The present invention belongs to the field of surface engineering, and particularly relates to a micro-nano incremental mechanical surface treatment (MIMST) method.
A surface engineering technology is of great significance for modifying products and improving performance (such as wear resistance, corrosion resistance and temperature resistance), and is known as one of the key manufacturing technologies in the 21st century. Based on excellent characteristics of the size effect of micro-nano materials, a surface micro-nano modification technology developed by combining a micro-nano technology with surface engineering has become a current research hotspot in surface engineering. However, the existing modification technologies generally have problems of poor bonding strength, difficulty in coating materials in complex shapes, low yield, low efficiency, environmental pollution, etc. Therefore, the requirements of product performance, economic performance, environmental protection and sustainable development are difficult to meet.
The present invention provides a micro-nano incremental mechanical surface treatment (MIMST) method. By means of the method, a workpiece having a complex shape can be flexibly and designably surface modified. The method has the advantages of high bonding strength, no pollution, and low cost.
In order to achieve the above objectives, the present invention adopts the following technical solution:
A micro-nano incremental mechanical surface treatment (MIMST) method includes the following steps:
(1) using an end of a modification tool to contact a surface of a substrate material, and presetting moving parameters of the modification tool by means of 3D modeling software;
(2) rotating the modification tool in a local region of the surface of the substrate material, and moving the modification tool according to preset moving parameters in step (1) to compress the surface of the substrate material;
(3) after the modification tool has processed the entire surface of the substrate material, enabling the modification tool to move downwards to the indented surface compressed previously; and
(4) repeating step (2) and step (3) until the substrate material is compressed to a preset thickness.
In the above steps, the end of the modification tool is a ball head, a flat head or a needle head. The moving parameters in step (1) include a moving path, a tool rotating speed, a feeding speed, a single-layer downward compressing amount, a processing pass and a secondary feeding overlapping rate. The moving path is, for example, of a unidirectional type, a reciprocating type, a lattice type or a spiral type. The tool rotating speed is in a range of 1000 rpm to 30000 rpm. The feeding speed is in a range of 1000 mm/min to 6000 mm/min. The single-layer downward compressing amount is in a range of 0.01 mm to 0.1 mm. The processing pass is in a range of 10 times to 30 times. The secondary feeding overlapping rate is in a range of 2% to 10%. In step (3), a downward moving distance is controlled according to the preset single-layer downward compressing amount. In the whole processing process above, the modification tool is assisted by an ultrasonic vibration device. A static pressure of ultrasonic vibration of the ultrasonic vibration device is in a range of 150 N to 350 N, and a vibration amplitude is in a range of 2 μm to 7 μm. In the whole processing process, the required processing atmosphere and lubricating conditions are able to be provided according to different substrate materials and expected objectives.
Beneficial effects: The present invention provides the micro-nano incremental mechanical surface treatment (MIMST) method combining mechanical, numerical control and micro-nano manufacturing and surface engineering technologies, and introduces rotation friction, ultrasonic vibration, numerical control technology and surface metallurgy integration into the field of metal surface engineering. Due to the introduction of the numerical control, a computer aided technology can be sufficiently utilized, the 3D metallic structure surface micro-nano manufacturing of various complex shapes can be efficiently realized, and the modification efficiency and accuracy are improved. Moreover, a mechanical action mode is adopted, that is, a Micro-nano Incremental Mechanical Surface Treatment (MIMST) process is adopted for induction, and ultrasonic excitation assistance is introduced to directly act on the surface of the material to realize the self-growth of the surface micro-nano structure. Due to the existence of micro-nano crystal layers, the mechanical and physical and chemical properties of a surface layer material can be significantly improved. A further chemical treatment capability (such as carburization, nitridation and metallic particles) can be greatly improved. By means of a mechanical treatment mode accompanied by surface activity increase, great possibility and convenience are provided for further development of a novel functional composite surface. The method of the present invention is relatively high in treatment efficiency, and has the advantages of high bonding strength, no pollution and low cost, the substrate and the nanometer crystal layer have no obvious separation interface, and the green production of surface engineering can be realized.
The present invention will be described in detail below with reference to the drawings and specific embodiments:
As shown in
An end of an 8 mm ball head modification tool as shown in
A microhardness of the modified material is improved from 79.4 HV to 125.1 HV, increasing by 57.6%, compared with that of the 7075-T6 aluminum alloy substrate material, as shown in FIG. 5, and average friction coefficients in directions of 0°, 45° and 90° are respectively lowered from 0.395 to 0.126, 0.105 and 0.107, compared with that of the 7075-T6 aluminum alloy substrate material.
As shown in
An end of an 8 mm ball head modification tool as shown in
A microhardness of the modified material is improved from 79.4 HV to 118.6 HV, increasing by 49.4%, compared with that of the 7075-T6 aluminum alloy substrate material, and an average friction coefficient is lowered from 0.395 to 0.126, compared with that of the 7075-T6 aluminum alloy substrate material.
As shown in
An end of an 8 mm ball head modification tool as shown in
A microhardness of the modified material is improved from 79.4 HV to 104.6 HV, increasing by 31.7%, compared with that of the 7075-T6 aluminum alloy substrate material, and an average friction coefficient is lowered from 0.395 to 0.269, compared with that of the 7075-T6 aluminum alloy substrate material.
As shown in a schematic diagram of a modification layer full-thickness microstructure and stress/strain in
The above descriptions are only the exemplary implementations of the present invention. It should be pointed out that for a person of ordinary skill in the art, without departing from the principle of the present invention, several improvements and modifications can also be made, and these improvements and modifications should also fall within the protection scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
201911392006.7 | Dec 2019 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2020/099667 | 7/1/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/077795 | 4/29/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7300622 | Lu | Nov 2007 | B2 |
8782902 | Pyun | Jul 2014 | B2 |
9885691 | Daugela | Feb 2018 | B1 |
20060237104 | Statnikov | Oct 2006 | A1 |
Number | Date | Country |
---|---|---|
102119068 | Jul 2011 | CN |
107587086 | Jan 2018 | CN |
108411085 | Jan 2020 | CN |
Number | Date | Country | |
---|---|---|---|
20220063992 A1 | Mar 2022 | US |