MICROTUBULE ASSOCIATED PROTEIN TAU (MAPT) iRNA AGENT COMPOSITIONS AND METHODS OF USE THEREOF

Abstract
The disclosure relates to double stranded ribonucleic acid interference (dsRNAi) agents and compositions targeting a microtubule-associated protein tau (MAPT) gene, as well as methods of inhibiting expression of a MAPT gene and methods of treating subjects having a MAPT-associated disease or disorder, e.g., Alzheimer's disease, frontotemporal dementia, progressive supranuclear palsy, or other tauopathies, using such dsRNAi agents and compositions.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and are hereby incoroporated by reference in its entirety. The ASCII copy, created on Mar. 24, 2021, is named A108868_1030WO_SL.txt and is 1,018,753 bytes in size.


BACKGROUND OF THE INVENTION

The microtubule associated protein tau (MAPT) gene encoding the protein Microtubule-Associated Protein Tau (Mapt), a member of the microtubule-associated protein family, is located in the chromosomal region 17q21.31 (base pairs 45,894,382 to 46,028,334 on chromosome 17). The MAPT gene consists of 16 exons. Alternative mRNA splicing gives rise to six MAPT isoforms with a total of 352-441 amino acids. In three of the six MAPT isoforms, the microtubule-binding domain of MAPT contains three repeated segments, whereas the corresponding domain contains four repeated segments in the other three MAPT isoforms.


MAPT transcripts are differentially expressed throughout the body, predominantly in the central and peripheral nervous system. Wild type Tau is involved in stabilizing microtubules in neuronal axons, maintaining dendric spines, and regulating axonal transport, microtubule dynamics, and cell division. Pathogenic variants of MAPT are found in approximately 10% of patients with primary tauopathy. Variants are primarily missense mutations and localized in exons 9-13 (microtubule binding domains), with many affecting the alternative splicing of exon 10.


Tauopathies are a heterogeneous class of progressive neurodegenerative disorders pathologically characterized by the presence of Tau aggregates in the brain. Phenotypically, tauopathies show variable progression of motor, cognitive, and behavioral impairment. Tauopathies include, but are not limited to, Alzheimer's disease, frontotemporal dementia (FTD), and progressive supranuclear palsy (PSP). Tau is a major component of neurofibrillary tangles in the neuronal cytoplasm, a hallmark in Alzheimer's disease. The aggregation and deposition of Tau were also observed in approximately 50% of the brains of patients with Parkinson's disease.


FTD includes, but is not limited to, behavioral variant frontotemporal dementia (bvFTD), nonfluent variant primary progressive aphasia (nfvPPA), and corticobasal syndrome (CBS).


There are currently no curative therapies for tauopathies, and treatments are only aimed at alleviating the symptoms and improving the patient's quality of life. Accordingly, there is a need for agents that can selectively and efficiently inhibit or adjust the expression of the MAPT gene such that subjects having a MAPT-associated disorder, e.g., Alzheimer's disease, FTD, PSP, or another tauopathy, can be effectively treated.


BRIEF SUMMARY OF THE INVENTION

The present disclosure provides RNAi compositions, which effect the RNA-induced silencing complex (RISC)-mediated cleavage of RNA transcripts of a MAPT gene. The MAPT gene may be within a cell, e.g., a cell within a subject, such as a human. The use of these iRNAs enables the targeted degradation of mRNAs of the corresponding gene (MAPT gene) in mammals.


The iRNAs of the invention have been designed to target a MAPT gene, e.g., a MAPT gene having a missense and/or deletion mutations in the exons of the gene, and having a combination of nucleotide modifications. The iRNAs of the invention inhibit the expression of the MAPT gene by at least about 25%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or at least about 95%, relative to control levels, and reduce the level of sense- and antisense-containing foci. Without intending to be limited by theory, it is believed that a combination or sub-combination of the foregoing properties and the specific target sites, or the specific modifications in these iRNAs confer to the iRNAs of the invention improved efficacy, stability, potency, durability, and safety. In one aspect, the present invention provides a double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of MAPT, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the sense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3, and the antisense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from the nucleotide sequence of SEQ ID NO: 2 or SEQ ID NO: 4.


In another aspect, the present invention provides a dsRNA agent for inhibiting expression of MAPT, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the antisense strand comprises a region of complementarity to an mRNA encoding Tau, and wherein the region of complementarity comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from the nucleotide sequence of SEQ ID NO:2 or SEQ ID NO: 4.


In yet another aspect, the present invention provides a dsRNA agent for inhibiting expression of MAPT, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the antisense strand comprises a region of complementarity to an mRNA encoding Tau, and wherein the region of complementarity comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from any one of the antisense nucleotide sequences in any one of Tables 3-8 and 16-28.


In one embodiment, the sense strand comprises at least 15 contiguous nucleotides differing by no more than three nucleotides from any one of the nucleotide sequence of nucleotides 512-532, 513-533, 514-534, 515-535, 516-536, 517-537, 518-538, 519-539, 520-540, 1063-1083, 1067-1087, 1072-1092, 1074-1094, 1075-1095, 1125-1145, 1126-1146, 1127-1147, 1129-1149, 1170-1190, 1395-1415, 1905-1925, 1906-1926, 1909-1929, 1911-1931, 1912-1932, 1913-1933, 1914-1934, 1915-1935, 1916-1936, 1919-1939, 1951-1971, 1954-1974, 1958-1978, 2387-2407, 2409-2429, 2410-2430, 2469-2489, 2471-2491, 2472-2492, 2476-2496, 2477-2497, 2478-2498, 2480-2500, 2481-2501, 2482-2502, 2484-2504, 2762-2782, 2764-2784, 2766-2786, 2767-2787, 2768-2788, 2769-2789, 2819-2839, 2821-2841, 2828-2848, 2943-2963, 2944-2964, 2946-2966, 2947-2967, 3252-3272, 3277-3297, 3280-3300, 3281-3301, 3282-3302, 3284-3304, 3285-3305, 3286-3306, 3331-3351, 3332-3352, 3333-3353, 3334-3354, 3335-3355, 3336-3356, 3338-3358, 3340-3360, 3342-3362, 3343-3363, 3344-3364, 3345-3365, 3346-3366, 3347-3367, 3349-3369, 3350-3370, 3353-3373, 3364-3384, 3366-3386, 3367-3387, 3368-3388, 3369-3389, 3370-3390, 3412-3432, 3414-3434, 3415-3435, 3416-3436, 3417-3437, 3419-3439, 3420-3440, 3424-3444, 3425-3445, 3426-3446, 3427-3447, 3428-3448, 3429-3449, 3430-3450, 3431-3451, 3434-3454, 4132-4152, 4134-4154, 4179-4199, 4182-4202, 4184-4204, 4395-4415, 4425-4445, 4426-4446, 4429-4449, 4469-4489, 4470-4490, 4471-4491, 4472-4492, 4473-4493, 4474-4494, 4569-4589, 4571-4591, 4572-4592, 4596-4616, 4623-4643, 4721-4741, 4722-4742, 4725-4745, 4726-4746, 4766-4786, 4767-4787, 4768-4788, 4769-4789, 4770-4790, 4779-4799, 4805-4825, 4806-4826, 4807-4827, 4808-4828, 4809-4829, 4812-4832, 4813-4833, 4814-4834, 4936-4956, 5072-5092, 5073-5093, 5345-5365, 5346-5366, 5349-5369, 5350-5370, 5351-5371, 5460-5480, 5461-5481, 5463-5483, 5465-5485, 5467-5487, 5468-5488, 5469-5489, 5470-5490, 5471-5491, 5505-5525, 5506-5526, 5507-5527, 5508-5528, 5509-5529, 5511-5531, 5513-5533, 5514-5534, 5541-5561, 5544-5564, 5546-5566, 5547-5567, 5548-5568, 5550-5570, 5551-5571, 5574-5594, 5576-5596, 5614-5634, 521-541, 522-542, 523-543, 524-544, 525-545, 526-546, 527-547, 528-548, 529-549, 530-550, 531-551, 532-552, 533-553, 534-554, 535-555, 536-556, 1034-1054, 1035-1055, 1036-1056, 1037-1057, 1038-1058, 1039-1059, 1040-1060, 1041-1061, 1042-1062, 1043-1063, 1044-1064, 1045-1065, 1046-1066, 1047-1067, 1048-1068, 1049-1069, 1050-1070, 1051-1071, 1052-1072, 1053-1073, 1054-1074, 1062-1082, 1064-1084, 1065-1085, 1066-1086, 1068-1088, 1069-1089, 1070-1090, 1071-1091, 1073-1093, 1076-1096, 1077-1097, 1078-1098, 1079-1099, 1080-1100, 1081-1101, 1082-1102, 1128-1148, 1129-1149, 1130-1150, 1131-1151, 1132-1152, 1133-1153, 1134-1154, 1135-1155, 1136-1156, 1137-1157, 1138-1158, 1139-1159, 1140-1160, 1141-1161, 1142-1162, 1143-1163, 1144-1164, 1145-1165, 1146-1166, 1147-1167, 1148-1168, 975-995, 976-996, 977-997, 978-998, 979-999, 980-1000, 981-1001, 982-1002, 983-1003, 984-1004, 985-1005, 986-1006, 987-1007, 988-1008, 989-1009, 990-1010, 991-1011, 992-1012, 993-1013, 994-1014, 995-1015, 996-1016, 997-1017, 998-1018, 999-1019, 1000-1020, 1001-1021, 1002-1022, 1003-1023, 1004-1024, 1005-1025, 1006-1026, 1007-1027, 1008-1028, 1009-1029, 1010-1030, 1011-1031,1012-1032, 1013-1033,1014-1034, 1015-1035,1016-1036, 1017-1037,1018-1038, 1019-1039, 1020-1040, 1021-1041, 1022-1042, 1023-1043, 1024-1044, 1025-1045, 1026-1046, 1027-1047, 1028-1048, 1029-1049, 1030-1050, 1031-1051, 1032-1052, 1033-1053, 1034-1054, 1035-1055, 1036-1056, 1037-1057, 1038-1058, 1039-1059, 1040-1060, 1041-1061, 1042-1062, 1043-1063 and 1045-1065 of SEQ ID NO: 3, and the antisense strand comprises at least 15 contiguous nucleotides from the corresponding nucleotide sequence of SEQ ID NO: 4.


In certain embodiments, the antisense polynucleotides disclosed herein are substantially complementary to a fragment of a target MAPT sequence and comprise a contiguous nucleotide sequence which is complementary over its entire length to a fragment of SEQ ID NO: 4 selected from the group of nucleotides, wherein the sense strand comprises at least 15 contiguous nucleotides differing by no more than three nucleotides from any one of the nucleotide sequence of nucleotides 520-541, 520-556, 510-534, 512-536, 516-541, 516-540, 520-544, 524-547, 526-551, 529-556, 532-556, 1065-1089, 1068-1095, 1068-1094, 1075-1100, 1076-1100, 1079-1103, 1123-1147, 1127-1151, 1130-1155, 1903-1934, 1903-1930, 1914-1940, 1949-1975, 2470-2497, 2941-2965, 3275-3302, 3278-3302, 3329-3353, 3333-3357, 3338-3367, 3338-3366, 3348-3390, 3348-3388, 3351-3385, 5507-5562 and 5549-5597 of SEQ ID NO: 3, and the antisense strand comprises at least 15 contiguous nucleotides from the corresponding nucleotide sequence of SEQ ID NO: 4.


In one embodiment, the sense strand comprises at least 15 contiguous nucleotides differing by no more than three nucleotides from any one of the nucleotide sequence of nucleotides 977-997, 980-1000, 973-993, 988-1008, 987-1007, 972-992, 979-999, 1001-1021, 976-996, 994-1014, 1002-1022, 978-998, 974-994, 520-540, 521-541, 5464-5484, 1813-1833, 2378-2398, 3242-3262, 5442-5462, 1665-1685, 524-544, 5207-5227, 4670-4690, 3420-3440, 3328-3348, 5409-5429, 5439-5459, 4527-4547, 5441-5461, 5410-5430 and 5446-5466 of SEQ ID NO: 1, and the antisense strand comprises at least 15 contiguous nucleotides from the corresponding nucleotide sequence of SEQ ID NO: 2.


