The present invention is directed generally to methods for manufacturing a rear projection screen and the resulting screen. More particularly, the invention relates to a rear projection screen that incorporates totally internally reflecting structures to disperse the light passing through the screen.
Rear projection screens are generally designed to transmit an image projected onto the rear of the screen into a viewing space. The viewing space of the projection system may be relatively large (e.g., rear projection televisions), or relatively small (e.g., rear projection data monitors). The performance of a rear projection screen can be described in terms of various characteristics of the screen. Typical screen characteristics used to describe a screen's performance include gain, viewing angle, resolution, contrast, the presence of undesirable artifacts such as color and speckle, and the like.
It is generally desirable to have a rear projection screen that has high resolution, high contrast and a large gain. It is also desirable that the screen spread the light over a large viewing space. Unfortunately, as one screen characteristic is improved, one or more other screen characteristics often degrade. For example, the horizontal viewing angle may be changed in order to accommodate viewers positioned at a wide range of positions relative to the screen. However, increasing the horizontal viewing angle may also result in increasing the vertical viewing angle beyond what is necessary for the particular application, and so the overall screen gain is reduced. As a result, certain tradeoffs are made in screen characteristics and performance in order to produce a screen that has acceptable overall performance for the particular rear projection display application.
In U.S. Pat. No. 6,417,966, incorporated herein by reference, Moshrefzadeh et al. disclose a screen having reflecting surfaces disposed so as to reflect light passing therethrough into at least one dispersion plane. The screen thereby permits asymmetric dispersion of image light in a rear projection system and allows the light to be selectively directed towards the viewer. Moshrefzadeh et al. also teach methods for manufacturing the screen, including combinations of steps using casting and curing processes, coating techniques, planarization methods, and removing overcoating materials.
The present invention is a method of forming an optical film including the following steps: providing a first film of a first material, extruding a second material to form a second film in a molten state; maintaining the second film in a molten state; bringing the first film proximate the molten second film; patterning the molten second film to form a plurality of structures, the structures defining a plurality of cavities therebetween; and solidifying the molten second film.
The present invention will be further explained with references to the drawing figures below, wherein like structure is referred to by like numerals throughout the several views.
While the above-identified drawing figures set forth several embodiments of the invention, other embodiments are also contemplated. This disclosure presents illustrative embodiments of the present invention by way of representation and not limitation. Numerous other modifications and embodiments can be devised by those skilled in the art which fall within the scope of spirit of the principles of this invention. The drawing figures are not drawn to scale.
Moreover, while the embodiments are referred to by the designations “first,” “second,” “third,” etc., it is to be understood that these descriptions are bestowed for convenience of reference and do not imply an order of preference. The designations are presented merely to distinguish between different embodiments for purposes of clarity.
In one exemplary embodiment, linear ribs or microribs 24 are formed of an optical-grade host material such as a resin such as polycarbonate; in particular, the host resin incorporates light scattering particles such as beads so that ribs 24 act as a bulk diffuser. A sufficiently high aspect ratio is chosen for the rib geometry in order to induce total internal reflection (TIR) in the microrib structure 20. The loading of the light scattering particles within the resin is chosen to control optical properties such as gain and view angle of the screen. A material such as a resin with a high refractive index (RI) is generally chosen for diffusive ribs 24. In this application, the RI of a rib 24 refers to the RI of the host material. Examples of suitable materials for light diffusive ribs 24 include polymers such as modified acrylics, polycarbonate, polystyrene, polyester, polyolefin, polypropylene, and other optical polymers preferably having a refractive index equal to or greater than about 1.50. Polycarbonate, with a refractive index of 1.59, is particularly useful due to its high glass transition temperature Tg, clarity and mechanical properties. In the embodiment shown in
Microreplication can be accomplished by techniques including but not limited to extruding, embossing, radiation curing and injection molding.
In one exemplary embodiment shown in
In one embodiment, materials 32 and 34 are heated to about 66° C. (150° F.) and extruded simultaneously from die 28, which has a temperature of about 293° C. (560° F.). Each material 32 and 34 is isolated from the other until after they are extruded from die 28. After extrusion, the materials 32 and 34 are brought into contact with each other, wherein at least material 34 is still in a molten state.
