Methods, systems and devices using LOX to provide ventilatory support

Information

  • Patent Grant
  • 10099028
  • Patent Number
    10,099,028
  • Date Filed
    Tuesday, August 16, 2011
    12 years ago
  • Date Issued
    Tuesday, October 16, 2018
    5 years ago
Abstract
A portable liquid oxygen system may provide an average flow rate of oxygen gas at approximately 6-approximately 20 lpm using a rapid gas conversion mode. The rapid gas conversion mode utilizes a Stirling engine that harnesses the heat differential between the ambient temperature and the liquid oxygen store to drive a fan. The fan operates to blow ambient air across a heat exchanger, which allows the heat exchanger to more rapidly evaporate liquid oxygen into oxygen gas.
Description
FIELD OF THE INVENTION

The present invention relates to ventilation therapy for persons suffering from respiratory and breathing disorders, such as respiratory insufficiency and sleep apnea. More specifically, the present invention relates to methods and apparatus for assisting in the work of breathing, and restoring, augmenting, or providing ventilation to the lungs using a liquid oxygen (LOX) supply as a gas source.


BACKGROUND OF THE INVENTION

There are a range of clinical syndromes that require some form of mechanical ventilation therapy with elevated concentrations of inspired oxygen. These syndromes include hypoxemia, various forms of respiratory insufficiency, and congestive heart failure. Ventilators that treat these conditions provide ventilatory support for the lung, and typically deliver elevated concentrations of oxygen to help oxygenate the organs. The oxygen supplies used as inputs to these ventilators are typically compressed oxygen gas in cylinders or a hospital's compressed oxygen supply piped into the treatment room. More recently, attempts have been made to tee oxygen into a ventilator from an oxygen concentrator, which makes 92% oxygen from room air. In general, even the most portable ventilation therapy systems have limited portability due to the size and weight of the ventilator. Additionally, if the patient requires elevated concentrations of oxygen, also because of the size and weight of the oxygen cylinder that is required as input to the ventilator. Because of this, a large number of patients that need ventilatory support choose not to have it because they do not want to be immobilized by being connected to a conventional ventilator. To solve this dire unmet need, recently, a unique new ventilation system has been devised (U.S. Pat. Nos. 7,487,778, 7,533,670 and 7,588,033) that works using non-conventional gas delivery and patient interface principles, which render the ventilation and oxygen supply equipment highly portable, and in fact wearable. Thus, for the first time, patients that require mechanical ventilatory support can have that support while conveniently and easily ambulating.


Separate from mechanical ventilation therapy, there are also clinical syndromes that require oxygen therapy, but not necessarily ventilatory support. These oxygen therapy systems include compressed oxygen gas in cylinders, oxygen concentrators, and liquid oxygen (LOX) systems. These liquid oxygen systems store oxygen in liquid form, and over time the liquid oxygen converts to gaseous oxygen before being delivered to the patient as gaseous oxygen. LOX can be very advantageous in that it has a more efficient gas volume to storage volume ratio. A liter of LOX typically creates about 800 liters of gaseous oxygen at atmospheric pressure, whereas one liter of compressed oxygen gas in a cylinder typically creates about 100 liters of gaseous oxygen at atmospheric pressure.


In the ambulatory mechanical ventilatory support system described in U.S. Publication Nos. 2008/0135044, 2010/0252042, 2010/0252041, 2010/0252040, 2010/0252039, 2010/0252037, use of LOX has been described for (A) an oxygen supply for a mechanical ventilator, and (B) to use the gas pressure created by a LOX system to power a pneumatically powered ventilator. The advantage of using LOX as an input to a mechanical ventilator is that it can help make the ventilation system highly portable, which is very useful in many clinical applications such as chronic obstructive pulmonary disease (COPD), interstitial lung disease (ILD), some neuromuscular diseases, as well as field and pandemic uses. However, to be technically feasible to use a LOX system for the input into such a ventilator, the LOX system, the ventilator, or both, requires special unique features.


In summary, existing mechanical ventilation therapies have the following disadvantages: they do not offer respiratory support in an ambulatory form factor that can be easily borne or worn by the patient.


SUMMARY OF THE INVENTION

The present invention solves the limitations of prior systems with unique features that allow use of a ventilator in conjunction with LOX. Embodiments of the present invention include a portable liquid oxygen system providing an average flow rate of oxygen gas at approximately 6-approximately 20 lpm using a rapid gas conversion mode. The liquid oxygen system may weigh less than 10 pounds. A heat exchanger may be provided, and wherein the rapid gas conversion mode may utilize a heater on the heat exchanger. The rapid gas conversion mode may utilize a Stirling engine passing air from a heat source across the heat exchanger to a heat sink, wherein the heat source is ambient air, and wherein the heat sink is proximal to a liquid oxygen store. A liquid oxygen store may be provided, and wherein the rapid gas conversion mode may utilize a reduction in insulation at least partially surrounding the liquid oxygen store. An oxygen gas store may be provided, and wherein higher peak flow rates than the average flow rate may be achieved utilizing oxygen stored in the oxygen gas store. The system may have multiple modes of operation. The modes of operation may be a continuum of settings and not discrete modes of operation. Flow capacity may be changed when switching between modes of operation. Oxygen gas pressure may be changed when switching between modes of operation. The system may automatically switch modes of operation based on a patient's condition.


Embodiments of the present invention may also include a ventilation system that includes a portable ventilator; and a portable liquid oxygen system providing a flow rate of oxygen gas at approximately 6-approximately 20 lpm using a rapid gas conversion mode. The portable ventilator and the portable liquid oxygen system may be integrated into a single portable or wearable unit. The liquid oxygen system may weigh less than 10 pounds. A heat exchanger may be provided, and wherein the rapid gas conversion mode may utilize a heater on the heat exchanger. The rapid gas conversion mode may utilize a Stirling engine passing air from a heat source across the heat exchanger to a heat sink, wherein the heat source is ambient air, and wherein the heat sink is proximal to a liquid oxygen storage device. A liquid oxygen storage device may be provided, and wherein the rapid gas conversion mode may utilize a reduction in insulation at least partially surrounding the liquid oxygen storage device. An oxygen gas store may be provided, and wherein peak flow requirements of the portable ventilator may be achieved by utilizing oxygen stored in the oxygen gas store. A patient interface may be provided, wherein the patient interface is a nasal interface, a mask, an endotracheal tube, a tracheostomy tube, or a trans-oral tube. The ventilator may be wearable. A blender may be provided for titrating the amount of oxygen needed.


Embodiments of the present invention may include a liquid oxygen system including a liquid oxygen store; a heat exchanger; a fan; a heat source; and a heat sink, wherein the fan passes ambient air across the heat exchanger from the heat source to the heat sink to produce a rapid gas conversion mode. The liquid oxygen system may be portable. The heat source may be an opening to ambient. The heat sink may be a region near the liquid oxygen store or evaporative coils.


Embodiments of the present invention may include a portable liquid oxygen system including a liquid oxygen store; an oxygen gas store; a liquid oxygen to gas conversion unit, wherein the liquid oxygen to gas conversion unit further comprises a heat exchanger between the liquid oxygen store and the oxygen gas store; and one or more controls for determining a mode of operation for the heat exchanger. The mode of operation may be switched automatically. A mode of the heat exchanger may be a rapid gas conversion mode for ventilation therapy providing an average gas flow at approximately 6 lpm to approximately 20 lpm. A mode of the heat exchanger may be a low gas conversion mode for oxygen therapy providing an average gas flow at approximately 1 lpm to approximately 6 lpm. The one or more controls may receive a signal from one or more respiration sensors, and wherein the one or more controls may cause the heat exchanger to switch between modes. The one or more controls may receive a signal from one or more pulse oximeters, and wherein the one or more controls may cause the heat exchanger to switch between modes.


Embodiments of the present invention may include a method of treating respiratory and breathing disorders, the method including providing a portable liquid oxygen system, wherein the liquid oxygen system comprises a liquid oxygen store, an oxygen gas store, a liquid oxygen to gas conversion unit, a heat exchanger between the liquid oxygen store and the oxygen gas store; and providing an average flow rate of oxygen gas at approximately 6-approximately 20 lpm using a rapid gas conversion mode. The method may also include receiving an input from one or more respiration sensors regarding ventilation needs of the patient at one or more controls; automatically determining a mode of operation for the heat exchanger based on signals from one or more respiration sensors; and sending a control signal to one or more of the liquid oxygen store, the oxygen gas store, the liquid oxygen to gas conversion unit, and the heat exchanger to initiate the determined mode of operation. The liquid oxygen system may weigh less than 10 pounds. The rapid gas conversion mode may utilize a heater on a heat exchanger. The rapid gas conversion mode may utilize a Stirling engine passing air from a heat source across a heat exchanger to a heat sink, wherein the heat source is ambient air, and wherein the heat sink is proximal to the liquid oxygen storage device. The rapid gas conversion mode may utilize a reduction in insulation at least partially surrounding the liquid oxygen store. Higher peak flow rates than the average flow rate may be achieved utilizing oxygen stored in the oxygen gas store.


Additional features, advantages, and embodiments of the invention are set forth or apparent from consideration of the following detailed description, drawings and claims. Moreover, it is to be understood that both the foregoing summary of the invention and the following detailed description are exemplary and intended to provide further explanation without limiting the scope of the invention as claimed.





BRIEF DESCRIPTIONS OF THE FIGURES

The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate preferred embodiments of the invention and together with the detailed description serve to explain the principles of the invention. In the drawings:



FIG. 1 is a system schematic of the invention, according to an exemplary embodiment.



FIG. 2 illustrates a patient using an exemplary embodiment of the present invention for treating respiratory insufficiency.



FIG. 3 illustrates prior art controlled mechanical ventilation.



FIG. 4 illustrates prior art continuous positive airway pressure (CPAP) ventilation.



FIG. 5 illustrates prior art nasal cannula oxygen therapy.



FIG. 6A is a schematic of a LOX system, according to an exemplary embodiment.



FIG. 6B is a schematic of a two pressure setting LOX system, according to an exemplary embodiment.



FIG. 7 is a schematic of a LOX module, according to an exemplary embodiment.



FIG. 8 is a schematic of a LOX gas conversion module, according to an exemplary embodiment.



FIG. 9 is a schematic of an oxygen gas storage module, according to an exemplary embodiment.



FIG. 10 is a schematic of a Stirling engine, according to an exemplary embodiment.





DETAILED DESCRIPTION OF THE EMBODIMENTS

The present invention may include LOX systems that are used for (A) input to a ventilator for the ventilator to deliver elevated concentrations of oxygen to the patient, and (B) for providing pressurized gas input to a ventilator to drive the ventilator with pneumatic power. The latter may allow the ventilator to consume relatively small amounts of electrical power, thus enabling the ventilator to be portable using battery power for extended periods.


The present invention may provide ventilation to a patient using a ventilation system that typically employs a non-invasive nasal interface or a transtracheal interface. The present invention can be used to treat respiratory insufficiency by providing mechanical ventilation to support the work of breathing of a patient. The patient interface may include a jet pump having a geometric configuration that optimizes the fluid dynamics of the system to improve the efficiency of the system and efficacy of the therapy. A pressurized gas, such as a therapeutic gas, and more specifically oxygen-rich gas, may be delivered through a catheter. For purposes of this disclosure, the terms tube, catheter, hose, gas delivery circuit, etc. are used interchangeably. Further, the term catheter does not necessarily require insertion into a patient airway, and does not require the device to be long and flexible. Various configurations are possible depending on specific uses. When the pressurized gas exits a catheter distal tip, the gas may entrain approximately 25-250% of ambient air due to the design of the catheter, so that a combination of ventilator-delivered gas and entrained gas is delivered to the patient. Embodiments of the present invention may, for example, create an increase of approximately 2-40 cmH2O in the upper airway, and approximately 1-30 cmH2O in the lung. A ventilator-delivered gas volume of approximately 50 ml can entrain for example approximately 50 ml, so that approximately 100 ml is delivered to the patient, with a sufficient driving pressure so that a significant amount of the approximately 100 ml volume reaches the airway or lung to increase pressure in those areas, thus mechanically supporting respiration. For purposes of this disclosure, nasal cannula, nasal catheter, jet nozzle, and ventilation interface are often used interchangeably when pertaining to the present invention. Other ventilation interfaces can also be used, such as conventional non-invasive ventilation masks or airway tubes, etc.


Embodiments of the present invention may provide ventilation to a patient using a ventilator described as follows. The ventilator can be wearable, and weight less than approximately 3 lbs, preferably approximately 1 lb. The ventilator typically includes a valve that regulates the output of the ventilator to a desired volume, pressure or flow. The ventilator typically includes other features related to patient activity, such as actigraphy or pedometry sensing, biofeedback control of the therapy level based on patient's activity level, dyspnea questionnaires, and bi-directional communication capability with a remote clinician. The ventilator can also include a piston or reservoir system for amplifying the output pressure or storing oxygen gas volume in-between volume deliveries to the patient.



FIG. 1 is a schematic diagram showing an exemplary overall system of the invention. A patient may be ventilated using a ventilation gas delivery circuit 113 and non-invasive open nasal ventilation interface 129, or other interfaces, such as endotracheal tubes, trans-oral tubes, etc. The nasal interface 129 preferably does not seal against the patient's nose, and instead leaves the nose open for the user to breathe normally and freely from the ambient surroundings. Ventilation gas may be delivered at a speed that entrains ambient air, such that the combination of ventilation gas and entrained air are delivered to the user's airways and lung under power. The nasal interface 129 may optimize the physics and fluid dynamics to maximize its performance.


The ventilation system may include several primary components: (1) a LOX storage portion, (2) a LOX gas conversion and storage portion, (3) an oxygen gas storage portion, (4) a ventilator portion, (5) a gas delivery circuit, and (6) a patient interface or mask. The LOX storage, LOX gas conversion and storage, the oxygen gas storage portion, and the ventilator can be separate units or can be integrated into one unit or more units. A spontaneous breathing respiration sensor may also be used to detect, determine and measure the spontaneous breathing pattern/phases of the user. This information may be used to synchronize and/or titrate the therapy to the needs of the patient and to match the gas delivery comfortably with the patient's breathing.


Embodiments of the present invention may be used to support the respiration of the patient, including supporting the work of breathing by increasing pressure and volume in the lung. When using the invention, the patient breathes normally through their upper airway and through their nose, while receiving mechanical support through the interface. The patient can keep their mouth closed during use, to help direct the mechanical support to the lower airways, or can use a bite block or mouth guard or chin band, if necessary. The patient can use the therapy while stationary, while being transported, while mobile and active, or while resting or sleeping. The therapy has homecare, hospital, subacute care, emergency, military, pandemic and transport applications. It should be noted that the LOX storage and LOX gas conversion aspects of the invention can be used to supply ventilation gas to conventional ventilators or for conventional oxygen therapy delivery systems, and other medical and non-medical applications, in addition to delivering oxygen to the ambulatory non-invasive open airway ventilation system.