In one embodiment, the antisense strand comprises at least 15 contiguous nucleotides differing by no more than three nucleotides from any one of the antisense strand nucleotide sequences of a duplex selected from the group consisting of AD-523799.1, AD-523802.1, AD-523795.1, AD-523810.1, AD-523809.1, AD-1019331.1, AD-523801.1, AD-523823.1, AD-523798.1, AD-523816.1, AD-523824.1, AD-523800.1, AD-523796.1, AD-535094.1, AD-535094.1, AD-535095.1, AD-538647.1, AD-535922.1, AD-536317.1, AD-536911.1, AD-538626.1, AD-535864.1, AD-523561.1, AD-523565.1, AD-523562.1, AD-526914.1, AD-526394.1, AD-395452.1, AD-525343.1, AD-524274.1, AD-526956.1, AD-526986.1, AD-526296.1, AD-526988.1, AD-526957.1, AD-526993.1, AD-1397070.1, AD-1397070.2, AD-1397071.1, AD-1397071.2, AD-1397072.1, AD-1397072.2, AD-1397073.1, AD-1397073.2, AD-1397074.1, AD-1397074.2, AD-1397075.1, AD-1397075.2, AD-1397076.1, AD-1397076.2, AD-1397077.1, AD-1397077.2, AD-1397078.1, AD-1397078.2, AD-1397250.1, AD-1397251.1, AD-1397252.1, AD-1397253.1, AD-1397254.1, AD-1397255.1, AD-1397256.1, AD-1397257.1, AD-1397258.1, AD-1397259.1, AD-1397260.1, AD-1397261.1, AD-1397262.1, AD-1397263.1, AD-1397264.1, AD-1397265.1, AD-1423242.1, AD-1423243.1, AD-1423244.1, AD-1423245.1, AD-1423246.1, AD-1423247.1, AD-1423248.1, AD-1423249.1, AD-1423250.1, AD-1423251.1, AD-1423252.1, AD-1423253.1, AD-1423254.1, AD-1423255.1, AD-1423256.1, AD-1423257.1, AD-1423258.1, AD-1423259.1, AD-1423260.1, AD-1423261.1, AD-1423262.1, AD-1423263.1, AD-1423264.1, AD-1423265.1, AD-1423266.1, AD-1423267.1, AD-1423268.1, AD-1423269.1, AD-1423270.1, AD-1423271.1, AD-1423272.1, AD-1423273.1, AD-1423274.1, AD-1423275.1, AD-1423276.1, AD-1423277.1, AD-1423278.1, AD-1423279.1, AD-1423280.1, AD-1423281.1, AD-1423282.1, AD-1423283.1, AD-1423284.1, AD-1423285.1, AD-1423286.1, AD-1423287.1, AD-1423288.1, AD-1423289.1, AD-1423290.1, AD-1423291.1, AD-1423292.1, AD-1423293.1, AD-1423294.1, AD-1423295.1, AD-1423296.1, AD-1423297.1, AD-1423298.1, AD-1423299.1, AD-1423300.1, AD-1397266.1, AD-1397266.2, AD-1397267.1, AD-1423301.1, AD-1397268.1, AD-1397268.2, AD-1397269.1, AD-1423302.1, AD-1397270.1, AD-1397270.2, AD-1397271.1, AD-1397271.2, AD-1397272.1, AD-1423303.1, AD-1397273.1, AD-1423304.1, AD-1397274.1, AD-1423305.1, AD-1397275.1, AD-1423306.1, AD-1397276.1, AD-1397277.1, AD-1397277.2, AD-1397278.1, AD-1397279.1, AD-1397280.1, AD-1397281.1, AD-1397282.1, AD-1397283.1, AD-1397284.1, AD-1397285.1, AD-1397286.1, AD-1397287.1, AD-1397079.1, AD-1397079.2, AD-1397288.1, AD-1397289.1, AD-1397290.1, AD-1397080.1, AD-1397080.2, AD-1397291.1, AD-1397292.1, AD-1397293.1, AD-1397294.1, AD-1397081.1, AD-1397081.2, AD-1397295.1, AD-1397082.1, AD-1397082.2, AD-1397083.1, AD-1397083.2, AD-1397296.1, AD-1397297.1, AD-1397298.1, AD-1397299.1, AD-1397300.1, AD-1397301.1, AD-1397302.1, AD-1397084.1, AD-1397085.1, AD-1397086.1, AD-1397303.1, AD-1397087.1, AD-1397087.2, AD-1397304.1, AD-1397305.1, AD-1397306.1, AD-1397307.1, AD-1397308.1, AD-1397309.1, AD-1397310.1, AD-1397311.1, AD-1397312.1, AD-1397313.1, AD-1397314.1, AD-1397315.1, AD-1397316.1, AD-1397317.1, AD-1397318.1, AD-1397319.1, AD-1397320.1, AD-1397321.1, AD-1397322.1, AD-1397088.1, AD-1397089.1, AD-1397090.1, AD-1397091.1, AD-1397092.1, AD-1397093.1, AD-1397094.1, AD-1397095.1, AD-1397096.1, AD-1397097.1, AD-1397098.1, AD-1397099.1, AD-1397101.1, AD-1397102.1, AD-1397103.1, AD-1397104.1, AD-1397105.1, AD-1397106.1, AD-1397107.1, AD-1397108.1, AD-1397109.1, AD-1397110.1, AD-1397111.1, AD-1397112.1, AD-1397113.1, AD-1397114.1, AD-1397115.1, AD-1397116.1, AD-1397117.1, AD-1397118.1, AD-1397119.1, AD-1397120.1, AD-1397121.1, AD-1397122.1, AD-1397123.1, AD-1397124.1, AD-1397125.1, AD-1397126.1, AD-1397127.1, AD-1397128.1, AD-1397129.1, AD-1397130.1, AD-1397131.1, AD-1397132.1, AD-1397133.1, AD-1397134.1, AD-1397135.1, AD-1397136.1, AD-1397137.1, AD-1397138.1, AD-1397139.1, AD-1397140.1, AD-1397141.1, AD-1397142.1, AD-1397143.1, AD-1397144.1, AD-1397145.1, AD-1397146.1, AD-1397147.1, AD-1397148.1, AD-1397149.1, AD-1397150.1, AD-1397151.1, AD-1397152.1, AD-1397153.1, AD-1397154.1, AD-1397155.1, AD-1397156.1, AD-1397157.1, AD-1397158.1, AD-1397159.1, AD-1397160.1, AD-1397161.1, AD-1397162.1, AD-1397163.1, AD-1397164.1, AD-1397165.1, AD-1397166.1, AD-1397167.1, AD-1397168.1, AD-1397169.1, AD-1397170.1, AD-1397171.1, AD-1397172.1, AD-1397173.1, AD-1397174.1, AD-1397175.1, AD-1397176.1, AD-1397177.1, AD-1397178.1, AD-1397179.1, AD-1397180.1, AD-1397181.1, AD-1397182.1, AD-1397183.1, AD-1397184.1, AD-1397185.1, AD-1397186.1, AD-1397187.1, AD-1397188.1, AD-1397189.1, AD-1397190.1, AD-1397191.1, AD-1397192.1, AD-1397193.1, AD-1397194.1, AD-1397195.1, AD-1397196.1, AD-1397197.1, AD-1397198.1, AD-1397199.1, AD-1397200.1, AD-1397201.1, AD-1397202.1, AD-1397203.1, AD-1397204.1, AD-1397205.1, AD-1397206.1, AD-1397207.1, AD-1397208.1, AD-1397209.1, AD-1397210.1, AD-1397211.1, AD-1397212.1, AD-1397213.1, AD-1397214.1, AD-1397215.1, AD-1397216.1, AD-1397217.1, AD-1397218.1, AD-1397219.1, AD-1397220.1, AD-1397221.1, AD-1397222.1, AD-1397223.1, AD-1397224.1, AD-1397225.1, AD-1397226.1, AD-1397227.1, AD-1397228.1, AD-1397229.1, AD-1397230.1, AD-1397231.1, AD-1397232.1, AD-1397233.1, AD-1397234.1, AD-1397235.1, AD-1397236.1, AD-1397237.1, AD-1397238.1, AD-1397239.1, AD-1397240.1, AD-1397241.1, AD-1397242.1, AD-1397243.1, AD-1397244.1, AD-1397245.1, AD-1397246.1, AD-1397247.1, AD-1397248.1, AD-1397249.1, AD-523565.1, AD-1397072.3, AD-1397073.3, AD-1397076.3, AD-1397077.3, AD-1397078.3, AD-1397252.2, AD-1397257.2, AD-1397258.2, AD-1397259.2, AD-1397263.2, AD-1397264.2, AD-1397309.2, AD-64958.114, AD-393758.4, AD-1397080.3, AD-1397293.2, AD-1397294.2, AD-1397081.3, AD-1397083.3, AD-1397298.2, AD-1397299.2, AD-1397084.2, AD-1397085.2, AD-1397087.3, AD-1397306.2, AD-1397307.2, AD-1397308.2, AD-1397088.2, AD-1566238, AD-1566239, AD-1566240, AD-1566241, AD-1566242, AD-1566243, AD-1566244, AD-1566245, AD-1566246, AD-1091965, AD-1566248, AD-1566249, AD-1566250, AD-1091966, AD-1566251, AD-1566252, AD-1566253, AD-1566254, AD-1566255, AD-1566256, AD-1566257, AD-1566258, AD-1566259, AD-692906, AD-1566575, AD-1566576, AD-1566577, AD-1566580, AD-1566581, AD-1566582, AD-1566583, AD-1566584, AD-1566586, AD-1566587, AD-1566588, AD-1566590, AD-1566591, AD-1566634, AD-1566635, AD-1566638, AD-1566639, AD-1566641, AD-1566642, AD-1566643, AD-1566679, AD-1566861, AD-1567153, AD-1567154, AD-1567157, AD-1567159, AD-1567160, AD-1567161, AD-1567164, AD-1567167, AD-1567199, AD-1567202, AD-1567550, AD-1567554, AD-1567784, AD-1567896, AD-1567897, AD-1568105, AD-1568108, AD-1568109, AD-1568139, AD-1568140, AD-1568143, AD-1568144, AD-1568148, AD-1568150, AD-1568151, AD-1568152, AD-1568153, AD-1568154, AD-1568158, AD-1568161, AD-1568172, AD-1568174, AD-1568175, AD-692908, AD-1568176, AD-1569830, AD-1569832, AD-1569834, AD-1569835, AD-1569862, AD-1569872, AD-1569890 and AD-1569892.


In a particular embodiment, the antisense strand comprises at least 15 contiguous nucleotides differing by no more than three nucleotides from any one of the antisense strand nucleotide sequences of a duplex selected from the group consisting of AD-523799.1, AD-523802.1, AD-523795.1, AD-523810.1, AD-523809.1, AD-1019331.1, AD-523801.1, AD-523823.1, AD-523798.1, AD-523816.1, AD-523824.1, AD-523800.1, AD-523796.1, AD-535094.1, AD-535094.1, AD-535095.1, AD-538647.1, AD-535922.1, AD-536317.1, AD-536911.1, AD-538626.1, AD-535864.1, AD-523561.1, AD-523565.1, AD-523562.1, AD-526914.1, AD-526394.1, AD-395452.1, AD-525343.1, AD-524274.1, AD-526956.1, AD-526986.1, AD-526296.1, AD-526988.1, AD-526957.1 and AD-526993.1. In one embodiment, the antisense strand comprises at least 15 contiguous nucleotides differing by no more than three nucleotides from any one of the antisense strand nucleotide sequences of a duplex selected from the group consisting of AD-523799.1, AD-523802.1, AD-523795.1, AD-523810.1, AD-523809.1, AD-1019331.1, AD-523801.1, AD-523823.1, AD-523798.1, AD-523816.1, AD-523824.1, AD-523800.1 and AD-523796.1.


In some embodiments, the nucleotide sequence of the sense and antisense strand comprises any one of the sense and antisense strand nucleotide sequences in any one of Tables 3-8 and 16-28.


In one embodiment, the nucleotide sequence of the sense strand comprises at least 15 contiguous nucleotides corresponding to the MAPT gene exon 10 sense strand sequence set forth in SEQ ID NO: 1533 and an antisense strand comprising a sequence complementary thereto.


In one aspect, the present invention provides a dsRNA agent for inhibiting expression of MAPT, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the sense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from the nucleotide sequence of SEQ ID NO: 5 and the antisense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from the nucleotide sequence of SEQ ID NO: 6.


In another aspect, the present invention provides a dsRNA agent for inhibiting expression of MAPT, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the antisense strand comprises a region of complementarity to an mRNA encoding Tau, and wherein the region of complementarity comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from the nucleotide sequence of SEQ ID NO:6.


In yet another aspect, the present invention provides a dsRNA agent for inhibiting expression of MAPT, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the antisense strand comprises a region of complementarity to an mRNA encoding Tau, and wherein the region of complementarity comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from any one of the antisense nucleotide sequences in any one of Tables 12-13.


In one embodiment, the sense strand comprises at least 15 contiguous nucleotides differing by no more than three nucleotides from any one of the nucleotide sequence of nucleotides 1065-1085, 1195-1215, 1066-1086, 1068-1088, 705-725, 1067-1087, 4520-4540, 3341-3361, 4515-4535, 5284-5304, 5285-5305, 344-364, 5283-5303, 5354-5374, 2459-2479, 1061-1081, 706-726, 972-992, 4564-4584, 995-1015, 4546-4566, 968-988, 1127-1147, 4534-4554, 158-178, 4494-4514, 1691-1711, 3544-3564, 198-218, 979-999, 4548-4568, 4551-4571, 543-563, 715-735, 542-562, 352-372, 362-382, 4556-4576, 4547-4567, 4542-4562, 4558-4578, 4549-4569, 5074-5094, 4552-4572, 5073-5093, 5076-5096, 4550-4570 and 2753-2773 of SEQ ID NO: 5, and the antisense strand comprises at least 15 contiguous nucleotides from the corresponding nucleotide sequence of SEQ ID NO: 6.


In one embodiment, the antisense strand comprises at least 15 contiguous nucleotides differing by no more than three nucleotides from any one of the antisense strand nucleotide sequences of a duplex selected from the group consisting of AD-393758.1, AD-393888.1, AD-393759.1, AD-393761.1, AD-393495.1, AD-393760.1, AD-396425.1, AD-395441.1, AD-396420.1, AD-397103.1, AD-397104.1, AD-393239.1, AD-397102.1, AD-397167.1, AD-394791.1, AD-393754.1, AD-393496.1, AD-393667.1, AD-396467.1, AD-393690.1, AD-396449.1, AD-393663.1, AD-393820.1, AD-396437.1, AD-393084.1, AD-396401.1, AD-394296.1, AD-395574.1, AD-393124.1, AD-393674.1, AD-396451.1, AD-396454.1, AD-393376.1, AD-393505.1, AD-393375.1, AD-393247.1, AD-393257.1, AD-396459.1, AD-396450.1, AD-396445.1, AD-396461.1, AD-396452.1, AD-396913.1, AD-396455.1, AD-396912.1, AD-396915.1, AD-396453.1 and AD-394991.1.


In one embodiment, the sense strand, the antisense strand, or both the sense strand and the antisense strand described herein, is/are conjugated to one or more lipophilic moieties.


In one embodiment, the lipophilic moiety is conjugated to one or more internal positions in the double stranded region of the dsRNA agent.


In one embodiment, the lipophilic moiety is conjugated via a linker or carrier.


In one embodiment, the lipophilicity of the lipophilic moiety, measured by logKow, exceeds 0.


In one embodiment, the hydrophobicity of the double-stranded RNA agent, measured by the unbound fraction in a plasma protein binding assay of the double-stranded RNA agent, exceeds 0.2.


In one embodiment, the plasma protein binding assay is an electrophoretic mobility shift assay using human serum albumin protein.


In some embodiments, the dsRNA agent comprises at least one modified nucleotide.


In one embodiment, no more than five of the sense strand nucleotides and no more than five of the nucleotides of the antisense strand in a dsRNA agent of the present invention are unmodified nucleotides.


In one embodiment, all of the nucleotides of the sense strand and all of the nucleotides of the antisense strand in the dsRNA agent are modified nucleotides.


