Microstructured infrared sensors may be used in particular in gas detectors in which an IR radiation emitted by a radiation source, for example, an incandescent bulb operated in the low-current range or an IR LED, is transmitted over an absorption path and subsequently received by the infrared sensor, and the concentration of the gases to be detected in the absorption path is inferred from the absorption of the infrared radiation in specific wavelength ranges. Gas sensors of this type may be used in particular in the automotive industry, for example, for detecting a leak in an AC unit operated using CO2 or for checking the air quality of the ambient air.
The micromechanical infrared sensor normally has a sensor chip having a measuring structure which is sensitive to infrared radiation and a cap chip covering the sensor chip. A sensor space, sealed to the outside in a vacuum-tight manner, is formed between the sensor chip and the cap chip, a cavity being generally formed on the bottom side of the cap chip for this purpose.
The measuring structure sensitive to infrared radiation usually has a diaphragm under which a cavity is formed, and at least one thermopile structure formed on the diaphragm, having two contacted printed conductors made of different, electrically conductive materials, for example, polycrystalline silicon and a metal. An absorber layer which is heated by absorbing the incident IR radiation is applied to the contact area of the printed conductors. The infrared radiation incident from above reaches a sensor space through the silicon cap chip which is transparent to infrared radiation and the absorber layer whose temperature increase may be read out as the thermal voltage of the thermopile structure.
The infrared sensor is typically enclosed in a housing provided with one or more windows. The size of the window is such that the absorber layer is fully illuminated by the infrared radiation. However, in the tolerance-based situation in which the sensor is installed on the housing base, the window is not able to be accurately matched to the lateral dimension of the absorber layer. The window size is therefore designed in such a way that in general infrared radiation also reaches the bulk material of the silicon outside the absorber layer and the diaphragm, and thus the cold end of the thermopile structure.
Since the sensitivity of the infrared sensor is defined by the temperature difference between the warm contact area under the absorber layer and the cold ends of the printed conductors provided in the bulk material, the infrared radiation incident further out in the lateral direction reduces the sensitivity of the infrared sensor. Furthermore, even a minor error in the positioning of the infrared sensor in the housing, or in the positioning of the cover provided with the window on the housing, results in partial shading of the thermopile structure and the absorber layer, which further reduces sensitivity. The assembly tolerance chain is thus defined by the installation of the infrared sensor in the sensor housing and of the cover provided with the window on the housing.
The infrared sensor according to the present invention and the method for manufacturing same have the advantage over the related art that a cost-effective screen design and accurate positioning of the screen relative to the position of the infrared-sensitive measuring structure are possible.
According to the present invention, a screen is formed on the top side of the cap chip. This may be accomplished by a suitable coating; a reflective or absorbing coating may be formed in an external screen area and/or an antireflective coating may be formed in an internal screen area. The reflective coating may be applied as a metal layer, for example; furthermore, the internal and/or external screen area may also have a reflective or antireflective effect depending on the wavelength as a dielectric coating of a defined thickness having a refractive index that is different from that of the sensor chip material; the external screen area functions here as a dielectric mirror and the internal screen area as a dielectric anti-reflective coating. Silicon nitride or silicon dioxide, for example, may be applied in a simple and cost-effective manner as the material having a refractive index different from that of the silicon of the cap chip.
According to another embodiment, reflection, diffusion, or absorption of the infrared radiation in the external screen area may also be achieved by appropriately structuring the surface of the cap chip. No additional material has to be applied in this case. Structuring may be provided, for example, in the form of V-shaped trenches having oblique surfaces formed along the crystal faces in a simple manner via wet etching, for example, using KOH. Absorption of the incident infrared radiation may be adjusted via a suitable roughness, which may be achieved, for example, via wet etching or plasma etching.
In addition, the bottom side of the cap chip may also have a trench-type structuring, which captures the radiation passing through the trenches formed on the top side of the cap chip.
An infrared (IR) sensor system 1 shown in
A cap chip 20 is attached to sensor chip 10 in vacuum-tight bonding areas 21. Bonding areas 21 may be formed by a low-melting lead glass, for example. A sensor space 23, which accommodates diaphragm 12, thermopile structure 14, and absorber layer 16, is formed as a cavity on the bottom side of cap chip 20. A vacuum is formed in sensor space 23, which is sealed by bonding regions 21 with respect to internal housing space 7.
A screen 25 having an external screen area 25a and an internal screen area 25b is formed on a top side 24 of cap chip 20. In the embodiments of
An infrared radiation filter 29 is attached to screen 25 and thus underneath cover 5. Infrared radiation filter 29 is selectively transparent to infrared radiation of a predefined wavelength range and absorbs other wavelengths. It may be attached using an adhesive layer, for example. As an alternative, IR radiation filter 29 may also be attached, for example, to the bottom side of cover 5 in principle.
Infrared radiation source 2 emits infrared radiation IR to sensor module 3 along an optical axis A, the space between IR radiation source 2 and sensor module 3 functioning as absorption path 27 in which, depending on the particular gas concentration, for example, CO2 concentration, infrared radiation of the predefined wavelength range is absorbed. Infrared radiation IR1, which is emitted within an internal spatial angle range around optical axis A, passes through window 6, radiation filter 29, internal screen area 25b of screen 25, and silicon cap chip 20, enters sensor space 23, and is absorbed by absorber layer 16. An external infrared radiation IR 2 emitted in an external spatial angle range first passes through window 6 of cover 5 and radiation filter 29, but is not able to pass through external screen area 25a and therefore does not reach cap chip 20.
According to
Also in
According to the embodiment of
In the embodiment of
Since IR radiation IR2 which is not reflected by oblique side surfaces 40 may enter between the individual trenches 34 on top side 24 of cap chip 20, V-shaped trenches 36 which are identical to trenches 34 on top side 24 of cap chip 20, but are offset by one-half of the grid spacing of the latter, i.e., by half the distance between trenches 34, are also formed on bottom side 22 of cap chip 20 in the embodiment of
In the embodiment of
The embodiment of
IR sensor 9, 30 may be manufactured completely on the wafer level. In this case, a sensor wafer is structured by the method known per se by forming cavities 13, diaphragms 12, thermopile structures 14, and absorber layers 16. Furthermore, a cap wafer is produced in which sensor spaces 23 are formed as cavities by the method known per se, e.g., KOH etching. In the embodiment of
In all embodiments, the sensor wafer and cap wafer may be placed on top of one another and attached in the vacuum-tight bonding areas 21. The wafer stack thus formed may be subsequently diced, producing individual IR sensors 9, 30. IR radiation filter 29 may be applied before or after dicing.
Thus manufactured IR sensors 9, 30 may be accommodated in housing 4 having cover 5.
Number | Date | Country | Kind |
---|---|---|---|
102004031315.6 | Jun 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/52142 | 5/11/2005 | WO | 11/16/2007 |