Methods of forming a non-volatile resistive oxide memory cell and methods of forming a non-volatile resistive oxide memory array

Abstract
A method of forming a non-volatile resistive oxide memory cell includes forming a first conductive electrode of the memory cell as part of a substrate. Metal oxide-comprising material is formed over the first conductive electrode. Etch stop material is deposited over the metal oxide-comprising material. Conductive material is deposited over the etch stop material. A second conductive electrode of the memory cell which comprises the conductive material received is formed over the etch stop material. Such includes etching through the conductive material to stop relative to the etch stop material and forming the non-volatile resistive oxide memory cell to comprise the first and second conductive electrodes having both the metal oxide-comprising material and the etch stop material therebetween. Other implementations are contemplated.
Description
TECHNICAL FIELD

Embodiments disclosed herein pertain to methods of forming a non-volatile resistive oxide memory cell and to methods of forming a non-volatile resistive oxide memory array.


BACKGROUND

Memory is one type of integrated circuitry, and is used in computer systems for storing data. Such is typically fabricated in one or more arrays of individual memory cells. The memory cells might be volatile, semi-volatile, or non-volatile. Non-volatile memory cells can store data for extended periods of time, and in many instances including when the computer is turned off. Volatile memory dissipates and therefore requires to be refreshed/rewritten, and in many instances including multiple times per second. Regardless, the smallest unit in each array is termed as a memory cell and is configured to retain or store memory in at least two different selectable states. In a binary system, the storage conditions are considered as either a “0” or a “1”. Further, some individual memory cells can be configured to store more than two levels of information.


Integrated circuitry fabrication continues to strive to produce smaller and denser integrated circuits. Accordingly, the fewer components an individual circuit device has, the smaller the construction of the finished device can be. Likely the smallest and simplest memory cell will be comprised of two conductive electrodes having a programmable material received there-between. Example materials include metal oxides which may or may not be homogenous, and may or may not contain other materials therewith. Regardless, the collective material received between the two electrodes is selected or designed to be configured in a selected one of at least two different resistive states to enable storing of information by an individual memory cell. When configured in one extreme of the resistive states, the material may have a high resistance to electrical current. In contrast in the other extreme, when configured in another resistive state, the material may have a low resistance to electrical current. Existing and yet-to-be developed memory cells might also be configured to have one or more additional possible stable resistive states in between a highest and a lowest resistance state. Regardless, the resistive state in which the programmable material is configured may be changed using electrical signals. For example, if the material is in a high-resistance state, the material may be configured to be in a low resistance state by applying a voltage across the material.


The programmed resistive state is designed to be persistent in non-volatile memory. For example, once configured in a resistive state, the material stays in such resistive state even if neither a current nor a voltage is applied to the material. Further, the configuration of the material may be repeatedly changed from one resistance state to another for programming the memory cell into different of at least two resistive states. Upon such programming, the resistive state of the material can be determined by appropriate signals applied to one or both of the two electrodes between which the material is received.


Certain metal oxides can be used as such materials in resistive memory cells. During fabrication, the materials which make up the memory elements are deposited and patterned to produce a desired finished shape and construction of the individual memory cells in an array of such cells. Accordingly, a conductive material is deposited for one of the electrodes, followed by deposition of at least some metal oxide for the programmable region, and followed by deposition of more conductive material for the other electrode of the memory cell. Often, the first and second conductive layers are fabricated as elongated conductive lines which run generally parallel an outermost major surface of the substrate upon which such are fabricated, yet generally orthogonal relative to one another.


Regardless, the three different regions of the memory cell are often patterned by etching using multiple masking and etching steps. Such typically include anisotropic plasma etching through the conductive outer electrode material inwardly at least to the metal oxide which will be the programmable region of the memory cell. Further, usually subsequent plasma etching is conducted through the metal oxide to the lower electrode conductive material. Also, the metal oxide may be exposed to plasma-based post-etch cleans. Regardless, exposure of the metal oxide material to plasma etching can adversely affect the operation of the memory cell in that composition and/or structure of the metal oxide material may be modified in an unpredictable manner.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagrammatic top plan view of a semiconductor substrate fragment in process in accordance with an embodiment of the invention.



FIG. 2 is a cross sectional view of the FIG. 1 substrate fragment comprising a planar cross section taken through line 2-2 in FIG. 1.



FIG. 3 is a view of the FIG. 2 substrate fragment at a processing step subsequent to that shown by FIG. 2.



FIG. 4 is a view of the FIG. 3 substrate fragment at a processing step subsequent to that shown by FIG. 3.



FIG. 5 is a view of the FIG. 4 substrate fragment at a processing step subsequent to that shown by FIG. 4.



FIG. 6 is a diagrammatic top plan view of the FIG. 1 semiconductor substrate fragment at a processing step subsequent to that shown by FIG. 5.



FIG. 7 is a cross sectional view of the FIG. 6 substrate fragment comprising a planar cross section taken through line 7-7 in FIG. 6.



FIG. 8 is a cross sectional view of an alternate embodiment substrate fragment to that shown in FIG. 7.



FIG. 9 is a cross sectional view of an alternate embodiment substrate fragment to those shown in FIGS. 7 and 8.



FIG. 10 is a cross sectional view of an alternate embodiment substrate fragment to those shown in FIG. 7-9.



FIG. 11 is a diagrammatic isometric view of a semiconductor substrate fragment in process in accordance with an embodiment of the invention.



FIG. 12 is a view of the FIG. 11 substrate fragment at a processing step subsequent to that shown by FIG. 11.



FIG. 13 is a view of the FIG. 12 substrate fragment at a processing step subsequent to that shown by FIG. 12.



FIG. 14 is a view of the FIG. 13 substrate fragment at a processing step subsequent to that shown by FIG. 13.



FIG. 15 is a view of the FIG. 14 substrate fragment at a processing step subsequent to that shown by FIG. 14.



FIG. 16 is a view of the FIG. 15 substrate fragment at a processing step subsequent to that shown by FIG. 15.



FIG. 17 is a view of the FIG. 16 substrate fragment at a processing step subsequent to that shown by FIG. 16.



FIG. 18 is a diagrammatic isometric view of a semiconductor substrate fragment in process in accordance with an embodiment of the invention.



FIG. 19 is a view of the FIG. 18 substrate fragment at a processing step subsequent to that shown by FIG. 18.





DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

Example embodiments of forming a non-volatile resistive oxide memory cell and of forming a non-volatile resistive oxide memory array are initially described with reference to FIGS. 1-10. Referring initially to FIGS. 1 and 2, a substrate, for example a semiconductor substrate, is indicated generally with reference numeral 10. In the context of this document, the term “semiconductor substrate” or “semiconductive substrate” is defined to mean any construction comprising semiconductive material, including, but not limited to, bulk semiconductive materials such as a semiconductive wafer (either alone or in assemblies comprising other materials thereon), and semiconductive material layers (either alone or in assemblies comprising other materials). The term “substrate” refers to any supporting structure, including, but not limited to, the semiconductive substrates described above. Substrate fragment 10 comprises material 12 over which a series of conductive lines 13, 14 and 15 has been fabricated. Multiple different materials and layers would likely be present at least below material 12, and may for example comprise bulk semiconductor processing, semiconductor-on-insulator processing, or other substrates in process and whether existing or yet-to-be developed. In one example, material 12 is insulative, for example doped and/or undoped silicon dioxide. Insulative material 12 is also shown as being received between conductive lines 13, 14 and 15. Conductive lines 13, 14 and 15 may be comprised of one or more conductive materials and/or layers, including conductively doped semiconductive material.


