Patent Cooperation Treaty Publication No. WO/2008/063190 published May 29, 2008 (PCT/US2006/060757 filed Nov. 9, 2006) describes precursor compositions for the formation of copper selenide, indium selenide, copper indium selenide (CIS), and/or copper indium gallium diselenide (CIGS) films.
Patent Cooperation Treaty Publication No. WO/2008/057119 published May 15, 2008 (PCT/US2006/060756 filed Nov. 9, 2006) describes the formation of copper indium selenide and/or copper indium gallium selenide films from indium selenide and copper selenide compositions.
The entire text of the aforementioned publications are incorporated herein by reference which collectively disclose the desirability of using liquid-based precursor compositions because of the relatively simple and numerous deposition techniques that may be used to deposit the liquid precursor compositions on substrates as compared to solid state deposition techniques.
The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools and methods that are meant to be exemplary and illustrative, not limiting in scope. In various embodiments, one or more of the above-described problems have been reduced or eliminated, while other embodiments are directed to other improvements.
An exemplary process of preparing a precursor liquid based material (i.e. precursor composition) is disclosed having a copper selenide content defined by the formula CuxSey wherein x and y are each in the range of 1 to 2. Such precursor compositions are suitable for forming thin films on a substrate which may be used, for example, in semi-conductor applications such as for the preparation of absorber layers for solar cells.
The process produces a liquid based material that can be used in deposition techniques that are easier, less expensive, and more efficient to use than solid based deposition techniques such as vacuum deposition. The precursor compositions allow for deposition by such techniques as drop coating, dip coating, spin coating, spraying, brushing, air brushing, stamping, printing, including ink jet printing, pouring, wiping, smearing and other methods of applying liquids to the surface of a substrate.
In addition, the present precursor compositions can be used to produce thin films with additional advantageous properties. First, the films are essentially devoid of oxygen in the form of oxygen-containing compounds. The presence of oxygen, for example in the form of oxygen-containing compounds (e.g. CuO), can lead to defects in the copper selenide film leading to defects in the absorber layer (e.g. CIS or CIGS) which can adversely affect the energy coversion efficiency of a solar panel.
Another advantageous property is obtained from the use of primary amine type solvents (e.g. hydrazine) for dissolving a copper selenide starting material. When copper selenide is dissolved in the primary amine, Cu2Se precipitates leaving a solution containing copper selenide compounds essentially free of Cu2Se. Such solutions enable the deposition of a precursor composition under thermal conditions, which preferentially deposit thin films having a desirable copper selenide composition (i.e. predominantly CuSe) suitable for the formation of CIS or CIGS thin films useful in the fabrication of solar panels.
Accordingly, an exemplary embodiment is directed to a process of making a precursor composition comprising:
a) combining a solvent comprising a primary amine and a solute comprising copper and selenium to form a preliminary precursor composition in the form of a solution;
b) allowing the preliminary precursor composition to precipitate a non-soluble product comprising Cu2Se; and
c) separating the non-soluble product from the preliminary precursor composition to form said precursor composition.
Another embodiment is directed to a precursor composition which comprises:
a solution comprising CuSe2 and a primary amine, substantially devoid of Cu2Se.
In another embodiment, there is provided a precursor composition which comprises:
a solution comprising CuSe2 and hydrazine in which ligands of hydrazine are attached to the CuSe2.
In a still further embodiment, there is provided a thin film useful for the production of an absorber layer for a solar cell comprising CuxSey having no detectable oxygen containing compounds wherein x and y are each from 1 to 2, and the sum of x+y being in the range of 2-3, preferably where the copper selenide compound is at least substantially CuSe.
In another embodiment, there is provided a method of applying the precursor composition to a substrate comprising depositing a precursor composition comprising CuSe2 and a primary amine, substantially devoid of Cu2Se, at a temperature in which the CuSe2 is converted to a copper selenide having an atomic ratio of selenium of less than about 2:1, preferably about 1:1.
In addition to the exemplary aspects and embodiments described above, further aspects and embodiments will become apparent by reference to the drawings and by study of the following descriptions.
