCGAGGAAACAATGGCAAACTGTCATTCCCTTGAGTGTCCCCGCTGATGTGTACA



CCGCGTGTGAGGGGCTGGCAATCCGGCTTCGTGAGACATTGGGATTTGAGTGGAAGAACCTTAAGGGCC



ATGAAAGGGAGGACTTTCTAAGACTGCACCAGCTTTTAGGGAATCTGCTTTTCTGGATTCGAGATGCCAA



ACTGGTGGTGAAATTGGAAGATTGGATGAATAATCCCTGTGTTCAGGAGTACGTTGAGGCTCGTAAGGC



CATTGATCTCCCACTGGAGATCTTCGGCTTTGAGGTCCCCATCTTCCTGAACGGATATCTGTTTAGTGAA



CTGAGGCAGTTAGAACTGCTGCTCCGCCGTAAGTCGGTTATGACCAGCTATTCGGTTAAGACAACTGGC



AGTCCAAACAGGCTTTTCCAGTTAGTCTACCTGCCATTAAATCCTTCCGACCCTGAGAAAAAAAATTCTA



ATAACTTTCAGGAACGCCTGGACACCCCCACTGGCTTATCACGTCGCTTCCTGGACCTTACTCTGGACGC



CTTCGCCGGCAAGTTGCTGACAGACCCCGTGACTCAAGAGCTTAAAACTATGGCTGGGTTCTACGATCA



CCTGTTTGGTTTCAAGCTCCCATGTAAGCTGGCAGCCATGTCTAACCACCCTGGCTCTAGCAGCAAGATG



GTCGTGTTGGCCAAACCTAAAAAAGGGGTTGCATCTAATATAGGATTCGAACCAATCCCTGATCCCGCG



CACCCCGTATTCCGGGTGAGATCATCATGGCCAGAGCTGAAGTATCTGGAGGGGTTACTGTATCTTCCAG



AAGACACTCCACTGACAATAGAGCTCGCAGAGACAAGTGTTAGTTGTCAGAGCGTCAGTAGCGTGGCAT



TCGATCTGAAAAATCTGACTACTATCCTTGGACGCGTGGGTGAGTTCCGTGTGACCGCAGACCAGCCTTT



TAAGTTGACCCCCATCATCCCTGAGAAGGAGGAGTCCTTCATAGGAAAAACATATCTAGGCCTTGATGC



CGGGGAACGCTCAGGCGTAGGGTTCGCTATCGTCACAGTCGACGGGGATGGGTACGAGGTACAGCGCCT



GGGGGTGCATGAAGATACACAGCTGATGGCCCTACAGCAGGTGGCCTCTAAAAGCTTGAAGGAGCCGG



TGTTCCAGCCGCTCAGAAAGGGTACTTTTCGGCAGCAGGAACGTATTAGAAAATCTCTCAGAGGATGTT



ATTGGAACTTCTATCACGCTCTGATGATTAAGTACCGCGCCAAGGTAGTGCACGAAGAGAGCGTGGGCA



GTTCCGGCCTGGTTGGGCAGTGGTTACGAGCATTCCAGAAGGACCTCAAGAAAGCCGATGTGTTGCCAA



AAAAGGGAGGCAAAAACGGAGTCGATAAGAAAAAGAGAGAGTCTTCTGCACAAGACACATTGTGGGGA



GGGGCTTTTAGCAAGAAGGAAGAACAGCAGATAGCTTTCGAAGTCCAAGCTGCTGGTTCTAGCCAGTTC



TGCCTGAAGTGCGGATGGTGGTTCCAACTCGGAATGCGTGAGGTTAATCGCGTGCAGGAATCCGGCGTC



GTGCTGGATTGGAATCGGAGTATTGTCACATTCCTGATTGAGAGCTCTGGCGAGAAAGTGTATGGGTTCT



CCCCTCAGCAACTCGAAAAGGGGTTCAGACCAGACATTGAAACCTTCAAGAAGATGGTTCGGGATTTCA



TGCGCCCGCCTATGTTTGACCGGAAGGGTCGCCCAGCAGCTGCCTACGAAAGGTTTGTCTTGGGACGCC



GGCATCGGCGGTATAGATTCGACAAGGTTTTTGAAGAACGATTCGGACGATCCGCGCTATTCATTTGCCC



GAGGGTTGGCTGTGGCAACTTTGACCACAGCAGCGAGCAGTCAGCCGTAGTGCTGGCTCTAATCGGATA



TATTGCCGACAAAGAGGGGATGAGCGGAAAAAAGCTAGTCTACGTGCGTCTGGCAGAACTAATGGCGG



AATGGAAATTGAAGAAACTGGAGAGGAGTAGAGTTGAGGAGCAAAGCTCCGCTCAGTGA





SEQ
ATGGCGGAGTCGAAGCAAATGCAGTGCAGGAAGTGTGGAGCCTCTATGAAGTACGAAGTGATCGGCCT


ID
CGGGAAGAAAAGCTGCAGATATATGTGTCCCGACTGCGGGAATCACACATCTGCAAGAAAGATTCAGA


NO:
ATAAGAAGAAAAGGGACAAGAAGTATGGATCTGCCAGTAAAGCACAAAGCCAACGAATCGCAGTTGCA


164
GGGGCCTTATACCCGGATAAAAAGGTTCAGACCATCAAGACTTATAAGTATCCAGCCGACCTGAATGGT



GAGGTCCATGACTCAGGGGTGGCCGAAAAAATAGCCCAAGCAATCCAGGAGGATGAAATAGGGCTCCT



CGGCCCCTCTTCCGAGTACGCCTGTTGGATCGCTAGCCAGAAACAGAGCGAGCCCTACAGTGTTGTAGA



CTTTTGGTTTGACGCTGTGTGCGCCGGAGGCGTGTTCGCCTATTCTGGGGCTAGATTGCTGTCTACCGTCC



TGCAGCTATCTGGGGAGGAGAGCGTCCTACGCGCAGCCCTGGCATCCTCCCCTTTTGTCGACGATATCAA



TCTGGCACAGGCCGAAAAATTTCTGGCGGTGTCCAGGCGAACCGGCCAAGATAAGCTGGGGAAGCGCA



TTGGAGAGTGCTTCGCAGAGGGCCGACTTGAGGCCCTAGGCATCAAGGACCGGATGCGTGAATTTGTCC



AGGCTATCGATGTCGCTCAGACCGCTGGGCAGCGTTTTGCCGCGAAACTGAAAATCTTTGGGATTTCTCA



GATGCCCGAGGCAAAGCAGTGGAACAATGACAGCGGACTCACCGTGTGCATCCTGCCCGACTATTACGT



CCCAGAAGAAAATCGCGCAGATCAGTTGGTCGTCCTGCTAAGACGACTGAGAGAGATAGCATACTGTAT



GGGGATCGAAGATGAGGCCGGTTTTGAACATCTTGGAATTGATCCTGGCGCACTATCAAATTTTTCCAAT



GGCAATCCTAAACGCGGATTTTTGGGCCGCCTGCTGAACAATGATATTATTGCCTTAGCGAACAACATGT



CCGCCATGACGCCTTACTGGGAGGGCAGGAAGGGAGAACTGATTGAAAGATTGGCTTGGCTGAAGCAC



CGTGCAGAGGGGCTTTATCTGAAGGAACCGCATTTTGGAAATAGTTGGGCCGACCATAGGTCTAGAATT



TTTTCCAGAATAGCCGGGTGGCTTTCTGGGTGCGCTGGGAAGCTAAAGATCGCCAAAGACCAGATCAGC



GGAGTGCGTACTGATCTGTTCCTTCTGAAGAGACTGCTGGATGCGGTCCCGCAGTCCGCCCCTTCTCCCG



ACTTCATAGCCTCTATCTCTGCCTTGGATCGCTTCCTGGAGGCCGCAGAATCTAGTCAGGATCCTGCCGA



ACAGGTGAGGGCCCTATACGCCTTTCATCTGAACGCACCCGCGGTGCGAAGCATCGCCAACAAGGCAGT



CCAGCGATCCGACAGCCAAGAATGGCTTATAAAGGAACTGGACGCTGTGGACCACCTGGAGTTTAACAA



GGCCTTTCCCTTCTTCTCTGATACGGGAAAGAAGAAAAAGAAAGGGGCTAACTCGAATGGCGCTCCGTC



CGAGGAGGAGTACACCGAGACTGAGAGCATCCAGCAGCCCGAGGACGCTGAGCAAGAGGTTAATGGTC



AGGAAGGCAACGGGGCCTCGAAGAACCAGAAGAAGTTTCAGAGAATCCCCCGATTCTTCGGCGAGGGG



AGTCGCAGCGAGTATCGCATCCTCACTGAAGCCCCGCAGTACTTCGACATGTTCTGTAACAACATGCGG



GCCATCTTTATGCAATTAGAATCCCAACCGCGTAAAGCTCCCAGGGATTTTAAGTGTTTCCTGCAGAATC



GGCTGCAGAAATTGTATAAGCAGACATTCCTGAACGCTCGATCCAACAAGTGCCGGGCATTACTAGAGT



CCGTATTGATTAGTTGGGGAGAGTTTTACACCTACGGGGCTAACGAGAAAAAATTTCGACTGCGTCATG



AAGCTTCTGAGCGCTCCTCGGACCCAGATTACGTGGTGCAACAGGCGCTGGAGATCGCTCGGAGGCTGT



TTCTCTTCGGCTTTGAGTGGAGGGACTGTAGCGCAGGTGAAAGAGTGGATCTGGTCGAAATACATAAGA



AAGCCATATCTTTCCTGTTGGCCATCACTCAGGCTGAGGTGTCTGTGGGCAGCTATAACTGGCTGGGCAA



TTCTACCGTGAGTCGGTACCTGTCCGTGGCAGGGACTGATACCCTTTACGGCACCCAGCTGGAAGAATTC



TTAAATGCAACCGTGTTATCTCAGATGCGGGGGCTGGCTATCAGGTTATCATCTCAGGAACTGAAGGAT



GGATTTGACGTACAGCTGGAGTCTAGTTGCCAGGATAATCTGCAACACTTGCTCGTGTACAGGGCTTCAC



GAGACCTTGCCGCCTGCAAGCGCGCTACTTGTCCAGCTGAGTTGGATCCTAAGATTCTGGTACTGCCCGT



GGGGGCCTTTATCGCTAGCGTGATGAAAATGATTGAAAGAGGGGATGAGCCTTTAGCTGGAGCTTATCT



GAGACACAGACCCCATAGTTTCGGGTGGCAGATCCGCGTTCGAGGTGTGGCAGAGGTGGGAATGGACC



AAGGGACCGCCCTGGCGTTCCAGAAACCGACCGAGAGCGAACCCTTCAAGATAAAGCCGTTTTCCGCTC



AATACGGCCCCGTTCTATGGCTGAACAGCTCCAGTTATAGCCAGAGCCAGTACCTGGACGGGTTCCTATC



ACAGCCCAAGAACTGGAGTATGCGGGTGCTGCCACAGGCCGGCTCAGTGCGGGTAGAACAGCGCGTCG



CCTTGATTTGGAATCTCCAGGCCGGAAAGATGAGGCTGGAACGGAGCGGAGCGCGGGCTTTCTTCATGC



CCGTCCCATTCAGTTTCCGCCCCAGTGGCAGCGGCGACGAGGCAGTCCTGGCTCCAAATAGGTACCTGG



GACTCTTTCCACACAGCGGCGGCATAGAGTACGCTGTGGTCGATGTTCTTGACTCTGCCGGCTTCAAAAT



ACTCGAGAGAGGAACAATAGCCGTCAATGGCTTCTCCCAGAAACGAGGAGAAAGACAAGAGGAAGCCC



ATCGCGAAAAACAAAGACGCGGTATCTCCGATATTGGGCGCAAGAAGCCAGTCCAGGCCGAAGTCGAT



GCGGCCAACGAGCTCCATCGAAAATACACCGATGTTGCTACTCGGCTGGGGTGTCGAATTGTCGTTCAA



TGGGCACCCCAACCCAAACCAGGCACTGCGCCGACCGCTCAGACTGTGTACGCTAGGGCCGTGAGGACT



GAAGCACCAAGATCCGGCAATCAGGAAGATCACGCCAGGATGAAATCTTCCTGGGGATACACATGGGG



TACGTATTGGGAAAAAAGGAAGCCCGAGGACATCCTCGGCATTAGTACCCAGGTGTATTGGACAGGCGG



GATCGGCGAGTCCTGCCCGGCTGTCGCCGTCGCGCTATTGGGACACATCAGGGCCACCTCAACCCAGAC



TGAATGGGAGAAAGAGGAAGTCGTGTTTGGGCGATTGAAAAAGTTCTTCCCATCCTGA





SEQ
ATGGAGAAGCGCATCAATAAAATTCGCAAGAAGCTGTCTGCCGATAACGCCACAAAACCAGTTAGTCGA