In some embodiments, at least one of the modified nucleotides of the dsRNA agent is selected from the group consisting of a deoxy-nucleotide, a 3′-terminal deoxythimidine (dT) nucleotide, a 2′-O-methyl modified nucleotide, a 2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, a locked nucleotide, an unlocked nucleotide, a conformationally restricted nucleotide, a constrained ethyl nucleotide, an abasic nucleotide, a 2′-amino-modified nucleotide, a 2′-O-allyl-modified nucleotide, 2′-C-alkyl-modified nucleotide, 2′-hydroxly-modified nucleotide, a 2′-methoxyethyl modified nucleotide, a 2′-O-alkyl-modified nucleotide, a morpholino nucleotide, a phosphoramidate, a non-natural base comprising nucleotide, a tetrahydropyran modified nucleotide, a 1,5-anhydrohexitol modified nucleotide, a cyclohexenyl modified nucleotide, a nucleotide comprising a 5′-phosphorothioate group, a nucleotide comprising a 5′-methylphosphonate group, a nucleotide comprising a 5′ phosphate or 5′ phosphate mimic, a nucleotide comprising vinyl phosphonate, a nucleotide comprising adenosine-glycol nucleic acid (GNA), a nucleotide comprising thymidine-glycol nucleic acid (GNA) S-Isomer, a nucleotide comprising 2-hydroxymethyl-tetrahydrofurane-5-phosphate, a nucleotide comprising 2′-deoxythymidine-3′phosphate, a nucleotide comprising 2′-deoxyguanosine-3′-phosphate, and a terminal nucleotide linked to a cholesteryl derivative and a dodecanoic acid bisdecylamide group; and combinations thereof.


In one embodiment, the modified nucleotide of the dsRNA agent is selected from the group consisting of a 2′-deoxy-2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, 3′-terminal deoxythimidine nucleotides (dT), a locked nucleotide, an abasic nucleotide, a 2′-amino-modified nucleotide, a 2′-alkyl-modified nucleotide, a morpholino nucleotide, a phosphoramidate, and a non-natural base comprising nucleotide.


In one embodiment, the modified nucleotide of the dsRNA comprises a short sequence of 3′-terminal deoxythimidine nucleotides (dT).


In one embodiment, the modifications on the nucleotides of the dsRNA agent are 2′-O-methyl, GNA and 2′fluoro modifications.


In some embodiments, the dsRNA agent further comprises at least one phosphorothioate internucleotide linkage.


In one embodiment, the dsRNA agent comprises 6-8 phosphorothioate internucleotide linkages.


In one embodiment, each strand of the dsRNA is no more than 30 nucleotides in length.


In one embodiment, at least one strand of the dsRNA agent comprises a 3′ overhang of at least 1 nucleotide. In another embodiment, at least one strand of the dsRNA agent comprises a 3′ overhang of at least 2 nucleotides.


In some embodiments, the double stranded region of the dsRNA agent may be 15-30 nucleotide pairs in length; 17-23 nucleotide pairs in length; 17-25 nucleotide pairs in length; 23-27 nucleotide pairs in length; 19-21 nucleotide pairs in length; or 21-23 nucleotide pairs in length.


In some embodiments, each strand of the dsRNA may have 19-30 nucleotides; 19-23 nucleotides; or 21-23 nucleotides.


In one embodiment, one or more lipophilic moieties are conjugated to one or more internal positions on at least one strand, such as via a linker or carrier.


In one embodiment, the internal positions include all positions except the terminal two positions from each end of the at least one strand.


In another embodiment, the internal positions include all positions except the terminal three positions from each end of the at least one strand.


In one embodiment, the internal positions exclude a cleavage site region of the sense strand.


In one embodiment, the internal positions include all positions except positions 9-12, counting from the 5′-end of the sense strand.


In another embodiment, the internal positions include all positions except positions 11-13, counting from the 3′-end of the sense strand.


In one embodiment, the internal positions exclude a cleavage site region of the antisense strand.


In one embodiment, the internal positions include all positions except positions 12-14, counting from the 5′-end of the antisense strand.


In one embodiment, the internal positions include all positions except positions 11-13 on the sense strand, counting from the 3′-end, and positions 12-14 on the antisense strand, counting from the 5′-end.


In one embodiment, the one or more lipophilic moieties are conjugated to one or more of the internal positions selected from the group consisting of positions 4-8 and 13-18 on the sense strand, and positions 6-10 and 15-18 on the antisense strand, counting from the 5′end of each strand.


In another embodiment, the one or more lipophilic moieties are conjugated to one or more of the internal positions selected from the group consisting of positions 5, 6, 7, 15, and 17 on the sense strand, and positions 15 and 17 on the antisense strand, counting from the 5′-end of each strand.


In one embodiment, the internal positions in the double stranded region exclude a cleavage site region of the sense strand.


In one embodiment, the sense strand is 21 nucleotides in length, the antisense strand is 23 nucleotides in length, and the lipophilic moiety is conjugated to position 21, position 20, position 15, position 1, position 7, position 6, or position 2 of the sense strand or position 16 of the antisense strand.


In one embodiment, the lipophilic moiety is conjugated to position 21, position 20, position 15, position 1, or position 7 of the sense strand.


In another embodiment, the lipophilic moiety is conjugated to position 21, position 20, or position 15 of the sense strand.


In yet another embodiment, the lipophilic moiety is conjugated to position 20 or position 15 of the sense strand.


In one embodiment, the lipophilic moiety is conjugated to position 16 of the antisense strand.


In one embodiment, the lipophilic moiety is an aliphatic, alicyclic, or polyalicyclic compound.


In one embodiment, the lipophilic moiety is selected from the group consisting of lipid, cholesterol, retinoic acid, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-bis-O(hexadecyl)glycerol, geranyloxyhexyanol, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3-(oleoyl) lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine.


In one embodiment, the lipophilic moiety contains a saturated or unsaturated C4-C30 hydrocarbon chain, and an optional functional group selected from the group consisting of hydroxyl, amine, carboxylic acid, sulfonate, phosphate, thiol, azide, and alkyne.


In one embodiment, the lipophilic moiety contains a saturated or unsaturated C6-C18 hydrocarbon chain.


In one embodiment, the lipophilic moiety contains a saturated or unsaturated C16 hydrocarbon chain.


In one embodiment, the saturated or unsaturated C16 hydrocarbon chain is conjugated to position 6, counting from the 5′-end of the strand.


In one embodiment, the lipophilic moiety is conjugated via a carrier that replaces one or more nucleotide(s) in the internal position(s) or the double stranded region.


In one embodiment, the carrier is a cyclic group selected from the group consisting of pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolanyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuranyl, and decalinyl; or is an acyclic moiety based on a serinol backbone or a diethanolamine backbone.


In one embodiment, the lipophilic moiety is conjugated to the double-stranded iRNA agent via a linker containing an ether, thioether, urea, carbonate, amine, amide, maleimide-thioether, disulfide, phosphodiester, sulfonamide linkage, a product of a click reaction, or carbamate.


In one embodiment, the lipophilic moiety is conjugated to a nucleobase, sugar moiety, or internucleosidic linkage.


In one embodiment, the lipophilic moiety or targeting ligand is conjugated via a bio-linker selected from the group consisting of DNA, RNA, disulfide, amide, functionalized monosaccharides or oligosaccharides of galactosamine, glucosamine, glucose, galactose, mannose, and combinations thereof.


In one embodiment, the 3′ end of the sense strand is protected via an end cap which is a cyclic group having an amine, said cyclic group being selected from the group consisting of pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolanyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuranyl, and decalinyl.


In one embodiment, the dsRNA agent further comprises a targeting ligand that targets a neuronal cell.


In one embodiment, the dsRNA agent further comprises a targeting ligand that targets a liver cell.


In one embodiment, the targeting ligand is a GalNAc conjugate.


In one embodiment, the dsRNA agent further comprises a terminal, chiral modification occurring at the first internucleotide linkage at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration, a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and


a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp configuration or Sp configuration.


In another embodiment, the dsRNA agent further comprises a terminal, chiral modification occurring at the first and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration, a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


In yet another embodiment, the dsRNA agent further comprises a terminal, chiral modification occurring at the first, second and third internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration, a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


In another embodiment, the dsRNA agent further comprises a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration, a terminal, chiral modification occurring at the third internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


In another embodiment, the dsRNA agent further comprises a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration, a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


In one embodiment, the dsRNA agent further comprises a phosphate or phosphate mimic at the 5′-end of the antisense strand.


In one embodiment, the phosphate mimic is a 5′-vinyl phosphonate (VP).


In one embodiment, the base pair at the 1 position of the 5′-end of the antisense strand of the duplex is an AU base pair.


In one embodiment, the sense strand has a total of 21 nucleotides and the antisense strand has a total of 23 nucleotides.


The present invention also provides cells and pharmaceutical compositions comprising a dsRNA agent of the invention and a lipid formulation.


The present invention also provides pharmaceutical compositions for inhibiting expression of a gene encoding MAPT comprising a dsRNA agent of the invention.


The present invention also provides pharmaceutical compositions for selective inhibition of exon 10-containing MAPT transcripts comprising a dsRNA agent of the invention.


In one embodiment, the dsRNA agent is in an unbuffered solution, such as saline or water.


In another embodiment, the dsRNA agent is in a buffer solution, such as a buffer solution comprising acetate, citrate, prolamine, carbonate, or phosphate or any combination thereof; or phosphate buffered saline (PBS).


In one aspect, the present invention provides a method of inhibiting expression of a MAPT gene in a cell, the method comprising contacting the cell with a dsRNA agent of the invention, or a pharmaceutical composition of the invention, thereby inhibiting expression of the MAPT gene in the cell.


In another aspect, the present invention provides a method comprises selective inhibition of exon 10-containing MAPT transcripts in a cell, the method comprising contacting the cell with a dsRNA agent of the invention, or a pharmaceutical composition of the invention, thereby selectively degrading exon 10-containing MAPT transcripts in the cell.


In one embodiment, the cell is within a subject.


In one embodiment, the subject is a human.


In one embodiment, the subject has a MAPT-associated disorder.


In one embodiment, the subject has a MAPT-associated disorder that is a neurodegenerative disorder.


In one embodiment, the neurodegenerative disorder of the subject is associated with an abnormality of MAPT gene encoded protein Tau.


In one embodiment, the abnormality of MAPT gene encoded protein Tau results in aggregation of Tau in subject's brain.


In one embodiment, the neurodegenerative disorder is a familial disorder.


In one embodiment, the neurodegenerative disorder is a sporadic disorder.


In one embodiment, the MAPT-associated disorder is selected from the group consisting of tauopathy, Alzheimer disease, frontotemporal dementia (FTD), behavioral variant frontotemporal dementia (bvFTD), nonfluent variant primary progressive aphasia (nfvPPA), primary progressive aphasia-semantic (PPA-S), primary progressive aphasia-logopenic (PPA-L), frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), Pick's disease (PiD), argyrophilic grain disease (AGD), multiple system tauopathy with presenile dementia (MSTD), white matter tauopathy with globular glial inclusions (FTLD with GGIs), FTLD with MAPT mutations, neurofibrillary tangle (NFT) dementia, FTD with motor neuron disease, amyotrophic lateral sclerosis (ALS), corticobasal syndrome (CBS), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), Parkinson's disease, postencephalitic Parkinsonism, Niemann-Pick disease, Huntington disease, type 1 myotonic dystrophy, and Down syndrome (DS).


In some embodiments, contacting the cell with the dsRNA agent inhibits the expression of MAPT by at least about 25%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or at least about 95%, relative to control levels. In one embodiment, the dsRNA agent inhibits the expression of MAPT by at least about 25%.


In some embodiments, inhibiting expression of MAPT decreases Tau protein level in serum of the subject by at least about 25%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or at least about 95%, relative to control levels. In one embodiment, the dsRNA agent decreases Tau protein level in serum of the subject by at least about 25%.


In one aspect, the present invention provides a method of treating a subject having a disorder that would benefit from reduction in MAPT expression, comprising administering to the subject a therapeutically effective amount of a dsRNA agent of the invention, or a pharmaceutical composition of the invention, thereby treating the subject having the disorder that would benefit from reduction in MAPT expression.


In another aspect, the present invention provides a method of preventing at least one symptom in a subject having a disorder that would benefit from reduction in MAPT expression, comprising administering to the subject a prophylactically effective amount of a dsRNA agent of the invention, or a pharmaceutical composition of the invention, thereby preventing at least one symptom in the subject having the disorder that would benefit from reduction in MAPT expression.


In one embodiment, the disorder is a MAPT-associated disorder.


In one embodiment, the disorder is associated with an abnormality of MAPT gene encoded protein Tau.


In one embodiment, the abnormality of MAPT gene encoded protein Tau results in aggregation of Tau in subject's brain.


In one embodiment, the MAPT-associated disorder is selected from the group consisting of tauopathy, Alzheimer disease, frontotemporal dementia (FTD), behavioral variant frontotemporal dementia (bvFTD), nonfluent variant primary progressive aphasia (nfvPPA), primary progressive aphasia-semantic (PPA-S), primary progressive aphasia-logopenic (PPA-L), frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), Pick's disease (PiD), argyrophilic grain disease (AGD), multiple system tauopathy with presenile dementia (MSTD), white matter tauopathy with globular glial inclusions (FTLD with GGIs), FTLD with MAPT mutations, neurofibrillary tangle (NFT) dementia, FTD with motor neuron disease, amyotrophic lateral sclerosis (ALS), corticobasal syndrome (CBS), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), Parkinson's disease, postencephalitic Parkinsonism, Niemann-Pick disease, Huntington disease, type 1 myotonic dystrophy, and Down syndrome (DS).


In one embodiment, the subject is human.


In one embodiment, the administration of the dsRNA agent of the invention, or the pharmaceutical composition of the invention, causes a decrease in Tau aggregation in the subject's brain.


In one embodiment, the administration of the agent to the subject causes a decrease in Tau accumulation.


In one embodiment, the dsRNA agent is administered to the subject at a dose of about 0.01 mg/kg to about 50 mg/kg.


In another embodiment, the dsRNA agent is administered to the subject intrathecally.


In yet another embodiment, the dsRNA agent is administered to the subject intracisternally. A non-limiting exemplary intracisternal administration comprises an injection into the cisterna magna (cerebellomedullary cistern) by suboccipital puncture.


