The present disclosure relates to the processing of substrates. In particular, the present disclosure provides improved processes and methods for planarizing substrates.
Semiconductor device formation typically involves a series of manufacturing techniques related to the formation, patterning, and removal of layers of material on a substrate. During routine semiconductor fabrication, various materials formed on a substrate may be removed by patterned etching, chemical-mechanical polishing, as well as other techniques. A variety of techniques are known for etching layers on a substrate, including plasma-based or vapor-phase etching (otherwise referred to as dry etching) and liquid based etching (otherwise referred to as wet etching).
Wet etching generally involves dispensing a chemical solution over the surface of a substrate or immersing the substrate in the chemical solution. The chemical solution (otherwise referred to herein as an etch solution) often contains a solvent and etchant chemical(s) designed to react with materials on the substrate surface and promote dissolution of the reaction products. As a result of exposure of the substrate surface to the etch solution, material is removed from the substrate. The composition and temperature of the etch solution may be controlled to control the etch rate, specificity, and residual material on the surface of the substrate post-etch.
Chemical-mechanical polishing (CMP) has become an indispensable tool for planarization in semiconductor manufacturing. CMP uses a slurry containing a solvent, an abrasive grit, and reactive chemicals designed to corrode the surface being polished. The combination of surface reaction and action of the abrasive grit leads to enhanced material removal at elevated points on the surface. Thus, CMP is commonly used to planarize a substrate having an uneven surface.
In ideal situations, the CMP process 10 shown in
Some applications may require a uniform recess 90 to be formed between the structures 20, as shown in step (f) of
The present disclosure provides various embodiments of improved processes and methods to planarize a substrate. More specifically, the present disclosure provides improved processes and methods that combine chemical mechanical polishing (CMP), wet etch and deposition processes to planarize an uneven surface of a material layer deposited over a plurality of structures formed on a substrate.
In one example embodiment, the techniques described herein may be used to planarize an uneven surface of a material layer that is generated by: (a) forming a plurality of structures that extend above a surface of the substrate, where the plurality of structures are each separated by a gap, which has a critical dimension (CD) that is small compared to surrounding areas of the substrate, and (b) depositing a first material onto a surface of the substrate, the plurality of structures and within the gaps formed between the plurality of structures, so as to form a first material layer having an uneven surface. In such an embodiment, a first CMP process may be used to smooth the uneven surface and provide complete local planarization of the first material layer above the plurality of structures. After achieving complete local planarization, a wet etch process may be used to etch the first material layer until a uniform recess is formed between the plurality of structures and the first material layer is provided with a uniform thickness across the substrate.
In some embodiments of the present disclosure, a second material may be deposited onto the first material layer, the plurality of structures and within the gaps formed between the plurality of structures to form a second material layer having an elevated surface above the plurality of structures. After the second material is deposited, a second CMP process may be used to planarize the elevated surface of the second material layer, thus providing the substrate with a globally planarized surface.
In the embodiments disclosed herein, a wet etch process is utilized after CMP to etch the first material layer until a uniform recess is formed between the plurality of structures and the first material layer is provided with a uniform thickness across the substrate. During the wet etch process, the substrate is exposed to an etch solution, which reacts with the first material layer and promotes dissolution of reaction products to remove the first material from the substrate. When etching material within the gaps formed between the plurality of structures, the rate at which the material is removed from the gaps (i.e., the etch rate) may differ depending on a variety of factors, such as the CD of the gaps, the etchant chemical(s) used within the etch solution, the solvent used within the etch solution, the ratio of etchant chemical(s) to solvent used within the etch solution, the pH of the etch solution and the wall material adjacent to the material being etched. The difference in etch rate within the gaps, and across more planar areas of the substrate, is known in the art as CD-dependent etching.
The present disclosure takes advantage of the CD-depending etching that occurs when etching material deposited within gaps (and other features, such as trenches, holes, slits, etc., having relatively small CD) formed between a plurality of structures (such as lines, layers, fins, etc.) and when etching material deposited across more planar areas of a substrate. The wet etch process described in the present disclosure may use an aqueous-based etch solution or a non-aqueous organic-based etch solution to etch the first material layer, depending on a surface potential of the wall material used to form the plurality of structures. As used herein, an aqueous-based etch solution is one that includes one or more etchant chemicals and an aqueous solvent. A non-aqueous organic-based etch solution, on the other hand, includes one or more etchant chemicals and an organic solvent.
