The present invention is generally directed to conductive interconnects. More specifically, the present invention is directed to conductive interconnects between a conductive thread or fiber and a flexible printed circuit.
Electronic devices are increasingly being developed that are able to bend, flex and twist, such as in wearable electronics. These mechanical requirements present reliability challenges on mechanical components, circuit boards and interconnects, as well as electronic components. In order to limit the stress and strain to these components while still maintaining flexibility, mechanical provisions must be put in place.
Flexible printed circuits (FPC) provide circuit board structures that are less rigid than earlier generation printed circuit boards, and enable varying degrees of flexing, bending and twisting. Flexible interconnects between conductive wires and FPCs are needed for applications where durability and flexibility are a concern.
In conventional structures, an interconnection is made between the conductive wire and the FPCs by first forming a bond pad on a top, outer surface of the FPC and then attaching an end of the conductive wire to the bond pad, typically using solder or conductive adhesive. The bond bad is a continuous layer of conductive material, typically formed as a square or circle. In this manner, the interconnection is made according to a one-to-one structural relationship between the end of the conducive wire and a single bond pad. However, traditional solder and conductive adhesive connections formed in such a structure are rigid and cause stress concentrations.
A micro-pad array-to-conductive wire flexible attachment assembly includes a micro-pad geometry formed on a FPC and a method for connecting a conductive wire, thread or fiber to the micro-pad geometry. This micro-pad geometry and connection method enhances durability and flexibility of the interconnection to improve electronics performance in many applications.
In an aspect, a flexible attachment assembly is disclosed. The flexible attachment assembly includes a flexible substrate, an electrically conductive connection area coupled to the flexible substrate, a plurality of electrically conductive micro-pads, and a conductive wire. Each electrically conductive micro-pad has a first end and a second end opposite the first end, the first end is connected to the electrically conductive connection area such that the electrically conductive connection area electrically interconnects all electrically conductive micro-pads. A portion of the conductive wire is mechanically and electrically coupled to the second end of one or more of the plurality of electrically conductive micro-pads. In some embodiments, the flexible substrate comprises one or more non-conductive layers and one or more conductive layers. In some embodiments, the flexible substrate comprises one of polyimide, polyethylene teraphthalate (PET), polyethylene nitride (PEN) or polyurethane. In some embodiments, the flexible substrate comprises a flexible printed circuit. In some embodiments, the electrically conductive connection area comprises a continuous layer of conductive material. In some embodiments, the continuous layer of conductive material comprises a metal foil sheet. In some embodiments, the plurality of electrically conductive micro-pads are made of conductive paste. In some embodiments, the conductive paste comprises one of a solder paste and an anisotropic conductive paste. In some embodiments, each of the plurality of electrically conductive micro-pads is physically separated from each other. In some embodiments, the flexible attachment assembly further comprises solder coupled to the portion of the electrically conductive wire and the first end of each of the electrically conductive micro-pads. In some embodiments, the flexible attachment assembly further comprises electrically conductive adhesive coupled to the portion of the electrically conductive wire and the first end of each of the electrically conductive micro-pads. In some embodiments, the flexible attachment assembly further comprises an insulating layer applied over the flexible substrate and the electrically conductive connection area and in-between the plurality of micro pads extending from the electrically conductive connection area. In some embodiments, the insulating layer comprises soldermask. In some embodiments, an outer surface of the insulating layer is co-planar with an exposed surface of the second end of each micro-pad. In some embodiments, the flexible substrate comprises a first surface and a second surface opposite the first surface, further wherein the electrically conductive connection area is connected to the first surface of the flexible substrate. In some embodiments, the flexible substrate comprises a first surface and a second surface opposite the first surface, further wherein a cavity is formed in the first surface of the flexible substrate and the electrically conductive connection area is positioned within the cavity. In some embodiments, the electrically conductive connection area has a first surface and a second surface opposite the first surface, further wherein the first surface of the electrically conductive connection area is connected to a bottom surface of the cavity, and the second surface of the electrically conductive connection area is co-planar with the first surface of the flexible substrate. In some embodiments, the electrically conductive connection area has a first surface and a second surface opposite the first surface, further wherein the first surface of the electrically conductive connection area is connected to a bottom surface of the cavity, and the second surface of the electrically conductive connection area is lower than the first surface of the flexible substrate. In some embodiments, the electrically conductive connection area has a first surface and a second surface opposite the first surface, further wherein the first surface of the electrically conductive connection area is connected to a bottom surface of the cavity, and the second surface of the electrically conductive connection area extends above the first surface of the flexible substrate.
Several example embodiments are described with reference to the drawings, wherein like components are provided with like reference numerals. The example embodiments are intended to illustrate, but not to limit, the invention. The drawings include the following figures:
Embodiments of the present application are directed to a micro pad array-to-conductive wire flexible attachment assembly. Those of ordinary skill in the art will realize that the following detailed description of a micro-pad array-to-conductive wire flexible attachment assembly is illustrative only and is not intended to be in any way limiting. Other embodiments of a micro-pad array-to-conductive wire flexible attachment assembly will readily suggest themselves to such skilled persons having the benefit of this disclosure.