In one embodiment, the methods of the invention further comprise determining the level of MAPT in a sample(s) from the subject.


In one embodiment, the level of MAPT in the subject sample(s) is a Tau protein level in a blood, serum, or cerebrospinal fluid sample(s).


In one embodiment, the methods of the invention further comprise administering to the subject an additional therapeutic agent.


In one aspect, the present invention provides a kit comprising a dsRNA agent of the invention, or a pharmaceutical composition of the invention.


In another aspect, the present invention provides a vial comprising a dsRNA agent of the invention, or a pharmaceutical composition of the invention.


In yet another aspect, the present invention provides a syringe comprising a dsRNA agent of the invention, or a pharmaceutical composition of the invention.


In another aspect, the present invention provides an intrathecal pump comprising a dsRNA agent of the invention, or a pharmaceutical composition of the invention.





BRIEF SUMMARY OF THE FIGURE


FIG. 1 shows theAAV screen in liver to determine the effect of RNAi compositions on MAPT expression. Vertical axis indicates human MAPT expression in mice dosed with RNAi compositions relative to the MAPT expression levels in PBS dosed mice.



FIG. 2 shows the AAV screen in liver to determine the effect of selected dsRNA agents in Tables 25-26 on the level of both sense- or antisense-containing foci in mice expressing human MAPT RNAs. Vertical axis indicates human MAPT expression in mice dosed with RNAi compositions relative to the MAPT expression levels in PBS dosed mice.



FIG. 3 shows the AAV screen in liver to determine the effect of selected dsRNA agents in Tables 25-26 on the level of both sense- or antisense-containing foci in mice expressing human MAPT RNAs. Vertical axis indicates human MAPT expression in mice dosed with RNAi compositions relative to the MAPT expression levels in PBS dosed mice.





DETAILED DESCRIPTION OF THE INVENTION

The present disclosure provides RNAi compositions, which effect the RNA-induced silencing complex (RISC)-mediated cleavage of RNA transcripts of a MAPT gene. The MAPT gene may be within a cell, e.g., a cell within a subject, such as a human. The use of these iRNAs enables the targeted degradation of mRNAs of the corresponding gene (MAPT gene) in mammals.


The iRNAs of the invention have been designed to target a MAPT gene, e.g., a MAPT gene either with or without nucleotide modifications. The iRNAs of the invention inhibit the expression of the MAPT gene by at least about 25%, and reduce the level of sense- and antisense-containing foci. Without intending to be limited by theory, it is believed that a combination or sub-combination of the foregoing properties and the specific target sites, or the specific modifications in these iRNAs confer to the iRNAs of the invention improved efficacy, stability, potency, durability, and safety.


Accordingly, the present disclosure also provides methods of using the RNAi compositions of the disclosure for inhibiting the expression of a MAPT gene or for treating a subject having a disorder that would benefit from inhibiting or reducing the expression of a MAPT gene, e.g., a MAPT-associated disease, for example, Alzheimer's disease, FTD, PSP, or another tauopathy.


The RNAi agents of the disclosure include an RNA strand (the antisense strand) having a region which is about 30 nucleotides or less in length, e.g., 15-30, 15-29, 15-28, 15-27, 15-26, 15-25, 15-24, 15-23, 15-22, 15-21, 15-20, 15-19, 15-18, 15-17, 18-30, 18-29, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24,20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 nucleotides in length, which region is substantially complementary to at least part of an mRNA transcript of a MAPT gene, e.g., an MAPT exon. In certain embodiments, the RNAi agents of the disclosure include an RNA strand (the antisense strand) having a region which is about 21-23 nucleotides in length, which region is substantially complementary to at least part of an mRNA transcript of a MAPT gene.


In certain embodiments, the RNAi agents of the disclosure include an RNA strand (the antisense strand) which can include longer lengths, for example up to 66 nucleotides, e.g., 36-66, 26-36, 25-36, 31-60, 22-43, 27-53 nucleotides in length with a region of at least 19 contiguous nucleotides that is substantially complementary to at least a part of an mRNA transcript of a MAPT gene. These RNAi agents with the longer length antisense strands preferably include a second RNA strand (the sense strand) of 20-60 nucleotides in length wherein the sense and antisense strands form a duplex of 18-30 contiguous nucleotides.


The use of these RNAi agents enables the targeted degradation and/or inhibition of mRNAs of a MAPT gene in mammals. Thus, methods and compositions including these RNAi agents are useful for treating a subject who would benefit by a reduction in the levels or activity of a Tau, such as a subject having a MAPT-associated disease, such as Alzheimer's disease, FTD, PSP, or another tauopathy.


The following detailed description discloses how to make and use compositions containing RNAi agents to inhibit the expression of a MAPT gene, as well as compositions and methods for treating subjects having diseases and disorders that would benefit from inhibition or reduction of the expression of the genes.


I. Definitions

In order that the present disclosure may be more readily understood, certain terms are first defined. In addition, it should be noted that whenever a value or range of values of a parameter are recited, it is intended that values and ranges intermediate to the recited values are also intended to be part of this disclosure.


The articles “a” and “an” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element, e.g., a plurality of elements.


The term “including” is used herein to mean, and is used interchangeably with, the phrase “including but not limited to.” The term “or” is used herein to mean, and is used interchangeably with, the term “and/or,” unless context clearly indicates otherwise.


The term “about” is used herein to mean within the typical ranges of tolerances in the art. For example, “about” can be understood as about 2 standard deviations from the mean. In certain embodiments, about means ±10%. In certain embodiments, about means ±5%. When about is present before a series of numbers or a range, it is understood that “about” can modify each of the numbers in the series or range.


The term “at least” prior to a number or series of numbers is understood to include the number adjacent to the term “at least”, and all subsequent numbers or integers that could logically be included, as clear from context. For example, the number of nucleotides in a nucleic acid molecule must be an integer. For example, “at least 18 nucleotides of a 21 nucleotide nucleic acid molecule” means that 18, 19, 20, or 21 nucleotides have the indicated property. When at least is present before a series of numbers or a range, it is understood that “at least” can modify each of the numbers in the series or range.


As used herein, “no more than” or “less than” is understood as the value adjacent to the phrase and logical lower values or integers, as logical from context, to zero. For example, a duplex with an overhang of “no more than 2 nucleotides” has a 2, 1, or 0 nucleotide overhang. When “no more than” is present before a series of numbers or a range, it is understood that “no more than” can modify each of the numbers in the series or range.


As used herein, the term “at least about”, when referring to a measurable value such as a parameter, an amount, and the like, is meant to encompass variations of +/−20%, preferably +/−10%, more preferably +1-5%, and still more preferably +/−1% from the specified value, insofar such variations are appropriate to perform in the disclosed invention. For example, the inhibition of expression of the MAPT gene by “at least about 25%” means that the inhibition of expression of the MAPT gene can be measured to be any value +/−20% of the specified 25%, i.e., 20%, 30% or any intermediary value between 20-30%.


As used herein, “control level” refers to the levels of expression of a gene, or expression level of an RNA molecule or expression level of one or more proteins or protein subunits, in a non-modulated cell, tissue or a system identical to the cell, tissue or a system where the RNAi agents, described herein, are expressed. The cell, tissue or a system where the RNAi agents are expressed, have at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 2-fold, 3-fold, 4-fold, 5-fold or more expression of the gene, RNA and/or protein described above from that observed in the absence of the RNAi agent. The % and/or fold difference can be calculated relative to the control levels, for example,







%


difference

=



[


expression


with


RNAi


agent

-


expression


without



RNAi


agent


]



expression


without



RNAi


agent


×
100





As used herein, methods of detection can include determination that the amount of analyte present is below the level of detection of the method.


In the event of a conflict between an indicated target site and the nucleotide sequence for a sense or antisense strand, the indicated sequence takes precedence.


In the event of a conflict between a chemical structure and a chemical name, the chemical structure takes precedence.


The term “MAPT” gene, also known as “DDPAC,” “FTDP-17,” “MAPTL,” “MSTD,” “MTBT1,” “MTBT2,” “PPND,” “PPP1R103,” “TAU,” and “microtubule-associated protein tau,” refers to the gene encoding for a protein called microtubule-associated protein tau (MAPT).


The MAPT mRNA is expressed throughout the body, predominantly in the central nervous system (i.e., the brain and the spinal cord) and the peripheral nervous system. Wild type Tau is involved in stabilizing microtubules in neuronal axons, regulating axonal transport and microtubule dynamics, maintaining dendric spines, and contributing to genomic DNA integrity.


Tauopathies are a heterogeneous class of progressive neurodegenerative disorders pathologically characterized by the presence of Tau aggregates in the brain. Intra- and extra-cellular neuronal Tau aggregates cause microtubule disassembly and axonal degeneration, impaired synaptic vesicle release, and prion-like inter-neuronal spread of tau aggregates called “seeding.”


Phenotypically, tauopathies show variable progression of motor, cognitive, and behavioral impairment. Tauopathies include, but are not limited to, Alzheimer's disease, the most common form of presenile dementia that primarily starts with selective memory impairment, and is associated with degeneration of the frontal lobe, temporal lobe (including hippocampus), and parietal lobe of the brain; frontotemporal dementia (FTD), the second most common form of presenile dementia associated with neuronal atrophy of the frontal and temporal lobes, exhibiting a spectrum of behavioral, language, and movement disorders; and progressive supranuclear palsy (PSP), degeneration of brainstem and basal ganglia, exhibiting gaze dysfunction, extrapyramidal symptoms (Parkinsonism symptoms including limb apraxia, akinesia/bradykinesia, rigidity, and dystonia), and cognitive dysfunction, affecting approximately 20,000 people in the United States.


FTD further includes, but are not limited to, behavioral variant frontotemporal dementia (bvFTD), associated pathologically with progressive atrophy in the prefrontal and anterior temporal lobes, and clinically with alterations in complex thinking, personality, and behavior, affecting approximately 30,000 people in the United states; primary progressive aphasia-semantic (PPA-S), degeneration of frontal and temporal lobes associated with difficulty comprehending words and struggle with naming; nonfluent variant primary progressive aphasia (nfvPPA), involving degeneration of left post frontal lobe and insula, and exhibiting poor grammar and inability to understand complex sentences, affecting approximately 1,000 people in the United States; primary progressive aphasia-logopenic (PPA-L), degeneration of the left post/spur temporal lobe and the medial parietal lobe, associated with difficulty retrieving words and frequent pauses; frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), associated pathologically with degeneration of the frontal and temporal lobes, and clinically with speech and movement impairment; Pick's disease (PiD), degeneration of the frontal and temporal lobes, associated with difficulty in language and thinking and behavioral changes; FTD with motor neuron disease, involving degeneration of the cortex and motor neurons; and corticobasal syndrome (CBS), degeneration of posterior frontal and temporal lobes and basal ganglia [i.e., corticobasal degeneration (CBD)], exhibiting extrapyramidal symptoms (similar to those in Parkinson's disease and PSP) and cognitive dysfunction, affecting approximately 2,000 people in the United States. Mutations of MAPT are reported in approximately 10% of patients with bvFTD, nfvPPA, CBS, and PSP, respectively. MAPT is a major component of neurofibrillary tangles in the neuronal cytoplasm, a hallmark in Alzheimer's disease. The aggregation and deposition of MAPT were also observed in approximately 50% of the brains of patients with Parkinson's disease. Involvement of Tau is indicated in the pathogenesis of other diseases including, but not limited to, argyrophilic grain disease (AGD), multiple system tauopathy with presenile dementia (MSTD), white matter tauopathy with globular glial inclusions (FTLD with GGIs), FTLD with MAPT mutations, neurofibrillary tangle (NFT) dementia, FTD with motor neuron disease, amyotrophic lateral sclerosis (ALS), postencephalitic Parkinsonism, Niemann-Pick disease, Huntington disease, type 1 myotonic dystrophy, and Down syndrome (DS).


The MAPT gene consists of 16 exons (E1-E16). Alternative mRNA splicing of E2, E3, and E10 gives rise to six tau isoforms (352-441 amino acids). E1, E4, E5, E7, E9, E11, E12, E13 are the constitutively spliced exons. E6 and E8 are not transcribed in human brain. E4a is only expressed in the peripheral nervous system. E0 (part of the promotor) and E14 are noncoding exons.


Pathogenic variants in MAPT are found in approximately 10% of patients with primary tauopathy. Variants are primarily missense and localized in exons 9-13 (microtubule binding domains), with many affecting the alternative splicing of exon 10. Examples of coding region mutations include R5H and R5L in E1; K257T, 1260V, L266V, G272V, and G273R in E9; N279K, L284L, ΔN296, N296N, N296H, ΔN298, P301L, P301S, P301T, G303V, G304S, S305I, S305N, and S305S in E10; L315R, K317M, S320F, P332S in E11; G335S, G335V, Q336R, V337M, E342V, S352L, S356T, V363I, P364S, G366R, and K369I in E12; G389R, R406W, and T427M in E13 of the MAPT gene. MAPT (tau) null (−/−) humans are likely non-viable. The MAPT heterozygote (+/−) humans have unclear or unknown phenotypes. The MAPT over-expressing (+/+/+) humans are associated with early onset dementia, FTD, PSP, and CBD.


Each of the six isoforms of the MAPT (tau) protein contains three or four repeated segments (R1, R2, R3, and R4) in its microtubule-binding domain. Each repeat is 31 or 32 amino acids in length. Splicing of E9, E10, E11, and E12 gives rise to the R1, R2, R3, and R4, respectively, of the repeated segments in the MAPT's microtubule-binding domain. Three MAPT (tau) isoforms, in which E10 is spliced in, contain four repeated segments (4R), whereas the other three MAPT isoforms, in which E10 is spliced out, contain three repeated segments (3R).


Translation of E2 and E3 give rise to the N1 and N2 segments, respectively. Alternative splicing of E2 and E3 gives rise to tau isoforms 0N (E2 and E3 are spliced out, resulting in no N segment), 1N (E2 is spliced in and E3 is spliced out, resulting in one N segment), and 2N (E2 and E3 are spliced in, resulting in two N segments). Accordingly, the six MAPT (tau) isoforms resulting from alternative splicing are 2N4R, 1N4R, 0N4R, 2N3R, 1N3R, and 0N3R.