Portions of each of conductive lines 13, 14 and 15 will comprise a first conductive electrode of a memory cell which will be fabricated. A plurality of non-volatile resistive oxide memory cells may be fabricated within a memory array, thereby for example perhaps millions of such individual memory cells being fabricated at essentially the same time. Further, each of conductive lines 13, 14 and 15 may constitute a first conductive electrode of multiple different memory cells, as will be apparent in the continuing discussion. Conductive lines 13, 14 and 15 comprise an example of a plurality of one of conductive word lines or conductive bit lines which have been formed over a substrate. In other words, each of the depicted conductive lines 13, 14 and 15 will comprise conductive word lines or each of conductive lines 13, 14 and 15 will comprise conductive bit lines. In the depicted and but one example embodiment, the lines 13, 14 and 15 run in respective straight lines within the array, although other configurations are of course contemplated.


Referring to FIG. 3, a metal oxide-comprising material 18 has been formed over first conductive electrode 15, and accordingly over the one of conductive word lines 13, 14, and 15 or conductive bit lines 13, 14, and 15. Material 18 may or may not comprise an outermost planar surface. Material 18 may be homogenous or non-homogenous, and may comprise one or more different compositions and/or layers. Accordingly, material 18 may be deposited/formed in one or more steps. By ways of example only, material 18 might comprise multi-resistive state metal oxide-comprising material, further for example comprising two different layers or regions generally regarded as or understood to be active or passive regions, although not necessarily. Example active cell region compositions which comprise metal oxide and can be configured in multi-resistive states include one or a combination of SrxRuyOz, RuxOy, and InxSnyOz. Other examples include MgO, Ta2O5, SrTiO3, ZrOx (perhaps doped with La), and CaMnO3 (doped with one or more of Pr, La, Sr, or Sm). Example passive cell region compositions include one or a combination of Al2O3, TiO2, and HfO2. Regardless, multi-resistive state metal oxide-comprising material 28 might comprise additional metal oxide or other materials not comprising metal oxide. Example materials and constructions for a multi-resistive state region comprising one or more layers including a programmable metal oxide-comprising material are described and disclosed in U.S. Pat. Nos. 6,753,561; 7,149,108; 7,067,862; and 7,187,201, as well as in U.S. Patent Application Publication Nos. 2006/0171200 and 2007/0173019, the disclosures of which are hereby fully incorporated herein by reference for all purposes of this disclosure. Further as is conventional, multi-resistive state metal oxide-comprising materials encompass filament-type metal oxides, ferroelectric metal oxides and others, and whether existing or yet-to-be developed, as long as resistance of the metal oxide-comprising material can be selectively changed. Further, metal oxide-comprising material 18 might be configured to have its current leakage capabilities be selectively varied in addition to or instead of its resistive state.


Referring to FIG. 4, etch stop material 20 has been deposited over metal oxide-comprising material 18. In one embodiment and as shown, etch stop material is homogenous and in one embodiment is completely blanketly covering over metal oxide-comprising material 18. Regardless, etch stop material 20 will be used to provide an etch stopping function when etching a subsequently deposited conductive material, as will be described below. In one embodiment, etch stop material 20 comprises an inherently/always electrically conductive material, for example an inherently/always electrically conductive metal oxide. By ways of examples only, inherently/always electrically conductive materials include indium tin oxide, TiN, oxygen doped TiN, and RuO2. Accordingly, etch stop material 20 may comprise one or more of such compositions.


In one embodiment, etch stop material 20 is of an electrically insulative composition yet is of an effective thinness in such instances to be electrically conductive through such composition. Composition of etch stop material 20 in such instances will determine maximum thickness of material 20 in a finished circuitry construction to enable electrical conduction through such composition. Example electrically insulative compositions for etch stop material 20 comprise at least one of silicon dioxide, silicon nitride, silicon oxynitride, silicon carbide, and titanium dioxide. In some embodiments, etch stop material 20 has a thickness no greater than 200 Angstroms in a finished circuitry construction incorporating the memory cell or cells being fabricated, and in one embodiment no greater than 100 Angstroms in such finished circuitry construction. In one embodiment, an example thickness range for etch stop material 20 in a finished circuitry construction incorporating such etch stop material is from 50 Angstroms to 200 Angstroms, although thicknesses less than 50 Angstroms are also of course contemplated.


Referring to FIG. 5, conductive material 22 has been deposited over etch stop material 20. Conductive material 22 may be homogenous or non-homogenous, and regardless be of the same or different composition from that of conductive material of first electrode 15.


Referring to FIGS. 6 and 7, a plurality of the other of conductive word lines 24, 25, 26 or conductive bit lines 24, 25, 26 has been formed from conductive material 22. An example technique for forming conductive lines 24, 25, and 26 comprises photolithographic patterning of an imageable material, such as photoresist, followed by develop and subsequent subtractive etch of material 22 to produce the FIGS. 6 and 7 construction. Portions of each of lines 24, 25, and 26 will comprise second conductive electrodes of the respective memory cells being fabricated. Regardless, the forming of the second conductive electrode 24, 25, and 26 of a respective memory cell comprises etching through conductive material 22 to stop etching action relative to etch stop material 20. Accordingly, etch stop material 20 provides an effective etch stopping function when etching through material 22 to form the depicted plurality of the other of conductive word lines 24, 25, 26 or conductive bit lines 24, 25, 26.


By way of example only, FIGS. 6 and 7 depict respective non-volatile resistive oxide memory cells 30 which comprise a portion of conductive line 15 which comprises a first conductive electrode of the respective memory cells, and a second conductive electrode comprising portions of one of the depicted conductive lines 24, 25, and 26. The respective memory cells 30 also comprise both metal oxide-comprising material 18 and etch stop material 20 which are received between the respective first and second conductive electrodes of the respective memory cells. Accordingly, etch stop material 20 comprises a part of the finished circuitry construction incorporating an individual memory cell. In the depicted and example but one embodiment, etch stop material 20 is completely blanketly covering between metal oxide-comprising material 18 and the overlying second conductive electrode in a finished circuitry construction incorporating the memory cell. In one embodiment wherein etch stop material 20 is of an electrically insulative composition, such material 20 is of an effective thinness between the respective first and second conductive electrodes to be electrically conductive through such composition when a multi-resistive state metal oxide-comprising material 18 is in a lowest resistive state, thereby for example for a binary memory cell enabling such cell to be switchable between “on” and “off” conditions.


In embodiments where etch stop material 20 is conductive, such is removed sufficiently (not shown in FIGS. 6 and 7) between/among memory cells 30 to preclude electrical shorting of different memory cells 30. In embodiments where etch stop material 20 is insulative, such may or may not need to be any of treated, removed partially, removed wholly, or not removed at all between/among memory cells 30 to preclude electrical shorting of different memory cells 30. Such may depend at least in part upon the dielectric properties of etch stop material 20 and/or spacing between adjacent memory cells 30. For example in the embodiment of FIGS. 6 and 7, composition of an insulative etch stop material 20 might be both (a) insufficiently resistive to enable conductivity between electrodes 22 and 15 when material 18 is in a lowest resistance state due in part to separation distance between electrodes 22 and 15 in a memory cell, and (b) sufficiently resistive between adjacent memory cells 30 due to greater separation distance therebetween as compared to the separation distance between electrodes 22 and 15 in a memory cell. Yet if condition (a) is satisfied and condition (b) is not, etch stop material 20 between memory cells 30 might be one or both of i) treated to increase resistivity thereof, or ii) thinned. Such might be desirable to minimize electrical interference between or among spaced memory cells 30, and further may be desirable even if both conditions (a) and (b) are satisfied. For example, segments of etch stop material 20 remaining between adjacent memory cells 30 might adversely or unpredictably impact programming voltage required to change states of material 18 in spaced memory cells 30. Thinning and/or treating to increase resistance of such material 20 between memory cells 30 might be used in such instances.


Regardless, different dielectric materials 20 can be deposited in one lower resistance state and treated after deposition to a second higher resistance state. For example, lower density of a given inherently/always dielectric material typically results in lower resistivity as compared to higher density of the same material. As one example, a low density silicon dioxide can be increased in density and resistance by treating with ozone with deionized water at elevated temperature. In another embodiment, etch stop material 20 can be removed to material 18 between memory cells 30 such that material 20 does not interconnect among individual memory cells 30.