FIG. 2 shows an exemplary embodiment as used to treat respiratory insufficiency. A ventilator 201 can be borne or worn by the patient 203, such as being placed discretely on the user's body, head or face. Because the ventilation system may contribute to some of the mechanical work required for a person to breathe, the user can be active without suffering from dyspnea, hypoxemia, hypercapnia or fatigue. The user can benefit from ambulation, activity, and participate in the routine activities of daily living, such as preparing meals, bathing, chores around the house, and leaving the house for outside activities. Further, the user can communicate, eat, drink and swallow, while receiving mechanical ventilation, as opposed to other ventilation interfaces in which the patient's airway is closed with an external mask, or sealed internally with a cuffed airway tube. The ventilation parameters, ventilation timing algorithms, and the effect on the lung are described in subsequent descriptions. The patient 203 may breathe through an interface 205, such as a nasal interface. The ventilator 201 may be coupled to an external oxygen supply 207 via conduits 209.



FIG. 3 shows a prior art therapy for mechanical ventilation. A patient 301 is intubated with an endotracheal (ET) tube 303 and a cuff 305 is inflated in the trachea 307, thus closing the airway off from ambient air. The patient 301 is sedated and their lungs are ventilated with gas being delivered and removed through the ET tube 303. Gas may be delivered through a gas delivery tube 309. A sensor 311 may measure airflow. This therapy is highly effective in providing mechanical support for respiration; however, in some situations such as field emergencies, providing elevated concentrations of oxygen gas may be required.



FIG. 4 shows a prior art respiratory support therapy, non-invasive ventilation, using a nose mask 401 and typically using a BiPAP ventilation mode. Non-invasive ventilation (NIV) is used to breathe for the patient, or can be used to help the breathing of a patient, in which case the patient's spontaneous breathing effort triggers the ventilator to deliver the pressure or volume based mechanical ventilation. All of the volume delivered to and from the lungs is delivered and removed from a ventilation circuit 403 and the nose mask 401. A similar system can be used for obstructive sleep apnea, in which case exhaust vents 405 are included in the nose mask so that a portion of the exhaled gas is exhaled through the vent ports. NIV, CPAP and bilevel positive airway pressure (BiPAP) are clinically very effective for spontaneously breathing patients; however, these modes and therapies do not facilitate activities of daily living, the ventilator can not be borne by the patient, the patient cannot breathe room air naturally and freely, and the patient's upper airway cannot function normally and naturally because it is sealed off with the external mask seal.



FIG. 5 shows the conventional prior art oxygen delivery cannula 501, for administering oxygen therapy. Distal ends of the cannula 505 are configured to enter the nares 503. The proximal end is connected to an oxygen delivery device that can deliver continuous flow oxygen at 1-6 lpm to the user's nose, or which delivers a bolus of oxygen upon detection of an inspiratory effort. This prior art does not mechanically support the work of breathing of the patient.


In FIG. 6A, a LOX system is described to provide pressure and flow required for a ventilator. Exemplary embodiments may include a ventilator 100, LOX unit 110, LOX 112, LOX unit vacuum chamber 114, LOX outlet tube 116, heat exchanger 124, heater 120, check valve 122, oxygen gas reservoir 128, reservoir pressure regulator 126, gas outlet on/off valve 130, outlet to patient Pt and incoming breath signal S.


Typical LOX systems include a liquid phase oxygen compartment and an oxygen gas phase compartment that is continually filled by the boiling of the liquid oxygen. The phase change is catalyzed by a heat exchanger unit. These systems maintain the gas phase compartment at about 23 psi by bleeding gas to atmosphere to avoid pressurization beyond 23 psi. Typical medical LOX systems have been designed specifically to conserve oxygen and as such their output is relatively weak compared to the requirements of a ventilator. The compact LOX systems that are designed for portability are engineered to deliver gas at very low flow rates (<3 lpm) and low pressures (below 5 psi). The larger, less portable LOX units are engineered for greater flow output; however, these units are not realistically suited for active ambulatory patients because of their larger size. The typical systems are capable of delivering oxygen gas at a continuous flow rate of below 4 lpm at a pressure well below 23 psi since the pressure in the gas phase compartment drops within fractions of a second when the system is opened to the patient. The gas phase compartment typically contains less than 50 ml of gas and the rate of gas creation by boiling is limited to below 4 lpm due to the design and construction of the heat exchanger, which is typically less than 20 square inches surface area. Gas flow output to the patient is also limited by the size of the orifice in the outlet valve, typically less than 0.10″ diameter, thus restricting airflow.


In the present invention the heat exchanger unit 124 is designed with greater surface area, typically greater than 30 square inches, to produce gas at the rate of 6-10 lpm and the outlet orifice allows that flow rate output as well, typically greater than 0.15″ diameter. The heater 120 may be added to increase the rate of production of gaseous oxygen. The gas volume of the gas phase compartment is typically above approximately 80 ml and can be approximately 250 ml, which typically includes a pressure regulator 126, a reservoir 128, check valve 122, on/off valve 130 and incoming breath signal S. This configuration may provide an oxygen gas output flowrate of above approximately 6 lpm at above approximately 20 psi continuously, thus meeting the parameters required by some ventilators. The LOX system may include a catheter and all the requisite sensing components and timing functions described herein to deliver the required volume of gas at the correct pressure and at the correct time of the breathing curve.


An additional embodiment is shown in FIG. 6B, where a LOX system includes two pressure settings. A low pressure regulator 126 with a setting of approximately 23 psi may be used when a patient requires less powerful therapy or needs to conserve the LOX. A higher pressure regulator 132 with a setting of approximately 30-50 psi may be used for increasing the output of the unit when needed or when conserving the LOX is not a concern. For example, when traveling on an airplane, the LOX system can be set at the low 23 psi setting, and reset to the high setting after the flight or when arriving to the destination where there is a refill station. The two pressure regulators may be configured in a manifold 136 that can be operated by a switch 134 to switch between settings. During flight, the patient can still receive the ventilation therapy but at a lower level of augmentation corresponding the to 23 psi setting. After the flight and when the patient becomes more active again, the augmentation level can be increased because the pressure is set to the higher output setting. Two pressure settings are exemplary and it can be any number of pressure settings or even a continuous adjustment of the pressure setting between a minimum and maximum value. The modes of operation of the LOX system may be a continuum of settings and not discrete modes of operation in certain embodiments.



FIG. 7 shows an exemplary overall LOX device 701 according to an embodiment of the present invention. Generally, the LOX device 701 may have components including, but not limited to, a LOX storage 703, a LOX liquid to gas conversion device 705, an oxygen gas storage device 707, and one or more controls 707. The LOX storage 703 may be in fluid communication 711 with the LOX liquid to gas conversion device 705. The LOX liquid to gas conversion device 705 may be in fluid communication 713 with the oxygen gas storage device 707. The oxygen gas storage device 707 may be in fluid communication 715 with the exterior of the overall LOX device 701, and other devices such as an oxygen delivery system, a gas delivery circuit, ventilator, etc. The one or more controls 707 may provide control signals 717, 719 to various components internal or external to the LOX device 701. The oxygen gas storage device 707 may be sized appropriately to support the spontaneous oxygen needs of a ventilation system, whereas the LOX liquid to gas conversion device 705 may only be able to support the average oxygen needs of a ventilation system.


The LOX system 701 may be portable and/or wearable. In preferred embodiments, the LOX system may weigh less than 20 lbs, more preferably less than 15 lbs, more preferably less than 10 lbs, and more preferably less than 5 lbs. Weights of the LOX system less than 10 lbs may allow for a patient to comfortable carry and/or wear the device while moving.



FIG. 8 shows the LOX liquid to gas conversion device 705 according to one embodiment. The LOX liquid to gas conversion device 705 may typically include a heat exchanger 801 that receives liquid oxygen via the LOX storage 703 via its input 711 and outputs gaseous oxygen to the oxygen gas storage device 707 via its output 713. The heat exchanger 801 may have multiple modes that are controlled via a control signal 717, for instance to switch between low average oxygen gas output flowrates, such as approximately 1 lpm to approximately 6 lpm, preferably approximately 3 lpm, and high average flowrates, such as above approximately 6 lpm, preferably between approximately 6 lpm and approximately 20 lpm. Alternative higher average flowrates may include greater than approximately 7 lpm, greater than approximately 8 lpm, greater than approximately 9 lpm, greater than approximately 10 lpm, greater than approximately 11 lpm, greater than approximately 12 lpm, greater than approximately 13 lpm, greater than approximately 14 lpm, greater than approximately 15 lpm, greater than approximately 16 lpm, greater than approximately 17 lpm, greater than approximately 18 lpm, greater than approximately 19 lpm, and ranges therein, such as approximately 7 lpm to approximately 19 lpm, approximately 8 lpm to approximately 18 lpm, etc. Higher or lower flowrates may also be used. Note that these are average flowrates that are either continuous at a set level or average out to these ranges. Peak flowrates may be higher than the average flowrates. One such mode may be a rapid gas conversion mode, which may be achieved by adding heat to the heat exchanger 801 via a heater 120. Another such mode may bypass the insulation surrounding LOX storage device 703 to preheat the oxygen gas temperature entering the LOX liquid to gas conversion device 705 and effectively increase the surface area of the heat exchanger 801 by including additional surface area of the LOX storage device 703 in the heat exchange. Another such mode may utilize a Stirling engine to utilize the heat across the heat exchanger to power a fan to blow ambient air across the heat exchanger to increase its capacity. Additional details of the Stirling engine are described below.


Ventilator flowrates may demand change during the patients' breathing cycles. Higher flow rates may typically be required during inspiration, and lower or no flowrates may typically be required during exhalation. When interfacing the LOX system to a ventilator, peak flowrates greater than the approximately 6-20 lpm range may be achieved during inspiration by using oxygen gas stored in the oxygen gas storage device 707. The oxygen gas storage device 707 may be recharged during exhalation by the LOX liquid to gas conversion module 705.


The multi-modality of the LOX system 701 may provide for switching based on flow capacity and/or output gas pressure. The mode of operation may be switched manually, automatically, and/or based on input from one or more sensors, such as respiration sensors.



FIG. 9 shows the oxygen gas storage device 707 according to one embodiment. The oxygen gas storage device 707 may include a multi-modal pressure regulator module 901, for instance to change output pressure between approximately 23 psi when in conserving/airplane mode and approximately 50 psi when in the mode of maximizing patient ventilation. The multi-modal pressure regulator module 901 may typically receive oxygen gas from the LOX liquid to gas conversion device 705 and be in fluid communication with the oxygen gas storage 903, thereby regulating the gas pressure of the oxygen gas storage 903. The multi-modal pressure regulator module 901 may contain multiple pressure regulators that are switched on and off to control the pressure settings. Alternately, the multi-modal pressure regulator module 901 may also contain a singular pressure regulator that is switched between multiple pressure settings, such as by changing a spring force on a regulating diaphragm within the regulator.


The LOX device 701 may have a dual mode operation controlled by the one or more controls 709. The one or more controls 709 may be in communication with the LOX liquid to gas conversion device 705, the oxygen gas storage device 707, and/or other components of the LOX device 701, ventilator, etc. As possible examples, the controls may be affect a heater 120 on the heat exchanger 801, may affect the insulation level surrounding the LOX storage device 703, may switch between multiple pressure regulators within the multi-modal pressure regulator module 901, or may affect the pressure regulator setting within the multi-modal pressure regulator module 901. The one or more controls 709 may include one or more processors and one or more memories.


A first mode of operation for the LOX device 701 may be used for oxygen therapy, while a second mode of operation for the LOX device 701 may be used for powering a ventilator. When in oxygen therapy mode, the conversion rate of liquid to gas may be an average gas flow rate of approximately 1-6 lpm. When in ventilator mode, the conversion rate of liquid to gas may be an average gas flow rate of approximately 4-10 lpm. Having both modes in one device may allow a patient to own only one LOX system, rather than requiring two, one for oxygen therapy and a separate one for mechanical ventilation. When the patient only requires oxygen therapy, the LOX device may only produce an average gas flow rate of approximately 1-6 lpm, and the device does not waste any excess oxygen. When the patient requires mechanical ventilation, the LOX device may produce an average gas flow rate of approximately 4-10 lpm, which may be necessary to obtain sufficient mechanical support. The LOX device may have the ability to automatically determine whether it is being used for oxygen therapy or ventilation therapy and can automatically switch between these modes. For example, the type of patient circuit attached to the LOX device may signal the LOX device whether it is an oxygen therapy tube or a ventilation therapy tube, and the LOX device may switch operating modes accordingly. Alternatively, the ventilator can send a signal to the LOX device that the ventilator is being used for ventilation therapy and the LOX device change accordingly. Alternatively, the LOX device may receive input directly from patient sensors regarding whether the patient requires oxygen therapy or mechanical ventilation. Other signaling systems may be also be used depending on particular situations.


To change from the low conversion rate mode to the high conversion rate mode, the LOX device heat exchanger 801 may be switched from a first state to a second state. For example, liquid oxygen may be channeled through an additional heat exchanger 803 by opening a valve 805, or the heat exchanger 801 may be modified for example by applying heat to the outside of the heat exchanger 801, such as application of a heater 120. The heater may be controlled electrically or by other means.


While the foregoing describes changing the LOX device 701 from one output to a second output, or the heat exchanger 801 having a first and second state, the outputs and states can be more than two, or can be a continuum. For example, the LOX device 701 may adjust the conversion rate automatically within a range based on the needs of the therapy. As such, if the patient is walking briskly while using the ventilation therapy, the LOX device 701 may be signaled by a sensor and/or control system to increase the gas conversion rate to handle the demand of the patient. Conversely, if the LOX device 701 is being used for oxygen therapy and the patient is resting or asleep, the LOX device 701 may be signaled by a sensor and/or control system to reduce the conversion rate to conserve the liquid oxygen supply and prevent wasting converted gas as it is vented to atmosphere.


In an alternative embodiment, a LOX device 701 may have gas produced by the liquid oxygen not vented to atmosphere, but instead collected in another reservoir or cylinder. In this manner, there may be no or minimal waste of the liquid oxygen.


The LOX device 701 may include additional features. The LOX device 701 may include one or more fittings for a high pressure quick connect to attach a ventilator input hose. The output gas may be warmed so as to be more comfortable to the patient when the ventilation gas enters the patient's body. Additionally, moisture or water can be fed into the gas phase of the LOX device 701. Condensation created by the LOX device 701 can be collected, recycled and/or used to moisten the oxygen gas being delivered to the patient. The LOX storage 703 can be a high pressure bladder so that the form factor can be flatter and more convenient for wearing by the patient. The LOX device 701 and ventilator can be integrated or can be modularly attached. The heat exchanger 801 can be black or other colors to modify heat transfer characteristics. The heat exchanger 801 can include fins and/or be made of multiple small tubes to increase surface area. The heat exchanger 801 can also be a tube inside a tube, with a heated annular space and liquid within the inside tube.


As shown in FIG. 10, the LOX device 701 can also produce an effect similar to a Stirling engine. The LOX Stirling engine 1000 may be powered by the use of two temperature sinks, one relatively hot 1001 and the other relatively cold 1005. The LOX Stirling engine 1000 may drive a fan 1003 to blow air across the evaporative coils of the LOX system to increase the rate of evaporation. The heat source of the Stirling engine 1000 may be ambient temperature, and the heat sink may be provided by evaporative tubing nearest the LOX storage 703 and/or the area proximal to the LOX storage 703. Once the evaporation process begins, i.e., oxygen begins flowing, the coil may reduce in temperature starting a Stirling engine fan. Once the fan starts, evaporation may become more efficient, i.e., greater convection across tubing may lead to more heat for evaporation. No electrical power may be needed to run this system.


