Methods to detect motor neuron disease comprising micro-RNAs

Information

  • Patent Grant
  • 11225663
  • Patent Number
    11,225,663
  • Date Filed
    Friday, October 11, 2019
    5 years ago
  • Date Issued
    Tuesday, January 18, 2022
    2 years ago
Abstract
The present invention relates to compositions and methods for detecting motor neuron-specific miRNAs in a population of cells or subject. More particularly, the invention relates to detecting motor neuron-specific miRNAs to detect and treat motor neuron diseases associated with dysregulation of motor neuron-specific miRNAs, such as Amyotrophic Lateral Sclerosis (ALS).
Description
FIELD OF THE INVENTION

The present invention relates to compositions and methods for detecting motor neuron-specific miRNAs in a population of cells or subject. More particularly, the invention relates to detecting motor neuron-specific miRNAs to detect and treat motor neuron diseases associated with dysregulation of motor neuron-specific miRNAs, such as Amyotrophic Lateral Sclerosis (ALS).


BACKGROUND OF THE INVENTION

MicroRNAs (miRNAs) are single-stranded, non-coding RNAs that regulate transcription and translation of coding RNAs (mRNA). Since their discovery in 1993, miRNAs have emerged as key regulators in numerous physiological and pathological processes. miRNAs are highly conserved and are about 18-25 nucleotides in length. Typically, miRNAs direct translational repression by binding to the 3′ untranslated region (UTR) of mRNAs. Because only partial complementarity is required for miRNA-mRNA interactions, a single miRNA can potentially regulate hundreds of mRNA transcripts.


Motor neuron diseases are those involving progressive loss of structure or function of motor neurons, including death of motor neurons. Such diseases include Amyotrophic Lateral Sclerosis (ALS), primary lateral sclerosis, progressive muscular atrophy, progressive bulbar palsy and pseudobulbar palsy. Most motor neuron diseases have no cure and available therapeutics are targeted at improving symptoms, relieving pain, and slowing degeneration. Motor neuron diseases, such as ALS, need novel, innovative approaches to drug development since many traditional therapeutics have failed or only shown marginal benefits. Further, there are no specific tests to diagnose motor neuron diseases. Early diagnosis or detection of motor neuron disease may facilitate earlier treatment thus slowing degeneration. Thus, in addition to novel drugs, there is a need for early, accurate detection of motor neuron disease.


While miRNAs are known regulators of physiological and pathological processes, little is known about their involvement in motor neuron conditions or diseases. Further, knowledge of motor neuron-specific miRNAs may enhance the detection and treatment of motor neuron diseases. Compositions and methods exploiting motor neuron-specific miRNA regulation in motor neuron conditions or diseases are needed to further medical research and provide diagnostic and therapeutic resources for such conditions and diseases. The present invention provides compositions and methods for detecting and treating conditions and diseases associated with aberrant motor neuron-specific miRNA regulation.


SUMMARY OF THE INVENTION

In an aspect, the disclosure provides a method to detect motor neuron disease. The method comprises measuring the amount of miR-218 in a biological sample obtained from a subject, and comparing the amount of miR-218 in the biological sample to a reference value, wherein dysregulation of miR-218 relative to the reference value indicates motor neuron disease.


In another aspect, the disclosure provides a method to detect motor neuron disease. The method comprises measuring the amount of miR-218 and at least one additional miRNA selected from the group consisting of miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and miR-379 in a biological sample obtained from a subject, and comparing the amount of miR-218 and at least one additional miRNA selected from the group consisting of miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and miR-379 in the biological sample to a reference value, wherein dysregulation of miR-218 and at least one additional miRNA selected from the group consisting of miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and miR-379 relative to the reference value indicates motor neuron disease.


In still another aspect, the disclosure provides a method to detect the efficacy of treatment or the progression of motor neuron disease. The method comprises: measuring the amount of miR-218 in a first biological sample obtained from a subject; then at a later time measuring the amount of miR-218 in a second biological sample obtained from a subject; and comparing the amount of miR-218 in the first biological sample to the amount of miR-218 in the second biological sample, wherein a change in miR-218 indicates effectiveness of treatment or progression of motor neuron disease.


In still yet another aspect, the disclosure provides a method to detect the efficacy of treatment or the progression of motor neuron disease. The method comprises: measuring the amount of miR-218 and at least one additional miRNA selected from the group consisting of miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and miR-379 in a first biological sample obtained from a subject; then at a later time measuring the amount of miR-218 and at least one additional miRNA selected from the group consisting of miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and miR-379 in a second biological sample obtained from a subject; and comparing the amount of miR-218 and at least one additional miRNA selected from the group consisting of miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and miR-379 in the first biological sample to the amount of miR-218 and at least one additional miRNA selected from the group consisting of miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and miR-379 in the second biological sample, wherein a change in miR-218 and at least one additional miRNA selected from the group consisting of miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and miR-379 indicates effectiveness of treatment or progression of motor neuron disease.


In a different aspect, the disclosure provides a method to improve motor neuron function in a subject diagnosed with a motor neuron disease, suspected of having a motor neuron disease or at risk for a motor neuron disease. The method comprises administering a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition, or combination thereof, to the subject.


In another different aspect, the disclosure provides a method of treating a subject diagnosed with a motor neuron disease, suspected of having a motor neuron disease or at risk for a motor neuron disease. The method comprises administering miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition, or combination thereof, to the subject.





BRIEF DESCRIPTION OF THE DRAWINGS

The application file contains at least one photograph executed in color. Copies of this patent application publication with color photographs will be provided by the Office upon request and payment of the necessary fee.



FIG. 1A, FIG. 1B, FIG. 1C, FIG. 1D, FIG. 1E and FIG. 1F depict schematics and images describing and validating the promoters used to drive cell type specific GFP-myc-Ago2 expression. (FIG. 1A, FIG. 1B) Mice were generated to express Cre recombinase under one of four specific cell type promoters: synapsin 1 (Syn) for all neurons; choline acetyltransferase (ChAT) for motor neurons, glial acidic fibrillary protein (GFAP) for astrocytes or lysozyme M (Lyz2, LysM) for microglia. Cre recombinase drives expression of a tagged miRNA binding protein, Ago2, in the desired cell type. (FIG. 1C, FIG. 1D, FIG. 1E, FIG. 1F) Spinal cord sections from transgenic mice were stained for NeuN (red; neurons) or ChAT (red; MNs) or GFAP (red; astrocytes) or Iba1 (red; microglia) and GFP (green). Scale bars, 50 μm.



FIG. 2A and FIG. 2B depict a schematic and graph showing that miRNA Affinity Purification recapitulates cell type specific miRNA expression. (FIG. 2A) Schematic of miRAP demonstrating selective expression of myc-GFP-tagged Ago2 in motor neurons, which allows for IP of myc to isolate miRNAs from only motor neurons or IP of Ago2 to isolate miRNA from all spinal cord cell types. (FIG. 2B) miRAP from genetically labeled mice produces miRNA expression profiles that are expected of all neurons, motor neurons, astrocytes and microglia in the brainstem. Relative expression normalized to geomean of endogenous miRNA controls: miR-30c, 24, and 191. n=6/line. Values are expressed as mean±SEM.



FIG. 3A, FIG. 3B and FIG. 3C depicts a graph, a heatmap and a schematic showing that CNS cell types cluster according to their miRNA expression profiles. (FIG. 3A) 3-Dimensional Principal Component Analysis illustrating the variation in our samples. The replicates of each spinal cord cell type cluster with each other moreso than any other cell type. miRNA expression from Ago2 IP from one of each of these four mice cluster, indicating global miRNA signatures are comparable. (FIG. 3B) Hierarchical heatmap clustering demonstrates spinal cord CNS cell types can be identified by their unique miRNA expression profiles and that neuronal miRNA expression is distinct from astrocytes and microglia. (FIG. 3C) The top 3 miRNAs exhibiting cell type specificity in each CNS cell type of the brainstem and spinal cord (CT<30 in both tissues). The specificity index (pSI) was calculated as described in the supplemental methods.



FIG. 4A, FIG. 4B, FIG. 4C, FIG. 4D, FIG. 4E and FIG. 4F depict graphs showing that MN-Enriched miRNAs are temporally depleted in ALS mouse model and human patient spinal cord. (FIG. 4A, FIG. 4B) MN-enriched miRNAs, miR-218 and miR-138, are significantly depleted in ALS mouse model spinal cord. This depletion occurs temporally and is maximized at end-stage. N=3-4. (FIG. 4C, FIG. 4D) Pan-Neuronal Enriched miRNAs are not significantly depleted in ALS mouse model spinal cord, even at end-stage. N=3-4. (FIG. 4E, FIG. 4F) MN-enriched miRNAs, miR-218 and miR-138, are significantly depleted in patient autopsy spinal cord as compared to age-matched controls. N=4-10. Values are expressed as mean±SEM. **p≤0.01, ***p≤0.001, ****p≤0.0001. Student's two-tailed, unpaired t-test. Relative expression is normalized to RNA input and endogenous miRNA control, miR-24, (FIG. 4A, FIG. 4B, FIG. 4C, FIG. 4D) or U6 snRNA (FIG. 4E, FIG. 4F).



FIG. 5A, FIG. 5B, FIG. 5C, FIG. 5D, FIG. 5E and FIG. 5F depict graphs showing that MN-enriched miRNAs are increased in ALS rat model CSF and are responsive to ALS therapy. (FIG. 5A) miR-218 expression is temporally increased in ALS rat model CSF. N=5-7/timepoint. 115d and 130d timepoints included rats ranging from 112-119d and 126-134d, respectively. End-stage rats ranged from 160-242d; average=192±30d. (FIG. 5B, FIG. 5C) Neuronal miRNAs, miR-132 and miR-124, are not increased in ALS rat model CSF. (FIG. 5D) miR-218 is reduced in rats treated with SOD1-lowering ASO as compared to a CSF-treated controls. N=4/group. (FIG. 5E, FIG. 5F) miR-132 and miR-124 are not responsive to ALS therapy. Relative expression is normalized to endogenous miRNA biological fluid control, miR-103a-3p. Values are expressed at mean±SEM. *p≤0.05, **p 0.01. Student's unpaired t-test two-tailed (FIG. 5A) or one-tailed (FIG. 5D).



FIG. 6 depicts an immunoblot showing biochemical validation of cell type specific tAgo2 expression. Myc immunoprecipitation and subsequent immunoblot to confirm tagged-Ago2 expression in each transgenic mouse. GFP-myc-Ago2 (tAgo2; ˜130 kDa) is only expressed when LSL-tAgo2 mice are crossed with mice expressing Cre recombinase under a cell type specific promoter. One well was intentionally left blank between each mouse, with exception to LSL-tAgo2 only.



FIG. 7 depicts a graph showing putative endogenous miRNA controls for CNS cell types. Using global LoessM normalization of the miRNA microarray data, miR-191, 24 and 30c were found to be consistently expressed across CNS cell types in both brainstem (bs) and spinal cord (sc). For the CNS cell types analyzed here, these miRNAs could serve as controls for normalizing miRNA RT-qPCR data.



FIG. 8 depicts a graph showing increased miR-218 levels in ALS rat model CSF are not due solely to hSOD1 overexpression. miR-218 CSF levels are not significantly increased at either 90 or 165 days in hSOD1 wildtype overexpressing rats. N=2-7/timepoint. Values are expressed at mean±SEM. Student's unpaired, two-tailed t-test.





DETAILED DESCRIPTION

In accordance with the present invention, motor neuron (MN)-specific miRNAs selected from the group consisting of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and miR-379 have been discovered. In particular, the present invention provides compositions and methods useful in research, diagnostics, and therapeutics for conditions and diseases associated with dysregulation of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and/or miR-379. The compositions and methods are directed at modulating the activity of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and/or miR-379.


Various aspects of the invention are described in further detail in the following sections.


I. Compositions


(a) Nucleic Acid Molecules


One aspect of the invention pertains to isolated nucleic acid molecules that encode miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 or biologically active portions thereof, as well as nucleic acid molecules sufficient for use as hybridization probes to identify miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379-encoding nucleic acids (e.g., miRNA, pri-miRNA, pre-mRNA) and fragments for use as PCR primers for the amplification or mutation of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 nucleic acid molecules.


A nucleic acid molecule of the present invention, or a complement of any of these nucleotide sequences, may be isolated using standard molecular biology techniques. For instance, using all or a portion of the nucleic acid sequences of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379, nucleic acid molecules may be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook et al., eds., Molecular Cloning: A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989).


A nucleic acid of the invention may be amplified using cDNA, mRNA or genomic DNA as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified may be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 nucleotide sequences may be prepared by standard synthetic techniques known in the art, such as using an automated DNA synthesizer.


In another embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule which is a complement of a nucleotide sequence of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379, or portion thereof. A nucleic acid molecule which is complementary to a given nucleotide sequence is one which is sufficiently complementary to the given nucleotide sequence that it can hybridize to the given nucleotide sequence, thereby forming a stable duplex.


Moreover, the nucleic acid molecule of the invention may comprise only a portion of a nucleic acid sequence encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. By way of example, a fragment of the nucleic acid coding sequence may be used as a probe, primer, or a fragment encoding a biologically active portion of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. The nucleotide sequence determined from the cloning of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 allows for the generation of probes and primers designed for use in identifying and/or cloning miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 homologues in other cell types, as well as miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 homologues and orthologs from other species. The probe/primer typically comprises substantially purified oligonucleotides. The oligonucleotides typically comprise a region of nucleotide sequence that hybridizes under stringent conditions to at least about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more consecutive nucleotides of the sense or antisense sequence of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379, or of a naturally occurring mutant.


Probes based on the miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 nucleotide sequence may be used to detect transcripts or genomic sequences encoding the same or similar miRNA. The probe comprises a label group attached thereto, such as a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes may be used in diagnostic or screening assays.


A nucleic acid fragment encoding a “biologically active portion” of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 may be prepared by isolating a portion of a nucleotide sequence having miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 biological activity, expressing the encoded portion of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 (e.g., by recombinant expression in vitro), and assessing the activity of the encoded portion of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. For example, a nucleic acid fragment encoding a biologically active portion of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 includes the seed region, or an RNA binding site.


The invention further encompasses nucleic acid molecules that differ from the nucleotide sequence of the native miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379, due to degeneracy of the genetic code and thus encode the same miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 as that encoded by the native nucleotide sequence.


In addition, it will be appreciated by those skilled in the art that nucleotide sequence polymorphisms may exist within a population (e.g., the human population). Such genetic polymorphism in the miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 coding sequence may exist among individuals within a population due to natural allelic variation. Such natural allelic variations may result in as much as 15% variance in the nucleotide sequence. Any and all such nucleotide variations and resulting polymorphisms in miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 that are the result of natural allelic variation and that do not alter the functional activity of the miRNA are intended to be within the scope of the invention. Thus, e.g., 1%, 2%, 3%, 4%, or 5% of the nucleotide bases in miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 (e.g., 1, 2, 3, 4, 5, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, or 55) may be replaced by another nucleotide base.


Moreover, nucleic acid molecules encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 from other species (miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 orthologs/homologues), which have a nucleotide sequence which differs from that of a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 disclosed herein, are intended to be within the scope of the invention.


In addition to naturally occurring allelic variants of the miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 sequence that may exist in the population, the skilled artisan will further appreciate that changes may be introduced by mutation into the native nucleotide sequence, thereby leading to changes in the sequence of the encoded miRNA without altering the functional ability of the miRNA. For example, such mutations may include nucleotide substitutions at “nonessential” nucleotide bases. A “nonessential” nucleotide base is one that may be altered from the wildtype sequence of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 without altering the biological activity, whereas an “essential” nucleotide base is required for biological activity.


Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 that contain changes in nucleotide bases that may or may not be essential for activity. Such miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 sequences differ from the native sequences. In specific embodiments, the isolated nucleic acid molecule includes a nucleotide sequence encoding miRNA that is at least about 45% identical, 65%, 75%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or more identical to the sequence of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. An isolated nucleic acid molecule encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 having a sequence which differs from that of the naturally occurring sequence may be created by introducing one or more nucleotide substitutions, additions or deletions into the native nucleotide sequence of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 such that one or more substitutions, additions or deletions are introduced into the encoded miRNA. Mutations may be introduced by standard techniques known in the art, such as site-directed mutagenesis and PCR-mediated mutagenesis.


As will be recognized by individuals skilled in the art, both arms of a pre-miRNA hairpin encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 may give rise to a mature miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 miRNA. For instance, two mature miRNAs that may result from a pre-miRNA encoding a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 miRNA may be miR-218-3p, miR-138-3p, miR-133a-3p, miR-133b-3p, miR-1193-3p, miR-34b-3p, miR-380-3p, or miR-379-3p and miR-218-5p, miR-138-5p, miR-133a-5p, miR-133b-5p, miR-1193-5p, miR-34b-5p, miR-380-5p, or miR-379-5p, respectively. Specifically, a nucleic acid may be miR-218-3p, miR-218-5p, miR-138-5p, miR-138-3p, miR-133a-3p, miR-133b-3p, miR-34b-3p, miR-380-3p, or miR-380-5p. As used herein, miR-218 refers to miR-218-1 and miR-218-2.


(b) miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 Agents


Another aspect of the invention pertains to miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agents. As used herein, the term “miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agent” refers to any molecule capable of modulating one or more activities of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. A miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agent may respectively modulate one or more activities of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 by increasing or decreasing expression of the respective miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 in a subject. In some embodiments, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agent respectively modulates a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 activity by increasing the respective expression of a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 in a subject. In other embodiments, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agent respectively modulates a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 activity by decreasing expression of a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 in a subject. In a specific embodiment, a miR-218 agent modulates miR-218 activity by decreasing expression of miR-218 in a subject. In another specific embodiment, a miR-138 agent modulates miR-138 activity by decreasing expression of miR-138 in a subject.


Exemplary miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agents may include, without limitation, a compound, a drug, a small molecule, a peptide, a nucleic acid molecule, a protein, an antibody, and combinations thereof. miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agents may be synthetic or naturally occurring.


In some embodiments, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agent is a compound. In another embodiment, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agent is a drug. In yet another embodiment, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agent is a small molecule. In another embodiment, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agent is a peptide. In another embodiment, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agent is a protein. In still another embodiment, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agent is an antibody. In another embodiment, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agent is a combination of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agents capable of respectively modulating miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 activity.


In preferred embodiments, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agent is a nucleic acid molecule. For instance, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 nucleic acid agent may be an antisense oligonucleotide, a ribozyme, a small nuclear RNA (snRNA), a long noncoding RNA (LncRNA), or a nucleic acid molecule which forms triple helical structures.


In some embodiments, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agent is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as miRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)) may be used to catalytically cleave miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 to thereby respectively inhibit activity of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. A ribozyme having specificity for a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379-encoding nucleic acid may be designed based upon the nucleotide sequence of a respective miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 cDNA. For example, miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 may be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel and Szostak (1993) Science 261:1411-1418; Suryawanshi, Scaria, and Maiti (2010) Mol Biosyst. 6:1807-1809.


In other embodiments, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agent is a sn RNA. For instance, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 snRNA agent may be a snRNA capable of regulating transcription of a nucleic acid sequence respectively encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. Alternatively, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 sn RNA agent may be a sn RNA capable of regulating splicing of a mirtron encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379.


In yet other embodiments, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agent is a LncRNA. A miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 LncRNA agent may be a LncRNA capable of regulating transcription of a nucleic acid sequence respectively encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379.


In other embodiments, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agent is a nucleic acid molecule which forms triple helical structures. For example, miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 expression may be modulated by targeting nucleotide sequences complementary to the regulatory region of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 (e.g., promoter and/or enhancers) to form triple helical structures that respectively prevent transcription of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 in target cells. See generally, Helene (1991) Anticancer Drug Des. 6(6):569-84; Helene (1992) Ann. N.Y. Acad. Sci. 660:27-36; and Maher (1992) Bioassays 14(12):807-15.


In preferred embodiments, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agent is an antisense oligonucleotide. Antisense molecules are oligonucleotides comprising nucleic acid sequences complementary to a sense nucleic acid sequence. A miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 antisense oligonucleotide agent comprises nucleic acid sequences complementary to a miRNA encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379, and may modulate the respective expression of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 by binding to a miRNA respectively encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. The expression of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 may be modulated by blocking the respective activity of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379, and respectively reducing the effective amount of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 in a cell.


An antisense oligonucleotide may bind through hydrogen bonds to a sense nucleic acid. As used herein, the term “sense nucleic acid sequence” is a nucleic acid sequence corresponding to an RNA sequence expressed in a cell. For instance, a sense nucleic acid sequence may be an expressed mRNA nucleic acid sequence, or a DNA nucleic acid sequence corresponding to an expressed mRNA nucleic acid sequence. As such, an antisense molecule of the invention comprises a nucleic acid sequence complementary to an expressed miRNA encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379.


A miRNA encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 may be a mature miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 or a miRNA processing intermediate encoding a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 miRNA. As such, an antisense nucleic acid may comprise nucleic acid sequences complementary to a mature miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 or to a miRNA processing intermediate encoding a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 miRNA. Non-limiting examples of miRNA processing intermediates encoding a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 miRNA include a pre-miRNA encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379, a pri-miRNA encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379, or a mirtron encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. In some embodiments, an antisense oligonucleotide comprises nucleic acid sequences complementary to a pri-miRNA encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. In other embodiments, an antisense oligonucleotide comprises nucleic acid sequences complementary to a mirtron encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. In some embodiments, an antisense oligonucleotide comprises nucleic acid sequences complementary to a pre-miRNA encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. In yet other embodiments, an antisense oligonucleotide comprises nucleic acid sequences complementary to a mature miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379.


An antisense oligonucleotide may comprise nucleic acid sequences complementary to a noncoding region in a miRNA processing intermediate encoding a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 miRNA. For instance, an antisense oligonucleotide may comprise nucleic acid sequences complementary to a noncoding region of a pri-miRNA, a pre-miRNA, or a mirtron encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. As used herein, the term “noncoding region” is used to describe nucleic acid sequences that flank a mature miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 sequence in a miRNA processing intermediate encoding a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 miRNA.


In some embodiments, an antisense oligonucleotide comprises nucleic acid sequences complementary to a noncoding region of a pri-miRNA encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. In other embodiments, an antisense oligonucleotide comprises nucleic acid sequences complementary to a noncoding region of a mirtron encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. In yet other embodiments, an antisense oligonucleotide comprises nucleic acid sequences complementary to a noncoding region of a pre-miRNA encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379.


In yet other embodiments, an antisense oligonucleotide comprises nucleic acid sequences complementary to coding and noncoding regions of a miRNA encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. In one alternative of the embodiments, an antisense oligonucleotide comprises nucleic acid sequences complementary to the stem-loop of a pre-miRNA encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379.


In preferred embodiments, an antisense oligonucleotide comprises nucleic acid sequences complementary to a coding region in a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 miRNA. As used herein, the term “coding region” is used to describe a nucleic acid sequence present in a mature miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 miRNA. As will be recognized by those of skill in the art, a nucleic acid sequence present in a mature miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 is also present in a pri-miRNA encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379, a pre-miRNA encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379, and a mirtron encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. As such, an antisense oligonucleotide comprising nucleic acid sequences complementary to a nucleic acid sequence present in a mature miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379, may be complementary to a mature miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379, as well as to a pri-miRNA encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379, a pre-miRNA encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379, and a mirtron encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. In some embodiments, an antisense oligonucleotide comprises nucleic acid sequences complementary to a coding region of a pri-miRNA encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. In other embodiments, an antisense oligonucleotide comprises nucleic acid sequences complementary to a coding region of a mirtron encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. In some embodiments, an antisense oligonucleotide comprises nucleic acid sequences complementary to a coding region of a pre-miRNA encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. In yet other embodiments, an antisense oligonucleotide comprises nucleic acid sequences complementary to a mature miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379.


An antisense oligonucleotide molecule may comprise nucleic acid sequences complementary to the entire coding region of a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 miRNA. Alternatively, an antisense oligonucleotide molecule may comprise nucleic acid sequences complementary to only a portion of the coding or noncoding region of a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 miRNA. As such, an antisense oligonucleotide may comprise nucleic acid sequences complementary to 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 90, 100 or more nucleotides of the coding or noncoding region of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. In some embodiments, an antisense oligonucleotide comprises nucleic acid sequences complementary to 4, 5, 6, 7, 8, 9, or 10 nucleotides of the coding or noncoding region of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. In other embodiments, an antisense oligonucleotide comprises nucleic acid sequences complementary to 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides of the coding or noncoding region of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. In yet other embodiments, an antisense oligonucleotide comprises nucleic acid sequences complementary to 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides of the coding or noncoding region of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. In yet other embodiments, an antisense oligonucleotide comprises nucleic acid sequences complementary to 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 90, 100 or more nucleotides of the coding or noncoding region of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. In preferred embodiments, an antisense oligonucleotide comprises nucleic acid sequences complementary to 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides of the coding or noncoding region of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379.


In particularly preferred embodiments, an antisense oligonucleotide of the invention comprises nucleic acid sequences complementary to a seed region of a miRNA encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. In other particularly preferred embodiments, an antisense oligonucleotide consists of nucleic acid sequences complementary to a seed region of a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. The seed region is a 7-8 nucleotide motif in the miRNA that determines specificity of binding of an miRNA to a target mRNA regulated by the miRNA. In most miRNAs, the seed region is within nucleotides 1-9 of the mature miRNA sequence. Antisense oligonucleotides comprising nucleic acid sequences complementary to the seed sequence of a miRNA have been shown to inhibit activity of the miRNA. Such inhibitory activity is described in PCT Publication No. WO 2009/043353, which is herein incorporated by reference in its entirety for its description of modified oligonucleotides targeting miRNA seed sequences.


As will be recognized by individuals skilled in the art, both arms of a pre-miRNA hairpin encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 may give rise to a mature miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 miRNA. For instance, two mature miRNAs that may result from a pre-miRNA encoding a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 miRNA may be miR-218-3p, miR-138-3p, miR-133a-3p, miR-133b-3p, miR-1193-3p, miR-34b-3p, miR-380-3p, or miR-379-3p and miR-218-5p, miR-138-5p, miR-133a-5p, miR-133b-5p, miR-1193-5p, miR-34b-5p, miR-380-5p, or miR-379-5p, respectively. As such, when an antisense nucleic acid comprises nucleic acid sequences complementary to a coding region of miR-380-3p, or miR-379-3p, an antisense nucleic acid may comprise nucleic acid sequences complementary to a miR-218-3p, miR-138-3p, miR-133a-3p, miR-133b-3p, miR-1193-3p, miR-34b-3p, miR-380-3p, or miR-379-3p coding region of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379, respectively, or to a miR-218-5p, miR-138-5p, miR-133a-5p, miR-133b-5p, miR-1193-5p, miR-34b-5p, miR-380-5p, or miR-379-5p coding region of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379, respectively. In some embodiments, an antisense nucleic acid comprises nucleic acid sequences complementary to a miR-218-3p, miR-138-3p, miR-133a-3p, miR-133b-3p, miR-1193-3p, miR-34b-3p, miR-380-3p, or miR-379-3p coding region of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379, respectively. In other embodiments, an antisense nucleic acid comprises nucleic acid sequences complementary to a miR-218-5p, miR-138-5p, miR-133a-5p, miR-133b-5p, miR-1193-5p, miR-34b-5p, miR-380-5p, or miR-379-5p coding region of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379, respectively.


The size of a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 antisense agent of the invention can and will vary depending on the target miRNA encoding a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379, the size of the nucleic acid sequence complementary to a region of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379, and whether the antisense oligonucleotide comprises nucleic acid sequences in addition to the sequences complementary to a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 miRNA. An antisense oligonucleotide may be about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45 or about 50 nucleotides in length. In some embodiments, an antisense oligonucleotide is about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or about 15 nucleotides in length. In other embodiments, an antisense oligonucleotide is about 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or about 25 nucleotides in length. In yet other embodiments, an antisense oligonucleotide is about 25, 26, 27, 28, 29, 30, 35, 40, 45, or about 50 nucleotides in length. In some preferred embodiments, an antisense oligonucleotide is about 5, 6, 7, 8, 9, or about 10 nucleotides in length. In other preferred embodiments, an antisense oligonucleotide is about 19, 20, 21, 22, 23, 24, or about 25 nucleotides in length. In exemplary embodiments, an antisense oligonucleotide is 22 nucleotides in length.


In certain embodiments, a nucleic acid sequence of an antisense oligonucleotide comprising nucleic acid sequences complementary to a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 miRNA may have one or more mismatched base pairs with respect to its target miRNA or precursor sequence, and remains capable of hybridizing to its target sequence. For instance, a nucleic acid sequence of an antisense oligonucleotide comprising nucleic acid sequences complementary to a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 miRNA may have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more mismatched base pairs with respect to its target miRNA or precursor sequence, and remains capable of hybridizing to its target sequence.


In certain embodiments, an antisense oligonucleotide comprises 8-25 nucleotides at least 85% complementary to a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 miRNA. In other embodiments, an antisense oligonucleotide consists of 8-25 nucleotides at least 85% complementary to a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. In still other embodiments, an antisense oligonucleotide consists of 8-25 nucleotides at least 85% complementary to a mature miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 miRNA.


In certain embodiments, an antisense oligonucleotide comprises 8-25 nucleotides at least 90% complementary to a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 miRNA. In other embodiments, an antisense oligonucleotide consists of 8-25 nucleotides at least 90% complementary to a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 miRNA. In still other embodiments, an antisense oligonucleotide consists of 8-25 nucleotides at least 90% complementary to a mature miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 miRNA.


An antisense oligonucleotide of the invention may be synthesized using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an oligonucleotide (e.g., an antisense oligonucleotide) may be chemically synthesized using naturally occurring ribonucleotides, deoxyribonucleotides, variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, or combinations thereof. For example, phosphorothioate derivatives and acridine substituted nucleotides may be used. Other examples of modified nucleotides which may be used to generate an antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-aino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the oligonucleotide may be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation.


In certain embodiments, antisense oligonucleotides provided herein may include one or more modifications to a nucleobase, sugar, and/or internucleoside linkage, and as such is a modified oligonucleotide. A modified nucleobase, sugar, or internucleoside linkage may be selected over an unmodified form because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for other oligonucleotides or nucleic acid targets, and increased stability in the presence of nucleases. In certain embodiments, a modified nucleoside is a sugar-modified nucleoside. In certain such embodiments, sugar-modified nucleosides may further comprise a natural or modified heterocyclic base moiety or natural or modified internucleoside linkage and may include further modifications independent from the sugar modification. In certain embodiments, a sugar modified nucleoside is a 2′-modified nucleoside, wherein the sugar ring is modified at the 2′ carbon from natural ribose or 2′-deoxy-ribose. In certain embodiments, a 2′-modified nucleoside comprises a 2′-substituent group selected from F, O—CH3, and OCH2CH2OCH3. In certain embodiments, a 2′-modified nucleoside has a bicyclic sugar moiety. In certain embodiments, a bicyclic sugar moiety comprises a bridge group between the 2′ and the 4′ carbon atoms.


In certain embodiments, a modified oligonucleotide comprises one or more internucleoside modifications. In certain such embodiments, each internucleoside linkage of an oligonucleotide is a modified internucleoside linkage. In certain embodiments, a modified internucleoside linkage comprises a phosphorus atom.


In certain embodiments, a modified oligonucleotide comprises at least one phosphorothioate internucleoside linkage. In preferred embodiments, each internucleoside linkage of a modified oligonucleotide is a phosphorothioate internucleoside linkage.


In certain embodiments, a modified oligonucleotide comprises one or more modified nucleobases. In certain embodiments, a modified oligonucleotide comprises one or more 5-methylcytosines. In certain embodiments, each cytosine of a modified oligonucleotide comprises a 5-methylcytosine.


In certain embodiments, a modified nucleobase is selected from 5-hydroxymethyl cytosine, 7-deazaguanine and 7-deazaadenine. In certain embodiments, a modified nucleobase is selected from 7-deaza-adenine, 7-deazaguanosine, 2-aminopyridine and 2-pyridone.


In some embodiments, the antisense molecules of the invention may be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. By way of another example, the deoxyribose phosphate backbone of the nucleic acids may be modified to generate peptide nucleic acids (see Hyrup et al. (1996) Bioorganic & Medicinal Chemistry 4(I):5-23). As used herein, the terms “peptide nucleic acids” or “PNAs” refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of a PNA has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers may be performed using standard solid phase peptide synthesis protocols as described in Hyrup et al. (1996) supra; Perry-O'Keefe et al. (1996) Proc. Natl. Acad. Sci. USA 93:14670-675.


PNAs of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 may be used for therapeutic and diagnostic applications. For example, PNAs may be used as antisense or miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agents for sequence-specific modulation of expression by inducing transcription arrest or inhibiting replication. PNAs of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 may also be used in the analysis of single base pair mutations in a gene by PNA-directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, such as S1 nucleases (Hyrup (1996) supra); or as probes or primers for DNA sequence and hybridization (Hyrup (1996) supra; Perry-O′Keefe et al. (1996) Proc. Natl. Acad. Sci. USA 93: 14670-675).


In other embodiments, the oligonucleotides of the invention may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al. (1989) Proc. Natl. Acad. Sci. USA 86:6553-6556; Lemaitre et al. (1987) Proc. Natl. Acad. Sci. USA 84:648-652; PCT Publication No. WO 88/09810) or the blood-brain barrier (see, e.g., PCT Publication No. WO 89/10134). In addition, oligonucleotides may be modified with hybridization-triggered cleavage agents (see, e.g., Krol et al. (1988) Bio/Techniques 6:958-976) or intercalating agents (see, e.g., Zon (1988) Pharm. Res. 5:539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.


In certain embodiments, an antisense oligonucleotide of the invention is synthesized with a full phosphorothioate backbone with alternating blocks of 2′-MOE and 2′fluoro sugar-modified nucleosides.


(c) Pharmaceutical Compositions


The miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agents (also referred to herein as “active compounds”) of the invention may be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically comprise the agent and a pharmaceutically acceptable carrier. As used herein, the language “pharmaceutically acceptable carrier” is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds may also be incorporated into the compositions.


The invention includes methods for preparing pharmaceutical compositions for modulating the expression or activity of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. Such methods comprise formulating a pharmaceutically acceptable carrier with an agent which modulates expression or activity of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. Such compositions can further include additional active agents. Thus, the invention further includes methods for preparing a pharmaceutical composition by formulating a pharmaceutically acceptable carrier with an agent which modulates expression or activity of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 and one or more additional active compounds.


An agent which modulates expression or activity may, for example, be a small molecule. For example, such small molecules include peptides, peptidomimetics, amino acids, amino acid analogs, polynucleotides, polynucleotide analogs, nucleotides, nucleotide analogs, organic or inorganic compounds (i.e., including heteroorganic and organometallic compounds) having a molecular weight less than about 10,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 5,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 1,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 500 grams per mole, and salts, esters, and other pharmaceutically acceptable forms of such compounds. It is understood that appropriate doses of small molecule agents depends upon a number of factors within the knowledge of the ordinarily skilled artisan. The dose(s) of the small molecule will vary, for example, depending upon the identity, size, and condition of the subject or sample being treated, further depending upon the route by which the composition is to be administered, if applicable, and the effect which the practitioner desires the small molecule to have. Exemplary doses include milligram or microgram amounts of the small molecule per kilogram of subject or sample weight (e.g., about 1 microgram per kilogram to about 500 milligrams per kilogram, about 100 micrograms per kilogram to about 5 milligrams per kilogram, or about 1 microgram per kilogram to about 50 micrograms per kilogram). It is furthermore understood that appropriate doses of a small molecule depend upon the potency of the small molecule with respect to the expression or activity to be modulated. Such appropriate doses may be determined using the assays described herein. When one or more of these small molecules is to be administered to an animal (e.g., a human) in order to modulate expression or activity of miR-155, a physician, veterinarian, or researcher may, for example, prescribe a relatively low dose at first, subsequently increasing the dose until an appropriate response is obtained. In addition, it is understood that the specific dose level for any particular subject will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, gender, and diet of the subject, the time of administration, the route of administration, the rate of excretion, any drug combination, and the degree of expression or activity to be modulated.


A pharmaceutical composition of the invention may be formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.


Pharmaceutical compositions suitable for injectable use may include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL (BASF; Parsippany, N.J.), or phosphate buffered saline (PBS). In all cases, a composition may be sterile and may be fluid to the extent that easy syringeability exists. A composition may be stable under the conditions of manufacture and storage and may be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier may be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), and suitable mixtures thereof. The proper fluidity may be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion, and by the use of surfactants. Prevention of the action of microorganisms may be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it may be preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride, in the composition. Prolonged absorption of the injectable compositions may be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.


Sterile injectable solutions may be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying, which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.


Oral compositions generally may include an inert diluent or an edible carrier. Oral compositions may be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound may be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions may also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents and/or adjuvant materials may be included as part of the composition. The tablets, pills, capsules, troches, and the like, may contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose; a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring. For administration by inhalation, the compounds are delivered in the form of an aerosol spray from a pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.


Systemic administration may also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and may include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration may be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art. The compounds may also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.


In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers may be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. These may be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811.


The nucleic acid molecules of the invention may be inserted into vectors and used as gene therapy vectors. Gene therapy vectors may be delivered to a subject by, for example, intravenous injection, local administration (U.S. Pat. No. 5,328,470) or by stereotactic injection (see, e.g., Chen et al. (1994) Proc. Natl. Acad. Sci. USA 91:3054-3057). The pharmaceutical preparation of the gene therapy vector may include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded.


The gene therapy vectors of the invention may be either viral or non-viral. Examples of plasmid-based, non-viral vectors are discussed in Huang et al. (1999) Nonviral Vectors for Gene Therapy. A modified plasmid is one example of a non-viral gene delivery system. Peptides, proteins (including antibodies), and oligonucleotides may be stably conjugated to plasmid DNA by methods that do not interfere with the transcriptional activity of the plasmid (Zelphati et al. (2000) BioTechniques 28:304-315). The attachment of proteins and/or oligonucleotides may influence the delivery and trafficking of the plasmid and thus render it a more effective pharmaceutical composition.


II. Methods


In an aspect, the present invention encompasses a method to detect a motor neuron disease. The method comprises measuring the amount of miR-218 in a biological sample obtained from a subject, and comparing the amount of miR-218 in the biological sample to a reference value, wherein dysregulation of miR-218 relative to the reference value indicates motor neuron disease. In a specific embodiment, miR-218 is increased relative to a reference value. The method may further comprise treatment of the subject if motor neuron disease is detected. In a specific embodiment, the motor neuron disease is amyotrophic lateral sclerosis (ALS).


In another aspect, the present invention encompasses a method to detect a motor neuron disease. The method comprises measuring the amount of miR-218 and at least one additional miRNA selected from the group consisting of miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and miR-379 in a biological sample obtained from a subject, and comparing the amount of miR-218 and at least one additional miRNA selected from the group consisting of miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and miR-379 in the biological sample to a reference value, wherein dysregulation of miR-218 and at least one additional miRNA selected from the group consisting of miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and miR-379 relative to the reference value indicates motor neuron disease. In a specific embodiment, miR-218 is increased relative to a reference value. In another specific embodiment, method comprises measuring the amount of miR-218 and miR-138 in a biological sample obtained from a subject, and comparing the amount of miR-218 and miR-138 in the biological sample to a reference value, wherein dysregulation of miR-218 and miR-138 relative to the reference value indicates motor neuron disease. In a specific embodiment, miR-138 is increased relative to a reference value. The method may further comprise treatment of the subject if motor neuron disease is detected. In a specific embodiment, the motor neuron disease is ALS.


In still another aspect, the present invention encompasses a method to detect the efficacy of treatment or the progression of motor neuron disease. The method comprises measuring the amount of miR-218 in a first biological sample obtained from a subject; then at a later time measuring the amount of miR-218 in a second biological sample obtained from a subject; and comparing the amount of miR-218 in the first biological sample to the amount of miR-218 in the second biological sample, wherein a change in miR-218 indicates effectiveness of treatment or progression of motor neuron disease. For example, the second biological sample may be obtained days, weeks, months or years following the first biological sample. In a specific embodiment, ineffectiveness of treatment or progression of motor neuron disease is indicated if miR-218 is increased in the second biological sample relative to the first biological sample. The method may further comprise altering treatment modality if ineffectiveness of treatment or progression of motor neuron disease is detected. In a specific embodiment, the motor neuron disease is amyotrophic lateral sclerosis (ALS).


In yet still another aspect, the present invention encompasses a method to detect the efficacy of treatment or the progression of motor neuron disease. The method comprises measuring the amount of miR-218 and at least one additional miRNA selected from the group consisting of miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and miR-379 in a first biological sample obtained from a subject; then at a later time measuring the amount of miR-218 and at least one additional miRNA selected from the group consisting of miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and miR-379 in a second biological sample obtained from a subject; and comparing the amount of miR-218 and at least one additional miRNA selected from the group consisting of miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and miR-379 in the first biological sample to the amount of miR-218 and at least one additional miRNA selected from the group consisting of miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and miR-379 in the second biological sample, wherein a change in miR-218 and at least one additional miRNA selected from the group consisting of miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and miR-379 indicates effectiveness of treatment or progression of motor neuron disease. In a specific embodiment, ineffectiveness of treatment or progression of motor neuron disease is indicated if miR-218 in the second biological sample is increased relative to the first biological sample. In another specific embodiment, method comprises measuring the amount of miR-218 and miR-138 in a first biological sample obtained from a subject; then at a later time measuring the amount of miR-218 and miR-138 in a second biological sample obtained from a subject; and comparing the amount of miR-218 and miR-138 in the first biological sample to the amount of miR-218 and miR-138 in the second biological sample, wherein a change in miR-218 and miR-138 indicates effectiveness of treatment or progression of motor neuron disease. For example, the second biological sample may be obtained days, weeks, months or years following the first biological sample. In a specific embodiment, ineffectiveness of treatment or progression of motor neuron disease is indicated if miR-138 is increased in the second biological sample relative to the first biological sample. The method may further comprise altering treatment modality if ineffectiveness of treatment or progression of motor neuron disease is detected. In a specific embodiment, the motor neuron disease is ALS.


In a different aspect, the present invention encompasses a method to improve motor neuron function in a subject diagnosed with a motor neuron disease, suspected of having a motor neuron disease or at risk for a motor neuron disease. The method comprises administering a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition, or combinations thereof. A miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is as described in Section I. In a specific embodiment, a miR-218 composition is administered, wherein the composition decreases the amount or expression of miR-218. In another specific embodiment, a miR-138 composition is administered, wherein the composition decreases the amount or expression of miR-138. In still another specific embodiment, the motor neuron disease is ALS. Methods of diagnosing or determining risk of motor neuron disease are described in Section II(a).


In other aspects, the present invention encompasses a method of treating a subject diagnosed with a motor neuron disease, suspected of having a motor neuron disease or at risk for a motor neuron disease. The method comprises administering a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition, or combinations thereof. In a specific embodiment, a miR-218 composition is administered, wherein the composition decreases the amount or expression of miR-218. In another specific embodiment, a miR-138 composition is administered, wherein the composition decreases the amount or expression of miR-138. In still another specific embodiment, the motor neuron disease is ALS. As used herein, the terms “treating” or “treatment” include prevention, attenuation, reversal, or improvement in at least one symptom or sign of symptoms associated with a motor neuron disease. Symptoms may be as described in Section 11(a).


In some embodiments, methods of the invention may be utilized to treat a population of cells that would benefit from a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition, or combinations thereof. Such cells include those in a subject as well as those removed from a subject for therapeutic treatment, cultured cells, those used in gene therapy practices, and any other cell that may benefit from a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition, or combinations thereof.


(a) Motor Neuron Disease


Motor neuron-specific miRNAs have been identified. Accordingly, one or more MN-specific miRNA may be used to detect or diagnose a motor neuron disease, improve the function of motor neurons, treat a symptom associated with a motor neuron disease or prevent, delay progression or treat a motor neuron disease. A motor neuron disease (MND) is a progressive neurological disorder that destroys motor neurons, the cells that control essential voluntary muscle activity such as speaking, walking, breathing, and swallowing. Non-limiting examples of motor neuron diseases include amyotrophic lateral sclerosis (ALS), also called Lou Gehrig's disease or classical motor neuron disease, progressive bulbar palsy, also called progressive bulbar atrophy, pseudobulbar palsy, primary lateral sclerosis (PLS), progressive muscular atrophy, spinal muscular atrophy (SMA), SMA type I, also called Werdnig-Hoffmann disease, SMA type II, SMA type III (Kugelberg-Welander disease), congenital SMA with arthrogryposis, Kennedy's disease, also known as progressive spinobulbar muscular atrophy, post-polio syndrome (PPS), spinal cord injury as well as others known in the art or yet to be discovered. A motor neuron disease of the invention may result from dysregulated miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. A dysregulated miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 may result from overexpression or underexpression of miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. In some embodiments, a motor neuron disease may result from overexpression of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. In a specific embodiment, a motor neuron disease results from overexpression of miR-218. In another specific embodiment, a motor neuron disease results from overexpression of miR-218 and mIR-138. In a specific embodiment, the motor neuron disease is ALS.


A subject may or may not be having a symptom associated with motor neuron disease. Exemplary symptoms of motor neuron diseases include muscle weakness including a weakened grip, weakness at the shoulder, tripping up over a foot, twitching of the muscles (fasciculations) or muscle cramps. A skilled artisan will appreciate that specific diseases are defined by specific symptoms. For example, ALS is recognized by weakness and wasting of the bulbar muscles (muscles that control speech, swallowing, and chewing), loss of strength and the ability to move arms and legs, and to hold the body upright, spasticity, spasms, muscle cramps, fasciculations, slurred or nasal speech, loss of the ability to breathe without mechanical support. Symptoms of progressive bulbar palsy (progressive bulbar atrophy) include pharyngeal muscle weakness (involved with swallowing), weak jaw and facial muscles, progressive loss of speech, and tongue muscle atrophy, limb weakness with both lower and upper motor neuron signs, outbursts of laughing or crying (called emotional lability). Pseudobulbar palsy, which shares many symptoms of progressive bulbar palsy, is recognized by progressive loss of the ability to speak, chew, and swallow, progressive weakness in facial muscles leading to an expressionless face, a gravelly voice and an increased gag reflex, an immobile tongue that may be unable to protrude from the mouth, outbursts of laughing or crying. Primary lateral sclerosis (PLS) shows symptoms of slow and effortful movements, slowed and slurred speech, stiff, clumsy, slow and weak legs and arms, leading to an inability to walk or carry out tasks requiring fine hand coordination, difficulty with balance may lead to falls, overactive startle response. Progressive muscular atrophy is marked by slow but progressive degeneration of only the lower motor neurons, weakness in the hands that spreads into the lower body, muscle wasting, clumsy hand movements, fasciculations, and muscle cramps. Spinal muscular atrophy (SMA) produces weakness and wasting of the skeletal muscles which is more severe in the trunk and upper leg and arm muscles than in muscles of the hands and feet. Symptoms of SMA type I, also called Werdnig-Hoffmann disease may include hypotonia (severely reduced muscle tone), diminished limb movements, lack of tendon reflexes, fasciculations, tremors, swallowing and feeding difficulties, and impaired breathing, scoliosis (curvature of the spine) or other skeletal abnormalities. Symptoms of SMA type II, the intermediate form, are inability to stand or walk unaided, and respiratory difficulties. Symptoms of SMA type Ill (Kugelberg-Welander disease) include abnormal gait; difficulty running, climbing steps, or rising from a chair; and a fine tremor of the fingers, scoliosis and joint contractures—chronic shortening of muscles or tendons around joints, abnormal muscle tone and weakness. Congenital SMA with arthrogryposis (persistent contracture of joints with fixed abnormal posture of the limb) is associated with severe contractures, scoliosis, chest deformity, respiratory problems, unusually small jaws, and drooping of the upper eyelids. Symptoms of Kennedy's disease, also known as progressive spinobulbar muscular atrophy, include weakness and atrophy of the facial, jaw, and tongue muscles, leading to problems with chewing, swallowing, and changes in speech, muscle pain and fatigue, weakness in arm and leg muscles closest to the trunk of the body, muscle atrophy and fasciculations, sensory loss in the feet and hands, sensory neuropathy (pain from sensory nerve inflammation or degeneration), enlargement of the male breasts or develop noninsulin-dependent diabetes mellitus. Post-polio syndrome (PPS) symptoms include fatigue, slowly progressive muscle weakness, muscle atrophy, fasciculations, cold intolerance, and muscle and joint pain, difficulty breathing, swallowing, or sleeping.


A subject may or may not be diagnosed with motor neuron disease. There are no specific tests to diagnose most MNDs. However, MNDs may be diagnosed using a physical exam followed by a thorough neurological exam. The neurological exam may assess motor and sensory skills, nerve function, hearing and speech, vision, coordination and balance, mental status, and changes in mood or behavior. Additionally, tests may be conducted to rule out other muscle disorders such as electromyography (EMG), laboratory tests of blood, urine, or other substances, magnetic resonance imaging (MRI), muscle or nerve biopsy, and transcranial magnetic stimulation.


Some MNDs are inherited, but the causes of most MNDs are not known. In sporadic or noninherited MNDs, environmental, toxic, viral, or genetic factors may be implicated. Accordingly, a subject may be at risk of or suspected of having a motor neuron disease based on environmental exposure or familial history. If the MND is inherited, it is also classified according to the mode of inheritance which is associated with varying risks. Autosomal dominant means that a person needs to inherit only one copy of the defective gene from one affected parent to be at risk of the disease. There is a 50 percent chance that each child of an affected person will be affected. Autosomal recessive means the individual must inherit a copy of the defective gene from both parents. These parents are likely to be asymptomatic (without symptoms of the disease). Autosomal recessive diseases often affect more than one person in the same generation (siblings or cousins). In X-linked inheritance, the mother carries the defective gene on one of her X chromosomes and passes the disorder along to her sons. Males inherit an X chromosome from their mother and a Y chromosome from their father, while females inherit an X chromosome from each parent. Daughters have a 50 percent chance of inheriting their mother's faulty X chromosome and a safe X chromosome from their father, which would make them asymptomatic carriers of the mutation.


(b) Biological Sample


In an aspect, the invention provides a method to detect dysregulation of miR-218 or miR-218 and at least one additional miRNA selected from the group consisting of miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and miR-379 in a biological sample obtained from a subject. Further, miR-409 and miR-34c may be detected. The method generally comprises (i) obtaining a biological sample from the subject, and (ii) measuring the amount of miR-218 or miR-218 and at least one additional miRNA selected from the group consisting of miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and miR-379 in the biological sample. Further, miR-409 and/or miR-34c may be measured.


As used herein, the term “biological sample” refers to a sample obtained from a subject. Any biological sample comprising a miRNA of the invention is suitable. Non-limiting examples include blood, plasma, serum, urine, cerebrospinal fluid (CSF) and interstitial fluid (ISF). In a specific embodiment, the biological sample is selected from the group consisting of CSF, serum and urine. In another specific embodiment, the biological sample is CSF. In a specific embodiment, the biological sample comprises motor neurons. The sample may be used “as is”, the cellular components may be isolated from the sample, or a protein fraction may be isolated from the sample using standard techniques.


As will be appreciated by a skilled artisan, the method of collecting a biological sample can and will vary depending upon the nature of the biological sample and the type of analysis to be performed. Any of a variety of methods generally known in the art may be utilized to collect a biological sample. Generally speaking, the method preferably maintains the integrity of the sample such that the miRNA can be accurately detected and the amount measured according to the invention.


In some embodiments, a single sample is obtained from a subject to detect miRNAs in the sample. Alternatively, miRNAs may be detected in samples obtained over time from a subject. As such, more than one sample may be collected from a subject over time. For instance, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 or more samples may be collected from a subject over time. In some embodiments, 2, 3, 4, 5, or 6 samples are collected from a subject over time. In other embodiments, 6, 7, 8, 9, or 10 samples are collected from a subject over time. In yet other embodiments, 10, 11, 12, 13, or 14 samples are collected from a subject over time. In other embodiments, 14, 15, 16 or more samples are collected from a subject over time.


When more than one sample is collected from a subject over time, samples may be collected every 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or more hours. In some embodiments, samples are collected every 0.5, 1, 2, 3, or 4 hours. In other embodiments, samples are collected every 4, 5, 6, or 7 hours. In yet other embodiments, samples are collected every 7, 8, 9, or 10 hours. In other embodiments, samples are collected every 10, 11, 12 or more hours. Additionally, samples may be collected every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or more days. In some embodiments, a sample is collected about every 6 days. In some embodiments, samples are collected every 1, 2, 3, 4, or 5 days. In other embodiments, samples are collected every 5, 6, 7, 8, or 9 days. In yet other embodiments, samples are collected every 9, 10, 11, 12 or more days.


(c) Detecting miRNAs


miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, miR-379, miR-409 and miR-34c or a complement thereof, may be detected using standard molecular biology techniques. For instance, using all or a portion of the nucleic acid sequences of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, miR-379, miR-409 and miR-34c, nucleic acid molecules may be detected using standard hybridization and cloning techniques (e.g., as described in Sambrook et al., eds., Molecular Cloning: A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989). As used herein, miR-218 refers to miR-218-1 and miR-218-2. Accordingly, miR-218-1 and/or miR-218-2 may be detected. As will be recognized by individuals skilled in the art, both arms of a pre-miRNA hairpin encoding miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, miR-379, miR-409, and miR-34c may give rise to a mature miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, miR-379, miR-409 or miR-34c miRNA. For instance, two mature miRNAs that may result from a pre-miRNA encoding a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, miR-379, miR-409, and miR-34c miRNA may be miR-218-3p, miR-138-3p, miR-133a-3p, miR-133b-3p, miR-1193-3p, miR-34b-3p, miR-380-3p, miR-379-3p, miR-409-3p, and miR-34c-3p and miR-218-5p, miR-138-5p, miR-133a-5p, miR-133b-5p, miR-1193-5p, miR-34b-5p, miR-380-5p, miR-379-5p, miR-409-5p, and miR-34c-5p, respectively. Specifically, miR-218-3p, miR-218-5p, miR-138-5p, miR-138-3p, miR-133a-3p, miR-133b-3p, miR-34b-3p, miR-380-3p, miR-380-5p, miR-409-3p, miR-409-5p, miR-34c-3p, and/or miR-34c-5p may be detected.


Methods for assessing an amount of nucleic acid expression in cells are well known in the art, and all suitable methods for assessing an amount of nucleic acid expression known to one of skill in the art are contemplated within the scope of the invention. The term “amount of nucleic acid expression” or “level of nucleic acid expression” as used herein refers to a measurable level of expression of the nucleic acids, such as, without limitation, the level of miRNA transcript expressed or a specific variant or other portion of the miRNA. The term “nucleic acid” includes DNA and RNA and can be either double stranded or single stranded. Non-limiting examples of suitable methods to assess an amount of nucleic acid expression may include arrays, such as microarrays, PCR, such as RT-PCR (including quantitative RT-PCR), nuclease protection assays and Northern blot analyses. In a specific embodiment, determining the amount of a miRNA comprises, in part, measuring the level of miRNA expression.


In one embodiment, the amount of nucleic acid expression may be determined by using an array, such as a microarray. Methods of using a nucleic acid microarray are well and widely known in the art. For example, a nucleic acid probe that is complementary or hybridizable to an expression product of a target gene may be used in the array. The term “hybridize” or “hybridizable” refers to the sequence specific non-covalent binding interaction with a complementary nucleic acid. In a preferred embodiment, the hybridization is under high stringency conditions. Appropriate stringency conditions which promote hybridization are known to those skilled in the art, or can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1 6.3.6. The term “probe” as used herein refers to a nucleic acid sequence that will hybridize to a nucleic acid target sequence. In one example, the probe hybridizes to an RNA product of the nucleic acid or a nucleic acid sequence complementary thereof. The length of probe depends on the hybridization conditions and the sequences of the probe and nucleic acid target sequence. In one embodiment, the probe is at least 8, 10, 15, 20, 25, 50, 75, 100, 150, 200, 250, 400, 500 or more nucleotides in length.


In another embodiment, the amount of nucleic acid expression may be determined using PCR. A nucleic acid may be amplified using cDNA, mRNA or genomic DNA as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. Methods of PCR are well and widely known in the art, and may include quantitative PCR, semi-quantitative PCR, multiplex PCR, or any combination thereof. Specifically, the amount of nucleic expression may be determined using quantitative RT-PCR. Methods of performing quantitative RT-PCR are common in the art. In such an embodiment, the primers used for quantitative RT-PCR may comprise a forward and reverse primer for a target gene. The term “primer” as used herein refers to a nucleic acid sequence, whether occurring naturally as in a purified restriction digest or produced synthetically, which is capable of acting as a point of synthesis when placed under conditions in which synthesis of a primer extension product, which is complementary to a nucleic acid strand is induced (e.g. in the presence of nucleotides and an inducing agent such as DNA polymerase and at a suitable temperature and pH). The primer must be sufficiently long to prime the synthesis of the desired extension product in the presence of the inducing agent. The exact length of the primer will depend upon factors, including temperature, sequences of the primer and the methods used. A primer typically contains 15-25 or more nucleotides, although it can contain less or more. The factors involved in determining the appropriate length of primer are readily known to one of ordinary skill in the art.


The amount of nucleic acid expression may be measured by measuring an entire miRNA transcript for a nucleic acid sequence, or measuring a portion of the miRNA transcript for a nucleic acid sequence. For instance, if a nucleic acid array is utilized to measure the amount of miRNA expression, the array may comprise a probe for a portion of the miRNA of the nucleic acid sequence of interest, or the array may comprise a probe for the full miRNA of the nucleic acid sequence of interest. Similarly, in a PCR reaction, the primers may be designed to amplify the entire cDNA sequence of the nucleic acid sequence of interest, or a portion of the cDNA sequence. One of skill in the art will recognize that there is more than one set of primers that may be used to amplify either the entire cDNA or a portion of the cDNA for a nucleic acid sequence of interest. Methods of designing primers are known in the art. Methods of extracting RNA from a biological sample are known in the art.


The level of expression may or may not be normalized to the level of a control nucleic acid. Such a control nucleic acid should not specifically hybridize with an miRNA nucleotide sequence of the invention. This allows comparisons between assays that are performed on different occasions. In certain embodiments, the level of expression is normalized to a control nucleic acid. In a specific embodiment, a control nucleic acid is selected from the group consisting of miR-191, miR-24 and miR-30c.


(d) Reference Level


According to the invention, a motor neuron disease may be detected based on dysregulation of miR-218 or miR-218 and at least one additional miRNA selected from the group consisting of miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and miR-379 relative to a reference value. Detecting dysregulation of miR-218 or miR-218 and at least one additional miRNA selected from the group consisting of miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and miR-379 relative to a reference value in the subject may be used to diagnose a motor neuron disease or determine the efficacy of treatment or determine the progression of motor neuron disease. Additionally, at least one miRNA selected from the group consisting of miR-409 and miR-34c may be detected.


Generally speaking, a miRNA disclosed herein may be classified as dysregulated when it has an increased or decreased amount relative to a reference value. Any suitable reference value known in the art may be used. For example, a suitable reference value may be the amount of miRNA in a biological sample obtained from a subject, or group of subjects, of the same species that has no clinically detectable symptom of MND. In another example, a suitable reference value may be the amount of miRNA in a biological sample obtained from a subject, or group of subjects, of the same species that has no detectable MND pathology. In another example, a suitable reference value may be the background signal of the assay as determined by methods known in the art. In another example, a suitable reference value may be a measurement of the amount of miRNA in a reference sample obtained from the same subject. The reference sample comprises the same type of biological sample as the test sample, and may be obtained from a subject when the subject had no clinically detectable symptom of MND. A skilled artisan will appreciate that it is not always possible or desirable to obtain a reference sample from a subject when the subject is otherwise healthy. For example, when monitoring the effectiveness of a therapy or progression of disease, a reference sample may be a sample obtained from a subject before therapy or at an earlier point in the disease. In such an example, a subject may have a risk of MND (familial or environmental) but may not have other symptoms of MND (e.g. muscle weakness) or the subject may have one or more other symptom of MND. In an additional example, a suitable reference sample may be a biological sample from an individual or group of individuals that has been shown not to have MND. In an embodiment, the reference value may be a sample of the same type of biological sample obtained from one or more individuals that has not been administered therapy but has a MND.


In certain embodiments, to classify the amount of miRNA as increased in a biological sample, the amount of miRNA in the biological sample compared to the reference value is increased at least 2-fold. For example, the amount of miRNA in the sample compared to the reference value is increased at least 2-fold, at least 5-fold, at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 35-fold, at least 40-fold, at least 45-fold, at least 50-fold, at least 100-fold, at least 200-fold, at least 300-fold, at least 400-fold, at least 500-fold, at least 1000-fold, at least 5000-fold, or at least 10000-fold. In a specific embodiment, the amount of miR-218 in the sample compared to the reference value is increased at least 10-fold. In another specific embodiment, the amount of miR-138, miR-133a, miR-1193, and/or miR-34b in the sample compared to the reference value is increased at least 3-fold.


In certain embodiments, to classify the amount of miRNA as decreased in a biological sample, the amount of miRNA in the biological sample compared to the reference value is decreased at least 2-fold. For example, the amount of miRNA in the sample compared to the reference value is decreased at least 2-fold, at least 5-fold, at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 30-fold, at least 35-fold, at least 40-fold, at least 45-fold, at least 50-fold, at least 100-fold, at least 200-fold, at least 300-fold, at least 400-fold, at least 500-fold, at least 1000-fold, at least 5000-fold, or at least 10000-fold.


In another embodiment, the increase or decrease in the amount of miRNA is measured using p-value. For instance, when using p-value, a miRNA is identified as being differentially expressed between a a biological sample and a reference value when the p-value is less than 0.1, preferably less than 0.05, more preferably less than 0.01, even more preferably less than 0.005, the most preferably less than 0.001.


(e) Treatment


According to the disclosure, the subject may be treated if motor neuron disease is detected. Additionally, the treatment modality may be altered if ineffectiveness of treatment or progression of motor neuron disease is detected. The term “treatment” or “therapy” as used herein means any treatment suitable for the treatment of MND. Treatment may consist of standard treatments for MND. Non-limiting examples of standard treatment for MND include Riluzole (Rilutek), Tizanidine (Zanaflex), Baclofen, quinine, hyoscine hydrobromide skin patch, NSAIDs, gabapentin, physical therapy, acupuncture, immunotherapy, gene transfer therapy, stem cell and progenitor cell based cellular replacement therapy, antisense oligonucleotide therapy, antioxidant therapy, antidepressant therapy, antibody therapy, autophagy control therapy, drug therapy (small-molecule inhibitor of kynurenine 3-monooxygenase JM6), and any therapeutic agent known in the art or yet to be discovered. Still further, treatment may be as described below or with an agent as described in Section I.


(f) Administration


The present invention also provides for both prophylactic and therapeutic methods of treating a subject at risk of, or susceptible to a MND. In a specific embodiment, the MND may be associated with aberrant miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and/or miR-379 expression or activity. Generally, methods of the present invention include administering to a subject a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition respectively comprising at least miR-218 miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agent. For instance, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agents may be administered. In some embodiments, 1, 2, 3, 4, or 5 miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agents are administered. In other embodiments, 5, 6, 7, 8, 9, 10 or more miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agents are administered. In one embodiment, one miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agent is administered. In another embodiment, two miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agents are administered. In yet another embodiment, the miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agent is delivered in combination with additional therapeutic agents known in the art. miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agents may be as described in Section 1(b).


In certain embodiments, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered in combination with at least one additional therapeutic agent. In certain embodiments, miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered sequential to an additional therapeutic agent. In other embodiments, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered prior to the administration of an additional therapeutic agent. In certain embodiments, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered prior to and after the administration of an additional therapeutic agent. In other embodiments, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered at the same time as at least one therapeutic agent. In certain embodiments, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition may be administered without additional therapeutic agents.


Additional therapeutic agents may include those used in immunotherapy, gene transfer therapy, stem cell and progenitor cell based cellular replacement therapy, antisense oligonucleotide therapy, antioxidant therapy, antidepressant therapy, antibody therapy, autophagy control therapy, drug therapy (small-molecule inhibitor of kynurenine 3-monooxygenase JM6), and any therapeutic agent known in the art or yet to be discovered.


A miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition of the invention may be administered to a subject by several different means. For instance, compositions may generally be administered in dosage unit formulations containing conventional nontoxic pharmaceutically acceptable carriers, adjuvants, and vehicles as desired.


Methods of administration include any method known in the art or yet to be discovered. Exemplary administration methods include intravenous, intraocular, intratracheal, intratumoral, oral, rectal, topical, intramuscular, intraarterial, intrahepatic, intrathoracic, intrathecal, intracranial, intraperitoneal, intrapancreatic, intrapulmonary, or subcutaneously. A composition of the invention may also be administered directly by infusion into central nervous system fluid. One skilled in the art will appreciate that the route of administration and method of administration depend upon the intended use of the compositions, the location of the target area, and the condition being treated, in addition to other factors known in the art such as subject health, age, and physiological status.


In a preferred embodiment, the oligonucleotide may be administered parenterally. The term “parenteral” as used herein describes administration into the body via a route other than the mouth, especially via infusion, injection, or implantation, and includes intradermal, subcutaneous, transdermal implant, intracavernous, intravitreal, intra-articular or intrasynovial injection, transscleral, intracerebral, intrathecal, epidural, intravenous, intracardiac, intramuscular, intraosseous, intraperitoneal, intravenous, intrasternal injection, or nanocell injection. Formulation of pharmaceutical compositions is discussed in, for example, Hoover, John E., Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa. (1975), and Liberman, H. A. and Lachman, L., Eds., Pharmaceutical Dosage Forms, Marcel Decker, New York, N.Y. (1980).


