1. Field of the Invention
The invention relates generally to the field of semiconductor device manufacturing and, more particularly, to processes for forming films using solid state reactants.
2. Description of the Related Art
In advanced semiconductor devices, part of the silicon that is present in gate, source and drain structures, is converted into low-resistivity metal silicides. This is done to realize a conductive path with a low bulk resistivity on the one hand, and to ensure a good contact resistance on the other hand. In the past, TiSi2 was used for this process; currently CoSi2 is the silicide of choice for the most advanced devices. As both TiSi2 and CoSi2 consume a relatively large amount of silicon, it is expected that for devices to be used for the 65 nm technology node and beyond, there will be a switch to using NiSix to form these conductive paths. This silicide combines a low bulk resistivity with a relatively low amount of silicon consumption.
An idealized process of formation of NiSix on a substrate 80 is depicted in
In principle, NiSix forms in a self-aligned fashion, i.e., only at locations where Ni and Si are both present. In the illustrated arrangement, such locations have silicon exposed below the metal Ni layer. Thus, ideally, no silicide growth takes place at the position of the spacers 50 (
After this process is finished, the substrate is exposed to a so-called selective metal etch. In this wet etch process, the unreacted Ni is etched while the NiSix film remains intact (see
Thus, in theory, the NiSix allows the formation of a conductive path with a low bulk resistivity and a good contact resistance. In practice, however, the inventors have found that the resistivity of these NiSix films is less than ideal because different films across the surface of a substrate can have different resistivities. Such variances are undesirable because they can introduce non-uniformities in the electrical performance of electrical devices formed using the NiSix films.
Accordingly, there is a need for methods of forming NiSix films having more uniform resistivities.
According to one aspect of the invention, a method is provided for processing a semiconductor substrate. The method comprises loading the semiconductor substrate into a process chamber. The substrate comprises a metal film which is in contact with a solid state reactant, such as solid state silicon, over at least some areas of the substrate. The substrate is uniformly heated to a reaction temperature and maintained at the reaction temperature for a duration sufficient for part of the metal to react with the solid state reactant to form a metallic compound. The substrate is removed from the annealing station before all the metal overlying the at least some areas of the substrate has reacted with the solid state reactant.
According to another aspect of the invention, a method is provided for a self-aligned reaction of solid state reactants over a substrate. The method comprises providing a blanket layer of a first solid state reactant, such as a metal film, and providing a patterned structure of a second solid state reactant, such as solid state silicon, in contact with the blanket layer. The blanket layer and the patterned structure are subjected to rapid thermal annealing by disposing the substrate parallel to and facing a uniformly heated and substantially flat heated body to form a reaction product of the first and second solid state reactant in a pattern. The heated body extends over the entirety of the planar substrate surface.
According to yet another aspect of the invention, an integrated circuit is provided. The integrated circuit comprises a plurality of electrical devices having a plurality of electrical contacts. The electrical contacts comprise metal silicide films that have substantially uniform sheet resistances and varying widths.
In a preferred embodiment of the invention, the silicidation is carried out in a Levitor® reactor as disclosed in U.S. Pat. No. 6,183,565 to E. Granneman et al., the entire disclosure of which is incorporated herein by reference.
In yet another embodiment of the invention, after annealing, the substrate is uniformly cooled down in a forced way by bringing the substrate in close proximity with a cooling body that extends over the entire substrate surface.
The invention will be better understood from the detailed description of the preferred embodiments and from the appended drawings, which are meant to illustrate and not to limit the invention, and wherein:
a-1d are schematic cross-sections of a partially fabricated integrated circuit, illustrating the idealized formation of uniform NiSix films on top of gate, source and drain regions of transistors, in accordance with an idealized prior art process flow;
a-2d illustrate the formation of uneven NiSix films due to a “reverse line width effect” associated with the prior art process flow of
a-5d are schematic cross-sections of a partially fabricated integrated circuit, illustrating a process flow in which the reverse line width effect has been suppressed, in accordance with preferred embodiments of the invention;
a and 6b are graphs illustrating NiSix silicide sheet resistivity and uniformity versus anneal temperatures, for blanket Ni films deposited on Si wafers, for anneal times of 5 s (
With reference to
An experimental verification of the reverse line width effect is shown in
One possible solution for preventing the reverse line width effect is to reduce the annealing time or the anneal temperature so that the end of the anneal coincides with the completion of the silicidation reaction, i.e., the depletion of all the Ni overlying a Si surface. Silicidation processes in lamp heating systems are inflicted with small but significant non-uniformities in temperature. Therefore, when, in such a lamp heating system the silicidation reaction is not complete, the non-uniformities in sheet resistivity increase significantly, and can be larger than the non-uniformities caused by the reverse line width effect. Thus, silicidation processes are typically “overdone,” e.g., the anneal is performed for a longer time than theoretically necessary, to ensure that the silicidation is complete everywhere.