In one embodiment, the act of etching through conductive material 22 to form the respective second conductive electrode portions of the memory cell stops on etch stop material 20 such that no detectable quantity of etch stop material 20 is etched during any of the etching of such conductive material 22. For example and by way of example only, FIG. 7 depicts a perfect selective etch of material 22 relative to etch stop material 20 such that none of etch stop material 20 is etched away after clearing conductive material 22 from between the depicted other of conductive word lines 24, 25, 26 or conductive bit lines 24, 25, 26.


Yet an alternate embodiment comprises etching through conductive material 22 whereby etch stop material 20 is only partially etched into upon complete etching through material 22 between conductive lines 24, 25, and 26, and accordingly still providing an etch stopping function during the etch of conductive material 22. Such partial etching into etch stop material 20 while etching conductive material 22 might, for example, etch less or more than half of thickness of etch stop material 20, or about half of thickness of etch stop material 20. For example and by way of examples only, FIG. 8 illustrates an alternate embodiment substrate fragment 10a wherein etching of conductive material 22 has also etched partially into etch stop material 20 to less than half of the thickness of etch stop material 20. FIG. 9 illustrates an alternate embodiment substrate fragment 10b wherein etching through conductive material 22 has etched partially into etch stop material 20 to more than half of the thickness etch stop material 20. Regardless, any etching of etch stop material 20 while etching conductive material 22 may or may not result in some lateral recess of material 22 relative to one or both of the respective first and second conductive electrodes, whereby the etch stop material may not be completely blanketly covering between the metal oxide-comprising material and the second conductive electrode in a finished circuitry construction incorporating the memory cell. Regardless, subsequently deposited insulative and wiring layers (not shown as not being material to the inventions disclosed herein) would likely be provided over each of the substrates of FIGS. 7, 8, and 9 in respective finished circuitry constructions.


In some embodiments, methods of forming a non-volatile resistive oxide memory cell and/or memory array are void of exposing any of metal oxide-comprising material 18 to any etching plasma, for example as may be desirable to overcome one or more problems identified in the Background section above. Alternately in some embodiments, metal oxide-comprising material 18 may be exposed to an etching plasma. Regardless, some embodiments of the invention also contemplate etching through etch stop material 20 laterally outward of the second conductive electrode to the metal oxide-comprising material after etching through the conductive material and using the etch stopping attribute or act relative to the etch stop material. For example, FIG. 10 illustrates an alternate embodiment substrate fragment 10c which could result from subsequent processing of any of the substrate fragments 10, 10a, or 10b of FIGS. 7, 8, and 9, respectively. Substrate fragment 10c in FIG. 10 has been processed to etch through etch stop material 20 laterally outward of each of the depicted second conductive electrodes 24, 25, and 26 to metal oxide-comprising material 18. Such subsequent etching of etch stop material 20 may or may not be conducted selectively relative to metal oxide-comprising material 18, and may or may not comprise wet, dry, and/or plasma etching.


In the above depicted and described example embodiments, programmable junctions or memory cells manifest where the respective word lines and bit lines cross one another. Further by way of example only and as shown in the above embodiments, the plurality of the other of conductive word lines 24, 25, 26 or conductive bit lines 24, 25, 26 run generally parallel an outer major surface of the substrate (as do the plurality of one of conductive word lines 13, 14, 15 or conductive bit lines 13, 14, 15), and are angled relative to the plurality of such one of word lines 13, 14, 15 or bit lines 13, 14, 15. The outermost surface of the respective substrates may or may not be planar at certain or any points during processing. Regardless, the above-described and depicted substrates at their respective largest or global scales can be considered as having some respective outer major surface that can be considered, on average, as defining some general horizontal plane relative to which the various layers and circuitry components are fabricated. Such outer major surface of the respective substrates may, of course, be comprised of more than one composition at different points in processing of the respective substrates. Further, the outer major surface of the respective substrates can be considered as averaging to be planar throughout fabrication, with such general plane rising and lowering as the circuitry is fabricated.


By ways of examples only, alternate exemplary embodiments of methods of forming a non-volatile resistive oxide memory cell and/or array are next described with reference to FIGS. 11-19. Referring initially to FIG. 11, a substrate fragment is indicated generally with reference numeral 40. Such comprises material 42 relative to which a series of conductive lines has been fabricated, for example lines 44 and 46. As above, multiple different materials and layers would likely be present at least below material 42 (as in accordance with material 12 in the above-described embodiments), and may for example comprise bulk semiconductor processing, semiconductor-on-insulator processing, or other substrates in process and whether existing or yet-to-be developed. In one example, material 42 is insulative, for example doped and/or undoped silicon dioxide. Insulative material 42 is also shown as being received between conductive lines 44 and 46. Conductive lines 44 and 46 may be comprised of one or more conductive materials and/or layers, including conductively doped semiconductive material.


Portions of each of conductive lines 44 and 46 will comprise a first conductive electrode of a respective memory cell which will be fabricated. As in the above-described embodiments, a plurality of non-volatile resistive oxide memory cells may be fabricated within a memory array, thereby for example perhaps millions of such individual memory cells being fabricated at essentially the same time. Further, each of conductive lines 44 and 46 may constitute a first conductive electrode of multiple different memory cells. Conductive lines 44 and 46 comprise an example of a plurality of one of conductive word lines or conductive bit lines which have been formed over a substrate. In other words, each of the depicted conductive lines 44 and 46 will comprise conductive word lines or each of conductive lines 44 and 46 will comprise conductive bit lines. In the depicted and but one example embodiment, lines 44 and 46 run in respective straight lines within the array, although other configurations are of course contemplated.


Metal oxide-comprising material 48 has been formed over the one of conductive word lines 44, 46 or conductive bit lines 44, 46. Example materials and constructions are as described above in the first-described embodiments with respect to material 18.


Etch stop material 50 has been deposited over metal oxide-comprising material 48. Example compositions and constructions are as described above in the first-described embodiments in connection with etch stop material 20. However, none or some of etch stop material 20 may remain in a finished circuitry construction of a non-volatile resistive oxide memory cell in the embodiments of FIGS. 11-19, as will be apparent from the continuing discussion.


Damascene template material 52 has been deposited over etch stop material 50. By ways of example only, example damascene template materials include at least one of amorphous carbon, transparent carbon, photoresist, silicon nitride, silicon dioxide (whether doped or undoped and including silicate glasses) and polysilicon (whether doped or undoped).


Referring to FIG. 12, a series of elongated trenches 60, 62 has been etched into damascene template material 52 to etch stop material 50 over the plurality of the one of word lines 44, 46 or bit lines 44, 46 to stop relative to etch stop material 50. In one embodiment and alternately considered, for example considered in the fabrication of a single non-volatile resistive oxide memory cell, either of trenches 60, 62 might be considered as an opening which has been etched through damascene template material 52 to etch stop material 50 over a first conductive electrode comprised of a portion of either of conductive lines 44, 46 to stop relative to etch stop material 50. Accordingly in the depicted embodiment, such example openings respectively comprise an elongated trench in the damascene template material which runs generally parallel an outer major surface of the substrate, and which is angled relative to the plurality of the one of word lines 44, 46 or bit lines 44, 46. Some of etch stop material 50 might also be etched into while still providing an etch stopping function.


Referring to FIG. 13, etching has been conducted through etch stop material 50 within the respective openings 60, 62 to metal oxide-comprising material 48. Any suitable wet or dry etching chemistry might be utilized. In one embodiment, such etching does not utilize any etching plasma such that the process is void of exposing metal oxide-comprising material 50 within the respective openings 60, 62 to any etching plasma, for example to overcome one or more of the problems identified in the Background section above. By way of example only where, for example, the etch stop material comprises silicon dioxide, a suitable dry non-plasma etching chemistry comprises use of NH3 and HF vapors, and/or NF3 radicals. Regardless, in one embodiment, ion implanting of a suitable substance might be conducted into etch stop material 50 within the respective opening 60, 62, or even before deposition of damascene template material 52, to facilitate ease of etching of etch stop material 50 from within the respective openings 60, 62. Regardless, in some embodiments, etching of etch stop material 50 within openings 60, 62 may or may not recess material 50 laterally beneath damascene template material 52. If such lateral recessing occurs and produces a less than desirable resultant outline, subsequent etching might be conducted at least of the sidewalls of damascene template material 52 to remove or reduce such recesses.