ID
AGCGGCCCAATGAAGACCCTGCTAGTTCGAGTGATGACTGATGATCTGAAGAAAAGGCTCGAAAAGCG


NO:
ACGCAAGAAGCCTGAGGTAATGCCTCAGGTTATAAGTAACAATGCAGCAAACAATCTGCGGATGCTGCT


165
TGACGATTACACAAAGATGAAGGAAGCCATTCTCCAGGTGTATTGGCAGGAGTTCAAGGATGATCACGT



AGGCCTGATGTGTAAATTCGCGCAACCTGCAAGCAAGAAGATCGACCAAAACAAGCTGAAACCCGAGA



TGGATGAAAAAGGCAATTTAACAACCGCCGGATTCGCTTGTTCCCAGTGTGGGCAGCCACTGTTCGTGT



ACAAGTTAGAACAGGTGTCGGAAAAAGGAAAGGCATACACTAACTACTTTGGACGGTGCAATGTTGCA



GAACACGAAAAGCTGATACTGCTTGCCCAGCTTAAGCCCGAAAAAGACAGCGACGAAGCGGTGACCTA



CAGCCTGGGAAAATTCGGGCAGCGGGCACTGGACTTCTATTCTATCCACGTTACCAAGGAGAGCACCCA



CCCAGTGAAGCCGTTGGCCCAAATCGCTGGAAACCGGTACGCCAGCGGACCAGTCGGCAAGGCCCTGTC



CGATGCCTGTATGGGCACAATTGCTTCTTTCCTGTCCAAGTACCAGGACATCATAATCGAGCACCAAAAA



GTTGTGAAAGGGAATCAGAAACGCCTGGAATCCCTTCGAGAACTGGCCGGCAAGGAGAACCTTGAGTA



CCCGTCCGTGACCCTGCCTCCACAGCCACATACCAAAGAGGGCGTAGACGCGTATAATGAGGTCATTGC



CCGCGTTCGCATGTGGGTTAATTTAAACCTGTGGCAGAAATTAAAACTAAGCCGAGATGATGCTAAACC



GTTACTGAGATTGAAGGGATTCCCTAGCTTTCCTGTGGTGGAGAGAAGGGAAAACGAGGTTGATTGGTG



GAATACTATTAATGAGGTGAAAAAGCTTATTGACGCCAAGAGGGATATGGGCAGGGTGTTCTGGAGCGG



GGTGACTGCCGAAAAGAGAAATACCATCCTCGAGGGATACAATTACCTCCCCAACGAGAATGATCATAA



GAAAAGAGAGGGGAGCTTAGAGAATCCAAAGAAACCTGCAAAGAGGCAATTCGGTGATCTCCTGCTCT



ACCTCGAGAAGAAATACGCGGGGGACTGGGGAAAAGTTTTTGACGAAGCCTGGGAGCGCATTGACAAG



AAGATCGCCGGGCTGACGTCTCACATTGAACGGGAAGAGGCACGGAATGCAGAGGACGCCCAGTCTAA



GGCCGTGCTGACTGACTGGCTGCGCGCAAAGGCCTCCTTCGTGCTCGAACGTCTGAAGGAAATGGATGA



GAAAGAGTTTTACGCGTGTGAAATACAGCTGCAGAAGTGGTACGGCGATCTAAGGGGAAATCCCTTCGC



AGTGGAAGCCGAGAATAGGGTAGTTGACATCAGTGGGTTCTCCATCGGCAGTGATGGACATTCTATCCA



GTATAGAAACCTGCTCGCCTGGAAGTACTTAGAGAACGGCAAGAGAGAGTTCTATCTGCTGATGAACTA



CGGGAAAAAAGGTAGAATTCGCTTTACAGATGGCACCGACATAAAGAAGTCCGGAAAGTGGCAAGGCC



TCTTATACGGAGGCGGCAAAGCAAAGGTGATAGACTTGACTTTTGACCCTGACGACGAACAGCTGATAA



TCTTGCCGCTGGCCTTTGGCACAAGACAAGGTAGGGAATTTATCTGGAATGATCTTCTTTCTCTCGAGAC



CGGACTCATCAAGCTCGCAAACGGAAGGGTCATCGAGAAGACAATCTACAATAAAAAGATAGGCCGAG



ACGAGCCAGCCCTGTTTGTGGCTTTGACATTTGAGCGGAGAGAGGTCGTAGATCCCAGCAACATCAAAC



CCGTGAACCTGATCGGTGTTGACAGGGGCGAGAACATCCCGGCGGTTATCGCACTGACGGATCCAGAAG



GATGTCCTCTGCCCGAGTTCAAAGATTCATCGGGAGGGCCAACCGACATTTTGAGGATAGGGGAGGGGT



ACAAGGAGAAGCAGCGAGCTATCCAGGCGGCCAAAGAAGTGGAGCAACGAAGAGCTGGTGGTTATTCT



CGCAAGTTCGCTTCCAAAAGTCGTAACCTGGCTGACGATATGGTGCGCAATTCTGCCCGTGACCTTTTCT



ACCACGCCGTTACACACGACGCCGTGTTAGTGTTTGAAAATCTTAGTCGAGGCTTCGGGCGACAGGGGA



AGCGGACCTTTATGACCGAGAGACAGTATACAAAAATGGAGGATTGGCTGACCGCCAAACTGGCGTATG



AAGGACTCACATCCAAGACCTATCTCTCAAAAACTTTGGCCCAGTATACATCTAAGACGTGCAGTAACT



GTGGCTTCACCATTACCACAGCTGACTACGATGGCATGCTGGTCCGCTTAAAAAAGACATCTGACGGCT



GGGCTACTACCCTCAACAATAAAGAGCTCAAAGCCGAAGGACAAATTACCTATTATAACAGGTATAAAA



GACAGACTGTCGAGAAGGAGTTGAGCGCGGAGCTGGACCGCCTATCAGAGGAGTCAGGGAACAACGAT



ATCTCTAAGTGGACTAAGGGACGCCGAGACGAGGCGTTGTTCTTGCTGAAAAAGCGGTTCTCTCATCGA



CCCGTGCAGGAGCAGTTCGTGTGTCTGGACTGCGGCCACGAGGTTCATGCTGATGAGCAAGCTGCTCTA



AATATTGCCCGTAGTTGGTTGTTCCTGAACAGCAATTCAACAGAGTTCAAGTCATACAAGAGCGGAAAG



CAGCCGTTTGTGGGCGCATGGCAGGCATTTTACAAAAGACGCCTGAAGGAAGTGTGGAAGCCAAACGCC





SEQ
ATGAAAAGGATTAACAAAATCCGAAGGCGGCTTGTAAAGGATTCTAACACCAAAAAGGCTGGCAAGAC


ID
GGGGCCCATGAAAACATTACTCGTTAGAGTTATGACCCCCGACCTCAGAGAGCGACTGGAAAATTTACG


NO:
CAAGAAGCCAGAGAACATACCTCAGCCAATTAGTAATACCTCTCGGGCAAACCTAAACAAGTTGCTTAC


166
TGATTACACGGAGATGAAAAAGGCCATACTGCATGTGTACTGGGAGGAGTTTCAAAAGGACCCTGTCGG



GCTAATGAGCAGGGTGGCTCAGCCTGCACCTAAAAACATCGACCAGCGGAAACTCATCCCAGTTAAGGA



CGGAAATGAGAGATTGACAAGTTCAGGTTTCGCCTGCTCACAGTGCTGTCAACCGCTGTACGTTTATAAG



TTAGAACAAGTGAATGACAAAGGAAAGCCTCACACAAATTATTTTGGCCGGTGTAATGTCTCTGAGCAT



GAGCGTCTGATTCTGTTGTCCCCGCATAAACCGGAAGCTAATGACGAGCTCGTAACCTACAGCTTGGGG



AAGTTTGGCCAAAGAGCATTGGACTTCTATTCAATCCATGTGACCCGCGAATCCAATCATCCCGTCAAGC



CCTTGGAGCAGATAGGGGGCAATAGTTGCGCTTCTGGCCCTGTGGGCAAAGCCCTGTCCGACGCCTGTA



TGGGAGCCGTGGCTTCATTCCTGACCAAATATCAGGATATCATCTTGGAGCACCAGAAAGTGATCAAGA



AAAATGAAAAAAGGTTAGCAAACCTCAAGGATATTGCAAGCGCTAACGGCTTGGCTTTTCCTAAAATCA



CACTTCCACCTCAGCCTCACACAAAGGAAGGCATCGAGGCATACAACAATGTGGTGGCCCAGATCGTCA



TCTGGGTTAACTTAAACCTGTGGCAGAAACTTAAAATTGGCAGGGATGAGGCAAAACCCTTACAGCGCC



TGAAAGGATTCCCCAGCTTTCCACTGGTGGAGCGCCAGGCTAACGAAGTGGACTGGTGGGATATGGTGT



GTAACGTCAAGAAGCTCATCAATGAAAAGAAAGAGGACGGTAAAGTCTTCTGGCAGAACCTCGCCGGTT



ACAAACGGCAGGAGGCGCTGTTACCTTATCTGTCGAGTGAAGAGGACCGGAAAAAAGGCAAGAAATTT



GCTCGTTATCAGTTTGGTGATTTGCTCCTACATTTGGAGAAGAAGCACGGCGAGGACTGGGGAAAAGTA



TACGATGAGGCCTGGGAGAGGATTGACAAAAAGGTGGAGGGACTGTCAAAGCACATCAAGCTCGAAGA



AGAGCGCAGAAGCGAGGACGCCCAATCCAAAGCAGCGCTGACTGACTGGCTGCGGGCGAAGGCCAGTT



TTGTAATCGAAGGCCTTAAAGAAGCCGACAAGGATGAATTCTGCAGATGCGAATTAAAACTCCAGAAGT



GGTACGGCGATCTCCGAGGTAAGCCTTTCGCAATCGAGGCCGAGAATTCCATACTGGACATTAGTGGAT



TCAGTAAACAGTATAATTGTGCCTTTATATGGCAGAAGGATGGTGTCAAGAAACTCAACCTGTACCTTAT



TATTAATTATTTCAAAGGCGGGAAACTGAGATTTAAGAAGATAAAGCCTGAAGCCTTTGAGGCGAACCG



ATTCTACACAGTTATTAACAAGAAATCTGGTGAAATTGTACCCATGGAGGTAAACTTCAACTTCGATGAT



CCCAATCTGATTATATTGCCACTAGCTTTTGGCAAGCGGCAGGGTAGGGAATTCATTTGGAACGATTTGC



TTTCACTGGAAACAGGGTCCCTTAAGCTGGCAAACGGGAGAGTGATTGAAAAGACATTGTACAATCGGA



GGACACGTCAGGATGAACCTGCCCTTTTCGTGGCTCTGACATTCGAGCGCAGGGAGGTTCTGGACTCTA



GCAATATCAAGCCAATGAACCTGATCGGCATAGACCGAGGAGAGAATATTCCGGCTGTGATCGCACTCA



CCGATCCCGAAGGATGTCCCCTTTCTCGGTTCAAGGACTCCTTAGGCAATCCAACTCATATCCTGAGAAT



CGGCGAGTCATACAAGGAGAAGCAGCGAACAATTCAGGCCGCCAAGGAAGTCGAGCAGAGGCGAGCTG



GCGGCTACAGCCGTAAATACGCTAGTAAAGCTAAGAACCTGGCCGACGATATGGTGCGCAATACTGCTA



GAGACCTGCTGTACTATGCAGTGACGCAGGACGCAATGCTGATATTCGAGAATCTGTCCAGAGGATTCG



GAAGGCAGGGCAAGCGGACGTTCATGGCCGAGCGCCAGTATACAAGGATGGAGGATTGGTTAACGGCC



AAGCTTGCCTATGAGGGGCTACCTAGTAAGACCTATCTGTCTAAGACGCTGGCTCAATACACCAGTAAG



ACCTGCTCAAACTGTGGCTTTACAATCACTTCTGCTGATTATGATAGAGTGCTCGAGAAGCTAAAAAAA



ACTGCCACCGGCTGGATGACTACTATTAATGGGAAGGAACTGAAAGTGGAAGGACAGATTACCTATTAT



AATCGCTACAAGCGTCAAAACGTCGTCAAGGACCTGTCGGTGGAATTGGACAGACTCAGTGAAGAGTCC



GTGAACAATGATATCAGCTCCTGGACAAAAGGGCGCAGTGGGGAGGCACTCAGCTTGCTTAAAAAGAG



GTTTTCACATCGGCCGGTCCAGGAGAAATTTGTCTGCCTGAACTGCGGATTCGAGACACACGCCGACGA



GCAGGCAGCACTGAACATTGCCAGATCCTGGCTGTTCCTTAGGTCCCAGGAATATAAGAAGTACCAGAC



