The invention relates generally to microelectromechanical systems (MEMS) fabrication processes. In particular it relates to encapsulated MEMS fabrication with improved anti-stiction properties.
“Microelectromechanical systems” (MEMS) refers broadly to small, mechanical devices constructed using techniques traditionally associated with integrated circuit wafer processing. In microelectronics, circuits are fabricated on semiconductor wafers upon which minute features are defined by building up and etching back regions of materials with specific electronic properties. Tremendous progress has been made over the past 30 years in making circuits smaller, from the millimeter scale to the micrometer scale to today's nanometer scale features.
Tools for semiconductor processing have become more widely available as the microelectronics industry has matured and that has helped create opportunities for microfabrication of new mechanical devices. These microelectromechanical systems (MEMS) include miniaturized gears, levers, cantilevers, springs, etc. However, physical scaling laws show that mechanical devices on a micro scale can operate quite differently from their everyday cousins and have vastly superior performance in some respects. In other words, they are not simply smaller, but also different. (See, for example, Kurt Petersen, “Silicon as a Mechanical Material”, Proceedings of the IEEE, Vol. 70, No. 5, May 1982, pages 420-457.)
Perhaps the most important feature defining MEMS in contrast to microelectronics is that MEMS may contain moving parts. In most cases, such as MEMS accelerometers or MEMS oscillators, the moving parts must be protected from the environment. A recent advance in MEMS technology is the development of techniques for wafer-level encapsulation of mechanical structures. Encapsulation provides for not only protection of the mechanical components but also for direct integration with electronic devices in the wafer.
A promising encapsulation technique is described by Partridge, et al. in “Microelectromechanical systems, and methods for encapsulating and fabricating same,” US Patent Application Publication US 2004/0248344 A1, incorporated herein by reference. Partridge discloses, in part, a thin-film polysilicon encapsulation process that can increase the die count on a wafer by nearly an order of magnitude without a corresponding increase in cost. This technique is showing utility for of micromechanical resonators but has yet to be fully applied to structures that are more likely to come into contact like accelerometers.
Industry experience suggests that accelerometers require anti-stiction coatings for full functionality. An anti-stiction coating prevents silicon surfaces from creating a temporary or permanent bond (stiction) if they touch. Parts in a MEMS accelerometer sometimes come into contact with each other. It is important that they not stick together otherwise the function of the device is ruined. Organic films have been used as anti-stiction coatings in conventional MEMS processes. These films are rarely capable of withstanding process temperatures above about 450 C, however.
The final stages of recent and successful encapsulation methods involve processes at temperatures of at least 450 C and often as high as 800 C or above. No suitable organic film anti-stiction coating has been found that is compatible with these processes. Therefore what is needed is a method of incorporating a high-temperature anti-stiction film in a modern encapsulation process.
A method for incorporating a high-temperature anti-stiction film in a MEMS encapsulation process is described. The method is illustrated for a process that uses a low-temperature oxide seal (
In this application “layers” comprise materials formed in sheets substantially parallel to a flat substrate. In contrast “coatings” or “films” comprise materials that are applied to surfaces that may lie at arbitrary angles to a substrate including parallel or perpendicular to it.
In
Layer 120 is a sacrificial spacer layer normally consisting of silicon dioxide. Layer 125 is an epitaxial film deposited as an initial encapsulation step. Layer 125, which is commonly an epitaxial silicon film, is patterned to provide vent trenches such as vent 145. Devices such as 135 and 140 in device layer 115 have been released typically by dry etching sacrificial layers 110 and 120. In a typical scenario layers 110 and 120 consist of silicon dioxide which may be etched with an HF vapor etch. Layer 130 is a buried polysilicon layer which serves as an electrical interconnect for MEMS devices.
In
Layer 170 is a sacrificial spacer layer normally consisting of silicon dioxide. Layer 175 is an epitaxial film deposited as an initial encapsulation step. Film 175, which is commonly an epitaxial silicon film, is patterned to provide vent trenches such as vent 195. Devices such as 185 in device layer 165 have been released by dry etching sacrificial layers 160 and 170. In a typical scenario layers 160 and 170 consist of silicon dioxide which may be etched with an HF vapor etch.
SiC films may be deposited by LPCVD at around 800 C using precursor 1,3-disilabutane in a hot-wall reactor. See, for example, “Silicon Carbide for Enhanced MEMS Reliability,” D. Gao, et al., Proceedings of the 2004 Sensors and Actuators Workshop, Hilton Head, S.C., 2004, incorporated herein by reference. A feature of the anti-stiction film is that it is an electrical insulator. A conductive film would create short circuits which could render the MEMS inoperable.
It is also possible to deposit and pattern an anti-stiction film after fabrication of the active device layer but before deposition of an encapsulation layer.