In some embodiments, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition of the invention is administered parenterally. When a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered parenterally, delivery methods are preferably those that are effective to circumvent the blood-brain barrier, and are effective to deliver agents to the central nervous system. For example, delivery methods may include the use of nanoparticles. The particles may be of any suitable structure, such as unilamellar or plurilamellar, so long as the antisense oligonucleotide is contained therein. Positively charged lipids such as N-[1-(2,3-dioleoyloxi)propyl]-N,N,N-trimethyl-amoniummethylsulfate, or “DOTAP,” are particularly preferred for such particles and vesicles. The preparation of such lipid particles is well known in the art. See, e.g., U.S. Pat. No. 4,880,635 to Janoff et al.; U.S. Pat. No. 4,906,477 to Kurono et al.; U.S. Pat. No. 4,911,928 to Wallach; U.S. Pat. No. 4,917,951 to Wallach; U.S. Pat. No. 4,920,016 to Allen et al.; U.S. Pat. No. 4,921,757 to Wheatley et al.; etc.


In preferred embodiments, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition of the invention is administered into the central nervous system. Methods of administering a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition of the invention to the central nervous system are known in the art. For instance, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition of the invention may be administered in a bolus directly into the central nervous system. A miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition may be administered to the subject in a bolus once or multiple times. In some preferred embodiments, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition may be administered in a bolus once. In other preferred embodiments, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition may be administered in a bolus multiple times. When administered multiple times, a miR-218 miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition may be administered at regular intervals or at intervals that may vary during the treatment of a subject. In some embodiments, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered multiple times at intervals that may vary during the treatment of a subject. In other embodiments, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered multiple times at regular intervals.


In another preferred embodiment, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered by continuous infusion into the central nervous system. Non-limiting examples of methods that may be used to deliver a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition into the central nervous system by continuous infusion may include pumps, wafers, gels, foams and fibrin clots. In a preferred embodiment, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is delivered into the central nervous system by continuous infusion using an osmotic pump. An osmotic minipump contains a high-osmolality chamber that surrounds a flexible, yet impermeable, reservoir filled with the targeted delivery composition-containing vehicle. Subsequent to the subcutaneous implantation of this minipump, extracellular fluid enters through an outer semi-permeable membrane into the high-osmolality chamber, thereby compressing the reservoir to release the targeted delivery composition at a controlled, pre-determined rate. The targeted delivery composition, released from the pump, may be directed via a catheter to a stereotaxically placed cannula for infusion into the cerebroventricular space.


Compositions of the invention are typically administered to a subject in an amount sufficient to provide a benefit to the subject. This amount is defined as a “therapeutically effective amount.” A therapeutically effective amount may be determined by the efficacy or potency of the particular composition, the MND being treated, the duration or frequency of administration, the method of administration, and the size and condition of the subject, including that subject's particular treatment response. A therapeutically effective amount may be determined using methods known in the art, and may be determined experimentally, derived from therapeutically effective amounts determined in model animals such as the mouse, or a combination thereof. Additionally, the route of administration may be considered when determining the therapeutically effective amount. In determining the therapeutically effective amounts, one skilled in the art may also consider the existence, nature, and extent of any adverse effects that accompany the administration of a particular compound in a particular subject.


In some embodiments, when a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered in a bolus into the central nervous system, the miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition may be administered to the subject in an amount of about 0.1, 0.2, 0.3, 0.4, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 60, 70, 80, 90, or about 100 mg/kg or more. In one embodiment, when a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered in a bolus into the central nervous system, the miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered to the subject in an amount of about 0.1, 0.2, 0.3, 0.4, 0.5, or about 1 mg/kg. In another embodiment, when a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered in a bolus into the central nervous system, the miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered to the subject in an amount of about 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, or about 10 mg/kg. In yet another embodiment, when a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered in a bolus into the central nervous system, the miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered to the subject in an amount of about 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 16, 17, 18, 19, or about 20 mg/kg. In another embodiment, when miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered in a bolus into the central nervous system, the miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered to the subject in an amount of about 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or about 50 mg/kg. In an additional embodiment, when a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered in a bolus into the central nervous system, the miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered to the subject in an amount of about 50, 60, 70, 80, 90, or about 100 mg/kg. In a preferred embodiment, when a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered in a bolus into the central nervous system, miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered to the subject in an amount of about 23, 24, 25, 26, or about 27 mg/kg.


In some embodiments, when a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered by continuous infusion into the central nervous system, the miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition may be administered to the subject in an amount of about 0.1, 0.2, 0.3, 0.4, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 60, 70, 80, 90, or about 100 μg/day or more. In one embodiment, when a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered by continuous infusion into the central nervous system, the miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered to the subject in an amount of about 0.1, 0.2, 0.3, 0.4, 0.5, or about 1 μg/day. In another embodiment, when a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered by continuous infusion into the central nervous system, the miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered to the subject in an amount of about 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, or about 10 μg/day. In yet another embodiment, when a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered by continuous infusion into the central nervous system, the miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 is administered to the subject in an amount of about 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 16, 17, 18, 19, or about 20 μg/day. In another embodiment, when a miR-218, miR-miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered by continuous infusion into the central nervous system, the miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered to the subject in an amount of about 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or about 50 μg/day. In an additional embodiment, when a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered by continuous infusion into the central nervous system, the miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered to the subject in an amount of about 50, 60, 70, 80, 90, or about 100 μg/day. In a preferred embodiment, when a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered by continuous infusion into the central nervous system, the miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered to the subject in an amount of about 17, 18, 19, 20, 21, 22, or about 23 μg/day.


One of skill in the art will also recognize that the duration of the administration by continuous infusion can and will vary, and will depend in part on the subject, the MND, and the severity, progression and improvement of the condition of the subject, and may be determined experimentally. In some embodiments, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered by continuous infusion for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 days or longer. In one embodiment, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered by continuous infusion for 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 days or longer. In another embodiment, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered by continuous infusion for 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65 days or longer. In yet another embodiment, a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition is administered by continuous infusion for 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95 days or longer. Longer continuous infusions of the antisense oligonucleotide may also be envisioned using existing pump technology as is known in the art.


When a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition of the invention is an antisense oligonucleotide, molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 or the coding sequence of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 inhibiting the respective biological activity of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. The hybridization may be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. An antisense nucleic acid molecule of the invention may be administered by direct injection at a tissue site. Alternatively, antisense nucleic acid molecules may be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules may be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies which bind to cell surface receptors or antigens. The antisense nucleic acid molecules may also be delivered by direct infusion into a subject. The antisense nucleic acid molecules may also be delivered to cells using gene therapy vectors known in the art. To achieve sufficient intracellular concentrations of the antisense molecules, vectors in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.


(g) Restoring Motor Neuron Function and/or Treatment


A method of the invention comprises improving motor neuron function in a subject diagnosed with a motor neuron disease, suspected of having a motor neuron disease or at risk for a motor neuron disease by administering a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition to the subject. The miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 composition may decrease the amount or expression of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379, respectively. In a specific embodiment, a miR-218 composition may decrease the amount or expression of miR-218. In another specific embodiment, a miR-138 composition may decrease the amount or expression of miR-138.


An improvement in motor neuron function may be measured by several means, including an increase in motor neurons, an improvement in symptoms associated with a motor neuron disease, and/or an improvement or restoration of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 amount to that of a reference value, wherein the reference value is that of a subject without motor neuron disease.


A method of the invention also comprises treating a subject by administering to the subject a therapeutically effective amount of a composition comprising a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agent that decreases the expression of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. In a specific embodiment, a method of the invention comprises treating a subject by administering to the subject a therapeutically effective amount of a composition comprising a miR-218 agent that decreases the expression of miR-218. In another specific embodiment, a method of the invention comprises treating a subject by administering to the subject a therapeutically effective amount of a composition comprising a miR-138 agent that decreases the expression of miR-138. As used herein, “subject” may refer to a living organism having a central nervous system. In particular, subjects may include, but are not limited to, human subjects or patients and companion animals. Exemplary companion animals may include domesticated mammals (e.g., dogs, cats, horses), mammals with significant commercial value (e.g., dairy cows, beef cattle, sporting animals), mammals with significant scientific value (e.g., captive or free specimens of endangered species), or mammals which otherwise have value. Suitable subjects may also include: mice, rats, dogs, cats, ungulates such as cattle, swine, sheep, horses, and goats, lagomorphs such as rabbits and hares, other rodents, and primates such as monkeys, chimps, and apes. In some preferred embodiments, a subject is a human. In other preferred embodiments, a subject is a rat. In yet other preferred embodiments, a subject is a mouse. Subjects may be of any age including newborn, adolescent, adult, middle age, or elderly.


A subject may be at risk for developing a MND resulting from dysregulation of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. In a specific embodiment, a subject may be at risk for developing a MND resulting from dysregulation of miR-218 and/or miR-138. In another specific embodiment, a subject may be at risk for developing a MND resulting from overexpression of miR-218. In still another specific embodiment, a subject may be at risk for developing a MND resulting from overrexpression of miR-138. As such, in some embodiments, treating a MND prevents a disorder from developing in a subject at risk of developing a MND resulting from dysregulation of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. In other embodiments, treating a MND prevents a disorder from developing in a subject at risk of developing a MND resulting from dysregulation of miR-218 and/or miR-138. In specific embodiments, treating a MND prevents a disorder from developing in a subject at risk of developing a MND resulting from overexpression of miR-218. In other specific embodiments, treating a MND prevents a disorder from developing in a subject at risk of developing a MND resulting from overexpression of miR-138. Subjects at risk for a MND which is caused or contributed to by dysregulation of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 activity may be identified by, for example, any or a combination of diagnostic or prognostic assays for detecting miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 mutation or activity. A prophylactic agent may be administered prior to the manifestation of symptoms characteristic of the miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 aberrancy, such that a disease or disorder is prevented, or delayed in its progression.


A subject may also be diagnosed as having a MND resulting from dysregulation of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. In other embodiments, a subject may also be diagnosed as having a MND resulting from dysregulation of miR-218 and/or miR-138. In a specific embodiment, a subject may also be diagnosed as having a MND resulting from overexpression of miR-218. In another specific embodiment, a subject may also be diagnosed as having a MND resulting from overexpression of miR-138. In some embodiments, treating a MND treats a disorder in a subject having a MND resulting from dysregulation of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. In other embodiments, treating a MND treats a disorder in a subject having a MND resulting from dysregulation of miR-218 and/or miR-138. In a specific, treating a MND treats a disorder in a subject having a MND resulting from overexpression of miR-218. In another specific embodiment, treating a MND treats a disorder in a subject having a MND resulting from overexpression of miR-138. As such, the present invention provides methods of treating an individual afflicted with a disease or disorder characterized by dysregulation of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379.


Treating a subject using a method of the invention may extend the survival of the subject. Alternatively, treating a subject using a method of the invention may extend the disease duration of the subject.


In some embodiments, treating a subject extends the survival of the subject. A method of the invention may extend the survival of a subject by days, weeks, months, or years, when compared to the survival of a subject that was not treated using a method of the invention. As will be recognized by individuals skilled in the art, the number of days, months, or years that a method of the invention may extend the survival of a subject can and will vary depending on the subject, the MND, and the condition of the subject when treatment was initiated among other factors.


In other embodiments, treating a subject extends the disease duration of a subject. As used herein, the term “disease duration” is used to describe the length of time between onset of symptoms and death caused by the disease. A method of the invention may extend the disease duration of a subject by days, weeks, months, or years, when compared to the survival of the subject that was not treated using a method of the invention. The number of days, months, or years that a method of the invention may extend the disease duration of a subject can and will vary depending on the subject, the MND, and the condition of the subject when treatment was initiated among other factors.


III. Kits


In still other aspects, the present invention provides articles of manufacture and kits containing materials useful for treating the conditions described herein. The article of manufacture may include a container of a composition as described herein with a label. Suitable containers include, for example, bottles, vials, and test tubes. The containers may be formed from a variety of materials such as glass or plastic. The container holds a composition having an active agent which is effective for treating, for example, conditions that benefit from miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 therapy. The active agent is at least one miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agent of the invention and may further include additional bioactive agents known in the art for treating the specific condition. The label on the container may indicate that the composition is useful for treating specific conditions and may also indicate directions for administration.


Definitions


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art. All patents, applications, published applications and other publications are incorporated by reference in their entirety. In the event that there is a plurality of definitions for a term herein, those in this section prevail unless stated otherwise.


As used herein, “administering” is used in its broadest sense to mean contacting a subject with a composition of the invention.


As used herein, the term “hybridizes under stringent conditions” is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% (65%, 70%, preferably 75%) identical to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. A non-limiting example of stringent hybridization conditions are hybridization in 6× sodium chloride/sodium citrate (SSC) at about 45° C., followed by one or more washes in 0.2.×SSC, 0.1% SDS at 50-65° C. (e.g., 50° C. or 60° C. or 65° C.). Preferably, the isolated nucleic acid molecule of the invention that hybridizes under stringent conditions corresponds to a naturally-occurring nucleic acid molecule. As used herein, a “naturally-occurring” nucleic acid molecule refers to a RNA or DNA molecule having a nucleotide sequence that occurs in a human cell in nature (e.g., encodes a natural protein).


As used herein, the term “nucleic acid molecule” is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA or miRNA) and analogs of the DNA or RNA generated using nucleotide analogs. The nucleic acid molecule may be single-stranded or double-stranded.


An “isolated nucleic acid molecule” means that the material is removed from its original environment (e.g., the natural environment if it is naturally occurring). For example, a naturally occurring polynucleotide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated, even if subsequently reintroduced into the natural system. Such polynucleotides may be part of a vector or other composition and still be isolated in that such vector or composition is not part of its natural environment.


A “nucleic acid vector” is a nucleic acid sequence designed to be propagated and or transcribed upon exposure to a cellular environment, such as a cell lysate or a whole cell. A “gene therapy vector” refers to a nucleic acid vector that also carries functional aspects for transfection into whole cells, with the intent of increasing expression of one or more genes or proteins. In each case, such vectors usually contain a “vector propagation sequence” which is commonly an origin of replication recognized by the cell to permit the propagation of the vector inside the cell. A wide range of nucleic acid vectors and gene therapy vectors are familiar to those skilled in the art.


A miRNA is a small non-coding RNA molecule which functions in transcriptional and post-transcriptional regulation of gene expression. A miRNA functions via base-pairing with complementary sequences within mRNA molecules, usually resulting in gene silencing via translational repression or target degradation. A mature miRNA is processed through a series of steps from a larger primary RNA transcript (pri-miRNA), or from an intron comprising a miRNA (mirtron), to generate a stem loop pre-miRNA structure comprising the miRNA sequence. A pre-miRNA is then cleaved to generate the mature miRNA.


Primary miRNA transcripts are transcribed by RNA polymerase II and may range in size from hundreds to thousands of nucleotides in length (pri-mRNA). Pri-miRNAs may encode for a single miRNA but may also contain clusters of several miRNAs. The pri-miRNA is subsequently processed into an about 70 nucleotide hairpin (pre-miRNA) by the nuclear ribonuclease III (RNase III) endonuclease, Drosha. Thus, isolated nucleic acid molecules of the invention have various preferred lengths, depending on their intended targets. When targeted to pri-miRNA, preferred lengths vary between 100 and 200 nucleotides, e.g., 100, 120, 150, 180 or 200 nucleotides. In the cytoplasm, a second RNAse III, Dicer, together with its dsRBD protein partner, cuts the pre-miRNA in the stem region of the hairpin thereby liberating an about 21 nucleotide RNA-duplex. Thus, isolated polynucleotides of about 80, 70, 60, 50, 40, 30, 25, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, or 6 nucleotides in length are also considered in one embodiment of the invention.


As used herein, the term “sufficiently identical” refers to a first amino acid or nucleotide sequence which contains a sufficient or minimum number of identical or equivalent (e.g., an amino acid residue which has a similar side chain) amino acid residues or nucleotides to a second amino acid or nucleotide sequence such that the first and second amino acid or nucleotide sequences have a common structural domain and/or common functional activity. For example, amino acid or nucleotide sequences which contain a common structural domain having about 65% identity, preferably 75% identity, more preferably 85%, 95%, or 98% identity are defined herein as sufficiently identical.


As used interchangeably herein, a “miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 activity”, “biological activity of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379” or “functional activity of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379” refers to an activity exerted by a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 respectively on a miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 responsive cell, target mRNA, or target protein as determined in vivo or in vitro, according to standard techniques. A miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 activity may be a direct activity such as an association with a second protein or mRNA. A miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 activity may be an indirect activity such as a cellular signaling activity mediated by interaction of the miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 protein with a second protein or mRNA.


The term “sample” refers to a cell, a population of cells, biological samples, and subjects, such as mammalian subjects. The term “biological sample” refers to tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject.


As used herein, “subject” refers to a living organism having a central nervous system. In particular, subjects may include, but are not limited to, human subjects or patients and companion animals. Exemplary companion animals may include domesticated mammals (e.g., dogs, cats, horses), mammals with significant commercial value (e.g., dairy cows, beef cattle, sporting animals), mammals with significant scientific value (e.g., captive or free specimens of endangered species), or mammals which otherwise have value. Suitable subjects may also include: mice, rats, dogs, cats, ungulates such as cattle, swine, sheep, horses, and goats, lagomorphs such as rabbits and hares, other rodents, and primates such as monkeys, chimps, and apes. In some embodiments, subjects may be diagnosed with a fibroblastic condition, may be at risk for a fibroblastic condition, or may be experiencing a fibroblastic condition. Subjects may be of any age including newborn, adolescent, adult, middle age, or elderly.


The term “miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agent” refers to any molecule capable of respectively modulating miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 activity. Exemplary miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agents may include, without limitation, a compound, drug, small molecule, peptide, oligonucleotide, protein, antibody, and combinations thereof. miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agents may be synthetic or naturally occurring. A miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 agent may be a molecule identified in a screening assay as described herein.


The term “miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 indicator” refers to any molecule capable of detecting, respectively, the presence of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. A suitable miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379 indicator may be a compound, drug, small molecule, peptide, oligonucleotide, protein, antibody, and combinations thereof.


As used herein, the phrases “therapeutically effective amount” and “prophylactically effective amount” refer to an amount that provides a therapeutic benefit in the treatment, prevention, or management of pathological processes mediated by dysregulation of miR-218, miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, or miR-379. The specific amount that is therapeutically effective may be readily determined by ordinary medical practitioners, and may vary depending on factors known in the art, such as the type of disorder being treated, the subject's history and age, the stage of the disorder, and administration of other agents in combination.


As used herein, a “pharmaceutical composition” includes a pharmacologically effective amount of a therapeutic agent of the invention and a pharmaceutically acceptable carrier. As used herein, “pharmacologically effective amount,” “therapeutically effective amount” or simply “effective amount” refers to that amount of an agent effective to produce the intended pharmacological, therapeutic or preventive result. For example, if a given clinical treatment is considered effective when there is at least a 15% reduction in a measurable parameter associated with a disease or disorder, a therapeutically effective amount of an agent for the treatment of that disorder or disease is the amount necessary to effect at least a 15% reduction in that parameter.


The term “pharmaceutically acceptable carrier” refers to a carrier for administration of a therapeutic agent. Such carriers may include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The term specifically excludes cell culture medium. For drugs administered orally, pharmaceutically acceptable carriers may include, but are not limited to, pharmaceutically acceptable excipients such as inert diluents, disintegrating agents, binding agents, lubricating agents, sweetening agents, flavoring agents, coloring agents and preservatives. Suitable inert diluents may include sodium and calcium carbonate, sodium and calcium phosphate, and lactose, while corn starch and alginic acid are suitable disintegrating agents. Binding agents may include starch and gelatin, while the lubricating agent, if present, may generally be magnesium stearate, stearic acid or talc. If desired, the tablets may be coated with a material such as glyceryl monostearate or glyceryl distearate to delay absorption in the gastrointestinal tract.


As used herein, “percent complementarity” means the percentage of nucleotides of a modified oligonucleotide that are complementary to a microRNA. Percent complementarity may be calculated by dividing the number of nucleotides of the modified oligonucleotide that are complementary to nucleotides at corresponding positions in the microRNA by the total length of the modified oligonucleotide.


As used herein, “oligonucleotide” means a polymer of linked nucleosides, each of which may be modified or unmodified, independent from one another.


As used herein, “anti-miR” means an oligonucleotide having a nucleotides sequence complementary to a microRNA. In certain embodiments, an anti-miR is a modified oligonucleotide.


As used herein, “internucleoside linkage” means a covalent linkage between adjacent nucleosides.


As used herein, “linked nucleosides” means nucleosides joined by a covalent linkage.


As used herein, “nucleobase” means a heterocyclic moiety capable of non-covalently pairing with another nucleobase.


As used herein, “nucleoside” means a nucleobase linked to a sugar.


As used herein, “nucleotide” means a nucleoside having a phosphate group or other internucleoside linkage forming group covalently linked to the sugar portion of a nucleoside.


As used herein, “modified oligonucleotide” means an oligonucleotide having one or more modifications relative to a naturally occurring terminus, sugar, nucleobase, and/or internucleoside linkage.


As used herein, “modified internucleoside linkage” means any change from a naturally occurring internucleoside linkage.


As used herein, “phosphorothioate internucleoside linkage” means a linkage between nucleosides where one of the non-bridging atoms is a sulfur atom.


As used herein, “modified sugar” means substitution and/or any change from a natural sugar.


As used herein, “modified nucleobase” means any substitution and/or change from a natural nucleobase.


As used herein, “5-methylcytosine” means a cytosine modified with a methyl group attached to the 5′ position.


As used herein, “2′fluoro sugar” means a sugar having a fluorine modification at the 2′ position.


As used herein, “2′-O-methyl sugar” or “2′-OMe sugar” means a sugar having an O-methyl modification at the 2′ position.


As used herein, “2′-O-methoxyethyl sugar” or “2′-MOE sugar” means a sugar having an O-methoxyethyl modification at the 2′ position.


As used herein, “2′-O-fluoro” or “2′-F” means a sugar having a fluoro modification at the 2′ position.


As used herein, “bicyclic sugar moiety” means a sugar modified by the bridging of two non-geminal ring atoms.


As used herein, “locked nucleic acid (LNA) sugar moiety” means a substituted sugar moiety having a (CH2)—O bridge between the 4′ and 2′ furanose ring atoms.


In practicing the present invention, many conventional techniques in molecular biology, microbiology, and recombinant DNA may be used. These techniques are well known and are explained in, for example, Current Protocols in Molecular Biology, Volumes I, II, and III, 1997 (F. M. Ausubel ed.); Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; DNA Cloning: A Practical Approach, Volumes I and II, 1985 (D. N. Glover ed.); Oligonucleotide Synthesis, 1984 (M. L. Gait ed.); Nucleic Acid Hybridization, 1985, (Hames and Higgins eds.); Transcription and Translation, 1984 (Hames and Higgins eds.); Animal Cell Culture, 1986 (R. I. Freshney ed.); Immobilized Cells and Enzymes, 1986 (IRL Press); Perbal, 1984, A Practical Guide to Molecular Cloning; the series, Methods in Enzymology (Academic Press, Inc.); Gene Transfer Vectors for Mammalian cells, 1987 (J. H. Miller and M. P. Calos eds., Cold Spring Harbor Laboratory); and Methods in Enzymology, Vol. 154 and Vol. 155 (Wu and Grossman, and Wu, eds., respectively).


EXAMPLES

The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples that follow represent techniques discovered by the inventors to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.


Introduction to the Examples.


Amyotrophic Lateral Sclerosis (ALS) is a fatal, adult-onset neurodegenerative disease in which motor neurons (MNs) are selectively lost. This progressive loss of MNs results in denervation and muscle atrophy, where most patients die within 3-5 years of symptom onset. Nearly 4 in 100,000 people in the US are affected by ALS. The majority of ALS cases are sporadic with age being the highest risk factor for disease. The remaining 10% of ALS cases are familial. Mutations in superoxide dismutase 1 (SOD1) were the first identified genetic cause of ALS and are attributed to 20% of familial ALS; recently, a hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9orf72) is now associated with 20-40% of familial ALS cases. Currently mouse and rat models containing mutated human SOD1 are still the most widely used and most faithfully recapitulate the disease pathology.


microRNAs (miRNAs) are small, regulatory RNAs that, canonically, regulate translation of protein-coding RNAs. miRNAs direct translational repression by partial binding to the 3′ UTR of mRNAs after first being incorporated into a RNA-induced silencing complex (RISC), containing Argonaute-2 (Ago2). Because only partial complementarity is required for miRNA-mRNA interactions, a single miRNA can potentially regulate hundreds of mRNA transcripts. Emerging data demonstrate miRNAs are powerful regulators of physiological and pathological cellular processes. Consequently, miRNA expression is often dysregulated in disease and miRNAs have been used as therapeutic and diagnostic targets.


miR-155, a glial-enriched miRNA, is upregulated in the spinal cords of end-stage ALS model (SOD1G93A) mice and human autopsy. Inhibiting miR-155 significantly delays disease progression in SOD1G93A mice. Non-cell autonomous disease mechanisms are important and targeting an immunomodulatory miRNA may be an effective therapy for ALS. Despite enthusiasm for this glial miRNA therapeutic approach, we hypothesized that MN miRNA changes in ALS may be equally or more important, as MN loss and pathology define the onset of disease and ultimately death. However, since MNs represent approximately 4% of the total mouse spinal cord volume, probing miRNA changes in MNs is challenging and must be done utilizing a MN-targeted approach.


To date, most cell type enriched expression data have been generated though fluorescence activated cell sorting (FACS), laser capture microdissections (LCMs), and in situ histology. Each of these methods has significant limitations, which can be overcome with the advent of biochemical purification systems such as, translating ribosome affinity purification (TRAP) for mRNA, or miRNA tagging and affinity purification (miRAP) for miRNA.


To assess miRNA expression in CNS cell types, we employed miRAP, in which tagged-Argonaute2 (Ago2) is expressed in particular cell types under the control of the Cre-Lox system. Because catalytically functional miRNAs must first be loaded into the miRNA processing protein Ago2, affinity purification via antibodies against Ago2 serves to also isolate active miRNAs from tissue lysates. Furthermore, by expressing a GFP-myc-tagged version of Ago2 only in particular cell types, miRNAs from distinct cell populations may be isolated via myc or GFP immunoprecipitation (IP). To determine enriched miRNA expression in MNs, we crossed miRAP reporter mice (with a lox-stop-lox-GFP-myc-Ago2 (LSL-tAgo2)) to mice expressing Cre under promoters targeting all neurons, MNs, astrocytes, and myeloid cells including microglia. With these experiments we were able to generate a physiologically relevant database of well-validated miRNAs enriched in these CNS cell types and, via comparative analysis, discriminate MN-enriched miRNAs. We predict these MN-enriched miRNA expression profiles will broadly inform on studies of diseases and injuries specific to MNs. Here, we focused on ALS disease mechanisms. By probing the expression of MN-enriched miRNAs in ALS rodent models, we have identified a new CSF, drug-responsive biomarker of MN disease.


Example 1
Generation and Validation of Cell Specific Expression of GFP-myc-Ago2 in CNS Tissues

We adapted the miRAP method developed by He, et al to express tagged-Ago2 in specific cell populations relevant to ALS (He et al. Neuron 2012; 73(1): 35-48). Double transgenic mice carrying alleles of Cre recombinase under various promoters and lox-stop-lox-GFP-myc-Ago2 (LSL-tAgo2) in the Rosa26 locus were generated (FIG. 1A). To target cell type specific expression of Cre recombinase, and thus cell type specific expression of tAgo2, we used existing Cre lines with the following promoters: Synapsin 1 (Syn), choline acetyltransferase (ChAT), glial fibrillary acidic protein (GFAP), or lysozyme 2 (Lyz2, LysM) targeting a pan neuronal, MN, astrocyte, or microglia cell population, respectively (FIG. 1B).


In order to validate tAgo2 expression in the desired cell types, we isolated brainstem or spinal cord and immunoprecipitated (IP'ed) with myc antibodies from each transgenic mouse. As confirmed by Western blot, each double transgenic mouse expresses tAgo2 (˜130 kDa) in the brain and spinal cord, but LSL-tAgo2+, Cre-littermates do not (FIG. 6). Double-label immunofluorescence histology using a cell-specific antibody and with an antibody against GFP indicated tAgo2 was being expressed in the desired neuronal cell types. The Syn-Cre, LSL-tAgo2 mouse showed strong expression of GFP in NeuN+ cells throughout the brain and spinal cord including in the brainstem (FIG. 1C). In ChAT-Cre double transgenic mice, tAgo2 expression was isolated to the ChAT+ brainstem motor nuclei and spinal MNs (FIG. 1D). For both of these lines, GFP expression appeared cytoplasmic and not nuclear, in agreement with known Ago2 localization. To visualize the cell types marked by GFAP- and Lyz2-Cre, we crossed these drivers with LSL-tdTomato/Ai9 mice. As anticipated, the LSL-tdTomato, GFAP-Cre mice showed robust Cre activity in astrocytes (labeled with anti-GFAP, FIG. 1E). And, as previously reported for GFAP-Cre drivers, there was sparse labeling of neurons, many of which are likely late born neuronal progeny of GFAP+ neural stem cells. As expected LSL-tdTomato, Lyz2-Cre mice showed recombinase activity in some microglia (labeled with anti-Iba1, FIG. 1F). Unexpectedly, given their widespread use in targeting microglia for functional studies in the CNS, we also saw robust Cre activity in sparse subsets of neurons. Nonetheless, as the neuronal Cre lines both had high specificity, and only the Lyz2 line showed any microglial Cre activity, we reasoned that we would still be able to identify miRNA enriched in each cell type via a comparative strategy similar to that previously used to control for background in TRAP studies (Dougherty et al. Nucleic Acids Research 2010; 38(13): 4218-4230).


Therefore, we harvested the brainstems and spinal cords from replicate transgenic mice that carried both Cre-recombinase and LSL-tAgo2 alleles (experimental mice) or only LSL-tAgo2 (negative controls). Following BCA normalization for protein input, miRAP was performed on these tissues using either myc or Ago2 antibodies (FIG. 2A). The resulting miRNAs were isolated and assayed via TaqMan miRNA microarrays v3.0 (A+B cards). To account for background miRNA expression associated with the myc-IP, we performed Taqman miRNA microarrays on RNA from myc IP of both brainstem and spinal cord of littermate controls not expressing tAgo2. To this end, we empirically determined background cycle threshold (CT) cut-offs for each individual miRNA. We used these data to eliminate any miRNA not significantly enriched over background. Table 1 indicates the number of miRNAs in each cell type that were found to be expressed significantly over noise in either brainstem or spinal cord.









TABLE 1







The number of miRNAs differentially expressed from


non-transgenic in brainstem and spinal cord following


miRAP. A total of 672 miRNAs were queried. The


criteria for a miRNA to be expressed above background


were 1) the miRNA must be expressed (CT < 40) in 2 of 3


replicates (3 of 4 for Ago2); 2) the median expression for


a miRNA of the triplicates must be CT < 35 (CT < 37 for Ago2);


3) the highest CT of the replicates must be 2 CT < the


median of the non-transgenics. The number of miRNAs


expressed above background in an untagged Ago2


immunoprecipiation represents an estimate of the number of all


miRNAs expressed above background in each tissue-type.











Sample
Brainstem
Spinal Cord















ChAT
257
295



Syn
406
417



GFAP
325
295



Lyz2
123
56



Ago2
484
467










To confirm that miRAP from brainstem and spinal cord tissue was accurately recapitulating miRNA expression in each distinct cell type, we assessed the expression of miRNAs previously reported to exhibit cell type specificity or enrichment (FIG. 2B). miR-134, a miRNA involved in cortical neuronal development, was robustly expressed in our Syn and ChAT mice and greatly depleted in GFAP and Lyz2 mice. Expression of miR-219, which is known to act on NMDA receptors, was absent in MNs, consistent with lack of NMDA receptors. Only astrocytes exhibited high expression of miR-204, a miRNA that has been extensively studied in gliomas. Finally, perfused Lyz2 tissue showed strong expression of miR-142-3p, a miRNA involved in hematopoetic cell differentiation, consistent with the lineage of microglia.


On a global level, the miRNA expression profiles for CNS cell types are distinct. Following unsupervised 3D principal component analysis (PCA), we found that miRNA expression profiles were sufficient to cluster samples by their cell type of origin (FIG. 3A). Furthermore, the miRNA expression profiles from IP of tagged and untagged Ago2 from each transgenic mouse clustered together in PCA, indicating global miRNA expression in these mice is comparable (FIG. 3A). Hierarchical heatmaps also demonstrate that these CNS cell types can be identified by their unique miRNA expression profiles (FIG. 3B).


Using this global miRNA array data, we identified miRNAs that are consistently expressed across CNS cell types: miR-24, 30c and 191 (FIG. 7). The use of these miRNAs as putative endogenous controls for normalizing RT-qPCR data will greatly aid in future studies of miRNAs in the CNS. Furthermore, these results align well with previous reports identifying putative housekeeping miRNAs. Because U6 snRNA is not typically loaded into Ago2, miRAP studies must employ endogenous miRNA controls for normalization of RT-qPCR data.


We have confirmed the validity of our approach by ensuring the transgenic mice employed in these studies express tAgo2 in the desired cell types and that miRAP produces a miRNA signature for these distinct CNS cell types that is consistent with previous reports.


Example 2
Identification of MN-Enriched miRNAs

To discriminate MN-enriched miRNA expression, we performed pairwise comparisons with other CNS cell types. FIG. 3C indicates the top 3 miRNAs in each cell type exhibiting enriched expression and the associated specificity index for both brainstem and spinal cord. We then validated the MN-enrichment of the top 8 miRNAs using the original 3 samples from the arrays (technical replicate) and an additional 3 samples (biological replicate) to confirm the array findings at a higher power using individual RT-qPCR assays (Table 2). miR-218-5p and its lesser abundant 3p strand exhibited the strongest enrichment in MNs (Table 2). The MN-enrichment of miR-544 and miR-380-5p could not be confirmed due to low expression (CT>35) and non-specificity of Taqman primers (repeated amplification in no-template control), respectively. All comparisons made using LoessM normalized array data are included in Table 3 (spinal cord) and Table 4 (brain stem).









TABLE 2







Confirmation of MN-enrichment of miRNAs in the spinal cord


as compared to all other neurons. The MN-enrichment of 6 of 8


miRNAs was validated with individual RT-qPCR assays.


Student's unpaired, two-tailed t-test, Bonferroni correction for


multiple (6) comparisons. Values are normalized to a geomean of


endogenous miRNA controls, miR-30c, 24 and 191, and expressed


as the mean of N = 6.











miRNA
Fold-Change
P-value















miR-218
11.9
0.0002



miR-218-2
11.9
<0.0001



miR-138
3.2
<0.0001



miR-133a
2.8
<0.0001



miR-1193
3.7
0.0008



miR-34b-3p
3.1
0.045










Example 3
Depletion of MN-Enriched miRNAs in Spinal Cord from ALS Mouse Models and Patients

To determine whether MN-enriched miRNAs are relevant for MN disease, we characterized their expression in the spinal cords of an ALS mouse model and human ALS patient autopsies. In our congenic ALS mouse model (B6.Cg-Tg(SOD1G93A)1Gur/J) colony, disease onset typically occurs at 100-110 days, as marked by time to peak weight. We performed RT-qPCR on SOD1G93A spinal cord harvested at 56, 84, 105, 126, and 147 days, as well as end-stage (inability to right itself within 30 seconds). There was a robust and highly significant temporal depletion of MN-enriched miRNAs, miR-218 and miR-138, in SOD1G93A spinal cord beginning at 126 days (FIG. 4A, FIG. 4B). This depletion was maximized in end-stage ALS mouse model spinal cord. Following a similar trend, pan-neuronal enriched miRNAs, miR-382 and miR-672, are decreased, but not significantly depleted in ALS mouse model spinal cord, even at end-stage (FIG. 4C, FIG. 4D). Finally, miR-218 and miR-138 are also depleted in ALS patient autopsy spinal cord as compared to non-diseased autopsy spinal cord controls (FIG. 4E, FIG. 4F).


Example 4
Dysregulation of MN-Enriched miRNAs as Biomarkers of MN Disease

Because MN-enriched miRNAs are depleted temporally in ALS mouse model and patient autopsy spinal cord, we hypothesized these miRNAs might also be dysregulated in cerebrospinal fluid (CSF) as MNs are lost throughout ALS disease progression. Furthermore, as CSF bathes the brain and spinal cord, it might contain a detectable MN miRNA biomarker. Here, we used ALS SOD1G93A rats for these CSF studies because of the larger volume of CSF obtained from rats as compared to mice. Surprisingly, rather than decreased, as in mouse and patient spinal cord tissues, miR-218 increases throughout disease progression in ALS rat model CSF as compared to non-transgenic rats (FIG. 5A). To ensure this effect was not simply due to human SOD1 (hSOD1) overexpression, we measured miR-218 levels in CSF from rats overexpressing wildtype hSOD1 at 95 and 165 days. miR-218 CSF levels were not significantly different in hSOD1 WT rats as compared to non-transgenics at either timepoint (FIG. 8). However, there is a trend towards increased miR-218 CSF levels at 165 days in hSOD1 WT rats, which could be reflective of the MN loss and decreased survival that is associated hSOD1 WT mice. Furthermore, increased expression of miR-218 in ALS rat model CSF is not due to global increases in miRNA expression in CSF, as a neuronal miRNAs, miR-132 and miR-124, were decreased in rat SOD1G93A CSF as compared with non-transgenic controls (FIG. 5B, FIG. 5C).


Because these data show that rats expressing human SOD1G93A transgene have increased levels of miR-218 in their CSF, we hypothesized that decreasing the levels of toxic transgene, SOD1G93A, would also decrease the miR-218 levels in CSF. Antisense oligonucleotides (ASOs) against SOD1 are well-tolerated, effectively and specifically lower human SOD1G93A and extend survival in this rat model. To this end, we treated ALS SOD1G93A rats with SOD1 ASO. As predicted, hSOD1 mRNA was significantly lowered in the lumbar spinal cord of these animals (as assessed 50 days post-treatment). Strikingly, miR-218 CSF levels were reduced in SOD1 ASO-treated rats as compared to artificial CSF (aCSF)-treated littermate controls (FIG. 5D), but the levels of neuronal miR-132 and 124 were not (FIG. 5E, FIG. 5F). These data establish miR-218 as the first MN-specific and drug-responsive biomarker of MN disease.


Discussion for the Examples.


This study employs tools to assess in vivo miRNA expression in a cell type specific manner to discriminate MN-enriched miRNA expression relative to other CNS cell types. By focusing on MN-enriched miRNA expression in models of MN disease, we defined the first drug-responsive biomarker in an ALS disease model. In addition, we anticipate this dataset of MN-enriched miRNAs will facilitate other insights into MN disease mechanisms, risk factors and genetics underlying MN vulnerability.


In vivo cell type specific expression profiling techniques allow high-throughput access to key disease-relevant cell types, yet preserve physiological relevance as compared to ex vivo methods. This in vivo approach is particularly relevant for MNs, which represent roughly 4% of the spinal cord volume and may not be easily isolated from neighboring cells. We adopted a comparative, systematic approach to define MN-enriched miRNA expression relative to other CNS cell types. Inclusion of a pan-neuronal line allowed us to define which miRNAs distinguish MNs specifically from neurons in general, while assessment of microglial and astrocyte profiles provided key controls and baseline data to facilitate future analyses with understanding the molecular correlates of the well-known histological response of these cell types to disease pathology. The ability to define in vivo, cell type-enriched expression enables broad application of the concept of profiling the cell type most affected by a particular disease to understand disease mechanism and identify biomarkers. For example, we hypothesize that understanding brainstem dopaminergic miRNA profiles would reveal miRNA biomarkers for Parkinson's disease. Likewise, miRNA profiles of pancreatic beta islet cells would reveal serum miRNA biomarkers for diabetes.


As a first application of MN-enriched miRNA data in MN disease, we have defined a drug-responsive marker in CSF. Beyond this, we anticipate these MN-enriched miRNAs may provide a window into understanding of MN development and disease. The dataset generated here could inform novel miRNAs involved in cell fate specification, particularly those exhibiting enriched expression in a single CNS cell type. Furthermore, this study may provide insight into another emerging area of research interest: understanding the regulatory mechanisms that lead to cell type specific expression. Oftentimes, miRNAs are embedded within introns of genes, and while their transcription is sometimes dictated by the host gene promoter, there is increasing evidence that many miRNAs have their own promoters. Our dataset also enables probing regional differences in miRNA expression among the same cell type, which is of particular interest in ALS as glia are the main drivers of disease progression.


Our data demonstrate miR-218 is a marker of MN loss and/or injury in ALS rat model CSF. miR-218 exists at two different genomic loci within the introns of SLIT2 and SLIT3, which are important for axonal guidance. Our work highlights the importance of miR-218 and its relation to MN health and disease.


Currently, the regulation of miR-218 deposition into the CSF throughout ALS disease progression is unknown. It is possible that deposition of miR-218 into the CSF may reflect a pathological disease mechanism beyond just MN loss. While clearance of proteins and other molecules into the CSF can result from normal physiological processes, there is also increasing evidence that deposition into the CSF can be pathological as well. Disease-associated deposition could result from leakiness and permeability of the blood brain barrier, pathological signaling in response to cellular stress or cellular damage that is incurred from misfolded proteins and other neurological disease hallmarks. Future studies will help delineate whether the increased expression of miR-218 in ALS rat CSF is due to MN loss and subsequent clearance or an active signal or homeostatic attempt from diseased MNs. Understanding whether miR-218 is also changed in spinal muscular atrophy, spinal cord injury, or other disease of the spinal cord may provide insights into the miR-218 CSF signal.


miRNAs have been increasingly used as biomarkers of disease because they are measurable in biofluids, including CSF, serum and urine. Their stability in biofluid likely arises from their extracellular association with Argonaute or presence exosomes, making them more resistant to degradation. However, the relatively low abundance of miRNA in biofluids has made profiling miRNAs challenging. By defining miRNAs that were enriched in our cell type of interest, that being the predominantly affected cell type in ALS, we were able to develop a miRNA biomarker who presence in CSF reflected the progression of the disease.


Unlike multiple sclerosis with an imaging marker, muscles diseases with creatine kinase, or HIV with viral load, ALS clinical trials are hampered by the lack of a disease responsive biomarker that may be used as a proxy for MN health. Our data in animal models suggests that miR-218 in CSF may be such a marker. In clinical trials, if miR-218 levels could be used as an early signal regarding efficacy of the drug, drugs could be assessed much more rapidly for their likelihood of affecting MNs, thus potentially selecting a more promising candidate for a much longer trial.


This study has identified the first MN-specific, drug-responsive biomarker of MN disease. Our approach highlights a new pipeline for hypothesis-driven development of cell type specific miRNA biomarkers of diseases. miRNAs are ideal biomarkers because they are readily quantifiable, stable in biofluids and report on physiological and pathological processes. A MN-specific, drug-responsive biomarker would revolutionize the design and assessment of efficacy of MN disease therapies.


Methods for the Examples.


Animals. All mice were bred on a congenic C57BL/6J background. To generate cell-specific GFP-Ago2 expressing mice, a homozygous (ROSA)26Sortm1(CAG-GFP/EiF2c2)Zjh (LSL-tAgo2) mouse (Jax ID: 017626) was bred to one of four Cre lines: Syn-Cre (Jax ID: 003966), ChAT-Cre (Jax ID: 006410), GFAP-Cre (a gift from David H. Gutmann), Lyz2-Cre (Jax ID: 004781). To visualize the cell types marked by GFAP and Lyz2, we used LSL-tdTomato mice (JAX: 007905). Mice used in experiments were heterozygous for LSL-tAgo2 and for a cell-specific Cre driver, while control mice were only positive for LSL-tAgo2. C57BI/6J SOD1G93A mice were purchased from Jackson Laboratories (ID: 004435). For CSF studies, Sprague-Dawley non-transgenic, hSOD1 WT (provided by Pak Chan, Stanford University) and the SOD1G93A (Taconic model 2148) rat lines were used.


At 9 weeks of age, mice were anesthetized with an overdose of inhaled isoflurane before being perfused with 20-30 mL of cold PBS. Perfusion was critical for elimination of Lyz2-labeled monocytes in the blood. Following visual examination for complete exsanguination, whole spinal cords and whole brainstems were isolated and flash frozen in liquid nitrogen. Brainstem tissue included the pons and medulla with care to exclude any cortical, cerebellar, or spinal cord tissue. Tissues were stored at −80° C. until ready for miRNA isolation.


Histology: Double Label Cell Type Expression. Free-floating 50 μm sections of brain and spinal cord were washed in TBS and blocked in 5% normal horse serum, 0.1% triton, in TBS for one half hour. Goat-anti-ChAT (1:200, Millipore AB144) or rabbit anti-NeuN antibody (1:1000, Cell Signaling, 12943), both with chicken-anti-GFP (1:250, Ayes, GFP-1020) in blocking solution were applied to the tissues overnight at 4oC. AlexaFluor 488-conjugated donkey anti-chicken (1:500, Jackson Immuno Research, 703-545-155) was added with DyLight 550 goat anti-rabbit (1:500, Thermo Scientific, 84541) or DyLight 550 donkey anti-goat (1:500, Thermo Scientific, SA5-10087) in blocking buffer to the tissue for one hour. Chicken anti-GFAP (1:1000, Abcam, ab4674) and rabbit anti-Ibal (1:250, Wako, 019-19741) were used to label Td tomato tissue. No antibody was necessary to visualize Td tomato expression. DyLight 488 goat anti-chicken 1:500, Thermo Scientific, SA5-10070) or DyLight 488 donkey anti-rabbit (1:500, Thermo Scientific, SA5-10038) in blocking buffer to the tissue for one hour. All sections were stained with DAPI. Slides were washed 3 times in TBS, mounted on superfrost slides, and coverslipped with Fluoromount (Southern Biotech, 0100-01). All slides were observed at 20× objectives using a Nikon A1Rsi Confocal. All images were taken at ambient temperature with a 405, 488 and 561 nm lasers. For image acquisition and formatting, ImageJ and Adobe Photoshop CS6 Extended were used.


miRAP. Brainstem and spinal cords from perfused, 63 day-old mice were harvested and flash frozen in liquid nitrogen and stored at −80° C. For array experiments, IPs were conducted on 3 double positive mice from each of the 4-cre driver lines and from an additional 4 negative control mice at the same time for a given tissue type. Whole brainstem or spinal cord was homogenized using a hand blender in 1 ml of lysis buffer and miRAP was conducted as previously described (He et al. Neuron 2012; 73(1): 35-48). Briefly, Whole brainstem or spinal cord was lysed in 1 mL of ice-cold lysis buffer (10 mM HEPES [pH 7.4], 100 mM KCl, 5 mM MgCl2, 0.5% NP-40, 1 mM DTT, 100 U/mL RNasin Plus (Promega), and EDTA-free protease inhibitors (Roche)). Tissue was lysed using a hand blender before centrifuging at +4° C. for 30 min at 13,000 g. 10 μg of mouse-anti-Myc (sc-40; Santa Cruz Biotechnology) or 5 μg of mouse-anti-Ago2 (2E12-1C9; Anova) in 350 μL of PBS-Tween was conjugated to 50 μL of protein G Dynabeads (Invitrogen) for 45 min, rotating at RT. Antibody-conjugated beads were washed three times with 1 mL of PBS-Tween to remove any excess antibody. A BCA assay was performed on all tissue homogenates to normalize input to the lowest protein concentration. 850 μL of supernatant or supernatant diluted with lysis buffer were applied to the antibody-conjugated beads and incubated at +4° C. for 4 hours with end-over-end rotation. Beads were washed twice with low-salt buffer (50 mMTris-HCl [pH 7.5], 150 mM NaCl, 1 mM MgCl2, 0.5% NP-40, 1 mM DTT, 100 U/mL RNasin Plus) and twice with high-salt buffer (50 mMTris-HCl [pH 7.5], 600 mM NaCl, 1 mM MgCl2, 0.5% NP-40, 1 mM DTT, 100 U/ml RNasin Plus). 700 μL of Qiazol was added directly to the beads, and samples were vortexed for 30 sec and stored at −20° C.


miRNA Extraction and Quantification. RNA was isolated using miRNeasy kits per manufacturer's instructions (Qiagen). miRNA microarrays were performed using 3 μL with pre-amplification using low density Rodent MiRNA A+B cards sets 3.0 (Life Technologies) on a 7900HT qPCR machine for 40 cycles. Analysis was conducted on SDSv2.2 software with automatic thresholding. Microarray miRNA targets were confirmed with individual TaqMan miRNA assays (Life Technologies) as per the manufacturer's instructions. qPCR samples were quantified in technical duplicates on an Applied Biosystems 7500 fast Real-Time PCR System.


Data Analysis and Statistics. Data are presented as mean±SEM. All statistical tests were conducted using R's Bioconductor toolkit, MS Excel, or with Graphpad Prism 6 Software. Array data was normalized by global LoessM in R studio as previously described (Risso et al. Bioinformatics 2009; 25(20): 2685-2691).


Differentially Expressed from Non-Transgenic: For a given sample, data was excluded for a miRNA if it failed to be expressed at a significant level over the corresponding microarray data from three myc-IP miRNA extractions from negative control mice, matched by tissue type. The criteria for differential expression were 1) the miRNA must be expressed in at least two of three replicates (three of four for Ago2); 2) The median expression of the triplicates for a given miRNA must be CT<35 (CT<37 for Ago2); 3) The highest CT of the triplicates for a given miRNA must be 2 CT<the median CT of the non-transgenics.


Endogenous miRNA controls: To identify putative housekeeping miRNAs, we used the following criteria: 1) Using the LoessM normalized CTs, we subsetted for miRNAs with a low standard deviation (<1) among the triplicates; 2) The mean CT of the triplicates had to be <24 for all cell types. miR-24, 30c, and 191 were the top three miRNAs that met these criteria.


Pairwise Comparisons: For the miRNAs that met these criteria, relative expression data was generated for all pairwise comparisons between cell types in both tissues. Significant changes in miRNA expression profiles were determined by empirical Bayes given the low sample number, the large number of targets (672 miRNAs), and the inability to assume normal distribution (Smyth et al. Stat Appl Genet Mol Biol 2004; 3: Article3). These data are included in completion in Table 3 (spinal cord) and Table 4 (brain stem). Adjusted p values were calculated using the Benjamini-Hochberg correction (Klipper-Aurbach et al. Med Hypotheses 1995; 45(5): 486-490).


Heatmap: miRNAs were included in the heatmap illustration (FIG. 3B) if a given miRNA was found to have significant differential expression (Log2FC>2 and p<0.01) in at least one comparison.


Specificity Index. We used the R Package pSI (Xu et al. Journal of Neuroscience 2014; 34(4): 1420-1431) to define which miRNAs were enriched in each cell type when compared to all others, with minor adaptations to the input for use with qPCR microarrays. Briefly, we converted CTs into a relative expression values, x, for each gene as x=2(40-CT), such that genes with lower CTs had higher relative expression and expression was in linear scale. This was then provided to the function specificity.index as was a filter to remove those miRNAs not expressed above background for each type, allowing calculation of a p-value for the enrichment of each miRNA in each cell type (pSI, in Table 1).


MN-enriched miRNAs: The top 8 miRNAs enriched in MNs were defined by the following criteria: 1) The geomean of the ChAT triplicates from the arrays <30 CT; 2) Fold-change >1.75 in all spinal cord comparisons; 3) unadjusted p-value <0.01 in ChAT versus Syn comparison.


CSF Collection and miRNA Extraction and Quantification. CSF was obtained from rats anesthetized with 5% isoflurane via puncture of the cisterna magna and spun at 16,000 g for 10 mins at +4° C. prior to freezing the supernatant at −80° C. miRNA was extracted from CSF using the miRcury RNA Isolation Kit-Biofluids (Exiqon). RT-qPCR was performed using the miRCURY LNA Universal RT and ExiLENT SYBR green kit (Exiqon). 6 μL of undiluted RNA was used for RT using the miRCURY LNA Universal RT kit (Exiqon). The cDNA was diluted 1:20 in 17 μL of water and 2 μL of ROX reference dye (Invitrogen). 4 μL of diluted cDNA was used for each qPCR reaction using the ExiLENT SYBR Green kit (Exiqon). The data was analyzed using the 2{circumflex over ( )}(-ddCT) method and miR-103a-3p was used as a normalization control (as per manufactuer's recommendation for biological fluid). qPCR samples were quantified in technical duplicates on an Applied Biosystems 7500 fast Real-Time PCR System.


SOD1 ASO Treatment. SOD1G93A rats at 65 days of age were anesthetized with 5% isoflurane and given a 30 μL intrathecal bolus injection of 1000 μg of ASO or artificial CSF (aCSF) within their lumbar spinal region. Cohorts were gender-and litter-matched. CSF and spinal cord were harvested at 115 days of age. All surgeries and downstream analyses were done by personnel blinded to the treatment groups.









TABLE 3







Spinal Cord miRNA data.




























detect_
detect_
detect_
detect_



mean_sc.ChAT
mean_sc.GFAP
mean_sc.Lyz2
mean_sc.Syn
pSI_sc.ChAT
pSI_sc.GFAP
pSI_sc.Lyz2
pSI_sc.Syn
SC.ChAT
SC.GFAP
SC.Lyz2
SC.Syn





hsa_let_7b_002404
30.879
35.020
31.267
36.072
0.152
0.811
0.263
0.927
TRUE
TRUE
TRUE
TRUE


hsa_let_7e_002407
30.955
30.486
30.064
31.333
0.588
0.574
0.377
0.703
TRUE
TRUE
TRUE
TRUE


hsa_let_7f_1_002417
36.988
36.524
38.053
34.173
NA
NA
0.913
0.050
FALSE
FALSE
TRUE
TRUE


hsa_let_7i_002172
33.472
30.838
34.523
35.180
0.458
0.072
0.755
0.908
TRUE
TRUE
TRUE
TRUE


hsa_miR_106b_002380
30.817
27.576
29.987
27.067
0.909
0.326
0.809
0.089
TRUE
TRUE
TRUE
TRUE


hsa_miR_10a_002288
35.055
35.056
37.102
36.059
0.300
0.444
0.888
0.597
TRUE
TRUE
TRUE
TRUE


hsa_miR_1197_002810
32.465
35.963
34.449
33.050
0.210
NA
0.721
0.370
TRUE
FALSE
TRUE
TRUE


hsa_miR_124_002197
35.423
35.842
35.382
37.266
NA
NA
0.402
0.868
FALSE
FALSE
TRUE
TRUE


hsa_miR_127_5p_002229
31.428
35.136
34.115
32.536
0.117
NA
0.798
0.403
TRUE
FALSE
TRUE
TRUE


hsa_miR_136_000592
29.264
33.332
27.628
28.940
0.548
0.967
0.162
0.418
TRUE
TRUE
TRUE
TRUE


hsa_miR_136_00210
21.563
27.320
24.145
22.028
0.109
0.963
0.748
0.240
TRUE
TRUE
TRUE
TRUE


hsa_miR_140_3p_002234
28.995
27.836
28.290
28.065
0.769
0.539
0.561
0.399
TRUE
TRUE
TRUE
TRUE


hsa_miR_143_000466
27.619
28.159
21.533
29.701
0.554
0.759
0.010
0.947
TRUE
TRUE
TRUE
TRUE


hsa_miR_144_002676
37.549
37.458
38.284
39.542
NA
NA
0.589
NA
FALSE
FALSE
TRUE
FALSE


hsa_miR_148a_002134
37.722
34.727
38.858
39.554
NA
NA
0.766
NA
FALSE
FALSE
TRUE
FALSE


hsa_miR_149_002255
19.790
20.672
21.481
19.353
0.447
0.688
0.872
0.239
TRUE
TRUE
TRUE
TRUE


hsa_miR_151_5P_002642
30.948
27.369
26.408
29.995
0.953
0.292
0.164
0.719
TRUE
TRUE
TRUE
TRUE


hsa_miR_154_000478
25.101
29.523
26.728
26.622
0.138
0.914
0.571
0.542
TRUE
TRUE
TRUE
TRUE


hsa_miR_15b_002173
36.618
36.061
35.342
40.824
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


hsa_miR_183_002270
27.187
33.259
25.842
26.869
0.471
NA
0.160
0.364
TRUE
FALSE
TRUE
TRUE


hsa_miR_189_000488
34.202
33.163
31.920
30.879
NA
0.709
0.446
0.149
FALSE
TRUE
TRUE
TRUE


hsa_miR_190b_002263
28.285
27.710
26.596
30.132
0.527
0.480
0.242
0.944
TRUE
TRUE
TRUE
TRUE


hsa_miR_196a_241070_mat
22.898
20.685
23.004
22.343
0.740
0.233
0.740
0.510
TRUE
TRUE
TRUE
TRUE


hsa_miR_200a_001011
37.942
37.898
39.681
39.675
NA
0.386
0.791
NA
FALSE
TRUE
TRUE
FALSE


hsa_miR_200b_001800
32.621
32.764
31.536
35.312
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


hsa_miR_200b_002274
41.058
40.840
34.869
40.479
NA
NA
0.022
NA
FALSE
FALSE
TRUE
FALSE


hsa_miR_200c_000505
29.521
28.937
24.555
28.936
0.855
0.759
0.057
0.596
TRUE
TRUE
TRUE
TRU


hsa_miR_200c_002286
39.357
39.448
39.774
39.626
NA
NA
0.623
NA
FALSE
FALSE
TRUE
FALSE


hsa_miR_206_000510
32.580
26.994
25.742
29.679
0.996
0.255
0.12
0.640
TRUE
TRUE
TRUE
TRUE


hsa_miR_213_000516
28.312
26.353
27.318
27.441
0.818
0.375
0.545
0.502
TRUE
TRUE
TRUE
TRUE


hsa_miR_214_000517
32.027
28.745
29.776
31.372
0.897
0.202
0.398
0.696
TRUE
TRUE
TRUE
TRUE


hsa_miR_214_002293
36.503
34.840
37.066
38.480
NA
0.175
0.644
NA
FALSE
TRUE
TRUE
FALSE


hsa_miR_218_2_002294
25.488
35.935
30.916
29.525
0.002
NA
0.674
0.418
TRUE
FALSE
TRUE
TRUE


hsa_miR_223_000526
24.678
28.611
15.981
28.679
0.408
0.925
0.000
0.893
TRUE
TRUE
TRUE
TRUE


hsa_miR_22_000398
24.765
23.723
23.861
24.624
0.691
0.510
0.439
0.607
TRUE
TRUE
TRUE
TRUE


hsa_miR_22_002301
28.491
28.403
28.568
29.796
0.419
0.521
0.473
0.812
TRUE
TRUE
TRUE
TRUE


hsa_miR_23a_002439
35.070
32.073
24.625
41.740
NA
0.370
0.000
NA
FALSE
TRUE
TRUE
FALSE


hsa_miR_26b_002444
33.164
30.729
29.582
34.928
0.690
0.302
0.155
0.982
TRUE
TRUE
TRUE
TRUE


hsa_miR_27a_002445
34.867
33.503
35.742
37.360
NA
0.180
0.656
0.956
FALSE
TRUE
TRUE
TRUE


hsa_miR_27b_002174
35.044
33.956
34.215
34.349
NA
0.539
0.503
0.466
FALSE
TRUE
TRUE
TRUE


hsa_miR_28_3p_002446
36.072
37.158
37.479
36.676
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


hsa_miR_299_5p_000600
34.556
36.641
36.116
34.620
0.346
NA
0.748
0.327
TRUE
TRUE
TRUE
TRUE


hsa_miR_29a_002447
28.575
27.217
29.270
26.827
0.744
0.452
0.885
0.158
TRUE
TRUE
TRUE
TRUE


hsa_miR_29b_2_002166
28.849
30.240
25.085
30.194
0.536
0.863
0.051
0.802
TRUE
TRUE
TRUE
TRUE


hsa_miR_30a_3p_000416
20.965
20.170
21.278
20.687
0.621
0.486
0.699
0.465
TRUE
TRUE
TRUE
TRUE


hsa_miR_30c_1_002108
35.948
32.956
39.089
39.727
NA
0.021
0.871
NA
FALSE
TRUE
TRUE
FALSE


hsa_miR_30c_2_002110
32.808
38.297
37.811
40.585
0.004
NA
NA
NA
TRUE
FALSE
FALSE
FALSE


hsa_miR_30d_002305
24.046
27.665
28.018
30.140
0.029
0.556
0.653
0.952
TRUE
TRUE
TRUE
TRUE


hsa_miR_30e_3p_000422
20.710
19.830
20.973
20.639
0.597
0.457
0.677
0.531
TRUE
TRUE
TRUE
TRUE


hsa_miR_324_3p_000579
29.427
24.147
26.753
25.193
0.981
0.161
0.682
0.239
TRUE
TRUE
TRUE
TRUE


hsa_miR_338_000548
26.821
23.285
24.875
25.198
0.932
0.200
0.522
0.520
TRUE
TRUE
TRUE
TRUE


hsa_miR_338_5P_002658
26.074
23.052
23.289
24.223
0.949
0.359
0.351
0.502
TRUE
TRUE
TRUE
TRUE


hsa_miR_33a_002136
31.918
29.590
30.539
30.621
0.878
0.364
0.526
0.460
TRUE
TRUE
TRUE
TRUE


hsa_miR_340_000550
23.475
22.875
23.973
23.292
0.589
0.502
0.730
0.462
TRUE
TRUE
TRUE
TRUE


hsa_miR_363_001283
39.170
40.277
38.929
35.354
NA
NA
0.650
0.013
FALSE
FALSE
TRUE
TRUE


hsa_miR_376a_001287
24.086
31.048
26.324
25.302
0.071
0.986
0.611
0.386
TRUE
TRUE
TRUE
TRUE


hsa_miR_378_000567
25.843
25.735
22.340
27.387
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


hsa_miR_411_002238
24.845
31.212
26.382
25.055
0.196
0.989
0.589
0.259
TRUE
TRUE
TRUE
TRUE


hsa_miR_412_001023
29.401
33.999
31.660
30.565
0.114
NA
0.691
0.428
TRUE
FALSE
TRUE
TRUE


hsa_miR_421_002700
22.275
22.096
23.281
23.044
0.414
0.484
0.738
0.638
TRUE
TRUE
TRUE
TRUE


hsa_miR_423_3P_002626
30.184
25.943
28.472
28.527
0.937
0.095
0.598
0.532
TRUE
TRUE
TRUE
TRUE


hsa_miR_425_001104
31.256
27.795
28.489
30.517
0.917
0.216
0.343
0.707
TRUE
TRUE
TRUE
TRUE


hsa_miR_431_002312
31.094
36.118
34.404
31.738
0.104
NA
0.820
0.257
TRUE
FALSE
TRUE
TRUE


hsa_miR_455_001280
31.927
26.562
27.804
29.967
0.985
0.108
0.342
0.654
TRUE
TRUE
TRUE
TRUE


hsa_miR_485_5p_001036
35.893
35.904
35.951
36.172
NA
NA
0.525
0.583
FALSE
FALSE
TRUE
TRUE


hsa_miR_493_3p_001282
38.550
29.485
34.151
34.931
NA
0.004
0.499
0.587
FALSE
TRUE
TRUE
TRUE


hsa_miR_590_3P_002677
40.354
40.711
40.447
39.055
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


hsa_miR_653_002292
33.569
37.039
33.565
36.984
0.213
NA
0.258
0.834
TRUE
FALSE
TRUE
TRUE


hsa_miR_671_5p_197646_mat
33.621
32.414
27.096
34.593
NA
NA
0.017
NA
FALSE
FALSE
TRUE
FALSE


hsa_miR_708_002342
40.439
40.391
40.302
39.815
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


hsa_miR_744_002325
30.577
30.629
30.064
30.735
0.560
0.666
0.430
0.592
TRUE
TRUE
TRUE
TRUE


hsa_miR_875_5p_002203
25.517
28.405
20.202
35.659
0.391
0.651
0.005
NA
TRUE
TRUE
TRUE
FALSE


hsa_miR_935_002178
35.947
34.504
35.791
34.312
NA
NA
0.734
0.228
FALSE
FALSE
TRUE
TRUE


hsa_miR_93_002139
27.499
24.585
26.984
26.362
0.832
0.188
0.706
0.471
TRUE
TRUE
TRUE
TRUE


hsa_miR_99b_002196
29.619
30.180
30.703
30.506
0.353
0.629
NA
0.605
TRUE
TRUE
FALSE
TRUE


hsa_miR_9_002231
21.119
17.033
19.942
19.886
0.900
0.077
0.637
0.568
TRUE
TRUE
TRUE
TRUE


mmu_let_7a_000377
26.605
22.901
29.543
23.721
0.710
0.144
0.999
0.144
TRUE
TRUE
TRUE
TRUE


mmu_let_7a_002478
33.879
26.482
32.333
36.299
NA
0.000
NA
NA
FALSE
TRUE
FALSE
FALSE


mmu_let_7b_000378
21.022
18.952
20.591
21.083
0.683
0.252
0.588
0.702
TRUE
TRUE
TRUE
TRUE


mmu_let_7c_000379
20.247
18.747
20.629
20.101
0.641
0.321
0.743
0.544
TRUE
TRUE
TRUE
TRUE


mmu_let_7c_1_002479
34.745
31.257
26.064
33.303
NA
0.476
0.014
0.698
FALSE
TRUE
TRUE
TRUE


mmu_let_7d_001178
35.310
35.617
32.794
32.821
NA
NA
0.302
0.231
FALSE
FALSE
TRUE
TRUE


mmu_let_7d_002283
21.114
20.892
22.375
21.161
0.481
0.520
0.835
0.439
TRUE
TRUE
TRUE
TRUE


mmu_let_7e_002406
18.883
18.865
20.928
19.214
0.365
0.495
0.927
0.441
TRUE
TRUE
TRUE
TRUE


mmu_let_7f_000382
28.133
25.503
27.217
24.260
0.900
0.424
NA
0.070
TRUE
TRUE
FALSE
TRUE


mmu_let_7g_002282
20.587
21.067
21.987
21.300
0.340
0.608
0.776
0.546
TRUE
TRUE
TRUE
TRUE


mmu_let_7q_002492
30.813
35.502
33.242
33.315
0.059
NA
0.617
0.621
TRUE
FALSE
TRUE
TRUE


mmu_let_7i_002221
22.420
20.344
23.094
21.890
0.691
0.234
0.848
0.461
TRUE
TRUE
TRUE
TRUE