TAACAAAACCACGGGAAACACAGATAAAAGGGCCTTTGTCGAAACTTGGCAATCCTTTTACCGGAAGAA



GTTAAAGGAAGTGTGGAAGCCC





SEQ
ATGGATAAGAAATACTCAATAGGCTTAGCAATCGGCACAAATAGCGTCGGATGGGCGGTGATCACTGAT


ID
GAATATAAGGTTCCGTCTAAAAAGTTCAAGGTTCTGGGAAATACAGACCGCCACAGTATCAAAAAAAAT


NO:
CTTATAGGGGCTCTTTTATTTGACAGTGGAGAGACAGCGGAAGCGACTCGTCTCAAACGGACAGCTCGT


167
AGAAGGTATACACGTCGGAAGAATCGTATTTGTTATCTACAGGAGATTTTTTCAAATGAGATGGCGAAA



GTAGATGATAGTTTCTTTCATCGACTTGAAGAGTCTTTTTTGGTGGAAGAAGACAAGAAGCATGAACGTC



ATCCTATTTTTGGAAATATAGTAGATGAAGTTGCTTATCATGAGAAATATCCAACTATCTATCATCTGCG



AAAAAAATTGGTAGATTCTACTGATAAAGCGGATTTGCGCTTAATCTATTTGGCCTTAGCGCATATGATT



AAGTTTCGTGGTCATTTTTTGATTGAGGGAGATTTAAATCCTGATAATAGTGATGTGGACAAACTATTTA



TCCAGTTGGTACAAACCTACAATCAATTATTTGAAGAAAACCCTATTAACGCAAGTGGAGTAGATGCTA



AAGCGATTCTTTCTGCACGATTGAGTAAATCAAGACGATTAGAAAATCTCATTGCTCAGCTCCCCGGTGA



GAAGAAAAATGGCTTATTTGGGAATCTCATTGCTTTGTCATTGGGTTTGACCCCTAATTTTAAATCAAAT



TTTGATTTGGCAGAAGATGCTAAATTACAGCTTTCAAAAGATACTTACGATGATGATTTAGATAATTTAT



TGGCGCAAATTGGAGATCAATATGCTGATTTGTTTTTGGCAGCTAAGAATTTATCAGATGCTATTTTACT



TTCAGATATCCTAAGAGTAAATACTGAAATAACTAAGGCTCCCCTATCAGCTTCAATGATTAAACGCTAC



GATGAACATCATCAAGACTTGACTCTTTTAAAAGCTTTAGTTCGACAACAACTTCCAGAAAAGTATAAA



GAAATCTTTTTTGATCAATCAAAAAACGGATATGCAGGTTATATTGATGGGGGAGCTAGCCAAGAAGAA



TTTTATAAATTTATCAAACCAATTTTAGAAAAAATGGATGGTACTGAGGAATTATTGGTGAAACTAAATC



GTGAAGATTTGCTGCGCAAGCAACGGACCTTTGACAACGGCTCTATTCCCCATCAAATTCACTTGGGTGA



GCTGCATGCTATTTTGAGAAGACAAGAAGACTTTTATCCATTTTTAAAAGACAATCGTGAGAAGATTGA



AAAAATCTTGACTTTTCGAATTCCTTATTATGTTGGTCCATTGGCGCGTGGCAATAGTCGTTTTGCATGGA



TGACTCGGAAGTCTGAAGAAACAATTACCCCATGGAATTTTGAAGAAGTTGTCGATAAAGGTGCTTCAG



CTCAATCATTTATTGAACGCATGACAAACTTTGATAAAAATCTTCCAAATGAAAAAGTACTACCAAAAC



ATAGTTTGCTTTATGAGTATTTTACGGTTTATAACGAATTGACAAAGGTCAAATATGTTACTGAAGGAAT



GCGAAAACCAGCATTTCTTTCAGGTGAACAGAAGAAAGCCATTGTTGATTTACTCTTCAAAACAAATCG



AAAAGTAACCGTTAAGCAATTAAAAGAAGATTATTTCAAAAAAATAGAATGTTTTGATAGTGTTGAAAT



TTCAGGAGTTGAAGATAGATTTAATGCTTCATTAGGTACCTACCATGATTTGCTAAAAATTATTAAAGAT



AAAGATTTTTTGGATAATGAAGAAAATGAAGATATCTTAGAGGATATTGTTTTAACATTGACCTTATTTG



AAGATAGGGAGATGATTGAGGAAAGACTTAAAACATATGCTCACCTCTTTGATGATAAGGTGATGAAAC



AGCTTAAACGTCGCCGTTATACTGGTTGGGGACGTTTGTCTCGAAAATTGATTAATGGTATTAGGGATAA



GCAATCTGGCAAAACAATATTAGATTTTTTGAAATCAGATGGTTTTGCCAATCGCAATTTTATGCAGCTG



ATCCATGATGATAGTTTGACATTTAAAGAAGACATTCAAAAAGCACAAGTGTCTGGACAAGGCGATAGT



TTACATGAACATATTGCAAATTTAGCTGGTAGCCCTGCTATTAAAAAAGGTATTTTACAGACTGTAAAAG



TTGTTGATGAATTGGTCAAAGTAATGGGGCGGCATAAGCCAGAAAATATCGTTATTGAAATGGCACGTG



AAAATCAGACAACTCAAAAGGGCCAGAAAAATTCGCGAGAGCGTATGAAACGAATCGAAGAAGGTATC



AAAGAATTAGGAAGTCAGATTCTTAAAGAGCATCCTGTTGAAAATACTCAATTGCAAAATGAAAAGCTC



TATCTCTATTATCTCCAAAATGGAAGAGACATGTATGTGGACCAAGAATTAGATATTAATCGTTTAAGTG



ATTATGATGTCGATCACATTGTTCCACAAAGTTTCCTTAAAGACGATTCAATAGACAATAAGGTCTTAAC



GCGTTCTGATAAAAATCGTGGTAAATCGGATAACGTTCCAAGTGAAGAAGTAGTCAAAAAGATGAAAA



ACTATTGGAGACAACTTCTAAACGCCAAGTTAATCACTCAACGTAAGTTTGATAATTTAACGAAAGCTG



AACGTGGAGGTTTGAGTGAACTTGATAAAGCTGGTTTTATCAAACGCCAATTGGTTGAAACTCGCCAAA



TCACTAAGCATGTGGCACAAATTTTGGATAGTCGCATGAATACTAAATACGATGAAAATGATAAACTTA



TTCGAGAGGTTAAAGTGATTACCTTAAAATCTAAATTAGTTTCTGACTTCCGAAAAGATTTCCAATTCTA



TAAAGTACGTGAGATTAACAATTACCATCATGCCCATGATGCGTATCTAAATGCCGTCGTTGGAACTGCT



TTGATTAAGAAATATCCAAAACTTGAATCGGAGTTTGTCTATGGTGATTATAAAGTTTATGATGTTCGTA



AAATGATTGCTAAGTCTGAGCAAGAAATAGGCAAAGCAACCGCAAAATATTTCTTTTACTCTAATATCA



TGAACTTCTTCAAAACAGAAATTACACTTGCAAATGGAGAGATTCGCAAACGCCCTCTAATCGAAACTA



ATGGGGAAACTGGAGAAATTGTCTGGGATAAAGGGCGAGATTTTGCCACAGTGCGCAAAGTATTGTCCA



TGCCCCAAGTCAATATTGTCAAGAAAACAGAAGTACAGACAGGCGGATTCTCCAAGGAGTCAATTTTAC



CAAAAAGAAATTCGGACAAGCTTATTGCTCGTAAAAAAGACTGGGATCCAAAAAAATATGGTGGTTTTG



ATAGTCCAACGGTAGCTTATTCAGTCCTAGTGGTTGCTAAGGTGGAAAAAGGGAAATCGAAGAAGTTAA



AATCCGTTAAAGAGTTACTAGGGATCACAATTATGGAAAGAAGTTCCTTTGAAAAAAATCCGATTGACT



TTTTAGAAGCTAAAGGATATAAGGAAGTTAAAAAAGACTTAATCATTAAACTACCTAAATATAGTCTTTT



TGAGTTAGAAAACGGTCGTAAACGGATGCTGGCTAGTGCCGGAGAATTACAAAAAGGAAATGAGCTGG



CTCTGCCAAGCAAATATGTGAATTTTTTATATTTAGCTAGTCATTATGAAAAGTTGAAGGGTAGTCCAGA



AGATAACGAACAAAAACAATTGTTTGTGGAGCAGCATAAGCATTATTTAGATGAGATTATTGAGCAAAT



CAGTGAATTTTCTAAGCGTGTTATTTTAGCAGATGCCAATTTAGATAAAGTTCTTAGTGCATATAACAAA



CATAGAGACAAACCAATACGTGAACAAGCAGAAAATATTATTCATTTATTTACGTTGACGAATCTTGGA



GCTCCCGCTGCTTTTAAATATTTTGATACAACAATTGATCGTAAACGATATACGTCTACAAAAGAAGTTT



TAGATGCCACTCTTATCCATCAATCCATCACTGGTCTTTATGAAACACGCATTGATTTGAGTCAGCTAGG



AGGTGACTGA





SEQ
ATGGATAAGAAGTATTCAATTGGACTTGCGATTGGCACTAACAGTGTGGGCTGGGCGGTGATTACAGAC


ID
GAGTATAAGGTGCCGTCAAAAAAGTTTAAAGTTCTGGGCAACACTGATCGCCATTCCATCAAGAAAAAC


NO:
CTAATCGGGGCCCTTCTTTTTGATAGTGGCGAAACGGCCGAGGCGACGCGTCTAAAACGTACCGCGCGG


168
CGTCGCTACACCCGACGAAAAAACCGTATTTGTTACCTTCAGGAGATCTTCAGTAACGAAATGGCTAAG



GTGGACGATTCATTCTTCCACCGTCTGGAGGAGTCCTTTTTAGTTGAAGAAGACAAGAAGCATGAGCGA



CACCCAATTTTTGGTAACATTGTCGACGAAGTCGCCTATCACGAAAAATATCCGACCATTTATCACCTGC



GCAAAAAACTGGTCGATAGCACGGATAAAGCGGATCTGCGGCTTATTTACCTGGCGCTTGCCCACATGA



TCAAGTTCCGCGGCCACTTCCTGATAGAAGGAGACCTGAACCCGGATAATAGCGATGTAGACAAACTGT



TTATTCAGCTGGTCCAGACCTACAACCAGCTGTTTGAAGAAAATCCGATTAATGCGTCAGGCGTGGATG



CGAAAGCGATACTGAGTGCCCGCCTGTCGAAATCTCGCCGTCTCGAAAATCTGATTGCACAGCTGCCCG



GCGAAAAAAAAAACGGTCTTTTTGGCAATCTGATCGCGCTGTCACTGGGCCTGACACCAAATTTTAAGA



GCAACTTCGACCTGGCAGAGGATGCGAAGCTTCAACTGTCGAAGGACACCTATGACGATGATCTGGATA



ATCTTCTGGCACAAATCGGTGATCAGTATGCGGATTTATTCCTTGCAGCGAAAAACCTATCTGACGCAAT



TCTGTTGAGCGATATCCTCCGCGTCAACACCGAAATCACTAAAGCCCCCCTGTCAGCGTCGATGATTAAA



CGTTATGATGAGCACCATCAGGATCTGACCTTGCTAAAGGCGCTGGTGCGACAGCAGCTTCCCGAAAAA



TATAAAGAGATCTTTTTTGATCAATCGAAGAATGGTTATGCCGGATACATTGATGGCGGAGCCAGTCAG



GAAGAATTTTACAAATTCATCAAACCGATCCTGGAAAAAATGGATGGCACAGAAGAACTGCTTGTGAAA



TTGAACCGGGAAGATTTACTGCGCAAACAGCGTACGTTCGACAACGGCTCCATACCCCATCAGATTCAC



TTAGGTGAGCTGCATGCAATACTCCGTCGCCAGGAAGATTTTTATCCATTTTTAAAAGACAACCGTGAGA



AGATTGAAAAAATTTTAACTTTTCGTATTCCATATTACGTCGGGCCTTTGGCCCGAGGTAACTCTCGATT



CGCCTGGATGACGAGAAAAAGCGAGGAGACCATCACTCCGTGGAATTTTGAAGAGGTTGTTGATAAAG