The LOX device output may be of higher pressure and higher flow rate than standard LOX devices to meet the needs of a critical care jet ventilator. The output pressure may typically be approximately 15-80 psi during ventilation mode, and preferably approximately 25-40 psi. A flow rate may typically be approximately 4-20 lpm during ventilation mode, and preferably approximately 8-10 lpm.


While the foregoing descriptions describe the LOX device being used for an ambulatory ventilation therapy, the same principles of the invention can be employed for stationary ventilation. For example, a stationary LOX system can be modified with the embodiments of the invention to be used to power a mechanical ventilator.


Optionally, high frequency low volume ventilation can be delivered by the ventilator and patient interface where very low volumes of gas are delivered at very fast frequencies, such as approximately 5-50 ml at approximately 12-120 cycles per minute, or preferably approximately 10-20 ml at approximately 30-60 cycles per minute. In this manner, substantial minute volumes can be delivered to the lung while controlling the pressures achieved in the airway and lung more closely to a desired level, albeit in an open airway system. This delivery waveform can be continuous or can be synchronized with an inspiratory phase of breathing. Again, different waveforms described can be combined in whole or in part, for example, volumes can be synchronized and delivered in one shot during inspiration, and then high frequency low volume ventilation can be delivered during exhalation. It should also be noted that ventilation gas delivery, when activated, can gradually ramp up so that it is not a sudden increase in amplitude, which could arouse the patient.


While the foregoing has described the therapy of this invention using a nasal interface, other interfaces may also be included in the invention such as a trans-oral interface. The tip of a catheter can be proximal to the mouth entrance, coplanar with the mouth entrance, or recessed inside the mouth between the lips and the jaw line. The catheter can be shaped to be routed along the teeth, either on the buccal side or lingual side of the teeth, or through the center of the mouth. The catheter can be positioned so that a portion of the catheter rests on the superior surface of the tongue, or can be positioned so that a portion of the catheter rests against the inferior surface of the hard palate, in which case the distal tip of the catheter may be angled or curved inferiorly away from the palate and towards the oropharyngeal airway. The catheter can be bifurcated so that there is a left and right catheter positioned on both the right and left side of the mouth. The catheter can be integral to a bite block or mouth guard. The catheter preferably is easily inserted and removed from the patient's mouth. All of the appropriate details described previously in conjunction with the nasal interface may apply to the oral catheter used in embodiments of the invention.


The present invention can also be used with an endotracheal tube (ET) interface. This version of the interface can be helpful to institutions that walk their patients during the weaning stages off of invasive mechanical ventilation. Walking patients that are on ICU ventilators is typically very onerous because the patient must have the assistance of a number of medical staff to move the large and complex ICU ventilator alongside the patient. The present invention may be used to help a patient walk, while receiving adequate ventilatory support from the ventilation system and interface described in this invention. In this embodiment, the ET tube connector may include an attachment for the ventilation interface of this invention. The patient can breathe ambient air spontaneously through the proximal end of the ET tube proximal connector, which is left open, while the patient's spontaneous breaths are efficaciously augmented by the ventilation system and catheter interface of the invention. Optionally, if it is desired to apply positive end-expiratory pressure (PEEP), a special PEEP valve may be included for attachment to the end of the ET tube. The special PEEP valve may include a one way valve so that ambient air may be easily entrained into the ET tube toward the patient's lung by a jet nozzle of the invention, but also allows exhalation through the PEEP valve, while maintaining the desired PEEP level. Preferably, the patient can still also breathe room air spontaneously through the PEEP valve through an inspiratory valve integral to or in parallel with the PEEP valve. The ventilator used in the present invention can provide PEEP as previously described by delivering gas with the appropriate waveform during the patient's expiratory phase. The catheter tip can be slightly proximal to the proximal end opening of the ET tube proximal connector, or can be coplanar with the proximal end opening, or can be inserted into the ET tube to the appropriate depth, typically at around the mid-point, but the appropriate depth may depend on other variables of the system. The depth can be adjustable to optimize the entrainment and performance or function for individual situations, as required clinically or for patient tolerance. The ET tube connector used in this embodiment of the invention may provide the necessary jet pump geometry as previously described in conjunction with the nasal cannula outer concentric tube. The ET tube connector can include a jet inlet, jet throat and diffuser section. Or, alternatively, the ET tube can be of a special configuration, which incorporates dimensions and geometries advantageous to the jet pump performance. All of the appropriate details described previously with the nasal interface, apply to the ET tube catheter interface used in this version of the invention. In addition, PEEP can be included in the other patient interfaces described in the invention by including a similar special PEEP valve for each of the different patient interfaces.


As previously indicated, FIG. 1 is a block diagram describing an embodiment of the invention with expanded features and capabilities. A ventilator module includes or is in communication with several other accessories or functional modules.


A transmitter and/or receiver 103 may be included to transmit and/or receive information regarding the patient, the patient's therapy, and the ventilator performance to a remote location for review, analysis and archival. For example, the patient's compliance to the therapy or utilization of the therapy can be monitored and assessed. Important information can be trended, for example the patient's breath rate, I:E ratio or depth of breathing. Also, information can be sent to the ventilator, for example programming of settings to titrate the ventilator output to meet the needs of the patient.


An internal or external humidifier 105 can be included for extended uses of the therapy, or if using in dry climates. The humidity can be delivered using a humidification generator that is integral or coupled with the ventilator, or using a stand alone humidifier. The humidified air or oxygen can be delivered through the gas delivery channel of the gas delivery circuit, or through another lumen in the gas delivery circuit as previously described, or through a separate cannula or tubing. For extended use, when the patient is likely to be stationary, the humidification system can be a stationary system and capable of delivering a relative high amount of humidity, and for periods of mobility, the patient can either not receive humidification, or use a portable humidification system that is capable of delivering relatively a small amount of humidity, due to size and energy consumption constraints.


In addition to a LOX system 107, a compressed air source 109 can be included, typically external attached to the ventilator, however optionally internal to the ventilator if the therapy is being used for stationary use, for example in the home. Examples of a compressed air source 109 may include a pressurized air source and/or a generator. A blender 111 can be included to control the fractional delivered oxygen in a gas delivery circuit 113. The blender 111 may receive input from the compressed air source 109 and/or the LOX system 107 and output to a ventilator 115. The blender 111 may be used to titrate the amount of oxygen needed, either based on a clinical determination, or by pulse oximetry or other biofeedback signals. For oxygen concentrations needed that are less than 100%, the system can use compressed air from a compressor, tank or wall source, or the air can be entrained into the system from the pressurized oxygen gas, for example at the patient interface, or elsewhere in the system, such as the gas delivery circuit or ventilator. If air is entrained in, it can be entrained in from room air. For treating other diseases and applications, other therapeutic gases can also be delivered by blending into the delivered gas, such as helium-oxygen mixtures, nitric oxide, or combinations of air, oxygen, helium and nitric oxide. A pulse oximeter 117 can be used to determine correct blender settings to achieve proper oxygen saturation. The pulse oximeter 117 can also be used to titrate other settings of the ventilator system to meet the physiological needs of the patient, or to control the rapid gas conversion mode of a LOX system used with a nasal cannula instead of a ventilator. A controller may use a signal from one or more pulse oximeters to switch modes of the LOX system. In addition to compressed supplies of oxygen and air gas, the ventilator can include internal or external air and oxygen generating means, such as a pump or blower to create pressurized air, and an oxygen generator and/or pump to create pressurized oxygen gas. The oxygen source can also be liquid oxygen, or a liquid oxygen generating system.


Because the therapy is frequently used to help activities of daily living, and to promote activity, a pedometer 119 and/or actigraphy sensor 121 can be included internal to or external to the ventilator system. A carbon dioxide monitor 131 may also be included.


An external respiration sensor 123 can be included, such as a respiratory muscle effort sensor, a chest impedance sensor, or other types of respiration, such as a tracheal microphone or vibration sensor. The external sensor 123 may be used either as a redundant sensor to a nasal airflow or nasal pressure sensor 125, or to complement the information obtained from the nasal airflow sensor, or in place of the nasal airflow sensor. The nasal airflow or nasal pressure sensor 125 may measure spontaneous respiration. The nasal airflow or nasal pressure sensor may be located at a non-invasive open nasal ventilation interface 129 or at other appropriate locations.


A drug delivery module 127 can be incorporated internally or externally to the ventilator system. Due to challenges with current aerosolized drug delivery inhalers, the current invention can be used to propel and deposit medication particles deep in the respiratory system, without a carrier propellant. Because a patient's using the therapy often also requires prescription medication, this may be a convenient and efficient way to administer the medication.


When the therapy is being used for respiratory support, the user may have two options; (1) wearing or toting the ventilator so that the user can be ambulatory or enjoy the activities of daily living, or (2) stationary use, in the event the patient plans on being stationary or does not have the ability to ambulate. The delivery circuit can optionally be provided in a 25-100 foot length, such that the gas source and ventilator can be stationary in the patient's home, while the patient can move around their home while wearing the interface and receiving the therapy. Or, the gas source can be stationary, and connected to the ventilator with a 25-100 foot hose, so that the patient can wear or tote the ventilator and be mobile within the range of the hose. In certain embodiments, the gas delivery circuit may be connected to a blender, which receives pressurized oxygen and pressurized air from, for example, the hospital pressurized gas supply. In these applications, in which mobility may be less important, the system can be attached to the house gas supply, and higher levels of therapy can be delivered, as well as PEEP therapy during exhalation. All of these different options of stationary use and mobile use apply to the various different interface techniques described in the foregoing.


The ventilator can be self-contained with a battery and gas supply to enable it to be borne by the patient, so that the patient can ambulate and participate in activities of daily living, which is made possible by the respiratory support they are receiving from the ventilator, but in a package that can easily be borne.


For the therapy described in this invention to be more effectively titrated to the needs of the patient, the ventilator system can perform a determination to determine the level of respiratory support needed. To accomplish this, the ventilator can titrate the output to the needs of the patient, for example, during ambulation or activity the output can increase. Alternatively, during higher respiratory rates as measured by the spontaneous breath sensor, the output can increase. Or during higher breath effort as measured by the breath sensor, the output can increase. Other biofeedback signals can be used. In addition to the output increasing or changing to meet the respiratory needs of the patient, the timing of the ventilator output relative to the patient's spontaneous inspiratory phase, and the output waveform can change to meet the comfort and physiological needs of the patient. For example, during exercise, the output can change from an early delivery at 75 ml with an ascending waveform, to being triggered with a delay to start for example 100 msec after the start of inspiration, and with a decelerating waveform.


To facilitate integration of this new therapy into the existing therapeutic paradigms, a convertible system may be provided. Specifically, the patient interface can be modular, such that a patient can be administered conventional oxygen therapy with a typical or slightly modified oxygen nasal cannula. Then, when it is desired to switch the patient to this new therapy, an additional component, such as an outer concentric tube, may be added to the nasal cannula to create the jet pump design and to position the distal tips of the cannula properly to achieve the function of this invention. Alternatively, for example, a switch on the gas delivery equipment can be switched to change the output of the equipment from oxygen therapy, to this therapy, by for example, enabling additional breath sensing functions, timing functions, waveform functions, and switching to the output amplitude necessary. The LOX portions of the system can be modular as well, for example, they can be replaced with oxygen gas cylinders, wall oxygen, compressed gas, and an oxygen-air blender.


It should be noted that the different embodiments described above can be combined in a variety of ways to deliver a unique therapy to a patient and while the invention has been described in detail with reference to the preferred embodiments thereof, it will be apparent to one skilled in the art that various changes and combinations can be made without departing for the present invention. Also, while the invention has been described as a means for mobile respiratory support for a patient, it can be appreciated that still within the scope of this invention, the embodiments can be appropriately scaled such that the therapy can provide higher levels of support for more seriously impaired and perhaps non-ambulatory patients or can provide complete or almost complete ventilatory support for non-breathing or critically compromised patients, or can provide support in an emergency, field or transport situation. Also, while the invention has mostly been described as being administered via a nasal interface it should be noted that the ventilation parameters can be administered with a variety of other airway interface devices such as ET tubes, tracheostomy tubes, laryngectomy tubes, cricothyrotomy tubes, endobronchial catheters, laryngeal mask airways, oropharyngeal airways, nasal masks, trans-oral cannula, nasal-gastric tubes, full face masks, etc. And while the ventilation parameters disclosed in the embodiments have been mostly specified to be compatible with adult respiratory augmentation, it should be noted that with the proper scaling the therapy can be applied to pediatric and neonatal patients. Further, while the target disease states have mostly been described as respiratory insufficiency and sleep apnea, other breathing, lung and airway disorders can be treated by the therapy with the requisite adjustment in ventilation parameters, for example, ALS, neuromuscular disease, spinal cord injury, influenza, CF, ARDS, lung transplant bridging, and other diseases can be addressed with this therapy, as well as mass casualty, pandemic, military, bridge and transport applications. Lastly, while the invention has been described as a stand alone therapy, the therapy can be modular, for example a ventilation system can be adapted which can switch between invasive or non-invasive or other closed system ventilation modes and the non-invasive open ventilation mode described herein. Or, the therapy can be used simultaneously in conjunction with other modes of ventilation, such as during a conscious sedation medical procedure in which the patient is ventilated with a conventional ventilator as a back up means of respiration while the patient receives ventilation from the mode described herein.


Although the foregoing description is directed to the preferred embodiments of the invention, it is noted that other variations and modifications will be apparent to those skilled in the art, and may be made departing from the spirit or scope of the invention. Moreover, features described in connection with one embodiment of the invention may be used in conjunction with other embodiments, even if not explicitly stated above. The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive.