mmu_miR_100_000437
21.277
18.539
20.865
21.116
0.736
0.162
0.639
0.674
TRUE
TRUE
TRUE
TRUE


mmu_miR_101a_002253
21.391
22.078
22.549
22.492
0.316
0.630
0.687
0.647
TRUE
TRUE
TRUE
TRUE


mmu_miR_101a_002507
35.607
35.338
35.313
34.185
NA
0.666
0.611
0.240
FALSE
TRUE
TRUE
TRUE


mmu_miR_101b_002531
23.593
23.284
24.919
23.229
0.536
0.522
0.877
0.321
TRUE
TRUE
TRUE
TRUE


mmu_miR_103_000439
23.842
23.307
25.438
23.785
0.478
0.450
0.905
0.406
TRUE
TRUE
TRUE
TRUE


mmu_miR_105_002465
32.153
33.607
31.208
40.714
0.295
0.506
0.157
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_106a_002459
25.321
21.039
26.750
22.667
0.806
0.081
0.980
0.216
TRUE
TRUE
TRUE
TRUE


mmu_miR_106b_000442
24.829
22.708
23.579
23.942
0.844
0.364
0.498
0.530
TRUE
TRUE
TRUE
TRUE


mmu_miR_107_000443
25.595
25.491
21.860
25.747
0.719
0.756
0.098
0.696
TRUE
TRUE
TRUE
TRUE


mmu_miR_10a_000387
22.311
20.705
21.958
21.852
0.724
0.365
0.624
0.531
TRUE
TRUE
TRUE
TRUE


mmu_miR_10b_001181
24.756
23.502
24.193
23.460
0.787
0.531
0.622
0.318
TRUE
TRUE
TRUE
TRUE


mmu_miR_10b_002218
19.724
19.901
22.288
18.429
0.497
0.556
0.982
0.113
TRUE
TRUE
TRUE
TRUE


mmu_miR_10b_002572
30.867
31.253
33.468
31.829
0.240
0.492
0.948
0.513
TRUE
TRUE
TRUE
TRUE


mmu_miR_1186_002825
35.674
34.292
35.448
37.548
NA
NA
0.498
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1188_002866
34.066
36.573
36.296
35.675
0.152
NA
0.737
0.568
TRUE
FALSE
TRUE
TRUE


mmu_miR_1191_002892
33.993
31.206
26.053
32.943
NA
0.524
0.017
0.708
FALSE
TRUE
TRUE
TRUE


mmu_miR_1192_002806
39.297
39.488
39.624
39.611
NA
NA
0.587
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1193_002794
29.446
31.092
31.622
32.179
0.137
0.599
0.695
0.815
TRUE
TRUE
TRUE
TRUE


mmu_miR_1194_002793
38.551
38.752
38.938
38.326
NA
NA
0.645
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1195_002839
36.882
36.650
36.988
39.681
NA
NA
0.432
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1198_002780
28.387
26.877
29.951
26.235
0.705
0.393
0.967
0.102
TRUE
TRUE
TRUE
TRUE


mmu_miR_1199_240984_mat
40.800
40.976
40.660
39.599
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1224_240985_mat
40.588
40.830
40.479
38.692
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_122_002245
36.718
32.391
27.033
38.251
NA
0.313
0.005
NA
FALSE
TRUE
TRUE
FALSE


mmu_miR_124_001182
22.915
27.716
24.414
22.536
0.326
0.953
0.672
0.149
TRUE
TRUE
TRUE
TRUE


mmu_miR_125a_3p_002199
26.710
27.123
26.352
26.339
0.602
0.736
0.486
0.431
TRUE
TRUE
TRUE
TRUE


mmu_miR_125a_5p_002198
19.531
20.109
21.013
19.923
0.359
0.637
0.805
0.474
TRUE
TRUE
TRUE
TRUE


mmu_miR_125b_002508
28.814
28.271
30.011
29.716
0.409
0.383
NA
0.683
TRUE
TRUE
FALSE
TRUE


mmu_miR_125b_3p_002378
31.665
29.295
28.707
32.283
0.758
0.322
0.213
0.900
TRUE
TRUE
TRUE
TRUE


mmu_miR_125b_5p_000449
19.134
18.277
17.962
19.210
0.673
0.541
0.362
0.667
TRUE
TRUE
TRUE
TRUE


mmu_miR_126_3p_002228
21.436
24.546
19.796
22.934
0.390
0.919
0.138
0.724
TRUE
TRUE
TRUE
TRUE


mmu_miR_126_5p_000451
23.217
26.593
22.386
24.760
0.324
NA
0.202
0.708
TRUE
FALSE
TRUE
TRUE


mmu_miR_1274a_121150_mat
32.404
33.863
28.270
35.143
0.477
0.794
0.030
0.942
TRUE
TRUE
TRUE
TRUE


mmu_miR_127_000452
17.984
22.141
18.143
17.627
0.433
0.953
0.446
0.283
TRUE
TRUE
TRUE
TRUE


mmu_miR_128a_002216
21.459
23.311
21.623
20.888
0.535
0.848
0.541
0.292
TRUE
TRUE
TRUE
TRUE


mmu_miR_129_3p_001184
20.069
22.271
20.910
19.403
0.491
0.849
0.670
0.206
TRUE
TRUE
TRUE
TRUE


mmu_miR_129_5p_000590
27.145
29.775
29.925
27.053
0.266
0.789
0.896
0.209
TRUE
TRUE
TRUE
TRUE


mmu_miR_1306_121155_mat
33.892
35.991
35.909
34.131
NA
NA
0.810
0.336
FALSE
FALSE
TRUE
TRUE


mmu_miR_130a_000454
28.162
23.051
28.262
24.955
0.894
0.062
0.910
0.229
TRUE
TRUE
TRUE
TRUE


mmu_miR_130b_000456
30.362
27.283
28.242
29.307
0.907
0.251
0.425
0.607
TRUE
TRUE
TRUE
TRUE


mmu_miR_130b_002460
34.518
34.829
27.920
29.072
0.910
0.941
0.062
0.191
TRUE
TRUE
TRUE
TRUE


mmu_miR_132_000457
18.750
22.630
18.745
17.460
0.539
0.955
0.492
0.126
TRUE
TRUE
TRUE
TRUE


mmu_miR_133a_001637
37.169
39.184
39.128
36.680
NA
NA
0.835
0.183
FALSE
FALSE
TRUE
TRUE


mmu_miR_133a_002246
18.284
25.610
20.344
19.099
0.102
0.993
0.603
0.318
TRUE
TRUE
TRUE
TRUE


mmu_miR_133b_002247
22.228
30.028
24.044
23.931
0.069
0.995
0.488
0.477
TRUE
TRUE
TRUE
TRUE


mmu_miR_134_001186
24.455
29.430
25.829
24.328
0.291
0.954
0.636
0.215
TRUE
TRUE
TRUE
TRUE


mmu_miR_135a_000460
23.965
20.438
22.637
21.522
0.929
0.228
0.682
0.317
TRUE
TRUE
TRUE
TRUE


mmu_miR_135b_002261
25.636
22.688
26.516
23.650
0.801
0.203
0.943
0.210
TRUE
TRUE
TRUE
TRUE


mmu_miR_136_002511
23.198
31.431
25.603
23.459
0.123
NA
0.663
0.186
TRUE
FALSE
TRUE
TRUE


mmu_miR_136_002512
30.751
31.041
30.171
31.783
0.461
0.647
0.359
0.760
TRUE
TRUE
TRUE
TRUE


mmu_miR_137_001129
21.829
26.038
21.266
22.713
0.329
0.953
0.231
0.575
TRUE
TRUE
TRUE
TRUE


mmu_miR_138_002284
15.816
20.940
18.263
16.941
0.087
0.935
0.705
0.398
TRUE
TRUE
TRUE
TRUE


mmu_miR_138_002554
24.601
28.346
26.566
25.101
0.212
0.890
0.714
0.344
TRUE
TRUE
TRUE
TRUE


mmu_miR_139_3p_002546
34.023
33.445
31.486
29.227
0.900
NA
0.489
0.035
TRUE
FALSE
TRUE
TRUE


mmu_miR_139_5p_002289
19.948
22.750
19.943
19.486
0.507
0.896
0.471
0.301
TRUE
TRUE
TRUE
TRUE


mmu_miR_140_001187
22.521
21.960
24.091
22.526
0.479
0.437
0.901
0.422
TRUE
TRUE
TRUE
TRUE


mmu_miR_141_000463
31.253
32.458
30.061
37.665
0.337
0.522
0.156
1.000
TRUE
TRUE
TRUE
TRUE


mmu_miR_141_002513
28.856
30.454
28.179
34.222
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_142_3p_000464
27.484
26.708
20.479
32.121
0.596
0.521
0.005
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_142_5p_002248
32.748
34.090
28.889
38.300
0.444
0.632
0.027
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_143_002249
30.354
27.693
27.746
33.991
0.627
0.200
0.220
0.998
TRUE
TRUE
TRUE
TRUE


mmu_miR_145_002278
28.267
25.943
25.032
32.452
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_145_002514
39.598
36.221
39.871
39.625
NA
NA
0.764
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_146a_000468
20.205
20.612
18.294
23.316
0.440
0.570
0.167
0.978
TRUE
TRUE
TRUE
TRUE


mmu_miR_146b_001097
22.698
21.903
21.670
22.024
0.759
0.599
0.431
0.468
TRUE
TRUE
TRUE
TRUE


mmu_miR_146b_002453
35.118
34.458
31.011
32.893
NA
NA
0.136
0.387
FALSE
FALSE
TRUE
TRUE


mmu_miR_147_002262
28.214
30.341
34.695
39.546
0.033
NA
0.765
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_148a_000470
27.498
25.528
29.408
26.749
0.628
0.224
0.973
0.316
TRUE
TRUE
TRUE
TRUE


mmu_miR_148b_000471
26.707
26.805
25.776
26.507
0.642
0.708
0.381
0.522
TRUE
TRUE
TRUE
TRUE


mmu_miR_150_000473
23.612
24.661
20.531
26.976
0.455
NA
0.071
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_150_002570
39.157
37.146
32.653
38.636
NA
0.568
0.034
0.729
FALSE
TRUE
TRUE
TRUE


mmu_miR_151_3p_001190
29.393
24.392
28.688
27.117
0.913
0.047
0.805
0.379
TRUE
TRUE
TRUE
TRUE


mmu_miR_152_000475
27.431
22.005
23.831
27.291
0.907
0.050
0.357
0.855
TRUE
TRUE
TRUE
TRUE


mmu_miR_153_001191
29.827
33.226
27.820
30.060
0.510
0.950
0.122
0.552
TRUE
TRUE
TRUE
TRUE


mmu_miR_154_000477
30.215
35.952
31.332
29.029
0.389
NA
0.623
0.058
TRUE
FALSE
TRUE
TRUE


mmu_miR_155_002571
29.516
25.108
24.640
31.805
0.751
0.147
0.132
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_15a_000389
25.684
23.551
26.442
25.119
0.693
0.221
0.864
0.452
TRUE
TRUE
TRUE
TRUE


mmu_miR_15a_002488
35.500
33.636
32.562
35.057
NA
0.470
0.217
0.682
FALSE
TRUE
TRUE
TRUE


mmu_miR_15b_000390
24.047
22.118
22.240
24.231
0.739
0.361
0.339
0.786
TRUE
TRUE
TRUE
TRUE


mmu_miR_16_000391
19.478
19.323
19.314
19.828
0.527
0.604
0.486
0.635
TRUE
TRUE
TRUE
TRUE


mmu_miR_16_002489
34.399
30.663
32.622
34.433
NA
0.097
0.464
0.820
FALSE
TRUE
TRUE
TRUE


mmu_miR_17_002308
24.571
21.219
23.448
22.552
0.913
0.210
0.677
0.369
TRUE
TRUE
TRUE
TRUE


mmu_miR_17_002543
34.661
32.484
32.602
38.723
NA
0.219
0.249
0.998
FALSE
TRUE
TRUE
TRUE


mmu_miR_181A_2_002687
40.456
38.366
40.505
39.603
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_181a_000480
23.838
21.402
23.184
22.734
0.825
0.281
0.658
0.458
TRUE
TRUE
TRUE
TRUE


mmu_miR_181c_000482
28.956
28.208
27.870
27.191
0.821
0.655
0.511
0.254
TRUE
TRUE
TRUE
TRUE


mmu_miR_182_002599
22.935
24.346
22.552
22.881
0.510
0.826
0.410
0.484
TRUE
TRUE
TRUE
TRUE


mmu_miR_1839_3p_12120_3_mat
24.704
24.328
27.016
25.038
0.367
0.407
0.961
0.448
TRUE
TRUE
TRUE
TRUE


mmu_miR_1839_5p_12113_5_mat
26.728
25.648
28.582
25.394
0.627
0.418
0.968
0.156
TRUE
TRUE
TRUE
TRUE


mmu_miR_183_002269
29.532
33.817
27.068
29.281
0.571
NA
0.093
0.456
TRUE
FALSE
TRUE
TRUE


mmu_miR_184_000485
27.527
32.548
27.199
30.752
0.184
0.954
0.175
0.781
TRUE
TRUE
TRUE
TRUE


mmu_miR_185_002271
26.194
29.218
29.561
25.105
0.343
0.813
0.929
0.067
TRUE
TRUE
TRUE
TRUE


mmu_miR_186_002285
22.785
21.581
21.943
22.370
0.733
0.489
0.484
0.547
TRUE
TRUE
TRUE
TRUE


mmu_miR_186_002574
29.676
29.459
27.346
30.002
0.665
0.677
0.192
0.720
TRUE
TRUE
TRUE
TRUE


mmu_miR_187_001193
31.217
25.654
30.275
26.191
0.949
0.140
0.859
0.110
TRUE
TRUE
TRUE
TRUE


mmu_miR_188_3p_002106
38.923
38.713
39.440
39.453
NA
NA
0.657
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_188_5p_002320
25.421
23.733
19.030
25.431
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1893_121170_mat
41.067
40.807
40.667
39.923
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1894_3p_24100_2_mat
27.754
27.636
24.011
33.056
0.513
0.493
0.056
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_1894_5p_12114_4_mat
38.132
37.626
38.700
38.771
NA
NA
0.680
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1896_121128_mat
23.931
22.339
20.892
30.141
0.571
0.306
0.114
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_1897_3p_12112_6_mat
40.727
40.894
40.614
39.596
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1897_5p_12119_9_mat
20.325
19.912
15.717
23.724
NA
NA
0.038
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1898_121195_mat
40.765
40.949
40.633
39.458
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1899_121198_mat
40.059
40.154
40.223
39.589
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_18a_002422
27.873
27.994
28.076
27.983
0.520
0.650
0.572
0.522
TRUE
TRUE
TRUE
TRUE


mmu_miR_18a_002490
34.460
32.829
32.514
33.417
NA
0.514
0.353
0.505
FALSE
TRUE
TRUE
TRUE


mmu_miR_18b_002466
34.967
40.959
40.289
39.992
0.005
NA
NA
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_1900_121143_mat
40.350
40.477
40.406
39.601
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1901_121183_mat
36.706
36.929
35.814
38.354
NA
NA
0.301
0.875
FALSE
FALSE
TRUE
TRUE


mmu_miR_1902_121197_mat
40.582
40.743
40.538
39.592
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1903_121153_mat
37.136
37.793
39.222
37.513
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1904_121162_mat
16.565
18.004
13.193
20.893
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1905_121196_mat
27.519
30.772
23.772
33.607
0.373
0.755
0.014
0.993
TRUE
TRUE
TRUE
TRUE


mmu_miR_1906_121169_
mat
38.551
40.095
39.687
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_190_000489
26.020
24.836
23.901
25.434
0.821
0.568
0.283
0.572
TRUE
TRUE
TRUE
TRUE


mmu_miR_191_002299
20.171
19.761
20.100
19.787
0.645
0.599
0.588
0.438
TRUE
TRUE
TRUE
TRUE


mmu_miR_191_002576
30.096
30.591
30.703
31.638
0.333
0.591
0.543
0.788
TRUE
TRUE
TRUE
TRUE


mmu_miR_1927_121193_mat
37.263
36.434
37.663
37.542
NA
NA
0.686
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1928_121164_mat
21.073
21.447
17.307
24.884
0.505
0.605
0.049
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_192_000491
25.821
24.640
27.611
24.923
0.607
0.378
0.963
0.228
TRUE
TRUE
TRUE
TRUE


mmu_miR_1930_121201_mat
27.711
29.487
28.858
29.873
0.213
0.724
0.536
0.775
TRUE
TRUE
TRUE
TRUE


mmu_miR_1931_121168_mat
40.049
40.269
40.120
39.375
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1932_121172_mat
34.483
30.920
35.361
34.291
NA
0.055
0.884
0.593
FALSE
TRUE
TRUE
TRUE


mmu_miR_1933_3p_12114_5_mat
40.460
40.620
40.478
39.589
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1933_5p_12113_3_mat
36.958
31.287
33.447
36.139
NA
0.046
0.385
0.762
FALSE
TRUE
TRUE
TRUE


mmu_miR_1934_121185_mat
36.253
38.565
38.642
38.408
0.118
NA
0.735
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_1935_121192_mat
40.374
40.629
40.327
39.848
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1936_121158_mat
38.865
38.937
39.344
39.702
NA
NA
0.594
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1937b_241023_mat
20.223
20.471
17.105
24.382
0.492
0.541
0.081
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_1937c_241011_mat
21.727
22.012
18.017
25.595
NA
NA
0.055
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1938_121194_mat
38.639
38.671
39.202
39.535
NA
NA
0.620
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1939_121180_mat
35.897
35.198
36.959
37.323
NA
NA
0.712
0.816
FALSE
FALSE
TRUE
TRUE


mmu_miR_193_002250
35.129
33.877
33.044
36.199
0.637
0.434
0.243
0.894
TRUE
TRUE
TRUE
TRUE


mmu_miR_193_002577
31.827
29.274
30.764
33.235
0.615
0.160
0.451
0.945
TRUE
TRUE
TRUE
TRUE


mmu_miR_193b_002467
21.195
20.017
23.182
22.324
0.359
0.222
0.907
0.705
TRUE
TRUE
TRUE
TRUE


mmu_miR_1940_121187_mat
37.494
38.721
39.788
37.955
0.268
0.663
0.903
0.396
TRUE
TRUE
TRUE
TRUE


mmu_miR_1941_3p_12113_0_mat
38.707
38.733
39.267
39.559
NA
NA
0.623
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1941_5p_12114_0_mat
32.911
31.434
31.722
32.165
0.806
0.486
0.450
0.506
TRUE
TRUE
TRUE
TRUE


mmu_miR_1942_121136_mat
37.383
35.682
32.572
40.377
NA
0.393
0.058
NA
FALSE
TRUE
TRUE
FALSE


mmu_miR_1943_121174_mat
34.219
31.433
33.667
34.136
NA
0.157
0.607
0.710
FALSE
TRUE
TRUE
TRUE


mmu_miR_1944_121189_mat
40.038
38.885
40.224
36.979
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1945_121166_mat
38.445
38.543
38.984
39.087
NA
NA
0.631
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1946a_121178_mat
41.375
40.616
40.439
40.411
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1947_121156_mat
37.774
35.276
38.705
39.625
NA
0.079
0.726
NA
FALSE
TRUE
TRUE
FALSE


mmu_miR_1948_121171_mat
35.099
34.784
37.053
35.673
0.369
0.411
0.911
0.531
TRUE
TRUE
TRUE
TRUE


mmu_miR_1949_121182_mat
40.135
40.342
40.234
39.610
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_194_000493
26.330
25.568
23.924
25.839
0.799
0.655
0.231
0.571
TRUE
TRUE
TRUE
TRUE


mmu_miR_1950_121146_mat
40.526
37.767
39.581
39.600
NA
NA
0.604
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1951_121165_mat
35.079
35.529
36.820
40.704
NA
NA
0.614
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1952_121167_mat
40.678
40.848
40.591
39.596
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1953_121159_mat
39.401
39.472
39.822
39.556
NA
NA
0.639
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1954_121137_mat
29.035
29.632
26.449
36.272
0.422
0.504
0.083
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_1956_121129_mat
34.837
32.972
37.649
38.751
NA
0.064
NA
NA
FALSE
TRUE
FALSE
FALSE


mmu_miR_1957_121163_mat
40.800
40.976
40.660
39.599
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1958_121181_mat
38.727
35.735
39.186
39.621
NA
NA
0.723
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1959_121132_mat
27.370
28.292
25.195
34.862
0.395
0.511
0.097
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_195_000494
23.651
20.103
23.001
22.685
0.850
0.107
0.691
0.542
TRUE
TRUE
TRUE
TRUE


mmu_miR_1960_121148_mat
36.303
34.907
37.184
37.489
NA
NA
0.736
0.817
FALSE
FALSE
TRUE
TRUE


mmu_miR_1961_197391_mat
25.571
26.372
21.891
33.930
0.441
NA
0.035
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_1962_121173_mat
40.135
39.765
40.222
38.982
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1963_121191_mat
40.800
40.976
40.660
39.599
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1964_121138_mat
37.371
36.401
38.090
38.242
NA
NA
0.711
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1965_121186_mat
40.817
40.947
40.655
39.615
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1966_121134_mat
40.522
40.884
40.557
38.864
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1967_121151_mat
40.791
40.969
40.662
39.651
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1968_121179_mat
38.202
33.226
38.270
40.336
NA
0.005
0.626
NA
FALSE
TRUE
TRUE
FALSE


mmu_miR_1969_121131_mat
22.677
22.813
19.052
26.253
0.514
0.573
0.066
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_196a_002477
23.463
23.683
26.769
28.784
0.123
0.212
NA
NA
TRUE
TRUE
FALSE
FALSE


mmu_miR_196b_002215
26.664
24.959
29.268
26.734
0.452
0.187
0.989
0.468
TRUE
TRUE
TRUE
TRUE


mmu_miR_1970_121202_mat
37.158
40.486
37.291
35.218
0.588
NA
0.575
0.051
TRUE
FALSE
TRUE
TRUE


mmu_miR_1971_121161_mat
31.867
26.827
28.458
28.504
0.983
0.170
0.505
0.433
TRUE
TRUE
TRUE
TRUE


mmu_miR_197_000497
25.970
31.605
25.145
36.074
0.149
NA
0.073
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_1981_121200_mat
28.861
29.731
27.985
28.723
0.586
0.793
0.353
0.506
TRUE
TRUE
TRUE
TRUE


mmu_miR_1982.1_121157_mat
32.471
30.251
29.215
31.222
0.921
0.480
0.227
0.563
TRUE
TRUE
TRUE
TRUE


mmu_miR_1982.2_121154_mat
31.162
32.098
28.473
30.835
0.705
0.848
0.149
0.542
TRUE
TRUE
TRUE
TRUE


mmu_miR_199a_3p_00230_4
33.229
27.600
25.700
29.693
0.997
0.311
0.095
0.604
TRUE
TRUE
TRUE
TRUE


mmu_miR_199a_5p_00049_8
34.977
35.802
35.689
34.177
0.567
NA
0.717
0.227
TRUE
FALSE
TRUE
TRUE


mmu_miR_199b_001131
34.903
34.917
36.895
36.159
NA
NA
0.866
0.665
FALSE
FALSE
TRUE
TRUE


mmu_miR_19a_000395
26.653
23.770
23.913
26.348
0.866
0.283
0.288
0.759
TRUE
TRUE
TRUE
TRUE


mmu_miR_19a_002544
39.970
40.091
40.183
39.587
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_19b_000396
23.455
20.176
21.772
21.905
0.917
0.221
0.553
0.501
TRUE
TRUE
TRUE
TRUE


mmu_miR_1_002222
20.609
24.439
22.001
21.881
0.177
0.892
0.569
0.541
TRUE
TRUE
TRUE
TRUE


mmu_miR_1_2_AS_002882
33.789
30.701
29.589
35.511
0.736
0.254
0.133
0.984
TRUE
TRUE
TRUE
TRUE


mmu_miR_200a_000502
37.374
35.908
36.797
40.028
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_200b_002251
34.157
30.147
31.994
38.092
NA
0.053
NA
NA
FALSE
TRUE
FALSE
FALSE


mmu_miR_200c_002300
35.038
34.544
34.569
34.087
NA
NA
NA
0.347
FALSE
FALSE
FALSE
TRUE


mmu_miR_201_002578
39.119
38.981
39.419
39.702
NA
NA
0.582
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_202_3p_001195
34.130
35.598
29.818
38.508
NA
NA
0.020
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_202_5p_002579
36.557
36.487
36.622
38.051
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_203_000507
30.904
23.633
24.671
26.032
0.999
0.141
0.323
0.532
TRUE
TRUE
TRUE
TRUE


mmu_miR_203_002580
38.162
33.989
38.656
39.162
NA
0.019
0.742
NA
FALSE
TRUE
TRUE
FALSE


mmu_miR_204_000508
21.639
17.844
20.130
21.552
0.823
0.083
0.508
0.786
TRUE
TRUE
TRUE
TRUE


mmu_miR_205_000509
36.168
36.173
29.195
31.628
NA
NA
0.034
0.274
FALSE
FALSE
TRUE
TRUE


mmu_miR_207_001198
39.609
39.847
39.859
38.772
NA
NA
0.645
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_208_000511
36.655
39.691
32.832
34.276
NA
NA
0.079
0.252
FALSE
FALSE
TRUE
TRUE


mmu_miR_208b_002290
37.345
36.626
34.475
40.825
NA
NA
0.123
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_20a_000580
23.510
20.560
20.501
22.040
0.941
0.360
0.288
0.574
TRUE
TRUE
TRUE
TRUE


mmu_miR_20a_002491
33.464
33.864
31.505
33.131
NA
0.783
NA
0.539
FALSE
TRUE
FALSE
TRUE


mmu_miR_20b_001014
26.251
22.328
23.702
24.708
0.949
0.175
0.440
0.589
TRUE
TRUE
TRUE
TRUE


mmu_miR_20b_002524
36.450
39.946
39.831
39.368
NA
NA
0.764
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_210_000512
35.507
25.807
29.748
29.925
0.999
0.012
0.513
0.519
TRUE
TRUE
TRUE
TRUE


mmu_miR_211_001199
23.729
22.214
22.798
23.652
0.714
0.398
0.466
0.667
TRUE
TRUE
TRUE
TRUE


mmu_miR_212_002551
21.787
26.550
24.396
20.210
0.342
0.942
0.817
0.022
TRUE
TRUE
TRUE
TRUE


mmu_miR_2134_241120_mat
25.220
26.216
21.255
30.207
0.467
NA
0.030
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_2135_241140_mat
38.826
37.734
31.165
39.755
NA
NA
0.006
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_2136_241133_mat
39.360
37.795
37.095
38.837
NA
NA
0.277
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_2138_241080_mat
30.825
31.356
25.456
37.511
0.486
0.585
0.009
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_2139_241130_mat
38.024
38.095
38.487
39.682
NA
NA
0.539
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_2146_241082_mat
27.401
26.323
23.305
30.057
0.613
0.456
0.080
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_214_002306
35.017
33.128
34.592
35.114
0.665
0.285
0.572
0.706
TRUE
TRUE
TRUE
TRUE


mmu_miR_215_001200
34.222
33.059
27.880
34.179
NA
0.662
0.026
0.772
FALSE
TRUE
TRUE
TRUE


mmu_miR_216a_002220
30.592
35.327
28.474
31.164
0.438
NA
0.092
0.579
TRUE
FALSE
TRUE
TRUE


mmu_miR_216b_002326
25.938
36.270
26.110
26.554
0.217
1.000
0.284
0.429
TRUE
TRUE
TRUE
TRUE


mmu_miR_217_001133
29.524
35.038
33.026
32.032
0.023
NA
0.725
0.513
TRUE
FALSE
TRUE
TRUE


mmu_miR_217_002556
29.147
34.378
29.282
31.591
0.166
NA
0.236
0.715
TRUE
FALSE
TRUE
TRUE


mmu_miR_2182_241119_mat
31.894
32.813
34.424
37.603
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_2183_241095_mat
28.181
28.424
24.513
34.224
0.485
0.524
0.049
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_218_000521
15.157
22.592
18.977
17.487
0.016
0.971
0.719
0.411
TRUE
TRUE
TRUE
TRUE


mmu_miR_218_1_002552
27.310
32.810
28.424
27.609
0.232
0.980
0.542
0.323
TRUE
TRUE
TRUE
TRUE


mmu_miR_219_000522
28.768
22.724
26.704
24.160
0.975
0.087
0.779
0.211
TRUE
TRUE
TRUE
TRUE


mmu_miR_21_000397
21.854
20.412
19.267
22.577
0.697
0.446
0.207
0.871
TRUE
TRUE
TRUE
TRUE


mmu_miR_21_002493
36.703
36.669
37.067
38.292
NA
NA
0.524
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_220_002468
40.664
40.854
40.565
39.599
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_221_000524
24.562
21.642
23.828
23.363
0.849
0.210
0.671
0.475
TRUE
TRUE
TRUE
TRUE


mmu_miR_222_002276
22.440
21.967
21.100
21.187
0.798
0.682
0.413
0.362
TRUE
TRUE
TRUE
TRUE


mmu_miR_223_002295
29.696
29.533
19.004
34.351
0.570
0.596
0.000
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_224_002553
33.739
29.622
30.948
30.549
0.975
0.265
0.536
0.347
TRUE
TRUE
TRUE
TRUE


mmu_miR_23a_000399
38.101
35.621
38.758
39.498
NA
NA
0.715
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_23b_000400
23.589
24.287
24.723
24.319
0.350
0.658
0.708
0.564
TRUE
TRUE
TRUE
TRUE


mmu_miR_24_000402
19.249
19.332
19.042
19.636
0.508
0.645
0.465
0.629
TRUE
TRUE
TRUE
TRUE


mmu_miR_24_2_002494
28.004
25.903
26.784
28.749
0.664
0.260
0.420
0.873
TRUE
TRUE
TRUE
TRUE


mmu_miR_25_000403
24.910
23.155
28.754
26.164
0.300
0.112
NA
0.632
TRUE
TRUE
FALSE
TRUE


mmu_miR_26a_000405
19.400
18.349
19.799
18.864
0.661
0.453
0.750
0.406
TRUE
TRUE
TRUE
TRUE


mmu_miR_26b_000407
21.965
19.982
20.984
21.864
0.740
0.314
0.490
0.689
TRUE
TRUE
TRUE
TRUE


mmu_miR_27a_000408
22.205
21.250
21.075
25.023
0.486
0.357
0.296
0.984
TRUE
TRUE
TRUE
TRUE


mmu_miR_27b_000409
22.543
21.142
21.638
21.953
0.768
0.469
0.505
0.516
TRUE
TRUE
TRUE
TRUE


mmu_miR_28_000411
23.530
23.280
19.520
26.346
0.565
0.557
0.063
0.988
TRUE
TRUE
TRUE
TRUE


mmu_miR_28_002545
33.734
29.672
29.004
30.874
NA
0.360
0.210
0.512
FALSE
TRUE
TRUE
TRUE


mmu_miR_290_000187
34.568
38.332
32.703
37.070
0.329
NA
0.093
0.799
TRUE
FALSE
TRUE
TRUE


mmu_miR_290_3p_002591
40.715
40.888
40.610
39.599
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_290_5p_002590
38.539
38.292
38.763
39.370
NA
NA
0.551
0.723
FALSE
FALSE
TRUE
TRUE


mmu_miR_291_3p_001135
39.716
40.918
40.536
39.670
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_291_5p_001202
40.679
40.889
40.559
38.886
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_291a_3p_002592
40.725
40.893
40.617
39.598
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_291b_3p_002538
40.228
40.364
40.319
39.593
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_291b_5p_ 002537
40.827
40.974
40.102
39.630
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_292_3p_001054
36.543
40.991
40.487
39.557
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_292_3p_002593
37.337
37.261
31.933
38.244
NA
NA
0.026
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_292_5p_001055
32.090
39.133
38.466
35.412
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_293_001794
30.545
33.985
36.927
37.689
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_293_002594
39.185
39.336
39.466
39.619
NA
NA
0.566
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_294_001056
35.345
33.862
38.747
39.926
NA
0.074
0.844
NA
FALSE
TRUE
TRUE
FALSE


mmu_miR_294_002595
40.800
40.976
40.660
39.599
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_295_000189
38.865
38.753
37.345
39.773
NA
NA
0.258
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_295_002596
41.230
40.887
40.649
39.990
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_296_3p_002101
34.506
35.537
36.603
36.656
NA
NA
0.770
0.765
FALSE
FALSE
TRUE
TRUE


mmu_miR_296_5p_000527
23.767
22.719
27.116
25.004
0.274
0.201
0.989
0.619
TRUE
TRUE
TRUE
TRUE


mmu_miR_297a_002454
32.589
27.503
31.143
32.654
0.820
0.021
NA
0.832
TRUE
TRUE
FALSE
TRUE


mmu_miR_297b_5p_001626
37.991
37.973
38.582
39.563
NA
NA
0.584
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_297c_002480
34.923
34.760
35.370
34.027
NA
NA
0.738
0.267
FALSE
FALSE
TRUE
TRUE


mmu_miR_298_002598
30.511
34.138
29.386
28.972
0.639
0.962
0.331
0.174
TRUE
TRUE
TRUE
TRUE


mmu_miR_299_002612
40.800
40.976
40.660
39.599
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_29a_002112
18.880
20.272
20.631
18.663
0.396
0.736
0.839
0.265
TRUE
TRUE
TRUE
TRUE


mmu_miR_29b_000413
22.096
23.254
19.985
23.180
0.508
0.814
0.161
0.749
TRUE
TRUE
TRUE
TRUE


mmu_miR_29b_002497
25.948
25.957
22.206
29.062
NA
NA
0.067
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_29c_000587
20.948
22.083
22.585
21.339
0.325
0.695
0.803
0.439
TRUE
TRUE
TRUE
TRUE


mmu_miR_300_000191
26.672
30.547
23.857
27.574
0.465
0.961
0.062
0.651
TRUE
TRUE
TRUE
TRUE


mmu_miR_300_002613
30.068
35.836
33.223
31.684
0.040
NA
0.741
0.400
TRUE
FALSE
TRUE
TRUE


mmu_miR_301a_000528
24.988
24.431
24.259
24.762
0.667
0.598
0.447
0.543
TRUE
TRUE
TRUE
TRUE


mmu_miR_301b_002600
23.806
23.233
24.592
23.643
0.566
0.492
0.784
0.440
TRUE
TRUE
TRUE
TRUE


mmu_miR_302a_000529
26.452
28.091
29.988
31.762
0.069
0.361
0.753
0.967
TRUE
TRUE
TRUE
TRUE


mmu_miR_302a_002615
36.954
35.943
37.319
37.084
NA
NA
0.697
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_302b_000531
36.591
34.482
36.252
34.708
NA
NA
0.752
0.228
FALSE
FALSE
TRUE
TRUE


mmu_miR_302b_001307
39.525
39.366
39.773
39.983
NA
NA
0.576
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_302c_002557
37.155
40.917
40.494
40.085
0.050
NA
NA
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_302c_002558
36.032
37.229
38.700
37.763
NA
NA
0.887
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_302d_000535
34.905
36.994
34.892
37.028
NA
NA
0.327
0.794
FALSE
FALSE
TRUE
TRUE


mmu_miR_30a_000417
21.643
20.660
21.029
21.372
0.683
0.513
0.505
0.555
TRUE
TRUE
TRUE
TRUE


mmu_miR_30b_000602
17.560
17.349
17.415
17.264
0.619
0.638
0.553
0.455
TRUE
TRUE
TRUE
TRUE


mmu_miR_30b_002498
36.136
34.542
36.464
37.099
NA
NA
0.644
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_30c_000419
17.295
17.157
16.745
16.935
0.644
0.669
0.472
0.472
TRUE
TRUE
TRUE
TRUE


mmu_miR_30d_000420
24.417
22.754
23.617
24.391
0.698
0.361
0.500
0.685
TRUE
TRUE
TRUE
TRUE


mmu_miR_30e_002223
21.865
20.533
21.461
21.738
0.669
0.408
0.566
0.606
TRUE
TRUE
TRUE
TRUE


mmu_miR_31_000185
25.113
24.578
25.846
26.116
NA
0.405
NA
NA
FALSE
TRUE
FALSE
FALSE


mmu_miR_31_002495
26.718
27.680
28.770
27.077
0.308
0.645
0.891
0.398
TRUE
TRUE
TRUE
TRUE


mmu_miR_320_002277
21.617
19.602
22.107
21.161
0.687
0.243
0.811
0.493
TRUE
TRUE
TRUE
TRUE


mmu_miR_322_001059
32.711
27.863
28.295
29.519
NA
0.251
0.311
0.512
FALSE
TRUE
TRUE
TRUE


mmu_miR_322_001076
34.886
26.816
29.866
27.636
NA
0.136
0.672
0.174
FALSE
TRUE
TRUE
TRUE


mmu_miR_322_002506
35.754
28.144
29.024
29.855
NA
0.188
0.334
0.470
FALSE
TRUE
TRUE
TRUE


mmu_miR_323_3p_002227
25.679
34.949
28.564
24.974
0.208
0.999
0.703
0.047
TRUE
TRUE
TRUE
TRUE


mmu_miR_324_3p_002509
28.000
25.700
28.198
25.696
0.823
0.351
0.857
0.152
TRUE
TRUE
TRUE
TRUE


mmu_miR_324_5p_000539
26.356
24.861
25.898
25.099
0.789
0.473
0.655
0.331
TRUE
TRUE
TRUE
TRUE


mmu_miR_325_001060
34.452
30.685
25.031
30.002
NA
0.653
0.020
0.436
FALSE
TRUE
TRUE
TRUE


mmu_miR_325_002510
25.983
27.615
27.307
25.724
0.423
0.783
0.754
0.274
TRUE
TRUE
TRUE
TRUE


mmu_miR_326_001061
36.939
28.374
35.872
35.442
NA
0.000
0.714
0.570
FALSE
TRUE
TRUE
TRUE


mmu_miR_327_002481
39.083
40.737
40.499
39.740
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_328_000543
19.844
20.826
20.752
20.004
0.422
0.730
0.681
0.440
TRUE
TRUE
TRUE
TRUE


mmu_miR_329_000192
25.077
30.111
27.321
25.846
0.131
0.935
0.704
0.344
TRUE
TRUE
TRUE
TRUE


mmu_miR_32_002109
31.024
27.794
23.494
32.717
0.763
0.356
0.019
0.989
TRUE
TRUE
TRUE
TRUE


mmu_miR_330_001062
32.387
34.544
31.881
34.615
NA
NA
0.262
0.817
FALSE
FALSE
TRUE
TRUE


mmu_miR_330_002230
33.769
35.687
33.609
32.897
0.585
NA
0.502
0.254
TRUE
FALSE
TRUE
TRUE


mmu_miR_331_3p_000545
21.121
21.839
23.389
22.266
0.227
0.556
0.888
0.567
TRUE
TRUE
TRUE
TRUE


mmu_miR_331_5p_002233
26.447
30.018
24.235
28.002
0.401
0.942
0.085
0.730
TRUE
TRUE
TRUE
TRUE


mmu_miR_335_3p_002185
24.204
32.080
29.145
24.623
0.065
NA
NA
0.157
TRUE
FALSE
FALSE
TRUE


mmu_miR_335_5p_000546
20.019
24.151
22.165
21.066
0.146
0.896
0.699
0.422
TRUE
TRUE
TRUE
TRUE


mmu_miR_337_000193
24.808
27.742
26.572
25.866
0.200
0.840
0.679
0.494
TRUE
TRUE
TRUE
TRUE


mmu_miR_337_3p_002532
24.335
29.317
26.350
25.540
0.115
0.933
0.642
0.444
TRUE
TRUE
TRUE
TRUE


mmu_miR_337_5p_002515
22.502
24.118
22.776
24.779
0.274
0.729
0.389
0.833
TRUE
TRUE
TRUE
TRUE


mmu_miR_338_3p_002252
27.975
23.944
25.100
25.953
0.968
0.201
0.422
0.539
TRUE
TRUE
TRUE
TRUE


mmu_miR_339_3p_002533
28.323
27.527
26.418
30.378
0.542
0.439
0.226
0.966
TRUE
TRUE
TRUE
TRUE


mmu_miR_339_5p_002257
30.435
26.331
29.808
28.775
0.891
0.081
0.752
0.440
TRUE
TRUE
TRUE
TRUE


mmu_miR_340_3p_002259
23.365
23.616
23.577
23.956
0.448
0.644
0.520
0.637
TRUE
TRUE
TRUE
TRUE


mmu_miR_340_5p_002258
22.205
21.848
22.815
22.211
0.536
0.534
0.727
0.491
TRUE
TRUE
TRUE
TRUE


mmu_miR_342_3p_002260
21.321
23.880
21.751
20.813
0.490
0.873
0.571
0.264
TRUE
TRUE
TRUE
TRUE


mmu_miR_342_5p_002527
30.184
36.101
30.724
31.060
0.207
NA
NA
0.478
TRUE
FALSE
FALSE
TRUE


mmu_miR_343_002483
40.797
40.943
39.789
39.404
NA
NA
0.457
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_344_001063
28.289
26.961
29.952
26.321
0.680
0.410
0.969
0.108
TRUE
TRUE
TRUE
TRUE


mmu_miR_345_001137
26.501
25.026
26.910
26.797
0.567
0.297
0.717
0.667
TRUE
TRUE
TRUE
TRUE


mmu_miR_345_3p_002529
30.626
30.462
32.136
32.339
0.300
0.381
0.752
0.804
TRUE
TRUE
TRUE
TRUE


mmu_miR_345_5p_002528
29.401
26.673
30.028
28.619
0.744
0.158
0.874
0.440
TRUE
TRUE
TRUE
TRUE


mmu_miR_346_001064
35.482
36.613
36.919
37.432
NA
NA
0.633
0.772
FALSE
FALSE
TRUE
TRUE


mmu_miR_34a_000426
18.255
23.341
19.478
18.546
0.240
0.962
0.573
0.333
TRUE
TRUE
TRUE
TRUE


mmu_miR_34b_001065
30.158
32.933
33.550
32.506
0.078
0.716
0.860
0.586
TRUE
TRUE
TRUE
TRUE


mmu_miR_34b_3p_002618
21.772
23.190
23.803
23.280
0.200
0.668
0.783
0.610
TRUE
TRUE
TRUE
TRUE


mmu_miR_34b_5p_002617
29.445
30.853
29.802
31.524
0.284
0.706
0.422
0.819
TRUE
TRUE
TRUE
TRUE


mmu_miR_34c_000428
24.217
26.464
28.795
25.613
0.108
0.618
NA
0.401
TRUE
TRUE
FALSE
TRUE


mmu_miR_34c_002584
24.789
26.008
24.762
25.940
0.372
0.762
0.395
0.698
TRUE
TRUE
TRUE
TRUE


mmu_miR_350_002530
27.855
24.200
25.686
26.607
0.928
0.173
0.464
0.609
TRUE
TRUE
TRUE
TRUE


mmu_miR_351_001067
36.981
37.207
37.323
34.907
NA
NA
0.735
0.094
FALSE
FALSE
TRUE
TRUE


mmu_miR_361_000554
22.743
23.747
26.542
23.436
0.209
0.547
0.989
0.367
TRUE
TRUE
TRUE
TRUE


mmu_miR_362_3p_002616
26.200
26.560
25.174
27.972
0.439
0.624
0.266
0.886
TRUE
TRUE
TRUE
TRUE


mmu_miR_362_5p_002614
27.713
26.227
29.748
27.733
0.493
0.239
0.965
0.467
TRUE
TRUE
TRUE
TRUE


mmu_miR_363_001271
35.112
31.763
35.278
32.752
NA
0.188
NA
0.216
FALSE
TRUE
FALSE
TRUE


mmu_miR_365_001020
26.691
21.520
27.434
25.577
0.809
0.013
0.928
0.460
TRUE
TRUE
TRUE
TRUE


mmu_miR_367_000555
24.098
21.615
22.812
22.630
0.884
0.337
0.572
0.430
TRUE
TRUE
TRUE
TRUE


mmu_miR_369_3p_000557
25.252
30.681
26.357
25.051
0.309
0.979
0.575
0.211
TRUE
TRUE
TRUE
TRUE


mmu_miR_369_5p_001021
27.346
33.699
27.481
29.284
0.158
0.986
0.229
0.638
TRUE
TRUE
TRUE
TRUE


mmu_miR_370_001068
36.845
36.916
37.275
38.519
NA
NA
0.529
0.846
FALSE
FALSE
TRUE
TRUE


mmu_miR_370_002275
27.812
37.320
30.071
25.383
0.322
1.000
NA
0.005
TRUE
TRUE
FALSE
TRUE


mmu_miR_374_002043
35.888
35.949
31.764
38.675
NA
NA
0.049
0.985
FALSE
FALSE
TRUE
TRUE


mmu_miR_374_5p_001319
28.990
24.221
24.822
25.278
0.990
0.286
0.375
0.417
TRUE
TRUE
TRUE
TRUE


mmu_miR_375_000564
27.239
30.166
30.012
27.378
0.228
NA
NA
0.249
TRUE
FALSE
FALSE
TRUE


mmu_miR_376a_001069
20.511
26.028
22.102
20.927
0.179
0.972
0.609
0.322
TRUE
TRUE
TRUE
TRUE


mmu_miR_376a_002482
26.417
32.304
28.456
26.618
0.170
0.976
0.682
0.222
TRUE
TRUE
TRUE
TRUE


mmu_miR_376b_002451
22.440
26.856
27.602
22.368
0.172
0.824
NA
0.136
TRUE
TRUE
FALSE
TRUE


mmu_miR_376b_002452
24.914
33.500
27.221
25.424
0.103
0.998
0.632
0.238
TRUE
TRUE
TRUE
TRUE


mmu_miR_376c_002450
21.249
24.932
23.650
22.212
0.145
0.866
0.757
0.407
TRUE
TRUE
TRUE
TRUE


mmu_miR_376c_002523
38.621
40.718
38.370
38.732
0.459
NA
0.393
0.491
TRUE
FALSE
TRUE
TRUE


mmu_miR_377_000566
32.710
34.245
34.053
33.271
0.315
NA
0.703
0.477
TRUE
FALSE
TRUE
TRUE


mmu_miR_379_001138
21.972
26.362
26.134
22.919
0.090
0.854
0.899
0.278
TRUE
TRUE
TRUE
TRUE


mmu_miR_380_3p_001071
30.254
35.033
33.354
31.918
0.064
NA
0.760
0.435
TRUE
FALSE
TRUE
TRUE


mmu_miR_380_5p_002601
23.589
30.331
25.748
25.525
0.051
0.978
0.552
0.512
TRUE
TRUE
TRUE
TRUE


mmu_miR_381_000571
28.445
33.389
26.658
28.385
0.491
0.983
0.128
0.459
TRUE
TRUE
TRUE
TRUE


mmu_miR_382_000572
20.937
29.384
24.871
19.561
0.237
0.991
0.768
0.019
TRUE
TRUE
TRUE
TRUE


mmu_miR_383_001767
22.534
29.975
25.067
23.078
0.094
NA
0.684
0.231
TRUE
FALSE
TRUE
TRUE


mmu_miR_384_3p_002603
23.280
25.392
24.325
23.128
0.417
0.826
0.674
0.316
TRUE
TRUE
TRUE
TRUE


mmu_miR_384_5p_002602
18.262
21.020
19.033
18.127
0.411
0.871
0.603
0.325
TRUE
TRUE
TRUE
TRUE


mmu_miR_409_3p_002332
21.286
26.031
24.446
22.315
0.093
0.902
0.808
0.323
TRUE
TRUE
TRUE
TRUE


mmu_miR_409_5p_002331
26.908
35.390
30.555
28.663
0.022
NA
0.703
0.329
TRUE
FALSE
TRUE
TRUE


mmu_miR_410_001274
19.898
25.075
22.390
19.982
0.173
0.948
0.761
0.194
TRUE
TRUE
TRUE
TRUE


mmu_miR_411_001610
20.429
24.068
22.266
20.705
0.250
0.893
0.717
0.298
TRUE
TRUE
TRUE
TRUE


mmu_miR_412_002575
25.523
34.189
25.255
25.460
0.332
0.999
0.273
0.333
TRUE
TRUE
TRUE
TRUE


mmu_miR_423_5p_002340
30.360
27.126
28.185
29.617
0.900
0.212
0.410
0.669
TRUE
TRUE
TRUE
TRUE


mmu_miR_425_001516
21.123
22.834
16.568
25.320
0.453
0.737
0.016
0.986
TRUE
TRUE
TRUE
TRUE


mmu_miR_429_001077
33.809
36.377
34.473
36.700
0.205
NA
0.404
0.830
TRUE
FALSE
TRUE
TRUE


mmu_miR_431_001979
32.503
34.726
30.760
27.887
0.760
0.951
0.473
0.006
TRUE
TRUE
TRUE
TRUE


mmu_miR_432_241135_mat
38.490
37.084
35.029
36.021
NA
NA
0.225
0.353
FALSE
FALSE
TRUE
TRUE


mmu_miR_433_001028
20.259
25.289
21.589
20.396
0.256
0.957
0.604
0.289
TRUE
TRUE
TRUE
TRUE


mmu_miR_433_5p_001078
30.228
32.245
26.982
30.885
0.553
0.911
0.070
0.686
TRUE
TRUE
TRUE
TRUE


mmu_miR_434_3p_002604
18.243
23.286
19.240
18.182
0.308
0.969
0.559
0.264
TRUE
TRUE
TRUE
TRUE


mmu_miR_434_5p_002581
24.430
31.736
26.828
24.087
0.203
0.991
0.703
0.096
TRUE
TRUE
TRUE
TRUE


mmu_miR_448_001029
28.223
36.293
30.417
27.635
0.245
NA
0.669
0.070
TRUE
FALSE
TRUE
TRUE


mmu_miR_449a_001030
27.142
30.045
25.134
28.069
0.461
0.924
0.121
0.668
TRUE
TRUE
TRUE
TRUE


mmu_miR_449b_001667
29.405
33.682
28.480
31.605
0.268
0.948
0.155
0.744
TRUE
TRUE
TRUE
TRUE


mmu_miR_449b_002539
40.727
40.899
40.619
39.597
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_450B_3P_00263_2
35.959
33.054
30.636
33.766
NA
0.522
0.113
0.523
FALSE
TRUE
TRUE
TRUE


mmu_miR_450a_3p_00252_5
40.800
40.976
40.660
39.599
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_450a_5p_00230_3
35.187
32.418
33.647
32.204
NA
0.415
0.655
0.188
FALSE
TRUE
TRUE
TRUE


mmu_miR_450b_5p_00196_2
40.525
40.670
40.489
39.589
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_451_001141
37.033
32.191
30.809
37.857
NA
0.191
0.087
0.966
FALSE
TRUE
TRUE
TRUE


mmu_miR_452_001032
36.411
37.134
37.605
40.297
NA
NA
0.550
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_453_002484
39.483
39.595
39.828
39.597
NA
NA
0.613
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_455_002455
34.584
27.062
30.417
30.333
NA
0.035
0.550
0.486
FALSE
TRUE
TRUE
TRUE


mmu_miR_463_002582
26.304
26.350
22.867
31.467
0.498
0.505
0.069
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_463_002662
38.057
34.632
30.192
36.726
NA
NA
0.026
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_464_001081
40.237
40.439
40.280
38.634
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_465C_5P_002654
30.464
32.392
25.806
35.592
0.439
0.716
0.012
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_465a_3p_002040
34.515
36.175
34.166
34.299
NA
NA
0.424
0.430
FALSE
FALSE
TRUE
TRUE


mmu_miR_465a_5p_001082
34.974
26.714
32.320
31.671
NA
0.004
NA
0.481
FALSE
TRUE
FALSE
TRUE


mmu_miR_465b_5p_002485
30.420
35.363
34.766
32.266
0.039
NA
0.869
0.383
TRUE
FALSE
TRUE
TRUE


mmu_miR_466E_5P_002718
30.162
27.858
24.607
31.113
0.774
0.408
0.058
0.946
TRUE
TRUE
TRUE
TRUE


mmu_miR_466J_002817
35.226
28.322
32.504
31.986
NA
0.021
0.642
0.471
FALSE
TRUE
TRUE
TRUE


mmu_miR_466a_3p_002586
30.538
26.507
30.484
29.971
0.800
0.049
0.759
0.594
TRUE
TRUE
TRUE
TRUE


mmu_miR_466b_3_3p_002500
31.942
27.874
30.752
31.264
0.876
0.072
0.582
0.660
TRUE
TRUE
TRUE
TRUE


mmu_miR_466d_5p_002534
35.029
38.645
32.541
39.543
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_466g_241015_mat
34.038
31.760
37.315
38.056
NA
0.042
0.866
0.953
FALSE
TRUE
TRUE
TRUE


mmu_miR_466h_002516
36.735
35.344
36.958
38.103
NA
0.256
0.590
0.882
FALSE
TRUE
TRUE
TRUE


mmu_miR_466k_240990_mat
35.911
31.450
34.810
37.035
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_467F_002886
33.166
27.244
25.592
32.470
NA
0.185
0.074
NA
FALSE
TRUE
TRUE
FALSE


mmu_miR_467H_002809
33.764
29.697
34.739
33.705
NA
0.028
0.889
0.636
FALSE
TRUE
TRUE
TRUE


mmu_miR_467a_001826
30.022
24.813
25.330
29.406
0.955
0.121
0.235
0.805
TRUE
TRUE
TRUE
TRUE


mmu_miR_467a_002587
27.603
23.878
28.942
26.271
0.763
0.070
0.967
0.344
TRUE
TRUE
TRUE
TRUE


mmu_miR_467b_001671
32.002
26.872
30.360
29.231
0.954
0.070
0.714
0.384
TRUE
TRUE
TRUE
TRUE


mmu_miR_467b_001684
31.650
27.444
23.596
34.258
NA
0.262
0.020
NA
FALSE
TRUE
TRUE
FALSE


mmu_miR_467c_002517
34.187
27.763
32.178
32.692
0.953
0.010
0.582
0.636
TRUE
TRUE
TRUE
TRUE


mmu_miR_467d_002518
32.355
29.522
31.398
32.574
0.724
0.161
0.522
0.802
TRUE
TRUE
TRUE
TRUE


mmu_miR_467e_002568
29.762
26.215
26.113
29.740
0.870
0.228
0.220
0.851
TRUE
TRUE
TRUE
TRUE


mmu_miR_467e_002569
39.174
37.658
39.443
36.066
NA
0.484
0.855
0.067
FALSE
TRUE
TRUE
TRUE


mmu_miR_468_001085
40.269
40.531
40.150
36.928
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_469_001086
39.224
39.642
39.042
36.826
NA
NA
0.651
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_470_002588
38.923
38.435
39.442
39.595
NA
NA
0.659
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_470_002589
34.203
31.339
26.021
40.506
0.673
0.356
0.006
NA
TRUE
TRUE
TRUE
TRUE


mmu_miR_471_002605
40.344
40.523
40.377
39.598
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_483_001291
37.285
35.015
34.326
38.790
NA
NA
0.195
0.966
FALSE
FALSE
TRUE
TRUE


mmu_miR_483_002560
36.869
36.615
37.237
39.476
NA
NA
0.509
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_484_001821
22.322
20.136
21.311
21.207
0.843
0.348
0.576
0.465
TRUE
TRUE
TRUE
TRUE


mmu_miR_485_3p_001943
21.149
25.388
22.849
22.303
0.154
0.910
0.617
0.478
TRUE
TRUE
TRUE
TRUE


mmu_miR_486_001278
31.827
25.420
30.227
24.428
0.970
0.192
0.839
0.048
TRUE
TRUE
TRUE
TRUE


mmu_miR_487b_001285
21.627
26.731
22.936
22.429
0.183
0.958
0.551
0.423
TRUE
TRUE
TRUE
TRUE


mmu_miR_487b_001306
23.180
30.278
26.332
23.456
0.108
0.984
0.752
0.165
TRUE
TRUE
TRUE
TRUE


mmu_miR_488_001659
28.771
28.129
29.898
29.135
0.470
0.411
0.812
0.568
TRUE
TRUE
TRUE
TRUE


mmu_miR_488_002014
32.195
34.737
36.969
36.800
0.052
NA
0.890
0.829
TRUE
FALSE
TRUE
TRUE


mmu_miR_489_001302
27.089
33.366
27.996
25.652
0.415
NA
0.588
0.047
TRUE
FALSE
TRUE
TRUE


mmu_miR_490_001037
31.465
36.157
30.035
29.794
0.637
NA
NA
0.157
TRUE
FALSE
FALSE
TRUE


mmu_miR_491_001630
24.874
29.530
28.835
25.402
0.115
0.879
0.881
0.233
TRUE
TRUE
TRUE
TRUE


mmu_miR_493_002519
34.511
36.255
33.004
33.016
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_494_001293
34.753
36.588
36.252
33.580
NA
NA
0.805
0.103
FALSE
FALSE
TRUE
TRUE


mmu_miR_494_002365
31.658
31.997
30.406
29.946
0.778
0.790
0.434
0.242
TRUE
TRUE
TRUE
TRUE


mmu_miR_495_001663
18.622
23.718
20.524
18.665
0.227
0.952
0.696
0.215
TRUE
TRUE
TRUE
TRUE


mmu_miR_496_001953
33.201
34.770
31.100
29.598
0.789
NA
NA
0.051
TRUE
FALSE
FALSE
TRUE


mmu_miR_497_001346
29.107
23.568
29.597
27.202
0.861
0.017
NA
0.373
TRUE
TRUE
FALSE
TRUE


mmu_miR_499_001352
33.880
35.631
34.285
35.037
0.314
NA
0.462
0.660
TRUE
FALSE
TRUE
TRUE


mmu_miR_500_002606
29.012
29.215
29.250
27.924
0.645
0.700
NA
0.240
TRUE
TRUE
FALSE
TRUE


mmu_miR_501_001356
37.050
37.050
37.450
37.737
NA
NA
0.591
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_501_3p_001651
27.999
27.676
29.219
26.327
0.655
0.569
0.908
0.112
TRUE
TRUE
TRUE
TRUE


mmu_miR_503_002456
35.674
35.308
35.416
35.057
NA
NA
0.565
0.393
FALSE
FALSE
TRUE
TRUE


mmu_miR_503_002536
35.491
31.627
33.805
33.992
NA
0.139
0.568
0.540
FALSE
TRUE
TRUE
TRUE


mmu_miR_504_002084
34.407
35.651
33.908
31.961
NA
NA
0.578
0.072
FALSE
FALSE
TRUE
TRUE


mmu_miR_505_001655
37.364
38.370
38.988
39.577
NA
NA
0.670
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_509_3p_002521
36.861
37.575
34.121
36.583
NA
NA
0.150
0.561
FALSE
FALSE
TRUE
TRUE


mmu_miR_509_5p_002520
36.180
40.548
40.305
38.916
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_511_002549
37.004
37.841
38.555
39.656
NA
NA
0.641
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_532_3p_002355
24.847
23.964
22.996
24.388
0.774
0.604
0.304
0.569
TRUE
TRUE
TRUE
TRUE


mmu_miR_532_5p_001518
23.624
21.738
22.501
22.843
0.816
0.396
0.503
0.527
TRUE
TRUE
TRUE
TRUE


mmu_miR_539_001286
22.424
27.391
26.557
23.046
0.096
0.889
0.879
0.233
TRUE
TRUE
TRUE
TRUE


mmu_miR_540_3p_001310
32.548
35.708
33.102
33.145
0.315
NA
0.498
0.499
TRUE
FALSE
TRUE
TRUE


mmu_miR_540_5p_002561
29.978
35.672
32.671
31.383
0.054
NA
0.708
0.409
TRUE
FALSE
TRUE
TRUE


mmu_miR_541_002562
26.457
31.737
25.784
25.739
0.488
0.991
0.299
0.246
TRUE
TRUE
TRUE
TRUE


mmu_miR_542_3p_001284
35.613
32.934
35.172
33.911
NA
0.273
0.746
0.322
FALSE
TRUE
TRUE
TRUE


mmu_miR_542_5p_002563
35.612
37.261
36.674
33.012
NA
NA
0.788
0.027
FALSE
FALSE
TRUE
TRUE


mmu_miR_543_001298
21.458
26.589
22.913
21.577
0.239
0.962
0.623
0.271
TRUE
TRUE
TRUE
TRUE


mmu_miR_543_002376
20.323
25.773
22.272
20.621
0.179
0.963
0.679
0.255
TRUE
TRUE
TRUE
TRUE


mmu_miR_544_002550
21.890
28.591
26.732
23.829
0.017
NA
NA
0.331
TRUE
FALSE
FALSE
TRUE


mmu_miR_546_001312
31.935
34.193
27.745
36.252
NA
NA
0.018
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_547_002564
26.138
27.187
28.096
25.517
0.449
0.696
NA
0.182
TRUE
TRUE
FALSE
TRUE


mmu_miR_551b_001535
26.945
27.292
24.796
27.345
0.610
0.756
0.189
0.698
TRUE
TRUE
TRUE
TRUE


mmu_miR_574_3p_002349
30.890
25.042
26.552
26.317
0.995
0.188
0.497
0.368
TRUE
TRUE
TRUE
TRUE


mmu_miR_582_3p_002567
32.076
30.934
33.779
33.073
0.390
0.246
0.876
0.698
TRUE
TRUE
TRUE
TRUE


mmu_miR_582_5p_002566
28.701
29.070
29.917
28.437
0.490
0.644
0.813
0.333
TRUE
TRUE
TRUE
TRUE


mmu_miR_590_5p_001984
37.534
37.840
37.755
36.904
NA
NA
0.620
0.325
FALSE
FALSE
TRUE
TRUE


mmu_miR_592_002017
27.354
30.566
28.369
27.732
0.309
0.882
0.591
0.419
TRUE
TRUE
TRUE
TRUE


mmu_miR_598_002476
24.686
27.608
27.022
24.559
0.287
0.832
0.835
0.210
TRUE
TRUE
TRUE
TRUE


mmu_miR_599_241117_mat
37.161
34.690
37.474
35.386
NA
0.283
0.861
0.232
FALSE
TRUE
TRUE
TRUE


mmu_miR_615_3p_001960
28.547
29.223
32.805
28.065
0.359
0.527
0.998
0.175
TRUE
TRUE
TRUE
TRUE


mmu_miR_615_5p_002353
38.761
38.892
39.278
38.865
NA
NA
0.662
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_652_002352
27.051
23.635
27.536
24.383
0.843
0.193
0.929
0.167
TRUE
TRUE
TRUE
TRUE


mmu_miR_654_3p_002239
40.150
40.294
40.254
39.223
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_654_5p_002522
40.354
40.524
40.388
39.672
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_665_002607
34.066
35.858
34.916
32.957
0.534
NA
0.716
0.143
TRUE
FALSE
TRUE
TRUE


mmu_miR_666_3p_002448
36.520
37.135
36.562
39.885
NA
NA
0.365
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_666_5p_001952
30.140
35.696
32.684
31.593
0.059
NA
0.688
0.435
TRUE
FALSE
TRUE
TRUE


mmu_miR_667_001949
21.751
26.723
24.269
21.917
0.175
0.934
0.767
0.213
TRUE
TRUE
TRUE
TRUE


mmu_miR_668_001947
27.669
31.073
29.300
27.434
0.339
0.890
0.724
0.208
TRUE
TRUE
TRUE
TRUE


mmu_miR_669C_002646
34.778
29.582
32.826
32.985
NA
0.046
0.593
0.559
FALSE
TRUE
TRUE
TRUE


mmu_miR_669D_002808
34.298
30.155
34.051
33.795
0.806
0.043
0.732
0.624
TRUE
TRUE
TRUE
TRUE


mmu_miR_669E_002774
36.536
33.561
36.941
37.575
NA
0.071
0.702
0.865
FALSE
TRUE
TRUE
TRUE


mmu_miR_669G_002813
40.400
40.565
40.423
39.587
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_669H_5P_002906
34.460
35.317
36.314
34.848
NA
NA
0.856
0.430
FALSE
FALSE
TRUE
TRUE


mmu_miR_669a_001683
29.042
28.049
30.063
30.180
0.420
0.300
0.746
0.778
TRUE
TRUE
TRUE
TRUE


mmu_miR_669l_121149_mat
34.317
29.902
34.264
33.931
NA
0.025
0.752
0.643
FALSE
TRUE
TRUE
TRUE


mmu_miR_669m_121190_mat
29.699
28.157
27.789
31.750
0.586
0.337
0.254
0.974
TRUE
TRUE
TRUE
TRUE


mmu_miR_669n_197143_mat
34.800
30.775
33.800
34.005
NA
0.073
0.625
0.623
FALSE
TRUE
TRUE
TRUE


mmu_miR_669o_121176_mat
32.436
29.443
33.191
32.963
0.586
0.077
0.810
0.751
TRUE
TRUE
TRUE
TRUE


mmu_miR_670_002020
32.716
28.377
26.694
31.199
NA
0.283
0.108
0.710
FALSE
TRUE
TRUE
TRUE


mmu_miR_671_3p_002322
28.747
27.118
27.966
29.041
0.655
0.344
0.483
0.756
TRUE
TRUE
TRUE
TRUE


mmu_miR_672_002327
24.410
33.554
29.922
23.538
0.183
0.985
NA
0.030
TRUE
TRUE
FALSE
TRUE


mmu_miR_673_001954
22.449
23.321
18.775
27.082
NA
NA
0.043
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_673_3p_002449
26.805
35.820
24.527
29.511
0.253
NA
0.053
0.684
TRUE
FALSE
TRUE
TRUE


mmu_miR_674_001956
28.166
25.112
27.887
27.705
0.776
0.126
0.695
0.606
TRUE
TRUE
TRUE
TRUE


mmu_miR_674_002021
34.540
27.577
27.210
31.675
0.997
0.151
0.143
0.693
TRUE
TRUE
TRUE
TRUE


mmu_miR_675_3p_001941
35.413
32.390
28.177
35.510
NA
0.411
0.026
0.890
FALSE
TRUE
TRUE
TRUE


mmu_miR_675_5p_001940
37.050
35.095
33.268
36.332
NA
NA
0.153
0.646
FALSE
FALSE
TRUE
TRUE


mmu_miR_676_001958
28.640
28.417
29.646
29.728
0.389
0.442
0.713
0.722
TRUE
TRUE
TRUE
TRUE