According to one embodiment, a method is provided to form uniform recesses between a plurality of structures formed on a substrate. The method may begin, in some embodiments, by providing the substrate having a plurality of structures formed thereon, wherein the plurality of structures extend above a surface of the substrate, wherein the plurality of structures are each separated by a gap, and wherein a critical dimension (CD) of the gap is small compared to surrounding areas of the substrate. Next, the method may include depositing a material onto a surface of the substrate, the plurality of structures and within the gaps formed between the plurality of structures, wherein said depositing forms a material layer with an uneven surface. In some embodiments, said depositing may include depositing an oxide material or a dielectric material onto the surface of the substrate, the plurality of structures and within the gaps formed between the plurality of structures.
After forming the material layer with the uneven surface, the method may include planarizing the uneven surface of the material layer with a chemical mechanical polishing (CMP) process to provide the material layer with a locally planarized surface above the plurality of structures, and etching the material layer with an etch solution after said planarizing, wherein etching removes the material deposited within the gaps faster than the material is removed from the surrounding areas of the substrate. The method may continue said etching until a uniform recess is formed between the plurality of structures and the material layer is provided with a uniform thickness across the substrate.
In some embodiments, a wall material of the plurality of structures may exhibit a negative surface potential when exposed to aqueous solutions in a given pH range. For example, the wall material may include amorphous silicon (a-Si), polysilicon (poly-Si), silicon carbon nitride (SiCN) or silicon oxynitride (SiON). In such embodiments, said etching may include etching the material layer with a non-aqueous organic-based etch solution that includes one or more etchant chemicals and an organic solvent.
The non-aqueous organic-based etch solution may include a wide variety of etchant chemicals and organic solvents. For example, the one or more etchant chemicals may include at least one of hydrofluoric acid (HF), ammonium hydroxide (NH4OH), hydrochloric acid (HCl), hydrogen peroxide (H2O2), nitric acid (HNO3), phosphoric acid (H3PO4), potassium hydroxide (KOH) and Tetramethylammonium hydroxide (TMAH). The organic solvent may include one or more of methanol (CH4O), ethanol (C2H6O), isopropyl alcohol (C3H8O), benzyl alcohol (C7H8O), ethylene glycol (C2H6O2), acetic acid (CH3COOH), acetone (C3H6O), propylene carbonate (C4H6O3), n-hexane (C6H14), cyclohexane (C6H12), diethyl ether (C4H10O), tetrahydrofuran (C4H8O), benzene (C6H6), toluene (C7H8), dichloromethane (CH2Cl2), trichloroethylene (C2HCl3), 1,1,1-trichloroethane (C2H3Cl3), 1,2-dichloroethane (C2H4Cl2), N-methyl-2-pyrrolidone (C5H9NO), dimethyl sulfoxide (C2H6OS), ethyl lactate (C5H10O3), ethanolamine (C2H7NO) and propylene glycol methyl ether acetate (C6H12O3).
In other embodiments, a wall material of the plurality of structures may exhibit a positive surface potential when exposed to aqueous solutions in a given pH range. For example, the wall material may include silicon nitride (SiN). In such embodiments, said etching may include etching the material layer with an aqueous-based etch solution that includes one or more etchant chemicals and an aqueous solvent.
The aqueous-based etch solution may include a wide variety of etchant chemicals mixed with water. For example, the one or more etchant chemicals may include at least one of hydrofluoric acid (HF), ammonium hydroxide (NH4OH), hydrochloric acid (HCl), hydrogen peroxide (H2O2), nitric acid (HNO3), phosphoric acid (H3PO4), potassium hydroxide (KOH) and Tetramethylammonium hydroxide (TMAH).
According to another embodiment, a method is provided herein for planarizing a substrate. The method may begin, in some embodiments, by providing a substrate having a plurality of structures formed thereon, wherein the plurality of structures extend above a surface of the substrate, wherein the plurality of structures are each separated by a gap, and wherein a critical dimension (CD) of the gap is small compared to surrounding areas of the substrate. Next, the method may include depositing a first material onto a surface of the substrate, the plurality of structures and within the gaps formed between the plurality of structures, wherein said depositing forms a first material layer with an uneven surface.