Annealing systems that are commonly used today are lamp-based systems based upon radiative heating of substrates, such as wafers, in a cold-wall chamber. While generally considered to be the best way of rapidly increasing a wafer's temperature for rapid thermal annealing, it has been found that radiant heating in a cold-wall chamber is not able to heat the wafer uniformly. Because the rate of reaction of Ni with Si is related to the anneal temperature, this non-uniform heating results in a situation where Ni films can be consumed completely in specific areas on the wafer, whereas in other areas not all the Ni has been consumed. Thus, a large variation of the NiSix layer thickness results. Furthermore, the NiSix layer can include a mixture of various nickel silicides, including Ni2Si and NiSi. Variations in the relative concentrations of the Ni2Si and NiSi that are formed can result in different rates of radiation absorption, potentially further contributing to non-uniform heating rates across the wafer. Thus, the lamp-based systems commonly used for silicidation processes can also contribute to non-uniform NiSix layer thickness results.
In sum, one way to avoid the reverse line width effect is to stop. the reaction of Ni with Si at the point when full conversion of the Ni layer immediately overlying an Si surface has just finished. While a good strategy in principle, it is difficult to achieve due to factors such as non-uniform heating. Therefore, because incomplete consumption of Ni with Si can cause significant resistivity increases, silicidation processes are typically “overdone” to some extent to ensure that the silicidation is complete everywhere and that structures having a generally low resistivity are obtained. Consequently, silicidation processes typically exhibit the reverse line width effect, which causes variations in the resistivities of the NiSix layers.
While incomplete silicidations would generally be expected to have unacceptably large variations in silicide film sheet resistivities, it has been found that incomplete silicidations can be beneficial for preventing the “reverse line width effect.” Moreover, unacceptably large sheet resistivity variations do not necessary follow from incomplete silicidations; rather, as described below, these variations can be significantly reduced.
Advantageously, in accordance with preferred embodiments of the invention, silicide films having relatively low sheet resistivity variations can be formed using reactor systems employing hot wall principles. Preferably, in these systems, a heated body or plate is closely spaced from a substrate and the substrate is heated conductively rather than radiatively. The consequence of this is that wafers can be heated to low temperatures in a very uniform way, while the absorption of energy is also independent of the phase, e.g., Ni2Si and NiSi for nickel silicides, of a material that is being formed. Consequently, non-uniformities due to non-uniform heating are reduced. As a result, stopping the silicidation. process when the Ni layer is not yet fully converted is particularly advantageous when performed in a hot wall rapid thermal annealing (RTA) apparatus, as described below.
The NiSix conversion processes are preferably carried out in a system that comprises at least one uniformly heated and substantially flat body. During processing, a substrate such as a wafer is disposed parallel to and facing the heated body and the heated body extends over the entire flat wafer surface. Preferably the wafer is disposed in close proximity of the heated body, at less than about 2 mm from the heated body, more preferably at less than about 1 mm.
In one preferred embodiment, the NiSix formation processes are carried out in a system that comprises two substantially flat heated bodies, where each of the bodies is preferably uniformly heated. The bodies are disposed parallel to and facing each other so that, in a processing condition, a wafer can be accommodated between the bodies and the wafer is disposed parallel to and facing the heated bodies. Each of the heated bodies preferably completely extends over and across one of the opposite flat surfaces of the wafer.
In another preferred embodiment, the heated bodies are massive. By massive, it is meant that the wall, which faces and extends over an entire substrate surface, has a thermal mass greater than about five times (5×) the thermal mass of the substrate, and more preferably greater than about ten times (10×) the thermal mass of the substrate. In practice, this typically entails a metal block of greater than about 10 mm in thickness, measured normal to the substrate surface, more preferably greater than about 40 mm in thickness.
Most preferably, the silicidation anneal is conducted in a Levitor® system, commercially available from ASM International, N.V. of Bilthoven, The Netherlands. A reactor 200 of a Levitor® system is shown in
The blocks 213 and 214 are provided with heated bodies 230 and 240 that are massive. As noted above, the heated bodies 230 and 240 preferably have a thermal mass greater than about five times (5×) the thermal mass of the substrate 180, and more preferably greater than about ten times (10×) the thermal mass of the substrate 180 and are preferably a metal block that is greater than about 10 mm in thickness and, more preferably, greater than about 40 mm in thickness, measured perpendicular to the face of the substrate 180. Close spacing, less than about 2 mm and more preferably less than about 1 mm, between the substrate 180 and the blocks 213 and/or 214, provides uniform, predominantly conductive heating which is particularly advantageous in the Levitor® design. A reactor according to the Levitor® design is described in U.S. Pat. No. 6,183,565, the entire disclosure of which is incorporated herein by reference.