Referring to FIGS. 14 and 15, conductive material 64 has been deposited to within the respective opening 60, 62 over metal oxide-comprising material 48 and the respective first conductive electrodes 44, 46. FIGS. 14 and 15 depict an example embodiment whereby conductive material 64 has been deposited to overfill the respective openings/trenches 60, 62, and then polished back to at least an outermost surface of damascene template material 52. In the depicted example embodiment wherein a non-volatile resistive oxide memory array is also fabricated, a plurality of the other of conductive word lines 70, 72 (FIG. 16) or conductive bit lines 70, 72 has been formed from conductive material 64.


Some or all of damascene template material 52 may remain as part of the finished circuitry construction where such is of a desired insulative material. Alternately and by way of example only and referring to FIG. 16, all remaining of damascene template material 52 (not shown) has been removed from the substrate.


Some, none, or all of remaining etch stop material 50 may be removed from the substrate, with FIG. 17 showing an example embodiment wherein all such remaining etch stop material 50 (not shown) has been removed from the substrate. Regardless, metal oxide-comprising material 48 between the one of word lines 44, 46 or bit lines 44, 46 and the other of word lines 70, 72 or bit lines 70, 72 form individually programmable junctions where the word lines and bit lines cross one another, thereby forming the depicted example individual non-volatile resistive oxide memory cells 75.


By ways of example only, the above-described embodiments depict non-volatile resistive oxide memory cells and memory arrays where word lines and bit lines cross one another without isolation patterning of the metal oxide-comprising material and without a conductive projection extending from one or both of the word lines or bit lines for each memory cell. However of course, embodiments of the invention encompass incorporating these or other features in a memory cell or an array of memory cells. For example, the metal oxide-comprising material might be patterned relative to one or a plurality of memory cells, and/or one or more conductive projections might be provided relative to the respective word lines and/or bit lines.


By way of example only, FIGS. 18 and 19 depict an alternate exemplary embodiment with respect to a substrate fragment 40a. Like numerals from the FIGS. 11-17 embodiment have been utilized where appropriate, with differences being indicated with the suffix “a” or with different numerals. FIG. 18 corresponds in processing sequence to FIG. 11 of the substrate fragment embodiment of FIG. 11, yet wherein a plurality of respective conductive projections 80 extend upwardly from word lines 44, 46 or bit lines 44, 46. Accordingly in one example embodiment, such comprise first conductive electrodes of respective non-volatile resistive oxide memory cells. Such conductive projection extending upwardly from a conductive line 44, 46 may be of the same or different composition from that of the conductive line. By way of example only, conductive lines 44, 46 and respective projections 80 are depicted as being of the same composition, and may comprise one or more conductive materials including conductively doped semiconductive material. An example manner of fabricating conductive lines 44, 46 to include projections 80 includes initial deposition of one or more conductive materials to a thickness at or greater than the thickness of a conductive projection including that of the underlying conductive line. The outline of the conductive lines can then be patterned. This can be followed by cross patterning of the conductive projections using a timed etch into the conductive material from which such projections and lines are formed. Other manners of fabrication might be used.


Regardless, FIG. 19 depicts an analogous construction to that of FIG. 17 but additionally incorporating projections 80 to thereby form individual non-volatile resistive oxide memory cells 75a. Nevertheless and regardless, such still defines or forms a non-volatile resistive oxide memory array comprising metal oxide-comprising material received between the one of the word lines or bit lines and the other of the word lines or bit lines to form individually programmable junctions where the word lines and bit lines cross one another. Of course alternately or in addition thereto, downward projections might be provided from the overlying conductive lines 70, 72. Further, either or both of such projection concepts and/or isolation patterning of metal oxide-comprising material might be incorporated in any of the above-described FIGS. 1-10 embodiments.


In compliance with the statute, the subject matter disclosed herein has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the claims are not limited to the specific features shown and described, since the means herein disclosed comprise example embodiments. The claims are thus to be afforded full scope as literally worded, and to be appropriately interpreted in accordance with the doctrine of equivalents.

Claims
  • 1. A method of forming a non-volatile resistive oxide memory cell, comprising: forming a conductive electrode of the memory cell as part of a substrate;forming metal oxid-comprising material over the first conductive electrode;depositing etch stop material over the metal oxide-comprising material, the etch stop material comprising silicon dioxide;depositing damascene template material over the etch stop material;etching an opening through the damascene template material to the etch stop material over the first electrode to stop relative to the etch stop material;after etching the opening through the damascene template material to the etching the material over the first electrode to stop relative to the etch stop material, etching through the etch stop material within the opening to the metal oxide-comprising material, the etching through the etch stop material comprising using at least one of a) NH3 and HF vapors, and b) NF3 radicals; andafter etching through the etch stop material within the opening to the metal oxide-comprising material, depositing conductive material to within the opening over the metal oxide-comprising material and the first conductive electrode and forming a second conductive electrode of the memory cell from the conductive material.
  • 2. The method of claim 1 comprising after etching the opening through the damascene template material to the etch stop material over the first electrode to stop relative to the etch stop material and before etching through the etch stop material within the opening to the metal oxide-comprising material, ion implanting a substance into the etch stop material within the opening.
  • 3. The method of claim 1 being void of exposing said metal oxide-comprising material within the opening to any etching plasma.
  • 4. The method of claim 1 being void of exposing said metal oxide-comprising material to any etching plasma.
  • 5. The method of claim 1 wherein the opening comprises an elongated trench in the damascene template material that runs generally parallel an outer major surface of the substrate.
  • 6. The method of claim 1 wherein the etch stop material further comprises at least one of, silicon nitride, silicon oxynitride, silicon carbide, and titanium dioxide.
  • 7. A method of forming a non-volatile resistive oxide memory cell, comprising: forming a first conductive electrode of the memory cell as part of a substrate;forming metal oxide-comprising material over the first conductive electrode;depositing etch stop material over the metal oxide-comprising material;depositing damascene template material over the etch stop material;etching an opening through the damascene template material to the etch stop material over the first electrode to stop relative to the etch stop material;after etching the opening through the damascene template material to the etch stop material over the first electrode to stop relative to the etch stop material, etching through the etch stop material within the opening to the metal oxide-comprising material;after etching through the etch material within the opening to the metal oxide-comprising material, depositing conductive material to within the opening over the metal oxide-comprising material and the first conductive electrode and forming a second conductive electrode of the memory cell from the conductive material; andafter depositing the conductive material, removing all remaining of said damascene template material from the substrate.
  • 8. The method of claim 7 wherein the damascene template material comprises at least one of transparent carbon, photoresist, silicon nitride, silicon dioxide, and polysilicon.
  • 9. The method of claim 7 comprising after depositing the conductive material and before removing all remaining of said damascene template material, polishing the conductive material back to at least an outermost surface of the damascene template material.
  • 10. The method of claim 7 wherein the metal oxide-comprising material comprises multi-resistive state metal oxide-comprising material.
  • 11. A method of forming a non-volatile resistive oxide memory array, comprising: forming a plurality of one of conductive word lines or conductive bit lines over a substrate;forming multi-resistive state metal oxide-comprising material over the one of conductive word lines or conductive bit lines;depositing etch stop material over the multi-resistive state metal oxide-comprising material;depositing damascene template material over the etch stop material;etching a series of elongated trenches into the damascene template material to the etch stop material over the plurality of said one of word lines or bit lines to stop relative to the etch stop material, the trenches running generally parallel an outer major surface of the substrate, the trenches being angled relative to the plurality of said one of word lines or bit lines;after etching said elongated trenches to stop relative to the etch stop material, etching through the etch stop material within the elongated trenches to the multi-resistive state metal oxide-comprising material;after etching through the etch stop material within the elongated trenches to the multi-resistive state metal oxide-comprising material, depositing conductive material to within the elongated trenches over the multi-resistive state metal oxide-comprising material and the one of conductive word lines or conductive bit lines, and forming a plurality of the other of conductive word lines or conductive bit lines from the conductive material;providing said multi-resistive state metal oxide-comprising material between said one of word lines or bit lines and said other of word lines or bit lines to form individually programmable junctions where the word lines andbit lines cross one another;retaining portions of the etch stop material extending laterally between the other of the conductive word lines or conductive bit lines in a finished circuitry structure; andafter depositing the conductive material, removing all remaining of said damascene template material from the substrate.
  • 12. The method of claim 11 wherein the metal oxide of the metal oxide comprising material comprises one or more member selected from the group consisting of SrxRuyOz, RuOy, InxSnyOz, and CaMnO3.
  • 13. A method of forming a non-volatile resistive oxide memory cell, comprising: forming a first conductive electrode of the memory cell as part of a substrade;forming metal oxide-comprising material over the first conductive electrode;depositing etch stop material over the metal oxide-comprising material;depositing damascene template material over the etch stop material;etching an opening through the damascene template material to the etch stop material over the first electrode to stop relative to the etch stop material;etching through the etch stop material within the opining to the metal oxide-comprising material while retaining laterally extending regions of the etch stop material, at least a portion of the laterally extending regions being retained in a final memory cell structure;depositing conductive material to within the opening over the metal oxide-comprising material; andmodifying the laterally extending regions of etch stop material, the modifying comprising at least one of treating the etch stop material to increase resistivity and removal of part of a thickness of the extending portions of etch stop material.
  • 14. The method of claim 13 wherein the metal oxide-comprising material is formed in direct physical contact with the first conductive electrode.
  • 15. The method of claim 13 wherein the metal oxide of the metal oxide comprising material comprises one or more member selected from the group consisting of SrxRuyOz, RuOy, InxSnyOz, and CaMnO3.
  • 16. The method of claim 13 wherein the etch stop is deposited in direct physical contact with the metal oxide-comprising material.
  • 17. The method of claim 13 wherein the first conductive electrode comprises doped semiconductive material.
RELATED PATENT DATA