After forming the first material layer with the uneven surface, the method may include planarizing the uneven surface of the first material layer with a chemical mechanical polishing (CMP) process to provide the first material layer with a locally planarized surface above the plurality of structures, and etching the first material layer with an etch solution after said planarizing, wherein said etching removes the first material deposited within the gaps faster than the first material is removed from the surrounding areas of the substrate. The method may continue said etching until a uniform recess is provided between the plurality of structures and the first material layer is provided with a uniform thickness across the substrate.
After etching the first material layer, as described above, the method may further include depositing a second material onto the first material layer, the plurality of structures and within the gaps formed between the plurality of structures, wherein said depositing forms a second material layer with an elevated surface above the plurality of structures, and planarizing the elevated surface of the second material layer with a chemical mechanical polishing (CMP) process to provide the second material layer with a globally planarized surface.
In some embodiments, said depositing the first material may include depositing an oxide material or a dielectric material onto the surface of the substrate, the plurality of structures and within the gaps formed between the plurality of structures. Likewise, said depositing the second material may include depositing an oxide material or a dielectric material onto the first material layer, the plurality of structures and within the gaps formed between the plurality of structures. In some embodiments, the second material may be the same as the first material. In other embodiments, the first material and the second material may be different.
In some embodiments, a wall material of the plurality of structures may exhibit a negative surface potential when exposed to aqueous solutions in a given pH range. For example, the wall material comprises amorphous silicon (a-Si), polysilicon (poly-Si), silicon carbon nitride (SiCN) or silicon oxynitride (SiON). In such embodiments, said etching may include etching the first material layer with a non-aqueous organic-based etch solution that includes one or more etchant chemicals and an organic solvent.
As noted above, the non-aqueous organic-based etch solution may include a wide variety of etchant chemicals and organic solvents. For example, the one or more etchant chemicals may include at least one of hydrofluoric acid (HF), ammonium hydroxide (NH4OH), hydrochloric acid (HCl), hydrogen peroxide (H2O2), nitric acid (HNO3), phosphoric acid (H3PO4), potassium hydroxide (KOH) and Tetramethylammonium hydroxide (TMAH). The organic solvent may be selected from a group consisting of methanol (CH4O), ethanol (C2H6O), isopropyl alcohol (C3H8O), benzyl alcohol (C7H8O), ethylene glycol (C2H6O2), acetic acid (CH3COOH), acetone (C3H6O), propylene carbonate (C4H6O3), n-hexane (C6H14), cyclohexane (C6H12), diethyl ether (C4H10O), tetrahydrofuran (C4H8O), benzene (C6H6), toluene (C7H8), dichloromethane (CH2Cl2), trichloroethylene (C2HCl3), 1,1,1-trichloroethane (C2H3Cl3), 1,2-dichloroethane (C2H4Cl2), N-methyl-2-pyrrolidone (C5H9NO), dimethyl sulfoxide (C2H6OS), ethyl lactate (C5H10O3), ethanolamine (C2H7NO) and propylene glycol methyl ether acetate (C6H12O3).
In other embodiments, a wall material of the plurality of structures may exhibit a positive surface potential in aqueous solutions having a given pH range. For example, the wall material may include silicon nitride (SiN). In such embodiments, said etching may include etching the first material layer with an aqueous-based etch solution that includes one or more etchant chemicals and an aqueous solvent.
The aqueous-based etch solution may include a wide variety of etchant chemicals mixed with water. For example, the one or more etchant chemicals may include at least one of hydrofluoric acid (HF), ammonium hydroxide (NH4OH), hydrochloric acid (HCl), hydrogen peroxide (H2O2), nitric acid (HNO3), phosphoric acid (H3PO4), potassium hydroxide (KOH) and Tetramethylammonium hydroxide (TMAH).
A more complete understanding of the present inventions and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features. It is to be noted, however, that the accompanying drawings illustrate only exemplary embodiments of the disclosed concepts and are therefore not to be considered limiting of the scope, for the disclosed concepts may admit to other equally effective embodiments.
The present disclosure provides various embodiments of improved processes and methods to planarize a substrate. More specifically, the present disclosure provides improved processes and methods that combine chemical mechanical polishing (CMP), wet etch and deposition processes to planarize an uneven surface of a material layer deposited over a plurality of structures formed on a substrate.