The experimental results shown in
An exemplary process flow for a silicidation process and the result of the process flow is schematically represented in
It will also be appreciated that the metal layer deposition can be performed in the same reaction chamber as a subsequent anneal or the anneal can be performed in an anneal station different from the reaction chamber for the deposition. If an anneal station is different from the deposition chamber, the wafer can be loaded into the anneal station after the metal layer deposition. Such an anneal station can be, e.g., the reactor of a Levitor® system.
As shown in
As shown in
The uniformity of the films 170 formed by the silicidation process described above was investigated as a function of temperature and for different silicidation times. The results of these investigations are represented in
In
For temperatures less than about 290° C. (in the regime of incomplete silicidation), the two systems exhibit strikingly different behaviors. Whereas in the Levitor® the non-uniformity for both thickness and sheet resistance improves to about 1% to 1.5%, the non-uniformity deteriorates to >7% in the lamp-annealed films. This result is directly related to the poor heating uniformity of lamp-based systems in the temperature range of interest.
Cool-down of the wafer after annealing can be effectuated in various ways. For example, the wafer can be removed from the annealing station and cooled by free radiation and conduction to the surrounding wafer handling chamber or to the inside of a cool-down chamber. Although such cool-down is not very uniform, the uniformity of cool-down is typically not very critical. Since, during cool-down from the silicidation temperature, the first part of the cool-down curve is passed very quickly, the diffusion of additional nickel quickly decreases, such that additional diffusion of nickel becomes essentially insignificant.
In other embodiments, the wafer can be transferred from the anneal station to a cool-down station, wherein forced cooling can be used to cool the wafer. Forced cooling can be effectuated by blowing a gas stream over the wafer or by bringing the wafer in close proximity to a cooling body. Preferably, such a cool-down is performed in a cool-down station according to the Levitor® design, as disclosed in U.S. Pat. No. 6,560,896, the entire disclosure of which is incorporated herein by reference.
In another embodiment, the anneal can be performed in a Levitor® system in which the two reactor blocks are maintained at different temperatures and where the temperature of the wafer can be switched by switching of the gas flows from the blocks. Switching gas flows to affect temperature can be accomplished by switching the relative gas thermal conductivity on the two sides of a wafer, as disclosed in detail in PCT patent publication No. WO 01/50502, or by increasing flow on one side versus the other, thereby physically moving the wafer between closer to the hot block (during annealing) or closer to the cold block (during cool-down), as disclosed in U.S. Pat. No. 6,183,565. The disclosures of both WO 01/50502 and U.S. Pat. No. 6,183,565 are incorporated herein by reference in their entireties. Advantageously, because cooling is performed within the anneal station, there is no lag in the time between annealing and cooling, as would occur if the substrate were required to be unloaded and moved into a cooling station. Thus, the anneal time can be more precisely controlled, thereby allowing more precise control of the moment when the process is stopped prior to complete silicidation.
Although in the present examples reference is made to nickel and nickel silicide, it will be apparent to the skilled artisan that the present invention is applicable to silicidation processes for any metal that is able to react with silicon to form a silicide. Examples of such metals include Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Co, Rh, Ir, Ni, Pd and Pt.
In addition, while particularly useful in forming electrical devices with critical dimensions (CDs) of 100 nm or less, and preferably CDs of 65 nm or less, it will be appreciated that the teachings herein have applicability to forming devices of any dimension.
Furthermore, though described in the context of silicidation over patterned transistors, it will be apparent to the skilled artisan that controlled silicon consumption will be beneficial for self-aligned silicidation at any of a number of integrated circuit fabrication steps. It will be appreciated that self-aligned silicidation can also be conducted with blanket silicon over patterned metal or patterned silicon over blanket metal. The methods described herein have been found to have particular utility where excess metal is available, such that interruption of the silicidation anneal is desirable. It will be appreciated, however, that these methods are not limited to silicon or metal reactions and that the interruption of solid state reactions will have utility in a number of contexts where excess of one solid reactant is available, relative to other solid reactant(s).
Similarly, various other modifications, omissions and additions may be made to the methods and structures described above without departing from the scope of the invention. All such modifications and changes are intended to fall within the scope of the invention, as defined by the appended claims.