This patent resulted from a divisional application of U.S. patent application Ser. No. 12/166,604 which was filed Jul. 2, 2008, and which is incorporated by reference herein.

US Referenced Citations (324)
Number Name Date Kind
4715685 Yaniv et al. Dec 1987 A
4964080 Tzeng Oct 1990 A
5049970 Tanaka et al. Sep 1991 A
5122476 Fazan et al. Jun 1992 A
6034882 Johnson et al. Mar 2000 A
6218696 Radius Apr 2001 B1
6432767 Torii et al. Aug 2002 B2
6524867 Yang et al. Feb 2003 B2
6552952 Pascucci Apr 2003 B2
6687147 Frickie et al. Feb 2004 B2
6693821 Hsu et al. Feb 2004 B2
6693846 Fibranz Feb 2004 B2
6717881 Ooishi Apr 2004 B2
6753561 Rinerson et al. Jun 2004 B1
6753562 Hsu et al. Jun 2004 B1
6757188 Perner et al. Jun 2004 B2
6778421 Tran Aug 2004 B2
6785159 Tuttle Aug 2004 B2
6806531 Chen et al. Oct 2004 B1
6834008 Rinerson et al. Dec 2004 B2
6873544 Perner et al. Mar 2005 B2
6906837 Hsu et al. Jun 2005 B2
6930324 Kowalski et al. Aug 2005 B2
6940113 Hsu et al. Sep 2005 B2
6946702 Jang Sep 2005 B2
6950369 Kunikiyo et al. Sep 2005 B2
6955992 Zhang et al. Oct 2005 B2
6958273 Chen et al. Oct 2005 B2
6961258 Lowrey Nov 2005 B2
6970375 Rinerson et al. Nov 2005 B2
6972211 Hsu et al. Dec 2005 B2
6985374 Yamamura Jan 2006 B2
7002197 Perner et al. Feb 2006 B2
7005350 Walker et al. Feb 2006 B2
7009278 Hsu Mar 2006 B2
7026911 Aono et al. Apr 2006 B2
7029924 Hsu et al. Apr 2006 B2
7029925 Celii et al. Apr 2006 B2
7035141 Tripsas et al. Apr 2006 B1
7046550 Reohr et al. May 2006 B1
7050316 Lin et al. May 2006 B1
7067862 Rinerson et al. Jun 2006 B2
7085167 Lee et al. Aug 2006 B2
7098438 Frazier Aug 2006 B1
7109544 Schoelesser et al. Sep 2006 B2
7123535 Kurotsuchi et al. Oct 2006 B2
7149108 Rinerson et al. Dec 2006 B2
7167387 Sugita et al. Jan 2007 B2
7180160 Ferrant et al. Feb 2007 B2
7187201 Trimberger Mar 2007 B1
7193267 Hsu et al. Mar 2007 B2
7205238 Pan et al. Apr 2007 B2
7233024 Scheuerlein et al. Jun 2007 B2
7236389 Hsu Jun 2007 B2
7247876 Lowrey Jul 2007 B2
7273791 Basceri et al. Sep 2007 B2
7323349 Hsu et al. Jan 2008 B2
7335906 Toda Feb 2008 B2
7388775 Bedeschi et al. Jun 2008 B2
7393785 Uhlenbrock et al. Jul 2008 B2
7405967 Kozicki et al. Jul 2008 B2
7459715 Toda et al. Dec 2008 B2
7459716 Toda et al. Dec 2008 B2
7465675 Koh Dec 2008 B2
7473982 Aono et al. Jan 2009 B2
7489552 Kurotsuchi et al. Feb 2009 B2
7525410 Aono et al. Apr 2009 B2
7538338 Rinerson et al. May 2009 B2
7544987 Lu et al. Jun 2009 B2
7557424 Wong et al. Jul 2009 B2
7560815 Vaartstra et al. Jul 2009 B1
7570511 Cho et al. Aug 2009 B2
7639523 Celinska et al. Dec 2009 B2
7666526 Chen et al. Feb 2010 B2
7671417 Yoshida et al. Mar 2010 B2
7679812 Sasagawa et al. Mar 2010 B2
7687793 Harshfield et al. Mar 2010 B2
7687840 Shinmura Mar 2010 B2
7696077 Liu Apr 2010 B2
7700935 Kim et al. Apr 2010 B2
7727908 Ahn et al. Jun 2010 B2
7751163 Duch et al. Jul 2010 B2
7755076 Lung Jul 2010 B2
7768812 Liu Aug 2010 B2
7772580 Hofmann et al. Aug 2010 B2
7777215 Chien et al. Aug 2010 B2
7799672 Hashimoto et al. Sep 2010 B2
7807995 Mikawa et al. Oct 2010 B2
7838861 Klostermann Nov 2010 B2
7842991 Cho et al. Nov 2010 B2
7864568 Fujisaki et al. Jan 2011 B2
7898839 Aoki Mar 2011 B2
7907436 Maejima et al. Mar 2011 B2
7910909 Kim et al. Mar 2011 B2
7948784 Kajigaya May 2011 B2
7952914 Baek et al. May 2011 B2
7990754 Azuma et al. Aug 2011 B2
8021897 Sills et al. Sep 2011 B2
8034655 Smythe et al. Oct 2011 B2
8043926 Cho et al. Oct 2011 B2
8048755 Sandhu et al. Nov 2011 B2
8094477 Maejima Jan 2012 B2
8098520 Seigler et al. Jan 2012 B2
8106375 Chen et al. Jan 2012 B2
8114468 Sandhu et al. Feb 2012 B2
8124968 Koo et al. Feb 2012 B2
8154908 Maejima et al. Apr 2012 B2
8154909 Azuma et al. Apr 2012 B2
8295077 Murooka Oct 2012 B2
8355274 Arita et al. Jan 2013 B2
8411477 Tang et al. Apr 2013 B2
8427859 Sandhu et al. Apr 2013 B2
8431458 Sills et al. Apr 2013 B2
8436414 Tanaka et al. May 2013 B2
8536556 Fukumizu Sep 2013 B2
8537592 Liu Sep 2013 B2
8542513 Tang et al. Sep 2013 B2
8611121 Ahn et al. Dec 2013 B2
8652909 Sills et al. Feb 2014 B2
8743589 Sandhu et al. Jun 2014 B2
8791447 Liu et al. Jul 2014 B2
8854863 Liu Oct 2014 B2
20020018355 Johnson et al. Feb 2002 A1
20020034117 Okazawa Mar 2002 A1
20020079524 Dennison Jun 2002 A1
20020098676 Ning Jul 2002 A1
20020196695 Pascucci Dec 2002 A1
20030031047 Anthony et al. Feb 2003 A1
20030086313 Asao May 2003 A1
20030174042 Aono et al. Sep 2003 A1
20030174570 Oishi Sep 2003 A1
20030185049 Fricke et al. Oct 2003 A1
20030218902 Perner et al. Nov 2003 A1
20030218929 Fibranz Nov 2003 A1
20030223283 Kunikiyo Dec 2003 A1
20040002186 Vyvoda et al. Jan 2004 A1
20040090841 Perner et al. May 2004 A1
20040100835 Sugibayashi et al. May 2004 A1
20040108528 Hsu et al. Jun 2004 A1
20040124407 Kozicki et al. Jul 2004 A1
20040188714 Scheuerlein Sep 2004 A1
20040245547 Stipe Dec 2004 A1
20050001257 Schoelesser et al. Jan 2005 A1
20050014325 Aono et al. Jan 2005 A1
20050032100 Heath et al. Feb 2005 A1
20050054119 Hsu et al. Mar 2005 A1
20050128799 Kurotsuchi et al. Jun 2005 A1
20050161747 Lung et al. Jul 2005 A1
20050174835 Rinerson et al. Aug 2005 A1
20050205943 Yamada Sep 2005 A1
20050243844 Aono et al. Nov 2005 A1
20050250281 Ufert et al. Nov 2005 A1
