The present invention relates generally to micromanipulation technology and, more particularly, to a high sensitivity force sensor for use in microassembly.
Manufacturing processes which are capable of quickly and cheaply assembling micro-electrical-mechanical systems (MEMS) and other micro-scale devices have not been developed, partly because, at the micro-scale, structures are fragile and easily breakable. They typically break at the micro-Newton (μN) force range- a range that cannot be felt by a human operator assembling microstructure with tweezers and microscopes, and is not reliably measureable by the existing force sensors during assembly. As a result, it is extremely difficult to manipulate parts for assembly at that scale. Moreover, this situation decreases the overall yield and is driving up the cost of MEMS.
Sensing mechanisms have been developed for use in sensing contact force in microassembly/micromanipulation. For example, strain gauges, piezoresistive effect, piezomagnetic effect and capacitive sensors have been developed, with resolutions in the range of sub-mN or mN. Optical techniques have higher resolution, in the range of nanoNewton (nN), but are more expensive and usually have narrow dynamic range. Mostly, PZT-based (i.e., lead zirconium titanate) piezoelectric force sensors have also been developed. Here, more suitably, the resolution of force sensor based on piezoelectric effect is in the range of μN generally.
The present invention addresses the development of a PVDF-based micro force sensing system. With respect to PZT-based piezoelectric force sensors, PVDF has excellent sensitivity and better dynamic properties such as low-Q response, an extremely wide frequency, and broad dynamic range and compliance than the commonly used sensor material PZT. Typically, PVDF has low modulus but with a relatively high electromechanical coupling coefficient. Therefore, the piezoelectric polymer PVDF is an ideal force transduction material for developing a high sensitivity micro force sensing system.
Thus, the present invention affords a current feasible and versatile solution in force sensing for microassembly, through the use of PVDF-based force sensor as a sensing device during the process of microassembly. With respect to the PZT-based piezoelectric force sensors, the piezoelectric polymer PVDF is a more ideal sensing device because of its low-Q response, flexible, light weight, ease of use, easy to shape, and high sensitivity. Based on the piezoelectric effect and the mechanics of material for highly sensitive bending cantilever beam structure, the present invention provides both the models and the structures of the 1-D, 2-D and 3-D PVDF high sensitivity force sensors. By equipping the 1-D, 2-D or 3-D PVDF-based force sensors at the front of the micromanipulator, the micro contact force exerted at the sensor tip can be detected and then extracted and amplified by a processing circuit. Furthermore, the processed signals will be fed back to the controller for regulating the contact/impact force to a safety margin on-line during microassembly.
In accordance with the present invention, an improved microforce sensing system is described. The microforce sensing system includes: a force sensor configured to detect a contact force exerted on a contact tip of the cantilever and operable to generate a signal indicative of the contact force, where the cantilever is constructed from a polyvinylidene fluoride material in the form of a substantially rectangular plate or other suitable plate shapes; and a processing circuit adapted to receive the signal from the force sensor and operable to determine the micron Newton level contact force and force rate exerted on the contact tip by integrating the signal from the force sensor during micromanipulation and microassembly.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
While the following description is provided in relation to a cantilever in the form of a rectangular plate, it is readily understood that other plate shapes are also within the scope of the present invention. A few such exemplary plate shapes are illustrated in
Based on the piezoelectric effect and the mechanics of material for bending cantilevers, a one-dimensional sensor model can be developed as further described below. Referring to
D3(x,t)=d31σ(x,t)=∈33TE3(t) (1)
To sum up the surface area polarization, it gives a charge Q(t) across the PVDF surfaces:
Q(t)=∫D3(x,t)dA (2)
Using the mechanics of materials for cantilever beam, the unit stress on the PVDF film is given by
where the neutral axis of the bending deflection of beam is assumed to pass through the centroid of the cross-sectional area. Since generation of charge is the same along the width of PVDF, equation (2) can be rewritten as:
By the piezoelectrical effect, if no charge builds up by the external force, the E3(t) will be zero. This constitutes the effect of the external force. This external force acts upon the PVDF material to generate the charge. The PVDF film can be represented by its electrical circuit behavior is the form of an equivalent circuit model consisting of parallel resistor RP and capacitor CP, as shown in
Thus, output voltage V(t) across the PVDF film, can be described by
Since the electrical field is
then it is understood that
for a uniform electric field over the very small thickness h and
Accordingly, the relationship between contact force rate and the generated voltage may be expressed as follows:
V(t)+λ{dot over (V)}(t)=B{dot over (F)}(t) (7)
where
is the capacitance of the PVDF film; λ=2RPCP and
are the constants. By the Laplace transformation, a high-pass-filter-like electrical transfer function is given as:
Preliminary experimental results have shown that the proposed PVDF sensor is highly sensitive and has high resolution. Referring to
Based on the one-dimensional model, a two-dimensional force sensor is also envisioned as shown in
V(t)+λz{dot over (V)}(t)=Bz{dot over (F)}z(t)
V(t)+λy{dot over (V)}(t)=By{dot over (F)}y(t) (9)
Lastly, the contact tip 52 extends outwardly from an outermost end of the second plate 57. It is readily understood that the 2-D sensor may be constructed from plates having different shapes as described.