In one example embodiment, the techniques described herein may be used to planarize an uneven surface of a material layer that is generated by: (a) forming a plurality of structures that extend above a surface of the substrate, where the plurality of structures are each separated by a gap, which has a critical dimension (CD) that is small compared to surrounding areas of the substrate, and (b) depositing a first material onto a surface of the substrate, the plurality of structures and within the gaps formed between the plurality of structures, so as to form a first material layer having an uneven surface. In such an embodiment, a first CMP process may be used to smooth the uneven surface and provide complete local planarization of the first material layer above the plurality of structures. After achieving complete local planarization, a wet etch process may be used to etch the first material layer until a uniform recess is formed between the plurality of structures and the first material layer is provided with a uniform thickness across the substrate.
In some embodiments of the present disclosure, a second material may be deposited onto the first material layer, the plurality of structures and within the gaps formed between the plurality of structures to form a second material layer having an elevated surface above the plurality of structures. After the second material is deposited, a second CMP process may be used to planarize the elevated surface of the second material layer, thus providing the substrate with a globally planarized surface.
In the embodiments disclosed herein, a wet etch process is utilized after CMP to etch the first material layer until a uniform recess is formed between the plurality of structures and the first material layer is provided with a uniform thickness across the substrate. During the wet etch process, the substrate is exposed to an etch solution, which reacts with the first material layer and promotes dissolution of reaction products to remove the first material from the substrate. When etching material within the gaps formed between the plurality of structures, the rate at which the material is removed from the gaps (i.e., the etch rate) may differ depending on a variety of factors, such as the CD of the gaps, the etchant chemical(s) used within the etch solution, the solvent used within the etch solution, the ratio of etchant chemical(s) to solvent used within the etch solution, the pH of the etch solution and the wall material adjacent to the material being etched. The difference in etch rate within the gaps, and across more planar areas of the substrate, is known in the art as CD-dependent etching.
The substrate 100 shown in
A material 125 to be etched is deposited onto a surface of the substrate 100, the plurality of structures 105 and within the features 115 formed between the plurality of structures 105. The material 125 may include a wide variety of semiconductor materials. For example, the material 125 may be an oxide, a dielectric material, a silicon or a metal. In one example, the material 125 may be a silicon oxide (such as, e.g., silicon dioxide, SiO2). Other oxide and dielectric materials, including low-k dielectric materials, may also be formed within the plurality of features 105 and etched.
In the embodiment shown in
A wide variety of organic solvents may be used within the non-aqueous organic-based etch solution 130 described herein. Examples of organic solvents that may be included within the non-aqueous organic-based etch solution 130 include, but are not limited to, various alcohols (e.g., methanol (CH4O), ethanol (C2H6O), isopropyl alcohol (C3H8O), benzyl alcohol (C7H8O), etc.), polyhydric alcohols (e.g., ethylene glycol (C2H6O2) etc.), acetic acid (CH3COOH), ketones (e.g., acetone (C3H6O), propylene carbonate (C4H6O3), etc.), alkanes (e.g., n-hexane (C6H14), cyclohexane (C6H12), etc.), ethers (e.g., diethyl ether (C4H10O), tetrahydrofuran (C4H8O), etc.), aromatic hydrocarbons (e.g., benzene (C6H6), toluene (C7H8), etc.), halogen compounds (e.g., dichloromethane (CH2Cl2), trichloroethylene (C2HCl3), 1,1,1-trichloroethane (C2H3Cl3), 1,2-dichloroethane (C2H4Cl2), etc.), nitrogen compounds (e.g., N-methyl-2-pyrrolidone (C5H9NO), etc.), sulfuric compounds (e.g., dimethyl sulfoxide (C2H6OS), etc.), and other volatile, carbon-based solvents such as ethyl lactate (C5H10O3), ethanolamine (C2H7NO) and propylene glycol methyl ether acetate (C6H12O3).
In some embodiments, the non-aqueous organic-based etch solution 130 may include an etchant chemical containing an anion as the main reactive species (e.g., hydrofluoric acid, ammonium hydroxide or hydrochloric acid) mixed with an alcohol (e.g., isopropyl alcohol, IPA), a polyhydric alcohol (e.g., ethylene glycol, EG), acetic acid, AA, or a ketone (e.g., propylene carbonate, PC). In at least one preferred embodiment, the non-aqueous organic-based etch solution 130 may include hydrofluoric acid mixed with IPA, AA, EG or PC. Other organic solvents described herein may also be mixed with hydrofluoric acid or other etchant chemicals (such as NH4OH or HCl) containing an anion as the main reactive species. Although the etchant chemicals described herein can be mixed with many different organic solvents, the compatibility and solubility of the etchant chemical(s) and organic solvent must be carefully considered.