Claims
  • 1. A portable liquid oxygen system providing an average flow rate of oxygen gas at approximately 6 lpm to approximately 20 lpm using a rapid gas conversion mode, the portable liquid oxygen system comprising: a liquid oxygen store;a heat exchanger for evaporating liquid oxygen from the liquid oxygen store into oxygen gas;a Stirling engine having a heat source and a heat sink, wherein the heat source is an opening to ambient air and wherein the heat sink is proximal to the liquid oxygen store; anda fan, wherein during the rapid gas conversion mode, the Stirling engine drives the fan to blow ambient air from the heat source across the heat exchanger to more rapidly evaporate liquid oxygen from the liquid oxygen store into oxygen gas.
  • 2. The portable liquid oxygen system of claim 1, wherein the portable liquid oxygen system weighs less than 10 pounds.
  • 3. The portable liquid oxygen system of claim 1, wherein the heat sink is in thermal communication with the liquid oxygen store.
  • 4. The portable liquid oxygen system of claim 1, further comprising one or more respiration sensors, wherein the rapid gas conversion mode is activated based upon signals received from the one or more respiration sensors.
  • 5. The portable liquid oxygen system of claim 1, further comprising one or more pulse oximeters, wherein the rapid gas conversion mode is activated based upon signals received from the one or more pulse oximeters.
  • 6. A ventilation system comprising: a portable ventilator; anda portable liquid oxygen (LOX) system providing a flow rate of oxygen gas evaporated from a liquid oxygen store to the portable ventilator at approximately 6 lpm to approximately 20 lpm using a rapid gas conversion mode, the portable LOX system comprising: a heat exchanger for evaporating the liquid oxygen from the liquid oxygen store into oxygen gas;a Stirling engine having a heat source and a heat sink, wherein the heat source is an opening to ambient air and wherein the heat sink is proximal to the liquid oxygen store; anda fan, wherein during the rapid gas conversion mode, the Stirling engine drives the fan to blow ambient air from the heat source across the heat exchanger to more rapidly evaporate liquid oxygen from the liquid oxygen store into oxygen gas.
  • 7. The ventilation system of claim 6, wherein the portable ventilator and the portable liquid oxygen system are integrated into a single portable or wearable unit.
  • 8. The ventilation system of claim 6, wherein the portable liquid oxygen system weighs less than 10 pounds.
  • 9. The ventilation system of claim 6, further comprising a patient interface, wherein the patient interface is a nasal interface, a mask, an endotracheal tube, a tracheostomy tube, or a transoral tube.
  • 10. The ventilation system of claim 6, wherein the ventilator is wearable.
  • 11. The ventilation system of claim 6, further comprising a blender for titrating an amount of oxygen gas output to the ventilator.
  • 12. The ventilation system of claim 6, wherein the heat sink is in thermal communication with the liquid oxygen store.
  • 13. The ventilation system of claim 6, further comprising one or more respiration sensors, wherein the rapid gas conversion mode is activated based upon signals received from the one or more respiration sensors.
  • 14. The ventilation system of claim 6, further comprising one or more pulse oximeters, wherein the rapid gas conversion mode is activated based upon signals received from the one or more pulse oximeters.
  • 15. A liquid oxygen system having a rapid gas conversion mode, the liquid oxygen system comprising: a liquid oxygen store;a heat exchanger for evaporating liquid oxygen from the liquid oxygen store into oxygen gas;a Stirling engine having a heat source and a heat sink, wherein the heat source is an opening to ambient air and wherein the heat sink is proximal to the liquid oxygen store; anda fan, wherein during the rapid gas conversion mode, the Stirling engine drives the fan to blow ambient air from the heat source across the heat exchanger to more rapidly evaporate liquid oxygen from the liquid oxygen store into oxygen gas.
  • 16. The liquid oxygen system of claim 15, wherein the liquid oxygen system is portable.
  • 17. The liquid oxygen system of claim 15, wherein the heat sink is in thermal communication with the liquid oxygen store.
  • 18. The liquid oxygen system of claim 15, further comprising one or more respiration sensors, wherein the rapid gas conversion mode is activated based upon signals received from the one or more respiration sensors.
  • 19. The liquid oxygen system of claim 15, further comprising one or more pulse oximeters, wherein the rapid gas conversion mode is activated based upon signals received from the one or more pulse oximeters.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 61/374,126, filed Aug. 16, 2010; the content of which is incorporated herein by reference in its entirety.