In healthy individuals, the 3R and 4R MAPT transcript isoforms exist in 1:1 ratio. The 3R/4R isoform ratio is skewed in disease states and the ratio predicts the tau aggregate type. The assembly of four-repeat tau into filaments is characteristic of PSP, CBD, argyrophilic grain disease (AGD), multiple system tauopathy with presenile dementia (MSTD), and white matter tauopathy with globular glial inclusions (FTD with GGIs), which belong to the FTD spectrum (4R tauopathy). In contrast, in Pick's disease, three-repeat tau predominates in the neuronal inclusions (3R tauopathy). In Alzheimer's disease, or other neurodegenerative diseases with neurofibrillary tangles (NFT dementia), both three- and four-repeat tau isoforms make up the neurofibrillary lesions (3/4R tauopathy). FTLD with MAPT mutations can be 3R, 4R, or 3/4R tauopathy.


FTD with motor neuron disease is associated with the FTLD-TDP43 and FTLD-FUS pathology. It is associated with gene mutations of C90RF72, FUS, TARDBP, and VCP.


bvFTD is associated with the FTLD-Tau (3R) and FTLD-TDP43 pathology. Ten percent of the cases involve MAPT mutation. It is associated with gene mutations of C90RF72, GRN, and VCP.


PPA-S may be sporadic. It is associated with the FTLD-TDP43 pathology.


nfvPPA is associated with the FTLD-Tau (4R), Alzheimer's disease, and FTLD-TDP43 pathology, in the order of significance. Ten percent of the cases involve MAPT mutation, nfvPPA is further associated with mutations of GRN.


PPA-L may be sporadic. It is associated with the Alzheimer's disease and FTLD-Tau pathology, in the order of significance.


CBS is associated with the FTLD-Tau (4R) and Alzheimer's disease pathology, in the order of significance. Ten percent of the case is associated with MAPT mutation. The rest of the cases may be sporadic.


PSP involves FTLD-Tau (4R) pathology. Ten percent of the case is associated with MAPT mutation. The rest of the cases may be sporadic.


Tauopathy generally starts at age 60-80 years, and affects the remaining lifespan of 6-10 years. Tauopathies are phenotypically heterogeneous, with variable involvement of motor, cognitive, and behavioral impairment. In particular, progression of motor symptoms is variable.


There are currently no approved disease-modifying therapies for tauopathies. Available treatments are only aimed at alleviating the symptoms and improving the patient's quality of life as the disease progresses. Drugs in preclinical or clinical development include active and passive immunotherapies; inhibitors of O-deglycosylation, aggregation, kinases, acetylation, caspases or tau expression; phosphatase activators; microtubule stabilizers; and modulators of autophagy or proteosomal degradation. Biomarkers and testing used in clinical trials to assess tauopathy include tau protein phosphorylated at threonine 181 (pTau), total tau protein (tTau), neurofilament light chain (NfL), and volumetric MRI (vMRI).


Exemplary nucleotide and amino acid sequences of MAPT can be found, for example, at GenBank Accession No. NM_016841.4 (Homo sapiens MAPT variant 4, SEQ ID NO: 1, reverse complement, SEQ ID NO: 2); GenBank Accession No. NM_005910 (Homo sapiens MAPT variant 2, SEQ ID NO: 3, reverse complement, SEQ ID NO: 4); GenBank Accession No. NM_001038609.2 (Mus musculus MAPT, SEQ ID NO: 5; reverse complement, SEQ ID NO: 6); GenBank Accession No.: XM_005584540.1 (Macaca fascicularis MAPT variant X13, SEQ ID NO: 7, reverse complement, SEQ ID NO: 8); GenBank Accession No.: XM_008768277.2 (Rattus norvegicus MAPT, variant X7, SEQ ID NO: 9, reverse complement, SEQ ID NO: 10) and GenBank Accession No.: XM_005624183.3 (Canis lupus MAPT variant X23, SEQ ID NO: 11, reverse complement, SEQ ID NO: 12).


The nucleotide sequence of the genomic region of human chromosome harboring the MAPT gene may be found in, for example, the Genome Reference Consortium Human Build 38 (also referred to as Human Genome build 38 or GRCh38) available at GenBank. The nucleotide sequence of the genomic region of human chromosome 17 harboring the MAPT gene may also be found at, for example, GenBank Accession No. NC_000017.11, corresponding to nucleotides 45894382-46028334 of human chromosome 17. The nucleotide sequence of the human MAPT gene may be found in, for example, GenBank Accession No. NG_007398.2


Further examples of MAPT sequences can be found in publically available databases, for example, GenBank, OMIM, and UniProt.


Additional information on MAPT can be found, for example, at the NCBI web site that refers to gene 100128977. The term MAPT as used herein also refers to variations of the MAPT gene including variants provided in the clinical variant database, for example, at the NCBI clinical variants web site that refers to the term mapt.


The entire contents of each of the foregoing GenBank Accession numbers and the Gene database numbers are incorporated herein by reference as of the date of filing this application.


As used herein, “target sequence” refers to a contiguous portion of the nucleotide sequence of an mRNA molecule formed during the transcription of a MAPT gene, including mRNA that is a product of RNA processing of a primary transcription product (e.g., MAPT mRNA resulting from alternate splicing). In one embodiment, the target portion of the sequence will be at least long enough to serve as a substrate for RNAi-directed cleavage at or near that portion of the nucleotide sequence of an mRNA molecule formed during the transcription of a MAPT gene.


The target sequence is about 15-30 nucleotides in length. For example, the target sequence can be from about 15-30 nucleotides, 15-29, 15-28, 15-27, 15-26, 15-25, 15-24, 15-23, 15-22, 15-21, 15-20, 15-19, 15-18, 15-17, 18-30, 18-29, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24,20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 nucleotides in length. In certain embodiments, the target sequence is 19-23 nucleotides in length, optionally 21-23 nucleotides in length. Ranges and lengths intermediate to the above recited ranges and lengths are also contemplated to be part of the disclosure.


As used herein, the term “strand comprising a sequence” refers to an oligonucleotide comprising a chain of nucleotides that is described by the sequence referred to using the standard nucleotide nomenclature. “G,” “C,” “A,” ‘T’, and “U” each generally stand for a nucleotide that contains guanine, cytosine, adenine, thymidine, and uracil as a base, respectively in the context of a modified or unmodified nucleotide. However, it will be understood that the term “ribonucleotide” or “nucleotide” can also refer to a modified nucleotide, as further detailed below, or a surrogate replacement moiety (see, e.g., Table 1). The skilled person is well aware that guanine, cytosine, adenine, thymidine, and uracil can be replaced by other moieties without substantially altering the base pairing properties of an oligonucleotide comprising a nucleotide bearing such replacement moiety. For example, without limitation, a nucleotide comprising inosine as its base can base pair with nucleotides containing adenine, cytosine, or uracil. Hence, nucleotides containing uracil, guanine, or adenine can be replaced in the nucleotide sequences of dsRNA featured in the disclosure by a nucleotide containing, for example, inosine. In another example, adenine and cytosine anywhere in the oligonucleotide can be replaced with guanine and uracil, respectively to form G-U Wobble base pairing with the target mRNA. Sequences containing such replacement moieties are suitable for the compositions and methods featured in the disclosure.


The terms “iRNA”, “RNAi agent,” “iRNA agent,” “RNA interference agent” as used interchangeably herein, refer to an agent that contains RNA as that term is defined herein, and which mediates the targeted cleavage of an RNA transcript via an RNA-induced silencing complex (RISC) pathway. RNA interference (RNAi) is a process that directs the sequence-specific degradation of mRNA. RNAi modulates, e.g., inhibits, the expression of MAPT in a cell, e.g., a cell within a subject, such as a mammalian subject.


In one embodiment, an RNAi agent of the disclosure includes a single stranded RNAi that interacts with a target RNA sequence, e.g., a MAPT target mRNA sequence, to direct the cleavage of the target RNA. Without wishing to be bound by theory it is believed that long double stranded RNA introduced into cells is broken down into double-stranded short interfering RNAs (siRNAs) comprising a sense strand and an antisense strand by a Type III endonuclease known as Dicer (Sharp et al. (2001) Genes Dev. 15:485). Dicer, a ribonuclease-III-like enzyme, processes this dsRNA into 19-23 base pair short interfering RNAs with characteristic two base 3′ overhangs (Bernstein, et al., (2001) Nature 409:363). These siRNAs are then incorporated into an RNA-induced silencing complex (RISC) where one or more helicases unwind the siRNA duplex, enabling the complementary antisense strand to guide target recognition (Nykanen, et al., (2001) Cell 107:309). Upon binding to the appropriate target mRNA, one or more endonucleases within the RISC cleave the target to induce silencing (Elbashir, et al., (2001) Genes Dev. 15:188). Thus, in one aspect the disclosure relates to a single stranded RNA (ssRNA) (the antisense strand of a siRNA duplex) generated within a cell and which promotes the formation of a RISC complex to effect silencing of the target gene, i.e., a MAPT gene. Accordingly, the term “siRNA” is also used herein to refer to an RNAi as described above.


In another embodiment, the RNAi agent may be a single-stranded RNA that is introduced into a cell or organism to inhibit a target mRNA. Single-stranded RNAi agents bind to the RISC endonuclease, Argonaute 2, which then cleaves the target mRNA. The single-stranded siRNAs are generally 15-30 nucleotides and are chemically modified. The design and testing of single-stranded RNAs are described in U.S. Pat. No. 8,101,348 and in Lima et al., (2012) Cell 150:883-894, the entire contents of each of which are hereby incorporated herein by reference. Any of the antisense nucleotide sequences described herein may be used as a single-stranded siRNA as described herein or as chemically modified by the methods described in Lima et al., (2012) Cell 150:883-894.


In another embodiment, a “RNAi agent” for use in the compositions and methods of the disclosure is a double stranded RNA and is referred to herein as a “double stranded RNAi agent,” “double stranded RNA (dsRNA) molecule,” “dsRNA agent,” or “dsRNA”. The term “dsRNA” refers to a complex of ribonucleic acid molecules, having a duplex structure comprising two anti-parallel and substantially complementary nucleic acid strands, referred to as having “sense” and “antisense” orientations with respect to a target RNA, i.e., a MAPT gene. In some embodiments of the disclosure, a double stranded RNA (dsRNA) triggers the degradation of a target RNA, e.g., an mRNA, through a post-transcriptional gene-silencing mechanism referred to herein as RNA interference or RNAi.


In general, a dsRNA molecule can include ribonucleotides, but as described in detail herein, each or both strands can also include one or more non-ribonucleotides, e.g., a deoxyribonucleotide, a modified nucleotide. In addition, as used in this specification, an “RNAi agent” may include ribonucleotides with chemical modifications; an RNAi agent may include substantial modifications at multiple nucleotides. As used herein, the term “modified nucleotide” refers to a nucleotide having, independently, a modified sugar moiety, a modified internucleotide linkage, or a modified nucleobase. Thus, the term modified nucleotide encompasses substitutions, additions or removal of, e.g., a functional group or atom, to internucleoside linkages, sugar moieties, or nucleobases. The modifications suitable for use in the agents of the disclosure include all types of modifications disclosed herein or known in the art. Any such modifications, as used in a siRNA type molecule, are encompassed by “RNAi agent” for the purposes of this specification and claims.


In certain embodiments of the instant disclosure, inclusion of a deoxy-nucleotide if present within an RNAi agent can be considered to constitute a modified nucleotide.


The duplex region may be of any length that permits specific degradation of a desired target RNA through a RISC pathway, and may range from about 15-36 base pairs in length, for example, about 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, or 36 base pairs in length, such as about 15-30, 15-29, 15-28, 15-27, 15-26, 15-25, 15-24, 15-23, 15-22, 15-21, 15-20, 15-19, 15-18, 15-17, 18-30, 18-29, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24,20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 base pairs in length. In certain embodiments, the duplex region is 19-21 base pairs in length, e.g., 21 base pairs in length. Ranges and lengths intermediate to the above recited ranges and lengths are also contemplated to be part of the disclosure.


The two strands forming the duplex structure may be different portions of one larger RNA molecule, or they may be separate RNA molecules. Where the two strands are part of one larger molecule, and therefore are connected by an uninterrupted chain of nucleotides between the 3′-end of one strand and the 5′-end of the respective other strand forming the duplex structure, the connecting RNA chain is referred to as a “hairpin loop.” A hairpin loop can comprise at least one unpaired nucleotide. In some embodiments, the hairpin loop can comprise at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 20, at least 23 or more unpaired nucleotides or nucleotides not directed to the target site of the dsRNA. In some embodiments, the hairpin loop can be 10 or fewer nucleotides. In some embodiments, the hairpin loop can be 8 or fewer unpaired nucleotides. In some embodiments, the hairpin loop can be 4-10 unpaired nucleotides. In some embodiments, the hairpin loop can be 4-8 nucleotides.


Where the two substantially complementary strands of a dsRNA are comprised by separate RNA molecules, those molecules need not, but can be covalently connected. In certain embodiments where the two strands are connected covalently by means other than an uninterrupted chain of nucleotides between the 3′-end of one strand and the 5′-end of the respective other strand forming the duplex structure, the connecting structure is referred to as a “linker” (though it is noted that certain other structures defined elsewhere herein can also be referred to as a “linker”). The RNA strands may have the same or a different number of nucleotides. The maximum number of base pairs is the number of nucleotides in the shortest strand of the dsRNA minus any overhangs that are present in the duplex. In addition to the duplex structure, an RNAi may comprise one or more nucleotide overhangs. In one embodiment of the RNAi agent, at least one strand comprises a 3′ overhang of at least 1 nucleotide. In another embodiment, at least one strand comprises a 3′ overhang of at least 2 nucleotides, e.g., 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, or 15 nucleotides. In other embodiments, at least one strand of the RNAi agent comprises a 5′ overhang of at least 1 nucleotide. In certain embodiments, at least one strand comprises a 5′ overhang of at least 2 nucleotides, e.g., 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, or 15 nucleotides. In still other embodiments, both the 3′ and the 5′ end of one strand of the RNAi agent comprise an overhang of at least 1 nucleotide.


In one embodiment, an RNAi agent of the disclosure is a dsRNA, each strand of which independently comprises 19-23 nucleotides, that interacts with a target RNA sequence, e.g., a MAPT target mRNA sequence, to direct the cleavage of the target RNA.