GCGCGAGCGCCCAGTCGTTTATCGAACGTATGACCAACTTTGATAAAAATCTGCCGAATGAAAAAGTGC



TTCCGAAGCATTCTCTGTTGTATGAATATTTCACTGTGTACAATGAGTTAACGAAAGTGAAATATGTGAC



CGAAGGCATGCGGAAACCTGCTTTTCTGTCCGGAGAACAGAAAAAAGCAATTGTGGACCTGCTGTTCAA



AACGAACCGGAAAGTAACTGTGAAGCAGCTGAAAGAGGACTACTTCAAAAAAATCGAATGCTTCGACT



CAGTAGAGATCTCTGGTGTTGAAGATCGCTTCAACGCGAGTCTGGGAACGTACCATGATTTGTTGAAAA



TCATCAAAGATAAAGACTTTCTGGATAACGAAGAGAATGAGGACATTCTTGAAGATATTGTTTTGACAC



TGACTCTGTTTGAGGATCGCGAAATGATTGAAGAGCGCCTGAAAACGTATGCCCATTTATTCGATGACA



AAGTCATGAAGCAGCTGAAACGTCGCCGCTATACTGGGTGGGGCAGACTTTCACGTAAATTGATCAATG



GTATAAGAGACAAACAGAGCGGCAAAACTATCTTAGATTTCCTGAAGAGTGATGGATTTGCCAACCGGA



ATTTTATGCAGCTTATACATGATGACTCGCTAACGTTTAAAGAAGACATTCAGAAGGCGCAGGTCAGCG



GCCAGGGTGATTCGCTGCATGAACACATTGCAAATCTTGCCGGATCGCCAGCGATCAAAAAAGGCATCC



TTCAGACAGTAAAAGTTGTGGATGAACTGGTGAAAGTAATGGGTCGTCACAAGCCAGAAAATATTGTGA



TCGAAATGGCCCGGGAAAATCAGACTACTCAAAAAGGTCAGAAAAATTCTCGCGAGCGTATGAAACGT



ATTGAAGAAGGCATCAAAGAGCTAGGCAGCCAGATATTAAAGGAACATCCGGTTGAGAACACTCAGCT



GCAGAATGAAAAACTGTATCTGTATTATCTTCAGAACGGCCGTGACATGTATGTTGATCAAGAACTGGA



TATCAATCGCTTGTCCGATTATGACGTGGATCATATTGTTCCGCAAAGCTTTCTGAAAGACGATTCTATT



GACAATAAAGTACTGACACGTTCGGACAAAAACCGTGGTAAAAGCGATAACGTACCGTCGGAAGAAGT



TGTTAAGAAAATGAAAAATTATTGGCGCCAACTCCTGAATGCTAAATTGATTACCCAGCGGAAATTTGA



TAACTTAACCAAAGCCGAGCGGGGTGGCTTAAGTGAACTGGATAAAGCGGGTTTTATTAAACGCCAACT



GGTAGAAACCCGCCAGATAACGAAACATGTAGCTCAAATCCTCGATAGTCGCATGAATACGAAATATGA



CGAAAATGATAAATTGATCCGTGAAGTAAAAGTGATTACTCTTAAAAGCAAATTGGTATCTGATTTTCG



GAAAGATTTCCAATTCTATAAGGTGAGAGAAATTAACAATTACCATCATGCACATGATGCGTATTTAAA



TGCAGTTGTTGGCACCGCCTTAATCAAAAAATATCCGAAATTAGAATCTGAGTTCGTGTATGGTGATTAT



AAAGTTTATGATGTTCGAAAAATGATTGCTAAGTCTGAACAGGAAATCGGCAAAGCGACCGCAAAGTAT



TTTTTTTATAGCAATATTATGAATTTTTTTAAAACTGAGATTACCCTGGCGAATGGCGAAATTCGCAAAC



GTCCTCTGATTGAAACCAATGGCGAAACCGGCGAGATAGTATGGGACAAGGGCCGTGATTTTGCGACCG



TCCGGAAAGTCCTGTCAATGCCGCAGGTGAATATTGTCAAGAAAACAGAAGTTCAGACAGGCGGTTTTA



GTAAAGAGTCTATTCTGCCCAAACGTAATTCGGATAAATTGATTGCCCGCAAGAAAGATTGGGATCCGA



AGAAATATGGTGGATTCGATTCTCCGACGGTCGCCTATAGCGTTCTAGTCGTCGCCAAGGTCGAAAAAG



GTAAATCCAAAAAACTGAAATCTGTGAAAGAACTGTTAGGCATTACAATCATGGAACGTAGTAGTTTTG



AAAAGAACCCGATCGACTTCCTCGAGGCGAAAGGCTACAAAGAAGTCAAGAAGGATTTGATTATTAAA



CTCCCAAAATATTCATTATTTGAGTTAGAAAACGGTAGGAAGCGTATGCTGGCGAGTGCTGGGGAATTA



CAGAAAGGGAATGAGTTAGCACTGCCGTCAAAATATGTGAACTTTCTGTATCTGGCCTCCCATTACGAG



AAACTGAAAGGTAGCCCGGAAGATAATGAACAGAAACAACTATTTGTCGAGCAACACAAACATTATCT



GGATGAAATTATTGAACAGATTAGTGAATTCTCTAAACGTGTTATTTTAGCGGATGCCAACCTTGACAAG



GTGCTGAGCGCATATAATAAACACCGTGATAAACCCATTCGTGAACAGGCTGAAAATATCATACATCTG



TTCACGTTAACCAACTTGGGAGCTCCTGCCGCTTTTAAATATTTCGATACCACAATTGACCGCAAACGTT



ATACGTCTACAAAAGAGGTGCTCGATGCGACCCTGATCCACCAGTCTATTACAGGCCTGTATGAAACTC



GTATCGACCTGTCACAACTGGGCGGCGACTGA





SEQ
ATGGACAAGAAATATTCAATCGGTTTAGCAATAGGAACTAACTCAGTAGGTTGGGCTGTAATTACAGAC


ID
GAATACAAGGTACCGTCCAAAAAGTTTAAGGTGTTGGGGAACACAGATAGACACTCTATAAAAAAAAA


NO:
TTTAATAGGCGCTTTACTTTTCGATTCAGGCGAAACTGCAGAAGCGACACGTCTGAAGAGAACCGCTAG


169
ACGTAGATACACGAGGAGAAAGAACAGAATATGTTACCTACAAGAAATTTTTTCTAATGAGATGGCTAA



GGTGGATGATTCGTTTTTTCATAGACTCGAAGAATCTTTCTTAGTTGAAGAAGATAAAAAACACGAAAG



GCATCCTATCTTTGGAAACATAGTTGATGAGGTGGCTTACCATGAAAAATATCCCACTATATATCACCTT



AGAAAAAAGTTGGTTGATTCAACCGACAAAGCGGATCTAAGGTTAATTTACCTCGCGTTGGCTCACATG



ATAAAATTTAGAGGACATTTCTTGATCGAAGGTGATTTAAATCCCGATAACTCTGATGTAGATAAACTGT



TCATCCAGTTGGTTCAAACATATAATCAGTTGTTCGAAGAGAACCCCATTAACGCATCAGGTGTTGATGC



TAAAGCAATCTTATCAGCAAGGTTGAGCAAGAGCAGACGTCTGGAAAACTTGATTGCCCAATTGCCAGG



TGAAAAGAAGAACGGTCTTTTTGGAAATTTAATTGCACTTTCACTTGGGTTGACACCGAATTTTAAAAGC



AATTTCGACCTCGCTGAGGATGCTAAACTCCAGTTATCTAAGGATACATATGACGATGATTTGGATAATC



TATTGGCCCAGATAGGTGATCAGTATGCAGATTTGTTTTTGGCAGCTAAGAATTTATCAGATGCAATTCT



ACTGAGCGATATTTTAAGGGTGAATACAGAAATAACTAAAGCACCTTTGTCTGCATCTATGATAAAAAG



ATACGATGAACACCATCAAGATCTCACACTATTAAAAGCTTTAGTTAGACAACAATTACCAGAAAAATA



TAAAGAAATCTTTTTCGATCAGTCCAAGAACGGATACGCCGGCTATATAGATGGCGGTGCCTCCCAAGA



AGAATTTTACAAATTTATCAAACCCATTTTGGAAAAGATGGATGGTACTGAAGAATTATTGGTCAAATTA



AACAGGGAAGATTTATTAAGAAAACAAAGGACCTTTGATAATGGTTCTATTCCACACCAAATCCATCTA



GGGGAATTACATGCGATTCTTAGAAGACAAGAAGATTTTTATCCATTCTTGAAAGATAACAGGGAAAAG



ATAGAGAAAATCTTAACTTTTAGAATTCCCTACTACGTCGGGCCCTTAGCTAGGGGGAATTCTAGATTCG



CCTGGATGACACGCAAATCAGAAGAAACAATTACGCCTTGGAATTTTGAAGAAGTTGTTGATAAAGGAG



CCTCTGCTCAATCTTTTATTGAACGAATGACCAATTTTGATAAGAATTTACCCAATGAAAAGGTCTTACC



CAAACATTCACTCCTATACGAGTACTTTACTGTTTACAATGAGTTGACAAAAGTGAAGTATGTTACCGAG



GGTATGCGAAAACCTGCTTTCTTGAGTGGTGAACAAAAGAAGGCCATTGTTGACTTGTTATTCAAAACTA



ACAGAAAGGTCACTGTGAAGCAGCTTAAAGAAGATTATTTCAAAAAGATCGAATGTTTCGACTCGGTAG



AAATTAGTGGTGTGGAAGATAGATTTAATGCTTCTCTTGGAACATATCATGATCTACTAAAGATCATCAA



AGATAAAGATTTCTTGGACAATGAAGAAAATGAAGATATTCTTGAAGACATCGTGTTGACACTTACATT



GTTTGAGGACAGAGAAATGATTGAAGAAAGGCTGAAGACCTACGCCCATTTGTTTGATGATAAAGTCAT



GAAACAGTTAAAGAGGAGAAGGTATACCGGATGGGGTAGGCTGTCTCGCAAATTGATTAATGGTATTCG



TGATAAACAATCGGGTAAAACAATCCTAGATTTCCTGAAGTCCGATGGTTTCGCCAACAGGAATTTTATG



CAATTGATTCATGACGATTCTTTGACTTTTAAAGAGGATATTCAGAAAGCACAGGTCTCAGGACAGGGC



GATTCACTCCATGAACATATAGCTAACCTGGCTGGCTCCCCTGCTATTAAGAAAGGTATCTTGCAAACCG



TCAAAGTAGTAGACGAACTTGTTAAAGTTATGGGAAGACACAAACCTGAAAATATCGTTATTGAAATGG



CTCGCGAAAACCAGACAACACAAAAGGGTCAAAAGAATTCGAGAGAGAGAATGAAGCGTATCGAAGA



AGGTATTAAAGAACTTGGGTCCCAAATACTTAAAGAACATCCAGTAGAAAACACTCAGCTTCAAAATGA



AAAATTATACTTATATTATCTTCAGAATGGCCGCGATATGTATGTTGACCAAGAGTTAGATATAAATAGG



TTGTCTGATTACGACGTGGATCATATTGTACCTCAATCTTTTCTAAAAGATGATTCAATTGATAATAAGG



TATTAACGAGAAGTGATAAAAATAGAGGTAAATCTGACAACGTGCCAAGCGAAGAGGTGGTGAAGAAA



ATGAAAAATTATTGGCGTCAACTGTTGAACGCCAAGTTAATTACGCAGAGAAAGTTTGATAATCTAACA



AAAGCTGAAAGAGGAGGCCTATCTGAGTTAGATAAGGCCGGTTTTATCAAACGTCAGTTAGTTGAAACC



AGGCAAATCACGAAGCACGTTGCCCAAATTCTAGATTCAAGGATGAATACCAAATACGATGAAAACGAT



AAACTGATTCGGGAAGTCAAGGTTATAACTCTAAAAAGCAAACTAGTTTCAGATTTTCGCAAAGATTTTC



AATTTTACAAAGTTCGAGAAATCAATAATTATCATCATGCTCACGACGCGTACTTGAACGCGGTCGTTGG



TACAGCTTTAATAAAGAAATATCCTAAACTGGAATCGGAATTTGTATATGGGGATTACAAAGTATACGA