Exemplary embodiments are illustrated in referenced figures of the drawings. It is intended that the embodiments and figures disclosed herein are to be considered illustrative rather than limiting.
A precursor composition (also referred to as a precursor ink) is disclosed which is suitable for forming a thin film on a substrate and especially for forming a thin film containing a desired chemical species (e.g. CuSe) for use in forming a CIS (copper-indium-selenide) and/or CIGS (copper-indium/gallium-diselenide) absorber layer for solar cells.
Copper selenide containing thin films are useful in the fabrication of CIS and/or CIGS absorber layers for solar cells. The copper selenide layer and the indium/gallium selenide layer are placed into contact under reactive conditions to form a desirable absorber layer. An exemplary form of copper selenide is CuSe and it is desirable to form a thin film of copper selenide in which a high degree of selection for CuSe is evident.
In an exemplary embodiment, there is provided a process of forming a liquid based precursor composition or precursor ink having a desirable copper selenide content, in which during the process undesirable Cu2Se is effectively removed prior to deposition. The precursor composition can be applied to a substrate and simultaneously thermally treated in a manner which provides a thin film having a target copper selenide content, preferably predominantly CuSe and most preferably having a substantially 1:1 copper-selenium atomic ratio.
An exemplary process as represented by
The resulting precursor composition is applied to the substrate under elevated temperature conditions sufficient to remove the solvent. During this thermal process step, the selection of a deposition temperature and duration of heating controls the species of copper selenide formed during deposition. In this way, the thin film can be formed with at least a substantial, preferably all of the copper selenide in the form of CuSe.
In an exemplary embodiment, there is provided a process for producing a CuxSey containing precursor composition wherein x and y are each from 1 to 2, with the sum of x+y being in the range of 2-3, comprising dissolving a copper selenide starting material in a solvent comprised of a primary amine such as hydrazine (N2H4) to form a solution (i.e. preliminary precursor composition) containing CuSe2 and an insoluble precipitate in the form of Cu2Se. The precipitate is removed in a conventional manner (e.g. filtration and/or centrifugation), leaving a copper selenide containing solution at least substantially free of Cu2Se (i.e. precursor composition) for further processing.
When using hydrazine as a solvent, it is believed that the solution is comprised of a coordination complex of copper, selenium and hydrazine in which ligands of hydrazine are bound to the copper. The solution is applied to a substrate such as glass, plastic, ceramic or the like by any of the liquid based deposition techniques previously mentioned (e.g. spraying), for example at a thickness of from about 0.1 to 5.0 μm.
The precursor composition is heated during or after deposition to remove and recapture the solvent which, in the case of hydrazine, results from the breaking of the ligand bonds between the hydrazine and copper, leaving relatively pure copper selenide.
The temperature and duration of the heating step has been found to control the atomic ratio of copper to selenium when the precursor composition is deposited on the substrate. Relatively high temperatures favor the formation of the copper rich species (Cu2Se). Relatively low temperatures favor the formation of the selenium-rich species (CuSe2). Thus, raising the reaction temperature tends to raise the copper content and lower the selenium content. For example, deposition of the copper selenide precursor composition at a temperature of from about 50 to 150° C., where about 80° C. favors the formation of CuSe2. If deposition is conducted at about 175° C. to 225° C., e.g., about 200° C., the predominant species is CuSe. As temperatures rise above about 225° C., the copper selenide precursor composition gradually favors the formation of the undesirable Cu2Se. Accordingly, by controlling the temperature of the deposition process within the temperature range described above, the content of the copper selenide compounds can be precisely controlled.
In the formation of CIS and CIGS absorption layers, copper selenide layers containing substantially pure CuSe may be used. Accordingly, an exemplary method of forming a CIS or CIGS absorption layer is to deposit the copper selenide layer at a temperature of from about 150° C. to 225° C., preferably about 200° C.
