Microchannel plate having an enhanced coating

Information

  • Patent Grant
  • 6396049
  • Patent Number
    6,396,049
  • Date Filed
    Monday, January 31, 2000
    24 years ago
  • Date Issued
    Tuesday, May 28, 2002
    22 years ago
Abstract
An improved microchannel plate (24) is disclosed. The microchannel plate has an input side (24a) and an output side (24b). A coating (32) is applied to the input side (24a) to increase secondary electron production and to prevent ions from leaving the microchannel plate (24) and damaging the photocathode (22).
Description




TECHNICAL FIELD OF THE INVENTION




This invention relates to enhanced vision system and, more particularly, to a microchannel plate having an enhanced coating.




BACKGROUND OF THE INVENTION




While night vision technology has evolved to a state where it provides a useful product for both civilian and military use, it is always a goal to increase performance of such equipment.




One way to improve enhanced vision systems is to improve the microchannel plates utilized in the enhanced vision system. In standard microchannel plates the input and output side of them microchannel plate has a coating applied that allows for an electric potential to be setup to help accelerate electrons. However, this coating is not optimized for the production of secondary electrons or as a passivation layer for preventing ion from escaping the microchannel plate and damaging the photocathode.




SUMMARY OF THE INVENTION




In accordance with the present invention, a microchannel plate having an enhanced signal to noise ratio is provided. The microchannel signal plate provides advantages over previously developed microchannel plates.




In one embodiment, an improved microchannel plate is disclosed. The microchannel plate has an input side and an output side. A coating is applied to the input side to increase secondary electron production and to prevent ions from leaving the microchannel plate surface and damaging the photocathode.




A technical advantage of the present invention is that the addition of the coating on the microchannel will act to prevent ions from escaping the microchannel plate during operation and impinging on the photocathode. Additionally, the coating will help to increase the production of secondary emission electrons. Additional technical advantages are readily apparent from the following figures, description and claims.











BRIEF DESCRIPTION OF THE DRAWINGS




For a more complete understanding of the present invention, the objects and advantages thereof, reference is now made to the following descriptions taken in connection with the accompanying drawings in which:





FIG. 1

is a schematic design of an image intensifier in accordance with the teachings of the present invention;





FIG. 2

illustrates an image intensifier tube in accordance with the teachings of the present invention; and,





FIG. 3

illustrates a microchannel plate in accordance with the teachings of the present invention.











DETAILED DESCRIPTION OF THE DRAWINGS




The preferred embodiment of the present invention and its advantages are best understood by referring to

FIGS. 1 through 3

of the drawings, like numerals being used for like and corresponding parts of the various drawings.





FIG. 1

is a schematic design of an image intensifier


10


in accordance with the teachings of the present invention. Image intensifier


10


is operable to receive photons from an image and transform them into a viewable image. Image intensifier


10


is designed to operate and enhance viewing in varying light conditions including conditions where a scene is visible with natural vision and conditions where a scene is totally invisible with natural vision because the scene is illuminated only by star light or other infrared light sources. However, it will be understood that, although the image intensifier


10


may be used to enhance vision, the image intensifier


10


may also be used in other applications involving photon detection such as systems to inspect semiconductors.




Image intensifier


10


comprises optics


12


coupled to image intensifier tube


16


. Image intensifier tube


16


has an input side


17




a


and an output side


17




b


. Image intensifier


10


is operable to act as a photon detector and image generator. Power supply


18


is coupled to image intensifier tube


16


. Image intensifier tube


16


also can include a display


20


for enhancing the image produced by image intensifier tube


16


.




Optics


12


are operable to focus light from a scene on to image intensifier tube


16


.




Power supply


18


is operable to provide power to components of image intensifier tube


16


. In a typical embodiment power supply


18


provides continuous DC power to image intensifier tube


16


. The use of power supply


18


is further described in conjunction with FIG.


2


.




Electronics


14


represents the other electronic necessary for image intensifier


10


. These include electronics that are used to control among other things, power supply


16


. Depending on the desired application of the image intensifier, electronics


14


may perform functions such as gating of the power supply and regulation of the tube gain.