mmu_miR_676_001959
28.483
24.952
30.121
26.862
0.749
0.095
0.981
0.281
TRUE
TRUE
TRUE
TRUE


mmu_miR_677_001660
37.303
37.402
37.637
35.148
NA
NA
0.746
0.092
FALSE
FALSE
TRUE
TRUE


mmu_miR_679_001662
37.078
34.383
35.587
38.860
NA
NA
0.401
0.970
FALSE
FALSE
TRUE
TRUE


mmu_miR_680_001664
38.404
34.109
33.469
34.865
NA
0.385
0.224
0.446
FALSE
TRUE
TRUE
TRUE


mmu_miR_682_001666
33.216
35.557
32.287
38.360
NA
NA
0.172
0.988
FALSE
FALSE
TRUE
TRUE


mmu_miR_683_001668
38.963
37.814
39.189
37.954
NA
NA
0.748
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_684_001669
40.800
40.976
40.660
39.599
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_685_001670
32.878
35.470
35.005
40.913
0.080
0.478
0.492
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_686_001672
40.863
38.311
40.736
39.560
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_687_001674
39.989
39.280
40.194
39.568
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_688_001675
38.490
40.710
36.581
39.679
NA
NA
0.145
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_690_001677
38.523
38.415
39.023
39.682
NA
NA
0.591
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_691_001678
36.677
38.815
31.505
38.336
NA
NA
0.015
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_692_001679
40.794
40.381
36.138
37.213
NA
NA
0.126
0.265
FALSE
FALSE
TRUE
TRUE


mmu_miR_693_001680
37.646
37.043
32.245
37.684
NA
0.726
0.037
0.732
FALSE
TRUE
TRUE
TRUE


mmu_miR_693_3p_002036
40.395
39.668
34.766
39.556
NA
NA
0.041
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_694_001681
31.451
30.650
26.077
37.038
NA
NA
0.020
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_695_001627
38.256
39.781
35.674
38.668
NA
NA
0.124
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_696_001628
36.609
32.104
27.580
37.553
0.843
0.290
0.012
0.973
TRUE
TRUE
TRUE
TRUE


mmu_miR_697_001631
36.200
35.923
40.046
38.002
0.195
0.259
NA
0.646
TRUE
TRUE
TRUE
TRUE


mmu_miR_698_001632
40.328
40.366
40.363
39.643
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_700_001634
26.172
25.761
28.528
25.500
0.503
0.467
0.978
0.207
TRUE
TRUE
TRUE
TRUE


mmu_miR_701_001635
31.771
29.862
32.818
33.616
0.417
0.129
0.729
0.914
TRUE
TRUE
TRUE
TRUE


mmu_miR_702_001636
30.963
35.116
31.276
32.756
0.211
0.925
0.323
0.674
TRUE
TRUE
TRUE
TRUE


mmu_miR_704_001639
35.571
37.012
37.447
35.512
NA
NA
0.849
0.298
FALSE
FALSE
TRUE
TRUE


mmu_miR_706_001641
32.189
33.896
32.173
40.404
0.229
0.504
0.242
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_707_001642
40.353
40.496
40.419
39.590
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_708_002341
24.115
22.834
24.270
23.436
0.711
0.429
0.714
0.401
TRUE
TRUE
TRUE
TRUE


mmu_miR_710_001645
33.815
35.216
36.312
38.961
0.103
0.400
0.665
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_711_001646
39.085
38.578
36.256
40.123
NA
NA
0.150
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_712_001961
39.661
39.959
39.931
37.770
NA
NA
0.711
0.109
FALSE
FALSE
TRUE
TRUE


mmu_miR_712_002636
33.431
32.443
25.894
34.968
0.681
0.609
0.005
0.961
TRUE
TRUE
TRUE
TRUE


mmu_miR_713_001648
39.497
39.231
38.729
40.164
NA
NA
0.375
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_715_001649
38.597
37.149
39.004
39.787
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_717_001652
41.436
34.738
35.058
40.122
NA
0.105
0.179
NA
FALSE
TRUE
TRUE
FALSE


mmu_miR_718_001656
35.000
38.914
39.870
40.369
0.022
NA
0.774
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_719_001673
39.496
39.436
39.653
37.089
NA
NA
0.728
0.079
FALSE
FALSE
TRUE
TRUE


mmu_miR_720_001629
24.167
24.633
20.593
28.777
NA
NA
0.056
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_721_001657
26.336
24.283
20.781
31.059
0.648
0.346
0.034
1.000
TRUE
TRUE
TRUE
TRUE


mmu_miR_741_002457
37.878
37.765
32.527
38.222
NA
NA
0.033
0.761
FALSE
FALSE
TRUE
TRUE


mmu_miR_742_002038
38.576
36.894
39.163
39.500
NA
NA
0.713
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_742_002458
33.534
36.917
31.984
34.619
0.404
NA
0.143
0.667
TRUE
FALSE
TRUE
TRUE


mmu_miR_743a_002469
29.264
32.391
29.746
30.572
0.263
0.877
0.422
0.634
TRUE
TRUE
TRUE
TRUE


mmu_miR_743b_3p_002471
39.757
39.876
40.034
39.436
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_743b_5p_002470
34.649
30.215
30.014
34.708
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_744_002324
24.023
25.380
24.182
24.195
0.455
0.793
0.499
0.494
TRUE
TRUE
TRUE
TRUE


mmu_miR_758_002025
35.957
36.206
35.942
32.714
NA
NA
0.703
0.031
FALSE
FALSE
TRUE
TRUE


mmu_miR_759_002034
35.605
35.482
38.134
36.619
0.272
0.386
0.951
0.569
TRUE
TRUE
TRUE
TRUE


mmu_miR_761_002030
37.353
36.994
33.659
38.451
NA
NA
0.098
0.881
FALSE
FALSE
TRUE
TRUE


mmu_miR_762_002028
35.244
35.637
38.051
38.204
0.142
NA
0.852
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_763_002033
37.229
35.932
32.342
37.048
NA
NA
0.075
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_764_3p_002032
34.648
36.164
34.809
33.470
NA
NA
0.593
0.191
FALSE
FALSE
TRUE
TRUE


mmu_miR_764_5p_002031
32.356
34.427
33.719
30.814
0.515
0.836
0.787
0.067
TRUE
TRUE
TRUE
TRUE


mmu_miR_767_241081_mat
40.800
40.975
40.660
39.602
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_770_3p_002027
30.569
35.966
31.873
31.275
0.185
NA
0.546
0.400
TRUE
FALSE
TRUE
TRUE


mmu_miR_770_5p_002608
32.645
35.829
34.391
32.846
0.278
NA
0.725
0.308
TRUE
FALSE
TRUE
TRUE


mmu_miR_7a_000268
27.027
30.847
23.932
25.453
0.722
NA
0.090
0.289
TRUE
FALSE
TRUE
TRUE


mmu_miR_7b_002555
27.123
32.566
24.728
26.755
0.545
0.995
0.093
0.405
TRUE
TRUE
TRUE
TRUE


mmu_miR_802_002029
35.431
33.970
34.657
35.564
NA
NA
0.483
0.708
FALSE
FALSE
TRUE
TRUE


mmu_miR_804_002044
39.061
31.348
32.156
36.554
NA
0.082
0.222
0.709
FALSE
TRUE
TRUE
TRUE


mmu_miR_805_002045
32.731
29.465
30.868
37.361
NA
0.088
0.348
NA
FALSE
TRUE
TRUE
FALSE


mmu_miR_871_002354
39.297
39.390
39.632
38.895
NA
NA
0.651
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_872_002264
24.637
23.514
26.865
24.808
0.438
0.288
0.967
0.470
TRUE
TRUE
TRUE
TRUE


mmu_miR_872_002542
24.608
22.415
25.909
24.040
0.662
0.193
0.934
0.407
TRUE
TRUE
TRUE
TRUE


mmu_miR_873_002356
32.250
35.550
33.231
31.401
0.470
NA
0.663
0.141
TRUE
FALSE
TRUE
TRUE


mmu_miR_874_002268
38.004
37.796
38.534
39.585
NA
NA
0.582
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_875_3p_002547
36.814
37.733
34.232
39.656
NA
NA
0.110
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_876_3p_002464
36.338
38.484
37.176
38.533
NA
NA
0.468
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_876_5p_002463
36.405
38.658
38.726
36.765
0.238
NA
0.846
0.336
TRUE
FALSE
TRUE
TRUE


mmu_miR_877_002548
23.304
19.708
16.429
23.453
NA
0.323
0.046
NA
FALSE
TRUE
TRUE
FALSE


mmu_miR_878_3p_002541
33.157
31.722
29.189
39.450
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_878_5p_002540
37.798
37.893
32.419
37.402
NA
NA
0.031
0.604
FALSE
FALSE
TRUE
TRUE


mmu_miR_879_002472
34.015
34.055
34.827
34.343
NA
NA
0.717
0.534
FALSE
FALSE
TRUE
TRUE


mmu_miR_879_002473
28.646
28.606
27.363
27.211
0.780
0.746
0.423
0.310
TRUE
TRUE
TRUE
TRUE


mmu_miR_880_002665
35.770
29.151
33.468
38.671
NA
0.003
0.434
NA
FALSE
TRUE
TRUE
FALSE


mmu_miR_881_002475
38.590
38.635
33.232
39.302
NA
NA
0.027
0.808
FALSE
FALSE
TRUE
TRUE


mmu_miR_881_002609
34.675
37.061
35.055
39.877
NA
NA
0.317
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_882_002610
40.800
40.976
40.660
39.599
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_883B_5P_002669
34.843
35.469
32.374
38.205
0.454
0.598
0.122
0.983
TRUE
TRUE
TRUE
TRUE


mmu_miR_883a_3p_002461
36.395
38.086
38.457
37.598
NA
NA
0.791
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_883a_5p_002611
40.646
40.806
40.576
39.599
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_883b_3p_002565
35.970
40.249
39.498
35.101
NA
NA
0.883
0.057
FALSE
FALSE
TRUE
TRUE


mmu_miR_92a_000430
19.851
20.028
17.119
22.167
0.513
0.604
0.124
0.959
TRUE
TRUE
TRUE
TRUE


mmu_miR_92a_002496
40.488
40.630
40.455
39.676
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_93_001090
23.262
21.456
24.556
22.792
0.633
0.245
0.922
0.407
TRUE
TRUE
TRUE
TRUE


mmu_miR_96_000186
29.835
34.889
26.262
31.653
0.367
0.980
0.034
0.727
TRUE
TRUE
TRUE
TRUE


mmu_miR_98_000577
28.720
31.651
28.038
26.315
0.655
0.938
0.498
0.054
TRUE
TRUE
TRUE
TRUE


mmu_miR_99a_000435
21.378
18.906
19.610
21.071
0.822
0.290
0.405
0.710
TRUE
TRUE
TRUE
TRUE


mmu_miR_99b_000436
23.084
21.118
23.632
23.366
0.585
0.205
0.773
0.674
TRUE
TRUE
TRUE
TRUE


mmu_miR_9_000583
19.271
16.500
18.698
18.273
0.825
0.213
0.676
0.496
TRUE
TRUE
TRUE
TRUE






log2FC_
adj.p.value_
log2FC_
adj.p.value_
log2FC_
adj.p.value_
log2FC_
adj.p.value_
log2FC_
adj.p.value_
log2FC_
adj.p.value_



ChATvs
ChATvs
ChATvs
ChATvs
ChATvs
ChATvs
GFAPvs
GFAPvs
GFAPvs
GFAPvs
Lyz2vs
Lyz2vs



GFAP_sc
GFAP_sc
Lyz2_sc
Lyz2_sc
Syn_sc
Syn_sc
Lyz2_sc
Lyz2_sc
Syn_sc
Syn_sc
Syn_sc
Syn_sc





hsa_let_7b_002404
4.141
0.299
0.388
0.957
5.193
0.227
−3.753
0.324
1.052
0.794
4.805
0.184


hsa_let_7e_002407
−0.470
0.836
−0.892
0.558
0.377
0.868
−0.422
0.810
0.847
0.501
1.269
0.318


hsa_let_7f_1_002417
−0.464
0.945
1.065
0.767
−2.815
0.343
1.529
0.571
−2.351
0.316
−3.880
0.095


hsa_let_7i_002172
−2.634
0.009
1.052
0.363
1.708
0.159
3.686
0.000
4.342
0.000
0.656
0.563


hsa_miR_106b_002380
−3.241
0.009
−0.830
0.616
−3.750
0.007
2.412
0.054
−0.509
0.714
−2.920
0.022


hsa_miR_10a_002288
0.000
1.000
2.047
0.390
1.004
0.759
2.047
0.367
1.004
0.659
−1.043
0.673


hsa_miR_1197_002810
3.498
0.031
1.984
0.280
0.585
0.839
−1.514
0.401
−2.912
0.065
−1.399
0.434


hsa_miR_124_002197
0.419
0.943
−0.041
0.986
1.842
0.501
−0.460
0.887
1.424
0.485
1.883
0.366


hsa_miR_127_5p_002229
3.709
0.001
2.688
0.017
1.108
0.437
−1.021
0.378
−2.600
0.011
−1.580
0.138


hsa_miR_136_000592
4.068
0.000
−1.636
0.082
−0.325
0.836
−5.704
0.000
−4.393
0.000
1.312
0.138


hsa_miR_136_002100
5.757
0.002
2.581
0.213
0.465
0.900
−3.175
0.093
−5.292
0.004
−2.117
0.282


hsa_miR_140_3p_002234
−1.159
0.156
−0.705
0.445
−0.930
0.360
0.454
0.639
0.229
0.794
−0.225
0.839


hsa_miR_143_000466
0.540
0.961
−6.086
0.079
2.082
0.668
−6.626
0.040
1.542
0.664
8.168
0.013


hsa_miR_144_002676
−0.092
0.975
0.735
0.360
1.993
0.011
0.827
0.276
2.084
0.003
1.257
0.077


hsa_miR_148a_002134
−2.995
0.190
1.136
0.728
1.832
0.548
4.131
0.056
4.827
0.022
0.696
0.814


hsa_miR_149_002255
0.882
0.180
1.692
0.011
−0.436
0.633
0.810
0.216
−1.318
0.029
−2.128
0.001


hsa_miR_151_5P_002642
−3.579
0.001
−4.540
0.000
−0.953
0.517
−0.961
0.407
2.625
0.010
3.586
0.001


hsa_miR_154_000478
4.422
0.000
1.627
0.192
1.520
0.279
−2.795
0.013
−2.902
0.009
−0.107
0.948


hsa_miR_15b_002173
−0.557
0.969
−1.276
0.855
4.206
0.437
−0.719
0.912
4.763
0.231
5.482
0.178


hsa_miR_183_002270
6.072
0.003
−1.345
0.633
−0.318
0.927
−7.417
0.001
−6.390
0.002
1.027
0.680


hsa_miR_189_000488
−1.039
0.907
−2.282
0.656
−3.323
0.521
−1.243
0.813
−2.285
0.558
−1.041
0.841


hsa_miR_190b_002263
−0.575
0.835
−1.689
0.298
1.847
0.309
−1.114
0.493
2.422
0.079
3.536
0.016


hsa_miR_196a_241070_mat
−2.212
0.054
0.106
0.968
−0.554
0.759
2.319
0.042
1.658
0.136
−0.661
0.609


hsa_miR_200a_001011
−0.044
0.996
1.739
0.298
1.733
0.367
1.783
0.258
1.777
0.229
−0.006
0.996


hsa_miR_200b_001800
0.144
0.996
−1.084
0.815
2.691
0.478
−1.228
0.746
2.548
0.373
3.776
0.183


hsa_miR_200b_002274
−0.219
0.996
−6.190
0.187
−0.580
0.933
−5.971
0.173
−0.361
0.943
5.610
0.197


hsa_miR_200c_000505
−0.584
0.853
−4.965
0.004
−0.585
0.836
−4.382
0.006
−0.001
0.999
4.381
0.007


hsa_miR_200c_002286
0.090
0.994
0.417
0.860
0.268
0.914
0.327
0.885
0.178
0.904
−0.149
0.937


hsa_miR_206_000510
−5.586
0.002
−6.838
0.001
−2.901
0.182
−1.252
0.553
2.685
0.130
3.937
0.031


hsa_miR_213_000516
−1.959
0.066
−0.994
0.420
−0.871
0.560
0.964
0.408
1.087
0.313
0.123
0.934


hsa_miR_214_000517
−3.282
0.017
−2.251
0.141
−0.656
0.768
1.031
0.517
2.626
0.052
1.595
0.275


hsa_miR_214_002293
−1.663
0.239
0.563
0.787
1.978
0.205
2.226
0.089
3.641
0.004
1.415
0.303


hsa_miR_218_2_002294
10.447
0.000
5.428
0.000
4.037
0.003
−5.019
0.000
−6.410
0.000
−1.391
0.276


hsa_miR_223_000526
3.932
0.187
−8.698
0.004
4.001
0.243
−12.630
0.000
0.068
0.986
12.698
0.000


hsa_miR_22_000398
−1.043
0.774
−0.905
0.791
−0.141
0.974
0.138
0.968
0.902
0.707
0.764
0.790


hsa_miR_22_002301
−0.088
0.987
0.078
0.968
1.305
0.205
0.165
0.912
1.393
0.093
1.227
0.157


hsa_miR_23a_002439
−2.997
0.565
−10.445
0.012
6.670
0.151
−7.449
0.054
9.667
0.011
17.115
0.000


hsa_miR_26b_002444
−2.435
0.379
−3.583
0.174
1.764
0.610
−1.148
0.717
4.199
0.067
5.347
0.026


hsa_miR_27a_002445
−1.365
0.647
0.874
0.788
2.493
0.346
2.239
0.312
3.858
0.052
1.618
0.480


hsa_miR_27b_002174
−1.088
0.238
−0.829
0.398
−0.695
0.561
0.259
0.840
0.393
0.676
0.134
0.913


hsa_miR_28_3p_002446
1.086
0.716
1.407
0.558
0.604
0.868
0.321
0.918
−0.482
0.822
−0.803
0.743


hsa_miR_299_5p_000600
2.085
0.534
1.561
0.664
0.064
0.992
−0.524
0.911
−2.021
0.448
−1.497
0.608


hsa_miR_29a_002447
−1.359
0.684
0.695
0.855
−1.749
0.568
2.054
0.392
−0.390
0.877
−2.444
0.285


hsa_miR_29b_2_002166
1.391
0.736
−3.764
0.186
1.344
0.740
−5.155
0.045
−0.046
0.988
5.109
0.048


hsa_miR_30a_3p_000416
−0.796
0.072
0.313
0.578
−0.278
0.674
1.109
0.012
0.518
0.238
−0.591
0.187


hsa_miR_30c_1_002108
−2.992
0.439
3.142
0.390
3.779
0.360
6.133
0.054
6.771
0.028
0.637
0.895


hsa_miR_30c_2_002110
5.489
0.190
5.003
0.262
7.777
0.095
−0.486
0.936
2.288
0.591
2.774
0.531


hsa_miR_30d_002305
3.619
0.244
3.972
0.205
6.093
0.065
0.353
0.936
2.474
0.400
2.122
0.505


hsa_miR_30e_3p_000422
−0.881
0.057
0.263
0.692
−0.071
0.927
1.144
0.013
0.810
0.068
−0.334
0.513


hsa_miR_324__3p_000579
−5.280
0.010
−2.673
0.254
−4.234
0.082
2.607
0.235
1.047
0.645
−1.560
0.505


hsa_miR_338_000548
−3.535
0.055
−1.946
0.354
−1.623
0.529
1.590
0.436
1.913
0.305
0.323
0.905


hsa_miR_338_5P_002658
−3.022
0.001
−2.785
0.004
−1.851
0.074
0.236
0.873
1.171
0.183
0.935
0.323


hsa_miR_33a_002136
−2.328
0.147
−1.379
0.445
−1.298
0.548
0.949
0.610
1.031
0.521
0.081
0.971


hsa_miR_340_000550
−0.601
0.599
0.498
0.671
−0.183
0.912
1.099
0.209
0.417
0.645
−0.681
0.462


hsa_miR_363_001283
1.107
0.841
−0.241
0.970
−3.816
0.295
−1.348
0.728
−4.923
0.077
−3.575
0.233


hsa_miR_376a_001287
6.962
0.000
2.238
0.072
1.216
0.441
−4.724
0.000
−5.746
0.000
−1.022
0.421


hsa_miR_378_000567
−0.109
0.996
−3.504
0.063
1.544
0.531
−3.395
0.054
1.652
0.361
5.047
0.005


hsa_miR_411_002238
6.367
0.000
1.536
0.322
0.210
0.927
−4.830
0.001
−6.157
0.000
−1.326
0.366


hsa_miR_412_001023
4.597
0.007
2.258
0.246
1.163
0.650
−2.339
0.199
−3.434
0.042
−1.095
0.575


hsa_miR_421_002700
−0.179
0.889
1.006
0.110
0.769
0.295
1.185
0.042
0.948
0.093
−0.236
0.752


hsa_miR_423_3P_002626
−4.241
0.001
−1.713
0.232
−1.657
0.310
2.529
0.050
2.584
0.039
0.055
0.976


hsa_miR_425_001104
−3.461
0.075
−2.767
0.192
−0.739
0.830
0.694
0.799
2.722
0.146
2.028
0.318


hsa_miR_431_002312
5.024
0.002
3.310
0.059
0.644
0.827
−1.714
0.333
−4.380
0.007
−2.666
0.108


hsa_miR_455_001280
−5.364
0.001
−4.123
0.016
−1.960
0.340
1.242
0.492
3.405
0.028
2.163
0.183


hsa_miR_485_5p_001036
0.011
0.998
0.058
0.979
0.279
0.912
0.046
0.976
0.267
0.856
0.221
0.906


hsa_miR_493_3p_001282
−9.065
0.046
−4.399
0.401
−3.619
0.571
4.666
0.340
5.446
0.229
0.780
0.906


hsa_miR_590_3P_002677
0.357
0.690
0.092
0.939
−1.300
0.061
−0.265
0.746
−1.657
0.005
−1.392
0.022


hsa_miR_653_002292
3.470
0.318
−0.004
0.999
3.415
0.402
−3.475
0.296
−0.055
0.988
3.420
0.289


hsa_miR_671_5p_197646_mat
−1.207
0.889
−6.525
0.122
0.972
0.899
−5.318
0.189
2.179
0.597
7.497
0.055


hsa_miR_708_002342
−0.048
0.996
−0.137
0.972
−0.624
0.875
−0.089
0.974
−0.576
0.811
−0.487
0.874


hsa_miR_744_002325
0.053
0.996
−0.512
0.728
0.158
0.924
−0.565
0.640
0.106
0.926
0.670
0.539


hsa_miR_875_5p_002203
2.888
0.806
−5.315
0.488
10.142
0.185
−8.203
0.220
7.254
0.259
15.457
0.017


hsa_miR_935_002178
−1.443
0.572
−0.156
0.970
−1.636
0.539
1.287
0.562
−0.193
0.932
−1.479
0.486


hsa_miR_93_002139
−2.914
0.003
−0.515
0.726
−1.137
0.367
2.399
0.013
1.777
0.060
−0.622
0.570


hsa_miR_99b_002196
0.561
0.835
1.084
0.542
0.887
0.679
0.524
0.796
0.327
0.838
−0.197
0.926


hsa_miR_9_002231
−4.086
0.000
−1.177
0.011
−1.233
0.010
2.909
0.000
2.853
0.000
−0.056
0.928


mmu_let_7a_000377
−3.703
0.011
2.938
0.063
−2.884
0.096
6.642
0.000
0.819
0.600
−5.822
0.000


mmu_let_7a_002478
−7.397
0.169
−1.546
0.871
2.421
0.768
5.851
0.289
9.818
0.048
3.966
0.488


mmu_let_7b_000378
−2.070
0.000
−0.431
0.377
0.061
0.929
1.639
0.000
2.131
0.000
0.492
0.271


mmu_let_7c_000379
−1.501
0.000
0.382
0.434
−0.146
0.842
1.883
0.000
1.354
0.001
−0.529
0.218


mmu_let_7c_1002479
−3.489
0.299
−8.681
0.007
−1.442
0.761
−5.193
0.085
2.046
0.512
7.239
0.017


mmu_let_7d_001178
0.308
0.855
−2.515
0.006
−2.489
0.008
−2.823
0.001
−2.797
0.001
0.026
0.983


mmu_let_7d_002283
−0.222
0.833
1.261
0.028
0.047
0.963
1.483
0.007
0.269
0.650
−1.214
0.027


mmu_let_7e_002406
−0.017
0.997
2.046
0.036
0.331
0.839
2.063
0.025
0.348
0.736
−1.715
0.065


mmu_let_7f_000382
−2.629
0.459
−0.916
0.855
−3.873
0.279
1.713
0.626
−1.244
0.696
−2.957
0.331


mmu_let_7g_002282
0.479
0.646
1.400
0.067
0.712
0.462
0.920
0.219
0.233
0.777
−0.688
0.366


mmu_let_7g_002492
4.689
0.002
2.429
0.141
2.502
0.163
−2.260
0.144
−2.187
0.136
0.073
0.972


mmu_let_7i_002221
−2.076
0.000
0.674
0.248
−0.530
0.455
2.750
0.000
1.546
0.003
−1.204
0.023


mmu_miR_100_000437
−2.738
0.000
−0.412
0.654
−0.161
0.902
2.326
0.001
2.577
0.000
0.252
0.769


mmu_miR_101a_002253
0.688
0.184
1.158
0.025
1.102
0.049
0.470
0.383
0.414
0.412
−0.056
0.934


mmu_miR_101a_002507
−0.269
0.867
−0.294
0.823
−1.421
0.117
−0.025
0.977
−1.152
0.129
−1.127
0.150


mmu_miR_101b_002531
−0.309
0.757
1.326
0.036
−0.364
0.686
1.635
0.007
−0.055
0.940
−1.690
0.006


mmu_miR_103_000439
−0.535
0.641
1.596
0.059
−0.057
0.971
2.131
0.007
0.478
0.567
−1.653
0.038


mmu_miR_105_002465
1.454
0.907
−0.945
0.924
8.561
0.162
−2.399
0.728
7.108
0.156
9.506
0.067


mmu_miR_106a_002459
−4.282
0.062
1.429
0.651
−2.654
0.367
5.711
0.012
1.627
0.493
−4.083
0.076


mmu_miR_106b_000442
−2.121
0.002
−1.250
0.084
−0.887
0.301
0.871
0.220
1.234
0.061
0.363
0.646


mmu_miR_107_000443
−0.104
0.994
−3.735
0.022
0.152
0.958
−3.631
0.018
0.256
0.883
3.887
0.013


mmu_miR_10a_000387
−1.605
0.238
−0.353
0.882
−0.459
0.836
1.252
0.359
1.146
0.373
−0.106
0.953


mmu_miR_10b_001181
−1.254
0.410
−0.564
0.784
−1.296
0.456
0.690
0.669
−0.042
0.980
−0.732
0.614


mmu_miR_10b_002218
0.177
0.983
2.564
0.146
−1.295
0.568
2.388
0.148
−1.472
0.373
−3.859
0.018


mmu_miR_10b_002572
0.386
0.961
2.602
0.298
0.962
0.795
2.215
0.359
0.576
0.818
−1.639
0.505


mmu_miR_1186_002825
−1.382
0.813
−0.227
0.972
1.874
0.687
1.156
0.795
3.256
0.302
2.100
0.544


mmu_miR_1188_002866
2.507
0.422
2.230
0.471
1.609
0.679
−0.277
0.943
−0.898
0.759
−0.621
0.868


mmu_miR_1191_002892
−2.787
0.563
−7.940
0.036
−1.050
0.875
−5.153
0.164
1.737
0.659
6.890
0.056


mmu_miR_1192_002806
0.192
0.981
0.327
0.918
0.314
0.914
0.135
0.957
0.122
0.950
−0.013
0.994


mmu_miR_1193_002794
1.645
0.017
2.175
0.004
2.732
0.001
0.530
0.503
1.087
0.111
0.557
0.479


mmu_miR_1194_002793
0.201
0.945
0.388
0.811
−0.225
0.906
0.187
0.912
−0.425
0.695
−0.612
0.575


mmu_miR_1195_002839
−0.232
0.994
0.105
0.979
2.799
0.458
0.337
0.936
3.031
0.285
2.694
0.366


mmu_miR_1198_002780
−1.510
0.063
1.564
0.070
−2.152
0.016
3.074
0.000
−0.642
0.442
−3.716
0.000


mmu_miR_1199_240984_mat
0.175
0.690
−0.141
0.754
−1.201
0.000
−0.316
0.314
−1.377
0.000
−1.061
0.001


mmu_miR_1224_240985_mat
0.242
0.823
−0.110
0.920
−1.896
0.003
−0.351
0.609
−2.138
0.000
−1.786
0.003


mmu_miR_122_002245
−4.328
0.371
−9.685
0.027
1.533
0.836
−5.358
0.216
5.860
0.145
11.218
0.008


mmu_miR_124_001182
4.801
0.000
1.499
0.172
−0.379
0.830
−3.302
0.001
−5.180
0.000
−1.878
0.059


mmu_miR_125a_3p_002199
0.413
0.890
−0.358
0.882
−0.371
0.884
−0.771
0.653
−0.784
0.594
−0.013
0.994


mmu_miR_125a_5p_002198
0.578
0.262
1.482
0.003
0.392
0.554
0.904
0.054
−0.186
0.726
−1.090
0.023


mmu_miR_125b_002508
−0.543
0.690
1.197
0.238
0.902
0.464
1.740
0.056
1.445
0.103
−0.295
0.813


mmu_miR_125b_3p_002378
−2.370
0.009
−2.958
0.003
0.618
0.650
−0.588
0.598
2.988
0.001
3.576
0.000


mmu_miR_125b_5p_000449
−0.857
0.077
−1.172
0.021
0.076
0.925
−0.316
0.577
0.933
0.045
1.248
0.011


mmu_miR_126_3p_002228
3.110
0.000
−1.640
0.002
1.498
0.005
−4.750
0.000
−1.612
0.001
3.138
0.000


mmu_miR_126_5p_000451
3.376
0.000
−0.831
0.157
1.544
0.009
−4.207
0.000
−1.833
0.001
2.374
0.000


mmu_miR_1274a_121150_mat
1.460
0.672
−4.133
0.094
2.740
0.360
−5.593
0.015
1.280
0.600
6.873
0.004


mmu_miR_127_000452
4.157
0.000
0.159
0.834
−0.357
0.561
−3.998
0.000
−4.514
0.000
−0.516
0.255


mmu_miR_128a_002216
1.852
0.001
0.164
0.874
−0.571
0.444
−1.687
0.003
−2.423
0.000
−0.735
0.192


mmu_miR_129_3p_001184
2.203
0.000
0.841
0.184
−0.666
0.367
−1.362
0.017
−2.868
0.000
−1.507
0.010


mmu_miR_129_5p_000590
2.630
0.017
2.780
0.020
−0.093
0.963
0.150
0.936
−2.723
0.012
−2.873
0.012


mmu_miR_1306_121155_mat
2.099
0.139
2.016
0.184
0.239
0.920
−0.082
0.968
−1.860
0.162
−1.778
0.205


mmu_miR_130a_000454
−5.111
0.001
0.100
0.972
−3.207
0.065
5.211
0.001
1.904
0.201
−3.307
0.029


mmu_miR_130b_000456
−3.079
0.001
−2.119
0.024
−1.054
0.360
0.960
0.314
2.024
0.019
1.065
0.252


mmu_miR_130b_002460
0.310
0.959
−6.598
0.001
−5.447
0.005
−6.908
0.000
−5.757
0.001
1.152
0.551


mmu_miR_132_000457
3.880
0.000
−0.005
0.994
−1.290
0.007
−3.885
0.000
−5.170
0.000
−1.285
0.004


mmu_miR_133a_001637
2.015
0.273
1.958
0.298
−0.489
0.875
−0.057
0.976
−2.504
0.126
−2.448
0.147


mmu_miR_133a_002246
7.326
0.000
2.060
0.000
0.815
0.159
−5.266
0.000
−6.511
0.000
−1.245
0.012


mmu_miR_133b_002247
7.800
0.000
1.816
0.184
1.703
0.256
−5.985
0.000
−6.097
0.000
−0.113
0.948


mmu_miR_134_001186
4.975
0.000
1.373
0.138
−0.127
0.928
−3.602
0.000
−5.102
0.000
−1.500
0.078


mmu_miR_135a_000460
−3.527
0.000
−1.329
0.020
−2.443
0.000
2.199
0.000
1.084
0.038
−1.115
0.040


mmu_miR_135b_002261
−2.949
0.003
0.879
0.454
−1.987
0.089
3.828
0.000
0.962
0.347
−2.866
0.005


mmu_miR_136_002511
8.233
0.000
2.405
0.238
0.261
0.929
−5.828
0.002
−7.972
0.000
−2.144
0.263


mmu_miR_136_002512
0.290
0.975
−0.581
0.882
1.031
0.771
−0.871
0.780
0.741
0.769
1.612
0.513


mmu_miR_137_001129
4.209
0.004
−0.562
0.826
0.884
0.699
−4.772
0.002
−3.325
0.022
1.446
0.366


mmu_miR_138_002284
5.124
0.000
2.447
0.000
1.125
0.099
−2.677
0.000
−3.998
0.000
−1.321
0.025


mmu_miR_138_002554
3.745
0.001
1.965
0.084
0.500
0.768
−1.780
0.095
−3.245
0.002
−1.465
0.176


mmu_miR_139_3p_002546
−0.578
0.952
−2.537
0.487
−4.795
0.187
−1.959
0.589
−4.218
0.154
−2.258
0.505


mmu_miR_139_5p_002289
2.803
0.000
−0.004
0.998
−0.462
0.699
−2.807
0.001
−3.264
0.000
−0.457
0.608


mmu_miR_140_001187
−0.561
0.586
1.571
0.051
0.005
0.995
2.132
0.005
0.566
0.474
−1.565
0.040


mmu_miR_141_000463
1.205
0.867
−1.192
0.845
6.412
0.114
−2.397
0.553
5.207
0.126
7.604
0.030


mmu_miR_141_002513
1.598
0.764
−0.677
0.918
5.367
0.159
−2.275
0.538
3.768
0.238
6.044
0.060


mmu_miR_142_3p_000464
−0.776
0.823
−7.005
0.001
4.637
0.025
−6.229
0.001
5.413
0.003
11.642
0.000


mmu_miR_142_5p_002248
1.343
0.850
−3.859
0.353
5.552
0.202
−5.202
0.163
4.210
0.244
9.412
0.011


mmu_miR_143_002249
−2.661
0.022
−2.608
0.036
3.637
0.005
0.053
0.972
6.298
0.000
6.245
0.000


mmu_miR_145_002278
−2.324
0.069
−3.235
0.017
4.184
0.003
−0.911
0.534
6.509
0.000
7.420
0.000


mmu_miR_145_002514
−3.377
0.180
0.273
0.953
0.027
0.993
3.650
0.134
3.404
0.143
−0.246
0.940


mmu_miR_146a_000468
0.407
0.469
−1.911
0.000
3.111
0.000
−2.319
0.000
2.704
0.000
5.023
0.000


mmu_miR_146b_001097
−0.796
0.084
−1.028
0.032
−0.675
0.217
−0.233
0.691
0.121
0.814
0.354
0.486


mmu_miR_146b_002453
−0.660
0.936
−4.107
0.184
−2.225
0.568
−3.446
0.238
−1.565
0.596
1.882
0.544


mmu_miR_147_002262
2.127
0.617
6.481
0.043
11.332
0.001
4.353
0.163
9.205
0.002
4.852
0.113


mmu_miR_148a_000470
−1.970
0.113
1.910
0.153
−0.749
0.679
3.880
0.002
1.222
0.324
−2.659
0.029


mmu_miR_148b_000471
0.098
0.988
−0.931
0.415
−0.200
0.914
−1.029
0.331
−0.298
0.790
0.730
0.505


mmu_miR_150_000473
1.049
0.299
−3.081
0.002
3.363
0.001
−4.130
0.000
2.314
0.009
6.445
0.000


mmu_miR_150_002570
−2.011
0.570
−6.503
0.020
−0.521
0.914
−4.493
0.089
1.490
0.596
5.983
0.025


mmu_miR_151_3p_001190
−5.001
0.000
−0.705
0.477
−2.276
0.014
4.296
0.000
2.725
0.001
−1.571
0.060


mmu_miR_152_000475
−5.426
0.000
−3.600
0.000
−0.140
0.914
1.826
0.009
5.286
0.000
3.460
0.000


mmu_miR_153_001191
3.399
0.007
−2.008
0.153
0.232
0.917
−5.407
0.000
−3.167
0.011
2.240
0.082


mmu_miR_154_000477
5.737
0.000
1.117
0.471
−1.186
0.517
−4.620
0.001
−6.923
0.000
−2.303
0.080


mmu_miR_155_002571
−4.409
0.000
−4.876
0.000
2.289
0.027
−0.468
0.695
6.697
0.000
7.165
0.000


mmu_miR_15a_000389
−2.134
0.087
0.757
0.656
−0.566
0.771
2.891
0.018
1.568
0.195
−1.323
0.307


mmu_miR_15a_002488
−1.864
0.017
−2.938
0.001
−0.443
0.721
−1.074
0.197
1.421
0.065
2.495
0.003


mmu_miR_15b_000390
−1.930
0.000
−1.807
0.001
0.184
0.826
0.122
0.873
2.114
0.000
1.991
0.000


mmu_miR_16_000391
−0.155
0.855
−0.165
0.823
0.349
0.564
−0.009
0.983
0.505
0.241
0.514
0.253


mmu_miR_16_002489
−3.736
0.002
−1.777
0.189
0.034
0.992
1.958
0.114
3.770
0.002
1.811
0.143


mmu_miR_17_002308
−3.351
0.000
−1.123
0.190
−2.019
0.020
2.228
0.004
1.332
0.075
−0.896
0.271


mmu_miR_17_002543
−2.176
0.667
−2.059
0.664
4.063
0.360
0.117
0.976
6.239
0.059
6.122
0.075


mmu_miR_181A_2_002687
−2.090
0.116
0.048
0.979
−0.853
0.657
2.138
0.102
1.237
0.352
−0.902
0.533


mmu_miR_181a_000480
−2.436
0.000
−0.654
0.316
−1.104
0.102
1.782
0.002
1.332
0.017
−0.450
0.486


mmu_miR_181c_000482
−0.748
0.374
−1.086
0.174
−1.765
0.028
−0.338
0.726
−1.018
0.145
−0.679
0.375


mmu_miR_182_002599
1.411
0.690
−0.383
0.933
−0.055
0.992
−1.794
0.503
−1.466
0.558
0.328
0.926


mmu_miR_1839_3p_1_2120_3_mat
−0.375
0.835
2.313
0.021
0.335
0.841
2.688
0.005
0.710
0.474
−1.978
0.038


mmu_miR_1839_5p_12113_5_mat
−1.080
0.641
1.854
0.302
−1.334
0.552
2.934
0.066
−0.254
0.887
−3.187
0.047


mmu_miR_183_002269
4.285
0.013
−2.463
0.199
−0.251
0.929
−6.749
0.000
−4.536
0.008
2.213
0.220


mmu_miR_184_000485
5.021
0.012
−0.328
0.933
3.225
0.187
−5.349
0.009
−1.796
0.393
3.553
0.083


mmu_miR_185_002271
3.024
0.003
3.368
0.003
−1.089
0.444
0.344
0.819
−4.112
0.000
−4.456
0.000


mmu_miR_186_002285
−1.204
0.312
−0.842
0.511
−0.415
0.827
0.362
0.812
0.789
0.474
0.428
0.752


mmu_miR_186_002574
−0.216
0.957
−2.330
0.069
0.327
0.884
−2.114
0.079
0.543
0.682
2.657
0.027


mmu_miR_187_001193
−5.563
0.000
−0.942
0.351
−5.026
0.000
4.621
0.000
0.537
0.564
−4.084
0.000


mmu_miR_188_3p_002106
−0.210
0.941
0.518
0.695
0.530
0.703
0.727
0.478
0.740
0.433
0.012
0.994


mmu_miR_188_5p_002320
−1.688
0.357
−6.391
0.000
0.010
0.995
−4.703
0.003
1.698
0.288
6.401
0.000


mmu_miR_1893_121170_mat
−0.259
0.983
−0.400
0.932
−1.144
0.759
−0.140
0.968
−0.885
0.737
−0.744
0.817


mmu_miR_1894_3p_241002_mat
−0.118
0.996
−3.743
0.293
5.302
0.159
−3.625
0.286
5.420
0.074
9.045
0.005


mmu_miR_1894_5p_121144_mat
−0.506
0.854
0.568
0.798
0.639
0.771
1.074
0.493
1.145
0.424
0.071
0.971


mmu_miR_1896_121128_mat
−1.592
0.823
−3.039
0.508
6.210
0.167
−1.447
0.788
7.802
0.033
9.249
0.016


mmu_miR_1897_3p_121126_mat
0.167
0.757
−0.113
0.844
−1.131
0.002
−0.280
0.437
−1.298
0.000
−1.018
0.003


mmu_miR_1897_5p_121199_mat
−0.413
0.945
−4.607
0.035
3.400
0.167
−4.194
0.042
3.813
0.057
8.007
0.000


mmu_miR_1898_121195_mat
0.184
0.748
−0.131
0.826
−1.307
0.001
−0.315
0.415
−1.491
0.000
−1.176
0.002


mmu_miR_1899_121198_mat
0.095
0.983
0.164
0.918
−0.470
0.717
0.069
0.958
−0.565
0.516
−0.634
0.496


mmu_miR_18a_002422
0.121
0.988
0.203
0.933
0.110
0.963
0.082
0.968
−0.011
0.995
−0.093
0.958


mmu_miR_18a_002490
−1.631
0.370
−1.945
0.267
−1.043
0.650
−0.314
0.911
0.588
0.736
0.902
0.608


mmu_miR_18b_002466
5.992
0.017
5.322
0.050
5.025
0.095
−0.670
0.873
−0.967
0.736
−0.297
0.934


mmu_miR_1900_121143_mat
0.127
0.961
0.056
0.972
−0.749
0.487
−0.071
0.952
−0.876
0.267
−0.805
0.330


mmu_miR_1901_121183_mat
0.223
0.994
−0.892
0.882
1.648
0.743
−1.115
0.812
1.425
0.695
2.540
0.486


mmu_miR_1902_121197_mat
0.161
0.820
−0.044
0.953
−0.990
0.016
−0.205
0.658
−1.151
0.002
−0.946
0.012


mmu_miR_1903_121153_mat
0.657
0.961
2.086
0.745
0.377
0.963
1.429
0.810
−0.280
0.955
−1.709
0.745


mmu_miR_1904_121162_mat
1.439
0.040
−3.372
0.000
4.328
0.000
−4.810
0.000
2.889
0.000
7.700
0.000


mmu_miR_1905_121196_mat
3.253
0.399
−3.747
0.312
6.088
0.111
−7.000
0.033
2.835
0.400
9.835
0.004


mmu_miR_1906_121169_mat
−1.435
0.540
0.109
0.973
−0.298
0.924
1.544
0.437
1.136
0.547
−0.408
0.874


mmu_miR_190_000489
−1.183
0.376
−2.119
0.084
−0.586
0.742
−0.935
0.466
0.598
0.632
1.533
0.190


mmu_miR_191_002299
−0.410
0.345
−0.071
0.922
−0.384
0.453
0.339
0.414
0.026
0.955
−0.313
0.451


mmu_miR_191_002576
0.495
0.736
0.607
0.616
1.543
0.159
0.112
0.936
1.047
0.255
0.936
0.334


mmu_miR_1927_121193_mat
−0.829
0.823
0.400
0.918
0.279
0.929
1.229
0.605
1.108
0.596
−0.122
0.964


mmu_miR_1928_121164_mat
0.373
0.961
−3.766
0.138
3.811
0.167
−4.139
0.075
3.437
0.129
7.576
0.002


mmu_miR192_000491
−1.181
0.169
1.790
0.038
−0.897
0.412
2.971
0.000
0.283
0.758
−2.688
0.002


mmu_miR_1930_121201_mat
1.776
0.306
1.147
0.556
2.163
0.251
−0.629
0.774
0.386
0.822
1.015
0.555


mmu_miR_1931_121168_mat
0.220
0.961
0.071
0.978
−0.674
0.742
−0.149
0.939
−0.894
0.512
−0.745
0.615


mmu_miR_1932_121172_mat
−3.562
0.374
0.878
0.885
−0.191
0.978
4.441
0.216
3.371
0.337
−1.069
0.817


mmu_miR_1933_3p_121145_mat
0.161
0.890
0.019
0.979
−0.871
0.171
−0.142
0.873
−1.032
0.046
−0.889
0.099


mmu_miR_1933_5p_121133_mat
−5.671
0.385
−3.511
0.650
−0.819
0.929
2.160
0.785
4.852
0.399
2.692
0.688


mmu_miR_1934_121185_mat
2.311
0.558
2.389
0.506
2.155
0.619
0.077
0.982
−0.156
0.965
−0.234
0.956


mmu_miR_1935_121192_mat
0.255
0.969
−0.047
0.985
−0.526
0.875
−0.302
0.922
−0.781
0.703
−0.479
0.854


mmu_miR_1936_121158_mat
0.072
0.996
0.479
0.840
0.837
0.677
0.407
0.840
0.765
0.595
0.358
0.850


mmu_miR_937b_241023_mat
0.248
0.996
−3.117
0.792
4.159
0.721
−3.366
0.740
3.911
0.631
7.277
0.362


mmu_miR_1937c_241011_mat
0.285
0.776
−3.710
0.000
3.868
0.000
−3.995
0.000
3.583
0.000
7.578
0.000


mmu_miR_1938_121194_mat
0.032
0.997
0.564
0.855
0.897
0.740
0.531
0.837
0.864
0.643
0.333
0.898


mmu_miR_1939_121180_mat
−0.699
0.936
1.062
0.834
1.427
0.759
1.761
0.621
2.126
0.485
0.365
0.931


mmu_miR_193_002250
−1.252
0.823
−2.085
0.579
1.070
0.836
−0.834
0.856
2.322
0.446
3.155
0.307


mmu_miR193_002577
−2.553
0.001
−1.062
0.198
1.408
0.108
1.490
0.046
3.961
0.000
2.471
0.002


mmu_miR193b_002467
−1.179
0.075
1.986
0.005
1.129
0.151
3.165
0.000
2.307
0.001
−0.858
0.203


mmu_miR_1940_121187_mat
1.227
0.767
2.295
0.426
0.461
0.916
1.067
0.754
−0.766
0.788
−1.834
0.505


mmu_miR_1941_3p_121130_mat
0.026
0.996
0.560
0.392
0.852
0.213
0.534
0.393
0.826
0.136
0.292
0.666


mmu_miR_1941_5p_121140_mat
−1.478
0.525
−1.189
0.616
−0.746
0.808
0.288
0.924
0.732
0.714
0.443
0.861


mmu_miR_1942_121136_mat
−1.701
0.885
−4.811
0.440
2.994
0.716
−3.110
0.632
4.696
0.389
7.806
0.145


mmu_miR_1943_121174_mat
−2.786
0.004
−0.552
0.704
−0.083
0.963
2.233
0.023
2.702
0.005
0.469
0.694


mmu_miR_1944_121189_mat
−1.152
0.747
0.187
0.970
−3.058
0.252
1.339
0.615
−1.906
0.399
−3.245
0.143


mmu_miR_1945_121166_mat
0.098
0.979
0.540
0.600
0.642
0.561
0.442
0.653
0.544
0.508
0.102
0.928


mmu_miR_1946a_121178_mat
0.759
0.941
0.936
0.882
0.964
0.875
0.177
0.968
0.206
0.959
0.028
0.994


mmu_miR_1947_121156_mat
−2.499
0.247
0.931
0.763
1.851
0.504
3.430
0.085
4.349
0.024
0.920
0.704


mmu_miR_1948_121171_mat
−0.315
0.964
1.954
0.406
0.573
0.876
2.269
0.301
0.888
0.695
−1.381
0.542


mmu_miR_1949_121182_mat
0.207
0.907
0.099
0.948
−0.525
0.626
−0.108
0.932
−0.733
0.327
−0.624
0.436


mmu_miR_194_000493
−0.762
0.618
−2.406
0.036
−0.490
0.782
−1.644
0.140
0.272
0.822
1.915
0.081


mmu_miR_1950_121146_mat
−2.759
0.110
−0.945
0.703
−0.926
0.726
1.815
0.314
1.833
0.283
0.019
0.994


mmu_miR_1951_121165_mat
0.450
0.994
1.741
0.882
5.624
0.548
1.291
0.912
5.174
0.456
3.884
0.608


mmu_miR_1952_121167_mat
0.170
0.764
−0.087
0.885
−1.082
0.004
−0.256
0.502
−1.252
0.000
−0.995
0.004


mmu_miR_1953_121159_mat
0.071
0.994
0.421
0.784
0.155
0.924
0.350
0.795
0.085
0.941
−0.266
0.842


mmu_miR_1954_121137_mat
0.597
0.918
−2.586
0.314
7.237
0.004
−3.184
0.174
6.640
0.003
9.823
0.000


mmu_miR_1956_121129_mat
−1.865
0.806
2.812
0.603
3.914
0.492
4.677
0.292
5.779
0.148
1.102
0.850


mmu_miR_1957_121163_mat
0.175
0.690
−0.141
0.754
−1.201
0.000
−0.316
0.314
−1.377
0.000
−1.061
0.001


mmu_miR_1958_121181_mat
−2.992
0.185
0.459
0.917
0.893
0.807
3.452
0.109
3.886
0.060
0.434
0.893


mmu_miR_1959_121132_mat
0.923
0.690
−2.175
0.194
7.493
0.000
−3.098
0.042
6.570
0.000
9.668
0.000


mmu_miR_195_000494
−3.548
0.000
−0.650
0.354
−0.966
0.187
2.898
0.000
2.582
0.000
−0.317
0.663


mmu_miR_1960_121148_mat
−1.397
0.539
0.881
0.744
1.185
0.645
2.278
0.211
2.582
0.128
0.305
0.905


mmu_miR_1961_197391_mat
0.801
0.945
−3.680
0.434
8.359
0.071
−4.481
0.301
7.558
0.052
12.039
0.004


mmu_miR_1962_121173_mat
−0.370
0.886
0.087
0.972
−1.153
0.463
0.458
0.780
−0.783
0.518
−1.240
0.310


mmu_miR_1963_121191_mat
0.175
0.690
−0.141
0.754
−1.201
0.000
−0.316
0.314
−1.377
0.000
−1.061
0.001


mmu_miR_1964_121138_mat
−0.971
0.456
0.718
0.605
0.871
0.560
1.689
0.114
1.841
0.071
0.152
0.923


mmu_miR_1965_121186_mat
0.130
0.846
−0.162
0.760
−1.202
0.002
−0.292
0.443
−1.332
0.000
−1.040
0.004


mmu_miR_1966_121134_mat
0.362
0.572
0.034
0.972
−1.658
0.002
−0.327
0.553
−2.019
0.000
−1.692
0.001


mmu_miR_1967_121151_mat
0.178
0.835
−0.129
0.882
−1.140
0.025
−0.307
0.560
−1.318
0.003
−1.011
0.027


mmu_miR_1968_121179_mat
−4.976
0.114
0.069
0.986
2.134
0.637
5.044
0.104
7.110
0.017
2.065
0.547


mmu_miR_1969_121131_mat
0.136
0.994
−3.625
0.071
3.576
0.105
−3.761
0.045
3.440
0.059
7.201
0.000


mmu_miR_196a_002477
0.220
0.996
3.305
0.692
5.321
0.508
3.085
0.669
5.101
0.391
2.016
0.796


mmu_miR_196b_002215
−1.705
0.456
2.604
0.199
0.070
0.984
4.309
0.019
1.774
0.349
−2.535
0.181


mmu_miR_1970_121202_mat
3.328
0.270
0.134
0.979
−1.939
0.629
−3.194
0.280
−5.268
0.048
−2.073
0.499


mmu_miR_1971_121161_mat
−5.039
0.129
−3.409
0.354
−3.363
0.442
1.631
0.695
1.676
0.633
0.045
0.994


mmu_miR_197_000497
5.635
0.190
−0.825
0.918
10.105
0.027
−6.459
0.118
4.470
0.280
10.929
0.009


mmu_miR_1981_121200_mat
0.870
0.385
−0.876
0.369
−0.137
0.925
−1.747
0.042
−1.008
0.240
0.739
0.431


mmu_miR_1982.1_121157_mat
−2.220
0.106
−3.256
0.022
−1.249
0.506
−1.036
0.495
0.970
0.487
2.007
0.139


mmu_miR_1982.2_121154_mat
0.936
0.820
−2.690
0.265
−0.327
0.927
−3.626
0.093
−1.263
0.579
2.363
0.294


mmu_miR_199a_3p_
002304 −5.629
0.000
−7.529
0.000
−3.536
0.027
−1.900
0.204
2.093
0.134
3.993
0.007


mmu_miR_199a_5p_000498
0.824
0.835
0.712
0.845
−0.800
0.830
−0.113
0.968
−1.624
0.448
−1.512
0.510


mmu_miR_199b_001131
0.014
0.998
1.992
0.360
1.256
0.657
1.979
0.334
1.242
0.535
−0.737
0.766


mmu_miR_19a_000395
−2.883
0.000
−2.740
0.000
−0.305
0.742
0.143
0.885
2.578
0.000
2.435
0.000


mmu_miR_19a_002544
0.121
0.936
0.213
0.791
−0.383
0.603
0.092
0.912
−0.504
0.329
−0.596
0.259


mmu_miR_19b_000396
−3.279
0.000
−1.683
0.027
−1.550
0.063
1.596
0.026
1.729
0.013
0.133
0.903


mmu_miR_1_002222
3.831
0.023
1.392
0.502
1.272
0.610
−2.438
0.167
−2.559
0.126
−0.120
0.960


mmu_miR_1_2_AS_002882
−3.088
0.484
−4.200
0.293
1.722
0.759
−1.112
0.834
4.810
0.162
5.922
0.098


mmu_miR_200a_000502
−1.466
0.715
−0.577
0.911
2.654
0.444
0.889
0.810
4.120
0.098
3.231
0.221


mmu_miR_200b_002251
−4.009
0.378
−2.162
0.706
3.936
0.456
1.847
0.723
7.945
0.035
6.098
0.123


mmu_miR_200c_002300
−0.494
0.961
−0.469
0.933
−0.951
0.855
0.025
0.992
−0.457
0.887
−0.482
0.906


mmu_miR_201_002578
−0.139
0.994
0.300
0.943
0.583
0.875
0.438
0.905
0.721
0.754
0.283
0.926


mmu_miR_202_3p_001195
1.468
0.774
−4.312
0.193
4.378
0.230
−5.780
0.054
2.910
0.347
8.690
0.005


mmu_miR_202_5p_002579
−0.069
0.996
0.066
0.979
1.495
0.519
0.135
0.959
1.564
0.355
1.429
0.429


mmu_miR_203_000507
−7.272
0.002
−6.233
0.012
−4.873
0.067
1.039
0.741
2.399
0.307
1.360
0.606


mmu_miR_203_002580
−4.173
0.153
0.494
0.927
1.000
0.839
4.667
0.097
5.173
0.056
0.506
0.904


mmu_miR_204_000508
−3.795
0.000
−1.509
0.008
−0.087
0.924
2.286
0.000
3.708
0.000
1.422
0.009


mmu_miR_205_000509
0.005
1.000
−6.973
0.019
−4.539
0.171
−6.978
0.012
−4.544
0.092
2.434
0.424


mmu_miR_207_001198
0.238
0.944
0.250
0.915
−0.837
0.613
0.012
0.991
−1.075
0.356
−1.087
0.368


mmu_miR_208_000511
3.037
0.649
−3.823
0.487
−2.379
0.741
−6.859
0.144
−5.415
0.237
1.444
0.817


mmu_miR_208b_002290
−0.719
0.957
−2.870
0.558
3.480
0.521
−2.151
0.661
4.199
0.288
6.351
0.107


mmu_miR_20a_000580
−2.949
0.000
−3.009
0.000
−1.470
0.032
−0.059
0.948
1.479
0.013
1.539
0.013


mmu_miR_20a_002491
0.400
0.943
−1.959
0.360
−0.333
0.920
−2.358
0.233
−0.732
0.727
1.626
0.429


mmu_miR_20b_001014
−3.923
0.012
−2.550
0.141
−1.544
0.473
1.374
0.435
2.380
0.125
1.006
0.571


mmu_miR_20b_002524
3.495
0.088
3.380
0.123
2.918
0.233
−0.115
0.968
−0.577
0.799
−0.462
0.874


mmu_miR_210_000512
−9.700
0.000
−5.759
0.000
−5.582
0.001
3.940
0.005
4.117
0.003
0.177
0.931


mmu_miR_211_001199
−1.515
0.907
−0.931
0.930
−0.077
0.993
0.584
0.941
1.438
0.814
0.854
0.913


mmu_miR_212_002551
4.763
0.000
2.609
0.024
−1.577
0.236
−2.154
0.049
−6.340
0.000
−4.186
0.000


mmu_miR_2134_241120_mat
0.996
0.687
−3.964
0.020
4.988
0.005
−4.961
0.002
3.991
0.011
8.952
0.000


mmu_miR_2135_241140_mat
−1.092
0.961
−7.661
0.319
0.929
0.933
−6.569
0.380
2.021
0.793
8.590
0.220


mmu_miR_2136_241133_mat
−1.565
0.941
−2.265
0.855
−0.523
0.970
−0.700
0.948
1.042
0.893
1.742
0.861


mmu_miR_2138_241080_mat
0.531
0.961
−5.369
0.123
6.687
0.071
−5.900
0.066
6.155
0.048
12.055
0.001


mmu_miR_2139_241130_mat
0.071
0.996
0.463
0.882
1.657
0.464
0.392
0.887
1.586
0.355
1.194
0.523


mmu_miR_2146_241082_mat
−1.079
0.885
−4.096
0.279
2.655
0.579
−3.017
0.415
3.734
0.271
6.751
0.046


mmu_miR_214_002306
−1.889
0.256
−0.425
0.882
0.097
0.974
1.464
0.382
1.986
0.183
0.522
0.799


mmu_miR_215_001200
−1.162
0.690
−6.341
0.003
−0.043
0.992
−5.179
0.008
1.120
0.592
6.299
0.002


mmu_miR_216a_002220
4.735
0.001
−2.118
0.190
0.573
0.827
−6.853
0.000
−4.162
0.004
2.691
0.068


mmu_miR_216b_002326
10.332
0.000
0.172
0.955
0.616
0.822
−10.159
0.000
−9.716
0.000
0.443
0.838


mmu_miR_217_001133
5.514
0.001
3.502
0.047
2.509
0.209
−2.012
0.254
−3.006
0.061
−0.993
0.599


mmu_miR_217_002556
5.231
0.000
0.135
0.961
2.444
0.110
−5.097
0.000
−2.787
0.028
2.310
0.080


mmu_miR_2182_241119_mat
0.919
0.882
2.530
0.445
5.709
0.082
1.611
0.645
4.791
0.077
3.179
0.281


mmu_miR_2183_241095_mat
0.244
0.983
−3.668
0.121
6.044
0.013
−3.912
0.073
5.800
0.007
9.712
0.000


mmu_miR_218_000521
7.436
0.000
3.821
0.000
2.330
0.000
−3.615
0.000
−5.105
0.000
−1.490
0.003


mmu_miR_218_1_002552
5.499
0.000
1.113
0.401
0.299
0.891
−4.386
0.000
−5.201
0.000
−0.815
0.525


mmu_miR_219_000522
−6.044
0.000
−2.064
0.075
−4.608
0.000
3.980
0.000
1.437
0.175
−2.543
0.020


mmu_miR_21_000397
−1.442
0.076
−2.587
0.003
0.723
0.521
−1.145
0.169
2.165
0.006
3.310
0.000


mmu_miR_21_002493
−0.033
0.996
0.365
0.882
1.589
0.355
0.398
0.840
1.622
0.216
1.224
0.387


mmu_miR_220_002468
0.190
0.736
−0.100
0.882
−1.065
0.006
−0.289
0.460
−1.255
0.000
−0.965
0.007


mmu_miR_221_000524
−2.920
0.000
−0.734
0.112
−1.199
0.012
2.186
0.000
1.721
0.000
−0.465
0.303


mmu_miR_222_002276
−0.473
0.156
−1.340
0.000
−1.253
0.001
−0.867
0.007
−0.780
0.012
0.087
0.848


mmu_miR_223_002295
−0.163
0.945
−10.692
0.000
4.655
0.000
−10.529
0.000
4.818
0.000
15.347
0.000


mmu_miR_224_002553
−4.117
0.000
−2.791
0.014
−3.191
0.007
1.326
0.235
0.926
0.399
−0.400
0.771


mmu_miR_23a_000399
−2.479
0.110
0.658
0.786
1.397
0.508
3.137
0.038
3.876
0.009
0.739
0.682


mmu_miR_23b_000400
0.698
0.599
1.135
0.298
0.730
0.603
0.437
0.740
0.032
0.980
−0.404
0.744


mmu_miR_24_000402
0.083
0.889
−0.207
0.538
0.387
0.239
−0.290
0.317
0.304
0.267
0.594
0.029


mmu_miR_24_2_002494
−2.101
0.010
−1.220
0.184
0.744
0.521
0.882
0.322
2.846
0.001
1.964
0.020


mmu_miR_25_000403
−1.754
0.157
3.844
0.003
1.255
0.437
5.598
0.000
3.009
0.009
−2.589
0.030


mmu_miR_26a_000405
−1.051
0.003
0.399
0.329
−0.536
0.215
1.450
0.000
0.515
0.143
−0.935
0.011


mmu_miR_26b_000407
−1.983
0.000
−0.981
0.030
−0.101
0.903
1.001
0.019
1.881
0.000
0.880
0.042


mmu_miR_27a_000408
−0.955
0.489
−1.130
0.369
2.818
0.024
−0.175
0.926
3.773
0.001
3.948
0.001


mmu_miR_27b_000409
−1.401
0.009
−0.905
0.125
−0.590
0.417
0.496
0.407
0.811
0.126
0.315
0.608


mmu_miR_28_000411
−0.251
0.967
−4.011
0.027
2.816
0.170
−3.760
0.028
3.066
0.065
6.826
0.000


mmu_miR_28_002545
−4.062
0.019
−4.730
0.012
−2.860
0.173
−0.668
0.790
1.202
0.512
1.870
0.313


mmu_miR_290_000187
3.765
0.346
−1.864
0.715
2.503
0.621
−5.629
0.107
−1.262
0.746
4.367
0.221


mmu_miR_290_3p_002591
0.172
0.732
−0.105
0.850
−1.116
0.002
−0.278
0.426
−1.289
0.000
−1.011
0.002


mmu_miR_290_5p_002590
−0.247
0.994
0.225
0.972
0.832
0.901
0.471
0.935
1.079
0.785
0.607
0.905


mmu_miR_291_3p_001135
1.202
0.108
0.82'
0.321
−0.046
0.974
−0.381
0.681
−1.248
0.076
−0.866
0.255


mmu_miR_291_5p_001202
0.210
0.790
−0.119
0.882
−1.793
0.001
−0.330
0.520
−2.003
0.000
−1.673
0.001


mmu_miR_291a_3p_002592
0.168
0.730
−0.108
0.841
−1.127
0.001
−0.276
0.414
−1.295
0.000
−1.019
0.002


mmu_miR_291b_3p_002538
0.136
0.935
0.091
0.933
−0.635
0.391
−0.045
0.959
−0.771
0.158
−0.726
0.208


mmu_miR_291b_5p_002537
0.148
0.877
−0.725
0.133
−1.196
0.015
−0.873
0.047
−1.344
0.002
−0.471
0.310


mmu_miR_292_3p_001054
4.448
0.063
3.944
0.128
3.014
0.318
−0.505
0.906
−1.435
0.568
−0.930
0.766


mmu_miR_292_3p_002593
−0.076
0.997
−5.404
0.299
0.907
0.914
−5.329
0.284
0.983
0.851
6.312
0.182


mmu_miR_292_5p_001055
7.043
0.122
6.376
0.192
3.322
0.608
−0.667
0.932
−3.721
0.416
−3.054
0.537


mmu_miR_293_001794
3.441
0.586
6.383
0.214
7.145
0.203
2.942
0.600
3.704
0.444
0.762
0.910


mmu_miR_293_002594
0.151
0.991
0.282
0.932
0.434
0.891
0.130
0.960
0.282
0.881
0.152
0.948


mmu_miR_294_001056
−1.483
0.828
3.402
0.415
4.580
0.313
4.885
0.192
6.063
0.079
1.178
0.809


mmu_miR_294_002595
0.175
0.690
−0.141
0.754
−1.201
0.000
−0.316
0.314
−1.377
0.000
−1.061
0.001


mmu_miR_295_000189
−0.112
0.994
−1.520
0.365
0.908
0.679
−1.408
0.388
1.020
0.509
2.428
0.105


mmu_miR_295__002596
−0.343
0.961
−0.581
0.882
−1.239
0.679
−0.238
0.936
−0.897
0.689
−0.659
0.810


mmu_miR_296_3p_002101
1.031
0.690
2.097
0.270
2.149
0.316
1.066
0.600
1.119
0.527
0.053
0.983


mmu_miR_296_5p_000527
−1.047
0.461
3.350
0.006
1.237
0.421
4.397
0.000
2.284
0.041
−2.113
0.068


mmu_miR_297a_002454
−5.086
0.000
−1.446
0.157
0.065
0.971
3.640
0.000
5.151
0.000
1.511
0.107


mmu_miR_297b_5p_001626
−0.017
0.997
0.592
0.767
1.573
0.339
0.609
0.721
1.590
0.208
0.981
0.491


mmu_miR_297c_002480
−0.163
0.988
0.447
0.882
−0.896
0.737
0.610
0.799
−0.733
0.695
−1.343
0.479


mmu_miR_298_002598
3.627
0.016
−1.125
0.558
−1.539
0.458
−4.752
0.002
−5.165
0.001
−0.414
0.848


mmu_miR_299_002612
0.175
0.690
−0.141
0.754
−1.201
0.000
−0.316
0.314
−1.377
0.000
−1.061
0.001