US Referenced Citations (1025)
Number Name Date Kind
50641 Stone Oct 1865 A
428592 Chapman May 1890 A
697181 Smith Apr 1902 A
718785 McNary Jan 1903 A
853439 Clark May 1907 A
859156 Warnken Jul 1907 A
909002 Lambert Jan 1909 A
1125542 Humphries Jan 1915 A
1129619 Zapf Feb 1915 A
1331297 Walker Feb 1920 A
2119494 Smith May 1938 A
2178800 Lombard Nov 1939 A
2259817 Hawkins Oct 1941 A
2552595 Seeler May 1951 A
2663297 Turnberg Dec 1953 A
2693800 Caldwell Nov 1954 A
2735432 Hudson Feb 1956 A
2792000 Richardson May 1957 A
2843122 Hudson Jul 1958 A
2859748 Hudson Nov 1958 A
2931358 Sheridan Apr 1960 A
2947938 Bennett Aug 1960 A
3172407 Von Pechmann Mar 1965 A
3267935 Andreasen et al. Aug 1966 A
3319627 Windsor May 1967 A
3357424 Schreiber Dec 1967 A
3357427 Wittke et al. Dec 1967 A
3357428 Carlson Dec 1967 A
3435623 Tyree, Jr. Apr 1969 A
3437274 Apri Apr 1969 A
3460533 Riú Plá Aug 1969 A
3479832 Sarsten et al. Nov 1969 A
3493703 Finan Feb 1970 A
3513844 Smith May 1970 A
3610247 Jackson Oct 1971 A
3625206 Charnley Dec 1971 A
3625207 Agnew Dec 1971 A
3631438 Lewin Dec 1971 A
3643660 Hudson et al. Feb 1972 A
3657740 Cialone Apr 1972 A
3682171 Dali et al. Aug 1972 A
3721233 Montgomery et al. Mar 1973 A
3726275 Jackson et al. Apr 1973 A
3727606 Sielaff Apr 1973 A
3733008 Churchill et al. May 1973 A
3741208 Jonsson et al. Jun 1973 A
3754552 King Aug 1973 A
3794026 Jacobs Feb 1974 A
3794072 Diedrich et al. Feb 1974 A
3802431 Farr Apr 1974 A
3831596 Cavallo Aug 1974 A
3881480 Lafourcade May 1975 A
3896800 Cibulka Jul 1975 A
3903881 Weigl Sep 1975 A
3905362 Eyrick et al. Sep 1975 A
3949749 Stewart Apr 1976 A
3951143 Kitrilakis et al. Apr 1976 A
3961627 Ernst et al. Jun 1976 A
3972327 Ernst et al. Aug 1976 A
3985131 Buck et al. Oct 1976 A
3991790 Russell Nov 1976 A
4003377 Dahl Jan 1977 A
4036253 Fegan et al. Jul 1977 A
4054133 Myers Oct 1977 A
4067328 Manley Jan 1978 A
4106505 Salter et al. Aug 1978 A
4146885 Lawson, Jr. Mar 1979 A
4206754 Cox et al. Jun 1980 A
4211086 Leonard et al. Jul 1980 A
4216769 Grimes Aug 1980 A
4227374 Oxley Oct 1980 A
4231363 Grimes Nov 1980 A
4231365 Scarberry Nov 1980 A
4256101 Ellestad Mar 1981 A
4261355 Glazener Apr 1981 A
4263908 Mizerak Apr 1981 A
4265237 Schwanbom et al. May 1981 A
4266540 Panzik et al. May 1981 A
4273124 Zimmerman Jun 1981 A
4274162 Joy et al. Jun 1981 A
4278082 Blackmer Jul 1981 A
4282869 Zidulka Aug 1981 A
4306567 Krasner Dec 1981 A
4323064 Hoenig et al. Apr 1982 A
4354488 Bartos Oct 1982 A
4365636 Barker Dec 1982 A
4367735 Dali Jan 1983 A
4377162 Stayer Mar 1983 A
4393869 Boyarsky et al. Jul 1983 A
4406283 Bir Sep 1983 A
4411267 Heyman Oct 1983 A
4413514 Bowman Nov 1983 A
4421113 Gedeon et al. Dec 1983 A
4422456 Tiep Dec 1983 A
4449523 Szachowicz et al. May 1984 A
4454880 Muto et al. Jun 1984 A
4462398 Durkan et al. Jul 1984 A
4469097 Kelman Sep 1984 A
4481944 Bunnell Nov 1984 A
4487256 Lutjens Dec 1984 A
4488548 Agdanowski Dec 1984 A
4495946 Lemer Jan 1985 A
4506666 Durkan Mar 1985 A
4506667 Ansite Mar 1985 A
4514979 Mohr May 1985 A
4519387 Durkan et al. May 1985 A
4520812 Freitag et al. Jun 1985 A
4527557 DeVries et al. Jul 1985 A
4535766 Baum Aug 1985 A
4537188 Phuc Aug 1985 A
4539984 Kiszel et al. Sep 1985 A
4548590 Green Oct 1985 A
4559940 McGinnis Dec 1985 A
4570631 Durkan Feb 1986 A
4571741 Guillaumot Feb 1986 A
4584996 Blum Apr 1986 A
4590951 O'Connor May 1986 A
4592349 Bird Jun 1986 A
4621632 Bartels et al. Nov 1986 A
4630606 Weerda et al. Dec 1986 A
4630614 Atlas Dec 1986 A
4644947 Whitwam et al. Feb 1987 A
4648395 Sato et al. Mar 1987 A
4648398 Agdanowski et al. Mar 1987 A
4658832 Brugnoli Apr 1987 A
4660555 Payton Apr 1987 A
4682591 Jones Jul 1987 A
4684398 Dunbar et al. Aug 1987 A
4686974 Sato et al. Aug 1987 A
4686975 Naimon et al. Aug 1987 A
4688961 Shioda et al. Aug 1987 A
4705034 Perkins Nov 1987 A
4744356 Greenwood May 1988 A
4747403 Gluck et al. May 1988 A
4753233 Grimes Jun 1988 A
4773411 Downs Sep 1988 A
4776333 Miyamae Oct 1988 A
4782832 Trimble et al. Nov 1988 A
4784130 Kenyon et al. Nov 1988 A
4803981 Vickery Feb 1989 A
4807616 Adahan Feb 1989 A
4807617 Nesti Feb 1989 A
4808160 Timmons et al. Feb 1989 A
4813431 Brown Mar 1989 A
4817897 Kreusel Apr 1989 A
4818320 Weichselbaum Apr 1989 A
4823788 Smith et al. Apr 1989 A
4825859 Lambert May 1989 A
4827922 Champain et al. May 1989 A
4832014 Perkins May 1989 A
4838255 Lambert Jun 1989 A
4841953 Dodrill Jun 1989 A
4848333 Waite Jul 1989 A
4850350 Jackson Jul 1989 A
4865586 Hedberg Sep 1989 A
4869718 Brader Sep 1989 A
4899740 Napolitano Feb 1990 A
4905688 Vicenzi et al. Mar 1990 A
4915103 Visveshwara et al. Apr 1990 A
4915105 Lee Apr 1990 A
4919128 Kopala et al. Apr 1990 A
4919132 Miser Apr 1990 A
4938212 Snook et al. Jul 1990 A
4944310 Sullivan Jul 1990 A
4967743 Lambert Nov 1990 A
4971049 Rotariu et al. Nov 1990 A
4982735 Yagata et al. Jan 1991 A
4986269 Hakkinen Jan 1991 A
4989599 Carter Feb 1991 A
4990157 Roberts et al. Feb 1991 A
5000175 Pue Mar 1991 A
5002050 McGinnis Mar 1991 A
5005570 Perkins Apr 1991 A
5018519 Brown May 1991 A
5022394 Chmielinski Jun 1991 A
5024219 Dietz Jun 1991 A
5025805 Nutter Jun 1991 A
5038771 Dietz Aug 1991 A
5042478 Kopala et al. Aug 1991 A
5046491 Derrick Sep 1991 A
5046492 Stackhouse et al. Sep 1991 A
5048515 Sanso Sep 1991 A
5048516 Soderberg Sep 1991 A
5052400 Dietz Oct 1991 A
5054484 Hebeler, Jr. Oct 1991 A
5058580 Hazard Oct 1991 A
5074299 Dietz Dec 1991 A
5076267 Pasternack Dec 1991 A
5090408 Spofford et al. Feb 1992 A
5097827 Izumi Mar 1992 A
5099836 Rowland et al. Mar 1992 A
5099837 Russel, Sr. et al. Mar 1992 A
5101820 Christopher Apr 1992 A
5103815 Siegel et al. Apr 1992 A
5105807 Kahn et al. Apr 1992 A
5107830 Younes Apr 1992 A
5107831 Halpern et al. Apr 1992 A
5113857 Dickerman et al. May 1992 A
5117818 Palfy Jun 1992 A
5117819 Servidio et al. Jun 1992 A
5127400 DeVries et al. Jul 1992 A
5134995 Gruenke et al. Aug 1992 A
5134996 Bell Aug 1992 A
5140045 Askanazi et al. Aug 1992 A
5148802 Sanders et al. Sep 1992 A
5161525 Kimm et al. Nov 1992 A
5165397 Arp Nov 1992 A
5181509 Spofford et al. Jan 1993 A
5184610 Marten et al. Feb 1993 A
5186167 Kolobow Feb 1993 A
5193532 Moa et al. Mar 1993 A
5193533 Body et al. Mar 1993 A
5199424 Sullivan et al. Apr 1993 A
5211170 Press May 1993 A
5217008 Lindholm Jun 1993 A
5233978 Callaway Aug 1993 A
5233979 Strickland Aug 1993 A
5239994 Atkins Aug 1993 A
5239995 Estes et al. Aug 1993 A
5243972 Huang Sep 1993 A
5245995 Sullivan et al. Sep 1993 A
5255675 Kolobow Oct 1993 A
5258027 Berghaus Nov 1993 A
5269296 Landis Dec 1993 A
5271388 Whitwam et al. Dec 1993 A
5271391 Graves Dec 1993 A
5275159 Griebel Jan 1994 A
5279288 Christopher Jan 1994 A
5287852 Arkinstall Feb 1994 A
5303698 Tobia et al. Apr 1994 A
5303700 Weismann et al. Apr 1994 A
5318019 Celaya Jun 1994 A
5320167 Johnson Jun 1994 A
5331995 Westfall et al. Jul 1994 A
5335656 Bowe et al. Aug 1994 A
5339809 Beck, Jr. et al. Aug 1994 A
5349946 McComb Sep 1994 A
5368017 Sorenson et al. Nov 1994 A
5370112 Perkins Dec 1994 A
5373842 Olsson et al. Dec 1994 A
5375593 Press Dec 1994 A
5388575 Taube Feb 1995 A
5394870 Johansson Mar 1995 A
5398676 Press et al. Mar 1995 A
5398682 Lynn Mar 1995 A
5400778 Jonson et al. Mar 1995 A
5419314 Christopher May 1995 A
5438979 Johnson, Jr. et al. Aug 1995 A
5438980 Phillips Aug 1995 A
5443075 Holscher Aug 1995 A
5460174 Chang Oct 1995 A
5460613 Ulrich et al. Oct 1995 A
5474062 DeVires et al. Dec 1995 A
5477852 Landis et al. Dec 1995 A
5485850 Dietz Jan 1996 A
5490502 Rapoport et al. Feb 1996 A
5503146 Froehlich et al. Apr 1996 A
5503497 Dudley et al. Apr 1996 A
5507282 Younes Apr 1996 A
5509409 Weatherholt Apr 1996 A
5513628 Coles et al. May 1996 A
5513631 McWilliams May 1996 A
5513635 Bedi May 1996 A
5522382 Sullivan et al. Jun 1996 A
5526806 Sansoni Jun 1996 A
5529060 Salmon et al. Jun 1996 A
5533506 Wood Jul 1996 A
5535738 Estes et al. Jul 1996 A
5537997 Mechlenburg et al. Jul 1996 A
5538002 Boussignac et al. Jul 1996 A
5542415 Brody Aug 1996 A
5546935 Champeau Aug 1996 A
5549106 Gruenke et al. Aug 1996 A
5551419 Froehlich et al. Sep 1996 A
5558086 Smith et al. Sep 1996 A
5564416 Jones Oct 1996 A
5575282 Knoch et al. Nov 1996 A
5582164 Sanders Dec 1996 A
5593143 Ferrarin Jan 1997 A
5595174 Gwaltney Jan 1997 A
5598837 Sirianne, Jr. et al. Feb 1997 A
5598840 Iund et al. Feb 1997 A
5603315 Sasso, Jr. Feb 1997 A
5605148 Jones Feb 1997 A
5626131 Chua et al. May 1997 A
5632269 Zdrojkowski May 1997 A
5636630 Miller et al. Jun 1997 A
5645053 Remmers et al. Jul 1997 A
5645054 Cotner et al. Jul 1997 A
5647351 Weismann et al. Jul 1997 A
5669377 Fenn Sep 1997 A
5669380 Garry et al. Sep 1997 A
5676132 Tillotson et al. Oct 1997 A
5676135 McClean Oct 1997 A
5682878 Ogden Nov 1997 A
5682881 Winthrop et al. Nov 1997 A
5687713 Bahr et al. Nov 1997 A
5687714 Kolobow et al. Nov 1997 A
5687715 Landis et al. Nov 1997 A
5690097 Howard et al. Nov 1997 A
5692497 Schnitzer et al. Dec 1997 A
5697364 Chua et al. Dec 1997 A
5704345 Berthon-Jones Jan 1998 A
5711296 Kolobow Jan 1998 A
5715812 Deighan et al. Feb 1998 A
5715815 Lorenzen et al. Feb 1998 A
5720278 Lachmann et al. Feb 1998 A
5735268 Chua et al. Apr 1998 A
5735272 Dillon et al. Apr 1998 A
5740796 Skog Apr 1998 A
5752511 Simmons et al. May 1998 A
5762638 Shikani et al. Jun 1998 A
5791337 Coles et al. Aug 1998 A
5819723 Joseph Oct 1998 A
5826579 Remmers et al. Oct 1998 A
5845636 Gruenke et al. Dec 1998 A
5865173 Froehlich Feb 1999 A
5865174 Kloeppel Feb 1999 A
5881723 Wallace et al. Mar 1999 A
5904648 Arndt et al. May 1999 A
5906204 Beran et al. May 1999 A
5911756 Debry Jun 1999 A
5915379 Wallace et al. Jun 1999 A
5915381 Nord Jun 1999 A
5918597 Jones et al. Jul 1999 A
5921238 Bourdon Jul 1999 A
5921942 Remmers et al. Jul 1999 A
5921952 Desmond, III et al. Jul 1999 A
5927276 Rodriguez Jul 1999 A
5927400 Bononi et al. Jul 1999 A
5928189 Phillips et al. Jul 1999 A
5931160 Gilmore et al. Aug 1999 A
5931162 Christian Aug 1999 A
5937853 Strom Aug 1999 A
5937855 Zdrojkowski et al. Aug 1999 A
5938118 Cooper Aug 1999 A
5954050 Christopher Sep 1999 A
5957136 Magidson et al. Sep 1999 A
5964223 Baran Oct 1999 A
5975077 Hofstetter et al. Nov 1999 A
5975081 Hood et al. Nov 1999 A
5979440 Honkonen et al. Nov 1999 A
5989193 Sullivan Nov 1999 A
6000396 Melker et al. Dec 1999 A
6019101 Cotner et al. Feb 2000 A
6039696 Bell Mar 2000 A
6050260 Daniell et al. Apr 2000 A
6076519 Johnson Jun 2000 A
6085747 Axe et al. Jul 2000 A
6091973 Colla et al. Jul 2000 A
6093169 Cardoso Jul 2000 A
6095505 Miller Aug 2000 A
6105575 Estes et al. Aug 2000 A
6109264 Sauer Aug 2000 A
6112746 Kwok et al. Sep 2000 A
6119694 Correa et al. Sep 2000 A
6120460 Abreu Sep 2000 A
6123668 Abreu Sep 2000 A
6131571 Lampotang et al. Oct 2000 A
6135970 Kadhiresan et al. Oct 2000 A
6152132 Psaros Nov 2000 A
6152134 Webber et al. Nov 2000 A
6158432 Biondi et al. Dec 2000 A
6192883 Miller, Jr. Feb 2001 B1
6203502 Hilgendorf et al. Mar 2001 B1
6213119 Brydon et al. Apr 2001 B1
6213955 Karakasoglu et al. Apr 2001 B1
6220244 McLaughlin Apr 2001 B1
6224560 Gazula et al. May 2001 B1
6227200 Crump et al. May 2001 B1
6247470 Ketchedjian Jun 2001 B1
6269811 Duff et al. Aug 2001 B1
6269812 Wallace et al. Aug 2001 B1
6273859 Remmers et al. Aug 2001 B1
6286508 Remmers et al. Sep 2001 B1
D449376 McDonald et al. Oct 2001 S
D449883 McDonald et al. Oct 2001 S
6298850 Argraves Oct 2001 B1
6305374 Zdrojkowski et al. Oct 2001 B1
6314957 Boissin et al. Nov 2001 B1
6315739 Merilainen et al. Nov 2001 B1
D451598 McDonald et al. Dec 2001 S
6328038 Kessler et al. Dec 2001 B1
6328753 Zammit Dec 2001 B1
6332463 Farrugia et al. Dec 2001 B1
6345619 Finn Feb 2002 B1
6357438 Hansen Mar 2002 B1
6357440 Hansen et al. Mar 2002 B1
6360741 Truschel Mar 2002 B2
6360745 Wallace et al. Mar 2002 B1
6363933 Berthon-Jones Apr 2002 B1
6367474 Berthon-Jones et al. Apr 2002 B1
6369838 Wallace et al. Apr 2002 B1
6371114 Schmidt et al. Apr 2002 B1
6378520 Davenport Apr 2002 B1
6390091 Banner et al. May 2002 B1
6394088 Frye et al. May 2002 B1
6398739 Sullivan et al. Jun 2002 B1
6418928 Bordewick et al. Jul 2002 B1
6422240 Levitsky et al. Jul 2002 B1
6423001 Abreu Jul 2002 B1
6427690 McCombs et al. Aug 2002 B1
6431172 Bordewick Aug 2002 B1
6439228 Hete et al. Aug 2002 B1
6439229 Du et al. Aug 2002 B1
6439234 Curti et al. Aug 2002 B1
6439235 Larquet et al. Aug 2002 B1
6450164 Banner et al. Sep 2002 B1
6450166 McDonald et al. Sep 2002 B1
6457472 Schwartz et al. Oct 2002 B1
6467477 Frank et al. Oct 2002 B1
6478026 Wood Nov 2002 B1
6494202 Farmer Dec 2002 B2
6494206 Bergamaschi et al. Dec 2002 B1
6505623 Hansen Jan 2003 B1
6505624 Campbell, Sr. Jan 2003 B1
6516801 Boussignac Feb 2003 B2
6520176 Dubois et al. Feb 2003 B1
6520183 Amar Feb 2003 B2
6530373 Patron et al. Mar 2003 B1
6532958 Buan et al. Mar 2003 B1
6532960 Yurko Mar 2003 B1
6536432 Truschel Mar 2003 B2
6536436 McGlothen Mar 2003 B1
6550478 Remmers et al. Apr 2003 B2
6553992 Berthon-Jones et al. Apr 2003 B1
6561188 Ellis May 2003 B1
6561193 Noble May 2003 B1
6564797 Mechlenburg et al. May 2003 B1
6564800 Olivares May 2003 B1
6568391 Tatarek et al. May 2003 B1
6571794 Hansen Jun 2003 B1
6571796 Banner et al. Jun 2003 B2
6571798 Thornton Jun 2003 B1
6575159 Frye et al. Jun 2003 B1
6575944 McNary et al. Jun 2003 B1
6584973 Biondi et al. Jul 2003 B1
6588422 Berthon-Jones et al. Jul 2003 B1
6588423 Sinderby Jul 2003 B1
6591834 Colla et al. Jul 2003 B1
6591835 Blanch Jul 2003 B1
6595207 McDonald et al. Jul 2003 B1
6595215 Wood Jul 2003 B2
6609517 Estes et al. Aug 2003 B1
6622726 Du Sep 2003 B1