In
In
In the scenario shown in
For example, a sacrificial layer would then be deposited and followed by a conventional multi-step sealing process. This approach requires good control over the anisotropy of the anti-stiction-film etch. The subsequent redeposition and etching of a sacrificial film may affect the anti-stiction properties of the anti-stiction film.
As one skilled in the art will readily appreciate from the disclosure of the embodiments herein, processes, machines, manufacture, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, means, methods, or steps.
While the systems and methods described herein have been described in connection with what are presently considered to be the most practical and preferred embodiments, it is to be understood that the systems and methods are not limited to the disclosed embodiments and alternatives as set forth above, but on the contrary is intended to cover various modifications and equivalent arrangements included within the scope of the following claims.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number respectively. Additionally, the words “herein,” “hereunder,” “above,” “below,” and words of similar import refer to this application as a whole and not to any particular portions of this application. When the word “or” is used in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list and any combination of the items in the list.
The above description of illustrated embodiments of the systems and methods is not intended to be exhaustive or to limit the systems and methods to the precise form disclosed. While specific embodiments of, and examples for, the systems and methods are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the systems and methods, as those skilled in the relevant art will recognize. The teachings of the systems and methods provided herein can be applied to other systems and methods, not only for the systems and methods described above.
The elements and acts of the various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the systems and methods in light of the above detailed description.
Each publication, patent, and/or patent application mentioned in this specification is herein incorporated by reference in its entirety to the same extent as if each individual publication and/or patent application was specifically and individually indicated to be incorporated by reference.
In general, in the following claims, the terms used should not be construed to limit the systems and methods to the specific embodiments disclosed in the specification and the claims, but should be construed to include all systems that operate under the claims. Accordingly, the systems and methods are not limited by the disclosure, but instead the scope of the systems and methods are to be determined entirely by the claims.
This application is a divisional application of U.S. patent application Ser. No. 11/510,040, filed Aug. 25, 2006, incorporated herein by reference. This application is related to U.S. patent application Ser. No. 10/454,867 (patent application publication number US 2004/0248344 A1) incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5470627 | Lee et al. | Nov 1995 | A |
5683591 | Offenberg | Nov 1997 | A |
6808953 | Partridge | Oct 2004 | B2 |
6869879 | Ryan | Mar 2005 | B1 |
6902656 | Ouellet et al. | Jun 2005 | B2 |
6930367 | Lutz et al. | Aug 2005 | B2 |
6936491 | Partridge | Aug 2005 | B2 |
6936902 | Reichenbach | Aug 2005 | B2 |
6939809 | Partridge | Sep 2005 | B2 |
6952041 | Lutz | Oct 2005 | B2 |
20020187647 | Dhindsa et al. | Dec 2002 | A1 |
20030183916 | Heck et al. | Oct 2003 | A1 |
20030187555 | Lutz | Oct 2003 | A1 |
20030211650 | Martin | Nov 2003 | A1 |
20040124481 | Partridge | Jul 2004 | A1 |
20040124483 | Partridge | Jul 2004 | A1 |
20040163476 | Partridge | Aug 2004 | A1 |
20040183214 | Partridge | Sep 2004 | A1 |
20040207489 | Lutz | Oct 2004 | A1 |
20040209435 | Partridge | Oct 2004 | A1 |
20040245586 | Partridge | Dec 2004 | A1 |
20040248344 | Partridge | Dec 2004 | A1 |
20050014374 | Partridge | Jan 2005 | A1 |
20050019974 | Lutz | Jan 2005 | A1 |
20050073078 | Lutz | Apr 2005 | A1 |
20050095833 | Lutz | May 2005 | A1 |
20050106318 | Partridge | May 2005 | A1 |
20050142688 | Partridge | Jun 2005 | A1 |
20050151592 | Partridge | Jul 2005 | A1 |
20050156260 | Partridge | Jul 2005 | A1 |
20050162239 | Lutz | Jul 2005 | A1 |
20050179099 | Lutz | Aug 2005 | A1 |
20050195050 | Lutz | Sep 2005 | A1 |
20050242904 | Lutz | Nov 2005 | A1 |
20050253209 | Lutz | Nov 2005 | A1 |
20050255645 | Lutz | Nov 2005 | A1 |
20050260783 | Lutz | Nov 2005 | A1 |
20050288392 | Okubora | Dec 2005 | A1 |
20060290449 | Piazza et al. | Dec 2006 | A1 |
20070196945 | Martin | Aug 2007 | A1 |
20080055703 | Pan | Mar 2008 | A1 |
20080138580 | Low et al. | Jun 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20090278214 A1 | Nov 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11510040 | Aug 2006 | US |
Child | 12506219 | US |