mmu_miR_29a_002112
1.393
0.002
1.752
0.001
−0.217
0.767
0.359
0.487
−1.609
0.001
−1.969
0.000


mmu_miR_29b_000413
1.158
0.306
−2.112
0.048
1.083
0.421
−3.269
0.001
−0.074
0.953
3.195
0.002


mmu_miR_29b_002497
0.008
0.998
−3.742
0.001
3.114
0.007
−3.751
0.000
3.105
0.002
6.856
0.000


mmu_miR_29c_000587
1.135
0.004
1.636
0.000
0.391
0.468
0.501
0.231
−0.744
0.054
−1.245
0.003


mmu_miR_300_000191
3.875
0.118
−2.815
0.301
0.902
0.836
−6.690
0.006
−2.973
0.216
3.717
0.128


mmu_miR_300_002613
5.768
0.000
3.155
0.019
1.616
0.309
−2.614
0.037
−4.152
0.001
−1.538
0.235


mmu_miR_301a_000528
−0.556
0.353
−0.729
0.199
−0.225
0.793
−0.172
0.815
0.331
0.543
0.503
0.362


mmu_miR_301b_002600
−0.573
0.468
0.785
0.274
−0.163
0.895
1.359
0.033
0.410
0.542
−0.949
0.141


mmu_miR_302a_000529
1.639
0.857
3.536
0.531
5.310
0.369
1.897
0.769
3.671
0.439
1.774
0.766


mmu_miR_302a_002615
−1.010
0.835
0.365
0.945
0.130
0.978
1.376
0.669
1.140
0.689
−0.236
0.948


mmu_miR_302b_000531
−2.108
0.462
−0.339
0.943
−1.883
0.564
1.770
0.502
0.226
0.935
−1.544
0.551


mmu_miR_302b_001307
−0.158
0.996
0.249
0.971
0.458
0.929
0.407
0.936
0.616
0.859
0.209
0.961


mmu_miR_302c_002557
3.762
0.100
3.339
0.182
2.930
0.301
−0.424
0.912
−0.832
0.739
−0.409
0.904


mmu_miR_302c_002558
1.198
0.882
2.668
0.558
1.731
0.767
1.470
0.774
0.533
0.893
−0.937
0.856


mmu_miR_302d_000535
2.089
0.588
−0.013
0.998
2.123
0.608
−2.102
0.517
0.033
0.993
2.136
0.500


mmu_miR_30a_000417
−0.982
0.009
−0.613
0.141
−0.270
0.628
0.369
0.378
0.712
0.053
0.343
0.403


mmu_miR_30b_000602
−0.211
0.690
−0.145
0.791
−0.297
0.539
0.065
0.912
−0.086
0.822
−0.151
0.724


mmu_miR_30b_002498
−1.594
0.418
0.328
0.918
0.962
0.702
1.922
0.279
2.556
0.111
0.634
0.766


mmu_miR_30c_000419
−0.138
0.797
−0.551
0.084
−0.360
0.352
−0.413
0.182
−0.222
0.474
0.191
0.568


mmu_miR_30d_000420
−1.663
0.006
−0.800
0.238
−0.026
0.983
0.863
0.171
1.637
0.006
0.775
0.218


mmu_miR_30e_002223
−1.332
0.000
−0.403
0.197
−0.126
0.787
0.928
0.001
1.205
0.000
0.277
0.362


mmu_miR_31_000185
−0.535
0.570
0.732
0.359
1.002
0.236
1.267
0.070
1.537
0.023
0.270
0.766


mmu_miR_31_002495
0.961
0.764
2.051
0.353
0.359
0.916
1.090
0.649
−0.602
0.786
−1.693
0.420


mmu_miR_320_002277
−2.015
0.000
0.490
0.259
−0.456
0.361
2.505
0.000
1.559
0.000
−0.946
0.016


mmu_miR_322_001059
−4.848
0.209
−4.416
0.279
−3.192
0.529
0.432
0.936
1.656
0.680
1.224
0.804


mmu_miR_322_001076
−8.070
0.000
−5.020
0.003
−7.250
0.000
3.051
0.054
0.820
0.635
−2.231
0.168


mmu_miR_322_002506
−7.610
0.000
−6.730
0.000
−5.900
0.001
0.880
0.667
1.711
0.300
0.831
0.667


mmu_miR_323_3p_002227
9.271
0.000
2.885
0.001
−0.704
0.544
−6.385
0.000
−9.975
0.000
−3.590
0.000


mmu_miR_324_3p_002509
−2.299
0.017
0.199
0.918
−2.304
0.037
2.498
0.010
−0.004
0.998
−2.502
0.012


mmu_miR_324_5p_000539
−1.495
0.194
−0.458
0.791
−1.257
0.373
1.037
0.388
0.237
0.846
−0.800
0.510


mmu_miR_325_001060
−3.766
0.345
−9.421
0.011
−4.450
0.309
−5.655
0.104
−0.683
0.859
4.971
0.154


mmu_miR_325_002510
1.632
0.075
1.324
0.187
−0.258
0.875
−0.308
0.813
−1.891
0.032
−1.582
0.083


mmu_miR_326_001061
−8.565
0.088
−1.067
0.917
−1.497
0.871
7.498
0.140
7.069
0.143
−0.430
0.952


mmu_miR_327_002481
1.654
0.154
1.417
0.256
0.657
0.699
−0.238
0.905
−0.997
0.385
−0.759
0.541


mmu_miR_328_000543
0.982
0.013
0.909
0.033
0.160
0.826
−0.073
0.912
−0.822
0.035
−0.749
0.065


mmu_miR_329_000192
5.034
0.000
2.245
0.034
0.769
0.599
−2.789
0.006
−4.265
0.000
−1.475
0.145


mmu_miR_32_002109
−3.230
0.216
−7.530
0.004
1.693
0.637
−4.301
0.079
4.923
0.037
9.223
0.001


mmu_miR_330_001062
2.157
0.721
−0.505
0.948
2.228
0.706
−2.663
0.553
0.071
0.988
2.733
0.525


mmu_miR_330_002230
1.918
0.120
−0.160
0.948
−0.872
0.620
−2.078
0.086
−2.790
0.017
−0.712
0.603


mmu_miR_331_3p_000545
0.717
0.218
2.268
0.000
1.145
0.067
1.551
0.005
0.427
0.448
−1.123
0.040


mmu_miR_331_5p_002233
3.571
0.152
−2.213
0.426
1.555
0.661
−5.784
0.015
−2.017
0.412
3.767
0.119


mmu_miR_335_3p_002185
7.875
0.000
4.941
0.000
0.419
0.851
−2.935
0.017
−7.457
0.000
−4.522
0.001


mmu_miR_335_5p_000546
4.132
0.000
2.146
0.001
1.047
0.108
−1.987
0.001
−3.085
0.000
−1.098
0.049


mmu_miR_337_000193
2.934
0.017
1.763
0.199
1.057
0.548
−1.171
0.393
−1.876
0.125
−0.706
0.616


mmu_miR_337_3p_002532
4.982
0.000
2.015
0.084
1.205
0.411
−2.967
0.007
−3.778
0.001
−0.811
0.505


mmu_miR_337_5p_002515
1.616
0.492
0.274
0.943
2.277
0.350
−1.343
0.538
0.661
0.755
2.003
0.311


mmu_miR_338_3p_002252
−4.032
0.000
−2.876
0.013
−2.023
0.110
1.156
0.318
2.009
0.056
0.853
0.482


mmu_miR_339_3p_002533
−0.796
0.822
−1.905
0.365
2.055
0.402
−1.109
0.622
2.851
0.114
3.960
0.033


mmu_miR_339_5p_002257
−4.104
0.000
−0.627
0.706
−1.661
0.229
3.477
0.003
2.444
0.027
−1.034
0.401


mmu_miR_340_3p_002259
0.251
0.652
0.212
0.706
0.591
0.200
−0.040
0.944
0.340
0.389
0.380
0.353


mmu_miR_340_5p_002258
−0.357
0.462
0.609
0.158
0.006
0.993
0.966
0.013
0.363
0.370
−0.604
0.129


mmu_miR_342_3p_002260
2.559
0.000
0.430
0.321
−0.507
0.293
−2.129
0.000
−3.066
0.000
−0.937
0.016


mmu_miR_342_5p_002527
5.917
0.000
0.540
0.803
0.876
0.657
−5.377
0.000
−5.041
0.000
0.336
0.861


mmu_miR_343_002483
0.146
0.924
−1.008
0.101
−1.393
0.030
−1.154
0.043
−1.538
0.006
−0.385
0.546


mmu_miR_344_001063
−1.328
0.239
1.663
0.145
−1.968
0.107
2.991
0.004
−0.640
0.561
−3.631
0.001


mmu_miR_345_001137
−1.476
0.125
0.409
0.784
0.296
0.868
1.884
0.043
1.772
0.051
−0.113
0.932


mmu_miR_345_3p_002529
−0.164
0.967
1.510
0.225
1.713
0.204
1.674
0.146
1.877
0.083
0.203
0.904


mmu_miR_345_5p_002528
−2.728
0.000
0.627
0.449
−0.782
0.402
3.355
0.000
1.946
0.005
−1.409
0.046


mmu_miR_346_001064
1.131
0.513
1.437
0.354
1.950
0.236
0.306
0.896
0.819
0.567
0.513
0.769


mmu_miR_34a_000426
5.086
0.000
1.223
0.044
0.291
0.742
−3.863
0.000
−4.795
0.000
−0.931
0.108


mmu_miR_34b_001065
2.775
0.041
3.392
0.020
2.348
0.151
0.617
0.740
−0.427
0.786
−1.044
0.493


mmu_miR_34b_3p_002618
1.417
0.002
2.030
0.000
1.508
0.004
0.613
0.212
0.091
0.862
−0.523
0.288


mmu_miR_34b_5p_002617
1.409
0.345
0.357
0.882
2.079
0.177
−1.052
0.466
0.670
0.633
1.722
0.192


mmu_miR_34c_000428
2.246
0.004
4.578
0.000
1.396
0.139
2.331
0.003
−0.851
0.288
−3.182
0.000


mmu_miR_34c_002584
1.218
0.037
−0.027
0.979
1.151
0.095
−1.245
0.034
−0.067
0.922
1.178
0.046


mmu_miR_350_002530
−3.655
0.000
−2.169
0.000
−1.249
0.036
1.486
0.005
2.406
0.000
0.920
0.083


mmu_miR_351_001067
0.225
0.944
0.342
0.855
−2.075
0.098
0.117
0.941
−2.300
0.027
−2.417
0.025


mmu_miR_361_000554
1.003
0.583
3.799
0.009
0.693
0.742
2.795
0.038
−0.311
0.837
−3.106
0.023


mmu_miR_362_3p_002616
0.360
0.840
−1.026
0.336
1.773
0.107
−1.386
0.148
1.412
0.124
2.799
0.004


mmu_miR_362_5p_002614
−1.486
0.070
2.035
0.019
0.021
0.992
3.521
0.000
1.507
0.056
−2.015
0.015


mmu_miR_363_001271
−3.349
0.190
0.166
0.972
−2.360
0.473
3.515
0.159
0.989
0.714
−2.526
0.323


mmu_miR_365_001020
−5.171
0.000
0.743
0.441
−1.114
0.273
5.914
0.000
4.057
0.000
−1.857
0.025


mmu_miR_367_000555
−2.483
0.737
−1.287
0.882
−1.469
0.868
1.197
0.874
1.015
0.845
−0.182
0.977


mmu_miR_369_3p_000557
5.429
0.000
1.105
0.299
−0.201
0.912
−4.324
0.000
−5.631
0.000
−1.307
0.176


mmu_miR_369_5p_001021
6.353
0.000
0.135
0.948
1.938
0.095
−6.219
0.000
−4.415
0.000
1.803
0.071


mmu_miR_370_001068
0.071
0.996
0.430
0.899
1.674
0.504
0.359
0.911
1.603
0.385
1.244
0.533


mmu_miR_370_002275
9.508
0.000
2.260
0.002
−2.429
0.001
−7.248
0.000
−11.937
0.000
−4.689
0.000


mmu_miR_374_002043
0.061
0.997
−4.124
0.472
2.787
0.707
−4.185
0.436
2.726
0.596
6.911
0.158


mmu_miR_374_5p_001319
−4.769
0.187
−4.168
0.279
−3.711
0.418
0.601
0.912
1.057
0.788
0.456
0.928


mmu_miR_375_000564
2.926
0.011
2.773
0.024
0.139
0.946
−0.153
0.936
−2.788
0.014
−2.634
0.025


mmu_miR_376a_001069
5.517
0.000
1.592
0.003
0.416
0.548
−3.926
0.000
−5.101
0.000
−1.175
0.019


mmu_miR_376a_002482
5.887
0.001
2.039
0.334
0.201
0.951
−3.847
0.038
−5.686
0.002
−1.838
0.353


mmu_miR_376b_002451
4.416
0.306
5.162
0.225
−0.071
0.992
0.745
0.912
−4.488
0.242
−5.233
0.182


mmu_miR_376b_002452
8.585
0.000
2.307
0.028
0.510
0.742
−6.279
0.000
−8.075
0.000
−1.797
0.074


mmu_miR_376c_002450
3.682
0.000
2.401
0.000
0.963
0.053
−1.281
0.003
−2.719
0.000
−1.438
0.002


mmu_miR_376c_002523
2.097
0.395
−0.250
0.953
0.111
0.978
−2.348
0.301
−1.986
0.355
0.361
0.906


mmu_miR_377_000566
1.534
0.471
1.343
0.525
0.561
0.863
−0.191
0.941
−0.974
0.596
−0.782
0.711


mmu_miR_379_001138
4.389
0.000
4.162
0.001
0.947
0.531
−0.228
0.906
−3.442
0.001
−3.215
0.004


mmu_miR_380_3p_001071
4.779
0.000
3.099
0.003
1.664
0.146
−1.680
0.079
−3.116
0.001
−1.436
0.138


mmu_miR_380_5p_002601
6.742
0.000
2.159
0.002
1.936
0.007
−4.583
0.000
−4.806
0.000
−0.223
0.796


mmu_miR_381_000571
4.944
0.001
−1.787
0.289
−0.060
0.983
−6.732
0.000
−5.004
0.001
1.728
0.270


mmu_miR_382_000572
8.447
0.000
3.934
0.005
−1.376
0.441
−4.513
0.001
−9.823
0.000
−5.310
0.000


mmu_miR_383_001767
7.441
0.000
2.533
0.000
0.544
0.539
−4.909
0.000
−6.897
0.000
−1.988
0.003


mmu_miR_384_3p_002603
2.112
0.000
1.046
0.084
−0.152
0.884
−1.066
0.058
−2.264
0.000
−1.197
0.036


mmu_miR_384_5p_002602
2.758
0.000
0.771
0.050
−0.135
0.836
−1.987
0.000
−2.893
0.000
−0.906
0.016


mmu_miR_409_3p_002332
4.745
0.000
3.160
0.004
1.029
0.458
−1.585
0.130
−3.716
0.000
−2.131
0.039


mmu_miR_409_5p_002331
8.482
0.000
3.647
0.001
1.755
0.111
−4.835
0.000
−6.727
0.000
−1.892
0.046


mmu_miR_410_001274
5.178
0.000
2.492
0.000
0.084
0.916
−2.686
0.000
−5.093
0.000
−2.408
0.000


mmu_miR_411_001610
3.639
0.000
1.837
0.009
0.275
0.807
−1.802
0.007
−3.363
0.000
−1.562
0.020


mmu_miR_412_002575
8.665
0.000
−0.268
0.882
−0.063
0.973
−8.934
0.000
−8.729
0.000
0.205
0.881


mmu_miR_423_5p_002340
−3.233
0.000
−2.175
0.021
−0.743
0.551
1.058
0.263
2.491
0.004
1.433
0.110


mmu_miR_425_001516
1.711
0.488
−4.554
0.029
4.197
0.066
−6.265
0.002
2.486
0.203
8.752
0.000


mmu_miR_429_001077
2.568
0.378
0.664
0.882
2.891
0.370
−1.904
0.502
0.324
0.907
2.227
0.412


mmu_miR_431_001979
2.223
0.028
−1.743
0.117
−4.616
0.000
−3.966
0.000
−6.840
0.000
−2.873
0.006


mmu_miR_432_241135_mat
−1.407
0.833
−3.461
0.384
−2.469
0.628
−2.055
0.627
−1.063
0.789
0.992
0.839


mmu_miR_433_001028
5.030
0.000
1.330
0.009
0.137
0.875
−3.700
0.000
−4.893
0.000
−1.193
0.013


mmu_miR_433_5p_001078
2.017
0.649
−3.246
0.354
0.657
0.912
−5.263
0.086
−1.360
0.689
3.903
0.214


mmu_miR_434_3p_002604
5.044
0.000
0.998
0.048
−0.060
0.943
−4.046
0.000
−5.104
0.000
−1.058
0.027


mmu_miR_434_5p_002581
7.306
0.000
2.398
0.048
−0.342
0.874
−4.908
0.000
−7.648
0.000
−2.741
0.019


mmu_miR_448_001029
8.071
0.000
2.194
0.218
−0.588
0.836
−5.876
0.000
−8.659
0.000
−2.782
0.086


mmu_miR_449a_001030
2.903
0.036
−2.008
0.190
0.927
0.650
−4.911
0.001
−1.976
0.144
2.935
0.036


mmu_miR_449b_001667
4.277
0.020
−0.925
0.754
2.201
0.364
−5.202
0.006
−2.077
0.271
3.125
0.099


mmu_miR_449b_002539
0.172
0.719
−0.108
0.841
−1.130
0.001
−0.280
0.406
−1.302
0.000
−1.022
0.002


mmu_miR_450B_3P_002632
−2.905
0.394
−5.323
0.084
−2.193
0.603
−2.418
0.452
0.712
0.823
3.130
0.306


mmu_miR_450a_3p_002525
0.175
0.690
−0.141
0.754
−1.201
0.000
−0.316
0.314
−1.377
0.000
−1.061
0.001


mmu_miR_450a_5p_002303
−2.769
0.048
−1.540
0.334
−2.984
0.065
1.228
0.429
−0.215
0.892
−1.443
0.330


mmu_miR_450b_5p_001962
0.145
0.918
−0.036
0.972
−0.936
0.151
−0.181
0.817
−1.081
0.042
−0.900
0.105


mmu_miR_451_001141
−4.842
0.154
−6.224
0.073
0.824
0.896
−1.382
0.758
5.665
0.070
7.048
0.031


mmu_miR_452_001032
0.723
0.943
1.195
0.841
3.886
0.380
0.471
0.935
3.163
0.365
2.691
0.480


mmu_miR_453_002484
0.112
0.991
0.344
0.882
0.113
0.963
0.233
0.912
0.002
0.999
−0.231
0.898


mmu_miR_455_002455
−7.521
0.000
−4.167
0.004
−4.250
0.005
3.355
0.013
3.271
0.013
−0.084
0.964


mmu_miR_463_002582
0.046
0.996
−3.437
0.014
5.163
0.001
−3.483
0.008
5.117
0.000
8.600
0.000


mmu_miR_463_002662
−3.425
0.185
−7.865
0.003
−1.331
0.729
−4.440
0.070
2.094
0.407
6.534
0.009


mmu_miR_464_001081
0.202
0.939
0.044
0.979
−1.603
0.112
−0.158
0.912
−1.805
0.031
−1.646
0.059


mmu_miR_465C_5P_002654
1.929
0.369
−4.658
0.018
5.129
0.012
−6.587
0.001
3.200
0.070
9.787
0.000


mmu_miR_465a_3p_002040
1.660
0.652
−0.350
0.948
−0.217
0.963
−2.010
0.482
−1.877
0.475
0.133
0.971


mmu_miR_465a_5p_001082
−8.260
0.194
−2.654
0.784
−3.303
0.727
5.606
0.398
4.957
0.426
−0.649
0.938


mmu_miR_465b_5p_002485
4.942
0.256
4.345
0.339
1.846
0.771
−0.597
0.932
−3.097
0.454
−2.500
0.575


mmu_miR_466E_5P_002718
−2.304
0.729
−5.556
0.230
0.951
0.906
−3.252
0.492
3.255
0.452
6.507
0.124


mmu_miR_466J_002817
−6.904
0.000
−2.722
0.067
−3.240
0.039
4.182
0.003
3.665
0.007
−0.518
0.773


mmu_miR_466a_3p_002586
−4.030
0.000
−0.053
0.972
−0.566
0.599
3.977
0.000
3.464
0.000
−0.513
0.532


mmu_miR_466b_3_3p_002500
−4.068
0.000
−1.190
0.354
−0.678
0.686
2.878
0.010
3.389
0.002
0.511
0.711


mmu_miR_466d_5p_002534
3.616
0.540
−2.488
0.706
4.514
0.458
−6.104
0.195
0.898
0.859
7.002
0.125


mmu_miR_466g_241015_mat
−2.278
0.379
3.276
0.184
4.018
0.124
5.554
0.012
6.296
0.004
0.742
0.806


mmu_miR_466h_002516
−1.391
0.599
0.223
0.953
1.368
0.629
1.614
0.452
2.760
0.143
1.145
0.603


mmu_miR_466k_240990_mat
−4.461
0.090
−1.100
0.791
1.124
0.795
3.361
0.216
5.585
0.027
2.225
0.434


mmu_miR_467F_002886
−5.922
0.051
−7.574
0.019
−0.696
0.906
−1.653
0.665
5.226
0.073
6.878
0.025


mmu_miR_467H_002809
−4.066
0.000
0.975
0.470
−0.059
0.978
5.041
0.000
4.007
0.001
−1.034
0.398


mmu_miR_467a_001826
−5.209
0.000
−4.692
0.001
−0.616
0.768
0.517
0.780
4.593
0.001
4.076
0.003


mmu_miR_467a_002587
−3.725
0.001
1.339
0.278
−1.333
0.346
5.064
0.000
2.392
0.024
−2.671
0.016


mmu_miR_467b_001671
−5.130
0.000
−1.642
0.184
−2.771
0.027
3.488
0.002
2.360
0.029
−1.128
0.339


mmu_miR_467b_001684
−4.205
0.037
−8.053
0.000
2.608
0.309
−3.848
0.057
6.813
0.001
10.661
0.000


mmu_miR_467c_002517
−6.425
0.000
−2.009
0.317
−1.495
0.548
4.416
0.012
4.929
0.005
0.514
0.838


mmu_miR_467d_002518
−2.833
0.022
−0.957
0.539
0.219
0.920
1.876
0.145
3.052
0.012
1.176
0.379


mmu_miR_467e_002568
−3.548
0.062
−3.650
0.070
−0.023
0.993
−0.102
0.968
3.525
0.054
3.627
0.056


mmu_miR_467e_002569
−1.516
0.565
0.270
0.948
−3.108
0.186
1.785
0.409
−1.592
0.433
−3.377
0.087


mmu_miR_468_001085
0.262
0.961
−0.119
0.972
−3.341
0.067
−0.381
0.885
−3.603
0.019
−3.222
0.043


mmu_miR_469_001086
0.418
0.979
−0.181
0.978
−2.397
0.628
−0.600
0.912
−2.816
0.419
−2.216
0.555


mmu_miR_470_002588
−0.488
0.828
0.519
0.784
0.672
0.712
1.007
0.441
1.160
0.337
0.153
0.928


mmu_miR_470_002589
−2.865
0.721
−8.182
0.144
6.303
0.339
−5.318
0.334
9.168
0.063
14.485
0.006


mmu_miR_471_002605
0.180
0.852
0.033
0.972
−0.746
0.203
−0.147
0.840
−0.926
0.051
−0.779
0.115


mmu_miR_483_001291
−2.270
0.547
−2.959
0.363
1.505
0.738
−0.689
0.885
3.775
0.177
4.464
0.123


mmu_miR_483_002560
−0.254
0.941
0.368
0.855
2.606
0.046
0.622
0.667
2.860
0.010
2.238
0.052


mmu_miR_484_001821
−2.187
0.000
−1.011
0.029
−1.115
0.024
1.175
0.008
1.071
0.012
−0.104
0.868


mmu_miR_485_3p_001943
4.239
0.000
1.700
0.003
1.155
0.064
−2.539
0.000
−3.085
0.000
−0.545
0.339


mmu_miR_486_001278
−6.407
0.000
−1.600
0.318
−7.399
0.000
4.807
0.001
−0.992
0.501
−5.799
0.000


mmu_miR_487b_001285
5.104
0.000
1.309
0.022
0.802
0.220
−3.795
0.000
−4.302
0.000
−0.507
0.380


mmu_miR_487b_001306
7.099
0.000
3.152
0.000
0.276
0.741
−3.946
0.000
−6.822
0.000
−2.876
0.000


mmu_miR_488_001659
−0.642
0.757
1.127
0.445
0.364
0.875
1.769
0.172
1.006
0.439
−0.762
0.590


mmu_miR_488_002014
2.542
0.371
4.774
0.067
4.604
0.107
2.232
0.407
2.063
0.411
−0.169
0.960


mmu_miR_489_001302
6.276
0.001
0.907
0.765
−1.437
0.611
−5.370
0.006
−7.714
0.000
−2.344
0.248


mmu_miR_490_001037
4.692
0.000
−1.430
0.277
−1.670
0.236
−6.122
0.000
−6.363
0.000
−0.240
0.891


mmu_miR_491_001630
4.656
0.000
3.961
0.000
0.528
0.728
−0.695
0.534
−4.128
0.000
−3.433
0.001


mmu_miR_493_002519
1.745
0.558
−1.507
0.606
−1.494
0.650
−3.252
0.156
−3.239
0.136
0.013
0.995


mmu_miR_494_001293
1.835
0.285
1.500
0.401
−1.173
0.603
−0.336
0.904
−3.009
0.045
−2.673
0.086


mmu_miR_494_002365
0.339
0.908
−1.252
0.364
−1.713
0.246
−1.591
0.211
−2.051
0.079
−0.460
0.769


mmu_miR_495_001663
5.096
0.000
1.903
0.000
0.043
0.950
−3.194
0.000
−5.053
0.000
−1.860
0.000


mmu_miR_496_001953
1.569
0.649
−2.101
0.452
−3.603
0.205
−3.670
0.128
−5.172
0.024
−1.502
0.572


mmu_miR_497_001346
−5.540
0.000
0.490
0.784
−1.905
0.151
6.029
0.000
3.634
0.001
−2.395
0.032


mmu_miR_499_001352
1.750
0.468
0.405
0.918
1.157
0.698
−1.345
0.553
−0.593
0.790
0.752
0.766


mmu_miR_500_002606
0.203
0.948
0.238
0.908
−1.089
0.439
0.035
0.976
−1.291
0.208
−1.327
0.214


mmu_miR_501_001356
0.000
1.000
0.400
0.918
0.687
0.847
0.400
0.911
0.687
0.758
0.287
0.923


mmu_miR_501_3p_001651
−0.323
0.771
1.220
0.084
−1.672
0.024
1.543
0.018
−1.349
0.034
−2.892
0.000


mmu_miR_503_002456
−0.366
0.924
−0.259
0.927
−0.617
0.800
0.107
0.962
−0.251
0.879
−0.358
0.861


mmu_miR_503_002536
−3.864
0.000
−1.686
0.111
−1.499
0.203
2.178
0.026
2.365
0.013
0.187
0.898


mmu_miR_504_002084
1.244
0.261
−0.500
0.754
−2.447
0.031
−1.744
0.086
−3.691
0.000
−1.947
0.056


mmu_miR_505_001655
1.006
0.484
1.624
0.199
2.213
0.102
0.618
0.669
1.207
0.303
0.589
0.667


mmu_miR_509_3p_002521
0.714
0.967
−2.740
0.706
−0.278
0.978
−3.454
0.553
−0.992
0.859
2.462
0.679


mmu_miR_509_5p_002520
4.369
0.370
4.125
0.390
2.736
0.657
−0.243
0.968
−1.633
0.727
−1.389
0.806


mmu_miR_511_002549
0.837
0.764
1.551
0.423
2.651
0.182
0.714
0.754
1.815
0.280
1.101
0.551


mmu_miR_532_3p_002355
−0.882
0.179
−1.851
0.005
−0.459
0.611
−0.969
0.125
0.424
0.512
1.392
0.026


mmu_miR_532_5p_001518
−1.886
0.000
−1.123
0.023
−0.781
0.162
0.763
0.105
1.106
0.015
0.342
0.510


mmu_miR_539_001286
4.967
0.000
4.133
0.000
0.623
0.669
−0.834
0.437
−4.345
0.000
−3.511
0.001


mmu_miR_540_3p_001310
3.160
0.003
0.555
0.733
0.597
0.721
−2.606
0.014
−2.563
0.013
0.043
0.977


mmu_miR_540_5p_002561
5.694
0.000
2.693
0.023
1.405
0.330
−3.001
0.008
−4.289
0.000
−1.288
0.275


mmu_miR_541_002562
5.280
0.000
−0.673
0.302
−0.718
0.338
−5.953
0.000
−5.998
0.000
−0.045
0.956


mmu_miR_542_3p_001284
−2.679
0.039
−0.440
0.849
−1.702
0.301
2.238
0.087
0.977
0.474
−1.262
0.366


mmu_miR_542_5p_002563
1.648
0.721
1.062
0.835
−2.600
0.529
−0.586
0.911
−4.248
0.137
−3.662
0.228


mmu_miR_543_001298
5.130
0.000
1.455
0.022
0.119
0.914
−3.676
0.000
−5.012
0.000
−1.336
0.027


mmu_miR_543_002376
5.450
0.000
1.949
0.000
0.298
0.677
−3.501
0.000
−5.152
0.000
−1.651
0.001


mmu_miR_544_002550
6.701
0.000
4.842
0.000
1.939
0.062
−1.859
0.038
−4.762
0.000
−2.903
0.002


mmu_miR_546_001312
2.258
0.882
−4.191
0.664
4.317
0.677
−6.449
0.397
2.059
0.793
8.508
0.235


mmu_miR_547_002564
1.049
0.835
1.958
0.558
−0.621
0.906
0.909
0.813
−1.670
0.554
−2.579
0.366


mmu_miR_551b_001535
0.347
0.889
−2.149
0.073
0.399
0.839
−2.496
0.025
0.052
0.970
2.548
0.025


mmu_miR_574_3p_002349
−5.848
0.000
−4.339
0.000
−4.573
0.000
1.510
0.040
1.275
0.073
−0.234
0.817


mmu_miR_582_3p_002567
−1.142
0.646
1.703
0.384
0.997
0.702
2.845
0.098
2.139
0.205
−0.706
0.745


mmu_miR_582_5p_002566
0.369
0.820
1.216
0.192
−0.264
0.868
0.846
0.359
−0.634
0.474
−1.480
0.082


mmu_miR_590_5p_001984
0.306
0.972
0.221
0.966
−0.630
0.880
−0.085
0.976
−0.936
0.711
−0.851
0.771


mmu_miR_592_002017
3.212
0.000
1.015
0.212
0.378
0.742
−2.197
0.003
−2.834
0.000
−0.637
0.429


mmu_miR_598_002476
2.922
0.011
2.336
0.061
−0.127
0.951
−0.586
0.697
−3.049
0.007
−2.463
0.036


mmu_miR_599_241117_mat
−2.471
0.410
0.313
0.953
−1.775
0.630
2.784
0.307
0.696
0.807
−2.088
0.454


mmu_miR_615_3p_001960
0.676
0.618
4.258
0.000
−0.483
0.748
3.582
0.000
−1.158
0.229
−4.740
0.000


mmu_miR_615_5p_002353
0.131
0.918
0.517
0.363
0.104
0.913
0.386
0.494
−0.027
0.965
−0.413
0.454


mmu_miR_652_002352
−3.416
0.001
0.485
0.772
−2.667
0.025
3.901
0.000
0.749
0.500
−3.152
0.004


mmu_miR_654_3p_002239
0.144
0.957
0.104
0.948
−0.927
0.367
−0.040
0.969
−1.072
0.166
−1.031
0.206


mmu_miR_654_5p_002522
0.170
0.957
0.034
0.979
−0.682
0.619
−0.137
0.933
−0.852
0.375
−0.716
0.493


mmu_miR_665_002607
1.792
0.110
0.850
0.530
−1.109
0.456
−0.942
0.437
−2.901
0.007
−1.959
0.076


mmu_miR_666_3p_002448
0.615
0.889
0.042
0.986
3.364
0.162
−0.573
0.856
2.749
0.162
3.323
0.105


mmu_miR_666_5p_001952
5.556
0.000
2.544
0.001
1.453
0.092
−3.012
0.000
−4.103
0.000
−1.091
0.141


mmu_miR_667_001949
4.972
0.000
2.518
0.000
0.166
0.868
−2.454
0.000
−4.807
0.000
−2.352
0.000


mmu_miR_668_001947
3.404
0.073
1.630
0.466
−0.235
0.943
−1.773
0.392
−3.639
0.046
−1.866
0.353


mmu_miR_669C_002646
−5.195
0.000
−1.952
0.174
−1.793
0.258
3.244
0.012
3.402
0.007
0.158
0.932


mmu_miR_669D_002808
−4.143
0.001
−0.247
0.920
−0.503
0.827
3.896
0.003
3.640
0.004
−0.256
0.896


mmu_miR_669E_002774
−2.975
0.052
0.405
0.882
1.039
0.646
3.380
0.026
4.015
0.007
0.634
0.745


mmu_miR_669G_002813
0.164
0.870
0.022
0.979
−0.814
0.156
−0.142
0.845
−0.978
0.035
−0.836
0.083


mmu_miR_669H_5P_002906
0.857
0.822
1.855
0.423
0.388
0.914
0.998
0.696
−0.469
0.832
−1.467
0.505


mmu_miR_669a_001683
−0.992
0.649
1.021
0.605
1.139
0.603
2.013
0.199
2.131
0.145
0.118
0.956


mmu_miR_669M_21149_mat
−4.415
0.000
−0.053
0.979
−0.386
0.868
4.362
0.001
4.030
0.001
−0.332
0.848


mmu_miR_669m_121190_mat
−1.542
0.570
−1.911
0.415
2.051
0.455
−0.369
0.912
3.593
0.065
3.961
0.051


mmu_miR_669n_197143_mat
−4.025
0.000
−1.000
0.413
−0.795
0.603
3.025
0.004
3.230
0.002
0.205
0.898


mmu_miR_669o_121176_mat
−2.992
0.030
0.756
0.712
0.527
0.833
3.748
0.007
3.520
0.010
−0.229
0.910


mmu_miR_670_002020
−4.339
0.368
−6.021
0.186
−1.516
0.836
−1.683
0.774
2.822
0.512
4.505
0.298


mmu_miR_671_3p_002322
−1.629
0.071
−0.780
0.461
0.295
0.861
0.848
0.389
1.923
0.027
1.075
0.249


mmu_miR_672_002327
9.144
0.000
5.512
0.002
−0.872
0.738
−3.632
0.027
−10.016
0.000
−6.384
0.000


mmu_miR_673_001954
0.873
0.874
−3.674
0.196
4.634
0.129
−4.546
0.079
3.761
0.135
8.307
0.002


mmu_miR_673_3p_002449
9.016
0.001
−2.277
0.469
2.706
0.451
−11.293
0.000
−6.309
0.014
4.984
0.060


mmu_miR_674_001956
−3.054
0.000
−0.279
0.823
−0.461
0.677
2.775
0.000
2.593
0.001
−0.182
0.861


mmu_miR_674_002021
−6.963
0.000
−7.330
0.000
−2.865
0.112
−0.367
0.886
4.098
0.007
4.465
0.005


mmu_miR_675_3p_001941
−3.023
0.764
−7.236
0.288
0.097
0.993
−4.213
0.550
3.120
0.634
7.333
0.243


mmu_miR_675_5p_001940
−1.956
0.658
−3.782
0.264
−0.719
0.903
−1.827
0.618
1.237
0.712
3.064
0.336


mmu_miR_676_001958
−0.224
0.941
1.006
0.380
1.088
0.417
1.230
0.244
1.311
0.182
0.082
0.955


mmu_miR_676_001959
−3.531
0.006
1.638
0.260
−1.621
0.329
5.169
0.000
1.911
0.130
−3.258
0.013


mmu_miR_677_001660
0.099
0.994
0.333
0.882
−2.155
0.151
0.235
0.912
−2.254
0.064
−2.488
0.049


mmu_miR_679_001662
−2.695
0.707
−1.491
0.855
1.782
0.830
1.203
0.874
4.477
0.349
3.273
0.529


mmu_miR_680_001664
−4.295
0.513
−4.935
0.408
−3.539
0.643
−0.640
0.936
0.756
0.893
1.396
0.848


mmu_miR_682_001666
2.340
0.737
−0.929
0.917
5.144
0.360
−3.269
0.508
2.804
0.541
6.073
0.170


mmu_miR_683_001668
−1.149
0.889
0.227
0.973
−1.009
0.884
1.375
0.795
0.140
0.979
−1.235
0.807


mmu_miR_684_001669
0.175
0.690
−0.141
0.754
−1.201
0.000
−0.316
0.314
−1.377
0.000
−1.061
0.001


mmu_miR_685_001670
2.592
0.582
2.127
0.660
8.034
0.041
−0.465
0.936
5.443
0.108
5.908
0.092


mmu_miR_686_001672
−2.552
0.098
−0.127
0.970
−1.303
0.539
2.425
0.113
1.249
0.425
−1.176
0.486


mmu_miR_687_001674
−0.709
0.484
0.205
0.887
−0.421
0.742
0.914
0.299
0.288
0.754
−0.625
0.491


mmu_miR_688_001675
2.220
0.374
−1.908
0.449
1.189
0.721
−4.128
0.054
−1.031
0.660
3.097
0.152


mmu_miR_690_001677
−0.108
0.994
0.500
0.823
1.159
0.531
0.607
0.734
1.267
0.349
0.660
0.676


mmu_miR_691_001678
2.138
0.774
−5.171
0.298
1.659
0.834
−7.309
0.100
−0.479
0.926
6.831
0.127


mmu_miR_692_001679
−0.413
0.950
−4.656
0.039
−3.581
0.160
−4.243
0.047
−3.168
0.129
1.075
0.673


mmu_miR_693_001680
−0.603
0.967
−5.401
0.223
0.038
0.994
−4.798
0.260
0.642
0.887
5.439
0.183


mmu_miR_693_3p_002036
−0.728
0.961
−5.630
0.260
−0.840
0.916
−4.902
0.308
−0.112
0.986
4.790
0.307


mmu_miR_694_001681
−0.801
0.941
−5.374
0.182
5.587
0.200
−4.573
0.229
6.388
0.067
10.961
0.004


mmu_miR_695_001627
1.525
0.830
−2.582
0.592
0.412
0.950
−4.107
0.306
−1.113
0.793
2.994
0.470


mmu_miR_696_001628
−4.505
0.477
−9.029
0.099
0.944
0.916
−4.524
0.420
5.448
0.290
9.973
0.051


mmu_miR_697_001631
−0.277
0.988
3.846
0.225
1.803
0.677
4.124
0.163
2.080
0.485
−2.044
0.523


mmu_miR_698_001632
0.038
0.996
0.035
0.979
−0.685
0.595
−0.002
0.997
−0.723
0.430
−0.720
0.464


mmu_miR_700_001634
−0.410
0.882
2.356
0.082
−0.672
0.737
2.766
0.027
−0.262
0.855
−3.028
0.018


mmu_miR_701_001635
−1.908
0.581
1.048
0.798
1.845
0.620
2.956
0.280
3.753
0.130
0.798
0.817


mmu_miR_702_001636
4.154
0.050
0.314
0.943
1.794
0.548
−3.840
0.070
−2.360
0.269
1.480
0.531


mmu_miR_704_001639
1.441
0.386
1.877
0.236
−0.059
0.983
0.435
0.840
−1.500
0.300
−1.935
0.183


mmu_miR_706_001641
1.707
0.855
−0.016
0.998
8.215
0.146
−1.724
0.796
6.507
0.156
8.231
0.083


mmu_miR_707_001642
0.143
0.918
0.066
0.953
−0.762
0.243
−0.077
0.933
−0.906
0.080
−0.828
0.128


mmu_miR_708_002341
−1.282
0.023
0.155
0.882
−0.679
0.360
1.437
0.012
0.603
0.302
−0.834
0.150


mmu_miR_710_001645
1.401
0.941
2.496
0.811
5.146
0.563
1.095
0.914
3.745
0.577
2.650
0.744


mmu_miR_711_001646
−0.507
0.994
−2.830
0.778
1.038
0.924
−2.322
0.795
1.545
0.823
3.867
0.584


mmu_miR_712_001961
0.298
0.936
0.270
0.917
−1.892
0.211
−0.028
0.983
−2.190
0.071
−2.162
0.087


mmu_miR_712_002636
−0.988
0.908
−7.537
0.047
1.537
0.797
−6.550
0.067
2.525
0.499
9.074
0.013


mmu_miR_713_001648
−0.266
0.996
−0.769
0.953
0.666
0.958
−0.503
0.962
0.932
0.900
1.435
0.884


mmu_miR_715_001649
−1.448
0.824
0.406
0.953
1.189
0.849
1.855
0.669
2.638
0.465
0.783
0.874


mmu_miR_717_001652
−6.698
0.245
−6.378
0.285
−1.314
0.900
0.320
0.968
5.384
0.320
5.064
0.368


mmu_miR_718_001656
3.915
0.252
4.870
0.157
5.369
0.151
0.955
0.840
1.455
0.675
0.499
0.913


mmu_miR_719_001673
−0.059
0.996
0.157
0.968
−2.407
0.246
0.217
0.936
−2.348
0.158
−2.564
0.138


mmu_miR_720_001629
0.466
0.764
−3.574
0.001
4.610
0.000
−4.040
0.000
4.144
0.000
8.184
0.000


mmu_miR_721_001657
−2.053
0.889
−5.555
0.488
4.723
0.629
−3.502
0.679
6.777
0.321
10.279
0.128


mmu_miR_741_002457
−0.113
0.996
−5.351
0.097
0.344
0.949
−5.238
0.082
0.456
0.892
5.694
0.059


mmu_miR_742_002038
−1.682
0.419
0.587
0.849
0.924
0.737
2.269
0.215
2.606
0.126
0.337
0.898


mmu_miR_742_002458
3.383
0.582
−1.550
0.845
1.085
0.903
−4.933
0.313
−2.298
0.640
2.635
0.608


mmu_miR_743a_002469
3.127
0.157
0.482
0.909
1.307
0.679
−2.645
0.235
−1.820
0.405
0.826
0.766


mmu_miR_743b_3p_002471
0.120
0.983
0.277
0.882
−0.320
0.871
0.158
0.932
−0.440
0.709
−0.598
0.616


mmu_miR_743b_5p_002470
−4.433
0.184
−4.635
0.184
0.059
0.992
−0.202
0.968
4.492
0.144
4.694
0.141


mmu_miR_744_002324
1.357
0.105
0.159
0.920
0.172
0.912
−1.198
0.155
−1.185
0.137
0.013
0.994


mmu_miR_758_002025
0.249
0.918
−0.015
0.990
−3.243
0.002
−0.264
0.861
−3.493
0.000
−3.228
0.001


mmu_miR_759_002034
−0.123
0.996
2.529
0.579
1.014
0.875
2.651
0.515
1.137
0.783
−1.514
0.739


mmu_miR_761_002030
−0.359
0.994
−3.694
0.558
1.098
0.912
−3.335
0.573
1.456
0.797
4.791
0.370


mmu_miR_762_002028
0.393
0.983
2.806
0.524
2.959
0.559
2.414
0.564
2.566
0.492
0.153
0.976


mmu_miR_763_002033
−1.298
0.889
−4.887
0.306
−0.181
0.983
−3.589
0.445
1.117
0.816
4.706
0.289


mmu_miR_764_3p_002032
1.515
0.771
0.161
0.979
−1.179
0.830
−1.355
0.748
−2.694
0.399
−1.339
0.731


mmu_miR_764_5p_002031
2.071
0.306
1.363
0.542
−1.542
0.544
−0.708
0.780
−3.612
0.039
−2.904
0.111


mmu_miR_767_241081_mat
0.175
0.690
−0.140
0.754
−1.197
0.000
−0.315
0.312
−1.373
0.000
−1.057
0.001


mmu_miR_770_3p_002027
5.398
0.000
1.304
0.271
0.707
0.650
−4.093
0.000
−4.691
0.000
−0.598
0.616


mmu_miR_770_5p_002608
3.184
0.000
1.746
0.063
0.200
0.906
−1.438
0.105
−2.983
0.001
−1.545
0.082


mmu_miR_7a_000268
3.819
0.110
−3.096
0.232
−1.574
0.650
−6.915
0.003
−5.393
0.017
1.522
0.558


mmu_miR_7b_002555
5.443
0.002
−2.396
0.208
−0.369
0.912
−7.838
0.000
−5.811
0.001
2.027
0.262


mmu_miR_802_002029
−1.461
0.455
−0.774
0.754
0.133
0.963
0.687
0.752
1.595
0.324
0.907
0.614


mmu_miR_804_002044
−7.713
0.201
−6.905
0.280
−2.508
0.790
0.808
0.933
5.205
0.373
4.397
0.489


mmu_miR_805_002045
−3.266
0.456
−1.863
0.728
4.631
0.304
1.403
0.780
7.896
0.022
6.493
0.070


mmu_miR_871_002354
0.093
0.996
0.335
0.918
−0.401
0.903
0.242
0.933
−0.494
0.794
−0.737
0.729


mmu_miR_872_002264
−1.123
0.041
2.227
0.000
0.170
0.870
3.351
0.000
1.294
0.015
−2.057
0.001


mmu_miR_872_002542
−2.193
0.000
1.300
0.020
−0.568
0.418
3.494
0.000
1.625
0.002
−1.869
0.001


mmu_miR_873_002356
3.300
0.003
0.981
0.461
−0.849
0.603
−2.319
0.039
−4.150
0.000
−1.830
0.108


mmu_miR_874_002268
−0.207
0.984
0.530
0.882
1.581
0.561
0.738
0.788
1.789
0.368
1.051
0.636


mmu_miR_875_3p_002547
0.919
0.941
−2.582
0.654
2.843
0.645
−3.501
0.449
1.924
0.676
5.425
0.205


mmu_miR_876_3p_002464
2.146
0.481
0.838
0.845
2.195
0.521
−1.308
0.669
0.050
0.988
1.357
0.625


mmu_miR_876_5p_002463
2.253
0.098
2.320
0.107
0.359
0.884
0.067
0.969
−1.894
0.145
−1.961
0.146


mmu_miR_877_002548
−3.597
0.184
−6.876
0.012
0.149
0.978
−3.279
0.220
3.745
0.134
7.025
0.007


mmu_miR_878_3p_002541
−1.435
0.835
−3.968
0.336
6.293
0.148
−2.533
0.550
7.727
0.028
10.261
0.006


mmu_miR_878_5p_002540
0.095
0.996
−5.379
0.140
−0.396
0.946
−5.474
0.102
−0.491
0.893
4.983
0.138


mmu_miR_879_002472
0.040
0.996
0.812
0.749
0.328
0.914
0.771
0.722
0.287
0.877
−0.484
0.830


mmu_miR_879_002473
−0.039
0.996
−1.282
0.426
−1.435
0.444
−1.243
0.414
−1.396
0.322
−0.152
0.937


mmu_miR_880_002665
−6.619
0.261
−2.302
0.788
2.901
0.732
4.317
0.476
9.520
0.067
5.203
0.366


mmu_miR_881_002475
0.045
0.997
−5.358
0.203
0.712
0.916
−5.403
0.173
0.667
0.879
6.070
0.118


mmu_miR_881_002609
2.386
0.599
0.380
0.953
5.202
0.190
−2.006
0.619
2.817
0.411
4.823
0.150


mmu_miR_882_002610
0.175
0.690
−0.141
0.754
−1.201
0.000
−0.316
0.314
−1.377
0.000
−1.061
0.001


mmu_miR_883B_5P_002669
0.625
0.961
−2.469
0.607
3.361
0.512
−3.095
0.447
2.736
0.474
5.830
0.116


mmu_miR_883a_3p_002461
1.691
0.479
2.062
0.349
1.204
0.677
0.371
0.912
−0.488
0.822
−0.858
0.718


mmu_miR_883a_5p_002611
0.160
0.823
−0.070
0.923
−1.047
0.013
−0.231
0.616
−1.208
0.001
−0.977
0.012


mmu_miR_883b_3p_002565
4.279
0.150
3.529
0.270
−0.869
0.871
−0.751
0.873
−5.148
0.061
−4.397
0.127


mmu_miR_92a_000430
0.177
0.822
−2.732
0.000
2.316
0.000
−2.909
0.000
2.139
0.000
5.048
0.000


mmu_miR_92a_002496
0.142
0.983
−0.033
0.985
−0.812
0.677
−0.175
0.936
−0.954
0.482
−0.779
0.599


mmu_miR_93_001090
−1.806
0.013
1.295
0.105
−0.470
0.674
3.100
0.000
1.336
0.062
−1.764
0.019


mmu_miR_96_000186
5.054
0.004
−3.573
0.063
1.819
0.456
−8.627
0.000
−3.235
0.062
5.392
0.004


mmu_miR_98_000577
2.930
0.062
−0.682
0.784
−2.405
0.200
−3.613
0.020
−5.336
0.001
−1.723
0.292


mmu_miR_99a_000435
−2.472
0.001
−1.768
0.022
−0.306
0.807
0.704
0.381
2.165
0.003
1.461
0.046


mmu_miR_99b_000436
−1.966
0.035
0.548
0.681
0.283
0.871
2.514
0.007
2.248
0.013
−0.266
0.840


mmu_miR_9_000583
−2.772
0.000
−0.573
0.169
−0.998
0.017
2.198
0.000
1.773
0.000
−0.425
0.281



















TABLE 4





Brain Stem miRNA data.




























mean_
mean_
mean_
mean_




detect_
detect_
detect_
detect_



bs.ChAT
bs.GFAP
bs.Lyz2
bs.Syn
pSI_BS.ChAT
pSI_BS.GFAP
pSI_BS.Lyz2
pSI_BS.Syn
BS.ChAT
BS.GFAP
BS.Lyz2
BS.Syn





hsa_let_7b_002404
30.434
30.568
32.311
34.174
0.263
0.220
0.784
0.973
TRUE
TRUE
TRUE
TRUE


hsa_let_7e_002407
29.845
30.485
29.490
30.383
0.495
0.708
0.518
0.638
TRUE
TRUE
TRUE
TRUE


hsa_let_7f_1_002417
38.091
34.575
38.321
37.593
NA
0.033
NA
NA
FALSE
TRUE
FALSE
FALSE


hsa_let_7i_002172
35.202
31.683
33.850
34.880
NA
0.054
NA
0.739
FALSE
TRUE
FALSE
TRUE


hsa_miR_106b_002380
31.761
28.527
31.863
27.336
0.879
0.273
NA
0.057
TRUE
TRUE
FALSE
TRUE


hsa_miR_10a_002288
37.788
38.584
38.553
39.428
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


hsa_miR_1197_002810
31.437
35.563
33.740
32.817
0.125
NA
NA
0.450
TRUE
FALSE
FALSE
TRUE


hsa_miR_124_002197
33.367
35.516
35.026
35.695
NA
NA
NA
0.743
FALSE
FALSE
FALSE
TRUE


hsa_miR_127_5p_002229
33.808
34.690
33.263
33.401
NA
0.786
NA
0.395
FALSE
TRUE
FALSE
TRUE


hsa_miR_136_000592
28.841
32.218
27.819
29.145
0.442
0.971
0.305
0.497
TRUE
TRUE
TRUE
TRUE


hsa_miR_136_002100
21.421
24.050
24.092
21.782
0.261
0.779
0.909
0.289
TRUE
TRUE
TRUE
TRUE


hsa_miR_140_3p_002234
29.226
27.686
28.505
27.789
0.821
0.431
0.731
0.326
TRUE
TRUE
TRUE
TRUE


hsa_miR_143_000466
27.198
26.694
26.214
29.246
0.509
0.396
0.399
0.969
TRUE
TRUE
TRUE
TRUE


hsa_miR_144_002676
37.700
37.852
38.215
39.548
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


hsa_miR_148a_002134
38.518
38.580
38.824
37.837
NA
NA
NA
NA
FALSE
FALSE
FALSE
TRUE


hsa_miR_149_002255
19.540
21.538
21.293
19.270
0.416
0.793
0.837
0.222
TRUE
TRUE
TRUE
TRUE


hsa_miR_151_5P_002642
33.956
28.970
30.520
29.653
0.991
0.173
0.654
0.308
TRUE
TRUE
TRUE
TRUE


hsa_miR_154_000478
26.477
27.881
27.338
26.423
0.459
0.772
0.724
0.359
TRUE
TRUE
TRUE
TRUE


hsa_miR_15b_002173
34.070
35.301
26.617
37.222
NA
NA
0.003
NA
FALSE
FALSE
TRUE
FALSE


hsa_miR_183_002270
25.794
32.436
25.214
26.665
0.252
1.000
0.266
0.514
TRUE
TRUE
TRUE
TRUE


hsa_miR_189_000488
28.951
28.688
25.020
31.972
0.604
0.504
0.073
0.994
TRUE
TRUE
TRUE
TRUE


hsa_miR_190b_002263
27.724
27.463
27.813
30.158
0.408
0.330
0.594
0.961
TRUE
TRUE
TRUE
TRUE


hsa_miR_196a_241070_mat
32.372
37.264
33.308
30.122
0.441
NA
NA
0.019
TRUE
FALSE
FALSE
TRUE


hsa_miR_200a_001011
39.485
36.945
39.735
39.687
NA
NA
NA
NA
FALSE
TRUE
FALSE
FALSE


hsa_miR_200b_001800
28.278
33.939
27.140
33.967
0.196
0.942
0.112
0.897
TRUE
TRUE
TRUE
TRUE


hsa_miR_200b_002274
35.926
39.292
40.372
40.499
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


hsa_miR_200c_000505
31.975
30.255
25.288
31.441
0.915
0.555
0.036
0.733
TRUE
TRUE
TRUE
TRUE


hsa_miR_200c_002286
38.694
39.262
39.873
39.630
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


hsa_miR_206_000510
28.359
27.407
27.323
26.978
0.818
0.564
0.635
0.315
TRUE
TRUE
TRUE
TRUE


hsa_miR_213_000516
28.920
26.020
26.931
26.933
0.939
0.256
0.626
0.446
TRUE
TRUE
TRUE
TRUE


hsa_miR_214_000517
28.917
31.861
25.809
32.003
0.424
0.882
0.063
0.880
TRUE
TRUE
TRUE
TRUE


hsa_miR_214_002293
36.550
35.972
36.817
38.637
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


hsa_miR_218_2_002294
26.211
31.344
30.326
29.884
0.029
0.905
NA
0.584
TRUE
TRUE
FALSE
TRUE


hsa_miR_223_000526
27.468
28.773
15.220
34.785
0.495
0.597
0.000
NA
TRUE
TRUE
TRUE
FALSE


hsa_miR_22_000398
27.805
24.403
30.737
25.335
0.724
0.097
0.994
0.202
TRUE
TRUE
TRUE
TRUE


hsa_miR_22_002301
29.328
29.533
29.132
30.107
0.482
0.575
0.570
0.729
TRUE
TRUE
TRUE
TRUE


hsa_miR_23a_002439
38.796
39.294
28.613
41.955
NA
NA
0.001
NA
FALSE
FALSE
TRUE
FALSE


hsa_miR_26b_002444
33.572
32.024
31.236
33.868
NA
0.404
0.311
0.838
FALSE
TRUE
TRUE
TRUE


hsa_miR_27a_002445
33.991
35.349
35.233
37.296
NA
NA
NA
NA
FALSE
FALSE
FALSE
TRUE


hsa_miR_27b_002174
34.186
33.247
33.389
34.129
NA
0.429
NA
0.643
FALSE
TRUE
FALSE
TRUE


hsa_miR_28_3p_002446
37.121
37.725
37.345
37.774
NA
NA
NA
NA
FALSE
FALSE
FALSE
TRUE


hsa_miR_299_5p_000600
29.902
37.773
32.238
36.179
0.028
NA
NA
0.798
TRUE
FALSE
FALSE
TRUE


hsa_miR_29a_002447
26.052
27.242
24.052
26.836
0.559
0.819
0.222
0.719
TRUE
TRUE
TRUE
TRUE


hsa_miR_29b_2_002166
25.519
29.022
27.905
29.466
0.096
0.778
0.622
0.844
TRUE
TRUE
TRUE
TRUE


hsa_miR_30a_3p_000416
20.644
20.331
20.356
20.776
0.588
0.511
0.658
0.614
TRUE
TRUE
TRUE
TRUE


hsa_miR_30c_1_002108
37.944
35.826
39.076
38.526
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


hsa_miR_30c_2_002110
28.241
38.668
37.794
34.723
0.001
NA
NA
0.362
TRUE
FALSE
FALSE
TRUE


hsa_miR_30d_002305
30.742
28.457
29.160
30.321
0.849
0.240
0.554
0.677
TRUE
TRUE
TRUE
TRUE


hsa_miR_30e_3p_000422
20.190
20.373
18.882
20.676
0.599
0.659
0.373
0.719
TRUE
TRUE
TRUE
TRUE


hsa_miR_324_3p_000579
28.368
25.541
25.449
25.655
0.966
0.412
0.480
0.362
TRUE
TRUE
TRUE
TRUE


hsa_miR_338_000548
27.266
22.604
25.289
23.537
0.971
0.118
0.789
0.274
TRUE
TRUE
TRUE
TRUE


hsa_miR_338_5P_002658
24.029
22.551
24.232
23.233
0.723
0.302
0.851
0.409
TRUE
TRUE
TRUE
TRUE


hsa_miR_33a_002136
35.133
29.937
30.568
29.366
NA
0.355
0.564
0.163
FALSE
TRUE
TRUE
TRUE


hsa_miR_340_000550
23.506
23.449
24.239
23.647
0.511
0.506
0.804
0.505
TRUE
TRUE
TRUE
TRUE


hsa_miR_363_001283
40.095
33.199
37.805
37.736
NA
0.004
NA
NA
FALSE
TRUE
TRUE
FALSE


hsa_miR_376a_001287
24.347
28.975
25.870
25.621
0.149
0.976
0.610
0.471
TRUE
TRUE
TRUE
TRUE


hsa_miR_378_000567
23.620
25.178
21.652
27.299
0.435
0.645
0.158
0.982
TRUE
TRUE
TRUE
TRUE


hsa_miR_411_002238
24.657
28.970
29.827
25.309
0.100
0.827
0.973
0.215
TRUE
TRUE
TRUE
TRUE


hsa_miR_412_001023
30.780
35.319
24.951
31.354
0.504
0.997
0.014
0.600
TRUE
TRUE
TRUE
TRUE


hsa_miR_421_002700
22.200
22.945
23.999
23.005
0.329
0.531
0.884
0.538
TRUE
TRUE
TRUE
TRUE


hsa_miR_423_3P_002626
29.568
27.930
27.157
28.221
0.901
0.528
0.375
0.488
TRUE
TRUE
TRUE
TRUE


hsa_miR_425_001104
32.387
31.046
26.712
29.362
0.955
0.767
0.097
0.372
TRUE
TRUE
TRUE
TRUE


hsa_miR_431_002312
32.157
37.151
32.333
34.027
0.184
NA
0.362
0.622
TRUE
FALSE
TRUE
TRUE


hsa_miR_455_001280
31.707
27.390
26.382
28.677
0.993
0.335
0.214
0.564
TRUE
TRUE
TRUE
TRUE


hsa_miR_485_5p_001036
35.747
36.568
34.541
35.670
NA
0.790
0.399
0.526
FALSE
TRUE
TRUE
TRUE


hsa_miR_493_3p_001282
33.823
39.803
35.837
40.403
0.037
NA
0.398
NA
TRUE
FALSE
TRUE
FALSE


hsa_miR_590_3P_002677
40.553
39.781
40.129
39.642
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


hsa_miR_653_002292
35.570
38.640
35.155
37.152
0.298
NA
0.346
NA
TRUE
FALSE
TRUE
TRUE


hsa_miR_671_5p_197646_mat
29.677
32.567
29.854
38.221
0.172
0.586
0.278
NA
TRUE
TRUE
TRUE
TRUE


hsa_miR_708_002342
40.436
40.199
36.808
39.872
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


hsa_miR_744_002325
29.906
32.132
29.147
31.138
0.398
0.869
0.342
0.703
TRUE
TRUE
TRUE
TRUE


hsa_miR_875_5p_002203
29.170
31.613
23.935
37.191
0.414
0.639
0.007
NA
TRUE
TRUE
TRUE
TRUE


hsa_miR_935_002178
35.689
35.255
35.413
35.777
NA
0.486
NA
0.617
FALSE
TRUE
FALSE
TRUE


hsa_miR_93_002139
26.818
24.833
25.487
25.510
0.875
0.352
0.635
0.460
TRUE
TRUE
TRUE
TRUE


hsa_miR_99b_002196
32.682
29.792
31.883
31.331
0.878
0.138
NA
0.468
TRUE
TRUE
FALSE
TRUE


hsa_miR_9_002231
20.922
17.339
19.345
19.660
0.921
0.082
0.682
0.595
TRUE
TRUE
TRUE
TRUE


mmu_let_7a_000377
25.121
22.205
26.424
22.828
0.794
0.152
0.961
0.200
TRUE
TRUE
TRUE
TRUE


mmu_let_7a_002478
27.040
24.472
25.460
26.910
0.820
0.165
0.569
0.768
TRUE
TRUE
TRUE
TRUE


mmu_let_7b_000378
21.087
19.336
20.589
21.251
0.671
0.211
0.708
0.746
TRUE
TRUE
TRUE
TRUE


mmu_let_7c_000379
20.610
18.852
20.133
20.102
0.763
0.252
0.756
0.553
TRUE
TRUE
TRUE
TRUE


mmu_let_7c_1_002479
35.061
33.804
33.692
35.897
NA
0.353
NA
0.895
FALSE
TRUE
FALSE
TRUE


mmu_let_7d_001178
34.147
31.554
32.490
31.230
NA
0.382
NA
0.201
FALSE
TRUE
FALSE
TRUE


mmu_let_7d_002283
21.499
20.703
21.447
21.426
0.618
0.414
0.740
0.579
TRUE
TRUE
TRUE
TRUE


mmu_let_7e_002406
19.033
19.032
18.704
19.049
0.591
0.618
0.608
0.549
TRUE
TRUE
TRUE
TRUE


mmu_let_7f_000382
28.381
23.278
26.668
24.450
0.969
0.081
0.829
0.266
TRUE
TRUE
TRUE
TRUE


mmu_let_7g_002282
20.687
20.748
22.080
21.362
0.409
0.415
0.864
0.600
TRUE
TRUE
TRUE
TRUE


mmu_let_7g_002492
31.538
33.480
30.996
33.693
0.361
0.781
0.357
0.829
TRUE
TRUE
TRUE
TRUE


mmu_let_7i_002221
22.310
20.755
22.444
22.311
0.642
0.226
0.810
0.631
TRUE
TRUE
TRUE
TRUE


mmu_miR_100_000437
21.320
18.575
20.961
20.198
0.835
0.128
0.825
0.473
TRUE
TRUE
TRUE
TRUE


mmu_miR_101a_002253
22.611
22.120
22.059
22.232
0.693
0.544
0.641
0.487
TRUE
TRUE
TRUE
TRUE


mmu_miR_101a_002507
34.319
32.954
34.658
33.152
0.727
0.366
NA
0.294
TRUE
TRUE
FALSE
TRUE


mmu_miR_101b_002531
23.132
23.051
24.168
23.343
0.488
0.456
0.848
0.510
TRUE
TRUE
TRUE
TRUE


mmu_miR_103_000439
23.062
23.983
23.456
23.342
0.468
0.721
0.665
0.498
TRUE
TRUE
TRUE
TRUE


mmu_miR_105_002465
35.643
36.454
28.902
34.276
NA
NA
0.024
0.459
FALSE
FALSE
TRUE
TRUE


mmu_miR_106a_002459
26.615
21.441
21.190
21.951
0.998
0.335
0.341
0.413
TRUE
TRUE
TRUE
TRUE


mmu_miR_106b_000442
24.983
23.018
23.966
23.903
0.840
0.306
0.699
0.478
TRUE
TRUE
TRUE
TRUE


mmu_miR_107_000443
25.300
25.893
27.235
25.745
0.373
0.516
0.918
0.445
TRUE
TRUE
TRUE
TRUE


mmu_miR_10a_000387
23.708
26.102
24.476
24.291
0.346
0.866
0.628
0.477
TRUE
TRUE
TRUE
TRUE


mmu_miR_10b_001181
29.264
32.944
32.007
28.448
0.336
0.934
NA
0.062
TRUE
TRUE
FALSE
TRUE


mmu_miR_10b_002218
26.421
35.293
31.249
22.367
0.277
0.997
0.826
0.001
TRUE
TRUE
TRUE
TRUE


mmu_miR_10b_002572
34.529
37.263
34.417
35.584
NA
NA
NA
0.627
FALSE
FALSE
FALSE
TRUE


mmu_miR_1186_002825
32.523
35.271
35.084
37.786
NA
0.521
0.657
NA
FALSE
TRUE
TRUE
FALSE


mmu_miR_1188_002866
33.122
33.621
36.405
36.582
0.189
0.216
0.917
0.899
TRUE
TRUE
TRUE
TRUE


mmu_miR_1191_002892
28.902
30.073
28.750
33.773
0.308
0.492
0.375
0.996
TRUE
TRUE
TRUE
TRUE


mmu_miR_1192_002806
39.446
39.327
39.732
37.831
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1193_002794
28.907
32.400
31.853
32.430
0.084
0.782
NA
0.742
TRUE
TRUE
FALSE
TRUE


mmu_miR_1194_002793
38.645
38.769
39.026
37.065
NA
NA
NA
NA
FALSE
FALSE
FALSE
TRUE


mmu_miR_1195_002839
32.959
37.286
36.966
38.911
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1198_002780
28.232
26.900
31.296
26.120
0.611
0.347
0.993
0.095
TRUE
TRUE
TRUE
TRUE


mmu_miR_1199_240984_mat
40.779
40.407
40.776
39.620
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1224_240985_mat
40.569
40.300
40.616
39.214
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_122_002245
36.227
37.637
32.106
38.209
NA
NA
0.052
NA
FALSE
FALSE
TRUE
TRUE