20050269646 Yamada Dec 2005 A1
20050275003 Shinmura Dec 2005 A1
20050287741 Ding Dec 2005 A1
20060023498 Asao Feb 2006 A1
20060027893 Meijer Feb 2006 A1
20060035451 Hsu Feb 2006 A1
20060046509 Gwan-Hyeob Mar 2006 A1
20060062049 Lee et al. Mar 2006 A1
20060097238 Breuil et al. May 2006 A1
20060099813 Pan et al. May 2006 A1
20060104111 Tripsas et al. May 2006 A1
20060110878 Lung et al. May 2006 A1
20060160304 Hsu et al. Jul 2006 A1
20060170027 Lee et al. Aug 2006 A1
20060171200 Rinerson et al. Aug 2006 A1
20060181920 Ufert Aug 2006 A1
20060215445 Baek Sep 2006 A1
20060258079 Lung et al. Nov 2006 A1
20060258089 Chung-Zen Nov 2006 A1
20060274593 Kurotsuchi et al. Dec 2006 A1
20060284157 Chen et al. Dec 2006 A1
20060284242 Jo Dec 2006 A1
20060286709 Lung et al. Dec 2006 A1
20070010082 Pinnow et al. Jan 2007 A1
20070015330 Li et al. Jan 2007 A1
20070019923 Sasagawa et al. Jan 2007 A1
20070034848 Liu Feb 2007 A1
20070041235 Inoue Feb 2007 A1
20070045615 Cho et al. Mar 2007 A1
20070048990 Zhuang et al. Mar 2007 A1
20070086235 Kim et al. Apr 2007 A1
20070109835 Hsu May 2007 A1
20070120124 Chen et al. May 2007 A1
20070121369 Happ May 2007 A1
20070123039 Elkins et al. May 2007 A1
20070132049 Stipe Jun 2007 A1
20070165434 Lee et al. Jul 2007 A1
20070167008 Hsu et al. Jul 2007 A1
20070171706 Fuji Jul 2007 A1
20070173019 Ho et al. Jul 2007 A1
20070176261 Lung Aug 2007 A1
20070210348 Song et al. Sep 2007 A1
20070224770 Nagashima Sep 2007 A1
20070231988 Yoo et al. Oct 2007 A1
20070246795 Fang et al. Oct 2007 A1
20070257257 Cho et al. Nov 2007 A1
20070258279 Lung et al. Nov 2007 A1
20070267675 Cho et al. Nov 2007 A1
20070268739 Yoo et al. Nov 2007 A1
20070268742 Liu Nov 2007 A1
20070269683 Chen et al. Nov 2007 A1
20070278578 Yoshida et al. Dec 2007 A1
20070285965 Toda et al. Dec 2007 A1
20070295950 Cho et al. Dec 2007 A1
20080001172 Karg et al. Jan 2008 A1
20080008642 Mori et al. Jan 2008 A1
20080012064 Park et al. Jan 2008 A1
20080013363 Kim et al. Jan 2008 A1
20080014750 Nagashima Jan 2008 A1
20080026547 Yin et al. Jan 2008 A1
20080029754 Min et al. Feb 2008 A1
20080029842 Symanczyk Feb 2008 A1
20080036508 Sakamoto et al. Feb 2008 A1
20080048165 Miyazawa Feb 2008 A1
20080049487 Yoshimura et al. Feb 2008 A1
20080062740 Baek et al. Mar 2008 A1
20080070409 Park Mar 2008 A1
20080073635 Kiyotoshi et al. Mar 2008 A1
20080078985 Meyer et al. Apr 2008 A1
20080080229 Choi et al. Apr 2008 A1
20080089105 Ro et al. Apr 2008 A1
20080093591 Khang et al. Apr 2008 A1
20080099753 Song et al. May 2008 A1
20080102278 Kreupl et al. May 2008 A1
20080105862 Lung et al. May 2008 A1
20080106925 Paz De Araujo et al. May 2008 A1
20080123390 Kim et al. May 2008 A1
20080157257 Bertin et al. Jul 2008 A1
20080175031 Park et al. Jul 2008 A1
20080175032 Tanaka et al. Jul 2008 A1
20080185571 Happ et al. Aug 2008 A1
20080185687 Hong et al. Aug 2008 A1
20080212361 Bertin et al. Sep 2008 A1
20080232160 Gopalakrishnan Sep 2008 A1
20080247219 Choi et al. Oct 2008 A1
20080251779 Kakosehke et al. Oct 2008 A1
20080258126 Lung Oct 2008 A1
20080259672 Lung Oct 2008 A1
20080303014 Goux et al. Dec 2008 A1
20090014706 Lung Jan 2009 A1
20090014707 Lu et al. Jan 2009 A1
20090026436 Song et al. Jan 2009 A1
20090057640 Lin et al. Mar 2009 A1
20090059644 Kajigaya et al. Mar 2009 A1
20090072217 Klostermann Mar 2009 A1
20090085121 Park et al. Apr 2009 A1
20090097295 Morimoto Apr 2009 A1
20090141547 Jin et al. Jun 2009 A1
20090168495 Aoki Jul 2009 A1
20090173930 Yasuda et al. Jul 2009 A1
20090180309 Liu Jul 2009 A1
20090207647 Maejima et al. Aug 2009 A1
20090207681 Juengling Aug 2009 A1
20090218557 Sato Sep 2009 A1
20090250681 Smythe et al. Oct 2009 A1
20090261314 Kim et al. Oct 2009 A1
20090261343 Herner et al. Oct 2009 A1
20090267047 Sasago et al. Oct 2009 A1
20090268532 DeAmbroggi et al. Oct 2009 A1
20090272959 Phatak et al. Nov 2009 A1
20090272960 Srinivasan et al. Nov 2009 A1
20090272961 Miller et al. Nov 2009 A1
20090272962 Kumar et al. Nov 2009 A1
20090273087 French et al. Nov 2009 A1
20090278109 Phatak Nov 2009 A1
20090303780 Kasko et al. Dec 2009 A1
20090315090 Weis et al. Dec 2009 A1
20090316467 Liu Dec 2009 A1
20090316474 Cho et al. Dec 2009 A1
20090317540 Sandhu et al. Dec 2009 A1
20090321878 Koo et al. Dec 2009 A1
20090323385 Scheuerlin et al. Dec 2009 A1
20100003782 Sinha et al. Jan 2010 A1
20100008163 Liu Jan 2010 A1
20100044666 Baek et al. Feb 2010 A1
20100046273 Azuma et al. Feb 2010 A1
20100061132 Fujisaki et al. Mar 2010 A1
20100065836 Lee et al. Mar 2010 A1
20100072452 Kim et al. Mar 2010 A1
20100084741 Andres et al. Apr 2010 A1
20100085798 Lu et al. Apr 2010 A1
20100090187 Ahn et al. Apr 2010 A1
20100110759 Jin et al. May 2010 A1
20100123542 Vaithyanathan et al. May 2010 A1
20100135061 Li et al. Jun 2010 A1
20100140578 Tian et al. Jun 2010 A1
20100157657 Rinerson et al. Jun 2010 A1
20100157658 Schloss et al. Jun 2010 A1
20100163820 Son Jul 2010 A1
20100163829 Wang et al. Jul 2010 A1
20100172171 Azuma et al. Jul 2010 A1
20100176368 Ko et al. Jul 2010 A1
20100178729 Yoon et al. Jul 2010 A1
20100193758 Tian et al. Aug 2010 A1
20100193761 Amin et al. Aug 2010 A1
20100193762 Hsieh et al. Aug 2010 A1
20100195371 Ohba et al. Aug 2010 A1