The three-roll extrude-emboss technique shown in
Cast roll 40 is patterned on outer surface 48 to impart the desired structures upon material 34 to result in light diffusive ribs 24. In one exemplary embodiment, cast roll 40 is formed of a metal such as chromium, nickel, titanium, or an alloy thereof. In one embodiment, cast roll 40 is heated to greater than or about 204° C. (400° F.), more particularly between about 252° C. (485° F.) and about 282° C. (540° F.), by running heated oil through interior 42 of roll 40, the oil being heated by an external heat source. Third or carrier roll 44 is generally heated or chilled by running oil or water through interior 46 of roll 44 to assist in the release of microrib structure 20 from cast roll 40. In one embodiment, carrier roll 44 is heated to greater than or about 66° C. (150° F.) by running heated oil through interior 46 of roll 44, the oil being heated by an external heat source. In one exemplary embodiment, carrier roll 44 has a smooth outer surface 50 and is formed of a metal such as chromium, nickel, titanium, or an alloy thereof.
In one embodiment, material 32 for forming base structure 22 is a light transmitting material such as a clear polymer such as polycarbonate, polyester, polyolefin, polypropylene, acrylic or vinyl, for example. In one embodiment, material 34 for diffuser ribs 24 is a high refractive index polymer such as a modified acrylic, polycarbonate, polystyrene, polyester, polyolefin, polypropylene, or other optical polymer. It is particularly suitable for material 34 to have a refractive index greater than or equal to about 1.50. Polycarbonate, with a RI of 1.59 is particularly useful due to its high Tg, clarity and mechanical properties. In one embodiment, material 32 and material 34 are compatible so that they physically bond at the interface therebetween to integrate into a monolithic structure. This is achieved in one exemplary embodiment by using the same polymer material for material 32 and 34, the difference being that material 34 incorporates light diffusing particles into the polymer. In an alternate embodiment, material 32 and material 34 can have different compositions, but they possess similar processing characteristics and bond to one another at their interface.
In one embodiment, nip roll 36 and cast roll 40 are in intimate contact to provide high pressure compression of materials 32 and 34, and particularly material 34, against cast roll 40. This is especially important for materials with a high Tg such as polycarbonate, which set up almost immediately upon exiting die 28. Carrier roll 44 need not be in intimate contact with cast roll 40; the purpose of carrier or pull roll 44 is merely to take formed microrib structure 20 off cast roll 40. In one embodiment, each roll 36, 40 and 44 rotates at about 3.6 m (12 feet) per minute, with adjacent rolls rotating in opposite directions.
In one embodiment, air bar 52 facilitates the release of structure 20 off cast roll 40. Air bar 52 is a perforated cylinder which emits cooling air onto structure 20 just before the point of separation of structure 20 from cast roll 40. In one embodiment, air is supplied at about 620 kPa (90 psi) and ambient temperature. Materials 32 and 34 solidify into structure 20. In one embodiment, tensioning roll assembly 54 is used to provide the proper amount of tension on structure 20 as it travels. Slitter 56 is provided to cut structure 20 to desired widths. Windup roll 58 winds up structure 20 for storage or later retrieval.
Other cast-emboss and extrude-emboss methods, for example, can also be used. The resulting microrib structure 20 can then be used in the method described with reference to
Referring to
Microrib structure 20 is first unwound from substrate unwind station 72. Microrib structure 20 continues on to resin coating station 74, where it is overcoated with light absorbing material 62. The composite structure is pressed by precision nip roll 76 against cylinder 78. Cylinder 78 may be smooth, matte or microstructured to impart a desired texture upon front surface 66 of the resulting embedded planar microstructured film 60 shown in
The thickness of light transmitting base film 22 can be chosen to meet the requirements of each particular application. For example, a thin base film with a thickness of about 0.127 mm (5 mils) to about 0.254 mm (10 mils) can be chosen to provide for ease of manufacturing; alternatively, a thick film with a thickness of about 0.508 mm (20 mils) to about 1.016 mm (40 mils) can be chosen to provide additional product stiffness. Suitable materials include polycarbonate, polyester, acrylic and vinyl films, for example. In one exemplary embodiment, back surface 91 of base substrate 22 has a matte finish to reduce specular reflection back into the imaging system.