mmu_miR_124_001182
23.164
23.414
24.104
22.933
0.541
0.576
0.826
0.360
TRUE
TRUE
TRUE
TRUE


mmu_miR_125a_3p_002199
26.699
26.213
26.085
26.534
0.664
0.532
0.600
0.566
TRUE
TRUE
TRUE
TRUE


mmu_miR_125a_5p_002198
19.648
19.951
20.885
19.731
0.473
0.539
0.857
0.426
TRUE
TRUE
TRUE
TRUE


mmu_miR_125b_002508
27.982
28.087
29.434
29.015
0.367
0.384
0.860
0.685
TRUE
TRUE
TRUE
TRUE


mmu_miR_125b_3p_002378
31.114
30.269
29.950
32.016
0.591
0.415
0.445
0.882
TRUE
TRUE
TRUE
TRUE


mmu_miR_125b_5p_000449
18.605
18.192
19.062
18.646
0.559
0.449
0.797
0.534
TRUE
TRUE
TRUE
TRUE


mmu_miR_126_3p_002228
21.279
24.181
20.259
22.698
0.367
0.925
0.271
0.708
TRUE
TRUE
TRUE
TRUE


mmu_miR_126_5p_000451
23.120
26.318
22.505
24.685
0.313
NA
0.309
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_1274a_121150_mat
31.992
32.495
24.705
33.454
NA
NA
0.006
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_127_000452
17.757
20.818
19.687
17.827
0.298
0.913
0.794
0.245
TRUE
TRUE
TRUE
TRUE


mmu_miR_128a_002216
21.223
21.008
20.910
20.653
0.677
0.599
0.686
0.387
TRUE
TRUE
TRUE
TRUE


mmu_miR_129_3p_001184
19.707
21.808
20.868
19.585
0.430
0.839
0.734
0.287
TRUE
TRUE
TRUE
TRUE


mmu_miR_129_5p_000590
27.010
28.204
30.022
27.169
0.325
0.559
0.971
0.298
TRUE
TRUE
TRUE
TRUE


mmu_miR_1306_121155_mat
35.808
35.958
35.514
35.068
NA
NA
NA
0.327
FALSE
FALSE
FALSE
TRUE


mmu_miR_130a_000454
28.741
22.626
28.602
24.793
0.913
0.022
0.940
0.272
TRUE
TRUE
TRUE
TRUE


mmu_miR_130b_000456
29.944
27.093
26.578
29.185
0.937
0.296
0.290
0.714
TRUE
TRUE
TRUE
TRUE


mmu_miR_130b_002460
28.591
31.823
29.783
28.383
0.371
0.939
0.705
0.221
TRUE
TRUE
TRUE
TRUE


mmu_miR_132_000457
18.035
19.896
19.396
17.703
0.454
0.804
0.787
0.237
TRUE
TRUE
TRUE
TRUE


mmu_miR_133a_001637
39.021
39.126
39.251
38.610
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_133a_002246
18.976
26.628
23.107
19.978
0.050
0.995
0.813
0.238
TRUE
TRUE
TRUE
TRUE


mmu_miR_133b_002247
23.603
27.595
26.324
24.681
0.123
0.932
0.809
0.378
TRUE
TRUE
TRUE
TRUE


mmu_miR_134_001186
24.953
28.914
28.803
24.447
0.256
0.891
0.937
0.072
TRUE
TRUE
TRUE
TRUE


mmu_miR_135a_000460
22.296
21.720
22.947
21.224
0.670
0.481
0.875
0.242
TRUE
TRUE
TRUE
TRUE


mmu_miR_135b_002261
22.920
23.363
25.387
22.631
0.446
0.503
0.964
0.250
TRUE
TRUE
TRUE
TRUE


mmu_miR_136_002511
24.804
25.342
28.027
23.107
0.502
0.535
NA
0.067
TRUE
TRUE
FALSE
TRUE


mmu_miR_136_002512
27.928
33.354
26.670
33.230
0.209
0.946
0.117
0.881
TRUE
TRUE
TRUE
TRUE


mmu_miR_137_001129
21.307
24.504
24.442
23.077
0.115
0.786
0.879
0.492
TRUE
TRUE
TRUE
TRUE


mmu_miR_138_002284
16.359
20.181
19.959
17.325
0.112
0.874
0.909
0.317
TRUE
TRUE
TRUE
TRUE


mmu_miR_138_002554
24.236
27.898
25.725
25.031
0.220
0.941
0.669
0.417
TRUE
TRUE
TRUE
TRUE


mmu_miR_139_3p_002546
33.359
36.004
31.195
29.851
NA
NA
NA
0.050
FALSE
FALSE
FALSE
TRUE


mmu_miR_139_5p_002289
20.048
21.609
19.632
20.161
0.512
0.834
0.498
0.500
TRUE
TRUE
TRUE
TRUE


mmu_miR_140_001187
23.036
22.725
22.684
22.970
0.621
0.541
0.647
0.559
TRUE
TRUE
TRUE
TRUE


mmu_miR_141_000463
33.803
33.932
28.985
37.568
0.576
0.532
0.034
NA
TRUE
TRUE
TRUE
TRUE


mmu_miR_141_002513
28.188
32.907
24.416
35.162
0.296
NA
0.017
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_142_3p_000464
29.811
28.711
19.522
32.652
NA
NA
0.001
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_142_5p_002248
32.005
32.756
25.253
38.885
0.511
0.568
0.004
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_143_002249
28.060
28.450
25.414
30.750
0.535
0.568
0.152
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_145_002278
27.756
27.402
23.963
29.597
NA
NA
0.103
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_145_002514
37.933
39.523
40.040
39.638
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_146a_000468
20.639
22.626
17.434
23.710
0.479
0.756
0.071
0.945
TRUE
TRUE
TRUE
TRUE


mmu_miR_146b_001097
22.695
22.216
21.839
22.482
0.687
0.567
0.545
0.563
TRUE
TRUE
TRUE
TRUE


mmu_miR_146b_002453
31.794
31.415
31.443
33.050
0.481
0.401
NA
0.878
TRUE
TRUE
FALSE
TRUE


mmu_miR_147_002262
36.016
33.798
33.587
38.816
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_148a_000470
26.811
25.080
30.850
26.539
0.497
0.136
NA
0.390
TRUE
TRUE
FALSE
TRUE


mmu_miR_148b_000471
27.647
25.405
30.954
26.787
0.600
0.121
0.994
0.323
TRUE
TRUE
TRUE
TRUE


mmu_miR_150_000473
23.174
25.591
21.132
27.950
0.385
NA
0.109
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_150_002570
36.223
39.715
36.964
39.714
0.180
NA
NA
NA
TRUE
FALSE
FALSE
FALSE


mmu_miR_151_3p_001190
30.840
24.438
31.063
26.117
0.907
0.032
0.954
0.222
TRUE
TRUE
TRUE
TRUE


mmu_miR_152_000475
26.857
22.888
23.571
27.870
0.800
0.100
0.350
0.970
TRUE
TRUE
TRUE
TRUE


mmu_miR_153_001191
29.396
30.050
29.135
29.692
0.512
0.720
0.555
0.576
TRUE
TRUE
TRUE
TRUE


mmu_miR_154_000477
31.574
35.290
32.145
29.713
0.494
NA
NA
0.040
TRUE
FALSE
FALSE
TRUE


mmu_miR_155_002571
28.988
26.564
25.019
33.436
0.679
0.277
0.115
1.000
TRUE
TRUE
TRUE
TRUE


mmu_miR_15a_000389
27.748
23.050
23.786
25.578
0.984
0.126
0.409
0.641
TRUE
TRUE
TRUE
TRUE


mmu_miR_15a_002488
32.231
31.428
32.252
32.864
0.529
0.349
0.713
0.760
TRUE
TRUE
TRUE
TRUE


mmu_miR_15b_000390
25.296
22.564
22.469
24.117
0.937
0.289
0.398
0.627
TRUE
TRUE
TRUE
TRUE


mmu_miR_16_000391
20.727
18.380
17.503
18.919
0.946
0.467
0.322
0.507
TRUE
TRUE
TRUE
TRUE


mmu_miR_16_002489
35.351
29.781
26.776
33.488
NA
0.261
0.053
0.763
FALSE
TRUE
TRUE
TRUE


mmu_miR_17_002308
25.016
21.092
20.348
21.549
0.990
0.401
0.299
0.445
TRUE
TRUE
TRUE
TRUE


mmu_miR_17_002543
30.979
37.822
27.821
34.399
0.301
NA
0.039
0.727
TRUE
FALSE
TRUE
TRUE


mmu_miR_181A_2_002687
40.599
40.161
40.674
39.605
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_181a_000480
24.582
21.252
23.710
22.198
0.912
0.152
0.833
0.308
TRUE
TRUE
TRUE
TRUE


mmu_miR_181c_000482
28.994
27.339
28.014
27.754
0.831
0.403
0.690
0.402
TRUE
TRUE
TRUE
TRUE


mmu_miR_182_002599
22.728
26.575
23.162
23.594
0.255
0.969
0.494
0.513
TRUE
TRUE
TRUE
TRUE


mmu_miR_1839_3p_121203_mat
24.447
24.082
25.141
24.832
0.503
0.397
0.814
0.610
TRUE
TRUE
TRUE
TRUE


mmu_miR_1839_5p_121135_mat
24.912
24.707
28.820
25.164
0.353
0.322
0.992
0.395
TRUE
TRUE
TRUE
TRUE


mmu_miR_183_002269
28.202
33.198
29.383
29.520
0.152
0.988
0.535
0.497
TRUE
TRUE
TRUE
TRUE


mmu_miR_184_000485
28.731
33.046
25.242
30.157
0.402
NA
0.059
0.691
TRUE
FALSE
TRUE
TRUE


mmu_miR_185_002271
26.081
26.282
32.052
25.770
0.382
0.406
0.999
0.208
TRUE
TRUE
TRUE
TRUE


mmu_miR_186_002285
23.564
21.590
22.348
23.100
0.820
0.276
0.606
0.630
TRUE
TRUE
TRUE
TRUE


mmu_miR_186_002574
28.670
30.838
26.330
30.285
0.474
0.880
0.141
0.793
TRUE
TRUE
TRUE
TRUE


mmu_miR_187_001193
33.055
25.462
31.176
27.396
0.982
0.026
0.866
0.247
TRUE
TRUE
TRUE
TRUE


mmu_miR_188_3p_002106
39.121
38.941
39.540
39.323
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_188_5p_002320
25.401
26.064
22.115
27.573
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1893_121170_mat
39.304
40.600
36.900
40.075
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1894_3p_241002_mat
27.801
30.706
25.968
33.332
0.335
NA
0.109
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_1894_5p_121144_mat
38.271
36.354
38.706
39.612
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1896_121128_mat
22.791
25.156
19.203
30.938
0.393
0.620
0.028
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_1897_3p_121126_mat
40.712
40.345
40.733
39.619
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1897_5p_121199_mat
17.358
20.450
17.629
22.211
NA
NA
0.349
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1898_121195_mat
40.754
40.130
40.752
39.621
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1899_121198_mat
40.114
39.769
40.350
39.621
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_18a_002422
31.352
27.187
25.283
27.985
0.994
0.407
0.166
0.540
TRUE
TRUE
TRUE
TRUE


mmu_miR_18a_002490
33.913
32.190
29.459
33.745
0.865
0.482
0.136
0.792
TRUE
TRUE
TRUE
TRUE


mmu_miR_18b_002466
40.650
38.742
40.323
39.953
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1900_121143_mat
40.382
40.016
40.523
39.626
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1901_121183_mat
33.367
34.836
38.448
36.561
0.127
0.304
NA
0.702
TRUE
TRUE
FALSE
TRUE


mmu_miR_1902_121197_mat
40.597
40.228
40.662
39.611
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1903_121153_mat
40.379
36.811
35.263
40.133
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1904_121162_mat
15.010
18.703
14.060
20.519
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1905_121196_mat
25.376
28.001
24.687
31.218
0.273
0.631
0.216
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_1906_121169_mat
40.168
38.123
40.252
38.085
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_190_000489
26.239
24.859
25.449
25.666
0.770
0.387
0.647
0.542
TRUE
TRUE
TRUE
TRUE


mmu_miR_191_002299
20.075
19.632
19.418
19.673
0.705
0.575
0.594
0.484
TRUE
TRUE
TRUE
TRUE


mmu_miR_191_002576
31.390
30.572
30.354
31.978
0.618
0.434
0.486
0.810
TRUE
TRUE
TRUE
TRUE


mmu_miR_1927_121193_mat
37.418
34.176
37.493
36.762
NA
0.051
NA
NA
FALSE
TRUE
FALSE
TRUE


mmu_miR_1928_121164_mat
18.309
23.066
19.404
28.506
0.065
0.675
0.263
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_192_000491
25.904
23.854
25.070
25.323
0.809
0.230
0.702
0.588
TRUE
TRUE
TRUE
TRUE


mmu_miR_1930_121201_mat
29.247
29.979
27.194
28.980
0.710
0.816
0.275
0.527
TRUE
TRUE
TRUE
TRUE


mmu_miR_1931_121168_mat
40.109
38.542
40.241
38.119
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1932_121172_mat
32.634
29.164
34.172
35.153
NA
0.012
0.845
0.944
FALSE
TRUE
TRUE
TRUE


mmu_miR_1933_3p_121145_mat
40.509
40.133
40.605
39.601
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1933_5p_121133_mat
31.267
36.124
31.827
35.135
0.130
NA
0.326
0.800
TRUE
FALSE
TRUE
TRUE


mmu_miR_1934_121185_mat
38.764
30.581
38.675
39.556
NA
0.000
NA
NA
FALSE
TRUE
FALSE
FALSE


mmu_miR_1935_121192_mat
37.587
39.820
40.427
38.135
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1936_121158_mat
37.623
38.925
39.390
38.950
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1937b_241023_mat
19.684
21.650
18.534
24.192
0.359
NA
0.210
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_1937c_241011_mat
20.764
22.957
19.748
25.354
0.335
NA
0.223
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_1938_121194_mat
38.858
38.707
39.286
39.541
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1939_121180_mat
38.426
38.695
38.538
37.256
NA
NA
NA
NA
FALSE
FALSE
FALSE
TRUE


mmu_miR_193_002250
35.294
32.650
35.316
35.961
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_193_002577
30.351
30.720
31.809
31.789
0.322
0.411
NA
0.756
TRUE
TRUE
FALSE
TRUE


mmu_miR_193b_002467
22.479
21.410
24.489
22.163
0.549
0.266
0.960
0.389
TRUE
TRUE
TRUE
TRUE


mmu_miR_1940_121187_mat
38.067
39.190
32.253
39.388
NA
NA
0.017
NA
FALSE
FALSE
TRUE
TRUE


mmu_miR_1941_3p_121130_mat
38.834
38.716
39.340
39.579
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1941_5p_121140_mat
32.257
30.942
29.886
33.774
0.638
0.385
0.251
0.973
TRUE
TRUE
TRUE
TRUE


mmu_miR_1942_121136_mat
34.626
32.903
27.591
37.286
0.712
0.425
0.013
NA
TRUE
TRUE
TRUE
TRUE


mmu_miR_1943_121174_mat
34.816
31.883
32.801
32.777
NA
0.253
NA
0.436
FALSE
TRUE
FALSE
TRUE


mmu_miR_1944_121189_mat
39.858
38.519
40.370
38.606
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1945_121166_mat
38.586
38.632
39.052
38.188
NA
NA
NA
NA
FALSE
FALSE
FALSE
TRUE


mmu_miR_1946a_121178_mat
41.116
41.011
29.608
38.214
NA
NA
0.002
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1947_121156_mat
38.479
35.568
38.700
37.990
NA
NA
NA
NA
FALSE
FALSE
FALSE
TRUE


mmu_miR_1948_121171_mat
34.678
37.569
36.859
36.217
0.175
NA
NA
0.542
TRUE
FALSE
FALSE
TRUE


mmu_miR_1949_121182_mat
40.209
39.917
40.385
38.679
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_194_000493
26.451
23.960
23.957
25.288
0.923
0.309
0.438
0.602
TRUE
TRUE
TRUE
TRUE


mmu_miR_1950_121146_mat
40.561
40.166
40.607
39.643
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1951_121165_mat
33.211
37.796
26.261
40.596
0.331
NA
0.001
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_1952_121167_mat
40.666
40.303
40.709
39.621
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1953_121159_mat
39.568
39.198
39.936
39.588
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1954_121137_mat
30.339
32.215
26.346
38.985
0.419
0.593
0.022
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_1956_121129_mat
37.850
36.225
37.633
35.738
NA
NA
NA
0.181
FALSE
FALSE
FALSE
TRUE


mmu_miR_1957_121163_mat
40.779
40.407
40.776
39.620
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1958_121181_mat
38.999
39.003
39.333
37.052
NA
NA
NA
NA
FALSE
FALSE
FALSE
TRUE


mmu_miR_1959_121132_mat
27.990
31.239
25.584
33.686
0.337
0.721
0.065
0.996
TRUE
TRUE
TRUE
TRUE


mmu_miR_195_000494
23.628
19.832
20.314
22.240
0.966
0.158
0.403
0.678
TRUE
TRUE
TRUE
TRUE


mmu_miR_1960_121148_mat
36.936
33.980
36.872
36.795
NA
0.056
NA
NA
FALSE
TRUE
FALSE
TRUE


mmu_miR_1961_197391_mat
23.108
29.697
27.375
37.545
0.002
NA
0.439
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_1962_121173_mat
38.824
39.910
39.220
39.780
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1963_121191_mat
40.779
40.407
40.776
39.620
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1964_121138_mat
37.575
37.060
38.006
39.532
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1965_121186_mat
40.795
40.410
40.366
39.649
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_1966_121134_mat
40.660
40.345
40.680
39.620
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1967_121151_mat
40.021
40.401
40.778
39.673
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_1968_121179_mat
30.248
36.761
36.635
37.643
0.002
NA
0.788
NA
TRUE
FALSE
TRUE
TRUE


mmu_miR_1969_121131_mat
21.274
25.058
18.341
26.745
0.336
0.792
0.043
0.985
TRUE
TRUE
TRUE
TRUE


mmu_miR_196a_002477
21.777
25.204
20.904
27.980
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_196b_002215
34.768
38.244
31.439
33.210
NA
NA
0.130
0.280
FALSE
FALSE
TRUE
TRUE


mmu_miR_1970_121202_mat
32.780
40.987
31.266
41.111
0.166
NA
0.058
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_1971_121161_mat
29.699
38.627
31.814
35.040
0.035
NA
0.354
0.702
TRUE
FALSE
TRUE
TRUE


mmu_miR_197_000497
32.912
34.297
26.123
35.535
NA
0.743
0.005
NA
FALSE
TRUE
TRUE
FALSE


mmu_miR_1981_121200_mat
28.065
29.920
29.937
28.093
0.375
0.741
0.867
0.289
TRUE
TRUE
TRUE
TRUE


mmu_miR_1982.1_121157_mat
30.826
31.427
30.776
30.341
0.607
0.731
0.655
0.343
TRUE
TRUE
TRUE
TRUE


mmu_miR_1982.2_121154_mat
27.576
31.319
26.539
29.548
0.312
0.956
0.220
0.729
TRUE
TRUE
TRUE
TRUE


mmu_miR_199a_3p_002304
29.777
28.047
26.523
29.533
0.858
0.452
0.221
0.757
TRUE
TRUE
TRUE
TRUE


mmu_miR_199a_5p_000498
34.724
34.590
36.359
34.891
NA
0.410
NA
0.464
FALSE
TRUE
FALSE
TRUE


mmu_miR_199b_001131
35.176
37.688
36.650
36.005
NA
NA
NA
0.475
FALSE
FALSE
FALSE
TRUE


mmu_miR_19a_000395
27.188
23.586
23.321
25.452
0.972
0.255
0.312
0.638
TRUE
TRUE
TRUE
TRUE


mmu_miR_19a_002544
40.034
39.695
40.309
39.617
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_19b_000396
23.294
20.144
19.669
20.797
0.975
0.386
0.351
0.477
TRUE
TRUE
TRUE
TRUE


mmu_miR_1_002222
21.871
27.594
20.563
23.178
0.288
0.998
0.181
0.605
TRUE
TRUE
TRUE
TRUE


mmu_miR_1_2_AS_002882
35.345
28.481
26.118
34.981
0.967
0.209
0.051
0.877
TRUE
TRUE
TRUE
TRUE


mmu_miR_200a_000502
31.719
37.663
36.941
39.953
0.003
NA
NA
NA
TRUE
FALSE
FALSE
FALSE


mmu_miR_200b_002251
31.231
31.741
30.026
34.919
NA
0.494
NA
NA
FALSE
TRUE
FALSE
FALSE


mmu_miR_200c_002300
31.716
36.230
32.300
37.303
NA
NA
0.309
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_201_002578
36.148
38.928
39.538
39.763
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_202_3p_001195
36.927
36.113
33.539
38.039
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_202_5p_002579
33.390
31.430
36.135
37.191
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_203_000507
25.969
24.325
24.247
27.330
0.632
0.271
0.397
0.965
TRUE
TRUE
TRUE
TRUE


mmu_miR_203_002580
35.108
36.643
37.195
39.914
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_204_000508
21.447
17.333
19.260
21.373
0.882
0.039
0.545
0.838
TRUE
TRUE
TRUE
TRUE


mmu_miR_205_000509
34.048
37.286
34.959
34.082
NA
NA
NA
0.296
FALSE
FALSE
FALSE
TRUE


mmu_miR_207_001198
39.726
39.574
40.013
38.300
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_208_000511
39.616
34.309
38.909
39.531
NA
0.006
NA
NA
FALSE
TRUE
FALSE
FALSE


mmu_miR_208b_002290
32.923
39.937
34.748
39.077
0.039
NA
0.353
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_20a_000580
23.656
20.751
19.671
21.382
0.974
0.439
0.268
0.509
TRUE
TRUE
TRUE
TRUE


mmu_miR_20a_002491
34.777
30.027
29.243
32.265
NA
0.253
0.197
0.654
FALSE
TRUE
TRUE
TRUE


mmu_miR_20b_001014
28.488
23.612
22.946
24.275
0.996
0.359
0.271
0.465
TRUE
TRUE
TRUE
TRUE


mmu_miR_20b_002524
39.840
39.637
39.999
38.737
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_210_000512
35.629
29.576
31.132
30.080
NA
0.181
NA
0.261
FALSE
TRUE
FALSE
TRUE


mmu_miR_211_001199
24.145
22.814
22.479
24.265
0.734
0.416
0.422
0.765
TRUE
TRUE
TRUE
TRUE


mmu_miR_212_002551
20.874
22.679
22.638
20.192
0.475
0.768
0.876
0.141
TRUE
TRUE
TRUE
TRUE


mmu_miR_2134_241120_mat
24.834
28.789
24.542
31.120
0.173
NA
0.216
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_2135_241140_mat
33.806
38.244
37.114
39.303
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_2136_241133_mat
37.318
39.436
35.632
37.052
NA
NA
NA
NA
FALSE
FALSE
FALSE
TRUE


mmu_miR_2138_241080_mat
30.888
30.392
24.701
38.642
0.567
0.473
0.009
NA
TRUE
TRUE
TRUE
TRUE


mmu_miR_2139_241130_mat
36.927
38.347
38.463
37.743
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_2146_241082_mat
25.772
30.577
26.557
34.080
0.078
NA
0.257
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_214_002306
34.389
35.010
32.191
36.076
NA
0.660
0.199
0.912
FALSE
TRUE
TRUE
TRUE


mmu_miR_215_001200
35.445
31.877
31.067
33.831
NA
0.292
NA
0.669
FALSE
TRUE
FALSE
TRUE


mmu_miR_216a_002220
30.048
37.348
31.795
29.662
0.270
NA
0.645
0.111
TRUE
FALSE
TRUE
TRUE


mmu_miR_216b_002326
26.065
32.405
28.652
25.902
0.203
0.996
0.761
0.125
TRUE
TRUE
TRUE
TRUE


mmu_miR_217_001133
31.554
35.319
29.570
32.348
0.427
NA
0.157
0.608
TRUE
FALSE
TRUE
TRUE


mmu_miR_217_002556
31.155
32.594
29.283
30.120
0.732
0.900
0.315
0.345
TRUE
TRUE
TRUE
TRUE


mmu_miR_2182_241119_mat
31.778
35.018
35.966
36.266
0.055
NA
NA
NA
TRUE
FALSE
FALSE
FALSE


mmu_miR_2183_241095_mat
27.250
29.961
25.247
34.319
0.337
NA
0.086
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_218_000521
15.816
20.069
20.109
18.091
0.053
0.825
0.920
0.437
TRUE
TRUE
TRUE
TRUE


mmu_miR_218_1_002552
27.788
31.808
30.423
28.279
0.177
0.945
0.822
0.263
TRUE
TRUE
TRUE
TRUE


mmu_miR_219_000522
30.748
22.905
27.038
23.221
NA
0.117
0.801
0.125
FALSE
TRUE
TRUE
TRUE


mmu_miR_21_000397
22.751
20.844
18.683
21.333
0.942
0.544
0.195
0.565
TRUE
TRUE
TRUE
TRUE


mmu_miR_21_002493
36.705
35.839
36.208
35.769
NA
NA
NA
0.368
FALSE
FALSE
FALSE
TRUE


mmu_miR_220_002468
40.660
40.316
40.691
39.348
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_221_000524
24.001
21.593
22.265
23.310
0.881
0.245
0.543
0.638
TRUE
TRUE
TRUE
TRUE


mmu_miR_222_002276
21.201
20.667
20.026
20.960
0.723
0.579
0.475
0.579
TRUE
TRUE
TRUE
TRUE


mmu_miR_223_002295
29.089
31.997
17.947
35.498
0.428
NA
0.000
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_224_002553
32.228
29.991
32.008
31.560
0.779
0.169
NA
0.524
TRUE
TRUE
FALSE
TRUE


mmu_miR_23a_000399
38.256
37.681
38.710
39.541
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_23b_000400
24.939
23.136
23.435
24.304
0.843
0.336
0.547
0.601
TRUE
TRUE
TRUE
TRUE


mmu_miR_24_000402
18.998
19.268
18.384
19.273
0.571
0.671
0.502
0.614
TRUE
TRUE
TRUE
TRUE


mmu_miR_24_2_002494
27.423
26.213
25.855
28.226
0.639
0.386
0.406
0.889
TRUE
TRUE
TRUE
TRUE


mmu_miR_25_000403
26.882
23.960
23.313
26.221
0.937
0.285
0.259
0.749
TRUE
TRUE
TRUE
TRUE


mmu_miR_26a_000405
19.177
17.911
17.801
18.582
0.805
0.454
0.526
0.562
TRUE
TRUE
TRUE
TRUE


mmu_miR_26b_000407
21.789
19.689
19.536
21.076
0.892
0.345
0.421
0.640
TRUE
TRUE
TRUE
TRUE


mmu_miR_27a_000408
23.456
21.793
22.832
24.680
0.573
0.190
0.614
0.931
TRUE
TRUE
TRUE
TRUE


mmu_miR_27b_000409
22.422
21.502
22.410
21.611
0.709
0.457
0.796
0.361
TRUE
TRUE
TRUE
TRUE


mmu_miR_28_000411
24.637
23.164
23.167
26.535
0.590
0.265
0.415
0.978
TRUE
TRUE
TRUE
TRUE


mmu_miR_28_002545
26.622
29.680
28.827
30.317
0.124
0.726
0.637
0.856
TRUE
TRUE
TRUE
TRUE


mmu_miR_290_000187
39.287
39.601
24.958
41.533
NA
NA
0.000
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_290_3p_002591
40.705
40.334
40.729
39.619
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_290_5p_002590
37.325
36.079
33.962
38.083
NA
0.468
NA
NA
FALSE
TRUE
FALSE
TRUE


mmu_miR_291_3p_001135
40.674
40.359
40.671
38.800
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_291_5p_001202
40.658
40.344
40.686
39.613
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_291a_3p_002592
40.712
40.343
40.735
39.620
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_291b_3p_002538
40.268
39.913
40.449
39.616
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_291b_5p_002537
40.802
40.420
40.795
39.653
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_292_3p_001054
39.757
40.471
40.569
39.822
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_292_3p_002593
37.329
35.768
33.538
36.540
NA
0.539
0.190
NA
FALSE
TRUE
TRUE
FALSE


mmu_miR_292_5p_001055
38.946
34.584
38.600
39.977
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_293_001794
35.456
36.244
30.953
36.610
NA
NA
0.055
0.854
FALSE
FALSE
TRUE
TRUE


mmu_miR_293_002594
39.272
38.553
39.580
37.980
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_294_001056
38.715
36.370
34.327
40.025
NA
NA
0.128
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_294_002595
40.779
40.407
40.776
39.620
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_295_000189
38.981
38.889
37.797
39.785
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_295_002596
41.119
40.867
34.183
40.117
NA
NA
0.023
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_296_3p_002101
36.262
35.884
36.232
39.131
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_296_5p_000527
24.300
24.992
28.026
25.671
0.210
0.369
NA
0.566
TRUE
TRUE
FALSE
TRUE


mmu_miR_297a_002454
31.680
29.002
31.750
31.691
0.698
0.076
0.827
0.696
TRUE
TRUE
TRUE
TRUE


mmu_miR_297b_5p_001626
38.154
36.702
38.584
39.546
NA
NA
NA
NA
FALSE
TRUE
FALSE
FALSE


mmu_miR_297c_002480
35.366
34.247
35.620
36.814
NA
0.210
NA
NA
FALSE
TRUE
FALSE
TRUE


mmu_miR_298_002598
31.634
34.349
31.848
28.722
0.598
0.953
NA
0.016
TRUE
TRUE
FALSE
TRUE


mmu_miR_299_002612
40.779
40.407
40.776
39.620
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_29a_002112
19.161
19.807
20.212
18.938
0.508
0.637
0.821
0.334
TRUE
TRUE
TRUE
TRUE


mmu_miR_29b_000413
21.629
24.117
23.945
23.070
0.190
0.763
0.822
0.529
TRUE
TRUE
TRUE
TRUE


mmu_miR_29b_002497
25.614
26.667
22.986
29.804
0.474
NA
0.103
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_29c_000587
21.034
22.104
22.771
21.397
0.379
0.631
0.864
0.412
TRUE
TRUE
TRUE
TRUE


mmu_miR_300_000191
27.480
30.709
30.748
27.987
0.184
0.823
NA
0.271
TRUE
TRUE
FALSE
TRUE


mmu_miR_300_002613
29.809
35.221
32.721
32.235
0.057
NA
NA
0.494
TRUE
FALSE
FALSE
TRUE


mmu_miR_301a_000528
24.920
23.709
24.178
24.297
0.762
0.428
0.660
0.502
TRUE
TRUE
TRUE
TRUE


mmu_miR_301b_002600
23.624
22.973
24.039
23.249
0.634
0.430
0.824
0.423
TRUE
TRUE
TRUE
TRUE


mmu_miR_302a_000529
26.977
31.723
25.356
28.214
0.334
0.993
0.163
0.631
TRUE
TRUE
TRUE
TRUE


mmu_miR_302a_002615
34.844
37.421
37.131
37.606
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_302b_000531
33.904
33.174
35.800
34.292
NA
0.267
NA
NA
FALSE
TRUE
FALSE
FALSE


mmu_miR_302b_001307
39.725
39.648
34.500
40.069
NA
NA
0.053
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_302c_002557
38.167
36.546
40.449
39.965
NA
0.082
NA
NA
FALSE
TRUE
FALSE
FALSE


mmu_miR_302c_002558
37.423
36.512
33.955
38.827
NA
NA
0.157
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_302d_000535
35.291
36.049
36.792
36.616
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_30a_000417
21.698
20.137
20.265
21.016
0.832
0.393
0.554
0.562
TRUE
TRUE
TRUE
TRUE


mmu_miR_30b_000602
17.475
17.380
17.142
17.355
0.614
0.606
0.624
0.519
TRUE
TRUE
TRUE
TRUE


mmu_miR_30b_002498
36.132
34.886
36.121
35.905
NA
0.321
NA
0.558
FALSE
TRUE
FALSE
TRUE


mmu_miR_30c_000419
17.116
16.966
16.927
16.891
0.621
0.575
0.689
0.474
TRUE
TRUE
TRUE
TRUE


mmu_miR_30d_000420
23.825
22.193
23.057
23.532
0.747
0.299
0.665
0.628
TRUE
TRUE
TRUE
TRUE


mmu_miR_30e_002223
21.736
20.479
21.089
21.616
0.694
0.366
0.642
0.644
TRUE
TRUE
TRUE
TRUE


mmu_miR_31_000185
25.626
27.069
26.014
26.001
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_31_002495
28.358
29.511
27.044
27.678
0.700
0.847
0.402
0.377
TRUE
TRUE
TRUE
TRUE


mmu_miR_320_002277
21.156
19.411
20.620
20.927
0.727
0.245
0.720
0.642
TRUE
TRUE
TRUE
TRUE


mmu_miR_322_001059
31.125
30.989
27.236
30.603
0.836
0.770
0.123
0.569
TRUE
TRUE
TRUE
TRUE


mmu_miR_322_001076
35.284
27.169
26.585
26.663
NA
0.430
0.324
0.261
FALSE
TRUE
TRUE
TRUE


mmu_miR_322_002506
33.990
30.829
28.704
28.871
0.992
0.614
0.290
0.214
TRUE
TRUE
TRUE
TRUE


mmu_miR_323_3p_002227
25.537
28.141
28.960
25.195
0.313
0.758
0.961
0.127
TRUE
TRUE
TRUE
TRUE


mmu_miR_324_3p_002509
27.420
25.593
28.723
25.850
0.725
0.262
0.951
0.216
TRUE
TRUE
TRUE
TRUE


mmu_miR_324_5p_000539
25.924
24.992
25.826
24.829
0.732
0.483
0.800
0.301
TRUE
TRUE
TRUE
TRUE


mmu_miR_325_001060
32.862
30.823
25.244
30.859
0.967
0.653
0.031
0.537
TRUE
TRUE
TRUE
TRUE


mmu_miR_325_002510
26.745
27.111
32.150
26.365
0.389
0.430
NA
0.187
TRUE
TRUE
FALSE
TRUE


mmu_miR_326_001061
36.948
38.300
20.219
34.048
NA
NA
0.000
0.351
FALSE
FALSE
TRUE
TRUE


mmu_miR_327_002481
39.744
39.792
40.626
39.733
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_328_000543
19.530
20.759
20.606
20.132
0.377
0.695
0.750
0.510
TRUE
TRUE
TRUE
TRUE


mmu_miR_329_000192
25.707
28.477
29.202
26.116
0.214
0.755
0.951
0.264
TRUE
TRUE
TRUE
TRUE


mmu_miR_32_002109
35.828
28.818
29.159
30.486
NA
0.174
0.349
0.526
FALSE
TRUE
TRUE
TRUE


mmu_miR_330_001062
31.613
37.408
33.542
34.761
NA
NA
0.511
0.641
FALSE
FALSE
TRUE
TRUE


mmu_miR_330_002230
33.887
35.398
31.767
33.041
0.739
0.903
0.264
0.381
TRUE
TRUE
TRUE
TRUE


mmu_miR_331_3p_000545
21.656
22.319
23.293
22.730
0.320
0.504
0.852
0.627
TRUE
TRUE
TRUE
TRUE


mmu_miR_331_5p_002233
27.229
27.501
25.159
31.110
0.496
0.484
0.184
0.997
TRUE
TRUE
TRUE
TRUE


mmu_miR_335_3p_002185
25.593
29.003
31.297
24.093
0.318
0.738
NA
0.021
TRUE
TRUE
FALSE
TRUE


mmu_miR_335_5p_000546
20.861
24.311
23.122
21.683
0.189
0.914
0.786
0.375
TRUE
TRUE
TRUE
TRUE


mmu_miR_337_000193
25.962
27.401
28.392
26.676
0.281
0.613
0.919
0.434
TRUE
TRUE
TRUE
TRUE


mmu_miR_337_3p_002532
25.481
27.726
28.505
26.162
0.224
0.697
0.938
0.358
TRUE
TRUE
TRUE
TRUE


mmu_miR_337_5p_002515
21.915
24.957
25.898
25.164
0.081
0.625
0.913
0.650
TRUE
TRUE
TRUE
TRUE


mmu_miR_338_3p_002252
28.573
23.817
28.416
24.306
0.909
0.121
0.936
0.152
TRUE
TRUE
TRUE
TRUE


mmu_miR_339_3p_002533
32.270
28.192
27.526
30.403
0.982
0.259
0.222
0.673
TRUE
TRUE
TRUE
TRUE


mmu_miR_339_5p_002257
33.696
27.922
28.878
29.064
0.997
0.167
0.505
0.432
TRUE
TRUE
TRUE
TRUE


mmu_miR_340_3p_002259
23.516
23.383
23.777
23.630
0.544
0.525
0.740
0.542
TRUE
TRUE
TRUE
TRUE


mmu_miR_340_5p_002258
22.685
21.831
23.300
22.327
0.624
0.368
0.858
0.439
TRUE
TRUE
TRUE
TRUE


mmu_miR_342_3p_002260
21.459
22.717
21.021
21.081
0.597
0.822
0.541
0.380
TRUE
TRUE
TRUE
TRUE


mmu_miR_342_5p_002527
32.442
32.170
31.711
29.804
0.801
0.715
NA
0.088
TRUE
TRUE
FALSE
TRUE


mmu_miR_343_002483
40.770
40.406
40.771
39.668
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_344_001063
26.914
26.244
29.304
25.831
0.582
0.392
0.975
0.176
TRUE
TRUE
TRUE
TRUE


mmu_miR_345_001137
26.300
24.825
26.214
26.402
0.631
0.243
0.770
0.687
TRUE
TRUE
TRUE
TRUE


mmu_miR_345_3p_002529
32.929
30.769
32.058
31.965
NA
0.234
NA
0.509
FALSE
TRUE
FALSE
TRUE


mmu_miR_345_5p_002528
30.664
26.774
31.071
27.911
0.862
0.087
0.940
0.244
TRUE
TRUE
TRUE
TRUE


mmu_miR_346_001064
35.876
37.331
36.678
36.125
NA
NA
NA
0.439
FALSE
FALSE
FALSE
TRUE


mmu_miR_34a_000426
18.770
23.400
21.626
19.254
0.153
0.965
0.829
0.233
TRUE
TRUE
TRUE
TRUE


mmu_miR_34b_001065
32.898
31.491
31.978
33.863
0.596
0.273
0.546
0.908
TRUE
TRUE
TRUE
TRUE


mmu_miR_34b_3p_002618
22.661
21.800
24.385
23.644
0.403
0.211
0.901
0.715
TRUE
TRUE
TRUE
TRUE


mmu_miR_34b_5p_002617
29.587
29.940
30.812
32.273
0.311
0.341
NA
0.933
TRUE
TRUE
FALSE
TRUE


mmu_miR_34c_000428
24.984
24.061
30.994
26.306
0.257
0.132
0.999
0.610
TRUE
TRUE
TRUE
TRUE


mmu_miR_34c_002584
25.127
24.564
26.480
26.516
0.383
0.241
0.850
0.816
TRUE
TRUE
TRUE
TRUE


mmu_miR_350_002530
28.443
24.742
25.919
25.830
0.970
0.189
0.622
0.420
TRUE
TRUE
TRUE
TRUE


mmu_miR_351_001067
36.990
36.649
37.191
36.818
NA
NA
NA
NA
FALSE
FALSE
FALSE
TRUE


mmu_miR_361_000554
23.226
23.218
23.997
23.240
0.526
0.526
0.810
0.454
TRUE
TRUE
TRUE
TRUE


mmu_miR_362_3p_002616
29.143
26.046
24.541
27.146
0.974
0.407
0.206
0.589
TRUE
TRUE
TRUE
TRUE


mmu_miR_362_5p_002614
27.218
26.025
25.038
26.850
0.815
0.522
0.336
0.653
TRUE
TRUE
TRUE
TRUE


mmu_miR_363_001271
34.901
35.817
35.924
35.922
NA
NA
NA
0.641
FALSE
FALSE
FALSE
TRUE


mmu_miR_365_001020
28.515
22.801
28.738
26.247
0.875
0.008
0.933
0.383
TRUE
TRUE
TRUE
TRUE


mmu_miR_367_000555
23.509
20.741
22.536
22.063
0.884
0.168
0.769
0.453
TRUE
TRUE
TRUE
TRUE


mmu_miR_369_3p_000557
25.317
27.740
27.202
25.459
0.329
0.833
0.814
0.297
TRUE
TRUE
TRUE
TRUE


mmu_miR_369_5p_001021
28.657
33.050
30.290
29.089
0.219
0.976
0.683
0.302
TRUE
TRUE
TRUE
TRUE


mmu_miR_370_001068
36.861
36.610
37.089
36.043
NA
NA
NA
0.288
FALSE
FALSE
FALSE
TRUE


mmu_miR_370_002275
26.763
29.245
31.622
25.539
0.361
0.675
0.993
0.041
TRUE
TRUE
TRUE
TRUE


mmu_miR_374_002043
35.132
35.764
36.212
40.845
0.253
0.329
NA
NA
TRUE
TRUE
FALSE
FALSE


mmu_miR_374_5p_001319
34.579
25.126
28.482
25.368
1.000
0.135
0.726
0.131
TRUE
TRUE
TRUE
TRUE


mmu_miR_375_000564
27.321
24.201
28.854
27.483
0.607
0.028
0.932
0.639
TRUE
TRUE
TRUE
TRUE


mmu_miR_376a_001069
20.805
23.784
23.358
21.174
0.245
0.859
0.862
0.281
TRUE
TRUE
TRUE
TRUE


mmu_miR_376a_002482
26.076
30.398
27.854
26.617
0.197
0.971
0.706
0.317
TRUE
TRUE
TRUE
TRUE


mmu_miR_376b_002451
21.874
24.907
24.508
22.372
0.221
0.858
0.865
0.305
TRUE
TRUE
TRUE
TRUE


mmu_miR_376b_002452
25.520
28.888
29.909
25.773
0.177
0.773
0.976
0.193
TRUE
TRUE
TRUE
TRUE


mmu_miR_376c_002450
21.766
23.756
23.879
22.471
0.280
0.715
0.866
0.423
TRUE
TRUE
TRUE
TRUE


mmu_miR_376c_002523
38.055
39.234
40.519
40.097
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_377_000566
32.446
32.807
33.196
33.281
0.407
0.527
NA
0.672
TRUE
TRUE
FALSE
TRUE


mmu_miR_379_001138
22.106
25.162
25.346
23.238
0.139
0.784
0.913
0.398
TRUE
TRUE
TRUE
TRUE


mmu_miR_380_3p_001071
30.486
36.926
32.914
32.247
0.073
NA
NA
0.427
TRUE
FALSE
FALSE
TRUE


mmu_miR_380_5p_002601
24.184
28.762
27.336
25.226
0.094
0.953
0.833
0.324
TRUE
TRUE
TRUE
TRUE


mmu_miR_381_000571
27.886
29.668
28.167
28.382
0.410
0.821
0.581
0.536
TRUE
TRUE
TRUE
TRUE


mmu_miR_382_000572
20.778
24.724
28.808
20.142
0.237
0.700
0.998
0.051
TRUE
TRUE
TRUE
TRUE


mmu_miR_383_001767
23.437
28.223
27.018
23.664
0.146
0.961
0.876
0.172
TRUE
TRUE
TRUE
TRUE


mmu_miR_384_3p_002603
23.619
25.238
25.061
23.639
0.411
0.750
0.811
0.322
TRUE
TRUE
TRUE
TRUE


mmu_miR_384_5p_002602
18.345
20.403
19.959
18.148
0.410
0.809
0.809
0.249
TRUE
TRUE
TRUE
TRUE


mmu_miR_409_3p_002332
22.085
25.320
24.972
22.624
0.194
NA
NA
0.294
TRUE
FALSE
FALSE
TRUE


mmu_miR_409_5p_002331
29.518
34.225
31.925
29.316
0.246
0.977
NA
0.132
TRUE
TRUE
FALSE
TRUE


mmu_miR_410_001274
20.161
23.158
23.569
20.333
0.223
0.798
0.943
0.217
TRUE
TRUE
TRUE
TRUE


mmu_miR_411_001610
20.584
22.914
23.126
21.221
0.249
0.741
0.895
0.366
TRUE
TRUE
TRUE
TRUE


mmu_miR_412_002575
25.140
30.518
30.482
25.782
0.078
0.906
0.952
0.189
TRUE
TRUE
TRUE
TRUE


mmu_miR_423_5p_002340
30.466
27.801
29.204
28.226
0.909
0.276
0.762
0.302
TRUE
TRUE
TRUE
TRUE


mmu_miR_425_001516
18.851
21.662
16.661
25.634
0.346
0.647
0.075
1.000
TRUE
TRUE
TRUE
TRUE


mmu_miR_429_001077
34.930
37.298
34.723
38.088
NA
NA
0.351
NA
FALSE
FALSE
TRUE
TRUE


mmu_miR_431_001979
33.814
32.845
31.658
27.380
0.921
0.782
NA
0.003
TRUE
TRUE
FALSE
TRUE


mmu_miR_432_241135_mat
35.801
36.966
38.337
37.508
NA
NA
NA
NA
FALSE
FALSE
FALSE
TRUE


mmu_miR_433_001028
20.179
23.825
23.439
20.606
0.178
0.888
0.898
0.237
TRUE
TRUE
TRUE
TRUE


mmu_miR_433_5p_001078
30.375
35.965
29.787
31.137
0.286
NA
0.291
0.502
TRUE
FALSE
TRUE
TRUE


mmu_miR_434_3p_002604
18.234
21.249
19.807
18.237
0.340
0.917
0.750
0.246
TRUE
TRUE
TRUE
TRUE


mmu_miR_434_5p_002581
24.507
28.480
27.475
25.019
0.160
0.934
0.853
0.255
TRUE
TRUE
TRUE
TRUE


mmu_miR_448_001029
28.304
33.346
30.590
28.353
0.212
0.986
0.771
0.173
TRUE
TRUE
TRUE
TRUE


mmu_miR_449a_001030
27.725
28.761
25.362
29.015
0.541
0.769
0.176
0.831
TRUE
TRUE
TRUE
TRUE


mmu_miR_449b_001667
29.951
32.432
29.427
32.241
0.327
0.844
0.330
0.805
TRUE
TRUE
TRUE
TRUE


mmu_miR_449b_002539
40.711
40.345
40.736
39.620
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_450B_3P_002632
34.541
34.539
28.340
33.043
NA
0.845
0.042
0.468
FALSE
TRUE
TRUE
TRUE


mmu_miR_450a_3p_002525
40.779
40.407
40.776
39.620
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_450a_5p_002303
33.816
31.468
32.812
32.601
NA
0.230
NA
0.477
FALSE
TRUE
FALSE
TRUE


mmu_miR_450b_5p_001962
40.528
40.169
40.614
39.617
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_451_001141
34.722
32.232
29.234
39.399
NA
NA
0.049
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_452_001032
36.669
35.070
32.301
34.894
NA
NA
0.172
0.479
FALSE
FALSE
TRUE
TRUE


mmu_miR_453_002484
39.562
39.369
39.948
38.935
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_455_002455
34.544
27.947
29.791
28.553
NA
0.154
0.646
0.256
FALSE
TRUE
TRUE
TRUE


mmu_miR_463_002582
27.834
30.557
26.058
34.186
0.332
NA
0.108
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_463_002662
32.696
35.615
30.031
37.548
NA
NA
0.063
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_464_001081
40.260
39.976
40.420
39.610
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_465C_5P_002654
27.488
34.074
26.941
35.262
0.121
NA
0.126
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_465a_3p_002040
32.197
35.521
35.325
33.223
0.140
0.840
NA
0.376
TRUE
TRUE
FALSE
TRUE


mmu_miR_465a_5p_001082
38.078
31.114
37.052
39.259
NA
0.001
NA
NA
FALSE
TRUE
TRUE
FALSE


mmu_miR_465b_5p_002485
33.795
36.924
30.696
33.397
NA
NA
NA
0.433
FALSE
FALSE
FALSE
TRUE


mmu_miR_466E_5P_002718
34.009
32.512
25.828
34.785
0.783
0.516
0.009
0.948
TRUE
TRUE
TRUE
TRUE


mmu_miR_466J_002817
32.158
30.298
31.384
32.447
0.690
0.207
NA
0.793
TRUE
TRUE
FALSE
TRUE


mmu_miR_466a_3p_002586
31.405
27.770
32.036
30.440
0.792
0.032
NA
0.482
TRUE
TRUE
FALSE
TRUE


mmu_miR_466b_3_3p_002500
32.011
28.743
31.912
30.742
0.839
0.074
NA
0.458
TRUE
TRUE
FALSE
TRUE


mmu_miR_466d_5p_002534
34.250
37.227
35.285
35.714
NA
NA
0.586
0.617
FALSE
TRUE
TRUE
TRUE


mmu_miR_466g_241015_mat
35.780
32.194
37.048
36.680
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_466h_002516
36.720
35.351
36.680
34.987
NA
0.428
NA
0.210
FALSE
TRUE
FALSE
TRUE


mmu_miR_466k_240990_mat
31.869
36.174
29.194
35.851
0.322
0.942
0.055
0.871
TRUE
TRUE
TRUE
TRUE


mmu_miR_467F_002886
30.823
28.068
25.607
30.661
NA
NA
0.118
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_467H_002809
35.688
31.163
34.289
33.569
NA
0.041
NA
0.472
FALSE
TRUE
FALSE
TRUE


mmu_miR_467a_001826
28.224
25.535
29.254
29.010
0.553
0.044
0.873
0.791
TRUE
TRUE
TRUE
TRUE


mmu_miR_467a_002587
27.427
24.764
30.760
27.354
0.526
0.047
0.993
0.503
TRUE
TRUE
TRUE
TRUE


mmu_miR_467b_001671
33.237
28.109
31.912
29.932
0.956
0.047
NA
0.329
TRUE
TRUE
FALSE
TRUE


mmu_miR_467b_001684
29.220
30.182
27.116
32.731
0.478
0.580
0.165
0.988
TRUE
TRUE
TRUE
TRUE


mmu_miR_467c_002517
32.292
27.982
31.406
33.290
0.698
0.015
NA
0.937
TRUE
TRUE
FALSE
TRUE


mmu_miR_467d_002518
32.683
30.286
31.325
33.392
0.705
0.146
NA
0.909
TRUE
TRUE
FALSE
TRUE


mmu_miR_467e_002568
29.540
27.406
25.368
29.772
0.839
0.382
0.161
0.888
TRUE
TRUE
TRUE
TRUE


mmu_miR_467e_002569
39.520
39.678
38.066
37.865
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_468_001085
40.237
40.133
40.332
39.662
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_469_001086
39.130
39.516
39.226
35.650
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_470_002588
39.083
38.984
39.534
39.024
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_470_002589
34.099
30.637
26.014
36.689
0.784
0.312
0.015
NA
TRUE
TRUE
TRUE
TRUE


mmu_miR_471_002605
40.363
40.038
40.509
39.206
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_483_001291
35.848
37.737
30.555
38.260
NA
NA
0.017
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_483_002560
36.720
37.308
37.096
39.545
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_484_001821
21.593
19.821
19.846
20.566
0.870
0.391
0.527
0.536
TRUE
TRUE
TRUE
TRUE


mmu_miR_485_3p_001943
21.271
23.481
23.929
22.164
0.222
0.707
0.902
0.424
TRUE
TRUE
TRUE
TRUE


mmu_miR_486_001278
30.587
24.633
32.254
24.316
0.849
0.149
NA
0.070
TRUE
TRUE
FALSE
TRUE


mmu_miR_487b_001285
21.553
23.904
23.491
22.514
0.245
0.788
0.797
0.474
TRUE
TRUE
TRUE
TRUE


mmu_miR_487b_001306
23.472
24.851
25.981
23.208
0.398
0.632
0.950
0.215
TRUE
TRUE
TRUE
TRUE


mmu_miR_488_001659
30.015
29.381
31.520
29.927
0.532
0.339
NA
0.441
TRUE
TRUE
FALSE
TRUE


mmu_miR_488_002014
36.722
37.586
36.788
38.553
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_489_001302
24.782
30.644
26.602
26.022
0.115
0.994
0.609
0.411
TRUE
TRUE
TRUE
TRUE


mmu_miR_490_001037
34.460
37.250
31.550
29.778
0.797
NA
0.344
0.026
TRUE
FALSE
TRUE
TRUE


mmu_miR_491_001630
25.556
28.057
29.451
26.264
0.186
0.661
0.975
0.315
TRUE
TRUE
TRUE
TRUE


mmu_miR_493_002519
32.532
35.276
34.029
35.663
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_494_001293
36.178
34.718
35.857
35.363
NA
0.343
NA
0.440
FALSE
TRUE
FALSE
TRUE


mmu_miR_494_002365
30.331
32.000
31.697
31.179
0.314
0.739
NA
0.522
TRUE
TRUE
FALSE
TRUE


mmu_miR_495_001663
18.735
21.612
21.168
18.746
0.302
0.862
0.863
0.214
TRUE
TRUE
TRUE
TRUE


mmu_miR_496_001953
32.882
30.914
31.855
28.407
0.905
0.503
NA
0.034
TRUE
TRUE
FALSE
TRUE


mmu_miR_497_001346
29.645
23.883
26.612
27.522
0.979
0.019
0.587
0.625
TRUE
TRUE
TRUE
TRUE


mmu_miR_499_001352
33.524
35.272
30.975
31.824
0.785
0.939
0.239
0.265
TRUE
TRUE
TRUE
TRUE


mmu_miR_500_002606
31.136
27.449
26.448
27.684
0.989
0.449
0.276
0.422
TRUE
TRUE
TRUE
TRUE


mmu_miR_501_001356
35.848
37.612
37.167
37.116
NA
NA
NA
NA
FALSE
FALSE
FALSE
TRUE


mmu_miR_501_3p_001651
28.632
26.429
25.461
26.115
0.954
0.552
0.360
0.362
TRUE
TRUE
TRUE
TRUE


mmu_miR_503_002456
35.490
33.449
34.926
33.837
NA
0.306
NA
0.316
FALSE
TRUE
FALSE
TRUE


mmu_miR_503_002536
34.909
32.622
30.234
33.746
NA
0.475
0.148
0.657
FALSE
TRUE
TRUE
TRUE


mmu_miR_504_002084
33.539
35.757
33.286
33.431
0.499
0.895
NA
0.402
TRUE
TRUE
FALSE
TRUE


mmu_miR_505_001655
38.563
38.523
39.008
39.606
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_509_3p_002521
34.418
38.474
36.155
41.171
NA
NA
0.438
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_509_5p_002520
35.148
39.872
40.214
40.015
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_511_002549
38.873
38.235
36.445
39.701
NA
NA
0.235
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_532_3p_002355
24.706
23.419
22.585
24.339
0.817
0.495
0.357
0.654
TRUE
TRUE
TRUE
TRUE


mmu_miR_532_5p_001518
23.871
21.515
21.110
22.417
0.935
0.400
0.378
0.545
TRUE
TRUE
TRUE
TRUE


mmu_miR_539_001286
22.369
24.949
24.761
22.838
0.267
0.801
0.865
0.332
TRUE
TRUE
TRUE
TRUE


mmu_miR_540_3p_001310
31.949
35.794
32.473
32.540
0.280
NA
NA
0.445
TRUE
FALSE
FALSE
TRUE


mmu_miR_540_5p_002561
32.086
34.072
32.194
32.494
0.424
0.846
NA
0.515
TRUE
TRUE
FALSE
TRUE


mmu_miR_541_002562
26.472
30.871
28.929
26.056
0.282
0.969
0.825
0.094
TRUE
TRUE
TRUE
TRUE


mmu_miR_542_3p_001284
35.450
32.698
34.516
33.763
NA
0.190
NA
0.400
FALSE
TRUE
FALSE
TRUE


mmu_miR_542_5p_002563
36.846
36.483
36.662
36.574
NA
NA
NA
0.474
FALSE
FALSE
FALSE
TRUE


mmu_miR_543_001298
21.415
24.412
24.195
21.712
0.240
0.843
0.893
0.257
TRUE
TRUE
TRUE
TRUE


mmu_miR_543_002376
20.547
23.579
23.312
21.084
0.212
0.847
0.880
0.304
TRUE
TRUE
TRUE
TRUE


mmu_miR_544_002550
22.636
25.456
25.326
24.434
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_546_001312
33.281
33.170
27.376
24.877
NA
NA
NA
0.008
FALSE
FALSE
FALSE
TRUE


mmu_miR_547_002564
25.861
26.191
23.097
25.264
0.797
0.800
0.211
0.502
TRUE
TRUE
TRUE
TRUE


mmu_miR_551b_001535
26.284
27.273
24.939
27.453
0.498
0.745
0.312
0.786
TRUE
TRUE
TRUE
TRUE


mmu_miR_574_3p_002349
29.981
25.061
24.414
26.191
0.996
0.316
0.253
0.524
TRUE
TRUE
TRUE
TRUE


mmu_miR_582_3p_002567
32.529
33.030
32.153
33.626
0.448
0.622
0.490
0.792
TRUE
TRUE
TRUE
TRUE


mmu_miR_582_5p_002566
28.511
29.854
31.850
28.927
0.277
0.555
NA
0.328
TRUE
TRUE
FALSE
TRUE


mmu_miR_590_5p_001984
37.609
35.633
37.682
35.544
NA
0.326
NA
0.192
FALSE
TRUE
FALSE
TRUE


mmu_miR_592_002017
26.939
29.653
30.067
26.555
0.332
0.794
0.941
0.117
TRUE
TRUE
TRUE
TRUE


mmu_miR_598_002476
25.089
25.609
26.502
25.281
0.436
0.565
0.864
0.427
TRUE
TRUE
TRUE
TRUE


mmu_miR_599_241117_mat
36.290
33.531
36.113
38.545
0.551
0.048
0.692
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_615_3p_001960
35.001
37.236
33.634
35.001
NA
NA
NA
0.494
FALSE
FALSE
FALSE
TRUE


mmu_miR_615_5p_002353
38.986
38.890
39.371
39.557
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_652_002352
25.804
22.996
24.210
24.716
0.903
0.173
0.636
0.585
TRUE
TRUE
TRUE
TRUE


mmu_miR_654_3p_002239
40.173
39.881
40.391
39.630
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_654_5p_002522
39.725
40.059
40.519
39.661
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_665_002607
35.224
35.286
34.309
33.107
NA
NA
NA
0.154
FALSE
FALSE
FALSE
TRUE


mmu_miR_666_3p_002448
36.724
38.190
37.855
39.859
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_666_5p_001952
32.047
36.100
32.384
32.174
0.333
0.982
NA
0.342
TRUE
TRUE
FALSE
TRUE


mmu_miR_667_001949
22.019
25.572
24.829
22.213
0.220
0.909
0.867
0.217
TRUE
TRUE
TRUE
TRUE


mmu_miR_668_001947
29.405
29.162
29.431
27.281
0.727
0.632
0.817
0.107
TRUE
TRUE
TRUE
TRUE


mmu_miR_669C_002646
33.789
30.714
32.462
33.516
NA
0.088
NA
0.740
FALSE
TRUE
FALSE
TRUE


mmu_miR_669D_002808
33.465
30.754
33.550
33.545
NA
0.071
NA
0.721
FALSE
TRUE
FALSE
TRUE


mmu_miR_669E_002774
36.634
34.066
36.607
36.517
NA
0.094
NA
0.672
FALSE
TRUE
FALSE
TRUE


mmu_miR_669G_002813
40.449
40.093
40.555
39.607
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_669H_5P_002906
36.086
36.354
33.693
35.622
NA
NA
0.253
0.519
FALSE
FALSE
TRUE
TRUE


mmu_miR_669a_001683
30.472
27.744
31.263
29.861
0.734
0.082
0.908
0.490
TRUE
TRUE
TRUE
TRUE


mmu_miR_669l_121149_mat
33.168
30.704
33.709
33.675
0.595
0.073
NA
0.775
TRUE
TRUE
FALSE
TRUE


mmu_miR_669m_121190_mat
30.825
28.346
31.895
31.620
0.539
0.056
NA
0.783
TRUE
TRUE
FALSE
TRUE


mmu_miR_669n_197143_mat
34.946
30.901
33.100
33.241
NA
0.067
NA
0.558
FALSE
TRUE
FALSE
TRUE


mmu_miR_669o_121176_mat
30.009
30.380
32.869
33.757
0.202
0.210
NA
0.944
TRUE
TRUE
FALSE
TRUE


mmu_miR_670_002020
32.275
31.355
25.955
31.268
NA
0.733
0.042
0.577
FALSE
TRUE
TRUE
TRUE


mmu_miR_671_3p_002322
28.882
28.298
31.958
28.483
0.492
0.336
NA
0.270
TRUE
TRUE
FALSE
TRUE


mmu_miR_672_002327
26.448
28.627
30.095
24.158
0.438
0.711
NA
0.014
TRUE
TRUE
FALSE
TRUE


mmu_miR_673_001954
19.800
24.039
20.825
27.536
0.094
0.674
0.304
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_673_3p_002449
29.443
33.136
30.424
29.464
0.336
0.962
0.640
0.273
TRUE
TRUE
TRUE
TRUE


mmu_miR_674_001956
27.953
24.617
26.055
26.867
0.924
0.112
0.615
0.632
TRUE
TRUE
TRUE
TRUE


mmu_miR_674_002021
32.307
28.218
29.997
28.652
0.975
0.205
0.728
0.253
TRUE
TRUE
TRUE
TRUE


mmu_miR_675_3p_001941
34.169
34.934
24.982
34.614
0.707
0.851
0.003
0.752
TRUE
TRUE
TRUE
TRUE


mmu_miR_675_5p_001940
37.109
33.765
36.848
36.845
NA
0.042
NA
NA
FALSE
TRUE
FALSE
TRUE


mmu_miR_676_001958
28.811
29.942
30.601
29.697
0.309
0.609
0.849
0.532
TRUE
TRUE
TRUE
TRUE


mmu_miR_676_001959
28.905
25.575
27.909
27.668
0.890
0.091
0.763
0.531
TRUE
TRUE
TRUE
TRUE


mmu_miR_677_001660
36.510
36.727
37.552
38.085
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_679_001662
35.212
35.308
31.862
31.518
NA
NA
NA
0.119
FALSE
FALSE
FALSE
TRUE


mmu_miR_680_001664
38.348
34.243
29.115
35.970
NA
NA
0.020
0.677
FALSE
FALSE
TRUE
TRUE


mmu_miR_682_001666
37.348
34.625
36.994
39.107
NA
0.058
NA
NA
FALSE
TRUE
FALSE
FALSE


mmu_miR_683_001668
39.278
34.231
34.118
40.413
NA
0.118
0.198
NA
FALSE
TRUE
TRUE
FALSE


mmu_miR_684_001669
40.779
40.407
40.776
39.620
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_685_001670
33.613
37.065
31.979
40.667
0.277
NA
0.099
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_686_001672
40.864
40.480
40.588
39.596
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_687_001674
40.104
39.787
40.335
39.226
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_688_001675
36.601
40.473
40.485
40.292
0.052
NA
NA
NA
TRUE
FALSE
FALSE
FALSE


mmu_miR_690_001677
38.672
38.617
36.851
39.331
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_691_001678
32.428
36.683
32.718
38.078
0.138
NA
0.287
NA
TRUE
FALSE
TRUE
TRUE


mmu_miR_692_001679
39.842
40.402
37.586
40.218
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_693_001680
39.142
30.660
34.813
39.756
NA
0.001
0.425
NA
FALSE
TRUE
TRUE
FALSE


mmu_miR_693_3p_002036
40.503
34.490
33.491
37.948
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_694_001681
28.762
32.464
27.378
37.905
0.234
0.670
0.095
NA
TRUE
TRUE
TRUE
TRUE


mmu_miR_695_001627
33.397
38.315
39.404
38.315
0.013
NA
NA
NA
TRUE
FALSE
FALSE
FALSE


mmu_miR_696_001628
32.814
39.178
28.941
37.917
0.293
NA
0.017
NA
TRUE
FALSE
TRUE
TRUE


mmu_miR_697_001631
34.315
40.466
38.642
38.706
0.015
NA
NA
NA
TRUE
FALSE
TRUE
TRUE


mmu_miR_698_001632
40.366
39.987
39.633
39.688
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_700_001634
25.572
25.661
27.463
25.630
0.447
0.454
0.933
0.389
TRUE
TRUE
TRUE
TRUE


mmu_miR_701_001635
31.511
31.838
28.773
33.711
0.558
0.585
0.157
0.962
TRUE
TRUE
TRUE
TRUE


mmu_miR_702_001636
30.189
32.804
29.595
30.244
0.486
0.932
0.418
0.448
TRUE
TRUE
TRUE
TRUE


mmu_miR_704_001639
36.886
35.390
37.248
37.178
NA
0.204
NA
NA
FALSE
TRUE
FALSE
TRUE


mmu_miR_706_001641
26.138
35.476
33.207
38.592
0.000
0.685
0.537
NA
TRUE
TRUE
TRUE
TRUE


mmu_miR_707_001642
40.405
40.031
40.542
39.608
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_708_002341
23.719
23.636
25.849
23.687
0.458
0.419
0.951
0.363
TRUE
TRUE
TRUE
TRUE


mmu_miR_710_001645
32.320
36.476
38.806
40.606
0.009
NA
NA
NA
TRUE
FALSE
FALSE
FALSE


mmu_miR_711_001646
31.956
37.169
37.270
40.300
0.004
NA
NA
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_712_001961
39.482
38.272
40.076
39.598
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_712_002636
33.036
34.113
32.822
36.288
0.347
0.551
NA
0.971
TRUE
TRUE
FALSE
TRUE


mmu_miR_713_001648
33.397
39.304
38.922
40.154
0.005
NA
NA
NA
TRUE
FALSE
FALSE
FALSE


mmu_miR_715_001649
33.695
38.619
39.129
39.784
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_717_001652
36.026
38.260
31.203
40.848
0.464
NA
0.013
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_718_001656
34.117
40.259
39.777
37.247
0.019
NA
NA
NA
TRUE
FALSE
FALSE
FALSE


mmu_miR_719_001673
38.115
39.504
38.847
39.594
NA
NA
NA
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_720_001629
24.232
25.498
21.867
27.961
NA
NA
0.128
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_721_001657
21.681
24.545
25.636
29.432
0.049
0.363
0.769
0.996
TRUE
TRUE
TRUE
TRUE


mmu_miR_741_002457
37.816
38.432
37.835
36.176
NA
NA
NA
0.141
FALSE
FALSE
FALSE
TRUE


mmu_miR_742_002038
38.716
38.645
39.214
39.112
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_742_002458
34.365
36.092
35.923
36.772
0.241
NA
NA
NA
TRUE
FALSE
FALSE
TRUE


mmu_miR_743a_002469
28.031
30.747
26.683
31.826
0.346
0.775
0.177
0.947
TRUE
TRUE
TRUE
TRUE


mmu_miR_743b_3p_002471
39.893
39.575
40.160
39.607
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_743b_5p_002470
32.283
32.691
30.261
34.276
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_744_002324
24.223
25.567
25.414
25.042
0.340
0.698
0.751
0.544
TRUE
TRUE
TRUE
TRUE


mmu_miR_758_002025
35.766
37.048
35.681
36.230
NA
NA
NA
0.566
FALSE
FALSE
FALSE
TRUE


mmu_miR_759_002034
33.250
34.639
35.261
39.970
0.161
0.353
0.649
NA
TRUE
TRUE
TRUE
FALSE


mmu_miR_761_002030
36.196
33.800
25.101
37.298
NA
0.422
0.001
NA
FALSE
TRUE
TRUE
TRUE


mmu_miR_762_002028
34.208
38.322
37.861
39.880
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_763_002033
37.647
37.969
38.912
39.345
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_764_3p_002032
31.727
37.035
34.675
33.315
NA
NA
NA
0.392
FALSE
FALSE
FALSE
TRUE


mmu_miR_764_5p_002031
31.117
37.576
30.762
33.600
0.183
NA
0.232
0.650
TRUE
FALSE
TRUE
TRUE


mmu_miR_767_241081_mat
40.729
40.407
40.776
39.623
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_770_3p_002027
31.720
36.098
32.238
31.202
0.399
0.990
NA
0.165
TRUE
TRUE
FALSE
TRUE


mmu_miR_770_5p_002608
31.861
35.790
33.555
32.904
0.175
NA
NA
0.444
TRUE
FALSE
FALSE
TRUE


mmu_miR_7a_000268
26.427
24.507
25.351
26.830
0.705
0.218
NA
0.833
TRUE
TRUE
FALSE
TRUE


mmu_miR_7b_002555
26.818
27.811
27.476
26.899
0.473
NA
NA
0.424
TRUE
FALSE
FALSE
TRUE


mmu_miR_802_002029
34.040
32.331
34.070
32.861
NA
0.302
NA
0.354
FALSE
TRUE
FALSE
TRUE


mmu_miR_804_002044
31.814
27.826
30.680
35.732
0.621
0.016
0.559
0.997
TRUE
TRUE
TRUE
TRUE


mmu_miR_805_002045
27.298
30.778
25.563
33.185
0.293
NA
0.099
NA
TRUE
FALSE
TRUE
FALSE


mmu_miR_871_002354
39.458
37.370
39.742
39.615
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_872_002264
25.578
23.421
26.037
25.108
0.717
0.146
0.875
0.512
TRUE
TRUE
TRUE
TRUE


mmu_miR_872_002542
24.241
22.853
25.342
23.868
0.627
0.245
0.909
0.442
TRUE
TRUE
TRUE
TRUE


mmu_miR_873_002356
32.523
34.776
32.446
32.401
0.485
0.896
NA
0.371
TRUE
TRUE
FALSE
TRUE


mmu_miR_874_002268
36.393
38.081
38.527
39.642
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_875_3p_002547
40.325
37.253
35.978
38.715
NA
NA
0.211
NA
FALSE
TRUE
TRUE
FALSE


mmu_miR_876_3p_002464
39.267
39.203
39.445
39.858
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_876_5p_002463
38.519
37.965
38.792
38.611
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_877_002548
21.133
24.956
18.274
24.164
0.374
0.948
0.069
0.818
TRUE
TRUE
TRUE
TRUE


mmu_miR_878_3p_002541
32.969
35.576
29.154
39.116
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_878_5p_002540
37.798
38.550
37.891
37.103
NA
NA
NA
NA
FALSE
FALSE
FALSE
TRUE


mmu_miR_879_002472
34.099
33.900
34.127
33.819
NA
0.556
NA
0.438
FALSE
TRUE
FALSE
TRUE


mmu_miR_879_002473
27.117
28.411
30.022
26.658
0.412
0.599
NA
0.164
TRUE
TRUE
FALSE
TRUE


mmu_miR_880_002665
35.299
38.314
33.252
39.143
NA
NA
0.113
NA
FALSE
FALSE
TRUE
FALSE


mmu_miR_881_002475
35.896
39.013
38.933
39.810
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_881_002609
32.441
36.609
36.666
38.051
0.027
NA
NA
NA
TRUE
FALSE
FALSE
TRUE


mmu_miR_882_002610
40.779
40.407
40.776
39.620
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_883B_5P_002669
34.585
38.209
38.887
39.543
0.041
NA
NA
NA
TRUE
FALSE
FALSE
TRUE


mmu_miR_883a_3p_002461
38.076
38.365
38.467
39.719
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_883a_5p_002611
40.644
40.273
40.692
39.621
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_883b_3p_002565
38.081
40.025
39.666
39.791
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_92a_000430
19.360
20.369
17.520
21.330
0.491
0.683
0.220
0.912
TRUE
TRUE
TRUE
TRUE


mmu_miR_92a_002496
38.278
40.167
40.521
39.742
NA
NA
NA
NA
FALSE
FALSE
FALSE
FALSE


mmu_miR_93_001090
23.794
21.212
22.453
22.527
0.892
0.212
0.686
0.511
TRUE
TRUE
TRUE
TRUE


mmu_miR_96_000186
28.897
34.078
31.395
31.599
0.066
0.962
NA
0.586
TRUE
TRUE
FALSE
TRUE


mmu_miR_98_000577
30.069
29.061
31.357
27.704
0.706
0.436
0.947
0.082
TRUE
TRUE
TRUE
TRUE


mmu_miR_99a_000435
21.605
19.498
20.893
20.744
0.822
0.226
0.753
0.508
TRUE
TRUE
TRUE
TRUE


mmu_miR_99b_000436
22.549
21.380
23.717
22.913
0.513
0.230
0.883
0.624
TRUE
TRUE
TRUE
TRUE


mmu_miR_9_000583
19.265
16.684
18.258
18.223
0.858
0.177
0.734
0.533
TRUE
TRUE
TRUE
TRUE






log2FC_
adj.p.value_
log2FC_
adj.p.value_
log2FC_
adj.p.value_
log2FC_
adj.p.value_
log2FC_
adj.p.value_
log2FC_
adj.p.value_