As previously indicated the duration of thermal processing is another factor which assists in controlling the atomic ratio of copper to selenium. Generally, as shown for example in
The variance of temperature and duration can affect the content of the deposited precursor composition as follows. Assuming the precursor composition is prepared as shown in
Conversely, if the copper-selenium atomic ratio of the initial deposited material favors the formation of Cu2Se, the temperature of the deposition and/or the duration of the thermal treatment step may be decreased to thereby favor a higher selenium content.
Primary amines such as hydrazine and liquid alkylamines (e.g. propylamine) are used as the solvent for the starting copper selenide compound to form the preliminary precursor composition. The term “preliminary precursor composition” means the mixture of primary amine and starting copper selenide material prior to the removal of the precipitate (Cu2Se). [The amount of primary amine (e.g. hydrazine) is greater than a stoichiometric amount, e.g., in a large excess (e.g. about 60:1 weight ratio)]. Hydrazine is not a commonly used solvent because there are safety issues concerned with its use. In the present process, hydrazine can be at least substantially recovered during thermal treatment of the precursor composition thereby enabling its use in the present process.
To reduce the amount of hydrazine needed to dissolve the copper selenide, a secondary amine such as ethylene diamine may be used as a cosolvent, or additional cosolvents such as water, lower alkanols preferably having 1-6 carbon atoms (e.g. methanol) and glycols (e.g. ethylene glycol) may also be used. The function of the cosolvent is to enable the reaction to proceed with a reduced amount of the primary amine. The amount of the cosolvent may be up to the amount of the primary amine.
In an exemplary embodiment, the precursor composition can be deposited in a single step heat treating method without resorting to multiple step processes in which the last heating step is rapid thermal processing (RTP). In particular, the solution of the primary amine e.g. hydrazine (with or without the secondary amine e.g. ethylene diamine) and copper selenide may be heated and converted directly to the desirable copper selenide species as the solution is being deposited on the substrate.
Rapid thermal processing (RTP) is defined herein as a heating regimen in which the target film is heated to the desired temperature in a short time, e.g., no more than ten minutes. The desired temperature is maintained until the heating process is completed.
In an exemplary deposition of liquid based precursor materials, such as described in WO 2008/057119 and WO 2008/063190, the precursor material is deposited on the substrate to form a thin film. Thereafter, the film is annealed at high temperatures (i.e. 350° C.) to yield a copper selenide film containing Cu2Se as the predominant species. In the present process, heating may be conducted while the precursor composition is being deposited on the substrate in a single step process.
It will be understood that the one step heating process is exemplary and not required. Thus, the precursor compositions described herein may be initially deposited on a substrate at relatively low temperatures, about 80° C. to 100° C. and thereafter treated at higher temperatures including rapid thermal processing to convert the initial copper selenide composition to the CuSe in relatively pure form.
The present process does not produce significant amounts of copper oxides and particularly the precursor compositions and films formed from such compositions contain no detectable oxygen (i.e. less than about 0.1% of oxygen).
The CuSe containing precursor composition representing an embodiment makes efficient use of selenium and in an exemplary embodiment obviates the need for multiple heating steps. Because CuSe is produced in relatively pure form, the precursor compositions can be used effectively to facilitate the formation of, for example, CuInSe2 with large crystal grains in a solid state reaction with In2Se3.
Specific embodiments will now be further described by the following, nonlimiting examples which will serve to illustrate in some detail various features.
The following examples are included to facilitate an understanding of ways in which an embodiment may be practiced. It should be appreciated that the examples which follow represent embodiments discovered to function well in practice. However, it should be appreciated that many changes can be made in the exemplary embodiments which are disclosed while still obtaining like or similar results without departing from the spirit and scope of the claims. Accordingly, the examples should not be construed as limiting the scope of the claims.
A preliminary precursor composition based on copper selenide was prepared by adding 1.42 g of commercial grade CuSe powder to 80 ml of hydrazine under stirring for three days. During this time a precipitate forms comprised of Cu2Se. A solution having a clear green color and comprised of CuSe2 in hydrazine was isolated by removing the precipitate by filtration and/or centrifugation to form a precursor composition. A representation of the reaction to yield the preliminary precursor composition and the precursor composition is shown in
Seven samples of the precursor composition prepared in accordance with Example 1 were heated to temperatures of up to 350° C. for five minutes as shown in
Sample 4 was heated to 200° C. and analyzed for copper selenide content. The amount of copper was approximately 39% and the amount of selenium was approximately 61%, representing a mixture of CuSe2 and CuSe. When the duration of heating was extended to ten minutes (Sample 4A), the copper content increased and the selenium content decreased.