Reference will now be made in detail to implementations of the micro-pad array-to-conductive wire flexible attachment assembly as illustrated in the accompanying drawings. The same reference indicators will be used throughout the drawings and the following detailed description to refer to the same or like parts. In the interest of clarity, not all of the routine features of the implementations described herein are shown and described. It will, of course, be appreciated that in the development of any such actual implementation, numerous implementation-specific decisions must be made in order to achieve the developer's specific goals, such as compliance with application and business related constraints, and that these specific goals will vary from one implementation to another and from one developer to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking of engineering for those of ordinary skill in the art having the benefit of this disclosure.
As used herein, an electrically conductive wire, or simply “conductive wire”, refers to electrically conductive metal wires, threads with an electrically conductive plating finish, electrically conductive polymers or electrically conductive fibers, or the like capable of electrical conductivity.
An insulating layer 6 is formed over the surface of the flexible substrate 2 and the connection area 4. In some embodiments, the insulating layer is soldermask. Openings are formed through an entire thickness of the insulating layer, the openings are aligned over the connection area 4. The openings are filled with a conductive paste, such as solder paste or anisotropic conductive paste (ACP). Each conductive paste-filled opening forms a micro-pad 10 that is mechanically and electrically connected to the connection area 4. The underlying connection area 4 is an interconnect for all conductive paste in the openings that form the micro-pads 10. The openings, and corresponding micro-pads, can be configured in a grid-like pattern, or array.
Returning to
In some applications it may be desired that the connection area is fully or partially submerged within the flexible substrate. Either a cavity can be formed in the flexible substrate and the metal foil is placed in the cavity, or the metal foil is placed on the surface of an intermediate flexible substrate structure, then another layer of flexible substrate is added with area overlapping the connection area removed. Embedding the connection area may be useful in applications that require varying thicknesses of the flexible substrate and having the metal foil embedded may be more commensurate with a fabrication process that meets such specifications.
At a step 100, the flexible substrate 2 is provided. In some embodiments, the flexible substrate 2 is a FPC. The FPC includes a plurality of stacked layers, the layers made of one or more non-conductive layers and one or more conductive layers. The connection area 4 provides an electrical connection point between one or more interconnects (not shown) within the FPC.
At a step 102, the connection area 4 is formed on an outer surface 16 of the flexible substrate 2. The connection area 4 is a patterned conductive layer. In some embodiments, the conductive layer is a metal foil, such as a copper foil, patterned into the size and shape that forms the connection area 4. The metal foil is bonded to the surfaces 16 of the flexible substrate 2. In the alternative structure as shown in
At a step 104, insulating layer 6 is formed over the surface 16 of the flexible substrate 2 and the connection area 4. At a step 106, openings 8 are formed through an entire thickness of the insulating layer 6, exposed underlying portions of the connection area 4. The openings 8 are aligned over the connection area 4. The openings 8 can be formed in any desired number and pattern. In some embodiments, the openings are formed using a photolithographic process. It is understood that alternative techniques can be used to form openings in the insulating layer.
At a step 108, the openings 8 are filled with a conductive paste to form micro-pads 10. Each micro-pad 10 is mechanically and electrically connected to the connection area 4. In the embodiment shown in
At a step 110, the conductive wire 12 is positioned on the array of micro-pads 10. In the configuration where excess conductive paste is layered over some or all of the outer surface 18, the conductive wire 12 is positioned on the micro-pads 10 and excess conductive paste layered over the insulating layer 6.
At a step 112, solder 14, or other conductive adhesive, is applied over and around the conductive wire 12 within the footprint of the connection area 4 to mechanically and electrically attach the conductive wire 12 to the micro-pads 10. Due to the size, shape, and/or position of the conductive wire 12 relative to the micro-pads 10 and the micro-pad array, it is understood that the conductive wire 12 may not be in direct contact with each micro-pad 10 within the micro-pad array. The solder 14, and any excess conductive paste layered on the insulating layer, can provide electrical connection with some or all of the micro-pads 10 not in direct contact with the conductive wire 12.