6626174 Genger et al. Sep 2003 B1
6626175 Jafari et al. Sep 2003 B2
6629525 Hill et al. Oct 2003 B2
6629527 Estes et al. Oct 2003 B1
6629529 Arnott Oct 2003 B2
6631919 West et al. Oct 2003 B1
6634356 O'Dea et al. Oct 2003 B1
6635021 Sullivan et al. Oct 2003 B1
6640806 Yurko Nov 2003 B2
6644305 MacRae et al. Nov 2003 B2
6644311 Truitt et al. Nov 2003 B1
6644315 Ziaee Nov 2003 B2
6651653 Honkonen et al. Nov 2003 B1
6651656 Demers et al. Nov 2003 B2
6651658 Hill et al. Nov 2003 B1
6655382 Kolobow Dec 2003 B1
6655385 Curti et al. Dec 2003 B1
6666208 Schumacher et al. Dec 2003 B1
6668828 Figley et al. Dec 2003 B1
6668829 Biondi et al. Dec 2003 B2
6669712 Cardoso Dec 2003 B1
6675796 McDonald Jan 2004 B2
6675801 Wallace et al. Jan 2004 B2
6679265 Strickland et al. Jan 2004 B2
6681764 Honkonen et al. Jan 2004 B1
6684883 Burns Feb 2004 B1
6691702 Appel et al. Feb 2004 B2
6691707 Gunaratnam et al. Feb 2004 B1
6694973 Dunhao et al. Feb 2004 B1
6694978 Bennarsten Feb 2004 B1
6698423 Honkonen et al. Mar 2004 B1
6705314 O'Dea Mar 2004 B1
6705315 Sullivan et al. Mar 2004 B2
6722360 Doshi Apr 2004 B2
6722362 Hete et al. Apr 2004 B2
6742517 Frye et al. Jun 2004 B1
6745768 Colla et al. Jun 2004 B2
6752150 Remmers et al. Jun 2004 B1
6752151 Hill Jun 2004 B2
6752152 Gale et al. Jun 2004 B2
6755193 Berthon-Jones et al. Jun 2004 B2
6758217 Younes Jul 2004 B1
6761172 Boussignac et al. Jul 2004 B2
6763832 Kirsch et al. Jul 2004 B1
6769432 Keifer Aug 2004 B1
6776162 Wood Aug 2004 B2
6776163 Dougill et al. Aug 2004 B2
6789539 Martinez Sep 2004 B2
6796305 Banner et al. Sep 2004 B1
6799575 Carter Oct 2004 B1
6805126 Dutkiewicz Oct 2004 B2
6807966 Wright Oct 2004 B2
6807967 Wood Oct 2004 B2
6810876 Berthon-Jones Nov 2004 B2
6814073 Wickham Nov 2004 B2
6814077 Eistert Nov 2004 B1
6823866 Jafari et al. Nov 2004 B2
6827340 Austin et al. Dec 2004 B2
6837238 McDonald Jan 2005 B2
6840240 Berthon-Jones et al. Jan 2005 B1
6843247 Frye et al. Jan 2005 B2
6848446 Noble Feb 2005 B2
6854462 Berthon-Jones et al. Feb 2005 B2
6863069 Wood Mar 2005 B2
6866041 Hardy, Jr. et al. Mar 2005 B2
6877511 DeVries et al. Apr 2005 B2
6880556 Uchiyama et al. Apr 2005 B2
6910480 Berthon-Jones Jun 2005 B1
6910482 Bliss et al. Jun 2005 B2
6910510 Gale et al. Jun 2005 B2
6913601 St Goar et al. Jul 2005 B2
6915803 Berthon-Jones et al. Jul 2005 B2
6920875 Hill et al. Jul 2005 B1
6920877 Remmers et al. Jul 2005 B2
6920878 Sinderby et al. Jul 2005 B2
6932084 Estes et al. Aug 2005 B2
6938619 Hickle Sep 2005 B1
6938620 Payne, Jr. Sep 2005 B2
6941950 Wilson et al. Sep 2005 B2
6948497 Zdrojkowski et al. Sep 2005 B2
6951217 Berthon-Jones Oct 2005 B2
6971382 Corso Dec 2005 B1
6986353 Wright Jan 2006 B2
6994089 Wood Feb 2006 B2
6997177 Wood Feb 2006 B2
6997881 Green et al. Feb 2006 B2
7000612 Jafari et al. Feb 2006 B2
7004170 Gillstrom Feb 2006 B1
7007692 Aylsworth et al. Mar 2006 B2
7011091 Hill et al. Mar 2006 B2
7013892 Estes et al. Mar 2006 B2
7013898 Rashad et al. Mar 2006 B2
7017574 Biondi et al. Mar 2006 B2
7017575 Yagi et al. Mar 2006 B2
7024945 Wallace Apr 2006 B2
7036504 Wallace et al. May 2006 B2
7044129 Truschel et al. May 2006 B1
7047969 Noble May 2006 B2
7047974 Strickland et al. May 2006 B2
7051735 Mechlenburg et al. May 2006 B2
7055522 Berthon-Jones Jun 2006 B2
7059328 Wood Jun 2006 B2
7066173 Banner et al. Jun 2006 B2
7066178 Gunaratnam et al. Jun 2006 B2
7077132 Berthon-Jones Jul 2006 B2
7077133 Yagi et al. Jul 2006 B2
7080645 Genger et al. Jul 2006 B2
7080646 Wiesmann et al. Jul 2006 B2
7100607 Zdrojkowski et al. Sep 2006 B2
7100609 Berthon-Jones et al. Sep 2006 B2
7117438 Wallace et al. Oct 2006 B2
7121277 Strom Oct 2006 B2
7128578 Lampotang et al. Oct 2006 B2
7152598 Morris et al. Dec 2006 B2
7152604 Hickle et al. Dec 2006 B2
7156090 Nomori Jan 2007 B2
7156097 Cardoso Jan 2007 B2
7162296 Leonhardt et al. Jan 2007 B2
7168429 Matthews et al. Jan 2007 B2
7188621 DeVries et al. Mar 2007 B2
7188624 Wood Mar 2007 B2
7195016 Loyd et al. Mar 2007 B2
7195018 Goldstein Mar 2007 B1
7201169 Wilkie et al. Apr 2007 B2
7201269 Buscher et al. Apr 2007 B2
D542912 Gunaratnam et al. May 2007 S
7222623 DeVries et al. May 2007 B2
7225811 Ruiz et al. Jun 2007 B2
7234465 Wood Jun 2007 B2
7237205 Sarel Jun 2007 B2
7246620 Conroy, Jr. Jul 2007 B2
D549323 Kwok et al. Aug 2007 S
7255103 Bassin Aug 2007 B2
7255107 Gomez Aug 2007 B1
7267122 Hill Sep 2007 B2
7267123 Aylsworth et al. Sep 2007 B2
7270126 Wallace et al. Sep 2007 B2
7270128 Berthon-Jones et al. Sep 2007 B2
7296569 Frye et al. Nov 2007 B2
7296573 Estes et al. Nov 2007 B2
D557802 Miceli, Jr. et al. Dec 2007 S
7302950 Berthon-Jones et al. Dec 2007 B2
7305987 Scholler et al. Dec 2007 B2
7318437 Gunaratnam et al. Jan 2008 B2
7320321 Pranger et al. Jan 2008 B2
7328703 Tiep Feb 2008 B1
7353826 Sleeper et al. Apr 2008 B2
7367337 Berthon-Jones et al. May 2008 B2
7370652 Matula, Jr. et al. May 2008 B2
7373939 DuBois et al. May 2008 B1
7406966 Wondka Aug 2008 B2
7418965 Fukunaga et al. Sep 2008 B2
7422015 Delisle et al. Sep 2008 B2
7431035 Mizuta et al. Oct 2008 B2
7451762 Chua et al. Nov 2008 B2
7455717 Sprinkle Nov 2008 B2
7461656 Gunaratnam et al. Dec 2008 B2
7468040 Hartley et al. Dec 2008 B2
7469697 Lee et al. Dec 2008 B2
7472702 Beck et al. Jan 2009 B2
7478641 Rousselet Jan 2009 B2
7481219 Lewis et al. Jan 2009 B2
7481221 Kullik et al. Jan 2009 B2
7487774 Acker Feb 2009 B2
7487778 Freitag Feb 2009 B2
7490605 Frye et al. Feb 2009 B2
D588258 Judson et al. Mar 2009 S
D589139 Guney et al. Mar 2009 S
7500482 Biederman Mar 2009 B2
7509957 Duquette et al. Mar 2009 B2
D591419 Chandran et al. Apr 2009 S
7533670 Freitag et al. May 2009 B1
7556038 Kirby et al. Jul 2009 B2
7559327 Hernandez Jul 2009 B2
7562657 Blanch et al. Jul 2009 B2
7562659 Matarasso Jul 2009 B2
7578294 Pierro et al. Aug 2009 B2
7588033 Wondka Sep 2009 B2
7591265 Lee et al. Sep 2009 B2
7617680 Weaver Nov 2009 B1
7631642 Freitag et al. Dec 2009 B2
7640934 Zollinger et al. Jan 2010 B2
7658189 Davidson et al. Feb 2010 B2
D614288 Judson et al. Apr 2010 S
7721733 Hughes et al. May 2010 B2
7721736 Urias et al. May 2010 B2
7740013 Ishizaki et al. Jun 2010 B2
7743770 Curti et al. Jun 2010 B2
7762253 Acker et al. Jul 2010 B2
7766009 Frye et al. Aug 2010 B2
7787946 Stahmann et al. Aug 2010 B2
7814906 Moretti Oct 2010 B2
7819120 Taylor et al. Oct 2010 B2
D626646 Lubke et al. Nov 2010 S
D627059 Wood et al. Nov 2010 S
7832400 Curti et al. Nov 2010 B2
7837761 Bliss et al. Nov 2010 B2
7841343 Deane et al. Nov 2010 B2
7845350 Kayyali et al. Dec 2010 B1
7849854 DeVries et al. Dec 2010 B2
7856982 Matula, Jr. et al. Dec 2010 B2
7866318 Bassin Jan 2011 B2
7874290 Chalvignac Jan 2011 B2
7874291 Ging et al. Jan 2011 B2
7874293 Gunaratnam et al. Jan 2011 B2
7878980 Ricciardelli Feb 2011 B2
7882834 Gradon et al. Feb 2011 B2
7886740 Thomas et al. Feb 2011 B2
7891186 Primlani Feb 2011 B1
7891353 Chalvignac Feb 2011 B2
7891357 Carron et al. Feb 2011 B2
7896958 Sermet et al. Mar 2011 B2
7900627 Aylsworth et al. Mar 2011 B2
7900628 Matula, Jr. et al. Mar 2011 B2
7900635 Gunaratnam et al. Mar 2011 B2
7901361 Rapoport et al. Mar 2011 B2
7905231 Chalvignac Mar 2011 B2
7913691 Farrugia Mar 2011 B2
7914459 Green et al. Mar 2011 B2
7918226 Acker et al. Apr 2011 B2
7926486 Childers Apr 2011 B2
7926487 Drew et al. Apr 2011 B2
7931023 Berthon-Jones et al. Apr 2011 B2
7934499 Berthon-Jones May 2011 B2
7938114 Matthews et al. May 2011 B2
7942150 Guney et al. May 2011 B2
7942380 Bertinetti et al. May 2011 B2
7958892 Kwok et al. Jun 2011 B2
7975694 Ho Jul 2011 B2
7980245 Rice et al. Jul 2011 B2
7987847 Wickham et al. Aug 2011 B2
7987850 Zollinger et al. Aug 2011 B2
7987851 Blom et al. Aug 2011 B2
7992557 Nadjafizadeh et al. Aug 2011 B2
7997270 Meier Aug 2011 B2
7997271 Hickle et al. Aug 2011 B2
7997272 Isaza Aug 2011 B2
8001967 Wallace et al. Aug 2011 B2
D645557 Scheiner et al. Sep 2011 S
8011365 Douglas et al. Sep 2011 B2
8011366 Knepper Sep 2011 B2
8015971 Kwok Sep 2011 B2
8015974 Christopher et al. Sep 2011 B2
8020558 Christopher et al. Sep 2011 B2
8025052 Matthews et al. Sep 2011 B2
RE42843 Strickland et al. Oct 2011 E
8042535 Kenyon et al. Oct 2011 B2
8042537 Mechlenburg et al. Oct 2011 B2
8042539 Chandran et al. Oct 2011 B2
8042546 Gunaratnam et al. Oct 2011 B2
8061354 Schneider et al. Nov 2011 B2
8066004 Morris et al. Nov 2011 B2
20010035185 Christopher Nov 2001 A1
20010035186 Hill Nov 2001 A1
20010042548 Boussignac Nov 2001 A1
20020014241 Gradon et al. Feb 2002 A1
20020017300 Hickle et al. Feb 2002 A1
20020020930 Austin et al. Feb 2002 A1
20020026941 Biondi et al. Mar 2002 A1
20020043264 Wickham Apr 2002 A1
20020046751 MacRae et al. Apr 2002 A1
20020046755 De Voss Apr 2002 A1
20020046756 Laizzo et al. Apr 2002 A1
20020053346 Curti et al. May 2002 A1
20020055685 Levitsky et al. May 2002 A1
20020059935 Wood May 2002 A1
20020066452 Kessler et al. Jun 2002 A1
20020078957 Remmers et al. Jun 2002 A1
20020092527 Wood Jul 2002 A1
20020112730 Dutkiewicz Aug 2002 A1
20020153010 Rozenberg et al. Oct 2002 A1
20020157673 Kessler et al. Oct 2002 A1
20020159323 Makabe et al. Oct 2002 A1
20020179090 Boussignac Dec 2002 A1
20030000522 Lynn et al. Jan 2003 A1
20030005928 Appel et al. Jan 2003 A1
20030046932 Isaac et al. Mar 2003 A1
20030047185 Olsen et al. Mar 2003 A1
20030069489 Abreu Apr 2003 A1
20030079749 Strickland et al. May 2003 A1
20030094178 McAuley et al. May 2003 A1
20030111081 Gupta Jun 2003 A1
20030116163 Wood Jun 2003 A1
20030121519 Estes et al. Jul 2003 A1
20030145852 Schmidt et al. Aug 2003 A1
20030145853 Muellner Aug 2003 A1
20030145856 Zdrojkowski et al. Aug 2003 A1
20030150455 Bliss et al. Aug 2003 A1
20030159696 Boussignac et al. Aug 2003 A1
20030159697 Wallace Aug 2003 A1
20030168067 Dougill et al. Sep 2003 A1
20030213488 Remmers et al. Nov 2003 A1
20030221687 Kaigler Dec 2003 A1
20030230308 Linden Dec 2003 A1
20040020493 Wood Feb 2004 A1
20040025881 Gunaratnam et al. Feb 2004 A1
20040035431 Wright Feb 2004 A1
20040040560 Euliano et al. Mar 2004 A1
20040050387 Younes Mar 2004 A1
20040074494 Frater Apr 2004 A1
20040089336 Hunt May 2004 A1
20040159323 Schmidt et al. Aug 2004 A1
20040206352 Conroy Oct 2004 A1
20040221848 Hill Nov 2004 A1
20040221854 Hete et al. Nov 2004 A1
20040226566 Gunaratnam et al. Nov 2004 A1
20040231674 Tanaka Nov 2004 A1
20040237963 Berthon-Jones Dec 2004 A1
20040254501 Mault Dec 2004 A1
20040255943 Morris et al. Dec 2004 A1
20050005938 Berthon-Jones et al. Jan 2005 A1
20050010125 Joy et al. Jan 2005 A1
20050011524 Thomlinson et al. Jan 2005 A1
20050016534 Ost Jan 2005 A1
20050033247 Thompson Feb 2005 A1
20050034724 O'Dea Feb 2005 A1
20050061322 Freitag Mar 2005 A1
20050061326 Payne Mar 2005 A1
20050072430 Djupesland Apr 2005 A1
20050081849 Warren Apr 2005 A1
20050087190 Jafari et al. Apr 2005 A1
20050098179 Burton et al. May 2005 A1
20050103343 Gosweiler May 2005 A1
20050121033 Starr et al. Jun 2005 A1
20050121037 Wood Jun 2005 A1
20050121038 Christopher Jun 2005 A1
20050150498 McDonald Jul 2005 A1
20050161049 Wright Jul 2005 A1
20050166924 Thomas et al. Aug 2005 A1
20050199242 Matula et al. Sep 2005 A1
20050205096 Matula et al. Sep 2005 A1
20050247308 Frye et al. Nov 2005 A1
20050257793 Tatsumoto Nov 2005 A1
20050274381 Deane et al. Dec 2005 A1
20060005834 Aylsworth et al. Jan 2006 A1
20060005842 Rashad et al. Jan 2006 A1
20060011199 Rashad et al. Jan 2006 A1
20060027234 Gradon et al. Feb 2006 A1
20060032228 Marin et al. Feb 2006 A1
20060048781 Nawata Mar 2006 A1
20060054169 Han et al. Mar 2006 A1
20060070625 Ayappa et al. Apr 2006 A1
20060079799 Green et al. Apr 2006 A1
20060096596 Occhialini et al. May 2006 A1
20060107958 Sleeper May 2006 A1
20060112959 Mechlenburg et al. Jun 2006 A1
20060117646 Dai Jun 2006 A1
20060118274 Lee et al. Jun 2006 A1
20060124131 Chandran et al. Jun 2006 A1
20060124134 Wood Jun 2006 A1
20060137690 Gunaratnam et al. Jun 2006 A1
20060144396 DeVries et al. Jul 2006 A1
20060149144 Lynn et al. Jul 2006 A1
20060150972 Mizuta et al. Jul 2006 A1
20060150973 Chalvignac Jul 2006 A1
20060150982 Wood Jul 2006 A1
20060174877 Jagger et al. Aug 2006 A1
20060180149 Matarasso Aug 2006 A1
20060185669 Bassovitch Aug 2006 A1
20060201504 Singhal et al. Sep 2006 A1
20060213518 DeVries et al. Sep 2006 A1
20060213519 Schmidt et al. Sep 2006 A1
20060225737 Lobbi Oct 2006 A1
20060237013 Kwok Oct 2006 A1
20060243278 Hamilton et al. Nov 2006 A1
20060249155 Gambone Nov 2006 A1
20060266361 Hernandez Nov 2006 A1
20060288709 Reidy Dec 2006 A1
20070000490 DeVries et al. Jan 2007 A1
20070000495 Matula et al. Jan 2007 A1
20070017515 Wallace et al. Jan 2007 A1
20070056590 Wolfson Mar 2007 A1
20070062529 Choncholas et al. Mar 2007 A1
20070068528 Bohm et al. Mar 2007 A1
20070074724 Duquette et al. Apr 2007 A1
20070089743 Hoffman Apr 2007 A1
20070089745 Gabriel et al. Apr 2007 A1
20070095347 Lampotang et al. May 2007 A1
20070107728 Ricciardelli et al. May 2007 A1
20070107732 Dennis et al. May 2007 A1
20070107737 Landis et al. May 2007 A1
20070113850 Acker et al. May 2007 A1
20070113856 Acker et al. May 2007 A1
20070125379 Pierro et al. Jun 2007 A1
20070137653 Wood Jun 2007 A1
20070163600 Hoffman Jul 2007 A1
20070173705 Teller et al. Jul 2007 A1
20070181125 Mulier Aug 2007 A1
20070193705 Hsu Aug 2007 A1
20070199568 Diekens et al. Aug 2007 A1
20070209662 Bowen et al. Sep 2007 A1
20070215156 Kwok Sep 2007 A1
20070232950 West Oct 2007 A1
20070240716 Marx Oct 2007 A1
20070240862 Baudat et al. Oct 2007 A1
20070251528 Seitz et al. Nov 2007 A1
20070272249 Chandran et al. Nov 2007 A1
20070289300 Lin Dec 2007 A1
20080000475 Hill Jan 2008 A1