20100232200 Shepard Sep 2010 A1
20100237442 Li et al. Sep 2010 A1
20100243980 Fukumizu Sep 2010 A1
20100243983 Chiang et al. Sep 2010 A1
20100258782 Kuse et al. Oct 2010 A1
20100259960 Samachisa Oct 2010 A1
20100259961 Fasoli et al. Oct 2010 A1
20100259962 Yan et al. Oct 2010 A1
20110059576 Cho et al. Mar 2011 A1
20110128775 Maejima et al. Jun 2011 A1
20110171836 Xia Jul 2011 A1
20110193044 Sandhu et al. Aug 2011 A1
20110205783 Murooka Aug 2011 A1
20110249486 Azuma et al. Oct 2011 A1
20110261606 Sandhu et al. Oct 2011 A1
20110261607 Tang et al. Oct 2011 A1
20110309322 Hwang et al. Dec 2011 A1
20120119180 Koo et al. May 2012 A1
20120140542 Liu Jun 2012 A1
20120147648 Scheuerlein Jun 2012 A1
20120164798 Sills et al. Jun 2012 A1
20120187363 Liu et al. Jul 2012 A1
20120248399 Sasago et al. Oct 2012 A1
20130021836 Liu Jan 2013 A1
20140247640 Liu Sep 2014 A1
Foreign Referenced Citations (52)
Number Date Country
1339159 Mar 2002 CN
1444284 Sep 2003 CN
1459792 Dec 2003 CN
1624803 Jun 2005 CN
101005113 Dec 2006 CN
101051670 Apr 2007 CN
101034732 Sep 2007 CN
101256831 Sep 2008 CN
101350360 Jan 2009 CN
101546602 Sep 2009 CN
101840995 Sep 2010 CN
0117045 Aug 1984 EP
1796903 Sep 2006 EP
1266513 Mar 1972 GB
2005-175457 Jun 2005 JP
2005-353779 Dec 2005 JP
2006-032729 Feb 2006 JP
2006-040981 Feb 2006 JP
2006-074028 Mar 2006 JP
2006-121044 May 2006 JP
WO 2008013086 Jan 2008 JP
2008-135744 Jun 2008 JP
2008-192995 Aug 2008 JP
2009-081251 Apr 2009 JP
2009-163867 Jul 2009 JP
2009-267411 Nov 2009 JP
2010-009669 Jan 2010 JP
2010-010688 Jan 2010 JP
2010-192569 Sep 2010 JP
2010-192646 Sep 2010 JP
2010-232214 Oct 2010 JP
2010-263211 Nov 2010 JP
2003-0048421 Jun 2003 KR
2005-0008353 Jan 2005 KR
2006-0087882 Aug 2006 KR
10-0751736 Aug 2007 KR
2007-0111840 Nov 2007 KR
2007-0118865 Dec 2007 KR
2009-0109804 Oct 2009 KR
2010-0078808 Jul 2010 KR
2010-0083402 Jul 2010 KR
WO 2006003620 Jan 2006 WO
WO 2008029446 Mar 2008 WO
WO 2009127187 Oct 2009 WO
WO 2010068221 Jun 2010 WO
WO 2010082922 Jul 2010 WO
WO 2010082923 Jul 2010 WO
WO 2010082928 Jul 2010 WO
WO 2010085241 Jul 2010 WO
WO 2010087854 Aug 2010 WO
WO 2010101340 Sep 2010 WO
WO 2010117911 Oct 2010 WO
Non-Patent Literature Citations (66)
Entry
CN 200880124714.6 SR Trans., Jul. 9, 2012, Micron Technology, Inc.
CN 201180027954.6 SR Trans., May 14, 2014, Micron Technology, Inc.
CN 201180057866.0 SR Trans., Nov. 25, 2015, Micron Technology, Inc.
CN 201180065042.8 SR Trans., May 22, 2015, Micron Technology, Inc.
EP 11792836 Search Report, Dec. 16, 2013, Micron Technology, Inc.
EP 11834802 Annex to EP SR, Mar. 4, 2015, Micron Technology, Inc.
EP 11845727.4 Search Report, Nov. 20, 2014, Micron Technology, Inc.
EP 14171745 Extended SR, Mar. 13, 2015, Micron Technology, Inc.
WO PCT/US2008/084422 IPRP, Jul. 20, 2010, Micron Technology, Inc.
WO PCT/US2008/084422 Search Rept., Mar. 19, 2009, Micron Technology, Inc.
WO PCT/US2008/084422 Writ. Opin., Mar. 19, 2009, Micron Technology, Inc.
WO PCT/US2011/035601 IPRP, Dec. 10, 2012, Micron Technology, Inc.
WO PCT/US2011/035601 Search Rept., Nov. 21, 2011, Micron Technology, Inc.
WO PCT/US2011/035601 Writ. Opin., Nov. 21, 2011, Micron Technology, Inc.
WO PCT/US2011/051785 IPRP, Apr. 23, 2013, Micron Technology, Inc.
WO PCT/US2011/051785 Search Rept., Apr. 10, 2012, Micron Technology, Inc.
WO PCT/US0211/051785 Writ. Opin., Apr. 10, 2012, Micron Technology, Inc.
WO PCT/US2011/059095 IPRP, Jun. 4, 2013, Micron Technology, Inc.
WO PCT/US2011/059095 Search Rept., May 21, 2012, Micron Technology, Inc.
WO PCT/US2011/059095 Writ. Opin., May 21, 2012, Micron Technology, Inc.
WO PCT/US2011/066770 IPRP, Jul. 23, 2013, Micron Technology, Inc.
WO PCT/US2011/066770 Search Rept., Sep. 11, 2012, Micron Technology, Inc.
WO PCT/US2011/066770 Writ. Opin., Sep. 11, 2012, Micron Technology, Inc.
WO PCT/US2012/021168 Search Rept., Jul. 24, 2012, Micron Technology, Inc.
WO PCT/US2012/021168 Writ. Opin., Jul. 24, 2012, Micron Technology, Inc.
TW 097147549 SR Translation, May 20, 2013, Micron Technology, Inc.
TW 100119681 SR Translation, Aug. 18, 2013, Micron Technology, Inc.
TW 100135681 SR Translation, Oct. 30, 2013, Micron Technology, Inc.
TW 100142963 SR Translation, Aug. 13, 2014, Micron Technology, Inc.
TW 101102280 SR Translation, Aug. 25, 2014, Micron Technology, Inc.
Baek et al., “Multi-Layer Cross-Point Binary Oxide Resistive Memory (OxRRAM) for Post-NAND Storage Application”, IEEE 2005, United States, 4 pages.
Bedeschi et al., “A Bipolar-Selected Phase Change Memory Featuring Multi-Level Cell Storage”, IEEE Journal of Solid-State Circuits vol. 44, No. 1, Jan. 2009, United States, pp. 217-227.
Chen et al., “Non-Volatile Resistive Switching for Advanced Memory Applications”, IEEE, 2005, United States, 4 pages.
Chen et al., “Perovskite RRAM Devices with Metal/Insulator/PCMO/Metal Heterostructures”, IEEE, 2005, United States, pp. 125-128.
Choi et al., “Defect Structure and Electrical Properties of Single-Crystal Ba0.03SR0.97TiO3”, Journal of the American Ceramic Society vol. 71, No. 4, 1988, United Kingdom, pp. 201-205.
Courtade et al., “Microstructure and Resistance Switching in NiO Binary Oxide Films Obtained from Ni Oxidation”, IEEE, 2006, United States, pp. 94-99.