CGTGAGAAAGATGATCGCTAAATCTGAACAAGAAATTGGGAAAGCAACTGCCAAATATTTTTTTTACAG



CAACATAATGAATTTTTTTAAAACGGAAATTACATTGGCAAATGGCGAAATTAGAAAGCGCCCATTGAT



AGAGACCAATGGAGAGACTGGGGAAATCGTGTGGGATAAAGGACGTGATTTTGCCACAGTGAGGAAAG



TGTTAAGTATGCCACAAGTTAATATTGTAAAAAAGACCGAGGTCCAAACGGGTGGATTTAGCAAAGAAT



CAATTTTACCTAAGAGAAATTCAGATAAATTAATTGCCCGCAAAAAGGATTGGGATCCTAAAAAATATG



GTGGTTTTGATTCCCCAACAGTTGCTTACTCCGTCCTAGTTGTTGCTAAGGTTGAAAAAGGAAAGTCTAA



GAAACTTAAATCCGTAAAAGAGTTACTGGGAATTACAATAATGGAAAGATCCTCTTTCGAAAAGAACCC



TATTGACTTCTTGGAGGCGAAAGGTTATAAAGAAGTCAAAAAAGATTTGATCATAAAACTACCAAAGTA



TTCTCTATTTGAATTGGAAAACGGCAGAAAAAGGATGTTGGCAAGCGCTGGTGAACTACAAAAGGGTAA



CGAATTGGCATTGCCGAGTAAATACGTGAATTTTCTATATTTGGCATCACATTACGAAAAGTTAAAGGG



ATCACCCGAGGATAACGAGCAGAAACAACTGTTTGTTGAACAACACAAACATTATCTTGATGAAATTAT



AGAACAAATTAGTGAGTTCAGTAAGAGAGTTATTTTAGCCGATGCAAATTTAGACAAAGTTTTATCTGCT



TATAACAAACATAGAGATAAGCCTATAAGGGAACAAGCCGAAAATATTATTCATTTGTTTACGTTAACA



AATTTAGGGGCACCAGCAGCATTCAAGTACTTCGATACGACTATCGATCGTAAGCGTTACACATCTACC



AAAGAAGTTCTTGATGCAACTTTGATTCATCAATCTATAACAGGCTTATATGAAACTAGAATCGATCTGT



CACAACTTGGTGGTGACTAA





SEQ
ATGGACAAGAAGTACTCAATTGGGCTTGCTATCGGCACTAACAGCGTTGGCTGGGCGGTCATCACAGAC


ID
GAATATAAGGTCCCATCAAAGAAATTCAAAGTCCTTGGCAATACGGACCGACATTCAATCAAGAAGAAC


NO:
CTGATTGGAGCTCTGCTGTTTGATTCCGGTGAAACCGCCGAGGCAACACGATTGAAACGTACCGCTCGT


170
AGGAGGTATACGCGGCGGAAAAATAGGATCTGCTATCTGCAGGAAATATTTAGCAACGAAATGGCCAA



GGTAGACGACAGCTTCTTCCACCGGCTCGAGGAATCTTTCCTCGTGGAAGAAGACAAAAAGCACGAGCG



CCACCCCATTTTCGGCAATATCGTGGACGAGGTAGCTTACCATGAAAAGTATCCAACTATTTACCACTTA



CGTAAGAAGTTAGTGGACAGCACCGATAAAGCCGACCTTCGCCTGATTTACCTAGCACTTGCACACATG



ATTAAGTTCCGAGGCCACTTCTTGATAGAGGGAGACCTGAATCCTGACAATTCCGATGTGGATAAATTGT



TCATCCAGCTGGTACAGACATACAATCAGTTGTTTGAGGAAAATCCGATTAATGCCAGTGGCGTGGACG



CCAAGGCTATCCTGTCTGCTCGGCTTAGTAAGAGTAGACGCCTGGAAAATCTAATCGCACAGCTGCCCG



GCGAAAAGAAAAATGGACTGTTCGGTAATTTGATCGCCCTGAGCCTGGGCCTCACCCCTAACTTTAAGT



CTAACTTCGACCTGGCCGAAGATGCTAAGCTCCAGCTGTCCAAAGATACTTACGATGACGATCTCGATA



ATCTACTGGCTCAGATCGGGGACCAGTACGCTGACCTGTTTCTAGCTGCCAAGAACCTCAGTGACGCCAT



TCTCCTGTCCGATATTCTGAGGGTTAACACTGAAATTACAAAGGCCCCGCTGAGCGCGAGCATGATCAA



AAGGTACGACGAGCATCACCAGGACCTCACGCTGCTGAAGGCCTTAGTCAGACAGCAACTGCCCGAAA



AGTACAAAGAAATCTTTTTCGACCAATCCAAGAACGGGTACGCCGGCTACATTGATGGCGGGGCTTCAC



AAGAGGAGTTTTACAAGTTTATCAAGCCCATCCTGGAGAAAATGGACGGCACTGAAGAACTGCTTGTGA



AACTCAATAGGGAAGACTTACTGAGGAAACAGCGCACATTCGATAATGGCTCCATACCCCACCAAATCC



ATCTGGGAGAGTTGCATGCCATCTTGCGAAGGCAGGAGGACTTCTACCCCTTTCTTAAGGACAACAGGG



AGAAAATCGAGAAAATTCTGACTTTCCGTATCCCCTACTACGTGGGCCCACTTGCTCGCGGAAACTCACG



ATTCGCATGGATGACCAGAAAGTCCGAGGAAACAATTACACCCTGGAATTTTGAGGAGGTAGTAGACAA



GGGAGCCAGCGCTCAATCTTTCATTGAGAGGATGACGAATTTCGACAAGAACCTTCCAAACGAGAAAGT



GCTTCCTAAGCACAGCCTGCTGTATGAGTATTTCACGGTGTACAACGAACTTACGAAGGTCAAGTATGTG



ACAGAGGGTATGCGGAAACCTGCTTTTCTGTCTGGTGAACAGAAGAAAGCTATCGTCGATCTCCTGTTTA



AAACCAACCGAAAGGTGACGGTGAAACAGTTGAAGGAGGATTACTTCAAGAAGATCGAGTGTTTTGATT



CTGTTGAAATTTCTGGGGTCGAGGATAGATTCAACGCCAGCCTGGGCACCTACCATGATTTGCTGAAGAT



TATCAAGGATAAGGATTTTCTGGATAATGAGGAGAATGAAGACATTTTGGAGGATATAGTGCTGACCCT



CACCCTGTTCGAGGACCGGGAGATGATCGAGGAGAGACTGAAAACATACGCTCACCTGTTTGACGACAA



GGTCATGAAGCAGCTTAAGAGACGCCGTTACACAGGCTGGGGAAGATTATCCCGCAAATTAATCAACGG



GATACGCGATAAACAAAGTGGCAAGACCATACTCGACTTCCTAAAGAGCGATGGATTCGCAAATCGCAA



TTTCATGCAGTTGATCCACGACGATAGCCTGACCTTCAAAGAGGACATTCAGAAAGCGCAGGTGAGTGG



TCAAGGGGATTCCCTGCACGAACACATTGCTAACTTGGCTGGATCACCAGCCATTAAGAAAGGCATACT



GCAGACCGTTAAAGTGGTAGATGAGCTTGTGAAAGTCATGGGAAGACATAAGCCAGAGAACATAGTGA



TCGAAATGGCCAGGGAAAATCAGACCACGCAAAAGGGGCAGAAGAACTCAAGAGAGCGTATGAAGAG



GATCGAGGAGGGCATCAAGGAGCTGGGTAGCCAGATCCTTAAAGAGCACCCAGTTGAGAATACCCAGC



TGCAGAATGAGAAACTTTATCTCTATTATCTCCAGAACGGAAGGGATATGTATGTCGACCAGGAACTGG



ACATCAATCGGCTGAGTGATTATGACGTCGACCACATTGTGCCTCAAAGCTTTCTGAAGGATGATTCCAT



CGACAATAAAGTTCTGACCCGGTCTGATAAAAATAGAGGCAAATCCGACAACGTACCTAGCGAAGAAG



TCGTCAAAAAAATGAAGAACTATTGGAGGCAGTTGCTGAATGCCAAGCTGATTACACAACGCAAGTTTG



ACAATCTCACCAAGGCAGAAAGGGGGGGCCTGTCAGAACTCGACAAAGCAGGTTTCATTAAAAGGCAG



CTAGTTGAAACTAGGCAGATTACTAAGCACGTGGCCCAGATCCTCGACTCACGGATGAATACAAAGTAT



GATGAGAATGATAAGCTAATCCGGGAGGTGAAGGTGATTACTCTGAAATCTAAGCTGGTGTCAGATTTC



AGAAAAGACTTCCAGTTCTACAAAGTCAGAGAGATCAACAATTATCACCATGCCCACGATGCATATCTT



AATGCAGTAGTGGGGACAGCTCTGATCAAAAAATATCCTAAACTGGAGTCTGAATTCGTTTATGGTGAC



TATAAAGTCTATGACGTCAGAAAAATGATCGCAAAGAGCGAGCAGGAGATAGGGAAGGCCACAGCAAA



GTACTTCTTTTACAGTAATATCATGAACTTTTTCAAAACTGAGATTACATTGGCTAACGGCGAGATCCGC



AAGCGGCCACTGATAGAGACTAACGGAGAGACAGGGGAGATTGTTTGGGATAAGGGCCGTGACTTCGC



CACCGTTAGGAAAGTGCTGTCCATGCCCCAGGTGAACATTGTGAAGAAGACAGAAGTGCAGACGGGTG



GGTTCTCAAAAGAGTCTATTCTGCCTAAGCGGAATAGTGACAAACTGATCGCACGTAAAAAGGACTGGG



ATCCAAAAAAGTACGGCGGATTCGACAGTCCTACCGTTGCATATTCCGTGCTTGTGGTCGCTAAGGTGG



AGAAGGGAAAAAGCAAGAAACTGAAGTCAGTCAAAGAACTACTGGGCATAACGATCATGGAGCGCTCC



AGTTTCGAAAAAAACCCAATCGATTTTCTTGAAGCCAAGGGATACAAGGAGGTAAAGAAAGACCTTATC



ATTAAGCTGCCTAAGTACAGTCTGTTCGAACTGGAGAATGGGAGGAAGCGCATGCTGGCATCAGCTGGA



GAACTCCAAAAAGGGAACGAGTTGGCCCTCCCCTCAAAGTATGTCAATTTTCTCTACCTGGCTTCTCACT



ACGAGAAGTTAAAGGGGTCTCCAGAGGATAATGAGCAGAAACAGCTGTTTGTGGAACAGCACAAGCAC



TATTTGGACGAAATCATCGAACAAATTTCCGAGTTCAGTAAGAGGGTGATTCTGGCCGACGCAAACCTT



GACAAAGTTCTGTCCGCATACAATAAGCACAGAGACAAACCAATCCGCGAGCAAGCCGAGAATATAAT



TCACCTTTTCACTCTGACTAATCTGGGGGCCCCCGCAGCATTTAAATATTTCGATACAACAATCGACCGG



AAGCGGTATACATCTACTAAGGAAGTCCTCGATGCGACACTGATCCACCAGTCAATTACAGGTTTATAT



GAAACAAGAATCGACCTGTCCCAGCTGGGCGGCGACTAG





SEQ
AAAATTCcatGCAAAATGCTCCGGTTTCATGTCATCAAAATGATGACGTAATTAAGCATTGATAATTGAGA


ID
TCCCTCTCCCTGACAGGATGATTACATAAATAATAGTGACAAAAATAAATTATTTATTTATCCAGAAAAT


NO:
GAATTGGAAAATCAGGAGAGCGTTTTCAATCCTACCTCTGGCGCAGTTGATATGTcaaaCAGGTtgccgtcactgc


171
gtcttttactggctcttctcgctaaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagccatgacaaaaacgcgtaacaaaagtgtctataat



cacggcagaaaagtccacattgattatttgcacggcgtcacactttgctatgccatagcatttttatccataagattagcggatcctacctgacgctttttatcgcaactctctactg



tttctccatacccgtttttttgggctagcaccgcctatctcgtgtgagataggcggagatacgaactttaagAAGGAGatataccATGGAACAGGAATATT