When the substrate 100 is exposed to a non-aqueous organic-based etch solution 130 containing anions as the main reactive species, portions of the features 115 exposed to the non-aqueous organic-based etch solution 130 may exhibit a positive surface potential, as shown in
When the substrate 100 is exposed to a non-aqueous organic-based etch solution 130, as shown in
In the embodiment shown in
When the substrate 100 is exposed to an aqueous-based etch solution 140 containing anions as the main reactive species, portions of the features 115 exposed to the aqueous-based etch solution 140 may exhibit a negative surface potential, as shown in
When the substrate 100 is exposed to an aqueous-based etch solution 140, as shown in
When etching the material 125 formed within the plurality of features 115, the etch rate of the material 125 may depend on a variety of factors, including the critical dimension (CD) of the features 115, the particular etchant chemical(s) and/or reactive species used within the etch solution, the particular solvent used within the etch solution, the ratio of etchant chemical(s) to solvent used within the etch solution and/or the pH of the etch solution. In addition to these factors, the electric potential of the wall material 110 adjacent to the material 125 being etched may also affect the etch rate of the material 125, depending on the etch solution used.
As shown in
According to the Stern model, the electric double layer (EDL) is divided into two parts separated by a plane, referred to as the Stern plane. The centers of adsorbed ions are located in the Stern layer between the wall surface and the Stern plane. Ions with centers located beyond the Stern plane form the Diffuse layer of the EDL. As shown in
The graph 500 shown in
In the graph 500 shown in
In the description provided above, organic-based etch solutions are used (with or without pH tuning and surfactant addition) to increase the etch rate of material formed within features having smaller CD when: (a) the organic-based etch solution contains anions as the main reactive species, and (b) the material being etched is adjacent to a wall material that exhibits a negative surface potential in aqueous solutions. However, organic-based etch solutions may not provide the desired CD-dependent etch results in all embodiments. In some embodiments, an aqueous-based etch solution may be used to increase the etch rate of material formed within features having smaller CD when cations are used as the main reactive species. In some embodiments, the pH may be adjusted and/or a surfactant may be added to an aqueous-based etch solution containing cations as the main reactive species to provide the desired CD-dependent etch results.
As described herein, one mechanism that may cause the variation in etch rates when using the various etch solutions, various wall materials, and various CDs is a mechanism related to surface potentials. However, the techniques described herein are not strictly limited to such techniques. Thus, the CD dependent etch rates described herein may be accomplished through other mechanisms and the etch rate advantages described and obtained with the techniques provided herein are not limited to the particular surface potential mechanisms. Rather, the advantages may be obtained utilizing other mechanisms also.
The present disclosure combines chemical mechanical polishing (CMP), wet etch and deposition processes to provide improved processes and methods for planarizing an uneven surface of a material layer formed on a substrate. As noted above, a CMP process may be initially used to smooth the uneven surface and provide complete local planarization of the material layer above the plurality of structures. After achieving complete local planarization, a wet etch process may be used to etch the material layer until a uniform recess is formed between the plurality of structures and the material layer is provided with a uniform thickness across the substrate.
In some embodiments of the present disclosure, a second material may be deposited onto the first material layer, the plurality of structures and within the gaps formed between the plurality of structures to form a second material layer having an elevated surface above the plurality of structures. After the second material is deposited, another CMP process may be used to planarize the elevated surface of the second material layer, thus providing the substrate with a globally planarized surface.
The wet etch process described in the present disclosure provides a uniform recess between the plurality of structures, and a uniform thickness of the material layer, by taking advantage of the CD-depending etching that occurs when etching material deposited within gaps (and other features, such as trenches, holes, slits, etc., having relatively small CD) formed between a plurality of structures (such as lines, layers, fins, etc.) and when etching material deposited across more planar areas of the substrate. The etch solution utilized within the wet etch process may be chosen based on a variety of factors, including but not limited to, the desired etch rate of the material layer, the CD of the gaps formed between the plurality of structures and the surface potential of the wall material adjacent to the material layer being etched.