Shield 86 can also be varied to provide for different functionalities. Shield 86 can range in thickness from thin (less than about 0.508 mm (20 mils)) to semi-rigid (about 0.508 mm (20 mils) to about 1.016 mm (40 mils)) to rigid (greater than about 1.016 mm (40 mils)). The thickness of base substrate 22 and protective shield 86 can be chosen to yield a wide variety of products with these options impacting total material cost, optical functionality, and ease of processing. In one exemplary embodiment, light diffusive ribs 24 are formed of a polycarbonate loaded with light diffusing particles. In one exemplary embodiment, shield 86 is a clear PMMA.
In one exemplary embodiment, light absorbing adhesive 85 is a photopolymerizable, low refractive index material which adheres to both light diffusive ribs 24 and shield 86. In an exemplary embodiment, the refractive indices of light diffusive ribs 24 and light absorbing adhesive 85 differ enough to cause total reflection rather than transmittance at the interface therebetween. In an exemplary embodiment, the refractive index of the microrib material of light diffusive ribs 24 varies from 1.49 for simple acrylate materials to 1.58 or higher for materials such as aromatic polycarbonates. The refractive index requirement for the groove filler material 85 is, therefore, dependent on the optical properties (such as refractive index) of the microrib 24 material. For the high refractive index microrib materials, such as polycarbonate, commercially available photolaminating adhesives may be adequate. Exemplary adhesives 85 have a RI of less than about 1.50. Particularly suitable adhesives 85 have a RI of less than about 1.45. In some embodiments, adhesive 85 is a pigmented blend of one or more of the following components: urethane acrylate oligomers; substituted acrylate, diacrylate, and triacrylate monomers; fluorinated acrylates; perfluoroalkylsulfonamidoalkyl acrylates; acrylated silicones, acrylated silicone polyureas and UV or visible light activated photoinitiators.
If the viscosity of the groove filler 85 is too low, it will flow during the groove filling process. This can waste material, give nonuniform thickness, and contaminate the process equipment. If the viscosity is too high, filling the grooves 24 can be a slow, difficult process and the possibility of introducing bubbles (optical defects) increases significantly. While photolamination can be accomplished with fluids having viscosities as low as about 150 centipoises, many processes can benefit from a viscosity of at least about 400 centipoises before polymerization. While viscosities as high as about 5,000 centipoises before polymerization can be used, viscosities no higher than about 1,500 centipoises before polymerization are especially suitable for reasonable process speed and bubble-free coatings.
A standard measure of adhesion between substrates and coatings is the amount of force required to separate them, known as the peel force. The peel force of a system containing excellent interfacial adhesion at the interface between layers will be very high. While peel force strength of at least about 35.7 kg/m (2 pounds/inch) is probably adequate between polycarbonate diffusive ribs 24 and light absorbing adhesive 85, it is more desirable to have peel force of at least about 71.4 kg/m (4 pounds/inch). This high peel force should be maintained under environmental test conditions of high temperature and humidity. Adequate adhesion may be achieved by modification of the substrate surfaces by treatment, such as with corona discharge or plasma, or priming; it is preferred, however, that the adhesive 85 adhere to the light diffusive ribs 24 and shield 86, if used, without the necessity of surface modification.
One suitable embodiment of light absorbing adhesive 85 is constructed by warming the following resin components to about 70° C. (158° F.) to lower the viscosity sufficiently to allow for agitation: 16.0 g aliphatic urethane acrylate oligomer; 19.0 g ethoxyethoxyethyl acrylate; 5.5 g hexanediol diacrylate; 5.0 g tetrahydrofurfuryl acrylate; 44.5 g N-methyl-perfluorobutylsulfonamidoethyl acrylate; 10.0 g acryloyloxyethoxyperfluorobutane; and 1.0 g phenyl bis(2,4,6 trimethyl benzoyl) phosphine oxide photoinitiator.