20080006271 Aylsworth et al. Jan 2008 A1
20080011298 Mazar et al. Jan 2008 A1
20080011301 Qian Jan 2008 A1
20080041371 Freitag Feb 2008 A1
20080041386 Dodier et al. Feb 2008 A1
20080045815 Derchak et al. Feb 2008 A1
20080047559 Fiori Feb 2008 A1
20080051674 Davenport et al. Feb 2008 A1
20080053438 DeVries et al. Mar 2008 A1
20080053447 Ratajczak et al. Mar 2008 A1
20080060646 Isaza Mar 2008 A1
20080060657 McAuley et al. Mar 2008 A1
20080066753 Martin et al. Mar 2008 A1
20080072902 Setzer et al. Mar 2008 A1
20080078392 Pelletier et al. Apr 2008 A1
20080078407 Sherman Apr 2008 A1
20080092904 Gunarathnam et al. Apr 2008 A1
20080092905 Gunarathnam et al. Apr 2008 A1
20080092906 Gunarathnam et al. Apr 2008 A1
20080099024 Gunarathnam et al. May 2008 A1
20080099027 Gunaratnam et al. May 2008 A1
20080105264 Gunarathnam et al. May 2008 A1
20080110462 Chekal et al. May 2008 A1
20080121230 Cortez et al. May 2008 A1
20080134690 Reid Jun 2008 A1
20080135044 Freitag et al. Jun 2008 A1
20080142019 Lewis et al. Jun 2008 A1
20080151499 Tsai Jun 2008 A1
20080161653 Lin et al. Jul 2008 A1
20080173304 Zaiser et al. Jul 2008 A1
20080178880 Christopher et al. Jul 2008 A1
20080178881 Whitcher et al. Jul 2008 A1
20080178882 Christopher et al. Jul 2008 A1
20080185002 Berthon-Jones et al. Aug 2008 A1
20080185007 Sleeper et al. Aug 2008 A1
20080190429 Tatarek Aug 2008 A1
20080190436 Jaffe et al. Aug 2008 A1
20080196305 Gerfast Aug 2008 A1
20080196715 Yamamori Aug 2008 A1
20080196723 Tilley Aug 2008 A1
20080196728 Ho Aug 2008 A1
20080202528 Carter et al. Aug 2008 A1
20080216834 Easley et al. Sep 2008 A1
20080216838 Wondka Sep 2008 A1
20080216841 Grimes et al. Sep 2008 A1
20080223369 Warren Sep 2008 A1
20080245369 Matula et al. Oct 2008 A1
20080251079 Richey Oct 2008 A1
20080264417 Manigel et al. Oct 2008 A1
20080283060 Bassin Nov 2008 A1
20080295846 Han et al. Dec 2008 A1
20080302364 Garde et al. Dec 2008 A1
20080308104 Blomberg et al. Dec 2008 A1
20090007911 Cleary et al. Jan 2009 A1
20090019886 Willen Jan 2009 A1
20090020121 Bassin Jan 2009 A1
20090044808 Guney et al. Feb 2009 A1
20090056708 Stenzler et al. Mar 2009 A1
20090077970 Da Costa Mar 2009 A1
20090078255 Bowman et al. Mar 2009 A1
20090078258 Bowman et al. Mar 2009 A1
20090095298 Gunaratnam et al. Apr 2009 A1
20090095300 McMorrow Apr 2009 A1
20090095303 Sher et al. Apr 2009 A1
20090099471 Broadley et al. Apr 2009 A1
20090101147 Landis et al. Apr 2009 A1
20090101154 Mutti et al. Apr 2009 A1
20090107502 Younes Apr 2009 A1
20090118632 Goepp May 2009 A1
20090120437 Oates et al. May 2009 A1
20090126372 Faka May 2009 A1
20090126739 Ng et al. May 2009 A1
20090133699 Nalagatla et al. May 2009 A1
20090139527 Ng et al. Jun 2009 A1
20090145435 White et al. Jun 2009 A1
20090151719 Wondka et al. Jun 2009 A1
20090151724 Wondka et al. Jun 2009 A1
20090151726 Freitag Jun 2009 A1
20090151729 Judson et al. Jun 2009 A1
20090156953 Wondka et al. Jun 2009 A1
20090165799 Duquette et al. Jul 2009 A1
20090173347 Berthon-Jones Jul 2009 A1
20090173349 Hernandez et al. Jul 2009 A1
20090183739 Wondka Jul 2009 A1
20090199855 Davenport Aug 2009 A1
20090205662 Kwok et al. Aug 2009 A1
20090241947 Bedini et al. Oct 2009 A1
20090241951 Jafari et al. Oct 2009 A1
20090250066 Daly Oct 2009 A1
20090255533 Freitag et al. Oct 2009 A1
20090260625 Wondka Oct 2009 A1
20090277452 Lubke et al. Nov 2009 A1
20090293877 Blanch et al. Dec 2009 A1
20090301495 Pierro et al. Dec 2009 A1
20090308395 Lee et al. Dec 2009 A1
20090320851 Selvarajan et al. Dec 2009 A1
20100043786 Freitag et al. Feb 2010 A1
20100071693 Allum et al. Mar 2010 A1
20100071697 Jafari et al. Mar 2010 A1
20100083968 Wondka et al. Apr 2010 A1
20100108063 Koch May 2010 A1
20100108073 Zollinger et al. May 2010 A1
20100132716 Selvarajan et al. Jun 2010 A1
20100132717 Davidson et al. Jun 2010 A1
20100163043 Hart et al. Jul 2010 A1
20100170512 Kuypers et al. Jul 2010 A1
20100170513 Bowditch et al. Jul 2010 A1
20100192957 Hobson et al. Aug 2010 A1
20100218766 Milne Sep 2010 A1
20100224196 Jablons Sep 2010 A1
20100252037 Wondka et al. Oct 2010 A1
20100252039 Cipollone et al. Oct 2010 A1
20100252040 Kapust et al. Oct 2010 A1
20100252041 Kapust et al. Oct 2010 A1
20100252042 Kapust et al. Oct 2010 A1
20100252043 Freitag Oct 2010 A1
20100252044 Duquette et al. Oct 2010 A1
20100269834 Freitag et al. Oct 2010 A1
20100275920 Tham et al. Nov 2010 A1
20100275921 Schindhelm et al. Nov 2010 A1
20100282251 Calluaud et al. Nov 2010 A1
20100282810 Hawes Nov 2010 A1
20100288279 Seiver et al. Nov 2010 A1
20100288289 Nasir Nov 2010 A1
20100300445 Chatburn et al. Dec 2010 A1
20100300446 Nicolazzi et al. Dec 2010 A1
20100300663 Tso et al. Dec 2010 A1
20100307487 Dunsmore et al. Dec 2010 A1
20100307495 Kepler et al. Dec 2010 A1
20100307499 Eger et al. Dec 2010 A1
20100307500 Armitstead Dec 2010 A1
20100307502 Rummery et al. Dec 2010 A1
20100313891 Veliss et al. Dec 2010 A1
20100313898 Richard et al. Dec 2010 A1
20100319703 Hayman et al. Dec 2010 A1
20100326441 Zucker et al. Dec 2010 A1
20100326446 Behlmaier Dec 2010 A1
20110000489 Laksov et al. Jan 2011 A1
20110009763 Levitsky et al. Jan 2011 A1
20110011402 Berthon-Jones Jan 2011 A1
20110023878 Thiessen Feb 2011 A1
20110023881 Thiessen Feb 2011 A1
20110034819 Desforges et al. Feb 2011 A1
20110036352 Estes et al. Feb 2011 A1
20110041850 Vandine et al. Feb 2011 A1
20110041855 Gunaratnam et al. Feb 2011 A1
20110061647 Stahmann et al. Mar 2011 A1
20110067704 Kooij et al. Mar 2011 A1
20110067709 Doshi et al. Mar 2011 A1
20110071444 Kassatly et al. Mar 2011 A1
20110073107 Rodman et al. Mar 2011 A1
20110073116 Genger et al. Mar 2011 A1
20110087123 Choncholas et al. Apr 2011 A9
20110088690 Djupesland et al. Apr 2011 A1
20110094518 Cipollone et al. Apr 2011 A1
20110100365 Wedler et al. May 2011 A1
20110114098 McAuley et al. May 2011 A1
20110125052 Davenport et al. May 2011 A1
20110126841 Matula, Jr. et al. Jun 2011 A1
20110132363 Chalvignac Jun 2011 A1
20110139153 Chalvignac Jun 2011 A1
20110146687 Fukushima Jun 2011 A1
20110155140 Ho et al. Jun 2011 A1
20110162650 Miller et al. Jul 2011 A1
20110162655 Gunaratnam et al. Jul 2011 A1
20110178419 Wood et al. Jul 2011 A1
20110180068 Kenyon et al. Jul 2011 A1
20110187019 Hackl Aug 2011 A1
20110197885 Wondka et al. Aug 2011 A1
20110203311 Wright Aug 2011 A1
20110209705 Freitag Sep 2011 A1
20110214676 Allum et al. Sep 2011 A1
20110220105 Meier Sep 2011 A1
20110225987 Bowdish Sep 2011 A1
20110232642 Bliss et al. Sep 2011 A1
20110247625 Boussignac Oct 2011 A1
20110253147 Gusky et al. Oct 2011 A1
20110259327 Wondka et al. Oct 2011 A1
20110265796 Amarasinghe et al. Nov 2011 A1
20110277765 Christopher et al. Nov 2011 A1
20110284003 Douglas et al. Nov 2011 A1
Foreign Referenced Citations (115)
Number Date Country
19626924 Jan 1998 DE
29902267 Jul 1999 DE
19841070 May 2000 DE
19849571 May 2000 DE
10337138.9 Mar 2005 DE
10 2006 023 637.8 Nov 2007 DE
0125424 Nov 1984 EP
0692273 Jan 1996 EP
0778035 Jun 1997 EP
1359961 Nov 2003 EP
1992382 Nov 2008 EP
2377462 Nov 2010 EP
2174609 Nov 1986 GB
2201098 Aug 1988 GB
1055148 Jun 1989 GB
2338420 Dec 1999 GB
2123968 Nov 2009 IT
S616656 Jan 1986 JP
S63-57060 Mar 1998 JP
2002-204830 Jul 2002 JP
2009545384 Dec 2009 JP
WO-199211054 Jul 1992 WO
WO-199801176 Jan 1998 WO
9858219 Dec 1998 WO
WO-199904841 Feb 1999 WO
WO-2000064521 Nov 2000 WO
WO-2001076655 Oct 2001 WO
WO 2002062413 Aug 2002 WO
WO-2004009169 Jan 2004 WO
WO-2005014091 Feb 2005 WO
WO-2005018524 Mar 2005 WO
2006096450 Sep 2006 WO
WO-2006138580 Dec 2006 WO
WO-2007035804 Mar 2007 WO
WO-2007139531 Dec 2007 WO
WO-2007142812 Dec 2007 WO
WO-2008014543 Feb 2008 WO
WO-2008019102 Feb 2008 WO
WO-2008052534 May 2008 WO
WO-2008112474 Sep 2008 WO
WO-2008138040 Nov 2008 WO
WO-2008144589 Nov 2008 WO
WO-2008144669 Nov 2008 WO
WO-2009042973 Apr 2009 WO
WO-2009042974 Apr 2009 WO
WO-2009059353 May 2009 WO
WO-2009064202 May 2009 WO
WO-2009074160 Jun 2009 WO
WO-2009082295 Jul 2009 WO
WO-2009087607 Jul 2009 WO
WO-2009092057 Jul 2009 WO
WO-2009103288 Aug 2009 WO
WO-2009109005 Sep 2009 WO
WO-2009115944 Sep 2009 WO
WO-2009115948 Sep 2009 WO
WO-2009115949 Sep 2009 WO
WO-2009129506 Oct 2009 WO
WO-2009136101 Nov 2009 WO
WO-2009139647 Nov 2009 WO
WO-2009149351 Dec 2009 WO
WO-2009149353 Dec 2009 WO
WO-2009149355 Dec 2009 WO
WO-2009149357 Dec 2009 WO
WO-2009151344 Dec 2009 WO
WO-2009151791 Dec 2009 WO
WO-2010000135 Jan 2010 WO
WO-2010021556 Feb 2010 WO
WO-2010022363 Feb 2010 WO
WO-2010039989 Apr 2010 WO
WO-2010041966 Apr 2010 WO
WO-2010044034 Apr 2010 WO
WO-2010057268 May 2010 WO
WO-2010059049 May 2010 WO
WO-2010060422 Jun 2010 WO
WO-2010068356 Jun 2010 WO
WO-2010070493 Jun 2010 WO
WO-2010070497 Jun 2010 WO
WO-2010070498 Jun 2010 WO
WO-2010076711 Jul 2010 WO
WO-2010081223 Jul 2010 WO
WO-2010091157 Aug 2010 WO
WO 2010099375 Sep 2010 WO
WO-2010102094 Sep 2010 WO
WO 2010115166 Oct 2010 WO
WO 2010115168 Oct 2010 WO
WO 2010115169 Oct 2010 WO
WO 2010115170 Oct 2010 WO
WO-2010116275 Oct 2010 WO
WO-2010132853 Nov 2010 WO
WO-2010136923 Dec 2010 WO
WO-2010139014 Dec 2010 WO
WO-2010150187 Dec 2010 WO
WO 2011002608 Jan 2011 WO
WO-2011004274 Jan 2011 WO
WO-2011006184 Jan 2011 WO
WO-2011006199 Jan 2011 WO
WO-2011014931 Feb 2011 WO
WO-2011017033 Feb 2011 WO
WO-2011017738 Feb 2011 WO
WO-2011021978 Feb 2011 WO
WO-2011022779 Mar 2011 WO
WO-2011024383 Mar 2011 WO
WO 2011029073 Mar 2011 WO
WO 2011029074 Mar 2011 WO
WO-2011035373 Mar 2011 WO
WO-2011038950 Apr 2011 WO
WO-2011038951 Apr 2011 WO
WO-2011044627 Apr 2011 WO
WO-2011057362 May 2011 WO
WO 2011059346 May 2011 WO
WO-2011061648 May 2011 WO
WO-2011062510 May 2011 WO
WO-2011086437 Jul 2011 WO
WO-2011086438 Jul 2011 WO
WO-2011112807 Sep 2011 WO
Non-Patent Literature Citations (134)
Entry
In the U.S. Patent and Trademark Office, Supplemental Notice of Allowance dated in re: U.S. Appl. No. 10/771,803, dated Dec. 2, 2008, 2 pages.
In the U.S. Patent and Trademark Office, Supplemental Notice of Allowance dated in re: U.S. Appl. No. 10/771,803, dated Nov. 7, 2008, 2 pages.
In the U.S. Patent and Trademark Office, Examiner's Interview Summary in re: U.S. Appl. No. 10/771,803, dated Oct. 31, 2008, 4 pages.
In the U.S. Patent and Trademark Office, Notice of Allowance dated in re: U.S. Appl. No. 10/771,803, dated Oct. 20, 2008, 8 pages.
In the U.S. Patent and Trademark Office, Examiner's Interview Summary in re: U.S. Appl. No. 10/771,803, dated Nov. 2, 2007, 2 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 10/771,803, dated Jun. 14, 2007, 12 pages.
In the U.S. Patent and Trademark Office, Restriction Requirement in re: U.S. Appl. No. 12/271,484, dated Feb. 9, 2011, 5 pages.
In the U.S. Patent and Trademark Office, Restriction Requirement in re: U.S. Appl. No. 12/754,437, dated Aug. 16, 2011, 5 pages.
In the U.S. Patent and Trademark Office, Non-Final Office Action dated in re: U.S. Appl. No. 10/567,746, dated Oct. 5, 2009, 9 pages.
In the U.S. Patent and Trademark Office, Notice of Allowance and Examiner's Interview Summary in re: U.S. Appl. No. 11/523,519, dated Jan. 16, 2009, 10 pages.
In the U.S. Patent and Trademark Office, Examiner's Interview Summary in re: U.S. Appl. No. 11/523,519, dated Jan. 13, 2009, 4 pages.
In the U.S. Patent and Trademark Office, Final Office Action in re: U.S. Appl. No. 11/523,519, dated Jul. 11, 2008, 13 pages.
In the U.S. Patent and Trademark Office, Examiner's Interview Summary in re: U.S. Appl. No. 11/523,519, dated Apr. 10, 2008, 3 pages.
In the U.S. Patent and Trademark Office, Final Office Action in re: U.S. Appl. No. 11/523,519, dated Nov. 26, 2007, 14 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 11/523,519, dated Mar. 7, 2007, 11 pages.
In the U.S. Patent and Trademark Office, Restriction Requirement in re: U.S. Appl. No. 11/523,518, dated Dec. 30, 2009, 4 pages.
In the U.S. Patent and Trademark Office, Supplemental Notice of Allowance in re: U.S. Appl. No. 11/798,965, dated Aug. 21, 2009, 4 pages.
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 11/798,965, dated Jul. 17, 2009, 5 pages.
In the U.S. Patent and Trademark Office, Final Office Action in re: U.S. Appl. No. 11/798,965, dated Apr. 9, 2009, 6 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 11/798,965, dated Jul. 29, 2008, 12 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 12/578,283, dated Oct. 19, 2011, 5 pages.
In the U.S. Patent and Trademark Office, Restriction/Election Requirement in re: U.S. Appl. No. 11/882,530, dated Apr. 27, 2011, 5 pages.
In the U.S. Patent and Trademark Office, Supplemental Notice of Allowance in re: U.S. Appl. No. 10/870,849, dated Jun. 16, 2009, 2 pages.
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 10/870,849, dated Jun. 3, 2009, 4 pages.
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 10/870,849, dated May 14, 2009, 8 pages.
In the U.S. Patent and Trademark Office, Restriction in re: U.S. Appl. No. 10/870,849, dated Nov. 16, 2007, 5 pages.
In the U.S. Patent and Trademark Office, Examiner's Interview Summary in re: U.S. Appl. No. 10/870,849, dated Jul. 27, 2007, 2 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 10/870,849, dated Feb. 22, 2007, 13 pages.
In the U.S. Patent and Trademark Office, Restriction/Election Requirement in re: U.S. Appl. No. 12/493,677, dated Aug. 5, 2011, 5 pages.
In the U.S. Patent and Trademark Office, Restriction/Election Requirement in re: U.S. Appl. No. 12/153,423, dated Oct. 6, 2011, 8 pages.
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 10/922,054, dated Feb. 12, 2008, 6 pages.