ChATvs
ChATvs
ChATvs
ChATvs
ChATvs
ChATvs
GFAPvs
GFAPvs
GFAPvs
GFAPvs
Lyz2vs
Lyz2vs



GFAP_bs
GFAP_bs
Lyz2_bs
Lyz2_bs
Syn_bs
Syn_bs
Lyz2_bs
Lyz2_bs
Syn_bs
Syn_bs
Syn_bs
Syn_bs





hsa_let_7b_002404
0.134
0.980
1.877
0.730
3.740
0.410
1.743
0.711
3.606
0.383
1.863
0.671


hsa_let_7e_002407
0.641
0.670
−0.354
0.911
0.538
0.782
−0.995
0.473
−0.103
0.965
0.892
0.512


hsa_let_7f_1_002417
−3.516
0.135
0.230
0.996
−0.498
0.907
3.746
0.128
3.018
0.237
−0.728
0.817


hsa_let_7i_002172
−3.519
0.001
−1.352
0.236
−0.322
0.858
2.167
0.042
3.197
0.003
1.030
0.348


hsa_miR_106b_002380
−3.233
0.009
0.102
0.996
−4.424
0.001
3.336
0.011
−1.191
0.417
−4.527
0.001


hsa_miR_10a_002288
0.796
0.770
0.765
0.858
1.640
0.558
−0.031
0.991
0.845
0.771
0.875
0.753


hsa_miR_1197_002810
4.126
0.011
2.303
0.207
1.380
0.528
−1.823
0.315
−2.746
0.112
−0.923
0.638


hsa_miR_124_002197
2.149
0.297
1.658
0.504
2.327
0.343
−0.491
0.875
0.179
0.963
0.669
0.810


hsa_miR_127_5p_002229
0.882
0.447
−0.545
0.739
−0.408
0.813
−1.427
0.208
−1.289
0.278
0.138
0.937


hsa_miR_136_000592
3.378
0.000
−1.021
0.307
0.305
0.834
−4.399
0.000
−3.073
0.001
1.326
0.134


hsa_miR_136_002100
2.629
0.179
2.671
0.203
0.361
0.924
0.042
0.990
−2.268
0.285
−2.310
0.238


hsa_miR_140_3p_002234
−1.540
0.047
−0.721
0.452
−1.437
0.103
0.818
0.355
0.103
0.938
−0.715
0.402


hsa_miR_143_000466
−0.504
0.925
−0.985
0.905
2.048
0.672
−0.480
0.939
2.552
0.513
3.033
0.388


hsa_miR_144_002676
0.152
0.883
0.515
0.577
1.849
0.016
0.363
0.691
1.697
0.021
1.334
0.055


hsa_miR_148a_002134
0.062
0.984
0.306
0.982
−0.681
0.858
0.243
0.952
−0.743
0.819
−0.986
0.735


hsa_miR_149_002255
1.998
0.002
1.753
0.006
−0.269
0.792
−0.245
0.784
−2.267
0.001
−2.023
0.001


hsa_miR_151_5P_002642
−4.985
0.000
−3.436
0.002
−4.303
0.000
1.549
0.172
0.682
0.611
−0.867
0.459


hsa_miR_154_000478
1.404
0.233
0.861
0.552
−0.054
0.983
−0.543
0.715
−1.458
0.247
−0.915
0.466


hsa_miR_15b_002173
1.231
0.816
−7.453
0.076
3.153
0.558
−8.683
0.038
1.922
0.732
10.605
0.007


hsa_miR_183_002270
6.642
0.002
−0.580
0.917
0.871
0.801
−7.222
0.001
−5.771
0.009
1.451
0.542


hsa_miR_189_000488
−0.264
0.961
−3.932
0.369
3.020
0.544
−3.668
0.378
3.284
0.455
6.952
0.056


hsa_miR_190b_002263
−0.261
0.906
0.089
0.996
2.434
0.136
0.350
0.880
2.694
0.072
2.345
0.102


hsa_miR_196a_241070_mat
4.892
0.000
0.935
0.518
−2.251
0.078
−3.956
0.001
−7.143
0.000
−3.186
0.005


hsa_miR_200a_001011
−2.540
0.089
0.250
0.967
0.202
0.944
2.790
0.075
2.742
0.077
−0.048
0.983


hsa_miR_200b_001800
5.661
0.040
−1.138
0.830
5.689
0.066
−6.799
0.018
0.028
0.995
6.827
0.013


hsa_miR_200b_002274
3.366
0.478
4.446
0.378
4.573
0.395
1.080
0.873
1.207
0.849
0.127
0.983


hsa_miR_200c_000505
−1.721
0.304
−6.687
0.000
−0.535
0.846
−4.967
0.003
1.186
0.543
6.152
0.000


hsa_miR_200c_002286
0.568
0.751
1.179
0.477
0.937
0.617
0.611
0.735
0.369
0.852
−0.242
0.911


hsa_miR_206_000510
−0.952
0.677
−1.036
0.710
−1.381
0.581
−0.083
0.980
−0.429
0.874
−0.345
0.911


hsa_miR_213_000516
−2.900
0.006
−1.988
0.074
−1.986
0.093
0.912
0.454
0.914
0.471
0.002
0.999


hsa_miR_214_000517
2.943
0.034
−3.108
0.031
3.086
0.045
−6.051
0.000
0.142
0.955
6.194
0.000


hsa_miR_214_002293
−0.578
0.739
0.267
0.956
2.087
0.158
0.845
0.592
2.665
0.050
1.820
0.171


hsa_miR_218_2_002294
5.133
0.000
4.114
0.001
3.673
0.005
−1.019
0.468
−1.460
0.287
−0.441
0.796


hsa_miR_223_000526
1.305
0.727
−12.248
0.000
7.317
0.017
13.552
0.000
6.012
0.040
19.565
0.000


hsa_miR_22_000398
−3.402
0.118
2.931
0.222
−2.470
0.357
6.334
0.005
0.932
0.761
−5.402
0.011


hsa_miR_22_002301
0.205
0.869
−0.196
0.949
0.779
0.491
−0.401
0.727
0.574
0.601
0.976
0.279


hsa_miR_23a_002439
0.498
0.931
−10.183
0.011
3.159
0.545
10.681
0.009
2.661
0.589
13.342
0.001


hsa_miR_26b_002444
−1.548
0.571
−2.336
0.414
0.296
0.951
−0.788
0.820
1.845
0.523
2.633
0.295


hsa_miR_27a_002445
1.358
0.571
1.242
0.682
3.305
0.154
−0.116
0.977
1.947
0.417
2.063
0.351


hsa_miR_27b_002174
−0.939
0.293
−0.797
0.443
−0.057
0.976
0.142
0.926
0.882
0.375
0.740
0.429


hsa_miR_28_3p_002446
0.604
0.813
0.223
0.995
0.653
0.841
−0.380
0.910
0.049
0.991
0.429
0.891


hsa_miR_299_5p_000600
7.871
0.003
2.336
0.458
6.276
0.024
−5.535
0.040
−1.594
0.631
3.941
0.129


hsa_miR_29a_002447
1.189
0.659
−2.001
0.453
0.783
0.830
−3.190
0.172
−0.406
0.910
2.784
0.217


hsa_miR_29b_2_002166
3.504
0.193
2.386
0.448
3.947
0.181
−1.118
0.758
0.444
0.916
1.561
0.608


hsa_miR_30a_3p_000416
−0.313
0.539
−0.288
0.637
0.133
0.866
0.025
0.977
0.445
0.383
0.420
0.376


hsa_miR_30c_1_002108
−2.117
0.571
1.133
0.869
0.583
0.930
3.250
0.363
2.700
0.477
−0.550
0.918


hsa_miR_30c_2_002110
10.427
0.008
9.553
0.020
6.481
0.151
−0.874
0.895
−3.946
0.389
−3.072
0.490


hsa_miR_30d_002305
−2.285
0.473
−1.582
0.712
−0.421
0.941
0.702
0.879
1.863
0.610
1.161
0.766


hsa_miR_30e_3p_000422
0.183
0.766
−1.308
0.006
0.486
0.408
−1.491
0.002
0.303
0.607
1.794
0.000


hsa_miR_324_3p_000579
−2.827
0.195
−2.918
0.211
−2.712
0.279
−0.091
0.980
0.114
0.980
0.206
0.958


hsa_miR_338_000548
−4.662
0.011
−1.977
0.362
−3.728
0.068
2.685
0.172
0.934
0.722
−1.752
0.378


hsa_miR_338_5P_002658
−1.478
0.103
0.203
0.950
−0.796
0.506
1.681
0.076
0.682
0.533
−0.999
0.293


hsa_miR_33a_002136
−5.196
0.001
−4.565
0.004
−5.767
0.001
0.631
0.772
−0.571
0.803
−1.202
0.484


hsa_miR_340_000550
−0.057
0.963
0.733
0.479
0.141
0.932
0.790
0.404
0.198
0.874
−0.592
0.533


hsa_miR_363_001283
−6.896
0.016
−2.291
0.537
−2.359
0.545
4.606
0.138
4.537
0.141
−0.069
0.983


hsa_miR_376a_001287
4.627
0.000
1.522
0.243
1.273
0.387
−3.105
0.011
−3.354
0.006
−0.249
0.899


hsa_miR_378_000567
1.558
0.421
−1.968
0.338
3.679
0.061
−3.526
0.056
2.121
0.286
5.647
0.002


hsa_miR_411_002238
4.313
0.002
5.170
0.000
0.652
0.764
0.857
0.611
−3.662
0.010
−4.518
0.001


hsa_miR_412_001023
4.539
0.009
−5.829
0.001
0.574
0.848
10.368
0.000
−3.965
0.028
6.402
0.000


hsa_miR_421_002700
0.745
0.224
1.799
0.003
0.805
0.243
1.055
0.089
0.060
0.955
−0.994
0.086


hsa_miR_423_3P_002626
−1.638
0.224
−2.411
0.076
−1.348
0.415
−0.773
0.629
0.291
0.878
1.063
0.459


hsa_miR_425_001104
−1.341
0.550
−5.675
0.004
−3.025
0.169
−4.334
0.032
−1.684
0.465
2.650
0.179


hsa_miR_431_002312
4.994
0.003
0.176
0.996
1.871
0.364
−4.818
0.005
−3.124
0.068
1.695
0.337


hsa_miR_455_001280
−4.316
0.007
−5.324
0.001
−3.030
0.089
−1.008
0.603
1.286
0.501
2.294
0.157


hsa_miR_485_5p_001036
0.820
0.586
−1.207
0.448
−0.077
0.979
−2.027
0.144
−0.898
0.587
1.129
0.429


hsa_miR_493_3p_001282
5.980
0.207
2.014
0.800
6.580
0.211
−3.966
0.446
0.600
0.938
4.566
0.351


hsa_miR_590_3P_002677
−0.772
0.221
−0.424
0.594
−0.911
0.185
0.347
0.642
−0.139
0.876
−0.486
0.466


hsa_miR_653_002292
3.070
0.350
−0.415
0.985
1.582
0.757
−3.485
0.304
−1.488
0.732
1.998
0.575


hsa_miR_671_5p_197646_mat
2.890
0.518
0.177
0.996
8.544
0.046
−2.712
0.557
5.655
0.177
8.367
0.028


hsa_miR_708_002342
−0.236
0.938
−3.628
0.109
−0.564
0.886
−3.391
0.134
−0.328
0.926
3.064
0.155


hsa_miR_744_002325
2.226
0.022
−0.760
0.546
1.231
0.301
−2.986
0.004
−0.995
0.383
1.991
0.038


hsa_miR_875_5p_002203
2.443
0.770
−5.235
0.518
8.021
0.303
−7.678
0.272
5.578
0.465
13.257
0.034


hsa_miR_935_002178
−0.434
0.875
−0.276
0.981
0.088
0.983
0.159
0.967
0.522
0.852
0.363
0.911


hsa_miR_93_002139
−1.984
0.040
−1.331
0.222
−1.307
0.260
0.653
0.578
0.677
0.585
0.024
0.983


hsa_miR_99b_002196
−2.889
0.042
−0.798
0.710
−1.351
0.472
2.091
0.172
1.538
0.355
−0.552
0.785


hsa_miR_9_002231
−3.583
0.000
−1.576
0.001
−1.261
0.007
2.006
0.000
2.321
0.000
0.315
0.518


mmu_let_7a_000377
−2.915
0.046
1.303
0.477
−2.293
0.175
4.218
0.006
0.623
0.767
−3.595
0.013


mmu_let_7a_002478
−2.568
0.696
−1.580
0.904
−0.130
0.992
0.988
0.912
2.438
0.733
1.450
0.838


mmu_let_7b_000378
−1.751
0.000
−0.499
0.307
0.163
0.816
1.252
0.005
1.914
0.000
0.662
0.124


mmu_let_7c_000379
−1.758
0.000
−0.477
0.321
−0.508
0.325
1.281
0.004
1.250
0.004
−0.031
0.967


mmu_let_7c_1_002479
−1.257
0.754
−1.369
0.789
0.836
0.880
−0.112
0.980
2.093
0.582
2.205
0.513


mmu_let_7d_001178
−2.594
0.003
−1.658
0.063
−2.918
0.002
0.936
0.322
−0.324
0.798
−1.260
0.146


mmu_let_7d_002283
−0.795
0.156
−0.051
0.996
−0.073
0.946
0.744
0.204
0.723
0.229
−0.021
0.979


mmu_let_7e_002406
−0.001
0.999
−0.329
0.869
0.016
0.993
−0.328
0.806
0.017
0.991
0.345
0.793


mmu_let_7f_000382
−5.103
0.077
−1.713
0.694
−3.931
0.249
3.390
0.284
1.172
0.771
−2.218
0.492


mmu_let_7g_002282
0.061
0.953
1.393
0.063
0.675
0.472
1.332
0.078
0.613
0.472
−0.718
0.352


mmu_let_7g_002492
1.942
0.221
−0.542
0.868
2.155
0.219
−2.484
0.123
0.213
0.934
2.697
0.070


mmu_let_7i_002221
−1.555
0.003
0.134
0.934
0.002
0.998
1.689
0.002
1.557
0.005
−0.132
0.869


mmu_miR_100_000437
−2.745
0.000
−0.358
0.722
−1.122
0.137
2.387
0.001
1.623
0.019
−0.764
0.274


mmu_miR_101a_002253
−0.491
0.349
−0.552
0.333
−0.379
0.575
−0.062
0.948
0.112
0.878
0.173
0.800


mmu_miR_101a_002507
−1.365
0.079
0.338
0.803
−1.168
0.190
1.703
0.036
0.197
0.863
−1.506
0.048


mmu_miR_101b_002531
−0.082
0.931
1.036
0.107
0.211
0.833
1.118
0.078
0.292
0.732
−0.825
0.179


mmu_miR_103_000439
0.921
0.266
0.394
0.760
0.280
0.832
−0.527
0.579
−0.641
0.501
−0.114
0.933


mmu_miR_105_002465
0.811
0.925
−6.741
0.243
−1.367
0.886
−7.552
0.172
−2.178
0.767
5.374
0.329


mmu_miR_106a_002459
−5.175
0.022
−5.425
0.021
−4.665
0.066
−0.250
0.953
0.510
0.878
0.760
0.814


mmu_miR_106b_000442
−1.965
0.004
−1.017
0.173
−1.080
0.162
0.948
0.193
0.885
0.242
−0.062
0.960


mmu_miR_107_000443
0.593
0.770
1.935
0.267
0.445
0.869
1.342
0.447
−0.148
0.959
−1.490
0.371


mmu_miR_10a_000387
2.394
0.055
0.768
0.678
0.582
0.772
−1.626
0.231
−1.811
0.180
−0.186
0.933


mmu_miR_10b_001181
3.680
0.004
2.743
0.039
−0.816
0.672
−0.936
0.534
−4.495
0.001
−3.559
0.005


mmu_miR_10b_002218
8.872
0.000
4.828
0.004
−4.054
0.020
−4.043
0.016
−12.925
0.000
−8.882
0.000


mmu_miR_10b_002572
2.734
0.237
−0.112
0.996
1.055
0.764
−2.846
0.237
−1.679
0.535
1.167
0.671


mmu_miR_1186_002825
2.749
0.421
2.562
0.516
5.263
0.136
−0.187
0.977
2.514
0.501
2.701
0.429


mmu_miR_1188_002866
0.498
0.898
3.283
0.267
3.460
0.265
2.785
0.341
2.961
0.318
0.176
0.972


mmu_miR_1191_002892
1.171
0.805
−0.152
0.996
4.871
0.253
−1.323
0.801
3.700
0.376
5.023
0.171


mmu_miR_1192_002806
−0.119
0.959
0.286
0.961
−1.615
0.428
0.405
0.873
−1.496
0.418
−1.900
0.248


mmu_miR_1193_002794
3.492
0.000
2.945
0.000
3.523
0.000
−0.547
0.501
0.030
0.983
0.577
0.459


mmu_miR_1194_002793
0.124
0.931
0.381
0.849
−1.580
0.154
0.257
0.869
−1.704
0.099
−1.961
0.042


mmu_miR_1195_002839
4.326
0.129
4.007
0.198
5.952
0.055
−0.319
0.952
1.625
0.656
1.945
0.542


mmu_miR_1198_002780
−1.332
0.102
3.064
0.000
−2.112
0.016
4.396
0.000
−0.781
0.406
−5.177
0.000


mmu_miR_1199_240984_mat
−0.372
0.224
−0.003
0.996
−1.160
0.000
0.369
0.246
−0.788
0.010
−1.156
0.000


mmu_miR_1224_240985_mat
−0.269
0.720
0.047
0.996
−1.355
0.028
0.316
0.655
−1.086
0.067
−1.402
0.012


mmu_miR_122_002245
1.410
0.798
−4.121
0.408
1.982
0.763
−5.532
0.217
0.572
0.936
6.103
0.147


mmu_miR_124_001182
0.249
0.858
0.940
0.435
−0.231
0.903
0.690
0.557
−0.481
0.732
−1.171
0.258


mmu_miR_125a_3p_002199
−0.486
0.786
−0.614
0.798
−0.165
0.953
−0.128
0.964
0.321
0.875
0.449
0.814


mmu_miR_125a_5p_002198
0.303
0.577
1.237
0.011
0.083
0.932
0.934
0.059
−0.220
0.742
−1.154
0.013


mmu_miR_125b_002508
0.106
0.936
1.453
0.144
1.033
0.365
1.347
0.172
0.927
0.383
−0.420
0.731


mmu_miR_125b_3p_002378
−0.845
0.404
−1.164
0.267
0.902
0.455
−0.319
0.814
1.747
0.071
2.066
0.023


mmu_miR_125b_5p_000449
−0.413
0.434
0.458
0.434
0.042
0.967
0.871
0.089
0.455
0.418
−0.416
0.430


mmu_miR_126_3p_002228
2.902
0.000
−1.020
0.038
1.419
0.006
−3.922
0.000
−1.483
0.004
2.439
0.000


mmu_miR_126_5p_000451
3.198
0.000
−0.615
0.316
1.565
0.007
−3.813
0.000
−1.633
0.004
2.180
0.000


mmu_miR_1274a_121150_mat
0.502
0.881
−7.287
0.002
1.461
0.672
−7.790
0.001
0.959
0.767
8.749
0.000


mmu_miR_127_000452
3.061
0.000
1.931
0.000
0.070
0.933
−1.130
0.013
−2.991
0.000
−1.860
0.000


mmu_miR_128a_002216
−0.215
0.768
−0.313
0.710
−0.570
0.422
−0.098
0.921
−0.355
0.613
−0.257
0.727


mmu_miR_129_3p_001184
2.100
0.000
1.160
0.050
−0.123
0.907
−0.940
0.123
−2.223
0.000
−1.283
0.022


mmu_miR_129_5p_000590
1.194
0.312
3.012
0.009
0.160
0.942
1.818
0.129
−1.034
0.436
−2.853
0.010


mmu_miR_1306_121155_mat
0.151
0.938
−0.294
0.956
−0.740
0.744
−0.445
0.821
−0.890
0.610
−0.446
0.814


mmu_miR_130a_000454
−6.115
0.000
−0.138
0.996
−3.947
0.016
5.977
0.000
2.168
0.182
−3.809
0.011


mmu_miR_130b_000456
−2.850
0.002
−3.366
0.000
−0.758
0.527
−0.516
0.642
2.092
0.023
2.608
0.004


mmu_miR_130b_002460
3.232
0.062
1.192
0.615
−0.208
0.953
−2.040
0.285
−3.440
0.057
−1.400
0.467


mmu_miR_132_000457
1.861
0.000
1.361
0.003
−0.332
0.577
−0.500
0.295
−2.193
0.000
−1.693
0.000


mmu_miR_133a_001637
0.106
0.964
0.231
0.983
−0.411
0.896
0.125
0.973
−0.517
0.832
−0.641
0.785


mmu_miR_133a_002246
7.652
0.000
4.131
0.000
1.002
0.062
−3.522
0.000
−6.650
0.000
−3.129
0.000


mmu_miR_133b_002247
3.992
0.001
2.721
0.032
1.078
0.513
−1.271
0.360
−2.914
0.022
−1.643
0.190


mmu_miR_134_001186
3.961
0.000
3.851
0.000
−0.506
0.701
−0.110
0.948
−4.467
0.000
−4.357
0.000


mmu_miR_135a_000460
−0.576
0.311
0.651
0.289
−1.072
0.076
1.227
0.030
−0.496
0.438
−1.723
0.002


mmu_miR_135b_002261
0.443
0.739
2.467
0.016
−0.290
0.869
2.024
0.053
−0.733
0.553
−2.756
0.005


mmu_miR_136_002511
0.538
0.825
3.223
0.100
−1.697
0.486
2.685
0.172
−2.235
0.282
−4.920
0.007


mmu_miR_136_002512
5.426
0.014
−1.258
0.710
5.303
0.028
−6.684
0.004
−0.124
0.980
6.560
0.003


mmu_miR_137_001129
3.197
0.032
3.135
0.044
1.769
0.345
−0.062
0.980
−1.427
0.417
−1.365
0.404


mmu_miR_138_002284
3.822
0.000
3.600
0.000
0.966
0.144
−0.222
0.791
−2.857
0.000
−2.635
0.000


mmu_miR_138_002554
3.662
0.001
1.490
0.208
0.795
0.581
−2.173
0.051
−2.867
0.010
−0.694
0.573


mmu_miR_139_3p_002546
2.645
0.429
−2.164
0.592
−3.508
0.356
−4.809
0.139
−6.153
0.052
−1.344
0.746


mmu_miR_139_5p_002289
1.561
0.044
−0.416
0.730
0.114
0.942
−1.977
0.015
−1.448
0.077
0.530
0.556


mmu_miR_140_001187
−0.310
0.758
−0.352
0.786
−0.066
0.967
−0.042
0.977
0.245
0.827
0.287
0.791


mmu_miR_141_000463
0.129
0.980
−4.818
0.214
3.765
0.394
−4.947
0.184
3.636
0.373
8.583
0.012


mmu_miR_141_002513
4.718
0.152
−3.772
0.303
6.974
0.048
−8.490
0.011
2.256
0.578
10.746
0.001


mmu_miR_142_3p_000464
−1.100
0.613
−10.290
0.000
2.841
0.179
−9.190
0.000
3.941
0.039
13.130
0.000


mmu_miR_142_5p_002248
0.751
0.889
−6.751
0.076
6.880
0.089
−7.502
0.047
6.129
0.108
13.631
0.000


mmu_miR_143_002249
0.390
0.803
−2.646
0.030
2.690
0.036
−3.036
0.013
2.300
0.061
5.336
0.000


mmu_miR_145_002278
−0.353
0.840
−3.792
0.004
1.842
0.210
−3.439
0.009
2.195
0.100
5.634
0.000


mmu_miR_145_002514
1.590
0.571
2.107
0.477
1.706
0.610
0.517
0.898
0.116
0.982
−0.401
0.919


mmu_miR_146a_000468
1.987
0.000
−3.204
0.000
3.071
0.000
−5.192
0.000
1.084
0.022
6.276
0.000


mmu_miR_146b_001097
−0.479
0.319
−0.856
0.074
−0.213
0.769
−0.376
0.471
0.266
0.655
0.642
0.165


mmu_miR_146b_002453
−0.378
0.931
−0.351
0.986
1.257
0.779
0.027
0.995
1.635
0.655
1.608
0.628


mmu_miR_147_002262
−2.217
0.524
−2.429
0.531
2.800
0.486
−0.212
0.975
5.018
0.117
5.229
0.081


mmu_miR_148a_000470
−1.732
0.169
4.039
0.001
−0.272
0.906
5.770
0.000
1.459
0.286
−4.311
0.001


mmu_miR_148b_000471
−2.242
0.022
3.307
0.001
−0.860
0.515
5.548
0.000
1.382
0.194
−4.166
0.000


mmu_miR_150_000473
2.416
0.007
−2.042
0.028
4.776
0.000
−4.458
0.000
2.360
0.012
6.818
0.000


mmu_miR_150_002570
3.493
0.205
0.741
0.916
3.491
0.265
−2.752
0.355
−0.002
1.000
2.750
0.329


mmu_miR_151_3p_001190
−6.402
0.000
0.223
0.926
−4.723
0.000
6.625
0.000
1.679
0.053
−4.946
0.000


mmu_miR_152_000475
−3.970
0.000
−3.286
0.000
1.013
0.215
0.683
0.392
4.983
0.000
4.300
0.000


mmu_miR_153_001191
0.654
0.687
−0.260
0.956
0.297
0.903
−0.915
0.543
−0.358
0.850
0.557
0.746


mmu_miR_154_000477
3.716
0.004
0.571
0.803
−1.860
0.220
−3.145
0.020
−5.577
0.000
−2.432
0.058


mmu_miR_155_002571
−2.424
0.008
−3.969
0.000
4.448
0.000
−1.545
0.117
6.872
0.000
8.417
0.000


mmu_miR_15a_000389
−4.698
0.000
−3.961
0.002
−2.170
0.120
0.737
0.629
2.528
0.048
1.792
0.152


mmu_miR_15a_002488
−0.803
0.347
0.022
0.996
0.633
0.558
0.825
0.360
1.436
0.087
0.612
0.493


mmu_miR_15b_000390
−2.732
0.000
−2.828
0.000
−1.180
0.020
−0.096
0.907
1.552
0.002
1.648
0.001


mmu_miR_16_000391
−2.347
0.000
−3.224
0.000
−1.808
0.000
−0.876
0.053
0.539
0.265
1.415
0.001


mmu_miR_16_002489
−5.569
0.000
−8.574
0.000
−1.863
0.185
−3.005
0.018
3.707
0.004
6.712
0.000


mmu_miR_17_002308
−3.924
0.000
−4.668
0.000
−3.467
0.000
−0.743
0.399
0.457
0.655
1.201
0.125


mmu_miR_17_002543
6.842
0.043
−3.158
0.448
3.420
0.436
10.000
0.005
−3.422
0.387
6.578
0.049


mmu_miR_181A_2_002687
−0.438
0.798
0.075
0.996
−0.994
0.577
0.513
0.783
−0.555
0.767
−1.069
0.459


mmu_miR_181a_000480
−3.329
0.000
−0.872
0.169
−2.383
0.000
2.458
0.000
0.946
0.121
−1.512
0.008


mmu_miR_181c_000482
−1.654
0.020
−0.979
0.223
−1.240
0.130
0.675
0.409
0.414
0.661
−0.261
0.796


mmu_miR_182_002599
3.846
0.107
0.434
0.961
0.865
0.828
−3.412
0.177
−2.981
0.262
0.431
0.911


mmu_miR_1839_3p_121203_mat
−0.365
0.770
0.693
0.576
0.385
0.805
1.059
0.313
0.751
0.512
−0.308
0.814


mmu_miR_1839_5p_121135_mat
−0.205
0.931
3.908
0.017
0.252
0.934
4.113
0.013
0.457
0.849
−3.656
0.020


mmu_miR_183_002269
4.997
0.004
1.181
0.622
1.318
0.581
−3.816
0.038
−3.679
0.042
0.137
0.966


mmu_miR_184_000485
4.315
0.033
−3.489
0.110
1.426
0.618
−7.804
0.001
−2.889
0.190
4.915
0.014


mmu_miR_185_002271
0.201
0.898
5.971
0.000
−0.311
0.866
5.770
0.000
−0.512
0.732
−6.282
0.000


mmu_miR_186_002285
−1.973
0.061
−1.216
0.318
−0.463
0.789
0.758
0.543
1.510
0.186
0.752
0.532


mmu_miR_186_002574
2.168
0.070
−2.340
0.062
1.616
0.254
−4.508
0.001
−0.553
0.746
3.956
0.001


mmu_miR_187_001193
−7.593
0.000
−1.878
0.039
−5.659
0.000
5.714
0.000
1.934
0.033
−3.780
0.000


mmu_miR_188_3p_002106
−0.180
0.894
0.419
0.788
0.202
0.906
0.599
0.585
0.382
0.767
−0.217
0.883


mmu_miR_188_5p_002320
0.663
0.754
−3.285
0.045
2.172
0.244
−3.948
0.016
1.509
0.416
5.458
0.001


mmu_miR_1893_121170_mat
1.297
0.655
−2.403
0.388
0.771
0.849
−3.700
0.141
−0.526
0.878
3.174
0.188


mmu_miR_1894_3p_241002_mat
2.905
0.398
−1.833
0.703
5.531
0.122
−4.738
0.164
2.626
0.492
7.364
0.017


mmu_miR_1894_5p_121144_mat
−1.917
0.185
0.435
0.901
1.341
0.457
2.352
0.112
3.258
0.023
0.906
0.573


mmu_miR_1896_121128_mat
2.365
0.589
−3.588
0.435
8.147
0.051
−5.953
0.140
5.782
0.151
11.735
0.002


mmu_miR_1897_3p_121126_mat
−0.368
0.280
0.021
0.996
−1.093
0.002
0.388
0.274
−0.726
0.031
−1.114
0.001


mmu_miR_1897_5p_121199_mat
3.092
0.145
0.271
0.986
4.853
0.031
−2.821
0.205
1.760
0.476
4.581
0.024


mmu_miR_1898_121195_mat
−0.624
0.077
−0.002
0.997
−1.132
0.003
0.622
0.095
−0.509
0.179
−1.131
0.002


mmu_miR_1899_121198_mat
−0.346
0.756
0.235
0.916
−0.493
0.707
0.581
0.557
−0.147
0.914
−0.729
0.429


mmu_miR_18a_002422
−4.165
0.001
−6.068
0.000
−3.367
0.014
−1.903
0.161
0.798
0.617
2.701
0.028


mmu_miR_18a_002490
−1.723
0.293
−4.454
0.006
−0.168
0.957
−2.731
0.099
1.555
0.389
4.286
0.006


mmu_miR_18b_002466
−1.908
0.518
−0.327
0.986
−0.697
0.885
1.581
0.614
1.211
0.735
−0.370
0.933


mmu_miR_1900_121143_mat
−0.366
0.724
0.141
0.961
−0.756
0.457
0.507
0.592
−0.390
0.729
−0.897
0.276


mmu_miR_1901_121183_mat
1.469
0.737
5.081
0.154
3.194
0.452
3.612
0.318
1.725
0.703
−1.887
0.628


mmu_miR_1902_121197_mat
−0.369
0.349
0.064
0.963
−0.986
0.014
0.434
0.284
−0.617
0.113
−1.050
0.004


mmu_miR_1903_121153_mat
−3.568
0.430
−5.116
0.275
−0.246
0.979
−1.548
0.796
3.322
0.501
4.870
0.259


mmu_miR_1904_121162_mat
3.692
0.000
−0.950
0.227
5.508
0.000
−4.643
0.000
1.816
0.013
6.458
0.000


mmu_miR_1905_121196_mat
2.626
0.472
−0.689
0.956
5.843
0.117
−3.315
0.369
3.217
0.398
6.531
0.043


mmu_miR_1906_121169_mat
−2.045
0.275
0.084
0.996
−2.083
0.352
2.129
0.277
−0.038
0.991
−2.167
0.244


mmu_miR_190_000489
−1.380
0.248
−0.791
0.612
−0.574
0.762
0.589
0.691
0.806
0.578
0.217
0.911


mmu_miR_191_002299
−0.443
0.259
−0.657
0.101
−0.402
0.398
−0.214
0.648
0.041
0.953
0.255
0.556


mmu_miR_191_002576
−0.818
0.416
−1.036
0.330
0.587
0.672
−0.218
0.885
1.405
0.151
1.624
0.073


mmu_miR_1927_121193_mat
−3.242
0.103
0.075
0.996
−0.656
0.847
3.317
0.115
2.586
0.237
−0.731
0.793


mmu_miR_1928_121164_mat
4.757
0.039
1.095
0.782
10.197
0.000
−3.662
0.139
5.441
0.023
9.102
0.000


mmu_miR_192_000491
−2.050
0.012
−0.834
0.388
−0.581
0.612
1.216
0.169
1.469
0.088
0.252
0.821


mmu_miR_1930_121201_mat
0.732
0.720
−2.053
0.236
−0.267
0.932
−2.785
0.090
−0.999
0.612
1.786
0.272


mmu_miR_1931_121168_mat
−1.566
0.252
0.132
0.996
−1.990
0.185
1.699
0.231
−0.424
0.827
−2.122
0.105


mmu_miR_1932_121172_mat
−3.469
0.345
1.538
0.798
2.520
0.595
5.007
0.172
5.989
0.099
0.982
0.838


mmu_miR_1933_3p_121145_mat
−0.376
0.544
0.096
0.961
−0.908
0.136
0.472
0.441
−0.532
0.389
−1.004
0.056


mmu_miR_1933_5p_121133_mat
4.857
0.429
0.560
0.996
3.868
0.623
−4.297
0.509
−0.989
0.914
3.308
0.619


mmu_miR_1934_121185_mat
−8.183
0.006
−0.089
0.996
0.792
0.886
8.094
0.009
8.975
0.004
0.881
0.829


mmu_miR_1935_121192_mat
2.233
0.246
2.840
0.158
0.548
0.866
0.607
0.821
−1.685
0.439
−2.292
0.231


mmu_miR_1936_121158_mat
1.302
0.366
1.767
0.241
1.327
0.447
0.465
0.814
0.025
0.991
−0.440
0.814


mmu_miR_1937b_241023_mat
1.965
0.849
−1.150
0.976
4.508
0.699
−3.116
0.766
2.543
0.819
5.658
0.498


mmu_miR_1937c_241011_mat
2.194
0.000
−1.016
0.109
4.590
0.000
−3.210
0.000
2.396
0.000
5.606
0.000


mmu_miR_1938_121194_mat
−0.151
0.952
0.429
0.934
0.683
0.808
0.579
0.816
0.834
0.732
0.254
0.933


mmu_miR_1939_121180_mat
0.269
0.951
0.112
0.996
−1.169
0.808
−0.157
0.977
−1.439
0.732
−1.281
0.746


mmu_miR_193_002250
−2.644
0.412
0.022
0.997
0.667
0.905
2.666
0.430
3.311
0.322
0.645
0.896


mmu_miR_193_002577
0.370
0.705
1.458
0.063
1.439
0.087
1.088
0.175
1.069
0.187
−0.019
0.983


mmu_miR_193b_002467
−1.069
0.106
2.010
0.003
−0.317
0.762
3.080
0.000
0.753
0.313
−2.327
0.001


mmu_miR_1940_121187_mat
1.123
0.734
−5.814
0.023
1.321
0.749
−6.937
0.007
0.198
0.967
7.135
0.004


mmu_miR_1941_3p_121130_mat
−0.118
0.889
0.505
0.475
0.745
0.273
0.623
0.323
0.862
0.154
0.239
0.753


mmu_miR_1941_5p_121140_mat
−1.315
0.524
−2.371
0.239
1.517
0.528
−1.056
0.636
2.832
0.138
3.888
0.027


mmu_miR_1942_121136_mat
−1.723
0.805
−7.035
0.236
2.660
0.762
−5.311
0.373
4.383
0.494
9.695
0.063


mmu_miR_1943_121174_mat
−2.933
0.003
−2.015
0.050
−2.039
0.064
0.918
0.416
0.894
0.445
−0.025
0.983


mmu_miR_1944_121189_mat
−1.339
0.603
0.512
0.947
−1.252
0.720
1.851
0.463
0.087
0.985
−1.764
0.467


mmu_miR_1945_121166_mat
0.046
0.966
0.466
0.694
−0.398
0.762
0.420
0.672
−0.444
0.672
−0.864
0.299


mmu_miR_1946a_121178_mat
−0.105
0.982
−11.509
0.001
−2.903
0.515
11.404
0.001
−2.798
0.482
8.606
0.009


mmu_miR_1947_121156_mat
−2.911
0.154
0.221
0.996
−0.490
0.896
3.132
0.139
2.422
0.280
−0.710
0.797


mmu_miR_1948_121171_mat
2.891
0.169
2.181
0.362
1.539
0.581
−0.710
0.811
−1.352
0.603
−0.643
0.817


mmu_miR_1949_121182_mat
−0.291
0.766
0.177
0.942
−1.530
0.061
0.468
0.598
−1.238
0.109
−1.706
0.018


mmu_miR_194_000493
−2.491
0.021
−2.494
0.027
−1.163
0.399
−0.003
0.998
1.328
0.281
1.331
0.240


mmu_miR_1950_121146_mat
−0.395
0.872
0.046
0.996
−0.918
0.742
0.441
0.869
−0.523
0.832
−0.964
0.632


mmu_miR_1951_121165_mat
4.585
0.558
−6.950
0.382
7.385
0.381
11.535
0.105
2.800
0.767
14.335
0.028


mmu_miR_1952_121167_mat
−0.363
0.307
0.043
0.986
−1.045
0.004
0.406
0.271
−0.682
0.052
−1.088
0.002


mmu_miR_1953_121159_mat
−0.371
0.768
0.368
0.849
0.020
0.992
0.739
0.502
0.391
0.771
−0.348
0.796


mmu_miR_1954_121137_mat
1.876
0.455
−3.993
0.099
8.646
0.001
−5.869
0.013
6.770
0.005
12.639
0.000


mmu_miR_1956_121129_mat
−1.624
0.768
−0.217
0.996
−2.111
0.757
1.408
0.815
−0.487
0.948
−1.894
0.731


mmu_miR_1957_121163_mat
−0.372
0.224
−0.003
0.996
−1.160
0.000
0.369
0.246
−0.788
0.010
−1.156
0.000


mmu_miR_1958_121181_mat
0.004
0.999
0.334
0.976
−1.947
0.491
0.330
0.935
−1.951
0.439
−2.281
0.318


mmu_miR_1959_121132_mat
3.249
0.032
−2.406
0.147
5.696
0.001
−5.655
0.001
2.447
0.128
8.102
0.000


mmu_miR_195_000494
−3.796
0.000
−3.314
0.000
−1.388
0.038
0.482
0.498
2.408
0.000
1.926
0.002


mmu_miR_1960_121148_mat
−2.957
0.091
−0.064
0.996
−0.141
0.971
2.893
0.118
2.816
0.125
−0.077
0.977


mmu_miR_1961_197391_mat
6.588
0.104
4.267
0.369
14.437
0.001
−2.321
0.642
7.848
0.061
10.170
0.010


mmu_miR_1962_121173_mat
1.085
0.387
0.396
0.878
0.956
0.543
−0.690
0.633
−0.130
0.952
0.560
0.712


mmu_miR_1963_121191_mat
−0.372
0.224
−0.003
0.996
−1.160
0.000
0.369
0.246
−0.788
0.010
−1.156
0.000


mmu_miR_1964_121138_mat
−0.515
0.710
0.431
0.831
1.957
0.100
0.946
0.435
2.472
0.024
1.526
0.156


mmu_miR_1965_121186_mat
−0.385
0.285
−0.429
0.271
−1.146
0.002
−0.044
0.948
−0.761
0.032
−0.718
0.033


mmu_miR_1966_121134_mat
−0.315
0.571
0.020
0.996
−1.040
0.047
0.336
0.552
−0.725
0.152
−1.061
0.023


mmu_miR_1967_121151_mat
0.380
0.445
0.757
0.118
−0.348
0.577
0.377
0.468
−0.728
0.127
−1.105
0.013


mmu_miR_1968_121179_mat
6.513
0.033
6.387
0.045
7.395
0.027
−0.126
0.980
0.882
0.849
1.008
0.814


mmu_miR_1969_121131_mat
3.784
0.042
−2.933
0.152
5.471
0.007
−6.717
0.001
1.687
0.449
8.404
0.000


mmu_miR_196a_002477
3.428
0.616
−0.873
0.978
6.203
0.396
−4.300
0.524
2.776
0.732
7.076
0.239


mmu_miR_196b_002215
3.477
0.060
−3.329
0.091
−1.558
0.529
−6.805
0.001
−5.035
0.010
1.771
0.377


mmu_miR_1970_121202_mat
8.207
0.003
−1.514
0.714
8.331
0.005
−9.720
0.001
0.124
0.983
9.844
0.001


mmu_miR_1971_121161_mat
8.928
0.006
2.115
0.637
5.341
0.144
−6.813
0.043
−3.587
0.330
3.226
0.353


mmu_miR_197_000497
1.385
0.798
−6.789
0.121
2.623
0.672
−8.174
0.056
1.238
0.836
9.412
0.019


mmu_miR_1981_121200_mat
1.855
0.030
1.872
0.035
0.028
0.991
0.017
0.990
−1.826
0.040
−1.844
0.028


mmu_miR_1982.1_121157_mat
0.601
0.739
−0.050
0.996
−0.485
0.829
−0.651
0.715
−1.086
0.501
−0.435
0.815


mmu_miR_1982.2_121154_mat
3.743
0.083
−1.038
0.771
1.971
0.490
−4.781
0.034
−1.772
0.494
3.009
0.170


mmu_miR_199a_3p_002304
−1.730
0.248
−3.254
0.028
−0.244
0.932
−1.524
0.342
1.486
0.375
3.010
0.032


mmu_miR_199a_5p_000498
−0.135
0.964
1.635
0.537
0.166
0.971
1.770
0.458
0.301
0.930
−1.469
0.533


mmu_miR_199b_001131
2.512
0.207
1.475
0.546
0.829
0.791
−1.038
0.664
−1.683
0.457
−0.646
0.812


mmu_miR_19a_000395
−3.602
0.000
−3.866
0.000
−1.736
0.007
−0.265
0.751
1.866
0.004
2.131
0.001


mmu_miR_19a_002544
−0.339
0.571
0.276
0.717
−0.416
0.543
0.614
0.268
−0.078
0.926
−0.692
0.181


mmu_miR_19b_000396
−3.150
0.000
−3.625
0.000
−2.497
0.002
−0.475
0.585
0.653
0.443
1.128
0.120


mmu_miR_1_002222
5.722
0.001
−1.308
0.551
1.307
0.577
−7.030
0.000
−4.415
0.013
2.615
0.130


mmu_miR_1_2_AS_002882
−6.864
0.051
−9.227
0.011
−0.364
0.959
−2.363
0.579
6.500
0.079
8.863
0.011


mmu_miR_200a_000502
5.944
0.020
5.222
0.050
8.234
0.003
−0.722
0.858
2.290
0.454
3.012
0.262


mmu_miR_200b_002251
0.510
0.931
−1.205
0.904
3.688
0.472
−1.715
0.753
3.178
0.501
4.893
0.227


mmu_miR_200c_002300
4.514
0.116
0.584
0.956
5.586
0.078
−3.930
0.197
1.073
0.798
5.002
0.074


mmu_miR_201_002578
2.780
0.193
3.390
0.121
3.616
0.119
0.610
0.842
0.836
0.771
0.226
0.955


mmu_miR_202_3p_001195
−0.814
0.845
−3.387
0.333
1.112
0.828
−2.574
0.459
1.926
0.615
4.500
0.141


mmu_miR_202_5p_002579
−1.959
0.255
2.746
0.121
3.802
0.034
4.705
0.007
5.761
0.001
1.056
0.582


mmu_miR_203_000507
−1.644
0.540
−1.722
0.567
1.361
0.708
−0.078
0.983
3.005
0.243
3.084
0.192


mmu_miR_203_002580
1.534
0.655
2.087
0.565
4.806
0.130
0.553
0.910
3.271
0.299
2.719
0.369


mmu_miR_204_000508
−4.113
0.000
−2.187
0.000
−0.074
0.944
1.927
0.001
4.040
0.000
2.113
0.000


mmu_miR_205_000509
3.238
0.267
0.911
0.890
0.034
0.995
−2.327
0.468
−3.204
0.313
−0.877
0.817


mmu_miR_207_001198
−0.152
0.931
0.287
0.934
−1.426
0.304
0.439
0.789
−1.274
0.326
−1.713
0.138


mmu_miR_208_000511
−5.307
0.268
−0.707
0.976
−0.085
0.993
4.600
0.373
5.222
0.316
0.622
0.937


mmu_miR_208b_002290
7.014
0.072
1.825
0.782
6.154
0.164
−5.190
0.217
−0.860
0.880
4.329
0.294


mmu_miR_20a_000580
−2.905
0.000
−3.985
0.000
−2.274
0.001
−1.080
0.096
0.631
0.376
1.711
0.005


mmu_miR_20a_002491
−4.750
0.011
−5.535
0.004
−2.513
0.261
−0.785
0.766
2.237
0.289
3.022
0.109


mmu_miR_20b_001014
−4.875
0.002
−5.541
0.001
−4.212
0.014
−0.666
0.766
0.663
0.767
1.329
0.450


mmu_miR_20b_002524
−0.203
0.945
0.159
0.996
−1.103
0.742
0.362
0.921
−0.900
0.759
−1.262
0.592


mmu_miR_210_000512
−6.053
0.000
−4.498
0.002
−5.549
0.000
1.555
0.318
0.504
0.809
−1.052
0.503


mmu_miR_211_001199
−1.331
0.860
−1.666
0.904
0.119
0.992
−0.335
0.977
1.450
0.852
1.786
0.814


mmu_miR_212_002551
1.805
0.103
1.763
0.140
−0.682
0.681
−0.041
0.980
−2.487
0.028
−2.446
0.023


mmu_miR_2134_241120_mat
3.955
0.013
−0.292
0.961
6.286
0.000
−4.248
0.011
2.331
0.179
6.578
0.000


mmu_miR_2135_241140_mat
4.438
0.571
3.308
0.768
5.498
0.547
−1.130
0.926
1.059
0.926
2.190
0.815


mmu_miR_2136_241133_mat
2.118
0.822
−1.686
0.943
−0.266
0.989
−3.803
0.670
−2.384
0.819
1.420
0.908


mmu_miR_2138_241080_mat
−0.496
0.926
−6.187
0.066
7.754
0.026
−5.691
0.095
8.250
0.013
13.941
0.000


mmu_miR_2139_241130_mat
1.420
0.442
1.536
0.453
0.816
0.762
0.116
0.975
−0.604
0.809
−0.720
0.750


mmu_miR_2146_241082_mat
4.805
0.169
0.785
0.947
8.308
0.023
−4.020
0.274
3.504
0.375
7.523
0.023


mmu_miR_214_002306
0.621
0.758
−2.198
0.194
1.687
0.379
−2.819
0.079
1.066
0.581
3.885
0.010


mmu_miR_215_001200
−3.568
0.067
−4.378
0.030
−1.614
0.541
−0.809
0.768
1.954
0.389
2.763
0.165


mmu_miR_216a_002220
7.300
0.000
1.747
0.297
−0.386
0.886
−5.553
0.001
−7.686
0.000
−2.133
0.152


mmu_miR_216b_002326
6.340
0.000
2.587
0.116
−0.163
0.957
−3.753
0.018
−6.503
0.000
−2.750
0.070


mmu_miR_217_001133
3.765
0.022
−1.984
0.296
0.794
0.763
−5.749
0.001
−2.971
0.090
2.778
0.093


mmu_miR_217_002556
1.439
0.296
−1.872
0.199
−1.035
0.558
−3.312
0.015
−2.474
0.070
0.837
0.582


mmu_miR_2182_241119_mat
3.240
0.272
4.188
0.177
4.488
0.161
0.948
0.816
1.247
0.760
0.300
0.956


mmu_miR_2183_241095_mat
2.712
0.233
−2.002
0.453
7.070
0.003
−4.714
0.039
4.358
0.055
9.072
0.000


mmu_miR_218_000521
4.253
0.000
4.294
0.000
2.276
0.000
0.041
0.966
−1.978
0.000
−2.018
0.000


mmu_miR_218_1_002552
4.020
0.001
2.634
0.026
0.490
0.795
−1.386
0.270
−3.529
0.004
−2.144
0.057


mmu_miR_219_000522
−7.843
0.000
−3.710
0.001
−7.528
0.000
4.133
0.001
0.316
0.847
−3.817
0.001


mmu_miR_21_000397
−1.907
0.017
−4.068
0.000
−1.418
0.122
−2.161
0.010
0.489
0.640
2.650
0.001


mmu_miR_21_002493
−0.866
0.571
−0.497
0.854
−0.936
0.613
0.370
0.859
−0.070
0.980
−0.440
0.814


mmu_miR_220_002468
−0.345
0.358
0.031
0.996
−1.312
0.001
0.376
0.339
−0.968
0.009
−1.343
0.000


mmu_miR_221_000524
−2.408
0.000
−1.736
0.000
−0.691
0.154
0.672
0.141
1.717
0.000
1.045
0.013


mmu_miR_222_002276
−0.534
0.099
−1.175
0.001
−0.241
0.581
−0.641
0.056
0.292
0.439
0.934
0.004


mmu_miR_223_002295
2.907
0.001
−11.143
0.000
6.409
0.000
14.050
0.000
3.501
0.000
17.551
0.000


mmu_miR_224_002553
−2.237
0.034
−0.220
0.956
−0.667
0.676
2.017
0.073
1.570
0.168
−0.448
0.753


mmu_miR_23a_000399
−0.576
0.771
0.453
0.908
1.284
0.528
1.029
0.572
1.860
0.278
0.831
0.648


mmu_miR_23b_000400
−1.804
0.062
−1.505
0.155
−0.635
0.660
0.299
0.836
1.169
0.285
0.870
0.411


mmu_miR_24_000402
0.270
0.352
−0.614
0.028
0.275
0.434
−0.884
0.002
0.005
0.991
0.889
0.001


mmu_miR_24_2_002494
−1.210
0.158
−1.568
0.074
0.803
0.457
−0.357
0.760
2.013
0.020
2.371
0.004


mmu_miR_25_000403
−2.922
0.013
−3.569
0.004
−0.661
0.735
−0.647
0.664
2.262
0.068
2.908
0.013


mmu_miR_26a_000405
−1.266
0.001
−1.376
0.000
−0.595
0.144
−0.110
0.836
0.671
0.075
0.781
0.027


mmu_miR_26b_000407
−2.100
0.000
−2.253
0.000
−0.712
0.144
−0.153
0.806
1.388
0.003
1.540
0.001


mmu_miR_27a_000408
−1.662
0.144
−0.624
0.710
1.224
0.380
1.038
0.409
2.887
0.012
1.848
0.093


mmu_miR_27b_000409
−0.919
0.093
−0.012
0.996
−0.811
0.194
0.907
0.117
0.108
0.899
−0.799
0.147


mmu_miR_28_000411
−1.473
0.436
−1.469
0.500
1.899
0.382
0.004
0.998
3.372
0.061
3.368
0.047


mmu_miR_28_002545
3.058
0.084
2.205
0.270
3.695
0.060
−0.854
0.715
0.637
0.809
1.490
0.446


mmu_miR_290_000187
0.314
0.951
−14.329
0.000
2.246
0.668
14.643
0.000
1.932
0.678
16.575
0.000


mmu_miR_290_3p_002591
−0.370
0.261
0.024
0.996
−1.085
0.002
0.394
0.247
−0.715
0.028
−1.109
0.001


mmu_miR_290_5p_002590
−1.247
0.782
−3.363
0.414
0.758
0.906
−2.117
0.614
2.004
0.655
4.121
0.247


mmu_miR_291_3p_001135
−0.315
0.750
−0.003
0.997
−1.874
0.018
0.312
0.763
−1.559
0.040
−1.871
0.010


mmu_miR_291_5p_001202
−0.315
0.546
0.028
0.996
−1.045
0.032
0.342
0.510
−0.730
0.124
−1.072
0.015


mmu_miR_291a_3p_002592
−0.369
0.248
0.023
0.996
−1.092
0.001
0.392
0.237
−0.723
0.023
−1.115
0.001


mmu_miR_291b_3p_002538
−0.356
0.586
0.181
0.895
−0.653
0.353
0.536
0.400
−0.297
0.703
−0.833
0.145


mmu_miR_291b_5p_002537
−0.382
0.430
−0.007
0.996
−1.149
0.016
0.375
0.462
−0.767
0.100
−1.142
0.009


mmu_miR_292_3p_001054
0.714
0.822
0.811
0.878
0.065
0.992
0.098
0.980
−0.649
0.852
−0.746
0.817


mmu_miR_292_3p_002593
−1.561
0.798
−3.792
0.518
−0.789
0.932
−2.230
0.715
0.772
0.921
3.003
0.575


mmu_miR_292_5p_001055
−4.363
0.358
−0.346
0.996
1.031
0.903
4.017
0.431
5.394
0.282
1.377
0.820


mmu_miR_293_001794
0.789
0.916
−4.503
0.427
1.154
0.896
−5.292
0.304
0.366
0.968
5.658
0.244


mmu_miR_293_002594
−0.719
0.750
0.308
0.961
−1.291
0.575
1.027
0.615
−0.573
0.819
−1.600
0.376


mmu_miR_294_001056
−2.344
0.571
−4.387
0.284
1.310
0.828
−2.043
0.648
3.654
0.383
5.697
0.114


mmu_miR_294_002595
−0.372
0.224
−0.003
0.996
−1.160
0.000
0.369
0.246
−0.788
0.010
−1.156
0.000


mmu_miR_295_000189
−0.091
0.965
−1.183
0.532
0.804
0.742
−1.092
0.527
0.895
0.640
1.988
0.188


mmu_miR_295_002596
−0.251
0.931
−6.936
0.001
−1.002
0.762
−6.685
0.002
−0.751
0.803
5.934
0.003


mmu_miR_296_3p_002101
−0.379
0.876
−0.031
0.996
2.868
0.136
0.348
0.907
3.247
0.066
2.899
0.084


mmu_miR_296_5p_000527
0.693
0.611
3.726
0.002
1.371
0.343
3.034
0.011
0.678
0.655
−2.355
0.037


mmu_miR_297a_002454
−2.677
0.004
0.070
0.996
0.011
0.995
2.748
0.005
2.689
0.006
−0.059
0.972


mmu_miR_297b_5p_001626
−1.452
0.278
0.430
0.881
1.392
0.389
1.882
0.172
2.844
0.031
0.962
0.501


mmu_miR_297c_002480
−1.118
0.571
0.254
0.978
1.448
0.524
1.372
0.478
2.566
0.154
1.194
0.535


mmu_miR_298_002598
2.715
0.077
0.214
0.982
−2.912
0.089
−2.500
0.127
−5.626
0.001
−3.126
0.038


mmu_miR_299_002612
−0.372
0.224
−0.003
0.996
−1.160
0.000
0.369
0.246
−0.788
0.010
−1.156
0.000


mmu_miR_29a_002112
0.647
0.172
1.052
0.026
−0.223
0.762
0.405
0.439
−0.869
0.068
−1.275
0.005


mmu_miR_29b_000413
2.488
0.013
2.316
0.026
1.441
0.219
−0.172
0.924
−1.047
0.375
−0.875
0.429


mmu_miR_29b_002497
1.053
0.339
−2.628
0.013
4.191
0.000
−3.681
0.001
3.138
0.004
6.818
0.000


mmu_miR_29c_000587
1.071
0.007
1.737
0.000
0.364
0.491
0.666
0.117
−0.707
0.092
−1.373
0.001


mmu_miR_300_000191
3.228
0.202
3.268
0.227
0.507
0.909
0.040
0.991
−2.722
0.323
−2.761
0.277


mmu_miR_300_002613
5.413
0.000
2.912
0.025
2.426
0.084
−2.501
0.056
−2.986
0.022
−0.486
0.784


mmu_miR_301a_000528
−1.211
0.018
−0.743
0.196
−0.623
0.333
0.468
0.431
0.588
0.316
0.120
0.886


mmu_miR_301b_002600
−0.651
0.339
0.415
0.641
−0.375
0.708
1.066
0.117
0.277
0.761
−0.789
0.234


mmu_miR_302a_000529
4.747
0.330
−1.620
0.869
1.237
0.885
−6.367
0.194
−3.510
0.531
2.857
0.592


mmu_miR_302a_002615
2.577
0.348
2.287
0.473
2.762
0.395
−0.290
0.952
0.185
0.971
0.475
0.911


mmu_miR_302b_000531
−0.729
0.815
1.897
0.520
0.389
0.932
2.626
0.306
1.118
0.732
−1.508
0.575


mmu_miR_302b_001307
−0.076
0.986
−5.224
0.116
0.345
0.957
−5.148
0.120
0.421
0.938
5.569
0.069


mmu_miR_302c_002557
−1.620
0.532
2.283
0.388
1.799
0.552
3.903
0.102
3.419
0.152
−0.484
0.899


mmu_miR_302c_002558
−0.911
0.859
−3.469
0.434
1.404
0.813
−2.557
0.554
2.316
0.615
4.873
0.190


mmu_miR_302d_000535
0.758
0.847
1.501
0.730
1.325
0.771
0.743
0.869
0.567
0.899
−0.176
0.972


mmu_miR_30a_000417
−1.562
0.000
−1.434
0.000
−0.682
0.114
0.128
0.816
0.879
0.025
0.751
0.044


mmu_miR_30b_000602
−0.095
0.840
−0.334
0.422
−0.120
0.833
−0.238
0.558
−0.025
0.971
0.213
0.594


mmu_miR_30b_002498
−1.245
0.509
−0.011
0.997
−0.226
0.944
1.235
0.520
1.019
0.632
−0.216
0.937


mmu_miR_30c_000419
−0.149
0.696
−0.188
0.658
−0.225
0.581
−0.039
0.948
−0.075
0.864
−0.037
0.944


mmu_miR_30d_000420
−1.632
0.007
−0.767
0.267
−0.293
0.763
0.864
0.186
1.338
0.034
0.474
0.488


mmu_miR_30e_002223
−1.257
0.000
−0.647
0.027
−0.121
0.796
0.610
0.040
1.137
0.000
0.527
0.059


mmu_miR_31_000185
1.443
0.037
0.389
0.710
0.375
0.747
−1.055
0.161
−1.068
0.151
−0.013
0.986


mmu_miR_31_002495
1.153
0.612
−1.314
0.615
−0.680
0.832
−2.466
0.237
−1.833
0.416
0.634
0.814


mmu_miR_320_002277
−1.744
0.000
−0.535
0.214
−0.229
0.707
1.209
0.003
1.516
0.000
0.307
0.475


mmu_miR_322_001059
−0.136
0.980
−3.889
0.362
−0.522
0.942
−3.753
0.360
−0.386
0.954
3.367
0.393


mmu_miR_322_001076
−8.114
0.000
−8.699
0.000
−8.621
0.000
−0.584
0.801
−0.507
0.829
0.078
0.977


mmu_miR_322_002506
−3.161
0.050
−5.285
0.002
−5.118
0.004
−2.125
0.227
−1.958
0.285
0.167
0.956


mmu_miR_323_3p_002227
2.604
0.002
3.423
0.000
−0.342
0.803
0.819
0.378
−2.946
0.001
−3.765
0.000


mmu_miR_324_3p_002509
−1.827
0.061
1.304
0.235
−1.570
0.157
3.130
0.002
0.257
0.856
−2.873
0.004