In some embodiments, the improved process 600 and method 700 may begin by providing a substrate 602 having a plurality of structures 604 formed thereon (in step 610 of
Once a substrate is provided as shown in
Regardless of the deposition process and the material deposited, the deposition step shown in
After the first material is deposited in
After CMP is performed in
The wet etch process shown in
When the first material layer 622 is adjacent to a wall material (such as SiN) that exhibits a positive surface potential when exposed to aqueous solutions in a given pH range, the wet etch process shown in
In some embodiments, the etch solution 642 used to etch the first material layer 622 may depend on other factors, such as cost, safety, environmental concerns and compatibility with hardware parts, when the first material layer 622 is adjacent to a positively charged surface. In some embodiments, an aqueous-based etch solution may be used to etch the first material layer 622, due to the factors above. In other embodiments, a non-aqueous organic-based etch solution may be used to etch the first material layer 622 when the first material layer 622 is adjacent to a positively charged surface.
The above-mentioned etch solutions remove the first material deposited within the gaps 606 faster than the first material is removed from the surrounding areas of the substrate when: (a) the etch solution 642 contains anions as the main reactive species, and (b) the material being etched (e.g., the first material layer 622) is adjacent to a wall material that exhibits a negative surface charge when exposed to aqueous solutions of certain pH. However, the etch solution 642 is not strictly limited to the example etch solutions described above. When the etch solution 642 contains cations, instead of anions, as the main reactive species, an alternative etch solution 642 may be used to provide a faster etch rate within the gaps 606 than the surrounding areas of the substrate. For example, the etch solution 642 may alternatively include an aqueous-based etch solution containing cations as the main reactive species. In some embodiments, the pH of the etch solution 642 may be adjusted and/or a surfactant may be added to the etch solution 642 to change the surface potential of the wall material adjacent to the material being etched and provide the desired CD-dependent etch results.
Some applications may require a uniform recess 652 to be formed between the plurality of structures 604. As shown in
The present disclosure improves upon conventional methods for forming uniform recesses between structures by providing an improved process 600 and method 700 that does not require complete global planarization of the uneven surface. In the present disclosure, CMP requirements are relaxed by stopping the CMP process as soon as the first material layer 622 is provided with a locally planarized surface 632, as shown in
Some applications may require complete global planarization of an uneven surface. However, complete global planarization is difficult to achieve with CMP alone.
The present disclosure improves upon conventional methods of planarization by utilizing a combination of CMP, wet etch and deposition processes to provide complete global planarization of an uneven surface. After forming a uniform recess 652 as shown in
Like the first deposition step shown in
After the second material is deposited in
Improved processes and methods for planarizing an uneven surface of a material layer formed on a substrate are described in various embodiments. In the disclosed embodiments, a wet etch process is utilized after achieving complete local planarization of the uneven surface. The wet etch process may utilize a non-aqueous organic-based etch solution 130 and the aqueous-based etch solution 140, as described above. In the example embodiments shown in
In alternative embodiments of the present disclosure (not illustrated), the etchant chemical utilized within the non-aqueous organic-based etch solution 130 and the aqueous-based etch solution 140 may contain a cation (positively charged ion) as the main reactive species. When a cation is used as the main reactive species, the non-aqueous organic-based etch solution 130 and the aqueous-based etch solution 140 may provide an etching effect, which is opposite to that which is shown in
The term “substrate” as used herein means and includes a base material or construction upon which materials are formed. The substrate may include any material portion or structure of a device (particularly a semiconductor or other electronics device), and may, for example, be a base substrate structure (such as a semiconductor substrate) or a layer on or overlying a base substrate structure (such as a thin film). Thus, the term “substrate” is not intended to be limited to any particular base structure, underlying layer or overlying layer, patterned layer or unpatterned layer. Rather, the term “substrate” is contemplated to include any such layer or base structure, and any combination of layers and/or base structures.
It will be appreciated that the substrate described herein may include a single material, a plurality of layers of different materials, a layer or layers having regions of different materials or different structures in them, etc. These materials may include semiconductors, insulators, conductors, or combinations thereof. For example, the substrate may be a semiconductor substrate, a base semiconductor layer on a supporting structure, a metal electrode or a semiconductor substrate having one or more layers, structures, features or regions formed thereon. The substrate may be a conventional silicon substrate or other bulk substrate comprising a layer of semi-conductive material. As used herein, the term “bulk substrate” means and includes not only silicon wafers, but also silicon-on-insulator (“SOI”) substrates, such as silicon-on-sapphire (“SOS”) substrates and silicon-on-glass (“SOG”) substrates, epitaxial layers of silicon on a base semiconductor foundation, and other semiconductor or optoelectronic materials, such as silicon-germanium, germanium, gallium arsenide, gallium nitride, and indium phosphide. The substrate may be doped or undoped.