This application is a continuation of U.S. patent application Ser. No. 10/866,643, filed Jun. 10, 2004, now U.S. Pat. No. 7,153,772, which claims the priority benefit under 35 U.S.C. §119(e) of provisional Application No. 60/478,324, filed Jun. 12, 2003.
Number | Name | Date | Kind |
---|---|---|---|
4521952 | Riseman | Jun 1985 | A |
4605947 | Price et al. | Aug 1986 | A |
4870030 | Markunas et al. | Sep 1989 | A |
4994402 | Chiu | Feb 1991 | A |
5032233 | Yu et al. | Jul 1991 | A |
5043300 | Nulman | Aug 1991 | A |
5084406 | Rhodes et al. | Jan 1992 | A |
5094977 | Yu et al. | Mar 1992 | A |
5147819 | Yu et al. | Sep 1992 | A |
5187122 | Bonis | Feb 1993 | A |
5196360 | Doan et al. | Mar 1993 | A |
5231056 | Sandhu | Jul 1993 | A |
5236865 | Sandhu et al. | Aug 1993 | A |
5278098 | Wei et al. | Jan 1994 | A |
5319220 | Suzuki et al. | Jun 1994 | A |
5326992 | Yoder | Jul 1994 | A |
5341016 | Prall et al. | Aug 1994 | A |
5378641 | Cheffings | Jan 1995 | A |
5378901 | Nii | Jan 1995 | A |
5389575 | Chin et al. | Feb 1995 | A |
5480814 | Wuu et al. | Jan 1996 | A |
5508212 | Wang et al. | Apr 1996 | A |
5656519 | Mogami | Aug 1997 | A |
5656546 | Chen et al. | Aug 1997 | A |
5670404 | Dai | Sep 1997 | A |
5683922 | Jeng et al. | Nov 1997 | A |
5756394 | Manning | May 1998 | A |
5831335 | Miyamoto | Nov 1998 | A |
5856237 | Ku | Jan 1999 | A |
5888903 | O'Brien et al. | Mar 1999 | A |
5945350 | Violette et al. | Aug 1999 | A |
6008111 | Fushida et al. | Dec 1999 | A |
6049098 | Sato | Apr 2000 | A |
6074478 | Oguro | Jun 2000 | A |
6147405 | Hu | Nov 2000 | A |
6153010 | Kiyoku et al. | Nov 2000 | A |
6153520 | Chen | Nov 2000 | A |
6177761 | Pelka et al. | Jan 2001 | B1 |
6183565 | Granneman et al. | Feb 2001 | B1 |
6190453 | Boydston et al. | Feb 2001 | B1 |
6190976 | Shishiguchi et al. | Feb 2001 | B1 |
6277735 | Matsubara | Aug 2001 | B1 |
6316795 | Croke, III | Nov 2001 | B1 |
6345150 | Yoo | Feb 2002 | B1 |
6365453 | Deboer et al. | Apr 2002 | B1 |
6372584 | Yu | Apr 2002 | B1 |
6455935 | Hu | Sep 2002 | B1 |
6462411 | Watanabe et al. | Oct 2002 | B1 |
6486018 | Roberts et al. | Nov 2002 | B2 |
6524953 | Hu | Feb 2003 | B1 |
6566279 | Suemitsu et al. | May 2003 | B2 |
6716713 | Todd | Apr 2004 | B2 |
6743721 | Lur et al. | Jun 2004 | B2 |
6821825 | Todd et al. | Nov 2004 | B2 |
6958253 | Todd | Oct 2005 | B2 |
6998305 | Arena et al. | Feb 2006 | B2 |
7153772 | Granneman et al. | Dec 2006 | B2 |
20040262694 | Chidambaram | Dec 2004 | A1 |
20050117310 | Miyamoto et al. | Jun 2005 | A1 |
20060205194 | Bauer | Sep 2006 | A1 |
20060234504 | Bauer et al. | Oct 2006 | A1 |
20060240630 | Bauer et al. | Oct 2006 | A1 |
20070287272 | Bauer et al. | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
19820147 | Jul 1999 | DE |
59004040 | Jan 1984 | JP |
60-10673 | Jan 1994 | JP |
1997-251967 | Sep 1997 | JP |
1999-514154 | Jan 1998 | JP |
10256354 | Sep 1998 | JP |
1997-251967 | Dec 1999 | JP |
2000-208437 | Jul 2000 | JP |
2000-208437 | Nov 2000 | JP |
WO 0150502 | Jul 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20070059932 A1 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
60478324 | Jun 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10866643 | Jun 2004 | US |
Child | 11595441 | US |