mmu_miR_324_5p_000539
−0.933
0.436
−0.098
0.996
−1.095
0.436
0.835
0.510
−0.162
0.928
−0.997
0.402


mmu_miR_325_001060
−2.040
0.617
−7.618
0.032
−2.003
0.713
−5.578
0.131
0.036
0.995
5.615
0.104


mmu_miR_325_002510
0.367
0.762
5.406
0.000
−0.380
0.801
5.039
0.000
−0.746
0.498
−5.785
0.000


mmu_miR_326_001061
1.352
0.844
−16.729
0.001
−2.900
0.709
18.082
0.001
−4.252
0.472
13.829
0.005


mmu_miR_327_002481
0.048
0.980
0.882
0.537
−0.010
0.995
0.834
0.520
−0.059
0.980
−0.892
0.468


mmu_miR_328_000543
1.228
0.003
1.075
0.010
0.602
0.195
−0.153
0.792
−0.627
0.145
−0.473
0.262


mmu_miR_329_000192
2.770
0.006
3.495
0.001
0.409
0.805
0.725
0.538
−2.362
0.023
−3.087
0.002


mmu_miR_32_002109
−7.009
0.004
−6.669
0.008
−5.342
0.047
0.341
0.943
1.667
0.590
1.327
0.652


mmu_miR_330_001062
5.796
0.144
1.929
0.759
3.149
0.544
−3.867
0.373
−2.647
0.589
1.219
0.817


mmu_miR_330_002230
1.510
0.229
−2.120
0.099
−0.846
0.616
−3.631
0.004
−2.357
0.061
1.274
0.322


mmu_miR_331_3p_000545
0.663
0.244
1.637
0.004
1.074
0.077
0.974
0.092
0.412
0.535
−0.562
0.336


mmu_miR_331_5p_002233
0.272
0.936
−2.070
0.488
3.882
0.152
−2.341
0.385
3.610
0.155
5.951
0.011


mmu_miR_335_3p_002185
3.410
0.006
5.704
0.000
−1.500
0.327
2.294
0.078
−4.909
0.000
−7.204
0.000


mmu_miR_335_5p_000546
3.450
0.000
2.261
0.000
0.822
0.200
−1.189
0.041
−2.628
0.000
−1.439
0.009


mmu_miR_337_000193
1.439
0.270
2.430
0.063
0.714
0.720
0.991
0.493
−0.725
0.656
−1.716
0.179


mmu_miR_337_3p_002532
2.244
0.039
3.024
0.007
0.680
0.681
0.780
0.547
−1.564
0.187
−2.344
0.029


mmu_miR_337_5p_002515
3.042
0.109
3.983
0.041
3.249
0.130
0.941
0.703
0.207
0.953
−0.734
0.784


mmu_miR_338_3p_002252
−4.756
0.000
−0.157
0.981
−4.267
0.000
4.599
0.000
0.489
0.756
−4.110
0.000


mmu_miR_339_3p_002533
−4.077
0.027
−4.743
0.013
−1.867
0.434
−0.666
0.804
2.210
0.287
2.876
0.123


mmu_miR_339_5p_002257
−5.774
0.000
−4.818
0.000
−4.632
0.000
0.956
0.468
1.142
0.389
0.187
0.921


mmu_miR_340_3p_002259
−0.132
0.795
0.262
0.615
0.114
0.866
0.394
0.363
0.247
0.613
−0.147
0.785


mmu_miR_340_5p_002258
−0.854
0.029
0.615
0.152
−0.358
0.491
1.469
0.001
0.496
0.262
−0.973
0.012


mmu_miR_342_3p_002260
1.258
0.001
−0.439
0.321
−0.378
0.447
−1.697
0.000
−1.636
0.000
0.061
0.925


mmu_miR_342_5p_002527
−0.272
0.890
−0.731
0.715
−2.638
0.077
−0.459
0.814
−2.366
0.092
−1.907
0.160


mmu_miR_343_002483
−0.364
0.582
0.001
0.999
−1.103
0.085
0.365
0.598
−0.738
0.246
−1.103
0.049


mmu_miR_344_001063
−0.670
0.577
2.390
0.026
−1.083
0.416
3.060
0.005
−0.413
0.780
−3.473
0.001


mmu_miR_345_001137
−1.475
0.120
−0.086
0.996
0.102
0.957
1.389
0.169
1.577
0.109
0.188
0.908


mmu_miR_345_3p_002529
−2.160
0.053
−0.871
0.546
−0.965
0.524
1.289
0.298
1.195
0.362
−0.094
0.963


mmu_miR_345_5p_002528
−3.890
0.000
0.407
0.704
−2.754
0.000
4.297
0.000
1.137
0.127
−3.161
0.000


mmu_miR_346_001064
1.455
0.309
0.802
0.694
0.250
0.930
−0.653
0.715
−1.205
0.455
−0.552
0.766


mmu_miR_34a_000426
4.629
0.000
2.856
0.000
0.483
0.528
−1.773
0.003
−4.146
0.000
−2.373
0.000


mmu_miR_34b_001065
−1.407
0.333
−0.921
0.622
0.965
0.614
0.486
0.806
2.372
0.100
1.885
0.177


mmu_miR_34b_3p_002618
−0.861
0.066
1.723
0.001
0.983
0.060
2.585
0.000
1.844
0.000
−0.741
0.116


mmu_miR_34b_5p_002617
0.352
0.844
1.225
0.435
2.686
0.061
0.872
0.575
2.333
0.086
1.461
0.282


mmu_miR_34c_000428
−0.923
0.265
6.010
0.000
1.322
0.142
6.933
0.000
2.245
0.007
−4.688
0.000


mmu_miR_34c_002584
−0.563
0.372
1.353
0.026
1.390
0.029
1.916
0.002
1.952
0.002
0.037
0.972


mmu_miR_350_002530
−3.701
0.000
−2.524
0.000
−2.613
0.000
1.177
0.033
1.088
0.048
−0.089
0.919


mmu_miR_351_001067
−0.341
0.811
0.201
0.961
−0.172
0.933
0.542
0.698
0.169
0.926
−0.373
0.804


mmu_miR_361_000554
−0.007
0.999
0.771
0.710
0.014
0.995
0.778
0.642
0.021
0.992
−0.757
0.639


mmu_miR_362_3p_002616
−3.097
0.001
−4.602
0.000
−1.997
0.054
−1.504
0.134
1.101
0.297
2.605
0.005


mmu_miR_362_5p_002614
−1.194
0.154
−2.181
0.009
−0.368
0.779
−0.987
0.268
0.825
0.383
1.812
0.023


mmu_miR_363_001271
0.916
0.771
1.024
0.815
1.021
0.799
0.107
0.980
0.105
0.983
−0.002
0.999


mmu_miR_365_001020
−5.714
0.000
0.223
0.922
−2.269
0.011
5.937
0.000
3.445
0.000
−2.492
0.003


mmu_miR_367_000555
−2.768
0.612
−0.973
0.956
−1.447
0.858
1.795
0.787
1.322
0.849
−0.474
0.956


mmu_miR_369_3p_000557
2.423
0.010
1.884
0.056
0.142
0.940
−0.539
0.648
−2.281
0.020
−1.742
0.061


mmu_miR_369_5p_001021
4.393
0.000
1.633
0.125
0.432
0.791
−2.760
0.008
−3.961
0.000
−1.201
0.244


mmu_miR_370_001068
−0.252
0.931
0.228
0.986
−0.818
0.778
0.480
0.869
−0.566
0.829
−1.046
0.627


mmu_miR_370_002275
2.481
0.000
4.859
0.000
−1.225
0.112
2.378
0.001
−3.706
0.000
−6.084
0.000


mmu_miR_374_002043
0.632
0.931
1.079
0.952
5.713
0.345
0.447
0.964
5.081
0.370
4.634
0.376


mmu_miR_374_5p_001319
−9.452
0.006
−6.096
0.094
−9.210
0.014
3.356
0.386
0.242
0.971
−3.114
0.404


mmu_miR_375_000564
−3.119
0.007
1.534
0.241
0.162
0.944
4.653
0.000
3.281
0.008
−1.372
0.261


mmu_miR_376a_001069
2.979
0.000
2.553
0.000
0.368
0.585
−0.426
0.454
−2.610
0.000
−2.184
0.000


mmu_miR_376a_002482
4.322
0.019
1.778
0.432
0.541
0.869
−2.544
0.203
−3.781
0.050
−1.237
0.565


mmu_miR_376b_002451
3.033
0.479
2.634
0.615
0.498
0.948
−0.399
0.957
−2.535
0.606
−2.135
0.643


mmu_miR_376b_002452
3.368
0.001
4.389
0.000
0.253
0.893
1.021
0.363
−3.115
0.004
−4.135
0.000


mmu_miR_376c_002450
1.990
0.000
2.113
0.000
0.705
0.152
0.123
0.856
−1.285
0.005
−1.408
0.001


mmu_miR_376c_002523
1.179
0.646
2.464
0.305
2.042
0.455
1.285
0.618
0.863
0.771
−0.422
0.908


mmu_miR_377_000566
0.361
0.888
0.750
0.803
0.835
0.762
0.389
0.893
0.475
0.852
0.086
0.977


mmu_miR_379_001138
3.055
0.005
3.240
0.004
1.132
0.414
0.184
0.924
−1.924
0.091
−2.108
0.047


mmu_miR_380_3p_001071
6.440
0.000
2.428
0.013
1.761
0.101
−4.013
0.000
−4.679
0.000
−0.667
0.541


mmu_miR_380_5p_002601
4.578
0.000
3.152
0.000
1.042
0.152
−1.426
0.034
−3.536
0.000
−2.110
0.001


mmu_miR_381_000571
1.783
0.253
0.281
0.961
0.496
0.847
−1.501
0.373
−1.287
0.472
0.214
0.933


mmu_miR_382_000572
3.946
0.003
8.030
0.000
−0.636
0.762
4.084
0.003
−4.582
0.001
−8.666
0.000


mmu_miR_383_001767
4.785
0.000
3.581
0.000
0.227
0.830
−1.204
0.071
−4.559
0.000
−3.355
0.000


mmu_miR_384_3p_002603
1.619
0.004
1.442
0.013
0.019
0.991
−0.177
0.833
−1.600
0.007
−1.423
0.011


mmu_miR_384_5p_002602
2.058
0.000
1.614
0.000
−0.196
0.751
−0.444
0.274
−2.254
0.000
−1.811
0.000


mmu_miR_409_3p_002332
3.235
0.002
2.887
0.006
0.540
0.753
−0.348
0.816
−2.696
0.012
−2.348
0.020


mmu_miR_409_5p_002331
4.707
0.000
2.407
0.013
−0.202
0.907
−2.300
0.018
−4.909
0.000
−2.609
0.005


mmu_miR_410_001274
2.997
0.000
3.408
0.000
0.172
0.813
0.411
0.413
−2.825
0.000
−3.236
0.000


mmu_miR_411_001610
2.330
0.001
2.541
0.000
0.636
0.457
0.212
0.825
−1.693
0.013
−1.905
0.004


mmu_miR_412_002575
5.379
0.000
5.343
0.000
0.642
0.628
−0.036
0.980
−4.737
0.000
−4.700
0.000


mmu_miR_423_5p_002340
−2.665
0.003
−1.262
0.202
−2.240
0.020
1.403
0.139
0.424
0.733
−0.978
0.298


mmu_miR_425_001516
2.811
0.170
−2.190
0.342
6.783
0.002
−5.001
0.015
3.972
0.053
8.973
0.000


mmu_miR_429_001077
2.368
0.379
−0.207
0.996
3.158
0.299
−2.575
0.362
0.790
0.829
3.365
0.188


mmu_miR_431_001979
−0.969
0.381
−2.156
0.042
−6.434
0.000
−1.187
0.294
−5.465
0.000
−4.278
0.000


mmu_miR_432_241135_mat
1.165
0.798
2.536
0.576
1.706
0.762
1.371
0.783
0.542
0.926
−0.829
0.883


mmu_miR_433_001028
3.646
0.000
3.261
0.000
0.427
0.496
−0.385
0.478
−3.219
0.000
−2.834
0.000


mmu_miR_433_5p_001078
5.590
0.067
−0.587
0.961
0.762
0.896
−6.177
0.053
−4.828
0.136
1.350
0.746


mmu_miR_434_3p_002604
3.014
0.000
1.573
0.002
0.003
0.997
−1.441
0.004
−3.012
0.000
−1.570
0.001


mmu_miR_434_5p_002581
3.972
0.001
2.968
0.012
0.512
0.782
−1.005
0.446
−3.460
0.004
−2.456
0.029


mmu_miR_448_001029
5.042
0.002
2.286
0.203
0.049
0.992
−2.756
0.109
−4.992
0.004
−2.237
0.174


mmu_miR_449a_001030
1.036
0.518
−2.363
0.112
1.290
0.485
−3.399
0.018
0.254
0.910
3.653
0.008


mmu_miR_449b_001667
2.481
0.205
−0.524
0.916
2.290
0.324
−3.005
0.134
−0.191
0.955
2.814
0.138


mmu_miR_449b_002539
−0.367
0.249
0.025
0.996
−1.091
0.001
0.391
0.237
−0.725
0.022
−1.116
0.000


mmu_miR_450B_3P_002632
−0.001
0.999
−6.200
0.039
−1.498
0.757
−6.199
0.041
−1.497
0.716
4.702
0.105


mmu_miR_450a_3p_002525
−0.372
0.224
−0.003
0.996
−1.160
0.000
0.369
0.246
−0.788
0.010
−1.156
0.000


mmu_miR_450a_5p_002303
−2.349
0.097
−1.004
0.588
−1.216
0.519
1.345
0.397
1.133
0.501
−0.212
0.932


mmu_miR_450b_5p_001962
−0.359
0.571
0.086
0.976
−0.912
0.144
0.445
0.478
−0.552
0.386
−0.997
0.065


mmu_miR_451_001141
−2.489
0.500
−5.487
0.115
4.678
0.215
−2.998
0.419
7.167
0.033
10.165
0.002


mmu_miR_452_001032
−1.599
0.722
−4.368
0.254
−1.775
0.754
−2.770
0.478
−0.177
0.980
2.593
0.494


mmu_miR_453_002484
−0.193
0.925
0.386
0.896
−0.626
0.755
0.579
0.715
−0.434
0.809
−1.012
0.450


mmu_miR_455_002455
−6.597
0.000
−4.753
0.001
−5.991
0.000
1.844
0.207
0.606
0.759
−1.238
0.402


mmu_miR_463_002582
2.723
0.037
−1.776
0.227
6.352
0.000
−4.499
0.001
3.630
0.009
8.129
0.000


mmu_miR_463_002662
2.919
0.253
−2.665
0.356
4.853
0.077
−5.584
0.030
1.934
0.513
7.518
0.002


mmu_miR_464_001081
−0.284
0.804
0.160
0.961
−0.651
0.581
0.444
0.691
−0.367
0.767
−0.811
0.389


mmu_miR_465C_5P_002654
6.586
0.001
−0.547
0.908
7.774
0.000
−7.133
0.000
1.188
0.611
8.321
0.000


mmu_miR_465a_3p_002040
3.324
0.209
3.128
0.277
1.026
0.805
−0.197
0.971
−2.298
0.443
−2.101
0.457


mmu_miR_465a_5p_001082
−6.964
0.270
−1.026
0.967
1.181
0.921
5.938
0.384
8.145
0.218
2.207
0.796


mmu_miR_465b_5p_002485
3.129
0.483
−3.099
0.546
−0.399
0.960
−6.227
0.143
−3.527
0.457
2.700
0.556


mmu_miR_466E_5P_002718
−1.496
0.785
−8.180
0.062
0.777
0.929
−6.684
0.134
2.273
0.690
8.957
0.028


mmu_miR_466J_002817
−1.861
0.200
−0.774
0.710
0.289
0.909
1.086
0.501
2.150
0.146
1.063
0.493


mmu_miR_466a_3p_002586
−3.636
0.000
0.631
0.498
−0.966
0.273
4.266
0.000
2.670
0.001
−1.596
0.027


mmu_miR_466b_3_3p_002500
−3.268
0.004
−0.099
0.996
−1.269
0.365
3.169
0.007
1.999
0.090
−1.170
0.329


mmu_miR_466d_5p_002534
2.978
0.571
1.035
0.949
1.464
0.850
−1.943
0.760
−1.513
0.819
0.430
0.958


mmu_miR_466g_241015_mat
−3.586
0.109
1.268
0.710
0.901
0.805
4.854
0.037
4.487
0.052
−0.368
0.920


mmu_miR_466h_002516
−1.368
0.542
−0.039
0.996
−1.733
0.500
1.329
0.564
−0.365
0.909
−1.694
0.428


mmu_miR_466k_240990_mat
4.305
0.101
−2.676
0.386
3.981
0.181
−6.981
0.010
−0.324
0.942
6.657
0.010


mmu_miR_467F_002886
−2.755
0.404
−5.216
0.107
−0.162
0.981
−2.461
0.478
2.593
0.472
5.054
0.093


mmu_miR_467H_002809
−4.526
0.000
−1.399
0.278
−2.119
0.096
3.127
0.009
2.407
0.040
−0.720
0.585


mmu_miR_467a_001826
−2.689
0.039
1.030
0.541
0.786
0.701
3.718
0.007
3.475
0.011
−0.243
0.911


mmu_miR_467a_002587
−2.663
0.014
3.334
0.003
−0.073
0.976
5.996
0.000
2.590
0.023
−3.407
0.002


mmu_miR_467b_001671
−5.128
0.000
−1.325
0.298
−3.306
0.006
3.803
0.001
1.822
0.123
−1.981
0.072


mmu_miR_467b_001684
0.962
0.720
−2.105
0.383
3.511
0.130
−3.066
0.161
2.549
0.263
5.615
0.005


mmu_miR_467c_002517
−4.310
0.014
−0.887
0.759
0.998
0.727
3.423
0.067
5.308
0.005
1.884
0.320


mmu_miR_467d_002518
−2.397
0.055
−1.358
0.359
0.709
0.727
1.039
0.471
3.106
0.018
2.067
0.100


mmu_miR_467e_002568
−2.134
0.280
−4.172
0.032
0.232
0.952
−2.038
0.332
2.366
0.263
4.404
0.017


mmu_miR_467e_002569
0.159
0.956
−1.454
0.570
−1.655
0.528
−1.612
0.475
−1.814
0.436
−0.201
0.956


mmu_miR_468_001085
−0.104
0.964
0.095
0.996
−0.576
0.828
0.199
0.948
−0.472
0.841
−0.671
0.753


mmu_miR_469_001086
0.386
0.936
0.096
0.996
−3.480
0.423
−0.289
0.966
−3.866
0.314
−3.576
0.322


mmu_miR_470_002588
−0.099
0.954
0.452
0.850
−0.059
0.983
0.550
0.727
0.040
0.988
−0.510
0.748


mmu_miR_470_002589
−3.462
0.565
−8.085
0.147
2.591
0.762
−4.623
0.431
6.052
0.293
10.676
0.033


mmu_miR_471_002605
−0.325
0.571
0.145
0.908
−1.157
0.029
0.471
0.396
−0.832
0.106
−1.303
0.007


mmu_miR_483_001291
1.889
0.571
−5.292
0.079
2.412
0.528
−7.182
0.016
0.523
0.910
7.704
0.007


mmu_miR_483_002560
0.587
0.687
0.376
0.890
2.825
0.023
−0.211
0.917
2.238
0.061
2.449
0.029


mmu_miR_484_001821
−1.772
0.000
−1.747
0.000
−1.027
0.032
0.025
0.977
0.745
0.109
0.720
0.102


mmu_miR_485_3p_001943
2.210
0.000
2.658
0.000
0.893
0.144
0.448
0.470
−1.317
0.019
−1.765
0.001


mmu_miR_486_001278
−5.954
0.000
1.667
0.303
−6.271
0.000
7.621
0.000
−0.317
0.878
−7.938
0.000


mmu_miR_487b_001285
2.351
0.000
1.938
0.001
0.961
0.119
−0.413
0.511
−1.390
0.013
−0.977
0.069


mmu_miR_487b_001306
1.379
0.009
2.508
0.000
−0.265
0.762
1.130
0.042
−1.643
0.004
−2.773
0.000


mmu_miR_488_001659
−0.634
0.693
1.505
0.292
−0.088
0.976
2.139
0.110
0.546
0.761
−1.593
0.218


mmu_miR_488_002014
0.863
0.786
0.065
0.996
1.830
0.581
−0.798
0.821
0.967
0.780
1.765
0.521


mmu_miR_489_001302
5.862
0.003
1.820
0.444
1.240
0.672
−4.043
0.047
−4.622
0.022
−0.579
0.829


mmu_miR_490_001037
2.790
0.016
−2.910
0.015
−4.682
0.000
−5.700
0.000
−7.472
0.000
−1.772
0.133


mmu_miR_491_001630
2.501
0.009
3.895
0.000
0.707
0.597
1.394
0.177
−1.794
0.077
−3.187
0.001


mmu_miR_493_002519
2.745
0.237
1.497
0.624
3.131
0.231
−1.247
0.654
0.386
0.916
1.634
0.515


mmu_miR_494_001293
−1.460
0.381
−0.322
0.956
−0.816
0.752
1.139
0.529
0.645
0.767
−0.494
0.817


mmu_miR_494_002365
1.669
0.189
1.365
0.333
0.848
0.618
−0.304
0.875
−0.821
0.596
−0.517
0.753


mmu_miR_495_001663
2.878
0.000
2.433
0.000
0.012
0.992
−0.444
0.295
−2.866
0.000
−2.422
0.000


mmu_miR_496_001953
−1.968
0.454
−1.027
0.805
−4.476
0.092
0.941
0.783
−2.507
0.366
−3.449
0.152


mmu_miR_497_001346
−5.762
0.000
−3.032
0.008
−2.123
0.088
2.729
0.018
3.639
0.002
0.910
0.461


mmu_miR_499_001352
1.748
0.415
−2.549
0.243
−1.700
0.516
−4.297
0.036
−3.448
0.092
0.849
0.747


mmu_miR_500_002606
−3.686
0.001
−4.688
0.000
−3.452
0.002
−1.002
0.395
0.234
0.878
1.236
0.253


mmu_miR_501_001356
1.764
0.418
1.319
0.627
1.268
0.672
−0.445
0.893
−0.496
0.864
−0.051
0.983


mmu_miR_501_3p_001651
−2.203
0.001
−3.171
0.000
−2.517
0.001
−0.968
0.172
−0.313
0.733
0.654
0.356


mmu_miR_503_002456
−2.041
0.174
−0.564
0.849
−1.653
0.362
1.477
0.363
0.388
0.852
−1.089
0.501


mmu_miR_503_002536
−2.287
0.019
−4.675
0.000
−1.163
0.343
−2.388
0.018
1.124
0.313
3.512
0.001


mmu_miR_504_002084
2.219
0.028
−0.252
0.934
−0.108
0.957
−2.471
0.018
−2.326
0.026
0.145
0.933


mmu_miR_505_001655
−0.039
0.981
0.445
0.849
1.044
0.494
0.485
0.766
1.083
0.424
0.598
0.675


mmu_miR_509_3p_002521
4.056
0.463
1.737
0.875
6.753
0.253
−2.319
0.727
2.697
0.693
5.016
0.351


mmu_miR_509_5p_002520
4.724
0.279
5.066
0.288
4.867
0.351
0.342
0.968
0.142
0.988
−0.199
0.977


mmu_miR_511_002549
−0.638
0.770
−2.427
0.187
0.828
0.762
−1.790
0.334
1.466
0.457
3.256
0.046


mmu_miR_532_3p_002355
−1.287
0.037
−2.121
0.001
−0.367
0.707
−0.835
0.214
0.919
0.167
1.754
0.005


mmu_miR_532_5p_001518
−2.357
0.000
−2.762
0.000
−1.454
0.004
−0.405
0.452
0.902
0.065
1.307
0.005


mmu_miR_539_001286
2.580
0.008
2.392
0.016
0.469
0.762
−0.188
0.912
−2.111
0.035
−1.923
0.043


mmu_miR_540_3p_001310
3.846
0.001
0.524
0.767
0.591
0.738
−3.321
0.003
−3.254
0.004
0.067
0.972


mmu_miR_540_5p_002561
1.986
0.078
0.109
0.996
0.409
0.828
−1.877
0.118
−1.578
0.195
0.300
0.856


mmu_miR_541_002562
4.400
0.000
2.458
0.000
−0.416
0.610
−1.942
0.002
−4.816
0.000
−2.874
0.000


mmu_miR_542_3p_001284
−2.752
0.034
−0.934
0.588
−1.687
0.280
1.819
0.193
1.065
0.500
−0.753
0.628


mmu_miR_542_5p_002563
−0.364
0.931
−0.184
0.996
−0.272
0.964
0.179
0.977
0.092
0.989
−0.087
0.983


mmu_miR_543_001298
2.996
0.000
2.779
0.000
0.297
0.762
−0.217
0.804
−2.700
0.000
−2.483
0.000


mmu_miR_543_002376
3.032
0.000
2.765
0.000
0.537
0.367
−0.267
0.654
−2.495
0.000
−2.228
0.000


mmu_miR_544_002550
2.819
0.002
2.689
0.004
1.798
0.072
−0.130
0.941
−1.021
0.316
−0.891
0.356


mmu_miR_546_001312
−0.111
0.991
−5.906
0.500
−8.405
0.327
−5.794
0.468
−8.293
0.286
−2.499
0.796


mmu_miR_547_002564
0.329
0.931
−2.764
0.384
−0.597
0.906
−3.094
0.294
−0.926
0.819
2.167
0.466


mmu_miR_551b_001535
0.990
0.421
−1.345
0.292
1.169
0.415
−2.334
0.047
0.180
0.926
2.514
0.022


mmu_miR_574_3p_002349
−4.920
0.000
−5.567
0.000
−3.790
0.000
−0.647
0.445
1.130
0.151
1.777
0.014


mmu_miR_582_3p_002567
0.502
0.825
−0.375
0.952
1.098
0.672
−0.877
0.691
0.596
0.818
1.473
0.432


mmu_miR_582_5p_002566
1.343
0.117
3.338
0.000
0.415
0.762
1.996
0.023
−0.928
0.341
−2.923
0.001


mmu_miR_590_5p_001984
−1.976
0.429
0.073
0.996
−2.065
0.491
2.049
0.431
−0.089
0.985
−2.138
0.386


mmu_miR_592_002017
2.714
0.000
3.129
0.000
−0.384
0.755
0.415
0.654
−3.098
0.000
−3.512
0.000


mmu_miR_598_002476
0.519
0.739
1.412
0.289
0.192
0.932
0.893
0.510
−0.328
0.850
−1.221
0.329


mmu_miR_599_241117_mat
−2.759
0.298
−0.177
0.996
2.255
0.501
2.582
0.363
5.015
0.056
2.433
0.374


mmu_miR_615_3p_001960
2.235
0.020
−1.367
0.204
0.000
1.000
−3.602
0.001
−2.235
0.025
1.367
0.165


mmu_miR_615_5p_002353
−0.096
0.898
0.385
0.548
0.571
0.361
0.480
0.396
0.667
0.226
0.186
0.793


mmu_miR_652_002352
−2.808
0.008
−1.594
0.173
−1.088
0.427
1.214
0.300
1.720
0.127
0.507
0.717


mmu_miR_654_3p_002239
−0.292
0.781
0.218
0.919
−0.543
0.630
0.510
0.597
−0.250
0.829
−0.761
0.376


mmu_miR_654_5p_002522
0.334
0.786
0.793
0.504
−0.064
0.976
0.460
0.711
−0.398
0.767
−0.858
0.402


mmu_miR_665_002607
0.063
0.967
−0.915
0.514
−2.116
0.085
−0.978
0.437
−2.179
0.056
−1.201
0.301


mmu_miR_666_3p_002448
1.465
0.530
1.131
0.710
3.135
0.176
−0.334
0.926
1.669
0.494
2.004
0.358


mmu_miR_666_5p_001952
4.053
0.000
0.336
0.788
0.127
0.932
−3.717
0.000
−3.926
0.000
−0.209
0.838


mmu_miR_667_001949
3.553
0.000
2.811
0.000
0.194
0.828
−0.742
0.193
−3.359
0.000
−2.617
0.000


mmu_miR_668_001947
−0.243
0.931
0.026
0.996
−2.123
0.367
0.269
0.942
−1.880
0.389
−2.149
0.277


mmu_miR_669C_002646
−3.075
0.017
−1.327
0.387
−0.273
0.909
1.748
0.212
2.802
0.037
1.054
0.466


mmu_miR_669D_002808
−2.712
0.034
0.084
0.996
0.080
0.979
2.796
0.038
2.791
0.036
−0.005
0.999


mmu_miR_669E_002774
−2.568
0.096
−0.027
0.996
−0.117
0.974
2.541
0.119
2.451
0.128
−0.090
0.973


mmu_miR_669G_002813
−0.356
0.518
0.106
0.952
−0.842
0.122
0.462
0.396
−0.486
0.383
−0.948
0.044


mmu_miR_669H_5P_002906
0.268
0.931
−2.394
0.289
−0.464
0.903
−2.661
0.214
−0.732
0.804
1.930
0.369


mmu_miR_669a_001683
−2.727
0.069
0.792
0.730
−0.611
0.805
3.519
0.025
2.117
0.193
−1.402
0.390


mmu_miR_669l_121149_mat
−2.464
0.043
0.541
0.802
0.507
0.804
3.005
0.018
2.971
0.020
−0.034
0.983


mmu_miR_669m_121190_mat
−2.479
0.238
1.069
0.730
0.794
0.812
3.548
0.097
3.273
0.125
−0.275
0.937


mmu_miR_669n_197143_mat
−4.045
0.000
−1.845
0.100
−1.705
0.152
2.199
0.046
2.340
0.031
0.140
0.937


mmu_miR_669o_121176_mat
0.371
0.847
2.860
0.048
3.747
0.014
2.489
0.093
3.376
0.020
0.888
0.584


mmu_miR_670_002020
−0.920
0.876
−6.319
0.161
−1.006
0.896
−5.399
0.226
−0.086
0.991
5.313
0.210


mmu_miR_671_3p_002322
−0.584
0.571
3.076
0.001
−0.399
0.782
3.660
0.000
0.184
0.894
−3.476
0.000


mmu_miR_672_002327
2.179
0.207
3.647
0.032
−2.290
0.241
1.468
0.438
−4.469
0.010
−5.937
0.001


mmu_miR_673_001954
4.239
0.103
1.025
0.843
7.736
0.006
−3.214
0.250
3.497
0.217
6.711
0.009


mmu_miR_673_3p_002449
3.693
0.179
0.981
0.857
0.021
0.996
−2.712
0.363
−3.672
0.201
−0.960
0.796


mmu_miR_674_001956
−3.335
0.000
−1.897
0.012
−1.086
0.200
1.438
0.063
2.249
0.004
0.812
0.298


mmu_miR_674_002021
−4.089
0.008
−2.310
0.174
−3.655
0.029
1.780
0.295
0.434
0.850
−1.345
0.429


mmu_miR_675_3p_001941
0.765
0.931
−9.187
0.166
0.445
0.976
−9.952
0.123
−0.320
0.980
9.632
0.112


mmu_miR_675_5p_001940
−3.345
0.290
−0.261
0.996
−0.264
0.967
3.084
0.363
3.081
0.381
−0.003
0.999


mmu_miR_676_001958
1.132
0.280
1.790
0.093
0.886
0.507
0.659
0.585
−0.245
0.866
−0.904
0.408


mmu_miR_676_001959
−3.330
0.010
−0.996
0.548
−1.237
0.463
2.334
0.090
2.093
0.127
−0.241
0.911


mmu_miR_677_001660
0.217
0.914
1.042
0.516
1.575
0.305
0.825
0.587
1.358
0.353
0.533
0.753


mmu_miR_679_001662
0.095
0.988
−3.350
0.587
−3.695
0.558
−3.445
0.527
−3.790
0.501
−0.345
0.967


mmu_miR_680_001664
−4.104
0.474
−9.232
0.092
−2.377
0.774
−5.128
0.377
1.727
0.819
6.855
0.192


mmu_miR_682_001666
−2.723
0.589
−0.354
0.996
1.759
0.805
2.369
0.664
4.482
0.376
2.113
0.710


mmu_miR_683_001668
−5.047
0.195
−5.160
0.214
1.136
0.864
−0.113
0.984
6.183
0.116
6.296
0.089


mmu_miR_684_001669
−0.372
0.224
−0.003
0.996
−1.160
0.000
0.369
0.246
−0.788
0.010
−1.156
0.000


mmu_miR_685_001670
3.451
0.352
−1.634
0.782
7.053
0.068
−5.085
0.172
3.602
0.375
8.687
0.011


mmu_miR_686_001672
−0.384
0.858
−0.277
0.961
−1.269
0.530
0.107
0.975
−0.885
0.655
−0.992
0.573


mmu_miR_687_001674
−0.317
0.768
0.230
0.916
−0.879
0.394
0.548
0.576
−0.561
0.587
−1.109
0.182


mmu_miR_688_001675
3.872
0.070
3.884
0.088
3.691
0.130
0.012
0.998
−0.181
0.965
−0.193
0.960


mmu_miR_690_001677
−0.055
0.980
−1.821
0.217
0.659
0.762
−1.766
0.217
0.714
0.693
2.480
0.057


mmu_miR_691_001678
4.255
0.369
0.290
0.996
5.650
0.288
−3.965
0.432
1.395
0.829
5.360
0.244


mmu_miR_692_001679
0.559
0.850
−2.257
0.373
0.375
0.932
−2.816
0.224
−0.184
0.965
2.632
0.238


mmu_miR_693_001680
−8.481
0.033
−4.329
0.359
0.614
0.938
4.152
0.360
9.096
0.028
4.943
0.235


mmu_miR_693_3p_002036
−6.014
0.195
−7.012
0.149
−2.555
0.720
−0.999
0.893
3.458
0.523
4.457
0.353


mmu_miR_694_001681
3.703
0.338
−1.383
0.850
9.143
0.020
−5.086
0.191
5.440
0.158
10.526
0.004


mmu_miR_695_001627
4.918
0.205
6.008
0.135
4.918
0.265
1.089
0.846
0.000
1.000
−1.089
0.833


mmu_miR_696_001628
6.364
0.231
−3.873
0.552
5.103
0.436
10.237
0.055
−1.261
0.864
8.976
0.074


mmu_miR_697_001631
6.151
0.031
4.328
0.170
4.392
0.181
−1.824
0.600
−1.760
0.636
0.064
0.983


mmu_miR_698_001632
−0.379
0.750
−0.732
0.516
−0.678
0.577
−0.353
0.782
−0.299
0.819
0.055
0.972


mmu_miR_700_001634
0.089
0.961
1.892
0.173
0.058
0.983
1.802
0.180
−0.031
0.991
−1.834
0.152


mmu_miR_701_001635
0.327
0.931
−2.738
0.362
2.200
0.520
−3.065
0.271
1.873
0.553
4.938
0.048


mmu_miR_702_001636
2.615
0.237
−0.594
0.916
0.055
0.992
−3.209
0.161
−2.560
0.285
0.649
0.822


mmu_miR_704_001639
−1.496
0.322
0.361
0.934
0.292
0.912
1.857
0.229
1.788
0.263
−0.069
0.977


mmu_miR_706_001641
9.338
0.046
7.069
0.173
12.454
0.015
−2.269
0.715
3.116
0.606
5.385
0.277


mmu_miR_707_001642
−0.374
0.550
0.137
0.934
−0.798
0.199
0.511
0.403
−0.423
0.515
−0.934
0.080


mmu_miR_708_002341
−0.083
0.931
2.130
0.001
−0.032
0.980
2.213
0.000
0.051
0.964
−2.162
0.000


mmu_miR_710_001645
4.157
0.571
6.486
0.387
8.286
0.273
2.329
0.801
4.129
0.610
1.800
0.838


mmu_miR_711_001646
5.212
0.454
5.314
0.504
8.344
0.265
0.101
0.991
3.132
0.729
3.030
0.712


mmu_miR_712_001961
−1.209
0.370
0.594
0.782
0.116
0.964
1.804
0.179
1.326
0.368
−0.478
0.789


mmu_miR_712_002636
1.077
0.822
−0.215
0.996
3.251
0.491
−1.292
0.804
2.175
0.640
3.466
0.371


mmu_miR_713_001648
5.907
0.421
5.525
0.516
6.757
0.434
−0.382
0.977
0.850
0.940
1.232
0.911


mmu_miR_715_001649
4.925
0.169
5.434
0.150
6.090
0.121
0.510
0.939
1.165
0.819
0.655
0.911


mmu_miR_717_001652
2.233
0.754
−4.823
0.458
4.822
0.491
−7.056
0.217
2.589
0.732
9.645
0.065


mmu_miR_718_001656
6.142
0.048
5.660
0.089
3.130
0.437
−0.482
0.935
−3.012
0.411
−2.530
0.466


mmu_miR_719_001673
1.389
0.463
0.733
0.809
1.479
0.520
−0.657
0.789
0.090
0.980
0.747
0.746


mmu_miR_720_001629
1.266
0.192
−2.365
0.013
3.729
0.000
−3.631
0.000
2.464
0.010
6.095
0.000


mmu_miR_721_001657
2.863
0.750
3.955
0.694
7.751
0.354
1.092
0.927
4.888
0.556
3.796
0.636


mmu_miR_741_002457
0.616
0.889
0.019
0.997
−1.640
0.742
−0.597
0.910
−2.256
0.539
−1.658
0.646


mmu_miR_742_002038
−0.071
0.980
0.499
0.916
0.396
0.905
0.570
0.821
0.467
0.852
−0.102
0.973


mmu_miR_742_002458
1.727
0.770
1.558
0.877
2.407
0.749
−0.169
0.980
0.680
0.928
0.849
0.911


mmu_miR_743a_002469
2.716
0.223
−1.348
0.654
3.795
0.115
−4.064
0.069
1.079
0.722
5.143
0.013


mmu_miR_743b_3p_002471
−0.318
0.822
0.267
0.934
−0.286
0.885
0.585
0.659
0.032
0.989
−0.553
0.672


mmu_miR_743b_5p_002470
0.408
0.931
−2.022
0.650
1.994
0.673
−2.430
0.509
1.586
0.727
4.016
0.218


mmu_miR_744_002324
1.344
0.103
1.190
0.190
0.819
0.437
−0.153
0.917
−0.525
0.614
−0.371
0.735


mmu_miR_758_002025
1.283
0.195
−0.085
0.996
0.464
0.762
−1.368
0.177
−0.819
0.471
0.549
0.628


mmu_miR_759_002034
1.390
0.768
2.011
0.710
6.720
0.092
0.622
0.924
5.330
0.161
4.709
0.197


mmu_miR_761_002030
−2.396
0.720
−11.095
0.032
1.101
0.907
−8.699
0.105
3.498
0.585
12.197
0.014


mmu_miR_762_002028
4.114
0.272
3.653
0.388
5.672
0.164
−0.461
0.948
1.558
0.761
2.018
0.638


mmu_miR_763_002033
0.322
0.959
1.265
0.908
1.697
0.808
0.943
0.894
1.375
0.827
0.433
0.956


mmu_miR_764_3p_002032
5.308
0.088
2.948
0.434
1.588
0.757
−2.360
0.510
−3.720
0.285
−1.360
0.746


mmu_miR_764_5p_002031
6.460
0.001
−0.355
0.961
2.484
0.243
−6.814
0.001
−3.976
0.033
2.839
0.117


mmu_miR_767_241081_mat
−0.323
0.285
0.047
0.973
−1.106
0.001
0.370
0.237
−0.783
0.010
−1.153
0.000


mmu_miR_770_3p_002027
4.378
0.000
0.519
0.766
−0.518
0.762
−3.859
0.001
−4.896
0.000
−1.036
0.363


mmu_miR_770_5p_002608
3.929
0.000
1.694
0.066
1.043
0.343
−2.235
0.015
−2.885
0.002
−0.650
0.512


mmu_miR_7a_000268
−1.920
0.457
−1.076
0.788
0.403
0.932
0.844
0.804
2.323
0.389
1.479
0.585


mmu_miR_7b_002555
0.993
0.635
0.658
0.850
0.081
0.983
−0.335
0.912
−0.912
0.704
−0.577
0.814


mmu_miR_802_002029
−1.709
0.307
0.030
0.996
−1.179
0.585
1.739
0.322
0.530
0.820
−1.209
0.494


mmu_miR_804_002044
−3.987
0.547
−1.133
0.960
3.919
0.627
2.854
0.703
7.906
0.201
5.052
0.419


mmu_miR_805_002045
3.480
0.360
−1.735
0.768
5.887
0.144
−5.215
0.172
2.407
0.596
7.622
0.029


mmu_miR_871_002354
−2.088
0.237
0.283
0.967
0.156
0.964
2.372
0.191
2.245
0.229
−0.127
0.967


mmu_miR_872_002264
−2.157
0.000
0.458
0.516
−0.470
0.527
2.615
0.000
1.687
0.004
−0.928
0.091


mmu_miR_872_002542
−1.388
0.008
1.101
0.043
−0.373
0.612
2.489
0.000
1.015
0.064
−1.474
0.005


mmu_miR_873_002356
2.253
0.043
−0.076
0.996
−0.122
0.957
−2.329
0.048
−2.375
0.041
−0.045
0.979


mmu_miR_874_002268
1.688
0.429
2.134
0.345
3.249
0.139
0.446
0.890
1.560
0.501
1.115
0.628


mmu_miR_875_3p_002547
−3.071
0.521
−4.347
0.379
−1.610
0.813
−1.275
0.836
1.461
0.818
2.737
0.573


mmu_miR_876_3p_002464
−0.065
0.985
0.178
0.996
0.590
0.898
0.243
0.961
0.655
0.852
0.412
0.919


mmu_miR_876_5p_002463
−0.554
0.756
0.273
0.956
0.092
0.976
0.826
0.614
0.646
0.732
−0.180
0.937


mmu_miR_877_002548
3.823
0.146
−2.859
0.337
3.031
0.343
−6.682
0.012
−0.792
0.832
5.890
0.019


mmu_miR_878_3p_002541
2.607
0.534
−3.815
0.375
6.147
0.136
−6.422
0.095
3.540
0.401
9.962
0.006


mmu_miR_878_5p_002540
0.752
0.876
0.093
0.996
−0.695
0.909
−0.658
0.910
−1.447
0.761
−0.789
0.883


mmu_miR_879_002472
−0.199
0.931
0.028
0.996
−0.280
0.932
0.227
0.943
−0.081
0.981
−0.308
0.911


mmu_miR_879_002473
1.294
0.387
2.905
0.042
−0.459
0.847
1.612
0.289
−1.753
0.258
−3.365
0.013


mmu_miR_880_002665
3.015
0.646
−2.046
0.850
3.845
0.610
−5.061
0.409
0.830
0.926
5.891
0.301


mmu_miR_881_002475
3.117
0.463
3.037
0.537
3.914
0.428
−0.080
0.990
0.797
0.893
0.877
0.888


mmu_miR_881_002609
4.168
0.229
4.225
0.260
5.610
0.137
0.056
0.991
1.441
0.761
1.385
0.755


mmu_miR_882_002610
−0.372
0.224
−0.003
0.996
−1.160
0.000
0.369
0.246
−0.788
0.010
−1.156
0.000


mmu_miR_883B_5P_002669
3.624
0.355
4.302
0.305
4.957
0.254
0.678
0.917
1.334
0.809
0.655
0.913


mmu_miR_883a_3p_002461
0.289
0.929
0.391
0.956
1.643
0.524
0.103
0.977
1.354
0.578
1.251
0.574


mmu_miR_883a_5p_002611
−0.371
0.358
0.048
0.986
−1.023
0.013
0.419
0.318
−0.652
0.102
−1.071
0.005


mmu_miR_883b_3p_002565
1.944
0.559
1.585
0.710
1.710
0.701
−0.360
0.948
−0.235
0.966
0.125
0.977


mmu_miR_92a_000430
1.009
0.013
−1.840
0.000
1.970
0.000
−2.849
0.000
0.961
0.023
3.809
0.000


mmu_miR_92a_002496
1.889
0.159
2.243
0.107
1.463
0.368
0.354
0.866
−0.426
0.826
−0.780
0.613


mmu_miR_93_001090
−2.582
0.001
−1.341
0.089
−1.267
0.134
1.241
0.117
1.315
0.092
0.074
0.958


mmu_miR_96_000186
5.180
0.004
2.498
0.213
2.701
0.190
−2.682
0.166
−2.479
0.204
0.204
0.953


mmu_miR_98_000577
−1.009
0.575
1.288
0.516
−2.365
0.185
2.296
0.172
−1.357
0.466
−3.653
0.017


mmu_miR_99a_000435
−2.108
0.004
−0.712
0.420
−0.862
0.345
1.396
0.070
1.246
0.106
−0.150
0.907


mmu_miR_99b_000436
−1.169
0.231
1.168
0.271
0.364
0.813
2.337
0.016
1.533
0.122
−0.804
0.435


mmu_miR_9_000583
−2.581
0.000
−1.007
0.009
−1.042
0.011
1.574
0.000
1.539
0.000
−0.035
0.960









REFERENCES FOR THE EXAMPLES



  • 1. Sayed D & Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91(3):827-887.

  • 2. Ardekani A M & Naeini M M (2010) The Role of MicroRNAs in Human Diseases. Avicenna J Med Biotechnol 2(4):161-179.

  • 3. O'Connell R M, Rao D S, Chaudhuri A A, & Baltimore D (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10(2):111-122.

  • 4. Koval E D, et al. (2013) Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Human Molecular Genetics 22(20):4127-4135.

  • 5. Chen X, et al. (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997-1006.

  • 6. Butovsky O, et al. (2014) Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice. Ann Neurol.

  • 7. Ilieva H, Polymenidou M, & Cleveland D W (2009) Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. The Journal of Cell Biology 187(6):761-772.

  • 8. Boillee S, et al. (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312(5778):1389-1392.

  • 9. Doyle J P, et al. (2008) Application of a Translational Profiling Approach for the Comparative Analysis of CNS Cell Types. Cell 135(4):749-762.

  • 10. He M, et al. (2012) Cell-type-based analysis of microRNA profiles in the mouse brain. Neuron 73(1):35-48.

  • 11. Dougherty J D, Schmidt E F, Nakajima M, & Heintz N (2010) Analytical approaches to RNA profiling data for the identification of genes enriched in specific cells. Nucleic Acids Research 38(13):4218-4230.

  • 12. Gaughwin P, Ciesla M, Yang H, Lim B, & Brundin P (2011) Stage-specific modulation of cortical neuronal development by Mmu-miR-134. Cereb Cortex 21(8):1857-1869.

  • 13. Kocerha J, et al. (2009) MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction. Proc Natl Acad Sci USA 106(9):3507-3512.

  • 14. Ying Z, et al. (2013) Loss of miR-204 expression enhances glioma migration and stem cell-like phenotype. Cancer Res 73(2):990-999.

  • 15. Lu X, et al. (2013) miR-142-3p regulates the formation and differentiation of hematopoietic stem cells in vertebrates. Cell Res 23(12):1356-1368.

  • 16. Peltier H J & Latham G J (2008) Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 14(5):844-852.

  • 17. Xu X, Wells Aft O'Brien D R, Nehorai A, & Dougherty J D (2014) Cell Type-Specific Expression Analysis to Identify Putative Cellular Mechanisms for Neurogenetic Disorders. Journal of Neuroscience 34(4):1420-1431.

  • 18. Wooley C M, et al. (2005) Gait analysis detects early changes in transgenic SOD1(G93A) mice. Muscle Nerve 32(1):43-50.

  • 19. Howland D S, et al. (2002) Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci USA 99(3):1604-1609.

  • 20. Smith R A, et al. (2006) Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Invest 116(8):2290-2296.

  • 21. Thiebes K P, et al. (2015) miR-218 is essential to establish motor neuron fate as a downstream effector of Isl1-Lhx3. Nat Commun 6:7718.

  • 22. Amin N D, et al. (2015) Loss of motoneuron-specific microRNA-218 causes systemic neuromuscular failure. Science 350(6267):1525-1529.

  • 23. Aluise C D, Sowell R A, & Butterfield D A (2008) Peptides and proteins in plasma and cerebrospinal fluid as biomarkers for the prediction, diagnosis, and monitoring of therapeutic efficacy of Alzheimer's disease. Biochim Biophys Acta 1782(10):549-558.

  • 24. Su Z, et al. (2014) Discovery of a biomarker and lead small molecules to target r(GGGGCC)-associated defects in c9FTD/ALS. Neuron 83(5):1043-1050.

  • 25. Mitchell P S, et al. (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105(30):10513-10518.

  • 26. Arroyo J D, et al. (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108(12):5003-5008.

  • 27. Valadi H, et al. (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654-659.

  • 28. Wang K, Zhang S, Weber J, Baxter D, & Galas D J (2010) Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 38(20):7248-7259.

  • 29. Risso D, Massa M S, Chiogna M, & Romualdi C (2009) A modified LOESS normalization applied to microRNA arrays: a comparative evaluation. Bioinformatics 25(20):2685-2691.

  • 30. Smyth G K (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article3.

  • 31. Klipper-Aurbach Y, et al. (1995) Mathematical formulae for the prediction of the residual beta cell function during the first two years of disease in children and adolescents with insulin-dependent diabetes mellitus. Med Hypotheses 45(5):486-490.


Claims
  • 1. A method to detect motor neuron disease, the method comprising: a) measuring the amount of miR-218 in a biological sample obtained from a subject,b) comparing the amount of miR-218 in the biological sample to a reference value, wherein an increase in the amount of miR-218 relative to the reference value indicates motor neuron disease; andc) treating the motor neuron disease detected based on the amount of miR-218, wherein the treatment is one or more of riluzole, tizanidine, baclofen, quinine, hyoscine hydrobromide skin patch, NSAID, gabapentin, physical therapy, acupuncture, immunotherapy, gene transfer therapy, stem cell or progenitor cell based cellular replacement therapy, an antisense oligonucleotide therapeutic, an antioxidant therapeutic, an antibody therapeutic, an autophagy control therapeutic or a small-molecule inhibitor of kynurenine 3-monooxygenase.
  • 2. The method of claim 1, further comprising: measuring at least one additional miRNA selected from the group consisting of miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and miR-379 in a biological sample obtained from a subject, and comparing the amount of miR-218 and the at least one additional miRNA to a reference value, wherein dysregulation of miR-218 and the at least one additional miRNA relative to the reference value indicates motor neuron disease.
  • 3. The method of claim 2, wherein dysregulation of miR-218 and miR-138 relative to a reference value are detected.
  • 4. The method of claim 3, wherein miR-138 is increased relative to a reference value.
  • 5. The method of claim 1, wherein the amount of miR-218 in the biological sample compared to the reference value is increased at least 5-fold.
  • 6. The method of claim 4, wherein the amount of miR-138 in the biological sample compared to the reference value is increased at least 2-fold.
  • 7. A method to detect the efficacy of treatment for motor neuron disease in a subject, the method comprising: a. measuring the amount of miR-218 in a first biological sample obtained from a subject;b. treating the subject with one or more of riluzole, tizanidine, baclofen, quinine, hyoscine hydrobromide skin patch, NSAID, gabapentin, physical therapy, acupuncture, immunotherapy, gene transfer therapy, stem cell or progenitor cell based cellular replacement therapy, an antisense oligonucleotide therapeutic, an antioxidant therapeutic, an antibody therapeutic, an autophagy control therapeutic or a small-molecule inhibitor of kynurenine 3-monooxygenase;c. then at a time after treating in step b, measuring the amount of miR-218 in a second biological sample obtained from a subject; andd. comparing the amount of miR-218 in the first biological sample to the amount of miR-218 in the second biological sample, wherein a change in miR-218 indicates effectiveness of treatment, wherein ineffectiveness of treatment is indicated if miR-218 is unchanged or increased in the second biological sample relative to the first biological sample and wherein effectiveness of treatment is indicated if miR-218 is decreased in the second biological sample relative to the first biological sample.
  • 8. The method of claim 7, further comprising: measuring an amount of at least one additional miRNA selected from the group consisting of miR-138, miR-133a, miR-133b, miR-1193, miR-34b, miR-380, and miR-379 in the first biological sample obtained from the subject in step (a), measuring an amount of the at least one additional miRNA in the second biological sample obtained from the subject in step (b), and comparing the amount of miR-218 and amount of the at least one additional miRNA in the first biological sample to the amount of miR-218 and amount of the at least one additional miRNA in the second biological sample, wherein a change in the amount of miR-218 and amount of the at least one additional miRNA indicates effectiveness of treatment or progression of motor neuron disease.
  • 9. The method of claim 8, wherein the amount miR-218 and miR-138 is measured.
  • 10. The method of claim 9, wherein ineffectiveness of treatment or progression of motor neuron disease is indicated if miR-138 is increased in the second biological sample relative to the first biological sample.
  • 11. The method of claim 7, further comprising altering treatment modality if ineffectiveness of treatment or progression of motor neuron disease is detected.
  • 12. The method of claim 7, wherein the amount of miRNA is normalized to an amount of a control nucleic acid, wherein the control nucleic acid is selected from the group consisting of miR-191, miR-24 and miR-30c.
  • 13. The method of claim 7, wherein the first biological sample and the second biological sample are selected from the group consisting of cerebrospinal fluid (CSF), serum and urine.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit U.S. application Ser. No. 15/553,922, filed Aug. 25, 2017, which claims the benefit of PCT Application PCT/US2016/019602, filed Feb. 25, 2016, which claims the benefit of U.S. Provisional Application No. 62/120,654, filed Feb. 25, 2015, the disclosures of which are hereby incorporated by reference their entirety.

GOVERNMENTAL RIGHTS

This invention was made with government support under NS078398 awarded by the National Institutes of Health. The government has certain rights in the invention.

US Referenced Citations (13)
Number Name Date Kind
4522811 Eppstein et al. Jun 1985 A
4880635 Janoff et al. Nov 1989 A
4906477 Kurono et al. Mar 1990 A
4911928 Wallach Mar 1990 A
4917951 Wallach Apr 1990 A
4920016 Allen et al. Apr 1990 A
4921757 Wheatley et al. May 1990 A
5328470 Nabel et al. Jul 1994 A
20080306006 Croce et al. Dec 2008 A1
20100167948 Krichevsky et al. Jul 2010 A1
20140120545 Umansky et al. May 2014 A1
20140235697 Weiner et al. Aug 2014 A1
20150037299 Brodie et al. Feb 2015 A1
Foreign Referenced Citations (7)
Number Date Country
1988009810 Dec 1988 WO
1989010134 Nov 1989 WO
2008153692 Dec 2008 WO
2009043353 Apr 2009 WO
2014020608 Feb 2014 WO
2014192907 Dec 2014 WO
2016138287 Sep 2016 WO
Non-Patent Literature Citations (56)
Entry
Siegel et al. (Nat Cell Biol. 2009. vol. 11(6): 705-716).
MirGeneDB for MIR-218 (all species) family name; downloaded from http://mirgenedb.org/show/dre/Mir-218-P1 by Examiner on Jun. 9, 2018; 2 pgs.
Notice of Allowance dated Jul. 11, 2019 from related U.S. Appl. No. 15/553,922; 7 pgs.
Office Action dated Jun. 14, 2018 from related U.S. Appl. No. 15/553,922; 13 pgs.
Office Action dated Jan. 8, 2019 from related U.S. Appl. No. 15/553,922; 10 pgs.
Packer, A. et al., “The Bifunctional microRNA miR-9/miR-9* Regulates REST and CoREST and Is Downregulated in Huntington's Disease,” J. Neurosci., Dec. 31, 2008, pp. 14341-14346, vol. 28, No. 53.
Zhou, F. et al., “miRNA-9 expression is upregulated in the spinal cord of G93A-SOD1 transgenic mice,” Int. J. Clin. Exp. Pathol., 2013, pp. 1826-1838, vol. 6, No. 9.
Aluise, C. et al., “Peptides and proteins in plasma and cerebrospinal fluid as biomarkers for the prediction, diagnosis, and monitoring of therapeutic efficacy of Alzheimer's disease,” Biochim. Biophys. Acta, 2008, pp. 549-558, vol. 1782, Elsevier B.V.
Amin, N. et al., “Loss of motoneuron-specific microRNA-218 causes systemic neuromuscular failure,” Sci., Dec. 18, 2015, pp. 1525-1529, vol. 350, No. 6267.
Ardekani, A. et al., “The Role of MicroRNAs in Human Diseases,” Avicenna J. Med. Biotechnol., 2010, pp. 161-179, vol. 2, No. 4.
Arroyo, J. et al., “Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma,” PNAS, Mar. 22, 2011, pp. 5003-5008, vol. 108, No. 12.
Bartel, D. et al., “Isolation of New Ribozymes from a Large Pool of Random Sequences,” Sci., Sep. 10, 1993, pp. 1411-1418, vol. 261, No. 5127.
Boillee, S. et al., “Onset and Progression in Inherited ALS Determined by Motor Neurons and Microglia,” Sci., Jun. 2, 2006, pp. 1389-1392, vol. 312, No. 5778.
Butovsky, O. et al., “Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice,” HHS Public Access Author Manuscript, available in PMC Jan. 1, 2016, pp. 1-38, Published in final edited form as: Ann. Neurol., Jan. 2015, pp. 75-99, vol. 77, No. 1.
Chen, S-H. et al., “Gene therapy for brain tumors: Regression of experimental gliomas by adenovirus-mediated gene transfer in vivo,” PNAS, Apr. 1994, pp. 3054-3057, vol. 91.
Chen, X. et al., “Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases,” Cell Res., 2008, pp. 997-1006, vol. 18, No. 10, Nature Publishing Group.
Dougherty, J. et al., “Analytical approaches to RNA profiling data for the identification of genes enriched in specific cells,” Nucl. Acids Res., 2010, pp. 4218-4230, vol. 38, No. 13, Oxford University Press.
Doyle, J. et al., “Application of a Translational Profiling Approach for the Comparative Analysis of CNS Cell Types,” Cell, Nov. 14, 2008, pp. 749-762, vol. 135, No. 4, Elsevier Inc.
Fiore, R. et al., “MicroRNA function in neuronal development, plasticity and disease,” Biochim. Biophys. Acta, 2008, pp. 471-478, vol. 1779, No. 8.
Gaughwin, P. et al., “Stage-Specific Modulation of Cortical Neuronal Development by Mmu-miR-134,” Cereb. Cortex, Aug. 2011, pp. 1857-1869, vol. 21, No. 8, Oxford University Press.
Haseloff, J. et al., “Simple RNA enzymes with new and highly specific endoribonuclease activities,” Nature, Aug. 18, 1988, pp. 585-591, vol. 334, No. 6183, Nature Publishing Group.
He, M. et al., “Cell-Type-Based Analysis of MicroRNA Profiles in the Mouse Brain,” Neuron, Jan. 12, 2012, pp. 35-48, vol. 73, No. 1, Elsevier Inc.
Helene, C., “The anti-gene strategy: control of gene expression by triplex-forming-oligonucleotides,” Anti-Cancer Drug Design, Dec. 1, 1991, pp. 569-584, vol. 6, No. 6, Macmillan Press Ltd.
Helene, C. et al., “Control of Gene Expression by Triple Helix-Forming Oligonucleotides. The Antigene Strategy,” Ann. New York Acad. Sci., Oct. 1992, pp. 27-36, vol. 660, No. 1.
Howland, D. et al., “Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS),” PNAS, Feb. 5, 2002, pp. 1604-1609, vol. 99, No. 3.
Hoye, M. et al., “MicroRNA Profiling Reveals Marker of Motor Neuron Disease in ALS Models,” J. Neurosci., May 31, 2017, pp. 5574-5586, vol. 37, No. 22.
Hyrup, B. et al., “Peptide Nucleic Acids (PNA): Synthesis, Properties and Potential Applications,” Bioorg. Med. Chem., Jan. 1996, pp. 5-23, vol. 4, No. 1, Elsevier Science Ltd., Great Britain.
Ilieva, H. et al., “Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond,” J. Cell Biol., 2009, pp. 761-772, vol. 187, No. 6, The Rockefeller University Press.
International Search Report and Written Opinion dated May 17, 2016 from related PCT Application No. PCT/US2016/019602, 12 pgs.
Kaalund, S. et al., “Aberrant expression of miR-218 and miR-204 in human mesial temporal lobe epilepsy and hippocampal sclerosis—Convergence on axonal guidance,” Epilepsia, 2014, pp. 2017-2027, vol. 55, No. 12.
Klipper-Aurbach, Y. et al., “Mathematical Formulae for the Prediction of the Residual Beta Cell Function During the First Two Years of Disease in Children and Adolescents with Insulin-Dependent Diabetes Mellitus,” Med. Hypotheses, Nov. 1995, pp. 486-490, vol. 45, No. 5, Pearson Professional Ltd.
Kocerha, J. et al., “MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction,” PNAS, Mar. 3, 2009, pp. 3507-3512, vol. 106, No. 9.
Koval, E. et al., “Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice,” Human Molecular Genetics, 2013, pp. 4127-4135, vol. 22, No. 20, Oxford University Press.
Lemaitre, M. et al., “Specific antiviral activity of a poly(L-lysine)-conjugated oligodeoxyribonucleotide sequence complementary to vesicular stomatitis virus N protein mRNA initiation site,” PNAS, Feb. 1987, pp. 648-652, vol. 84.
Letsinger, R. et al., “Cholesteryl-conjugated oligonucleotides: Synthesis, properties, and activity as inhibitors of replication of human immunodeficiency virus in cell cultures,” PNAS, Sep. 1989, pp. 6553-6556, vol. 86.
Lu, X. et al., “miR-142-3p regulates the formation and differentiation of hematopoietic stem cells in vertebrates,” Cell Res., 2013, pp. 1356-1368, vol. 23, No. 12.
Maher, J., “DNA Triple-Helix Formation: An Approach to Artificial Gene Repressors?,” BioEssays, Dec. 1992, pp. 807-815, vol. 14, No. 12.
Mitchell, P. et al., “Circulating microRNAs as stable blood-based markers for cancer detection,” PNAS, Jul. 29, 2008, pp. 10513-10518, vol. 105, No. 30.
O'Connell, R. et al., “Physiological and pathological roles for microRNAs in the immune system,” Nat. Rev. Immunol., Feb. 2010, pp. 111-122, vol. 10, No. 2, Macmillan Publishers Limited.
Peltier, H. et al., “Normalization of microRNA expression levels in quantitative RT-PCR assays: Identification of suitable reference RNA targets in normal and cancerous human solid tissues,” RNA, 2008, pp. 844-852, vol. 14, No. 5, Cold Spring Harbor Laboratory Press.
Perry-O'Keefe, H. et al., “Peptide nucleic acid pre-gel hybridization: An alternative to Southern hybridization,” PNAS, Dec. 1996, pp. 14670-14675, vol. 93.
Risso, D. et al., “A modified LOESS normalization applied to microRNA arrays: a comparative evaluation,” Bioinformatics, 2009, pp. 2685-2691, vol. 25, No. 20, Oxford University Press.
Sayed, D. et al., “Micrornas in Development and Disease,” Physiol. Rev., 2011, pp. 827-887, vol. 91, No. 3.
Smith, R. et al., “Antisense oligonucleotide therapy for neurodegenerative disease,” J. Clin. Invest., Aug. 2006, pp. 2290-2296, vol. 116, No. 8.
Smyth, G. et al., “Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments,” Stat. Appl. Genet. Mol. Biol., 2004, pp. 1-25, vol. 3, No. 1, Article 3, The Berkeley Electronic Press.
Su, Z. et al., “Discovery of a Biomarker and Lead Small Molecules to Target r(GGGGCC)—Associated Defects in c9FTD/ALS,” Neuron, Sep. 3, 2014, pp. 1043-1050, vol. 83, No. 5, Elsevier Inc.
Suryawanshi, H. et al., “Modulation of microRNA function by synthetic ribozymes,” Mol. BioSyst., 2010, pp. 1807-1809, vol. 6, The Royal Society of Chemistry.
Thiebes, K. et al., “miR-218 is Essential to Establish Motor Neuron Fate as a Downstream Effector of Isl1-Lhx3,” HHS Public Access Author Manuscript, available in PMC Jan. 27, 2016, pp. 1-34, Published in final edited form as: Nat. Commun., 2015, pp. 7718, vol. 6.
Valadi, H. et al., “Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells,” Nat. Cell Biol., Jun. 2007, pp. 654-659, vol. 9, No. 6, Nature Publishing Group.
Van Der Krol, A. et al., “Modulation of Eukaryotic Gene Expression by Complementary RNA or DNA Sequences,” BioTechniques, Nov.-Dec. 1988, pp. 958-976, vol. 6, No. 10.
Wang, K. et al., “Export of microRNAs and microRNA-protective protein by mammalian cells,” Nucl. Acids Res., 2010, pp. 7248-7259, vol. 38, No. 20, Oxford University Press.
Wooley, C. et al., “Gait Analysis Detects Early Changes in Transgenic SOD1(G93A) Mice,” NIH Public Access Author Manuscript, available in PMC Jul. 1, 2006, pp. 1-15, Published in final edited form as: Muscle Nerve., Jul. 2005, pp. 43-50, vol. 32, No. 1.
Xu, X. et al., “Cell Type-Specific Expression Analysis to Identify Putative Cellular Mechanisms for Neurogenetic Disorders,” J. Neurosci., Jan. 22, 2014, pp. 1420-1431, vol. 34, No. 4.
Ying, Z. et al., “Loss of miR-204 Expression Enhances Glioma Migration and Stem Cell-like Phenotype,” Cancer Res., Jan. 15, 2013, pp. 990-999, vol. 73, No. 2.
Zelphati, O. et al., “PNA-Dependent Gene Chemistry: Stable Coupling of Peptides and OAligonucleotides to Plasmid DNA,” BioTechniques, Feb. 2000, pp. 304-316, vol. 28, No. 2.
Zon, G., “Oligonucleotide Analogues as Potential Chemotherapeutic Agents,” Pharmaceutical Res., Sep. 1988, pp. 539-549, vol. 5, No. 9, Plenum Publishing Corporation.
Related Publications (1)
Number Date Country
20200048635 A1 Feb 2020 US
Provisional Applications (1)
Number Date Country
62120654 Feb 2015 US
Divisions (1)
Number Date Country
Parent 15553922 US
Child 16600097 US