Sample 5 was heated to 250° C. and determined to contain approximately 60% copper and 40% selenium. Sample 6 was heated to 300° C. and found to contain about 65% copper and about 35% selenium, while sample 7 was heated to 350° C. and found to contain about 67% copper and 33% selenium. Samples 6 and 7 contained a predominant amount of Cu2Se.
Thus, Samples 1-3 showed a predominant amount of selenium and are associated with the copper selenide species CuSe2. Samples 6 and 7 showed a predominant amount of copper and are associated with the species Cu2Se. Of particular interest are samples 4 and 5 and the temperature range of from about 180° C. to 240° C. where the predominant species is CuSe which is an exemplary species for forming CIS and CIGS absorber layers.
The data shown in the XRD scan of
Thus, heating to a temperature of 180° C. to about 240° C. favors the exemplary species CuSe. However, it is also important to note that the rate of selenium loss can be controlled by controlling not only the temperature but the duration of the heating process. This is of particular interest in the temperature range of 180° C. to 210° C. as shown in
Thus, within a target zone of about 180° C. to 210° C., the duration of heating can be varied to further control the copper selenium content.
Another sample (Sample 8) was prepared in a manner similar to Example 1, except that the solvent used to dissolve the starting copper selenide material was a 1:1 weight ratio of hydrazine and ethylene diamine. The molecular signature shown in
The resulting precursor composition was deposited on glass substrates at a temperature of 150° C. (Sample 9), 175° C. (Sample 10), and 200° C. (Sample 11), respectively, and the temperature for each sample as deposited was maintained for 30 minutes.
1.42 g of CuSe (obtained from Alfa, 0.010 mol) was placed in a 250 ml round bottom flask with side-arm stopcock and magnetic stir bar. The flask was capped with a septum and evacuated and refilled with N2. Then 80 ml of anhydrous hydrazine (Aldrich) was added with a polyethylene syringe. The mixture was then stirred for three days at room temperature, during which time a black, chunky material (CuSe) dissolved to give a dark colored solution and a grey precipitate (identified as Cu2Se) thus forming a preliminary precursor composition. The mixture was then transferred by a stainless steel cannula to two N2-purged 50 ml centrifuge tubes and separated by centrifugation at 3000 rpm for fifteen minutes. The clear, dark precursor liquid (precursor composition: Sample 12) was decanted via a cannula into a purged flask and stored under N2. The color of the liquid lightened with time in storage, becoming dark green within two days and then turning to yellow over a period of a few weeks. This is thought to be due to the presence of small amounts of highly colored polyselenides that oxidize over time in these septum-capped storage flasks. ICP-AES analysis of this sample gives a Cu:Se ratio of 1:2 for this liquid and so it is formulated as CuSe2 coordinated by and dissolved in hydrazine.
While a number of exemplary aspects and embodiments have been discussed above, those of skill in the art will recognize certain modifications, permutations, additions and sub combinations thereof. It is therefore intended that the following appended claims and claims hereafter introduced are interpreted to include all such modifications, permutations, additions and sub-combinations as are within their true spirit and scope.
The United States Government has rights in this invention under Contract No. DE-AC36-08GO28308 between the United States Department of Energy and the Alliance Sustainable for Energy, LLC, the Manager and Operator of the National Renewable Energy Laboratory.