In some embodiments, an iRNA of the invention is a dsRNA of 24-30 nucleotides that interacts with a target RNA sequence, e.g., a MAPT target mRNA sequence, to direct the cleavage of the target RNA.


As used herein, the term “nucleotide overhang” refers to at least one unpaired nucleotide that protrudes from the duplex structure of an RNAi agent, e.g., a dsRNA. For example, when a 3′-end of one strand of a dsRNA extends beyond the 5′-end of the other strand, or vice versa, there is a nucleotide overhang. A dsRNA can comprise an overhang of at least one nucleotide; alternatively, the overhang can comprise at least two nucleotides, at least three nucleotides, at least four nucleotides, at least five nucleotides or more. A nucleotide overhang can comprise or consist of a nucleotide/nucleoside analog, including a deoxynucleotide/nucleoside. The overhang(s) can be on the sense strand, the antisense strand or any combination thereof. Furthermore, the nucleotide(s) of an overhang can be present on the 5′-end, 3′-end or both ends of either an antisense or sense strand of a dsRNA.


In one embodiment, the antisense strand of a dsRNA has a 1-10 nucleotide, e.g., a 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotide overhang at the 3′-end or the 5′-end. In one embodiment, the sense strand of a dsRNA has a 1-10 nucleotide, e.g., a 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotide overhang at the 3′-end or the 5′-end. In another embodiment, one or more of the nucleotides in the overhang is replaced with a nucleoside thiophosphate.


In certain embodiments, the antisense strand of a dsRNA has a 1-10 nucleotide, e.g., 0-3, 1-3, 2-4, 2-5, 4-10, 5-10, e.g., a 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotide overhang at the 3′-end or the 5′-end. In one embodiment, the sense strand of a dsRNA has a 1-10 nucleotide, e.g., a 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotide overhang at the 3′-end or the 5′-end. In another embodiment, one or more of the nucleotides in the overhang is replaced with a nucleoside thiophosphate.


In certain embodiments, the overhang on the sense strand or the antisense strand, can include extended lengths longer than 10 nucleotides, e.g., 1-30 nucleotides, 2-30 nucleotides, 10-30 nucleotides, or 10-15 nucleotides in length. In certain embodiments, an extended overhang is on the sense strand of the duplex. In certain embodiments, an extended overhang is present on the 3′end of the sense strand of the duplex. In certain embodiments, an extended overhang is present on the 5′end of the sense strand of the duplex. In certain embodiments, an extended overhang is on the antisense strand of the duplex. In certain embodiments, an extended overhang is present on the 3′end of the antisense strand of the duplex. In certain embodiments, an extended overhang is present on the 5′end of the antisense strand of the duplex. In certain embodiments, one or more of the nucleotides in the overhang is replaced with a nucleoside thiophosphate. In certain embodiments, the overhang includes a self-complementary portion such that the overhang is capable of forming a hairpin structure that is stable under physiological conditions.


The terms “blunt” or “blunt ended” as used herein in reference to a dsRNA mean that there are no unpaired nucleotides or nucleotide analogs at a given terminal end of a dsRNA, i.e., no nucleotide overhang. One or both ends of a dsRNA can be blunt. Where both ends of a dsRNA are blunt, the dsRNA is said to be blunt ended. To be clear, a “blunt ended” dsRNA is a dsRNA that is blunt at both ends, i.e., no nucleotide overhang at either end of the molecule. Most often such a molecule will be double stranded over its entire length.


The term “antisense strand” or “guide strand” refers to the strand of an RNAi agent, e.g., a dsRNA, which includes a region that is substantially complementary to a target sequence, e.g., a MAPT mRNA.


As used herein, the term “region of complementarity” refers to the region on the antisense strand that is substantially complementary to a sequence, for example a target sequence, e.g., a MAPT nucleotide sequence, as defined herein. Where the region of complementarity is not fully complementary to the target sequence, the mismatches can be in the internal or terminal regions of the molecule. Generally, the most tolerated mismatches are in the terminal regions, e.g., within 5, 4, 3, or 2 nucleotides of the 5′- or 3′-terminus of the RNAi agent. In some embodiments, a double stranded RNA agent of the invention includes a nucleotide mismatch in the antisense strand. In some embodiments, the antisense strand of the double stranded RNA agent of the invention includes no more than 4 mismatches with the target mRNA, e.g., the antisense strand includes 4, 3, 2, 1, or 0 mismatches with the target mRNA. In some embodiments, the antisense strand double stranded RNA agent of the invention includes no more than 4 mismatches with the sense strand, e.g., the antisense strand includes 4, 3, 2, 1, or 0 mismatches with the sense strand. In some embodiments, a double stranded RNA agent of the invention includes a nucleotide mismatch in the sense strand. In some embodiments, the sense strand of the double stranded RNA agent of the invention includes no more than 4 mismatches with the antisense strand, e.g., the sense strand includes 4, 3, 2, 1, or 0 mismatches with the antisense strand. In some embodiments, the nucleotide mismatch is, for example, within 5, 4, 3 nucleotides from the 3′-end of the iRNA. In another embodiment, the nucleotide mismatch is, for example, in the 3′-terminal nucleotide of the iRNA agent. In some embodiments, the mismatch(s) is not in the seed region.


Thus, an RNAi agent as described herein can contain one or more mismatches to the target sequence. In one embodiment, an RNAi agent as described herein contains no more than 3 mismatches (i.e., 3, 2, 1, or 0 mismatches). In one embodiment, an RNAi agent as described herein contains no more than 2 mismatches. In one embodiment, an RNAi agent as described herein contains no more than 1 mismatch. In one embodiment, an RNAi agent as described herein contains 0 mismatches. In certain embodiments, if the antisense strand of the RNAi agent contains mismatches to the target sequence, the mismatch can optionally be restricted to be within the last 5 nucleotides from either the 5′- or 3′-end of the region of complementarity. For example, in such embodiments, for a 23 nucleotide RNAi agent, the strand which is complementary to a region of a MAPT gene, generally does not contain any mismatch within the central 13 nucleotides. The methods described herein or methods known in the art can be used to determine whether an RNAi agent containing a mismatch to a target sequence is effective in inhibiting the expression of a MAPT gene. For example, Jackson et al. (Nat. Biotechnol. 2003;21: 635-637) described an expression profile study where the expression of a small set of genes with sequence identity to the MAPK14 siRNA only at 12-18 nt of the sense strand, was down-regulated with similar kinetics to MAPK14. Similarly, Lin et al., (Nucleic Acids Res. 2005; 33(14): 4527-4535) using qPCR and reporter assays, showed that a 7 nt complementation between a siRNA and a target is sufficient to cause mRNA degradation of the target. Consideration of the efficacy of RNAi agents with mismatches in inhibiting expression of a MAPT gene is important, especially if the particular region of complementarity in a MAPT gene is known to have polymorphic sequence variation within the population.


As used herein, “substantially all of the nucleotides are modified” are largely but not wholly modified and can include not more than 5, 4, 3, 2, or 1 unmodified nucleotide.


The term “sense strand” or “passenger strand” as used herein, refers to the strand of an RNAi agent that includes a region that is substantially complementary to a region of the antisense strand as that term is defined herein.


As used herein, the term “cleavage region” refers to a region that is located immediately adjacent to the cleavage site. The cleavage site is the site on the target at which cleavage occurs. In some embodiments, the cleavage region comprises three bases on either end of, and immediately adjacent to, the cleavage site. In some embodiments, the cleavage region comprises two bases on either end of, and immediately adjacent to, the cleavage site. In some embodiments, the cleavage site specifically occurs at the site bound by nucleotides 10 and 11 of the antisense strand, and the cleavage region comprises nucleotides 11, 12 and 13.


As used herein, and unless otherwise indicated, the term “complementary,” when used to describe a first nucleotide sequence in relation to a second nucleotide sequence, refers to the ability of an oligonucleotide or polynucleotide comprising the first nucleotide sequence to hybridize and form a duplex structure under certain conditions with an oligonucleotide or polynucleotide comprising the second nucleotide sequence, as will be understood by the skilled person. Such conditions can be, for example, “stringent conditions”, including but not limited to, 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA, 50° C. or 70° C. for 12-16 hours followed by washing (see, e.g., “Molecular Cloning: A Laboratory Manual, Sambrook, et al. (1989) Cold Spring Harbor Laboratory Press). As used herein, “stringent conditions” or “stringent hybridization conditions” refers to conditions under which an antisense compound will hybridize to its target sequence, but to a minimal number of other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances, and “stringent conditions” under which antisense compounds hybridize to a target sequence are determined by the nature and composition of the antisense compounds and the assays in which they are being investigated. Other conditions, such as physiologically relevant conditions as can be encountered inside an organism, can apply. The skilled person will be able to determine the set of conditions most appropriate for a test of complementarity of two sequences in accordance with the ultimate application of the hybridized nucleotides.


Complementary sequences within an RNAi agent, e.g., within a dsRNA as described herein, include base-pairing of the oligonucleotide or polynucleotide comprising a first nucleotide sequence to an oligonucleotide or polynucleotide comprising a second nucleotide sequence over the entire length of one or both nucleotide sequences. Such sequences can be referred to as “fully complementary” with respect to each other herein. However, where a first sequence is referred to as “substantially complementary” with respect to a second sequence herein, the two sequences can be fully complementary, or they can form one or more, but generally not more than 5, 4, 3 or 2 mismatched base pairs upon hybridization for a duplex up to 30 base pairs. In some embodiments, the “substantially complementary” sequences disclosed herein comprise a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to the equivalent region of the target MAPT sequence, such as about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, or about 99% complementary. However, where two oligonucleotides are designed to form, upon hybridization, one or more single stranded overhangs, such overhangs shall not be regarded as mismatches with regard to the determination of complementarity. For example, a dsRNA comprising one oligonucleotide 21 nucleotides in length and another oligonucleotide 23 nucleotides in length, wherein the longer oligonucleotide comprises a sequence of 21 nucleotides that is fully complementary to the shorter oligonucleotide, can yet be referred to as “fully complementary” for the purposes described herein.


“Complementary” sequences, as used herein, can also include, or be formed entirely from, non-Watson-Crick base pairs or base pairs formed from non-natural and modified nucleotides, in so far as the above requirements with respect to their ability to hybridize are fulfilled. Such non-Watson-Crick base pairs include, but are not limited to, G:U Wobble or Hoogstein base pairing.


The terms “complementary,” “fully complementary” and “substantially complementary” herein can be used with respect to the base matching between the sense strand and the antisense strand of a dsRNA, or between the antisense strand of an RNAi agent and a target sequence, as will be understood from the context of their use.


As used herein, a polynucleotide that is “substantially complementary to at least part of” a messenger RNA (mRNA) refers to a polynucleotide that is substantially complementary to a contiguous portion of the mRNA of interest (e.g., an mRNA encoding Tau). For example, a polynucleotide is complementary to at least a part of a MAPT mRNA if the sequence is substantially complementary to a non-interrupted portion of an mRNA encoding Tau.


Accordingly, in some embodiments, the antisense polynucleotides disclosed herein are fully complementary to the target MAPT sequence. In other embodiments, the antisense polynucleotides disclosed herein are substantially complementary to the target MAPT sequence and comprise a contiguous nucleotide sequence which is at least 80% complementary over its entire length to the equivalent region of the nucleotide sequence of any one of SEQ ID NOs:1, 3, 5, 7, 9 and 11, or a fragment of any one of SEQ ID NOs:1, 3, 5, 7, 9 and 11, such as about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, or about 99% complementary.


In some embodiments, the antisense polynucleotides disclosed herein are substantially complementary to a fragment of a target MAPT sequence and comprise a contiguous nucleotide sequence which is at least 80% complementary over its entire length to a fragment of SEQ ID NO: 1 selected from the group of nucleotides 977-997, 980-1000, 973-993, 988-1008, 987-1007, 972-992, 979-999, 1001-1021, 976-996, 994-1014, 1002-1022, 978-998, 974-994, 981-1001, 995-1015, 1003-1023, 989-1009, 1031-1051, 975-995, 983-1003, 992-1012, 982-1002, 1236-1256, 1023-1043, 986-1006, 1014-1034, 1237-1257, 1030-1050, 997-1017, 1009-1029, 1013-1033, 1027-1047, 998-1018, 1026-1046, 1022-1042, 1065-1085, 1025-1045, 1017-1037, 1006-1026, 1000-1020, 984-1004, 1010-1030, 1064-1084, 1016-1036, 993-1013, 1033-1053, 971-991, 1008-1028, 1032-1052, 1015-1035, 1063-1083, 1020-1040, 985-1005, 999-1019, 1004-1024, 1024-1044, 1104-1124, 990-1010, 1005-1025, 1021-1041, 1028-1048, 996-1016, 1011-1031, 991-1011, 1018-1038, 1228-1248, 1230-1250, 1029-1049, 1019-1039, 1012-1032, 1062-1082, 1231-1251, 1229-1249, 1226-1246, 1227-1247, 975-997, 978-1000, 971-993, 986-1008, 985-1007, 977-999, 999-1021, 974-996, 992-1014, 1000-1022, 976-998, 972-994, 979-1001, 993-1015, 1001-1023, 987-1009, 1029-1051, 973-995, 981-1003, 990-1012, 980-1002, 1234-1256, 1021-1043, 984-1006, 1012-1034, 1235-1257, 1028-1050, 995-1017, 1007-1029, 1011-1033, 1025-1047,996-1018, 1024-1046, 1020-1042, 1063-1085, 1023-1045, 1015-1037, 1004-1026, 998-1020, 982-1004, 1008-1030, 1062-1084, 1014-1036, 991-1013, 1031-1053, 1006-1028, 1030-1052, 1013-1035, 1018-1040, 983-1005, 997-1019, 1002-1024, 1022-1044, 988-1010, 1003-1025, 1019-1041, 1026-1048, 994-1016, 1009-1031, 989-1011, 1016-1038, 1226-1248, 1228-1250, 1027-1049, 1017-1039, 1010-1032, 1229-1251, 1227-1249, 1224-1246, and 1225-1247 of SEQ ID NO: 1, such as about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, or about 99% complementary. Ranges intermediate to the above recited ranges are also contemplated to be part of the disclosure.