Display


20


may be provided as convenient display for images generated by image intensifier tube


16


. Display


20


may be optics which can deliver the images produced by image intensifier tube


16


to the user or may include the necessary electronics, such as a camera, in order to display the image produced by image intensifier tube


16


on a cathode ray tube (CRT) display or other display device.





FIG. 2

illustrates an image intensifier tube


16


in accordance with the teachings of the present invention. Image intensifier tube


16


comprises a photocathode


22


having a input side


22




a


and an output side


22




b


. Coupled to photocathode


22


is a microchannel plate (MCP)


24


having a MCP input side


24




a


and a MCP output side


24




b


. A first electric field


23


is located between photocathode


22


and microchannel plate


24


. Also included is a phosphorous screen


26


coupled to microchannel plate


24


. Between phosphorous screen


26


and microchannel plate


24


is a second electric field


25


.




In operation, photons from an image impinge on input side of photocathode


22




a


. Photocathode


22


converts photons into electrons, which are emitted from output side of photocathode


22




b


in a pattern representative of the original image. Typically, photocathode


22


is a circular disk like structure manufactured from semiconductor materials mounted on a substrate as is well known in the art. One suitable arrangement may comprise gallium arsenide (GaAs) mounted on glass, fiber optics or similarly transparent substrate. Other arrangements can include indium gallium arsenide (InGaAs), alluminum gallium arsenide (AlGaAs), amorphic diamond, bi-alkali materials, other Group III-V alloys, or multilayer structures comprising several semiconductor materials.




The electrons emitted from photocathode


22


are accelerated in first electric field


23


. First electric field


23


is generated by power supply


18


. After accelerating in first electric field


23


, the electrons impinge on the input side


24




a


of microchannel plate


24


. Microchannel plate


24


typically comprises a thin glass wafer formed from many hollow fibers, each oriented slightly off axis with respect to incoming electrons. Microchannel plate


24


typically has a conductive electrode layer


33


disposed on MCP input side


24




a


and MCP output side


24




b


. A differential voltage, supplied by power supply


18


, is applied across the MCP input


24




a


and MCP output


24




b


. Electrons from photocathode


22


enter microchannel plate


24


where they produce secondary electrons, which are accelerated by the differential voltage. The accelerated secondary electrons leave microchannel plate


24


at MCP output


24




b.






Typically, microchannel plates are required to have a thin metal coating


33


on both the input side


24




a


and output side


33


. This allows for an electric field to be applied across the MCP. Also, the deposited metal electrode assists in the production of secondary electrons. However, the metal coating is not necessarily optimized for production of secondary electron emissions.




In the present invention, a microchannel plate


24


with the conventional metallic coating is provided for use in an image intensifier. In the present invention, however, the input surface


24




a


of MCP


24


has a coating placed over it that produce more secondary electrons than the metallic coating and helps to prevent outgassing of ions that can damage the photocathode


22


.




After exiting microchannel plate


24


and accelerating in second electric field


25


, secondary electrons impinge on phosphorous screen


26


, where a pattern replicating the original image is formed. Other ways of displaying an image such as using a charged coupled device, can also be used.





FIG. 3

illustrates a microchannel plate


24


in accordance with the teachings of the present invention. Illustrated is microchannel plate


24


comprising microchannel plate channels


30


and glass borders


32


. As is illustrated in

FIG. 3

, incoming electrons


34


produce secondary emission electrons


36


by interactions in MCP


24


.




In the present invention MCP input side


24




a


may or may not have an ion barrier film applied. The cladding glass used to manufacture microchannel plate


24


is made electrically conductive to produce secondary emission electrons by adding a conventional coating


33


, such as nichrome. As discussed earlier, the input face (MCP input side


24




a


) is covered with a second coating


38


. This coating can be materials such as Al


2


O


3


, Si


3


N


4


, GaP, or SiO


2


. Such materials can be in single crystal, polycrystalline, or amorphous form. Coating


38


can also be formed of sputtered quartz, doped glass or other materials that produce a high secondary electron emission yield. Conductive materials such as for example Ti or Ti alloys, Au, Ag, W or W alloys, Al or Al alloys or other suitable metals and alloys, or highly doped semiconductor materials such as for example Si and alloys Ge and alloys, GaN, or SiC, could also be used to form layer


