The present disclosure relates to a semiconductor device and, more particularly, to a method of fabricating a nonvolatile memory using a quantum dot.
The integration level of dynamic random access memory (hereinafter referred to as “DRAM”) has increased year by year. Presently, a 64 gigabit DRAM cell having about a 70 nm design rule is expected to be manufactured by 2008, and a 1 terabit DRAM cell having about a 35 nm design rule is expected to be manufactured by 2014.
However, the conventional method of forming a layer, for example including an optical lithography technique and a chemical vapor deposition (hereinafter referred to as “CVD”) technique, is useful to manufacture a 64 gigabit DRAM cell or 1 terabit DRAM cell. As a result, research on an improved method of manufacturing a high density DRAM cell has been carried out intensively.
A new lithography technique using an electron beam (hereinafter referred to as “EB”) or X-ray has been developed as an alternative to the optical lithography technique, and an atomic layer deposition (ALD) technique has superseded the CVD technique. In addition, a semiconductor device is now feverishly under study, including a quantum dot of nanometric size, which can be applicable to a single electron gate.
A quantum dot can be formed using a focused ion beam (hereinafter referred to as “FIB”), or EB. The FIB or the EB can coercively put ions or atoms into a predetermined region of the semiconductor substrate and, advantageously, the FIB or the EB can easily control the size and the position of the quantum dot. However, the method of forming the quantum dot using the FIB or the EB has a low productivity and, thus, is not suitable for commercial applications.
The quantum dot can also be formed by nucleation of atoms. In particular, a non-crystalline layer having an amorphous substance is first formed, and then the non-crystalline layer is thermally processed to form a mono crystal. The method using the mono crystal provides a high productivity, but the size and the distribution of the quantum dot are hard to control.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Two examples for forming a gate are described below. First, referring to
Second, referring to
In accordance with the disclosed method, the quantum dot with a diameter of several or tens of nanometers may be formed. Accordingly, the quantum dot may be formed with any desired size, in any desired position, and with uniform distribution since silicon is formed on the sidewalls of the hard mask.
It is noted that this patent claims priority from Korean Patent Application Serial Number 10-2003-0101443, which was filed on Dec. 31, 2003, and is here by incorporated by reference in its entirety.
While the examples herein have been described in detail with reference to example embodiments, it is to be understood that the coverage of this patent is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the sprit and scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2003-0101443 | Dec 2003 | KR | national |