ATCTGGGCTTGGACATGGGCACCGGTTCCGTCGGCTGGGCTGTTACTGACAGTGAATATCACGTTCTAAG



AAAGCATGGTAAGGCATTGTGGGGTGTAAGACTTTTCGAATCTGCTTCCACTGCTGAAGAGCGTAGAAT



GTTTAGAACGAGTCGACGTAGGCTAGACAGGCGCAATTGGAGAATCGAAATTTTACAAGAAATTTTTGC



GGAAGAGATATCTAAGAAAGACCCAGGCTTTTTCCTGAGAATGAAGGAATCTAAGTATTACCCTGAGGA



TAAAAGAGATATAAATGGTAACTGTCCCGAATTGCCTTACGCATTATTTGTGGACGATGATTTTACCGAT



AAGGATTACCATAAAAAGTTCCCAACTATCTACCATTTACGCAAAATGTTAATGAATACAGAGGAAACC



CCAGACATAAGACTAGTTTATCTGGCAATACACCATATGATGAAACATAGAGGCCATTTCTTACTTTCCG



GGGATATCAACGAAATCAAAGAGTTTGGTACCACATTTAGTAAGTTACTGGAAAACATAAAGAATGAAG



AATTGGATTGGAACTTAGAACTCGGAAAAGAAGAATACGCGGTTGTCGAATCTATCCTGAAGGATAATA



TGCTGAATAGGTCGACCAAAAAAACTAGGCTGATCAAAGCACTGAAAGCCAAATCTATCTGCGAAAAA



GCTGTTTTAAATTTACTTGCTGGTGGCACTGTTAAGTTATCAGACATTTTTGGTTTGGAAGAATTGAACG



AAACCGAGCGTCCAAAAATTAGTTTCGCTGATAATGGCTACGATGATTACATTGGTGAGGTGGAAAACG



AGTTGGGCGAACAATTTTATATTATAGAGACAGCTAAGGCAGTCTATGACTGGGCTGTTTTAGTAGAAA



TCCTTGGTAAATACACATCTATCTCCGAAGCGAAAGTTGCTACTTACGAAAAGCACAAGTCCGATCTCCA



GTTTTTGAAGAAAATTGTCAGGAAATATCTGACTAAGGAAGAATATAAAGATATTTTCGTTAGTACCTCT



GACAAACTGAAAAATTACTCCGCTTACATCGGGATGACCAAGATTAATGGCAAAAAAGTTGATCTGCAA



AGCAAAAGGTGTTCGAAGGAAGAATTTTATGATTTCATTAAAAAGAATGTCTTAAAAAAATTAGAAGGT



CAGCCAGAATACGAATATTTGAAAGAAGAACTGGAAAGAGAGACATTCTTACCAAAACAAGTCAACAG



AGATAATGGGGTAATTCCATATCAAATTCACCTCTACGAATTAAAAAAAATTTTAGGCAATTTACGCGAT



AAAATTGACCTTATCAAAGAAAATGAGGATAAGCTGGTTCAACTCTTTGAATTCAGAATACCCTATTATG



TGGGCCCACTGAACAAGATTGATGACGGCAAAGAAGGTAAATTCACATGGGCCGTCCGCAAATCCAATG



AAAAAATTTACCCATGGAACTTTGAAAATGTAGTAGATATTGAAGCGTCTGCGGAGAAATTTATTCGAA



GAATGACTAATAAATGCACTTACTTGATGGGAGAGGATGTTCTGCCTAAAGACAGCTTATTATACAGCA



AGTACATGGTTCTAAACGAACTTAACAACGTTAAGTTGGACGGTGAGAAATTAAGTGTAGAATTGAAAC



AAAGATTGTATACTGACGTCTTCTGCAAGTACAGAAAAGTGACAGTTAAAAAAATTAAGAATTACTTGA



AGTGCGAAGGTATAATTTCTGGAAACGTAGAGATTACTGGTATTGATGGTGATTTCAAAGCATCCCTAA



CAGCTTACCACGATTTCAAGGAAATCCTGACAGGAACTGAACTCGCAAAAAAAGATAAAGAAAACATT



ATTACTAATATTGTTCTTTTCGGTGATGACAAGAAATTGTTGAAGAAAAGACTGAATAGACTTTACCCCC



AGATTACTCCCAATCAACTTAAGAAAATTTGTGCTTTGTCTTACACAGGATGGGGTCGTTTTTCAAAAAA



GTTCTTAGAAGAGATTACCGCACCTGATCCAGAAACAGGCGAAGTATGGAATATAATTACCGCCTTATG



GGAATCGAACAATAATCTTATGCAACTTCTGAGCAATGAATATCGTTTCATGGAAGAAGTTGAGACTTA



CAACATGGGCAAACAGACGAAGACTTTATCCTATGAAACTGTGGAAAATATGTATGTATCACCTTCTGT



CAAGAGACAAATTTGGCAAACCTTAAAAATTGTCAAAGAATTAGAAAAGGTAATGAAGGAGTCTCCTA



AACGTGTGTTTATTGAAATGGCTAGAGAAAAACAAGAGTCAAAAAGAACCGAGTCAAGAAAGAAGCAG



TTAATCGATTTATATAAGGCTTGTAAAAACGAAGAGAAAGATTGGGTTAAAGAATTGGGGGACCAAGA



GGAACAAAAACTACGGTCGGATAAGTTGTATTTATACTATACGCAAAAGGGACGATGTATGTATTCCGG



CGAGGTAATAGAATTGAAGGATTTATGGGACAATACAAAATATGACATAGACCATATATATCCCCAATC



AAAAACGATGGACGATAGCTTGAACAATAGAGTACTCGTGAAAAAAAAATATAATGCGACCAAATCTG



ATAAGTATCCTCTGAATGAAAATATCAGACATGAAAGAAAGGGGTTCTGGAAGTCCTTGTTAGATGGTG



GGTTTATAAGCAAAGAAAAGTACGAGCGTCTAATAAGAAACACGGAGTTATCGCCAGAAGAACTCGCT



GGTTTTATTGAGAGGCAAATCGTGGAAACGAGACAATCTACCAAAGCCGTTGCTGAGATCCTAAAGCAA



GTTTTCCCAGAGTCGGAGATTGTCTATGTCAAAGCTGGCACAGTGAGCAGGTTTAGGAAAGACTTCGAA



CTATTAAAGGTAAGAGAAGTGAACGATTTACATCACGCAAAGGACGCTTACCTAAATATCGTTGTAGGT



AACTCATATTATGTTAAATTTACCAAGAACGCCTCTTGGTTTATAAAGGAGAACCCAGGTAGAACATAT



AACCTGAAAAAGATGTTCACCTCTGGTTGGAATATTGAGAGAAACGGAGAAGTCGCATGGGAAGTTGGT



AAGAAAGGGACTATAGTGACAGTAAAGCAAATTATGAACAAAAATAATATCCTCGTTACAAGGCAGGT



TCATGAAGCAAAGGGCGGCCTTTTTGACCAACAAATTATGAAGAAAGGGAAAGGTCAAATTGCAATAA



AAGAAACCGATGAGAGACTAGCGTCAATAGAAAAGTATGGTGGCTATAATAAAGCTGCGGGTGCATAC



TTTATGCTTGTTGAATCAAAAGACAAGAAAGGTAAGACTATTAGAACTATAGAATTTATACCCCTGTACC



TTAAAAACAAAATTGAATCGGATGAGTCAATCGCGTTAAATTTTCTAGAGAAAGGAAGGGGTTTAAAAG



AACCAAAGATCCTGTTAAAAAAGATTAAGATTGACACCTTGTTCGATGTAGATGGATTTAAAATGTGGT



TATCTGGCAGAACAGGCGATAGACTTTTGTTTAAGTGCGCTAATCAATTAATTTTGGATGAGAAAATCAT



TGTCACAATGAAAAAAATAGTTAAGTTTATTCAGAGAAGACAAGAAAACAGGGAGTTGAAATTATCTGA



TAAAGATGGTATCGACAATGAAGTTTTAATGGAAATCTACAATACATTCGTTGATAAACTTGAAAATAC



CGTATATCGAATCAGGTTAAGTGAACAAGCCAAAACATTAATTGATAAACAAAAAGAATTTGAAAGGCT



ATCACTGGAAGACAAATCCTCCACCCTATTTGAAATTTTGCATATATTCCAGTGCCAATCTTCAGCAGCT



AATTTAAAAATGATTGGCGGACCTGGGAAAGCCGGCATCCTAGTGATGAACAATAATATCTCCAAGTGT



AACAAAATATCAATTATTAACCAATCTCCGACAGGTATTTTTGAAAATGAAATAGACTTGCTTAAGATAT



AAGAAATCATCCTTAGCGAAAGCTAAGGATTTTTTTTATCTGAAATTTATTATATCGCGTTGATTATTGAT



GCTGTTTTTAGTTTTAACGGCAATTAATATATGTGTTATTAATTGAATGAATTTTATCATTCATAATAAGT



ATGTGTAGGATCAAGCTCAGGTTAAATATTCACTCAGGAAGTTATTACTCAGGAAGCAAAGAGGATTAC



AGAATTATCTCATAACAAGTGTTAAGGGATGTTATTTCC





SEQ
AATTCAAAGGATAATCAAAC


ID



NO:



172






SEQ
AATCTCTACTCTTTGTAGAT


ID



NO:



173






SEQ
AATTTCTACTGTTGTAGAT


ID



NO:



174






SEQ
AATTTCTACTAGTGTAGAT


ID



NO:



175






SEQ
AATTTCTACTATTGT


ID



NO:



176






SEQ
AATTTCTACTGTTGTAGA


ID



NO:



177






SEQ
AATTTCTACTATTGTA


ID



NO:



178






SEQ
AATTTCTACTTTTGTAGAT


ID



NO:



179






SEQ
AATTTCTACTGTTGTAGAT


ID



NO:



180






SEQ
AATTTCTACTCTTGTAGAT


ID



NO:



181








Claims
  • 1. A library of synthesized editing and recorder cassettes, the library comprising: a first synthesized editing cassette and a first synthesized recorder cassette, wherein: i) the first synthesized editing cassette comprises: a) a modified first target nucleic acid sequence homologous to a first target nucleic acid;b) a first site conferring immunity to nuclease-mediated editing; andc) a first guide nucleic acid sequence homologous to a target region of the first target nucleic acid; andii) the first synthesized recorder cassette comprises: a) a first barcode for tracking and identifying the modified first target nucleic acid sequence; andb) a second guide nucleic acid sequence homologous to a second target nucleic acid, wherein the first barcode is flanked by a sequence homologous to the second target nucleic acid; andat least a second synthesized editing cassette and a second synthesized recorder cassette, wherein iii) the second synthesized editing cassette comprises: a) a modified third target nucleic acid sequence homologous to a third target nucleic acid;b) a second site conferring immunity to nuclease-mediated editing; andc) a third guide nucleic acid sequence homologous to a target region of the third target nucleic acid, andiv) the second synthesized recorder cassette comprises: a) a second barcode for tracking and identifying the modified third target nucleic acid sequence; andb) a fourth guide nucleic acid sequence homologous to a fourth target nucleic acid, wherein the fourth guide nucleic acid sequence is designed to incorporate the second barcode proximal to the first barcode forming a barcode array.
  • 2. The library of synthesized editing and recorder cassettes of claim 1, wherein the first guide nucleic acid and the second guide nucleic acid are compatible with a same nucleic acid-guided nuclease.
  • 3. The library of synthesized editing and recorder cassettes of claim 1, wherein the third guide nucleic acid and the fourth guide nucleic acid are compatible with a same nucleic acid-guided nuclease.
  • 4. The library of synthesized editing and recorder cassettes of claim 1, wherein the library comprises at least 100, 104, 105, 106, 107, 108, 109, or 1010 total editing and recorder cassettes.
  • 5. The library of synthesized editing and recorder cassettes of claim 4, wherein the library comprises at least 100, 104, 105, or 106 total editing and recorder cassettes.
  • 6. The library of synthesized editing and recorder cassettes of claim 1, wherein each of the editing cassettes and each of the recorder cassettes is approximately 50-200 nucleotides in length.
  • 7. The library of synthesized editing and recorder cassettes of claim 6, wherein each of the editing cassettes and each of the recorder cassettes is approximately 75-150 nucleotides in length.
  • 8. The library of synthesized editing and recorder cassettes of claim 7, wherein each of the editing cassettes and each of the recorder cassettes is approximately 80-120 nucleotides in length.
  • 9. The library of synthesized editing and recorder cassettes of claim 1, wherein the length of one or both of the barcodes is 4 to 30 nucleotides in length.
  • 10. The library of synthesized editing and recorder cassettes of claim 1, wherein one or both of the recorder cassettes comprises a landing site.
  • 11. The library of synthesized editing and recorder cassettes of claim 10, wherein the landing site is an unique sequence.
  • 12. The library of synthesized editing and recorder cassettes of claim 1, wherein the landing site about 2-50 nucleotides in length.
  • 13. The library of synthesized editing and recorder cassettes of claim 12, wherein the landing site about 4-20 nucleotides in length.
  • 14. The library of synthesized editing and recorder cassettes of claim 1, wherein the library of synthesized editing and recorder cassettes promotes edits in bacterial cells.
  • 15. The library of synthesized editing and recorder cassettes of claim 1, wherein the library of synthesized editing and recorder cassettes promotes edits in eukaryotic cells.
  • 16. The library of synthesized editing and recorder cassettes of claim 1, wherein the library of synthesized editing and recorder cassettes promotes edits in archeal cells.
  • 17. The library of synthesized editing and recorder cassettes of claim 1, wherein nucleotide sequences for the synthesized editing and recorder cassettes are designed by software.
  • 18. The library of synthesized editing and recorder cassettes of claim 1, wherein the synthesized editing and recorder cassettes are pooled.
  • 19. The library of synthesized editing and recorder cassettes of claim 18, wherein the pooled synthesized editing and recorder cassettes are amplified and cloned in parallel.
  • 20. The library of synthesized editing and recorder cassettes of claim 1, further comprising a third synthesized editing cassette and a third synthesized recorder cassette, wherein: i) the third synthesized editing cassette comprises: a) a modified fourth target nucleic acid sequence homologous to a fourth target nucleic acid;b) a third site conferring immunity to nuclease-mediated editing; andc) a fifth guide nucleic acid sequence homologous to a target region of the fourth target nucleic acid; andii) the third synthesized recorder cassette comprises: a) a third barcode for tracking and identifying the modified fourth target nucleic acid sequence; andb) a six guide nucleic acid sequence homologous to a target region of a second target nucleic acid, wherein the sixth guide nucleic acid sequence is designed to incorporate the third barcode proximal to the second barcode in the barcode array.
CROSS-REFERENCE

The present application is a continuation application of U.S. patent application Ser. No. 15/948,798, filed Apr. 9, 2018, which is a continuation application of U.S. patent application Ser. No. 15/632,222, filed on Jun. 23, 2017, now U.S. Pat. No. 10,017,760, and of U.S. patent application Ser. No. 15/948,793, filed Apr. 9, 2018, which is a continuation application of U.S. patent application Ser. No. 15/632,222, filed on Jun. 23, 2017, filed on Jun. 23, 2017, now U.S. Pat. No. 10,017,760, which claims priority to U.S. Provisional Application Ser. No. 62/354,516, filed Jun. 24, 2016; U.S. Provisional Application Ser. No. 62/367,386, filed Jul. 27, 2016; and U.S. Provisional Application Ser. No. 62/483,930, filed Apr. 10, 2017, the contents of each being hereby incorporated by reference in their entirety.

STATEMENT AS TO FEDERALLY SPONSORED RESEARCH

This disclosure was made with the support of the United States government under Contract number DE-SC0008812 by the Department of Energy.

