There are shown:
In the embodiment of a micromechanical component shown in
The deflectable element 1 is connected to the springs 2. The springs 2 merge into an armature 3. The armature 3 is electrically insulated with respect to the frame part 9 by the insulation 4, but is mechanically connected thereto. A procedure can be followed in manufacture such that a groove is etched into an upper silicon layer. The etching takes place selectively and is stopped at a buried oxide 4. The buried oxide forms an intermediate layer between an upper layer which can be used for the mechanical elements and a lower layer.
A groove can be filled with an oxide layer. In this connection, this groove should not be guided through the total thickness and formed as a groove-like recess. The oxide fills said groove to the extent that no electrically conductive connection is present between the deflectable element 1, the spring 2 and the armature 3 with the frame part 9.
In a form not shown, the deflectable element 1 and the frame part 9 are contacted electrically in a separate manner and are connected to an electrical power source. For instance, positive electrical voltage can e.g. be applied to the deflectable element 1 and negative electrical voltage can be applied to the frame part, or also vice versa.
Electrode fingers 6 and 7 are formed at the deflectable element 1 and the frame part 9 at two oppositely disposed sides of the component by a groove 5 made in meander-like form. The electrode fingers 6 and 7 therefore have the respective electrical voltage potential, which can be utilized for the drive for the deflection of the element 1.
With total symmetry and while neglecting all external forces and thermally induced movements (Brownian molecular movement) of a component, the electrical voltage difference can theoretically be as large as desired without a resulting electrostatic force being able to pull the electrode fingers 6 and 7 together and without them coming into touching contact and a short-circuit occurring. A complete symmetry is, however, actually not achievable due to manufacturing circumstances so that the deflectable element 1 is deflected ever further as the electrical voltage difference increases. A corresponding restoring force is applied by the springs 2 by deformation. With electrostatic forces which have a high effect and which exceed the mechanical restoring force of springs 2, the electrode fingers 6 and 7 can be accelerated toward one another in the lateral direction and can impact one another. The electrode fingers 6 and 7 can break and be damaged or destroyed in the process. An electrical short-circuit and/or electrical flashovers can moreover occur which also result in further destruction or damage to electrical or electronic components.
As a result of adhesion forces, electrode fingers 6 and 7 can also adhere to one another without a voltage potential difference or even be welded together and the components can thereby also lose its function.
These disadvantageous effects can, however, also be caused by other forces. By a corresponding acceleration of the component on impact or on another abrupt movement, the forces resulting therefrom can likewise exceed the spring forces and this can result in a movement or deflection of the deflectable element 1 with further parts or elements formed thereon. With solutions such as are known from the prior art, it cannot be avoided that short-circuits occur as a consequence of movements or deflections of the deflectable element 1 or also only parts thereof.
This is, however, achievable with the invention.
It becomes clear that further grooves 13 and 14 are formed in addition to the grooves 5, 8, 10 and 11. An abutment 12 is formed in the respective corner region at the deflectable element 1 by their arrangement and alignment. The clearance of the grooves 13 and 14 is smaller than the clearance dimensions of the other grooves 5, 8, 10 and 11. The end faces separated by the grooves 13 and 14 thereby abut one another on a movement/deflection of the deflectable element 1 exceeding a certain degree, whereby a critical approaching of other parts or regions which are at different electrical voltage potentials is avoided. This applies in particular to the avoidance of a contact of electrode fingers 6 and 7.
Such grooves 13 and 14 forming a path limitation element can be arranged mutually opposite one another at a respective spring 2 even though the reference numerals are only marked at two such grooves 13 and 14.
The configuration of the grooves 13 and 14, and thereby also the configuration of the abutments 12, can take place such that damage or destruction is also avoided at higher accelerations and forces resulting therefrom. Adhesion (sticking) can also be avoided.
The dimensioning of the abutment 12 and of the grooves 13 and 14 should be selected such that the path limitation is provided on a pivoting of the deflectable element 1 with a maximum amplitude. With a lateral deflection at right angles to the component plane, the thickness in the region of the abutment 12 should be larger than the maximum deflection amplitude. The remaining gap (e.g. at electrode fingers) should also be sufficiently large after a “docking” of contact surfaces to avoid an electrical flashover. In this connection, the respective electrical voltage should be taken into account for the respective required gap width.
In the event that a deep silicon etching process known per se and starting from a surface is used for the structuring and open grooves are formed in the process whose width and a clearance only differ slightly from one another, the extent of a deflectable element 1 perpendicular to springs 2 in the component plane can be large in relation to the extent in the direction of the springs 2. A pivoting of a deflectable element 1 around an axis perpendicular to the component plane and through its center can thereby have the result that the electrode fingers 6 and 7 nevertheless approach one another too much or even contact one another.
This can be countered by an embodiment of the invention in accordance with the example shown in
In this connection, at least one abutment 17 (there are two abutments 17 in
If the deflectable element 1 is moved parallel to the longitudinal axes of the springs 2, at an angle inclined obliquely thereto or orthogonally to the longitudinal axes of the springs 2, the finger with abutment 17 abuts the additional armature 15 since the respective clearances are smaller than the width or clearances of at least the other grooves 5, 8, 10 and 11.
The parts and fingers of the abutment 17 and the additional armature 15 can also have larger dimensions than electrode fingers 6 and 7.
The disadvantages already mentioned a plurality of times can thus be avoided.
In some cases, a path limitation only by such abutments 17 and additional armatures 15 can be sufficient to be able to achieve the desired effect. However, the embodiment with additional grooves 13 and 14 as further path limitation elements shown in
The example shown in
With an externally acting acceleration having a vector perpendicular to the springs 2 in the component plane, the abutment 20 formed by the groves thus acts first and limits the path which can be covered by a movement of the deflectable element 1.
If, in contrast, the deflectable element 1 oscillates and is pivoted around the longitudinal axis of the springs 2, the abutment 20 formed by grooves will be without effect since a mechanical contact in this region is no longer possible with such a deflection of the deflectable element 1 with a large amplitude. This can, however, be achieved with the abutments 19 and 18 formed by grooves and arranged more closely to the rotation axis which is predetermined by the springs 2 and as a rule coincides with their longitudinal axis.
The respective configuration of grooves for path limitation elements with their selected clearances while taking account of their arrangement at the component can be adapted for the application, that is for the use with functionality of the component.
Grooves around springs should always be wider than grooves at path limitation elements. The thin and fragile springs are then not exposed to any impact strain on occurring accelerations (e.g. on a shock or internally electrostatically) since no mechanical contact can occur. The mechanical reliability can thus be increased.
The gap width should also take into account that this is also secured on a twisting of springs since spring cross-sections can be prismatic and thus laterally wider at some points.
Number | Date | Country | Kind |
---|---|---|---|
DE 10 2006 036 49 | Jul 2006 | DE | national |