In the U.S. Patent and Trademark Office, Final Office Action in re: U.S. Appl. No. 10/922,054, dated Nov. 27, 2007, 9 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 10/922,054, dated Mar. 14, 2007, 14 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 10/922,054, dated Sep. 7, 2006, 21 pages.
In the U.S. Patent and Trademark Office, Restriction Requirement in re: U.S. Appl. No. 10/922,054, dated May 17, 2006, 5 pages.
In the U.S. Patent and Trademark Office, Notice of Allowance and Examiner's Interview Summary in re: U.S. Appl. No. 12/076,062, dated Nov. 2, 2011, 8 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 12/076,062, dated Jan. 13, 2011, 14 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 12/355,753, dated Sep. 28, 2011, 32 pages.
In the U.S. Patent and Trademark Office, Ex Parte Quayle Office Action in re: U.S. Appl. No. 29/388,700, dated Oct. 7, 2011, 5 pages.
“AARC Clinical Practice Guideline: Oxygen Therapy in the Home or Extended Care Facility,” Resp. Care, 1992: 37(8), pp. 918-922.
“ATS Statement: Guidelines for the Six-Minute Walk Test,” Am. J. Respir. Crit. Care Med., 2002: 166, pp. 111-117.
“Passy-Muir Speaking Valves,” Respiratory, Nov. 13, 1998, 7 pages.
Ambrosino, “Exercise and noninvasive ventilatory support,” Monaldi Arch Chest Dis., 2000: 55(3): 242-246.
Ambrosino, “Weaning and Respiratory Muscle Dysfunction: The Egg Chicken Dilemma,” Chest, 2005: 128(2), pp. 481-483.
Bach et al., “Intermittent Positive Pressure Ventilation via Nasal Access in the Management of Respiratory Insufficiency,” Chest, 1987: 92(1), pp. 168-170.
Banner et al., “Extubating at a Pressure Support Ventilation Level Corresponding to Zero Imposed Work of Breathing,” Anesthesiology, Sep. 1994: 81(3A), p. A271.
Banner et al., “Imposed Work of Breathing and Methods of Triggering a Demand-Flow, Continuous Positive Airway Pressure System,” Critical Care Medicine, 1993: 21(2), pp. 183-190.
Banner et al., “Site of Pressure Measurement During Spontaneous Breathing with Continuous Positive Airway Pressure: Effect on Calculating Imposed Work of Breathing,” Critical Care Medicine, 1992: 20(4), pp. 528-533.
Barakat et al., “Effect of noninvasive ventilatory support during exercise of a program in pulmonary rehabilitation in patients with COPD,” Int. J. Chron. Obstruct. Pulmon. Dis., 2007: 2(4), pp. 585-591.
Barreiro et al., “Noninvasive ventilation,” Crit Care Clin., 2007; 23(2): 201-22.
Bauer et al., “ADAM Nasal CPAP Circuit Adaptation: A Case Report,” Sleep, 1991: 14(3), pp. 272-273.
Blanch, “Clinical Studies of Tracheal Gas Insufflation,” Resp. Care, 2001: 45(2), pp. 158-166.
Borghi-Silva et al., “Non-invasive ventilation improves peripheral oxygen saturation and reduces fatigability of quadriceps in patients with COPD,” Respirology, 2009, 14:537-546.
Bossi et al., “Continuous Positive Airway Pressure in the Spontaneously Breathing Newborn by Means of Bilateral Nasal Cannulation,” Monatsschr Kinderheilkd, 1975: 123(4), pp. 141-146.
Boussarsar et al., “Relationship between ventilatory settings and barotrauma in the acute respiratory distress syndrome,” Intensive Care Med., 2002: 28(4): 406-13.
Chang et al., “Reduced Inspiratory Muscle Endurance Following Successful Weaning From Prolonged Mechanical Ventilation,” Chest, 2005: 128(2), pp. 553-559.
Charlotte Regional Medical Center, “Application of the Passy-Muir Tracheostomy and Ventilator,” Speech-Language Pathology Department, Jan. 1995, 8 pages.
Christopher et al., “Preliminary Observations of Transtracheal Augmented Ventilation for Chronic Severe Respiratory Disease,” Resp. Care, 2001: 46(1), pp. 15-25.
Christopher, et al., “Transtracheal Oxygen Therapy for Refractory Hypoxemia,” JAMA, 1986: 256(4), pp. 494-497.
Ciccolella et al.; “Administration of High-Flow, Vapor-phased, Humidified Nasal Cannula Air (HF-HNC) Decreases Work of Breathing (WOB) in Healthy Subjects During Exercise,” AmJRCCM, Apr. 2001: 163(5), Part 2, pp. A622. (Abstract Only).
Clini et al., “The Italian multicentre study on noninvasive ventilation in chronic obstructive pulmonary disease patients,” Eur. Respir. J., 2002, 20(3): 529-538.
Costa et al., “Influence of noninvasive ventilation by BiPAP® on exercise tolerance and respiratory muscle strength in chronic obstructive pulmonary disease patients (COPD),” Rev. Lat. Am. Enfermagem., 2006: 14(3), pp. 378-382.
Díaz et al., “Breathing Pattern and Gas Exchange at Peak Exercise in COPD Patients With and Without Tidal Flow Limitation at Rest,” European Respiratory Journal, 2001: 17, pp. 1120-1127.
Enright, “The six-minute walk test,” Resp. Care, 2003: 8, pp. 783-785.
Ferreira et al., “Trigger Performance of Mid-level ICU Mechanical Ventilators During Assisted Ventilation: A Bench Study,” Intensive Care Medicine, 2008,34:1669-1675.
Fink, “Helium-Oxygen: An Old Therapy Creates New Interest,” J. Resp. Care. Pract. now RT for Decision Makers in Respiratory Care, 1999, pp. 71-76.
Gaughan et al., “A Comparison in a Lung Model of Low- and High-Flow Regulators for Transtracheal Jet Ventilation,” Anesthesiology, 1992: 77(1), pp. 189-199.
Gregoretti, et al., “Transtracheal Open Ventilation in Acute Respiratory Failure Secondary to Severe Chronic Obstructive Pulmonary Disease Exacerbation,” Am. J. Resp. Crit. Care. Med., 2006: 173(8), pp. 877-881.
Haenel et al., “Efficacy of Selective Intrabronchial Air Insufflation in Acute Lobar Colapse,” Am. J. Surg., 1992: 164(5), pp. 501-505.
Keilty et al., “Effect of inspiratory pressure support on exercise tolerance and breathlessness in patients with severe stable chronic obstructive pulmonary disease,” Thorax, 1994, 49(10): 990-994.
Köhnlein et al., “Noninvasive ventilation in pulmonary rehabilitation of COPD patients,” Respir. Med., 2009, 103: 1329-1336.
Koska et al., “Evaluation of a Fiberoptic System for Airway Pressure Monitoring,” J. Clin. Monit., 1993: 10(4), pp. 247-250.
Lewis, “Breathless No More, Defeating Adult Sleep Apnea,” FDA Consumer Magazine, Jun. 1992, pp. 33-37.
Limberg et al., “Changes in Supplemental Oxygen Prescription in Pulmonary Rehabilitation,” Resp. Care, 2006:51(11), p. 1302.
Macinryre, “Long-Term Oxygen Therapy: Conference Summary,” Resp. Care, 2000: 45(2), pp. 237-245.
Macintyre et al., “Acute exacerbations and repiratory failure in chronic obstructive pulmonary disease,” Proc. Am. Thorac. Soc., 2008: 5(4), pp. 530-535.
Massie et al., “Clinical Outcomes Related to Interface Type in Patients With Obstructive Sleep Apnea/Hypopnea Syndrome Who Are Using Continuous Positive Airway Pressure,” Chest, 2003: 123(4), pp. 1112-1118.
Mccoy, “Oxygen Conservation Techniques and Devices,” Resp. Care, 2000: 45(1), pp. 95-104.
Mcginley, “A nasal cannula can be used to treat obstructive sleep apnea”; Am. J. Resp. Crit. Care Med., 2007: 176(2), pp. 194-200.
Menadue et al., “Non-invasive ventilation during arm exercise and ground walking in patients with chronic hypercapnic respiratory failure,” Respirology, 2009, 14(2): 251-259.
Menon et al., “Tracheal Perforation. A Complication Associated with Transtracheal Oxygen Therapy,” Chest, 1993: 104(2), pp. 636-637.
Messinger et al., “Tracheal Pressure Triggering a Demand-Flow CPAP System Decreases Work of Breathing,” Anesthesiology, 1994: 81(3A), p. A272.
Messinger et al., “Using Tracheal Pressure to Trigger the Ventilator and Control Airway Pressure During Continuous Positive Airway Pressure Decreases Work of Breathing,” Chest, 1995: vol. 108(2), pp. 509-514.
Mettey, “Use of CPAP Nasal Cannula for Aids of the Newborns in Tropical Countries,” Medecine Tropicale, 1985: 45(1), pp. 87-90.
Nahmias et al., “Treatment of the Obstructive Sleep Apnea Syndrome Using a Nasopharyngeal Tube”, Chest, 1988:94(6), pp. 1142-1147.
Nava et al., “Non-invasive ventilation,” Minerva Anestesiol., 2009: 75(1-2), pp. 31-36.
Passy-Muir Inc., “Clinical Inservice Outline”, Apr. 2004, 19 pages.
Peters et al., “Combined Physiological Effects of Bronchodilators and Hyperoxia on Exertional Dyspnea in Normoxic COPD,” Thorax, 2006: 61, pp. 559-567.
Polkeyet al., “Inspiratory pressure support reduces slowing of inspiratory muscle relations rate during exhaustive treadmill walking in sever COPD,” Am. J. Resp. Crit. Care Med., 1996: 154(4, 10), pp. 1146-1150.
Porta et al., “Mask proportional assist vs pressure support ventilation in patients in clinically stable condition with chronic venilatory failure,” Chest, 2002: 122(2), pp. 479-488.
Prigent et al., “Comparative Effects of Two Ventilatory Modes on Speech in Tracheostomized Patients with Neuromuscular Disease,” Am. J. Resp. Crit. Care Med., 2003: 167(8), pp. 114-119.
Puente-Maestu et al., “Dyspnea, Ventilatory Pattern, and Changes in Dynamic Hyperinflation Related to the Intensity of Constant Work Rate Exercise in COPD,” Chest, 2005: 128(2), pp. 651-656.
Ram et al., “Non-invasive positive pressure ventilation for treatment of respiratory failure due to exacerbations of chroic obstructive pulmonary disease,” Cochrane Database Syst Rev., 2004(3):1-72.
Rothe et al., “Near Fatal Complication of Transtracheal Oxygen Therapy with the SCOOP(R) System,” Pneumologie, 1996: 50(10), pp. 700-702. (English Abstract provided.).
Rothfleisch et al., “Facilitation of fiberoptic nasotracheal intubation in a morbidly obese patient by simultaneous use of nasal CPAP,” Chest, 1994, 106(1): 287-288.
Sanders et al., “CPAP Via Nasal Mask: A Treatment for Occlusive Sleep Apnea,” Chest, 1983: 83(1), pp. 144-145.
Sinderby et al., “Neural control of mechanical ventilation in respiratory failure,” Nat. Med., 1999: 5(12), pp. 1433-1436.
Somfay et al., “Dose-Response Effect of Oxygen on Hyperinflation and Exercise Endurance in Nonhypoxaemic COPD Patients,” Eur. Resp. J., 2001: 18, pp. 77-84.
Sullivan et al., “Reversal of Obstructive Sleep Apnoea by Continuous Positive Airway Pressure Applied Through the Nares,” The Lancet, 1981: 1(8225), pp. 862-865.
Sullivan, “Home treatment of obstructive sleep apnoea with continuous positive airway pressure applied through a nose-mask,” Bull Eur Physiopathol Respir., 1984: 20(1), pp. 49-54.
Tiep et al., “Pulsed nasal and transtracheal oxygen delivery,” Chest, 1990: 97, pp. 364-368.
Tsuboi et al., “Ventilatory Support During Exercise in Patients With Pulmonary Tuberculosis Sequelae,” Chest, 1997: 112(4), pp. 1000-1007.
VJA/DOD Clinical Practice Guideline, “Management of Chronic Obstructive Pulmonary Disease,” Aug. 1999, Ver. 1.1a, Updated Nov. 1999.
Wijkstra et al., “Nocturnal non-invasive positive pressure ventilation for stable chronic obstructive pulmonary disease,” Cochrane Database Syst. Rev., 2002, 3: 1-22.
Yaeger et al., “Oxygen Therapy Using Pulse and Continuous Flow With a Transtracheal Catheter and a Nasal Cannula,” Chest, 1994: 106, pp. 854-860.
Walsh, “McGraw Hill Pocket reference Machinists' and Metalworker Pocket Reference,” New York McGraw-Hill, 2000, pp. 3-67, submitting 3 pages.
International Preliminary Report and Written Opinion on Patentability for PCT/DE2004/001646, dated Jul. 3, 2006.
European patent Office Search Report dated Oct. 19, 2007 in co-pending EP 04762494.
International Search Report and Written Opinion for PCT/US04/26800 dated Jun. 22, 2006.
International Search Report and Written Opinion for PCT/US07/12108, dated Aug. 8, 2008.
International Search Report and Written Opinion for PCT/US07/17400, dated Apr. 28, 2008.
International Search Report and Written Opinion for PCT/US08/64015, dated Sep. 26, 2008.
International Search Report and Written Opinion for PCT/US08/64164, dated Sep. 29, 2008.
International Search Report and Written Opinion for PCT/US08/78031, dated Nov. 24, 2008.
International Search Report and Written Opinion for PCT/US08/78033, dated Dec. 3, 2008.
International Search Report and Written Opinion for PCT/US09/054673, dated Oct. 8, 2009.
International Search Report and Written Opinion for PCT/US09/41027, dated Dec. 14, 2009.
International Search Report and Written Opinion for PCT/US09/59272, dated Dec. 2, 2009.
International Search Report and Written Opinion for PCT/US2006/036600, dated Apr. 3, 2007.
International Search Report and Written Opinion for PCT/US2009/031355 dated Mar. 11, 2009.
International Search Report and Written Opinion for PCT/US2009/041034, dated Jun. 10, 2009.
International Search Report and Written Opinion for PCT/US2010/029871, dated Jul. 12, 2010.
International Search Report and Written Opinion for PCT/US2010/029873, dated Jun. 28, 2010.
International Search Report and Written Opinion for PCT/US2010/029874, dated Jul. 12, 2010.
International Search Report and Written Opinion for PCT/US2010/029875, dated Jul. 12, 2010.
International Search Report and Written Opinion for PCT/US2010/047920, dated Nov. 1, 2010.
International Search Report and Written Opinion for PCT/US2010/047921, dated Jan. 27, 2011.
International Search Report for PCT/DE2004/001646, dated Jan. 17, 2005.
State Intellectual Property Office of P.R.C., Notification of the First Office Action, dated Sep. 25, 2014, 3 Pages.
State Intellectual Property Office of P.R.C., Search Report for Application No. 201180039491.5, 2 Pages, dated Sep. 25, 2014.
English Translation of Japanese Office Action for Japanese Application No. 2013-524940. dated Jun. 2, 2015.
Extended European Search Report for EP11818693.1; dated Jun. 15, 2016.
Patent Examination Report, dated Apr. 3, 2014, 4 Pages, Melbourne Australia.
Canadian Office Action for CA 2,807,416; dated Apr. 12, 2018.
Related Publications (1)
Number Date Country
20120118285 A1 May 2012 US
Provisional Applications (1)
Number Date Country
61374126 Aug 2010 US