US Referenced Citations (87)
Number Name Date Kind
6562594 Short May 2003 B1
8153432 Church et al. Apr 2012 B2
8569041 Church et al. Oct 2013 B2
8906616 Zhang et al. Dec 2014 B2
9790490 Zhang et al. Oct 2017 B2
9982278 Gill et al. May 2018 B2
9982279 Gill et al. May 2018 B1
10011849 Gill et al. Jul 2018 B1
10017760 Gill et al. Jul 2018 B2
10240167 Gill et al. Mar 2019 B2
10266849 Gill et al. Apr 2019 B2
10287575 Gill et al. May 2019 B2
10351877 Gill Jul 2019 B2
20080287317 Boone Nov 2008 A1
20100034924 Fremaux et al. Feb 2010 A1
20100305001 Kern et al. Dec 2010 A1
20140068797 Doudna et al. Mar 2014 A1
20140089681 Goto et al. Mar 2014 A1
20140121118 Warner May 2014 A1
20140199767 Barrangou et al. Jul 2014 A1
20140273226 Wu Sep 2014 A1
20140273232 Zhang et al. Sep 2014 A1
20140295557 Joung et al. Oct 2014 A1
20150031133 Church et al. Jan 2015 A1
20150031134 Zhang et al. Jan 2015 A1
20150064138 Lu et al. Mar 2015 A1
20150079680 Bradley et al. Mar 2015 A1
20150098954 Hyde et al. Apr 2015 A1
20150133315 Jacobson et al. May 2015 A1
20150159174 Frendewey et al. Jun 2015 A1
20150176013 Musunuru et al. Jun 2015 A1
20150201634 Fremaux et al. Jul 2015 A1
20150225773 Farmer et al. Aug 2015 A1
20150247150 Zhang et al. Sep 2015 A1
20150353905 Weiss et al. Dec 2015 A1
20150353917 Miller et al. Dec 2015 A1
20150368639 Gill et al. Dec 2015 A1
20160024523 Joung et al. Jan 2016 A1
20160024529 Carstens Jan 2016 A1
20160053272 Wurtzel et al. Feb 2016 A1
20160053304 Wurtzel et al. Feb 2016 A1
20160060653 Doudna et al. Mar 2016 A1
20160060654 Doudna et al. Mar 2016 A1
20160068864 Doudna et al. Mar 2016 A1
20160076093 Shendure et al. Mar 2016 A1
20160102322 Ravinder et al. Apr 2016 A1
20160115488 Zhang et al. Apr 2016 A1
20160115489 Zhang et al. Apr 2016 A1
20160160210 Mali et al. Jun 2016 A1
20160168592 Church et al. Jun 2016 A1
20160186168 Konieczka et al. Jun 2016 A1
20160264995 Yamamoto et al. Sep 2016 A1
20160289673 Huang et al. Oct 2016 A1
20160289675 Ryan et al. Oct 2016 A1
20160298096 Charpentier et al. Oct 2016 A1
20160298097 Chavez et al. Oct 2016 A1
20160298134 Chen et al. Oct 2016 A1
20160298135 Chen et al. Oct 2016 A1
20160298138 Chen et al. Oct 2016 A1
20160333389 Liu et al. Nov 2016 A1
20160367702 Hoge et al. Dec 2016 A1
20170002339 Barrangou et al. Jan 2017 A1
20170044569 Church et al. Feb 2017 A9
20170051276 May et al. Feb 2017 A1
20170051310 Doudna et al. Feb 2017 A1
20170051311 Dalia et al. Feb 2017 A1
20170067046 Gill et al. Mar 2017 A1
20170073705 Chen et al. Mar 2017 A1
20170080107 Chivukula et al. Mar 2017 A1
20170114334 May et al. Apr 2017 A1
20170114369 Donohoue et al. Apr 2017 A1
20170145425 Kim et al. May 2017 A1
20170159045 Serber et al. Jun 2017 A1
20170175143 Tolar et al. Jun 2017 A1
20170191123 Kim et al. Jul 2017 A1
20170198302 Feng et al. Jul 2017 A1
20170204407 Gilbert et al. Jul 2017 A1
20170226533 Frisch et al. Aug 2017 A1
20170233752 Shiboleth et al. Aug 2017 A1
20170240922 Gill et al. Aug 2017 A1
20170321226 Gill et al. Nov 2017 A1
20170369870 Gill et al. Dec 2017 A1
20180230460 Gill et al. Aug 2018 A1
20180230461 Gill et al. Aug 2018 A1
20180230492 Gill et al. Aug 2018 A1
20180230493 Gill et al. Aug 2018 A1
20180371499 Gill et al. Dec 2018 A1
Foreign Referenced Citations (64)
Number Date Country
2764103 Aug 2014 EP
2825654 Jan 2015 EP
2828386 Jan 2015 EP
2840140 Feb 2015 EP
2848690 Mar 2015 EP
2898075 Jul 2015 EP
3009511 Apr 2016 EP
3064585 Sep 2016 EP
2840140 Nov 2016 EP
3144390 Mar 2017 EP
WO-03106654 Dec 2003 WO
WO-2007144770 Dec 2007 WO
WO-2012142591 Oct 2012 WO
WO-2013176772 Nov 2013 WO
WO-2013176915 Nov 2013 WO
WO-2014022702 Feb 2014 WO
WO-2014065596 May 2014 WO
WO-2014093595 Jun 2014 WO
WO-2014093622 Jun 2014 WO
WO-2014093661 Jun 2014 WO
WO-2014099744 Jun 2014 WO
WO-2014110006 Jul 2014 WO
WO-2014143381 Sep 2014 WO
WO-2014150624 Sep 2014 WO
WO-2014191128 Dec 2014 WO
WO-2015006290 Jan 2015 WO
WO-2015006747 Jan 2015 WO
WO-2015013583 Jan 2015 WO
WO-2015017866 Feb 2015 WO
WO-2015048577 Apr 2015 WO
WO-2015048690 Apr 2015 WO
WO-2015068785 May 2015 WO
WO-2015069682 May 2015 WO
WO-2015070062 May 2015 WO
WO-2015071474 May 2015 WO
WO-2015089354 Jun 2015 WO
WO-2015123339 Aug 2015 WO
WO-2015153889 Oct 2015 WO
WO-2015159086 Oct 2015 WO
WO-2015159087 Oct 2015 WO
WO-2015179540 Nov 2015 WO
WO-2015191693 Dec 2015 WO
WO-2015195798 Dec 2015 WO
WO-2015198020 Dec 2015 WO
WO-2015191693 Feb 2016 WO
WO-2016040594 Mar 2016 WO
WO-2016070037 May 2016 WO
WO-2016099887 Jun 2016 WO
WO-2016100955 Jun 2016 WO
WO-2016166340 Oct 2016 WO
WO-2016186946 Nov 2016 WO
WO-2016186953 Nov 2016 WO
WO-2016205613 Dec 2016 WO
WO-2017004261 Jan 2017 WO
WO-2017015015 Jan 2017 WO
WO-2017019867 Feb 2017 WO
WO-2017031483 Feb 2017 WO
WO-2017053713 Mar 2017 WO
WO-2017068120 Apr 2017 WO
WO-2017089767 Jun 2017 WO
WO-2017100343 Jun 2017 WO
WO-2017100377 Jun 2017 WO
WO-2017109167 Jun 2017 WO
WO-2017223538 Dec 2017 WO
Non-Patent Literature Citations (158)
Entry
Abudayyeh, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. Jun. 2, 2016. DOI: 10.1126/science.aaf5573.
Agresti, et al. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc Natl Acad Sci U S A. Mar. 2, 2010;107(9):4004-9. doi: 10.1073/pnas.0910781107. Epub Feb. 8, 2010.
Alper, et al. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science. Dec. 8, 2006;314(5805):1565-8.
Alper, et al. Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng. May 2007;9(3):258-67. Epub Jan. 8, 2007.
Baba, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006;2:2006.0008. Epub Feb. 21, 2006.
Bakan, et al. ProDy: protein dynamics inferred from theory and experiments. Bioinformatics. Jun. 1, 2011;27(11):1575-7. doi: 10.1093/bioinformatics/btr168. Epub Apr. 5, 2011.
Bao, et al., Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision. Nature Biotechnology, May 7, 2018;1-8.
Basak, et al. Enhancing E. coli tolerance towards oxidative stress via engineering its global regulator cAMP receptor protein (CRP). PLoS One. 2012;7(12):e51179. doi: 10.1371/journal.pone.0051179. Epub Dec. 14, 2012.
Bateman, et al. The Pfam protein families database. Nucleic Acids Res. Jan. 1, 2004;32(Database issue):D138-41.
Beloglazova, et al., Crispr RNA binding and DNA taget recognition by purified cascade complexes from Escherichia coli. Nucleic Acids Research, 2015. vol. 43 No. 1: 530-543.
Bhabha, et al. Divergent evolution of protein conformational dynamics in dihydrofolate reductase. Nat Struct Mol Biol. Nov. 2013;20(11):1243-9. doi: 10.1038/nsmb.2676. Epub Sep. 29, 2013.
Bhaya et al. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273-297 (2011).
Bikard et al. CRiSPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host & Microbe 12(2):177-186 (2012).
Boehr, et al. The dynamic energy landscape of dihydrofolate reductase catalysis. Science. Sep. 15, 2006;313(5793):1638-42.
Brouns, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. Aug. 15, 2008;321(5891):960-4. doi: 10.1126/science.1159689.
Browning, et al. Modulation of CRP-dependent transcription at the Escherichia coli acsP2 promoter by nucleoprotein complexes: anti-activation by the nucleoid proteins FIS and IHF. Mol Microbiol. Jan. 2004;51(1):241-54.
Campbell, et al. Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell. Mar. 23, 2001;104(6):901-12.
Chang, et al. Structural systems biology evaluation of metabolic thermotolerance in Escherichia coli. Science. Jun. 7, 2013;340(6137):1220-3. doi: 10.1126/science.1234012.
Chen, et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell. Mar. 12, 2015;160(6):1246-60. doi: 10.1016/j.cell.2015.02.038. Epub Mar. 5, 2015.
Chiang, et al. Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Arch Biochem Biophys. Sep. 15, 2012;525(2):161-9. doi: 10.1016/j.abb.2012.02.007. Epub Feb. 20, 2012.
Cong, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 339.6121 (Feb. 15, 2013): 819-23. doi: 10.1126/science.1231143. Epub Jan. 3, 2013.
Co-pending U.S. Appl. No. 16/275,439, filed Feb. 14, 2019.
Co-pending U.S. Appl. No. 16/275,465, filed Feb. 14, 2019.
Costantino, et al. Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants. Proc Natl Acad Sci U S A. Dec. 23, 2003;100(26):15748-53. Epub Dec. 12, 2003.
Datta, et al. A set of recombineering plasmids for gram-negative bacteria. Gene. Sep. 1, 2006;379:109-15. Epub May 4, 2006.
Dicarlo, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. Apr. 2013;41(7):4336-43. doi: 10.1093/nar/gkt135. Epub Mar. 4, 2013.
“Dickinson et al. Engineering the Caenorhabditis elegans Genome Using Cas9-Triggered Homologous Recombination; Nat Methods. Oct. 2013; 10(10): 1028-1034; doi: 10.1038/nmeth.2641”.
Dwyer, et al. Role of reactive oxygen species in antibiotic action and resistance. Curr Opin Microbiol. Oct. 2009;12(5):482-9. doi: 10.1016/j.mib.2009.06.018. Epub Jul. 31, 2009.
Ebright, et al. Consensus DNA site for the Escherichia coli catabolite gene activator protein (CAP): CAP exhibits a 450-fold higher affinity for the consensus DNA site than for the E. coli lac DNA site. Nucleic Acids Res. Dec. 25, 1989;17(24):10295-305.
Edgar. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. Oct. 1, 2010;26(19):2460-1. doi: 10.1093/bioinformatics/btq461. Epub Aug. 12, 2010.
Eklund, et al. Altered target site specificity variants of the I-Ppol His-Cys box homing endonuclease. Nucleic Acids Res. 2007;35(17):5839-50. Epub Aug. 24, 2007.
EP17816357.2 Extended European Search Report dated Apr. 8, 2019.
European Search Report dated Jun. 26, 2017 for EP Application No. 15749644.9.
Examination Report dated Jun. 27, 2017 for GB Application No. 1615434.6.
Farasat, et al. Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria. Mol Syst Biol. Jun. 21, 2014;10:731. doi: 10.15252/msb.20134955.
Findlay, et al. Saturation editing of genomic regions by multiplex homology-directed repair. Nature. Sep. 4, 2014;513(7516):120-3. doi: 10.1038/nature13695.
Fineran, et al. Degenerate target sites mediate rapid primed CRISPR adaptation. Proc Natl Acad Sci U S A. Apr. 22, 2014;111(16):E1629-38. doi: 10.1073/pnas.1400071111. Epub Apr. 7, 2014.
Firth, et al. GLUE-IT and PEDEL-AA: new programmes for analyzing protein diversity in randomized libraries. Nucleic Acids Res. Jul. 1, 2008;36(Web Server issue):W281-5. doi: 10.1093/nar/gkn226. Epub Apr. 28, 2008.
Fisher, et al. Enhancing tolerance to short-chain alcohols by engineering the Escherichia coli AcrB efflux pump to secrete the non-native substrate n-butanol. ACS Synth Biol. Jan. 17, 2014;3(1):30-40. doi: 10.1021/sb400065q. Epub Sep. 13, 2013.
Foo, et al. Directed evolution of an E. coli inner membrane transporter for improved efflux of biofuel molecules. Biotechnol Biofuels. May 21, 2013;6(1):81. doi: 10.1186/1754-6834-6-81.
Gao, et al. DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat Biotechnol. May 2, 2016. doi: 10.1038/nbt.3547.
Garst et al., (2017) 14 Supplementary Figures. Nature Biotechnology: doi:10.1038/nbt.3718.
Garst, et al., Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering. Nature Biotechnology 35, 48-55 (2017) doi:10.1038/nbt.3718.
Garst, et al., Strategies for the multiplex mapping of genes to traits. Microbial Cell Factories 2013, 12:99.
Glebes, et al. Comparison of genome-wide selection strategies to identify furfural tolerance genes in Escherichia coli. Biotechnol Bioeng. Jan. 2015;112(1):129-40. doi: 10.1002/bit.25325. Epub Sep. 2, 2014.
Gutierrez-Rios, et al. Regulatory network of Escherichia coli: consistency between literature knowledge and microarray profiles. Genome Res. Nov. 2003;13(11):2435-43.
Haimovich, et al., Genomes by design. Nature Reviews genetics, 16(9); Aug. 11, 2015: 501-516.
Hamady, et al. Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods. Mar. 2008;5(3):235-7. doi: 10.1038/nmeth.1184. Epub Feb. 10, 2008.
HHMI. The Fields lab homepage. Cloning Vectors. Available at http://depts.washington.edu/sfields/protocols/pOAD.html. Accessed on Jan. 3, 2017.
Ho, et al. Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli. ACS Synth Biol. Feb. 19, 2016;5(2):163-71. doi: 10.1021/acssynbio.5b00197. Epub Nov. 20, 2015.
Hsu et al. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262-78 (2014).
Hsu, et al., DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology. Jul. 21, 2013; 31(9): 827-834.
Hung, et al. Crystal structure of AcrB complexed with linezolid at 3.5 Å resolution. J Struct Funct Genomics. Jun. 2013;14(2):71-5. doi: 10.1007/s10969-013-9154-x. Epub May 15, 2013.
Hwang, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. Mar. 2013;31(3):227-9. doi: 10.1038/nbt.2501. Epub Jan. 29, 2013.
Ibanez, et al. Mass spectrometry-based metabolomics of single yeast cells. Proc Natl Acad Sci U S A. May 28, 2013;110(22):8790-4. doi: 10.1073/pnas.1209302110. Epub May 13, 2013.