Higaki et al., “Effects of Gas Phase Absorption into Si Substrates on Plasma Doping Process”, IEEE 33rd Conference on European Solid-State Device Research, Sep. 16-18, 2003, Portugal, 4 pages.
Ho et al., “A Highly Reliable Self-Aligned Graded Oxide WOx Resistance Memory: Conduction Mechanisms and Reliability”, IEEE 2007 Symposium on VLSI Technology Digest of Technical Papers, Kyoto, pp. 228-229.
Hosoi et al., “High Speed Unipolar Switching Resistance RAM (RRAM) Technology”, IEEE International Electron Devices Meeting, Dec. 2006, United States, 4 pages.
Hudgens et al., “Overview of Phase-Change Chalcogenide Nonvolatile Memory Technology”, MRS Bulletin, Nov. 2004, United States, pp. 829-832.
Ignatiev et al., “Resistance Non-volatile Memory-RRAM”, Materials Research Society Symposium Proceedings vol. 997, 2007, United States, 9 pages.
Karg et al., “Nanoscale Resistive Memory Device using SrTiO3 Films”, IEEE, 2007 United States, pp. 68-70.
Kau et al., “A Stackable Cross Point Phase Change Memory”, IEEE, 2009, United States, pp. 27.1.1-27.1.4.
Komori et al., “Disturbless Flash Memory due to High Boost Efficiency on BiCS Structure and Optimal Memory Film Stack for Ultra High Density Storage Device”, IEEE International Electron Devices Meeting, Dec. 15-17, 2008, United States, pp. 851-854.
Kooij et al., “Photoselective Metal Deposition on Amorphous Silicon p-i-n Solar Cells”, Electrochemical Society Letters, Journal of the Electrochemical Society vol. 44, No. 10, Oct. 1997, United States, pp. L271-L272.
Kozicki et al., “Non-Volatile Memory Based on Solid Electrolytes”, IEEE Non-Volatile Memory Technology Symposium, Nov. 15-17, 2004, United States, 8 pages.
Kozicki, “Memory Devices Based on Solid Electrolytes”, Materials Research Society Symposium Proceedings vol. 997, 2007, United States, 10 pages.
Lee et al., “2-Stack 1D-1R Cross-Point Structure with Oxide Diodes as Switch Elements for High Density Resistance RAM Appilcations”, IEEE, 2007, United States, pp. 771-774.
Lee et al., “Resistance Switching of Al Doped ZnO for Non Volatile Memory Applications”, IEEE 21st Non-Volatile Semiconductor Memory Workshop, 2006, United States, 2 pages.
Lin et al., “Effect of Top Electrode Material on Resistive Switching Properties of ZrO2 Film Memory Devices”, IEEE Electron Device Letters vol. 28, No. 5, May 2007, United States, pp. 366-368.
Meyer et al., “Oxide Dual-Layer Memory Element for Scalable Non-Volatile Cross-Point Memory Technology”, IEEE, 2008, United States, 5 pages.
Miyashita et al., “A Novel Bit-Line Process using Poly-Si Masked Dual-Damascene (PMDD) for 0.13 μm DRAMs and Beyond”, IEEE, 2000, United States, pp. 15.4.1-15.4.4.
Muller et al., “Emerging Non-Volatile Memory Technologies”, IEEE, 2003, United States, pp. 37-44.
Oh et al., “Full Integration of Highly Manufacturable 512Mb PRAM based on 90nm Technology”, IEEE, 2006, United States, 4 pages.
Pein et al., “Performance of the 3-D PENCIL Flash EPROM Cell and Memory Array”, IEEE Transaction on Electron Devices vol. 42, No. 11, Nov. 1995, United States, pp. 1982-1991.
Pellizzer et al., “A 90nm Phase Change Memory Technology for Stand-Alone Non-Volatile Memory Applications”, IEEE Symposium on VLSI Technology 2006 Digest of Technical Papers, United States, 2 pages. Abstract Only.
Pirovano et al., “Self-Aligned μTrench Phase-Change Memory Cell Architecture for 90nm Technology and Beyond”, IEEE 37th European Solid State Device Research Conference, Sep. 11-13, 2007, Munich, 1 page. Abstract Only.
Scheck et al., “Selective Metal Electrodeposition Through Doping Modulation of Semiconductor Surfaces”, Applied Physics Letters vol. 86, 2005, United States, 3 pages.
Wikipedia, Despotuli et al., “Programmable Metallization Cell”, Dec. 11, 2007, Place of Publication: Internet, pp. 1-4.
Wikipedia; “Programmable Metallization Cell”, Dec. 11, 2007; Downloaded Dec. 13, 2011; http://en.wikipedia.org/wiki/Programmable—metallization—cell. 4 pages.
Wuttig, “Phase Change Materials: Towards a Universal Memory?”, Nature Materials vol. 4, Apr. 2005, United Kingdom, pp. 265-266.
Xing et al., “Characterization of AlGaN/GaN p-n Diodes with Selectively Regrown n-AlGaN by Metal-Organic Chemical-Vapor Deposition and its Application to GaN-Based Bipolar Transistors”, Journal of Applied Physics vol. 97, 2005, United States, 4 pages.
Yih et al., “SiC/Si Heterojunction Diodes Fabricated by Self-Selective and by Blanket Rapid Thermal Chemical Vapor Deposition”, IEEE Transactions on Electron Devices vol. 41, No. 3, Mar. 1994, United States, pp. 281-287.
Yoon et al., “Vertical Cross-Point Resistance Change Memory for Ultra-High Density Non-Volatile Memory Applications”, IEEE Symposium on VLSI Technology Digest of Technical Papers, Jun. 16-18, 2009, United States, pp. 26-27.
Yu et al., “Structure Effects on Resistive Switching of Al/TiOx/A1 Devices for RRAM Applications”, IEEE Electron Device Letters vol. 29, No. 4, Apr. 2008, United States, pp. 331-333.
EP 14171745.4 Exam Report, Dec. 2, 2016, Micron Technology, Inc.
Related Publications (1)
Number Date Country
20160260899 A1 Sep 2016 US
Divisions (1)
Number Date Country
Parent 12166604 Jul 2008 US
Child 15156105 US