The components are then shaken until a clear solution results. The solution is then pigmented for light absorption. One suitable pigment is carbon black; in one exemplary embodiment, the pigment is used in a concentration between about 50 ppm (parts per million) and about 20,000 ppm; in one exemplary embodiment, the pigment is used in a concentration greater than about 1,000 ppm and less than about 9,000 ppm. A concentration of about 3,000 ppm is particularly suitable, based on mass ratios of the carbon black material to the resin material. In one embodiment, the formulation is disposed onto shield 86 by a conventional method such as knife coating. The coated shield is then pressed onto microrib structure 20 as shown in
In one embodiment, light diffusive ribs 24 are replicated from a tooling mold using a high refractive index diffuser resin, as shown in the coextrusion process of
Then, a pigmented, typically black, light absorbing adhesive 85 is applied to a second substrate such as shield 86. One suitable light absorbing adhesive 85 is formed from a resin having about 30% “Formulation A,” (the “Formulation A” having about 38.5% aliphatic urethane acrylate oligomer, about 26.9% ethoxyethoxyethyl acrylate, about 28.8% isobornyl acrylate, about 5.8% hexanediol diacrylate and about 1% α,α-diethoxyacetophenone (DEAP) photoinitiator); about 10% aliphatic urethane diacrylate; about 30% trifluoroethyl acrylate; and about 30% N-methyl-perfluorobutylsulfonamidoethyl acrylate. Another suitable light absorbing material 85 is formed from a resin having about 50% “Formulation A,” discussed above, and about 50% N-methyl-perfluorobutylsulfonamidoethyl acrylate. In one exemplary embodiment, light absorbing adhesive 85 contains a pigment such as carbon black. In one exemplary embodiment, the pigment is used in a concentration between about 50 ppm and about 20,000 ppm. In one exemplary embodiment, the pigment is used in a concentration greater than about 1,000 ppm and less than about 9,000 ppm. A concentration of about 3,000 ppm is particularly suitable, based on mass ratios of the carbon black material to the adhesive material.
Light absorbing adhesive 85 can be applied to a second substrate such as shield 86 in sufficient quantity to completely fill diffuser ribs 24, allowing a slight excess to ensure complete fill, in the lamination method illustrated in
In both completely filled structure 93 and partially filled structure 95, the level of light absorbing material used in light absorbing adhesive 85 is chosen based on the desired amount of contrast enhancement and ambient light absorption. The light absorbing material in an exemplary embodiment is a black pigment such as carbon black. In completely filled structure 93, the black pigment concentration can be relatively low and yet yield an acceptable total fixed absorbence, or optical density value, because the thickness of the layer of light absorbing adhesive 85 is large. A suitable loading concentration of pigment such as carbon black in completely filled structure 93 in one embodiment is between about 50 ppm and about 20,000 ppm. In an exemplary embodiment, the concentration is greater than about 1,000 ppm and less than about 9,000 ppm. A concentration of about 3,000 ppm is particularly suitable, based on mass ratios of the carbon black material to the adhesive material. However, in partially filled structure 95, the coating thickness is small; therefore, the black pigment concentration must be larger to yield the same optical density. In the latter case, the ambient light absorption is larger per unit of coating thickness than in the former case. A suitable loading concentration of pigment such as carbon black in partially filled structure 95 in one embodiment is between about 50 ppm and about 20,000 ppm. In an exemplary embodiment, the concentration is greater than about 5,000 ppm and less than about 10,000 ppm, based on mass ratios of the carbon black material to the adhesive material.
A challenge in both completely filled structure 93 and partially filled structure 95 is the removal of excess adhesive 85 from front surface 66 of diffuser ribs 24 during lamination. If all of the light absorbing adhesive 85 is not removed from front surface 66 of the diffuser ribs 24 during lamination, some image light can be lost due to absorption during TIR transmission. In a partially filled structure 95 with more highly pigmented adhesive 85, more loss of image light can occur for the same residual black layer thickness.