Number | Name | Date | Kind |
---|---|---|---|
3014779 | Conn et al. | Dec 1961 | A |
3629036 | Isaacson | Dec 1971 | A |
4088544 | Hutkin | May 1978 | A |
4267398 | Rothwarf | May 1981 | A |
4315097 | Solomon | Feb 1982 | A |
4322571 | Stanbery | Mar 1982 | A |
4392451 | Mickelsen et al. | Jul 1983 | A |
4479847 | McCaldin et al. | Oct 1984 | A |
4523051 | Mickelsen et al. | Jun 1985 | A |
RE31968 | Mickelsen et al. | Aug 1985 | E |
4571448 | Barnett | Feb 1986 | A |
4609820 | Miyamoto | Sep 1986 | A |
4611091 | Choudary et al. | Sep 1986 | A |
4674434 | Ishihara | Jun 1987 | A |
4823176 | Baliga et al. | Apr 1989 | A |
4864599 | Saegusa et al. | Sep 1989 | A |
4902395 | Yoshimura | Feb 1990 | A |
4902398 | Homstad | Feb 1990 | A |
4902668 | Whitcomb et al. | Feb 1990 | A |
5028274 | Basol et al. | Jul 1991 | A |
5055150 | Rosenfeld et al. | Oct 1991 | A |
5124308 | Albin et al. | Jun 1992 | A |
5178967 | Rosenfeld et al. | Jan 1993 | A |
5248621 | Sano | Sep 1993 | A |
5298449 | Kikuchi | Mar 1994 | A |
5396839 | Rice | Mar 1995 | A |
5405802 | Yamagata et al. | Apr 1995 | A |
5436204 | Albin et al. | Jul 1995 | A |
5441897 | Noufi et al. | Aug 1995 | A |
5477088 | Rockett et al. | Dec 1995 | A |
5477288 | Miyazaki et al. | Dec 1995 | A |
5567469 | Wada et al. | Oct 1996 | A |
5578503 | Karg et al. | Nov 1996 | A |
5626688 | Probst et al. | May 1997 | A |
5674555 | Birkmire et al. | Oct 1997 | A |
5687218 | Nakayama | Nov 1997 | A |
5705011 | Bodford et al. | Jan 1998 | A |
5730852 | Bhattacharya et al. | Mar 1998 | A |
5731031 | Bhattacharya et al. | Mar 1998 | A |
5756240 | Roberts et al. | May 1998 | A |
5759954 | Taguchi et al. | Jun 1998 | A |
5794163 | Paterson et al. | Aug 1998 | A |
5846638 | Meissner | Dec 1998 | A |
5858121 | Wada et al. | Jan 1999 | A |
5858628 | Yoshida et al. | Jan 1999 | A |
5948176 | Ramanathan et al. | Sep 1999 | A |
6021207 | Puthuff et al. | Feb 2000 | A |
6026082 | Astrin | Feb 2000 | A |
6072818 | Hayakawa | Jun 2000 | A |
6100165 | Sakaguchi et al. | Aug 2000 | A |
6121541 | Arya | Sep 2000 | A |
6141356 | Gorman | Oct 2000 | A |
6146979 | Henley et al. | Nov 2000 | A |
6185418 | MacLellan et al. | Feb 2001 | B1 |
6187653 | Hui et al. | Feb 2001 | B1 |
6190453 | Boydston et al. | Feb 2001 | B1 |
6225190 | Bruel et al. | May 2001 | B1 |
6225199 | Han et al. | May 2001 | B1 |
6251754 | Ohshima et al. | Jun 2001 | B1 |
6313479 | Zhang et al. | Nov 2001 | B1 |
6323417 | Gillespie et al. | Nov 2001 | B1 |
6339695 | Clark | Jan 2002 | B1 |
6372538 | Wendt et al. | Apr 2002 | B1 |
6399486 | Chen et al. | Jun 2002 | B1 |
6455398 | Fonstad, Jr. et al. | Sep 2002 | B1 |
6475354 | Toyama | Nov 2002 | B1 |
6500733 | Stanbery | Dec 2002 | B1 |
6521511 | Inoue et al. | Feb 2003 | B1 |
6559372 | Stanbery | May 2003 | B2 |