The two parallel plate structure improves the rigidity of the sensor and, at the same time, retains the sensitivity of the force sensing to the utmost in that direction. In addition, the two parallel plate structure provides the decoupled force measurement as described above. Again, the two parallel plate structure may be constructed from plates having a different shape. For instance, a parallel plate structure comprised of plates in the form of an isosceles trapezoid is shown in
Furthermore, it is envisioned that this 2-D sensor design can be extended to a three-dimensional force sensor 70 as shown in
In order to determine a force measurement, the force sensor cooperatively operates with a processing circuit. Since the voltage signal output by the sensor is proportional to a rate of change of the force exerted on the contact tip, the processing circuit is designed to process the incoming signal, thereby yielding a signal indicative of the exerted forces. An exemplary processing circuit is set forth below. However, it is readily understood that other circuit configurations are within the scope of the present invention.
Referring to
Following the charge amplifier, a differential-to-single-ended amplifier stage 84 is added. The total differential topology can reduce the common mode noise more effectively. To reject the existing high frequency noises, an active low pass filter stage 86 with a proper cutoff frequency is used before the voltage output. However, it is envisioned that such a low pass filter may instead be positioned as the first stage to connect the force sensor structure. Lastly, the integration of the output voltage in time can also be achieved by an integrator unit 88.
By considering the whole circuit, the transfer function is approximated by
where Rƒ=Rƒ=Rƒ·Cƒ=Cƒ=Cƒ·Kc is the gain of the differential-to-single-ended amplifier. Rƒshould be chosen as a very large value resistor. τ1 is a rather small time constant of the designed active low pass filter.
From equations (8) and (10), the global transfer function of the sensor system is
The function is a bandpass type filter. Thus, for force actions with (angular) frequency range between
the output voltage of this bandpass filter would be roughly linearly proportional to the force. However, for force action with (angular) frequency content below
the output voltage would be proportional to the rate of the impacting force. Thus for the latter force frequency range an integration function circuit will be suitable. We note that the parameter λ is determined by the property of the material (PVDF) and the dimensions of the sensor structure. One, thus, can exploit the sensor structure design to achieve an appropriate value of λ suitable for a range of applications where the (angular) frequency bandwidth of the forces encountered is below (or above)
Ideally, however, instead of the low pass filter, one can construct an inverse filter to compensate for the transfer function of the sensor itself (see equation 8). This filter would perform a proportional plus integral function of the voltage of the sensor. Since τ1 is very small in the circuit, equation (11) can be simply rewritten as
By filtering this signal over an appropriate passband and then integrating with respect to time one generates the force rate and the force, over this passband, respectively.
The complete processing circuit can be integrated on a single microelectronic chip which measures the differential voltage across the sensor and provides a filtered version of the force rate and the force. The integrated electronic circuit can achieve the following: (1) low noise processing amplification using low-noise electronic elements designed at the transistor level, (2) high-frequency noise-filtering via low pass filtering, (3) sensor dynamic model compensation, and (4) Principal Component Analysis (PCA) computation to detect the presence and direction of force. This last stage may instead be post computed in software. In addition, the reduction of radio frequency interference and electromagnetic interference needs to be accounted for in the circuit by filtering and shielding. Shielded coaxial cable is important for noise reduction. Moreover, power-supply decoupling and grounding techniques should be employed as well, and the circuit can. provide ESD (electrostatic discharge) protection.
While the invention has been described in its presently preferred form, it will be understood that the invention is capable of modification without departing from the spirit of the invention as set forth in the appended claims.
This application claims the benefit of U.S. Provisional Application No. 60/485,467 filed on Jul. 8, 2003. The disclosure of this application is incorporated herein by reference.
The U.S. Government may have a paid-up license in this invention, and may have the right, in limited circumstances, to require the patent owner to license others on reasonable terms as identified by the terms of Federal Grant No. IRI-9796287 awarded by the National Science Foundation.
Number | Name | Date | Kind |
---|---|---|---|
4588975 | Roloff et al. | May 1986 | A |
6035694 | Dupuie et al. | Mar 2000 | A |
6510738 | Lee et al. | Jan 2003 | B1 |
6668627 | Lange et al. | Dec 2003 | B1 |
6720712 | Scott et al. | Apr 2004 | B1 |
20020089916 | Lee et al. | Jul 2002 | A1 |
Number | Date | Country |
---|---|---|
8-262039 | Oct 1996 | JP |
Number | Date | Country | |
---|---|---|---|
20050034543 A1 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
60485467 | Jul 2003 | US |