In some embodiments, the antisense polynucleotides disclosed herein are substantially complementary to a fragment of a target MAPT sequence and comprise a contiguous nucleotide sequence which is at least 80% complementary over its entire length to a fragment of SEQ ID NO: 1 selected from the group of nucleotides 520-540, 521-541, 5464-5484, 1813-1833, 2378-2398, 3242-3262, 5442-5462, 1665-1685, 1816-1836, 4667-4687, 3183-3203, 3422-3442, 3326-3346, 2379-2399, 3338-3358, 5446-5466, 5440-5460, 5410-5430, 3246-3266, 3181-3201, 2297-2317, 2380-2400, 3328-3348, 5460-5480, 3184-3204, 3420-3440, 3321-3341, 4529-4549, 5473-5493, 5466-5486, 5439-5459, 5369-5389, 4528-4548, 3338-3358, 4670-4690, 3421-3441, 2298-2318, 5444-5464, 5448-5468, 3337-3357, 5415-5435, 3340-3360, 3318-3338, 5207-5227, 1812-1832, 5409-5429, 4629-4649, 4628-4648, 3344-3364, 1809-1829, 5443-5463, 3244-3264, 3180-3200, 3327-3347, 4522-4542, 2667-2687, 4668-4688, 4083-4103, 5445-5465, 2294-2314, 4842-4862, 5438-5458, 4084-4104, 2668-2688, 4526-4546, 4521-4541, 5459-5479, 3188-3208, 5467-5487, 5441-5461, 4519-4539, 4669-4689, 5450-5470, 3341-3361, 5458-5478, 4520-4540, 4329-4349, 4525-4545, 4524-4544, 5208-5228, 5305-5325, 4475-4495, 2666-2686, 4086-4106, 4523-4543, 4527-4547, 4085-4105, 5259-5279, 518-540, 519-541, 5462-5484, 1811-1833, 2376-2398, 3240-3262, 5440-5462, 1663-1685, 1814-1836, 4665-4687, 3181-3203, 3420-3442, 3324-3346, 2377-2399, 3336-3358, 5444-5466, 5438-5460, 5408-5430, 3244-3266, 3179-3201, 2295-2317, 2378-2400, 3326-3348, 5458-5480, 3182-3204, 3418-3440, 3319-3341, 4527-4549, 5471-5493, 5464-5486, 5437-5459, 5367-5389, 4526-4548, 4668-4690, 3419-3441, 2296-2318, 5442-5464, 5446-5468, 3335-3357, 5413-5435, 3338-3360, 3316-3338, 1810-1832, 5407-5429, 4627-4649, 4626-4648, 3342-3364, 1807-1829, 5441-5463, 3242-3264, 3178-3200, 3325-3347, 4520-4542, 2665-2687, 4666-4688, 4081-4103, 5443-5465, 2292-2314, 4840-4862, 5436-5458, 4082-4104, 2666-2688, 4524-4546, 4519-4541, 5457-5479, 3186-3208, 5465-5487, 5439-5461, 4517-4539, 4667-4689, 5448-5470, 3339-3361, 5456-5478, 4518-4540, 4327-4349, 4523-4545, 4522-4544, 5206-5228, 5303-5325, 4473-4495, 2664-2686, 4084-4106, 4521-4543, 4525-4547, 4083-4105, and 5257-5279 of SEQ ID NO: 1, such as about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, or about 99% complementary. Ranges intermediate to the above recited ranges are also contemplated to be part of the disclosure.


In some embodiments, the antisense polynucleotides disclosed herein are substantially complementary to a fragment of a target MAPT sequence and comprise a contiguous nucleotide sequence which is at least 80% complementary over its entire length to a fragment of SEQ ID NO: 1 selected from the group of nucleotides 520-540, 524-544, 521-541, 5207-5227, 4670-4690, 3420-3440, 3328-3348, 1665-1685, 5409-5429, 5439-5459, 4527-4547, 5441-5461, 5410-5430, 5446-5466, 5467-5487, 5369-5389, 3421-3441, 5442-5462, 2379-2399, 4715-4735, 5464-5484, 3244-3264, 5440-5460, 1812-1832, 3181-3201, 3327-3347, 5448-5468, 4529-4549, 2378-2398, 4668-4688, 5438-5458, 5465-5485, 3326-3346, 3180-3200, 5458-5478, 3321-3341, 3338-3358, 3188-3208, 2294-2314, 4628-4648, 5415-5435, 5459-5479, 3184-3204, 2375-2395, 3422-3442, 3246-3266, 3337-3357, 2297-2317, 4528-4548, 3183-3203, 5450-5470, 5444-5464, 5466-5486, 2380-2400, 3242-3262, 4520-4540, 5445-5465, 3318-3338, 1816-1836, 5443-5463, 5460-5480, 4842-4862, 3338-3358, 1809-1829, 3423-3443, 4720-4740, 5259-5279, 4084-4104, 1813-1833, 4522-4542, 4822-4842, 4523-4543, 2298-2318, 4521-4541, 4086-4106, 4524-4544, 2668-2688, 4667-4687, 4083-4103, 4085-4105, 4629-4649, 4329-4349, 2667-2687, 4475-4495, 3344-3364, 4669-4689, 3340-3360, 4519-4539, 2666-2686, 5208-5228, 4526-4546, 4525-4545, 3341-3361, 518-540, 522-544, 519-541, 4668-4690, 3418-3440, 3326-3348, 1663-1685, 5407-5429, 5437-5459, 4525-4547, 5439-5461, 5408-5430, 5444-5466, 5465-5487, 5367-5389, 3419-3441, 5440-5462, 2377-2399, 4713-4735, 5462-5484, 3242-3264, 5438-5460, 1810-1832, 3179-3201, 3325-3347, 5446-5468, 4527-4549, 2376-2398, 4666-4688, 5436-5458, 5463-5485, 3324-3346, 3178-3200, 5456-5478, 3319-3341, 3336-3358, 3186-3208, 2292-2314, 4626-4648, 5413-5435, 5457-5479, 3182-3204, 2373-2395, 3420-3442, 3244-3266, 3335-3357, 2295-2317, 4526-4548, 3181-3203, 5448-5470, 5442-5464, 5464-5486, 2378-2400, 3240-3262, 4518-4540, 5443-5465, 3316-3338, 1814-1836, 5441-5463, 5458-5480, 4840-4862, 1807-1829, 3421-3443, 4718-4740, 5257-5279, 4082-4104, 1811-1833, 4520-4542, 4820-4842, 4521-4543, 2296-2318, 4519-4541, 4084-4106, 4522-4544, 2666-2688, 4665-4687, 4081-4103, 4083-4105, 4627-4649, 4327-4349, 2665-2687, 4473-4495, 3342-3364, 4667-4689, 3338-3360, 4517-4539, 2664-2686, 5206-5228, 4524-4546, 4523-4545, and 3339-3361 of SEQ ID NO: 1, such as about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, or about 99% complementary. Ranges intermediate to the above recited ranges are also contemplated to be part of the disclosure.


In some embodiments, the antisense polynucleotides disclosed herein are substantially complementary to a fragment of a target MAPT sequence and comprise a contiguous nucleotide sequence which is at least 80% complementary over its entire length to a fragment of SEQ ID NO: 1 selected from the group of nucleotides 977-997, 980-1000, 973-993, 988-1008, 987-1007, 972-992, 979-999, 1001-1021, 976-996, 994-1014, 1002-1022, 978-998, 974-994, 520-540, 521-541, 5464-5484, 1813-1833, 2378-2398, 3242-3262, 5442-5462, 1665-1685, 524-544, 5207-5227, 4670-4690, 3420-3440, 3328-3348, 5409-5429, 5439-5459, 4527-4547, 5441-5461, 5410-5430 and 5446-5466 of SEQ ID NO: 1, such as about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, or about 99% complementary. Ranges intermediate to the above recited ranges are also contemplated to be part of the disclosure.


In some embodiments, the antisense polynucleotides disclosed herein are substantially complementary to a fragment of a target MAPT sequence and comprise a contiguous nucleotide sequence which is at least 80% complementary over its entire length to a fragment of SEQ ID NO: 3 selected from the group of nucleotides 512-532, 513-533, 514-534, 515-535, 516-536, 517-537, 518-538,519-539,520-540, 1063-1083,1067-1087, 1072-1092,1074-1094, 1075-1095,1125-1145, 1126-1146, 1127-1147, 1129-1149, 1170-1190, 1395-1415, 1905-1925, 1906-1926, 1909-1929, 1911-1931, 1912-1932, 1913-1933, 1914-1934, 1915-1935, 1916-1936, 1919-1939, 1951-1971, 1954-1974, 1958-1978, 2387-2407, 2409-2429, 2410-2430, 2469-2489, 2471-2491, 2472-2492, 2476-2496, 2477-2497, 2478-2498, 2480-2500, 2481-2501, 2482-2502, 2484-2504, 2762-2782, 2764-2784, 2766-2786, 2767-2787, 2768-2788, 2769-2789, 2819-2839, 2821-2841, 2828-2848, 2943-2963, 2944-2964, 2946-2966, 2947-2967, 3252-3272, 3277-3297, 3280-3300, 3281-3301, 3282-3302, 3284-3304, 3285-3305, 3286-3306, 3331-3351, 3332-3352, 3333-3353, 3334-3354, 3335-3355, 3336-3356, 3338-3358, 3340-3360, 3342-3362, 3343-3363, 3344-3364, 3345-3365, 3346-3366, 3347-3367, 3349-3369, 3350-3370, 3353-3373, 3364-3384, 3366-3386, 3367-3387, 3368-3388, 3369-3389, 3370-3390, 3412-3432, 3414-3434, 3415-3435, 3416-3436, 3417-3437, 3419-3439, 3420-3440, 3424-3444, 3425-3445, 3426-3446, 3427-3447, 3428-3448, 3429-3449, 3430-3450, 3431-3451, 3434-3454, 4132-4152, 4134-4154, 4179-4199, 4182-4202, 4184-4204, 4395-4415, 4425-4445, 4426-4446, 4429-4449, 4469-4489, 4470-4490, 4471-4491, 4472-4492, 4473-4493, 4474-4494, 4569-4589, 4571-4591, 4572-4592, 4596-4616, 4623-4643, 4721-4741, 4722-4742, 4725-4745, 4726-4746, 4766-4786, 4767-4787, 4768-4788, 4769-4789, 4770-4790, 4779-4799, 4805-4825, 4806-4826, 4807-4827, 4808-4828, 4809-4829, 4812-4832, 4813-4833, 4814-4834, 4936-4956, 5072-5092, 5073-5093, 5345-5365, 5346-5366, 5349-5369, 5350-5370, 5351-5371, 5460-5480, 5461-5481, 5463-5483, 5465-5485, 5467-5487, 5468-5488, 5469-5489, 5470-5490, 5471-5491, 5505-5525, 5506-5526, 5507-5527, 5508-5528, 5509-5529, 5511-5531, 5513-5533, 5514-5534, 5541-5561, 5544-5564, 5546-5566, 5547-5567, 5548-5568, 5550-5570, 5551-5571, 5574-5594, 5576-5596, 5614-5634, 521-541, 522-542, 523-543, 524-544, 525-545, 526-546, 527-547, 528-548, 529-549, 530-550, 531-551, 532-552, 533-553, 534-554, 535-555, 536-556, 1034-1054, 1035-1055, 1036-1056, 1037-1057, 1038-1058, 1039-1059, 1040-1060, 1041-1061, 1042-1062, 1043-1063, 1044-1064, 1045-1065, 1046-1066, 1047-1067, 1048-1068, 1049-1069, 1050-1070, 1051-1071, 1052-1072, 1053-1073, 1054-1074, 1062-1082, 1064-1084, 1065-1085, 1066-1086, 1068-1088, 1069-1089, 1070-1090, 1071-1091, 1073-1093, 1076-1096, 1077-1097, 1078-1098, 1079-1099, 1080-1100, 1081-1101, 1082-1102, 1128-1148, 1129-1149, 1130-1150, 1131-1151, 1132-1152, 1133-1153, 1134-1154, 1135-1155, 1136-1156, 1137-1157, 1138-1158, 1139-1159, 1140-1160, 1141-1161, 1142-1162, 1143-1163, 1144-1164, 1145-1165, 1146-1166, 1147-1167, 1148-1168, 975-995, 976-996, 977-997, 978-998, 979-999, 980-1000, 981-1001, 982-1002, 983-1003, 984-1004, 985-1005, 986-1006, 987-1007, 988-1008, 989-1009, 990-1010, 991-1011, 992-1012, 993-1013, 994-1014, 995-1015, 996-1016, 997-1017, 998-1018, 999-1019, 1000-1020, 1001-1021, 1002-1022, 1003-1023, 1004-1024, 1005-1025, 1006-1026, 1007-1027, 1008-1028, 1009-1029, 1010-1030, 1011-1031, 1012-1032, 1013-1033, 1014-1034, 1015-1035, 1016-1036, 1017-1037, 1018-1038, 1019-1039, 1020-1040, 1021-1041, 1022-1042, 1023-1043, 1024-1044, 1025-1045, 1026-1046, 1027-1047, 1028-1048, 1029-1049, 1030-1050, 1031-1051, 1032-1052, 1033-1053, 1034-1054,1035-1055, 1036-1056, 1037-1057, 1038-1058, 1039-1059, 1040-1060, 1041-1061, 1042-1062, 1043-1063 and 1045-1065 of SEQ ID NO: 3, such as about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, or about 99% complementary. Ranges intermediate to the above recited ranges are also contemplated to be part of the disclosure.


In some embodiments, the antisense polynucleotides disclosed herein are substantially complementary to a fragment of a target MAPT sequence and comprise a contiguous nucleotide sequence which is at least 80% complementary over its entire length to a fragment of SEQ ID NO: 5 selected from the group of nucleotides 1065-1085, 1195-1215, 1066-1086, 1068-1088, 705-725, 1067-1087, 4520-4540, 3341-3361, 4515-4535, 5284-5304, 5285-5305, 344-364, 5283-5303, 5354-5374, 2459-2479, 1061-1081, 706-726, 972-992, 4564-4584, 995-1015, 4546-4566, 968-988, 1127-1147, 4534-4554, 158-178, 4494-4514, 1691-1711, 3544-3564, 198-218, 979-999, 4548-4568, 4551-4571, 543-563, 715-735, 542-562, 352-372, 362-382, 4556-4576, 4547-4567, 4542-4562, 4558-4578, 4549-4569, 5074-5094, 4552-4572, 5073-5093, 5076-5096, 4550-4570 and 2753-2773 of SEQ ID NO: 5, such as about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, or about 99% complementary. Ranges intermediate to the above recited ranges are also contemplated to be part of the disclosure.