38


. This embodiment has the advantage that on the input side of the MCP, layers


33


and


38


can be replaced by a single layer


38


. Coating


38


can also comprise a multilayer structure including thin layers or quantum wells of some of the materials discussed in the previous paragraphs Additionally, coating


38


serves to passivate the surface of microchannel plate


24


. This means that it will serve to prevent ions from leaving MCP


24


during operation in a vacuum and thus protects photocathode


22


from ion damage. The thickness of the coating depends on the type of material used and its crystalline structure. The thickness is optimized so as to minimize the obstruction to the flow of electrons from the photocathode into the MCP while maximizing the reduction of the number of eletrons flowing from the MCP to the photocathode. In one embodiment a 10 nm thick coating of doped glass is applied. While the invention has been particularly shown and described by the foregoing detailed description, it will be understood by those skilled in the art that various other changes in form and detail may be made without departing from the spirit and scope of the invention.



Claims
  • 1. An improved microchannel plate comprising a plurality of channels and glass borders and wherein:the channels are oriented off-axis with respect to electrons entering an input side of the microchannel plate; and the input side is coated with a passivation layer, the passivation layer extending into the channels without covering the hollows of the channels and operable to reduce the number of electrons flowing from the microchannel plate to the photocathode and to produce secondary electrons.
  • 2. The microchannel plate of claim 1, wherein the passivation layer comprises a layer of Al2O3.
  • 3. The microchannel plate of claim 1, wherein the passivation layer comprises a layer of silicon nitride.
  • 4. The microchannel plate of claim 1, wherein the passivation layer comprises a layer of gallium phosphide.
  • 5. The microchannel plate of claim 1, wherein passivation layer comprises a layer of gallium nitride.
  • 6. The microchannel plate of claim 1, wherein the passivation layer comprises a layer of aluminum nitride.
  • 7. The microchannel plate of claim 1, wherein the passivation layer comprises a material which produces more secondary electrons than a primary coating of the microchannel plate.
  • 8. The microchannel plate of claim 1, wherein the passivation layer reduces the outgassing of ions.
  • 9. A photon detector comprising a microchannel plate comprising a plurality of channels and glass borders and wherein:the channels are oriented off-axis with respect to electrons entering an input side of the microchannel plate; and the input side is coated with a passivation layer, the passivation layer extending into the channels without covering the hollows of the channels and operable to reduce the number of electrons flowing from the microchannel plate to the photocathode and to produce secondary electrons.
  • 10. The detector of claim 9, wherein the passivation layer comprises a layer of Al2O3.
  • 11. The detector of claim 9, wherein the passivation layer comprises a layer of silicon nitride.
  • 12. The detector of claim 9, wherein the passivation layer comprises a material which produces more secondary electrons than a primary coating of the microchannel plate.
  • 13. The detector of claim 9, wherein the detector further comprises a photocathode coupled to the microchannel plate, the photocathode operable to convert incoming photons into electrons operable to be sent to the microchannel plate.
  • 14. The detector of claim 9, wherein the passivation layer reduces the outgassing of ions.
  • 15. A method for producing an enhanced microchannel plate comprising:providing a microchannel plate comprising a plurality of channels and glass borders, wherein the channels are oriented off-axis with respect to electrons entering an input side of the microchannel plate; and coating the input side with a passivation layer extending into the channels without covering the hollows of the channels and operable to reduce the number of electrons flowing from the microchannel plate to the photocathode and to produce secondary electrons.
  • 16. The method of claim 15, wherein the passivation layer comprises a layer of Al2O3.
  • 17. The method of claim 15, wherein the passivation layer comprises a layer of silicon nitride.
  • 18. The method of claim 15, wherein the passivation layer comprises a material which produces more secondary electrons than a primary coating of the microchannel plate.
  • 19. The method of claim 15, wherein the passivation layer prevents the outgassing of ions.
US Referenced Citations (6)
Number Name Date Kind
3760216 Lasser et al. Sep 1973 A
3777201 Einstein Dec 1973 A
4051403 Feingold et al. Sep 1977 A
5159231 Feller et al. Oct 1992 A
5729244 Lockwood Mar 1998 A
6040000 Floryan et al. Mar 2000 A
Non-Patent Literature Citations (1)
Entry
International Search Report in PCT International Application No. PCT/US00/34589, dated Mar. 9, 2001, 5 pages.