It is noted that reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, material or characteristic described in connection with the embodiment is included in at least one embodiment of the invention, but does not denote that they are present in every embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily referring to the same embodiment of the invention. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments. Various additional layers and/or structures may be included and/or described features may be omitted in other embodiments.
One skilled in the relevant art will recognize that the various embodiments described herein may be practiced without one or more of the specific details, or with other replacement and/or additional methods, materials or components. In other instances, well-known structures, materials or operations are not shown or described in detail to avoid obscuring aspects of various embodiments of the invention. Similarly, for purposes of explanation, specific numbers, materials, and configurations are set forth in order to provide a thorough understanding of the invention. Nevertheless, the invention may be practiced without specific details. Furthermore, it is understood that the various embodiments shown in the figures are illustrative representations and are not necessarily drawn to scale.
Further modifications and alternative embodiments of the processes and methods described herein will be apparent to those skilled in the art in view of this description. It will be recognized, therefore, that the described processes and methods are not limited by the examples described herein. It is to be understood that the forms of the processes and methods described herein are to be taken as example embodiments. Various changes may be made in the implementations. Thus, although the inventions are described herein with reference to specific embodiments, various modifications and changes can be made without departing from the scope of the present inventions. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and such modifications are intended to be included within the scope of the present inventions. Further, any benefits, advantages, or solutions to problems that are described herein with regard to specific embodiments are not intended to be construed as a critical, required, or essential feature or element of any or all the claims.
Number | Name | Date | Kind |
---|---|---|---|
3979241 | Maeda et al. | Sep 1976 | A |
5953578 | Lee | Sep 1999 | A |
6787056 | Tsai et al. | Sep 2004 | B2 |
9865598 | Bi | Jan 2018 | B1 |
20150357189 | Davis | Dec 2015 | A1 |
20180138053 | Yao et al. | May 2018 | A1 |
20210265172 | Fu | Aug 2021 | A1 |
20210407794 | Chang | Dec 2021 | A1 |
20220098485 | Vereecke | Mar 2022 | A1 |
20220130722 | Parikh | Apr 2022 | A1 |
Entry |
---|
Ueda, “Effect Of Hydrophobicity And Surface Potential Of Silicon On SiO2 Etching In Nonometer-Sized Narrow Spaces”, Trans Tech Publications, 2021, 6 pgs. |
Watanabe et al., “High Selectively (SiN/SiO2) Etching Using An Organic Solution Containing Anhydroud HF”, Microelectronic Engineering, 2009, 1 pg. |
Okuyama et al., “Impact Of Electrostatic Effects On Wet Etching Phenomenon In Nanoscale Region”, Trans Tech Publications, 2015, 5 pgs. |
Polster et al., “The Electrical-Double Layer Revisted”, Natural Sciences, Dec. 2021, 10 pgs. |
Zubel et al., “Silicon Anisotropic Etching In Alkaline Solutions IV: The Effect Of Organic And Inorganic Agents On Silicon Anisotropic Etching Process”, Sensors And Actuators A Physical, Jan. 2001, 1 pg. |
MicroChemicals, “Wet-Chemical Etching Of Silicon and Sio2”, Anisotropic Etching Of Silicon, Basics Of Microstructuring, Obtained from Internet Jul. 12, 2022, 7 pgs. |
MicroChemicals, “Wet Chemical Etching—Basics”, Basics Of Microstructuring, Obtained from Internet Jul. 12, 2022, 8 pgs. |
Virginia Semiconductor, “Wet-Chemical Etching And Cleaning Of Silicon”, Jan. 2003, 11 pgs. |
Li et al., “Evaluation On Dispersion Behavior Of The Aqueous Copper Nano-Suspensions”, Journal Of Colloid And Interface Science, Mar. 2007, 9 pgs. |
Number | Date | Country | |
---|---|---|---|
20240087907 A1 | Mar 2024 | US |