6593213 | Stanbery | Jul 2003 | B2 |
6669830 | Inoue et al. | Dec 2003 | B1 |
6720239 | Stanbery | Apr 2004 | B2 |
6736986 | Stanbery | May 2004 | B2 |
6787012 | Stanbery | Sep 2004 | B2 |
6797874 | Stanbery | Sep 2004 | B2 |
6852920 | Sager et al. | Feb 2005 | B2 |
6855202 | Alivisatos et al. | Feb 2005 | B2 |
6881647 | Stanbery | Apr 2005 | B2 |
6936761 | Pichler | Aug 2005 | B2 |
6987071 | Bollman et al. | Jan 2006 | B1 |
7045205 | Sager | May 2006 | B1 |
7097902 | Blanton et al. | Aug 2006 | B2 |
7422696 | Mirkin et al. | Sep 2008 | B2 |
20020006470 | Eberspacher et al. | Jan 2002 | A1 |
20020016188 | Kashiwamura | Feb 2002 | A1 |
20020043279 | Karg | Apr 2002 | A1 |
20030051664 | Stanbery | Mar 2003 | A1 |
20030052391 | Stanbery | Mar 2003 | A1 |
20030054582 | Stanbery | Mar 2003 | A1 |
20030054662 | Stanbery | Mar 2003 | A1 |
20030054663 | Stanbery | Mar 2003 | A1 |
20030123167 | Kolberg et al. | Jul 2003 | A1 |
20030201010 | Koyanagi et al. | Oct 2003 | A1 |
20040063320 | Hollars | Apr 2004 | A1 |
20040250848 | Sager et al. | Dec 2004 | A1 |
20050095422 | Sager et al. | May 2005 | A1 |
20050098204 | Roscheisen et al. | May 2005 | A1 |
20050098205 | Roscheisen et al. | May 2005 | A1 |
20050109392 | Hollars | May 2005 | A1 |
20050121068 | Sager et al. | Jun 2005 | A1 |
20050183767 | Yu et al. | Aug 2005 | A1 |
20050183768 | Roscheisen et al. | Aug 2005 | A1 |
20050186342 | Sager et al. | Aug 2005 | A1 |
20050218377 | Lawandy | Oct 2005 | A1 |
20060062902 | Sager et al. | Mar 2006 | A1 |
20070077429 | Mirkin et al. | Apr 2007 | A1 |
20070119522 | Grier et al. | May 2007 | A1 |
20070152236 | Halpert et al. | Jul 2007 | A1 |
20070163642 | Van Duren et al. | Jul 2007 | A1 |
20070234949 | Ahn et al. | Oct 2007 | A1 |
20070261951 | Ye et al. | Nov 2007 | A1 |
20080194103 | Wagner | Aug 2008 | A1 |
20080242088 | Suzuki | Oct 2008 | A1 |
20090226603 | Lowrey | Sep 2009 | A1 |
Number | Date | Country |
---|---|---|
42 25 385 | Feb 1994 | DE |
0 381 509 | Aug 1990 | EP |
0 621 130 | Oct 1994 | EP |
0 661 760 | Jul 1995 | EP |
0 763 859 | Mar 1997 | EP |
0 989 593 | Mar 2000 | EP |
1 255 305 | Jun 2002 | EP |
1 385 364 | Jan 2004 | EP |
1119372 | Jul 1968 | GB |
WO 9722152 | Jun 1997 | WO |
WO 0033363 | Jun 2000 | WO |
WO 03002225 | Jan 2003 | WO |
WO 03026022 | Mar 2003 | WO |
WO 03026023 | Mar 2003 | WO |
WO 03026024 | Mar 2003 | WO |
WO 03026025 | Mar 2003 | WO |
WO 03026026 | Mar 2003 | WO |
WO 03026028 | Mar 2003 | WO |
WO 2005017978 | Feb 2005 | WO |
WO 2005059952 | Jun 2005 | WO |
WO2006041199 | Apr 2006 | WO |
WO 2006133129 | Dec 2006 | WO |
WO 2007082080 | Jul 2007 | WO |
WO 2007082084 | Jul 2007 | WO |
WO 2007082085 | Jul 2007 | WO |
WO 2008027571 | Mar 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20110189080 A1 | Aug 2011 | US |