The previous embodiment shown in
It is understood that the micro-pads can be configured and shaped differently than that shown in
The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of the principles of construction and operation of the micro-pad array to conductive wire flexible attachment assembly. Such references, herein, to specific embodiments and details thereof are not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modifications can be made in the embodiments chosen for illustration without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4492949 | Peterson et al. | Jan 1985 | A |
4774530 | Hawkins | Sep 1988 | A |
5291374 | Hirata | Mar 1994 | A |
5626135 | Sanfilippo | May 1997 | A |
5739254 | Fuller | Apr 1998 | A |
5761809 | Fuller | Jun 1998 | A |
5762812 | Narang | Jun 1998 | A |
5816848 | Zimmerman | Oct 1998 | A |
5849809 | Narang | Dec 1998 | A |
5863963 | Narang | Jan 1999 | A |
5945253 | Narang | Aug 1999 | A |
5958995 | Narang | Sep 1999 | A |
5994425 | Narang | Nov 1999 | A |
6007877 | Narang | Dec 1999 | A |
6124372 | Smith | Sep 2000 | A |
6139920 | Smith | Oct 2000 | A |
6260956 | Narang | Jul 2001 | B1 |
6302523 | Smith | Oct 2001 | B1 |
6370034 | Busch | Apr 2002 | B1 |
6534723 | Asai | Mar 2003 | B1 |
6743982 | Biegelson | Jun 2004 | B2 |
6964205 | Papakostas et al. | Nov 2005 | B2 |
7456571 | Wedding | Nov 2008 | B1 |
7491892 | Wagner | Feb 2009 | B2 |
7578195 | DeAngelis et al. | Aug 2009 | B2 |
7629691 | Roush | Dec 2009 | B2 |
7795540 | Yamada | Sep 2010 | B2 |
8207473 | Axisa | Jun 2012 | B2 |
9018532 | Wesselmann | Apr 2015 | B2 |
9340003 | Chang | May 2016 | B2 |
10117328 | Zhong | Oct 2018 | B1 |
20020018042 | Albert | Feb 2002 | A1 |
20030227079 | Chia | Dec 2003 | A1 |
20040094835 | Maghribi | Jun 2004 | A1 |
20040243204 | Maghribi | Dec 2004 | A1 |
20040256725 | Inoue | Dec 2004 | A1 |
20050110406 | Jeong | May 2005 | A1 |
20050122700 | Kim | Jun 2005 | A1 |
20070096260 | Eshun | May 2007 | A1 |
20070215883 | Dixon | Sep 2007 | A1 |
20080018611 | Serban | Jan 2008 | A1 |
20080044127 | Leising | Feb 2008 | A1 |
20080139953 | Baker | Jun 2008 | A1 |
20090108270 | Chen | Apr 2009 | A1 |
20090257166 | Kim | Oct 2009 | A1 |
20090272197 | Ridao Granado et al. | Nov 2009 | A1 |
20100014265 | Sagisaka | Jan 2010 | A1 |
20100037497 | Anelevitz et al. | Feb 2010 | A1 |
20100063365 | Pisani et al. | Mar 2010 | A1 |
20100107770 | Serban | May 2010 | A1 |
20100160762 | McLaughlin | Jun 2010 | A1 |
20100185076 | Jeong et al. | Jul 2010 | A1 |
20110067904 | Aoyama | Mar 2011 | A1 |
20110114376 | Shoji | May 2011 | A1 |
20110180306 | Naganuma | Jul 2011 | A1 |
20110180307 | Naganuma | Jul 2011 | A1 |
20110194262 | Naganuma | Aug 2011 | A1 |
20110198111 | Naganuma | Aug 2011 | A1 |
20110199739 | Naganuma | Aug 2011 | A1 |
20110203837 | Naganuma | Aug 2011 | A1 |
20120052268 | Axisa et al. | Mar 2012 | A1 |
20130019383 | Korkala et al. | Jan 2013 | A1 |
20130038545 | Hsu | Feb 2013 | A1 |
20130060115 | Gehman et al. | Mar 2013 | A1 |
20130176737 | Zhou et al. | Jul 2013 | A1 |
20130220535 | Lee | Aug 2013 | A1 |
20130270528 | Lee | Oct 2013 | A1 |
20140124245 | Lai | May 2014 | A1 |
20140190727 | Lee | Jul 2014 | A1 |
20140209690 | Teng et al. | Jul 2014 | A1 |
20140343390 | Berzowska et al. | Nov 2014 | A1 |
20150065840 | Bailey | Mar 2015 | A1 |
20150187863 | Zhu | Jul 2015 | A1 |
20150261057 | Harris | Sep 2015 | A1 |
20150366504 | Connor | Dec 2015 | A1 |
20160007468 | Tomikawa | Jan 2016 | A1 |
20160165723 | Romero | Jun 2016 | A1 |
20160183372 | Park | Jun 2016 | A1 |
20170108459 | Katsuki | Apr 2017 | A1 |
20170150602 | Johnston | May 2017 | A1 |
20170172421 | Dabby et al. | Jun 2017 | A1 |
20170358841 | Chen | Dec 2017 | A1 |
20170365644 | Zheng et al. | Dec 2017 | A1 |
20180020563 | Hong | Jan 2018 | A1 |
20180070446 | Takahashi | Mar 2018 | A1 |
Entry |
---|
Notice of Allowance dated Feb. 26, 2018, U.S. Appl. No. 14/995,139, filed Jan. 13, 2016, Applicant: Pui Yin Ye; 10 pages. |