The present invention relates to micro devices and to a process for producing micro devices of this type.
Micro devices are understood as devices belonging to the general field of Micro Electro Mechanical Systems (MEMS), which includes microelectronics (coils, capacitors, dielectric material), micromechanics (sensors, fast prototyping, biochips), microfluidics (Micro Total Analysis Systems (μTAS) (applications of miniaturized chemical, biochemical and biological systems; micro and nano-scale technologies related to analytical systems, synthesis of compounds, clinical diagnostics, genomics, drug screening, and combinatorial chemistry), micropumps,) and even more.
MEMS industry uses more and more often SU-8 photoresist to define structures on a chip in view of its significant advantages. The SU-8 is a negative, epoxy-type, near-UV photoresist commercially available under this trade name. This photoresist can be as thick as 2 mm and an aspect ratio better than 20 can be achieved with standard contact lithography equipment. That makes it possible to define a significant number of varied structures, which are impossible to realize with other materials. Moreover, it has a very high optical transparency above 360 nm and is thermally stable.
One of the biggest problems of SU-8 photoresist is its adhesion on the layer below. This adhesion depends on the material (of the layer below) but is really affected by the chemical environment. For example, SU-8 delaminates from many surfaces when immersed in KOH (Potassium Hydroxide solution) or TMAH (Tetra Methyl Ammonium Hydroxide solution), whereas it withstands HF (hydrofluoric acid). There are some solutions to improve the adhesion of the SU-8, but none could avoid the lift-off in long KOH or TMAH wet-etching so far.
Therefore, the present invention is based on the object of proposing a solution to avoid the SU-8 lift-off during a KOH or TMAH. According to the invention, this object is achieved by a micro device for micro electro mechanical systems, comprising at least one layer of SU-8 photoresist which is adhered to a clamping layer with through holes, said through holes are filled with SU-8 photoresist and are covered on both sides with SU-8 photoresist at least adjacent the holes and a process for making the device.
The general idea of the present invention is to clamp the SU-8 photoresist layer on a thin layer below (e.g. silicon nitride, silicon oxide, metal, diamond). Thus, the micro device for micro electro mechanical systems comprises at least one layer of SU-8 photoresist, which is adhered to a clamping layer with through holes. The through holes in the clamping layer are filled with SU-8 photoresist and are covered on both sides with SU-8 photoresist at least adjacent the holes. On the first (upper) side the through holes are covered by the SU-8 photoresist layer and on the second (back) side preferably only by SU-8 in a small region having a diameter larger than the diameter of the through holes for obtaining the clamping effect at the clamping layer. In such a device, which can comprise several micro electro mechanical elements as discussed above, these devices are fixed via SU-8 photoresist. The clamping layer also may have further functions, which are important for the final device. For example, the clamping layer serves as a cantilever that bears a tip at the end and forms together with the SU-8 photoresist layer on the upper side a sensor for a Scanning Probe Microscope (SPM). In such a case, the SU-8 photoresist forms the holding element. The SU-8 photoresist on the backside surrounding the through holes provides a rim, which makes impossible for the SU-8 to lift off during a subsequent wet-etching KOH or TMAH step. These micro devices normally are produced from a wafer and are, when completed, fixed to a frame for transport and breaking off from the frame when needed.
The process according to the present invention for producing such a micro device comprises providing a clamping layer on a silicon substrate (comprising micro electro mechanical elements), transferring of at least a matrix of hole structures into the clamping layer by etching of through holes into said clamping layer, under-etching of the remaining parts of the clamping layer, coating the surface of the clamping layer and the through holes including the under-etched areas of the clamping layer by applying of SU-8 photoresist. The clamping layer may be of the material mentioned above having a thickness depending on the functions that have to be fulfilled by this layer for the MEMS. A common thickness is in the range of 10 nm to 10 μm. After the application of the clamping layer, the clamping layer is opened by well-known etching methods for defining the design of the clamping layer and a matrix of through holes in this layer. The matrix period and the holes diameter depend of the design of the layer, e.g. period 100 μm, diameter 50-80 μm. Next, the layer below the clamping layer is also etched in order to obtain an under-etching of the clamping layer. This step depends on the material under the clamping layer. It is possible to apply the clamping layer directly on the substrate or, on an interlayer between the clamping layer and the substrate in cases, which need for the function of the MEMS such an interlayer. After under-etching, SU-8 is coated with a normal spinner tool upon the surface of the clamping layer and the holes. Finally, it is possible, according to the requirements of the MEMS to remove all the silicon, which is not further necessary, except the silicon frame holding the single micro devices for removing from the frame when needed.
In the case that SU-8 is not able to go under the clamping layer, it is possible to coat two different SU-8 formulations: Thus, according to an embodiment of the invention the process further comprises applying a first SU-8 formulation being very liquid and being able to reach the under-etched areas, followed by a second SU-8 formulation being capable to define the required structures. Thus, the viscosity of the second formulation is less than that of the first, that is, less flowable. The adhesion between two SU-8 layers is generally very good.
According to one embodiment of the invention, the process comprises dry-etching of the clamping layer for providing the through holes, and etching of the silicon substrate in a way that the clamping layer is under-etched.
According to a preferred embodiment of the invention the process comprises providing an interlayer under the clamping layer, wherein the two layers are of different materials, preferably selected from one of the group of silicon compounds, metal or metal compounds or a combination thereof. Etching of the clamping layer performs the forming of the design and the matrix of through holes in the clamping layer. The following wet over-etching of the interlayer permits to create an under-etching of the clamping layer. The viscosity of SU-8 and the thickness of the interlayer define, if a deeper under-etching of the clamping layer is necessary or not. In case that SU-8 is not liquid enough to flow under the clamping layer after the over-etching of interlayer, the silicon substrate is wet-etched.
Preferably the process comprises finally removing of the silicon substrate as far as it is not further necessary from the backside and, if existing accessible, removing of the interlayer.
In the following the invention is explained in more detail below with reference to exemplary embodiments shown in the figures, in which:
In
Next, the silicon is wet-etched with KOH as shown in FIG. 3. This step is only necessary, as mentioned above, if SU-8 is not liquid enough to flow under the clamping layer 1.
The final steps are shown in
For obtaining the SPM sensor 11 with the holding element 6 made of SU-8, the cantilever 7 and the tip 8 the silicon substrate 3 is etched from the backside of the substrate 3 (in KOH) until the silicon membrane 13 is open (according to FIG. 5). The finished SPM sensor (
Number | Date | Country | Kind |
---|---|---|---|
03014140 | Jun 2003 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
6178221 | Levinson et al. | Jan 2001 | B1 |
6391523 | Hurditch et al. | May 2002 | B1 |
6482553 | Gottert et al. | Nov 2002 | B1 |
6821896 | Shih | Nov 2004 | B1 |
Number | Date | Country |
---|---|---|
09205271 | Aug 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20040266049 A1 | Dec 2004 | US |