One suitable hard coat material is disclosed in U.S. Pat. No. 5,104,929 to Bilkadi, hereby incorporated by reference. Bilkadi teaches a photocurable abrasion resistant coating including colloidal silicon dioxide particles dispersed in ethylenically unsaturated aliphatic and/or cycloaliphatic monomers that are substituted by a protic group. In particular, the coating composition curable to an abrasion and weather resistant coating includes a non-aqueous dispersion of colloidal silicon dioxide particles of diameters less than about 100 nanometers in a protic group-substituted ester or amide of acrylic or methacrylic acid.
Another suitable hard coat material is disclosed in U.S. Pat. No. 5,633,049 to Bilkadi, hereby incorporated by reference. Bilkadi teaches an acid- and abrasion-resistant coating prepared from a silica-free protective coating precursor composition including a multifunctional ethylenically unsaturated ester of acrylic acid, a multifunctional ethylenically unsaturated ester of methacrylic acid, or a combination thereof; and an acrylamide.
Other hard coat materials include room-temperature curing silicone resins derived from functionalized silane monomers; coatings derived from hydrolyzable silanes; polymers derived from a combination of acryloxy functional silanes and polyfunctional acrylate monomers; polymers such as acrylic with colloidal silica; and polymerized acrylate or methacrylate functionalities on a monomer, oligomer or resin; for example.
The thickness of base film 22 can be chosen to meet the requirements of each particular application. For example, a thin base film with a thickness of about 0.127 mm (5 mils) to about 0.254 mm (10 mils) can be chosen to provide for ease of manufacturing; alternatively, a thick film with a thickness of about 0.508 mm (20 mils) to about 1.016 mm (40 mils) can be chosen to provide additional product stiffness. Suitable materials include polycarbonate, polyester, acrylic, polyolefin, polypropylene and vinyl films, for example. In one exemplary embodiment, back surface 98 of embedded microstructured film 60 has a matte finish to reduce specular reflection back into the imaging system.
Shield 86 can also be varied to provide for different functionalities. Shield 86 can range in thickness from thin (less than about 0.508 mm (20 mils)) to semi-rigid (about 0.508 mm (20 mils) to about 1.016 mm (40 mils)) to rigid (greater than about 1.016 mm (40 mils)). The thickness of base substrate 22 and protective shield 86 can be chosen to yield a wide variety of products with these options impacting total material cost, optical functionality, overall construction stiffness and ease of processing. In one exemplary embodiment, light diffusive ribs 24 are formed of a polycarbonate loaded with light diffusing particles.
Thereafter, bottom liner 116 of the adhesive composite 114 is removed and wound onto bottom liner rewind 118. A shield 86 is introduced on a transversely traveling feed web or other suitable mechanism and disposed onto the exposed adhesive 100. The structure then passes through lamination nip 108, where shield 86 is pressed onto microstructured film 60 and adhered thereto by adhesive 100. The embedded microstructured film 60 can be severed between discrete shields 86 to form individual shielded screens 96.
Although the present invention has been described with reference to exemplary embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. For example, while particular shapes for light diffusive and light absorbing structures are illustrated, it is contemplated that the structures may be formed in different shapes, incorporating additional or different planes or angles, additional edges, and curved surfaces. It is further noted that the light diffusive structures on a particular substrate need not all be of the same height or shape, for example. Similarly, the light absorbing structures on a particular substrate need not all be of the same height or shape, for example. Moreover, components of the materials and processes described therein are combinable in numerous ways; only a few of those possibilities have been specifically described by way of example, although all are regarded to be within the scope of the invention.
This application incorporates by reference co-pending applications Ser. No. ______, filed ______, entitled “Composition for Microstructured Screens” by Peter M. Olofson et al. and Ser. No. ______, filed ______, entitled “Microstructured Screen With Light Absorbing Material and Method of Manufacturing” by Patrick A. Thomas et al.