International search report and written opinion dated Jul. 28, 2015 for PCT/US2015/015476.
International search report and written opinion dated Nov. 5, 2012 for PCT/US2012/033799.
International Search Report dated Nov. 29, 2017 for International Patent Application No. PCT/US2017/039146.
Isaacs, et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science. Jul. 15, 2011;333(6040):348-53. doi: 10.1126/science.1205822.
Iwakura, et al. Evolutional design of a hyperactive cysteine- and methionine-free mutant of Escherichia coli dihydrofolate reductase. J Biol Chem. May 12, 2006;281(19):13234-46. Epub Mar. 1, 2006.
Jiang, et al. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol. Apr. 2015;81(7):2506-14. doi: 10.1128/AEM.04023-14. Epub Jan. 30, 2015.
Jiang et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233-239 (Mar. 31, 2013). Published online Jan. 29, 2013. doi: 10.1038/nbt.2508.
Jinek, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. Aug. 17, 2012;337(6096):816-21. doi: 10.1126/science.1225829. Epub Jun. 28, 2012.
Kersten, et al. A mass spectrometry-guided genome mining approach for natural product peptidogenomics. Nat Chem Biol. Oct. 9, 2011;7(11):794-802. doi: 10.1038/nchembio.684.
Kim, et al. A guide to genome engineering with programmable nucleases. Nat Rev Genet. May 2014;15(5):321-34. doi: 10.1038/nrg3686. Epub Apr. 2, 2014.
Kim, et al. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A. Feb. 6, 1996;93(3):1156-60.
Kohanski, et al. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. Sep. 7, 2007;130(5):797-810.
Kosuri, et al. Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat Biotechnol. Dec. 2010;28(12):1295-9. doi: 10.1038/nbt.1716. Epub Nov. 28, 2010.
Kwon, et al. Crystal structure of the Escherichia coli Rob transcription factor in complex with DNA. Nat Struct Biol. May 2000;7(5):424-30.
Lajoie, et al. Genomically recoded organisms expand biological functions. Science. Oct. 18, 2013;342(6156):357-60. doi: 10.1126/science.1241459.
Li, et al. Identification of factors influencing strand bias in oligonucleotide-mediated recombination in Escherichia coli. Nucleic Acids Res. Nov. 15, 2003;31(22):6674-87.
Li, et al. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab Eng. Sep. 2015;31:13-21. doi: 10.1016/j.ymben.2015.06.006. Epub Jun. 30, 2015.
Liu, et al. Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discovery. 2015; 1:15007. doi:10.1038/celldisc.2015.7.
Makarova et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13:722-736 (2015).
Makarova, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. Jun. 2011;9(6):467-77. doi: 10.1038/nrmicro2577. Epub May 9, 2011.
Mali, et al. RNA-guided human genome engineering via Cas9. Science. Feb. 15, 2013;339(6121):823-6. doi: 10.1126/science.1232033. Epub Jan. 3, 2013.
Maruyama, et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. May 2015;33(5):538-42. doi: 10.1038/nbt.3190. Epub Mar. 23, 2015.
Mills, et al. Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels. Oct. 15, 2009;2:26. doi: 10.1186/1754-6834-2-26.
Molodtsov, et al. X-ray crystal structures of the Escherichia coli RNA polymerase in complex with benzoxazinorifamycins. J Med Chem. Jun. 13, 2013;56(11):4758-63. doi: 10.1021/jm4004889. Epub May 31, 2013.
Murakami, et al. Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 A resolution. Science. May 17, 2002;296(5571):1280-4.
Nakashima, et al. Structural basis for the inhibition of bacterial multidrug exporters. Nature. Aug. 1, 2013;500(7460):102-6. doi: 10.1038/nature12300. Epub Jun. 30, 2013.
Nakashima, et al. Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature. Nov. 27, 2011;480(7378):565-9. doi: 10.1038/nature10641.
NCBI. Basic Local Alignment Search Tool. Available at https://blast.ncbi.nlm.nih.gov/Blast.cgi. Accessed on Jan. 3, 2017.
Neylon, Cameron., Chemical and biochemical strategies for the randomization of protein encoding DNA sequences: library construction methods for directed evolution. Nucleic Acids Research, 2004, vol. 32, No. 4. 1448-1459.
Office Action dated Jun. 16, 2016 for U.S. Appl. No. 14/110,072.
Office Action dated Jun. 21, 2017 for U.S. Appl. No. 14/110,072.
Office Action dated Nov. 8, 2017 for U.S. Appl. No. 15/630,909.
Office Action dated Nov. 20, 2017 for U.S. Appl. No. 15/632,222.
Office Action dated Dec. 9, 2016 for U.S. Appl. No. 14/110,072.
Oh et al. CRISPR-Cas9-assisted recombineering in lactobacillus reuteri. Nucleic Acids Res 42(17):e131 (2014).
Pines, et al. Codon compression algorithms for saturation mutagenesis. ACS Synth Biol. May 15, 2015;4(5):604-14. doi: 10.1021/sb500282v. Epub Oct. 30, 2014.
Prior, et al. Broad-host-range vectors for protein expression across gram negative hosts. Biotechnol Bioeng. Jun. 1, 2010;106(2):326-32. doi: 10.1002/bit.22695.
Qi et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173-1183 (2013).
Raman, et al. Evolution-guided optimization of biosynthetic pathways. Proc Natl Acad Sci U S A. Dec. 16, 2014;111(50):17803-8. doi: 10.1073/pnas.1409523111. Epub Dec. 1, 2014.
Reynolds, et al. Quantifying Impact of Chromosome Copy Number on Recombination in Escherichia coli. ACS Synth Biol. Jul. 17, 2015;4(7):776-80. doi: 10.1021/sb500338g. Epub Mar. 19, 2015.
Rhee, et al. A novel DNA-binding motif in MarA: the first structure for an AraC family transcriptional activator. Proc Natl Acad Sci U S A. Sep. 1, 1998;95(18):10413-8.
Rice, et al. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell. Dec. 27, 1996;87(7):1295-306.
Richardson et al. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol 2016; 34(3):339-344.
Rodriguez-Verdugo, et al. Evolution of Escherichia coli rifampicin resistance in an antibiotic-free environment during thermal stress. BMC Evol Biol. Feb. 22, 2013;13:50. doi: 10.1186/1471-2148-13-50.
Ronda, et al. CRMAGE: CRISPR Optimized MAGE Recombineering. Sci Rep. Jan. 22, 2016;6:19452. doi: 10.1038/srep19452.
Ross, et al. A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science. Nov. 26, 1993;262(5138):1407-13.
Roy, et al., Multiplexed precision genome editing with trackable genomic barcodes in yeast. Nature Biotechnology, Jun. 2018; 36(6):512-524.
Sadhu, et al., Highly parallel genome variant engineering with CRISPR-Cas9. Nature genetics, Apr. 9, 2018; 1-11.
Sandoval, et al. Strategy for directing combinatorial genome engineering in Escherichia coli. Proc Natl Acad Sci U S A. Jun. 26, 2012;109(26):10540-5. doi: 10.1073/pnas.1206299109. Epub Jun. 11, 2012.
Sapranauskas et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acid Res. 39:9275-9282 (2011).
Sawitzke, et al. Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering. J Mol Biol. Mar. 18, 2011;407(1):45-59. doi: 10.1016/j.jmb.2011.01.030. Epub Jan. 19, 2011.
Semenova et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. PNAS USA 108(25):10098-10103 (2011).
Shalem et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84-87 (2014).
Shendure. Life after genetics. Genome Med. Oct. 29, 2014;6(10):86. doi: 10.1186/s13073-014-0086-2. eCollection 2014.
Shmakov et al. Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Mol Cell 60(3):385-397 (2015).
Smanski, et al. Functional optimization of gene clusters by combinatorial design and assembly. Nat Biotechnol. Dec. 2014;32(12):1241-9. doi: 10.1038/nbt.3063. Epub Nov. 24, 2014.
Stearns, et al., Manipulating yeast genome using plasmid vectors. Methods in Enzymology. 1990, 185:280-297.
Steinmetz, et al. Maximizing the potential of functional genomics. Nat Rev Genet. Mar. 2004;5(3):190-201.
Stoebel, et al. Compensatory evolution of gene regulation in response to stress by Escherichia coli lacking RpoS. PLoS Genet. Oct. 2009;5(10):e1000671. doi: 10.1371/journal.pgen.1000671. Epub Oct. 2, 2009.
Swarts, et al. Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Res. May 26, 2015;43(10):5120-9. doi: 10.1093/nar/gkv415. Epub Apr. 29, 2015.
Swarts, et al. DNA-guided DNA interference by a prokaryotic Argonaute. Nature. Mar. 13, 2014;507(7491):258-61. doi: 10.1038/nature12971. Epub Feb. 16, 2014.
Tenaillon, et al. The molecular diversity of adaptive convergence. Science. Jan. 27, 2012;335(6067):457-61. doi: 10.1126/science.1212986.
Toprak, et al. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat Genet. Dec. 18, 2011;44(1):101-5. doi: 10.1038/ng.1034.
U.S. Appl. No. 15/630,909 Notice of Allowance dated Mar. 26, 2018.
U.S. Appl. No. 15/632,222 Notice of Allowance dated Mar. 26, 2018.
U.S. Appl. No. 15/116,616 Notice of Allowance dated Feb. 1, 2019.
U.S. Appl. No. 15/116,616 Office Action dated Jul. 30, 2018.
U.S. Appl. No. 15/116,616 Office Action dated Mar. 16, 2018.
U.S. Appl. No. 15/116,616 Office Action dated Nov. 14, 2018.
U.S. Appl. No. 15/630,909 Office Action dated Mar. 2, 2018.
U.S. Appl. No. 15/632,222 Office Action dated Mar. 2, 2018.
U.S. Appl. No. 15/948,785 Notice of Allowance dated Apr. 26, 2019.
U.S. Appl. No. 15/948,785 Office Action dated Jun. 4, 2018.
U.S. Appl. No. 15/948,785 Office Action dated Mar. 26, 2019.
U.S. Appl. No. 15/948,785 Office Action dated Nov. 2, 2018.
U.S. Appl. No. 15/948,789 Notice of Allowance dated Jan. 10, 2019.
U.S. Appl. No. 15/948,789 Office Action dated Jun. 22, 2018.
U.S. Appl. No. 15/948,789 Office Action dated Oct. 11, 2018.
U.S. Appl. No. 15/948,793 Notice of Allowance dated Feb. 1, 2019.
U.S. Appl. No. 15/948,793 Office Action dated Sep. 5, 2018.
U.S. Appl. No. 15/948,798 Notice of Allowance dated Feb. 6, 2019.
U.S. Appl. No. 15/948,798 Office Action dated Sep. 17, 2018.
U.S. Appl. No. 16/056,310 Notice of Allowance dated Apr. 16, 2019.
U.S. Appl. No. 16/056,310 Office Action dated Mar. 13, 2019.
U.S. Appl. No. 16/056,310 Office Action dated Nov. 9, 2018.
Waaijers, et al. CRISPR/Cas9-targeted mutagenesis in Caenorhabditis elegans. Genetics. Nov. 2013;195(3):1187-91. doi: 10.1534/genetics.113.156299. Epub Aug. 26, 2013.
Wang, et al. Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals. Proc Natl Acad Sci U S A. Mar. 5, 2013;110(10):4021-6. doi: 10.1073/pnas.1217958110. Epub Feb. 19, 2013.
Wang, et al. Genome-scale promoter engineering by coselection MAGE. Nat Methods. Jun. 2012;9(6):591-3. doi: 10.1038/nmeth.1971. Epub Apr. 8, 2012.
Wang, et al. Multiplexed in vivo His-tagging of enzyme pathways for in vitro single-pot multienzyme catalysis. ACS Synth Biol. Feb. 17, 2012;1(2):43-52.
Wang, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. May 9, 2013;153(4):910-8. doi: 10.1016/j.cell.2013.04.025. Epub May 2, 2013.
Wang, et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature. Aug. 13, 2009;460(7257):894-8. doi: 10.1038/nature08187. Epub Jul. 26, 2009.
Warner, et al. Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat Biotechnol. Aug. 2010;28(8):856-62. doi: 10.1038/nbt.1653. Epub Jul. 18, 2010.
Watson, et al. Directed evolution of trimethoprim resistance in Escherichia coli. FEBS J. May 2007;274(10):2661-71. Epub Apr. 19, 2007.
Wetmore, et al. Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons. MBio. May 12, 2015;6(3):e00306-15. doi: 10.1128/mBio.00306-15.
White, et al. Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. J Bacteriol. Oct. 1997;179(19):6122-6.
“Withers, et al.Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity. Appl Environ Microbiol. Oct. 2007;73(19):6277-83. Epub Aug. 10, 2007.”.
Wolfe. The acetate switch. Microbiol Mol Biol Rev. Mar. 2005;69(1):12-50.
Wong, et al. Multiplexed Barcoded CRISPR-Cas9 Screening Enabled By CombiGEM. PNAS. Mar. 1, 2016, vol. 113, pp. 2544-2549.
Zeitoun, et al. Multiplexed tracking of combinatorial genomic mutations in engineered cell populations. Nat Biotechnol. Jun. 2015;33(6):631-7. doi: 10.1038/nbt.3177. Epub Mar. 23, 2015.
Zetsche, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. Oct. 22, 2015;163(3):759-71. doi: 10.1016/j.cell.2015.09.038. Epub Sep. 25, 2015.
Zhang, et al., Efficient editing of malaria parasite genome using the CRISPR/Cas9 system. mBio. Jul. 2014; vol. 5 Art. e01414-14.
Zhao, et al. Activity and specificity of the bacterial PD-(D/E)XK homing endonuclease I-Ssp6803I. J Mol Biol. Feb. 6, 2009;385(5):1498-510. doi: 10.1016/j.jmb.2008.10.096. Epub Nov. 12, 2008.
Zheng, et al. Metabolic engineering of Escherichia coli for high-specificity production of isoprenol and prenol as next generation of biofuels. Biotechnol Biofuels. Apr. 24, 2013;6:57. doi: 10.1186/1754-6834-6-57. eCollection 2013.
Related Publications (1)
Number Date Country
20190194650 A1 Jun 2019 US
Provisional Applications (3)
Number Date Country
62483930 Apr 2017 US
62367386 Jul 2016 US
62354516 Jun 2016 US
Continuations (4)
Number Date Country
Parent 15948798 Apr 2018 US
Child 16295393 US
Parent 15948793 Apr 2018 US
Child 15948798 US
Parent 15632222 Jun 2017 US
Child 15948798 US
Parent 15632222 Jun 2017 US
Child 15948793 US