In other embodiments, the antisense polynucleotides disclosed herein are substantially complementary to the target MAPT sequence and comprise a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to any one of the sense strand nucleotide sequences in any one of any one of Tables 3-8, 12-13, and 16-28, or a fragment of any one of the sense strand nucleotide sequences in any one of Tables 3-8, 12-13, and 16-28, such as about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100% complementary.


In one embodiment, an RNAi agent of the disclosure includes a sense strand that is substantially complementary to an antisense polynucleotide which, in turn, is the same as a target MAPT sequence, and wherein the sense strand polynucleotide comprises a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to the equivalent region of the nucleotide sequence of SEQ ID NOs:1, 3, 5, 7, 9 and 11, or a fragment of any one of SEQ ID NOs: 1, 3, 5, 7, 9 and 11, such as about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100% complementary. In some embodiments, an iRNA of the invention includes a sense strand that is substantially complementary to an antisense polynucleotide which, in turn, is complementary to a target MAPT sequence, and wherein the sense strand polynucleotide comprises a contiguous nucleotide sequence which is at least about 80% complementary over its entire length to any one of the antisense strand nucleotide sequences in any one of Tables 3-8, 12-13, and 16-28, or a fragment of any one of the antisense strand nucleotide sequences in any one of Tables 3-8, and 16-28, such as about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100% complementary.


In certain embodiments, the sense and antisense strands are selected from any one of duplexes AD-523799.1, AD-523802.1, AD-523795.1, AD-523810.1, AD-523809.1, AD-1019331.1, AD-523801.1, AD-523823.1, AD-523798.1, AD-523816.1, AD-523824.1, AD-523800.1, AD-523796.1, AD-523803.1, AD-523817.1, AD-523825.1, AD-523811.1, AD-523854.1, AD-523797.1, AD-523805.1, AD-523814.1, AD-523804.1, AD-1019356.1, AD-523846.1, AD-523808.1, AD-523835.1, AD-1019357.1, AD-523853.1, AD-523819.1, AD-523830.1, AD-523834.1, AD-523850.1, AD-523820.1, AD-523849.1, AD-523845.1, AD-393758.3, AD-523848.1, AD-523840.1, AD-523828.1, AD-523822.1, AD-523806.1, AD-523831.1, AD-393757.1, AD-523839.1, AD-523815.1, AD-523856.1, AD-1019330.1, AD-523829.1, AD-523855.1, AD-523836.1, AD-1019329.1, AD-523843.1, AD-523807.1, AD-523821.1, AD-523826.1, AD-523847.1, AD-523786.1, AD-523812.1, AD-523827.1, AD-523844.1, AD-523851.1, AD-523818.1, AD-523832.1, AD-523813.1, AD-523841.1, AD-1019352.1, AD-1019354.1, AD-523852.1, AD-523842.1, AD-523833.1, AD-1019328.1, AD-1019355.1, AD-1019353.1, AD-1019350.1 and AD-1019351.1. In particular embodiments, the sense and antisense strands are selected from any one of duplexes AD-523799.1, AD-523802.1, AD-523795.1, AD-523810.1, AD-523809.1, AD-1019331.1, AD-523801.1, AD-523823.1, AD-523798.1, AD-523816.1, AD-523824.1, AD-523800.1 and AD-523796.1.


In certain embodiments, the sense and antisense strands are selected from any one of duplexes AD-535094.1, AD-535094.1, AD-535095.1, AD-538647.1, AD-535922.1, AD-536317.1, AD-536911.1, AD-538626.1, AD-535864.1, AD-535925.1, AD-538012.1, AD-536872.1, AD-536954.1, AD-536964.1, AD-536318.1, AD-536976.1, AD-538630.1, AD-538624.1, AD-538594.1, AD-536915.1, AD-536870.1, AD-536236.1, AD-536319.1, AD-536966.1, AD-538643.1, AD-536873.1, AD-536952.1, AD-536959.1, AD-537921.1, AD-538652.1, AD-538649.1, AD-538623.1, AD-538573.1, AD-537920.1, AD-536939.1, AD-538015.1, AD-536953.1, AD-536237.1, AD-538628.1, AD-538632.1, AD-536975.1, AD-538599.1, AD-536978.1, AD-536956.1, AD-538571.1, AD-535921.1, AD-538593.1, AD-537974.1, AD-537973.1, AD-536982.1, AD-535918.1, AD-538627.1, AD-536913.1, AD-536869.1, AD-536965.1, AD-537914.1, AD-536504.1, AD-538013.1, AD-537579.1, AD-538629.1, AD-536233.1, AD-538141.1, AD-538622.1, AD-537580.1, AD-536505.1, AD-537918.1, AD-537913.1, AD-538642.1, AD-536877.1, AD-538650.1, AD-538625.1, AD-537911.1, AD-538014.1, AD-538634.1, AD-536979.1, AD-538641.1, AD-537912.1, AD-537761.1, AD-537917.1, AD-537916.1, AD-538432.1, AD-538529.1, AD-537867.1, AD-536503.1, AD-537582.1, AD-537915.1, AD-537919.1, AD-537581.1 and AD-538483.1. In particular embodiments, the sense and antisense strands are selected from any one of duplexes AD-535094.1, AD-535094.1, AD-535095.1, AD-538647.1, AD-535922.1, AD-536317.1, AD-536911.1, AD-538626.1 and AD-535864.1.


In certain embodiments, the sense and antisense strands are selected from any one of duplexes AD-523561.1, AD-523565.1, AD-523562.1, AD-526914.1, AD-526394.1, AD-395452.1, AD-525343.1, AD-524274.1, AD-526956.1, AD-526986.1, AD-526296.1, AD-526988.1, AD-526957.1, AD-526993.1, AD-527013.1, AD-526936.1, AD-395453.1, AD-526989.1, AD-524719.1, AD-526423.1, AD-527010.1, AD-525305.1, AD-526987.1, AD-524331.1, AD-525266.1, AD-525342.1, AD-526995.1, AD-526298.1, AD-524718.1, AD-526392.1, AD-526985.1, AD-527011.1, AD-525341.1, AD-525265.1, AD-527004.1, AD-525336.1, AD-525353.1, AD-525273.1, AD-524638.1, AD-526350.1, AD-526962.1, AD-527005.1, AD-525269.1, AD-524715.1, AD-395454.1, AD-525307.1, AD-525352.1, AD-524641.1, AD-526297.1, AD-525268.1, AD-526997.1, AD-526991.1, AD-527012.1, AD-524720.1, AD-525303.1, AD-526289.1, AD-526992.1, AD-525333.1, AD-524335.1, AD-526990.1, AD-527006.1, AD-526505.1, AD-525309.1, AD-524328.1, AD-395455.1, AD-526428.1, AD-526847.1, AD-525957.1, AD-524332.1, AD-526291.1, AD-526485.1, AD-526292.1, AD-524642.1, AD-526290.1, AD-525959.1, AD-526293.1, AD-524899.1, AD-526391.1, AD-525956.1, AD-525958.1, AD-526351.1, AD-526138.1, AD-524898.1, AD-526244.1, AD-525359.1, AD-526393.1, AD-525355.1, AD-526288.1, AD-524897.1, AD-526796.1, AD-526295.1, AD-526294.1 and AD-525356.1. In particular embodiments, the sense and antisense strands are selected from any one of duplexes AD-523561.1, AD-523565.1, AD-523562.1, AD-526914.1, AD-526394.1, AD-395452.1, AD-525343.1, AD-524274.1, AD-526956.1, AD-526986.1, AD-526296.1, AD-526988.1, AD-526957.1, and AD-526993.1.


In certain embodiments, the sense and antisense strands are selected from any one of duplexes AD-393758.1, AD-393888.1, AD-393759.1, AD-393761.1, AD-393495.1, AD-393760.1, AD-396425.1, AD-395441.1, AD-396420.1, AD-397103.1, AD-397104.1, AD-393239.1, AD-397102.1, AD-397167.1, AD-394791.1, AD-393754.1, AD-393496.1, AD-393667.1, AD-396467.1, AD-393690.1, AD-396449.1, AD-393663.1, AD-393820.1, AD-396437.1, AD-393084.1, AD-396401.1, AD-394296.1, AD-395574.1, AD-393124.1, AD-393674.1, AD-396451.1, AD-396454.1, AD-393376.1, AD-393505.1, AD-393375.1, AD-393247.1, AD-393257.1, AD-396459.1, AD-396450.1, AD-396445.1, AD-396461.1, AD-396452.1, AD-396913.1, AD-396455.1, AD-396912.1, AD-396915.1, AD-396453.1 and AD-394991.1.


In one embodiment, the sense and antisense strands are selected from any one of duplexes AD-1397070.1, AD-1397070.2, AD-1397071.1, AD-1397071.2, AD-1397072.1, AD-1397072.2, AD-1397073.1, AD-1397073.2, AD-1397074.1, AD-1397074.2, AD-1397075.1, AD-1397075.2, AD-1397076.1, AD-1397076.2, AD-1397077.1, AD-1397077.2, AD-1397078.1, AD-1397078.2, AD-1397250.1, AD-1397251.1, AD-1397252.1, AD-1397253.1, AD-1397254.1, AD-1397255.1, AD-1397256.1, AD-1397257.1, AD-1397258.1, AD-1397259.1, AD-1397260.1, AD-1397261.1, AD-1397262.1, AD-1397263.1, AD-1397264.1, AD-1397265.1, AD-1423242.1, AD-1423243.1, AD-1423244.1, AD-1423245.1, AD-1423246.1, AD-1423247.1, AD-1423248.1, AD-1423249.1, AD-1423250.1, AD-1423251.1, AD-1423252.1, AD-1423253.1, AD-1423254.1, AD-1423255.1, AD-1423256.1, AD-1423257.1, AD-1423258.1, AD-1423259.1, AD-1423260.1, AD-1423261.1, AD-1423262.1, AD-1423263.1, AD-1423264.1, AD-1423265.1, AD-1423266.1, AD-1423267.1, AD-1423268.1, AD-1423269.1, AD-1423270.1, AD-1423271.1, AD-1423272.1, AD-1423273.1, AD-1423274.1, AD-1423275.1, AD-1423276.1, AD-1423277.1, AD-1423278.1, AD-1423279.1, AD-1423280.1, AD-1423281.1, AD-1423282.1, AD-1423283.1, AD-1423284.1, AD-1423285.1, AD-1423286.1, AD-1423287.1, AD-1423288.1, AD-1423289.1, AD-1423290.1, AD-1423291.1, AD-1423292.1, AD-1423293.1, AD-1423294.1, AD-1423295.1, AD-1423296.1, AD-1423297.1, AD-1423298.1, AD-1423299.1, AD-1423300.1, AD-1397266.1, AD-1397266.2, AD-1397267.1, AD-1423301.1, AD-1397268.1, AD-1397268.2, AD-1397269.1, AD-1423302.1, AD-1397270.1, AD-1397270.2, AD-1397271.1, AD-1397271.2, AD-1397272.1, AD-1423303.1, AD-1397273.1, AD-1423304.1, AD-1397274.1, AD-1423305.1, AD-1397275.1, AD-1423306.1, AD-1397276.1, AD-1397277.1, AD-1397277.2, AD-1397278.1, AD-1397279.1, AD-1397280.1, AD-1397281.1, AD-1397282.1, AD-1397283.1, AD-1397284.1, AD-1397285.1, AD-1397286.1, AD-1397287.1, AD-1397079.1, AD-1397079.2, AD-1397288.1, AD-1397289.1, AD-1397290.1, AD-1397080.1, AD-1397080.2, AD-1397291.1, AD-1397292.1, AD-1397293.1, AD-1397294.1, AD-1397081.1, AD-1397081.2, AD-1397295.1, AD-1397082.1, AD-1397082.2, AD-1397083.1, AD-1397083.2, AD-1397296.1, AD-1397297.1, AD-1397298.1, AD-1397299.1, AD-1397300.1, AD-1397301.1, AD-1397302.1, AD-1397084.1, AD-1397085.1, AD-1397086.1, AD-1397303.1, AD-1397087.1, AD-1397087.2, AD-1397304.1, AD-1397305.1, AD-1397306.1, AD-1397307.1, AD-1397308.1, AD-1397309.1, AD-1397310.1, AD-1397311.1, AD-1397312.1, AD-1397313.1, AD-1397314.1, AD-1397315.1, AD-1397316.1, AD-1397317.1, AD-1397318.1, AD-1397319.1, AD-1397320.1, AD-1397321.1, AD-1397322.1, AD-1397088.1, AD-1397089.1, AD-1397090.1, AD-1397091.1, AD-1397092.1, AD-1397093.1, AD-1397094.1, AD-1397095.1, AD-1397096.1, AD-1397097.1, AD-1397098.1, AD-1397099.1, AD-1397101.1, AD-1397102.1, AD-1397103.1, AD-1397104.1, AD-1397105.1, AD-1397106.1, AD-1397107.1, AD-1397108.1, AD-1397109.1, AD-1397110.1, AD-1397111.1, AD-1397112.1, AD-1397113.1, AD-1397114.1, AD-1397115.1, AD-1397116.1, AD-1397117.1, AD-1397118.1, AD-1397119.1, AD-1397120.1, AD-1397121.1, AD-1397122.1, AD-1397123.1, AD-1397124.1, AD-1397125.1, AD-1397126.1, AD-1397127.1, AD-1397128.1, AD-1397129.1, AD-1397130.1, AD-1397131.1, AD-1397132.1, AD-1397133.1, AD-1397134.1, AD-1397135.1, AD-1397136.1, AD-1397137.1, AD-1397138.1, AD-1397139.1, AD-1397140.1, AD-1397141.1, AD-1397142.1, AD-1397143.1, AD-1397144.1, AD-1397145.1, AD-1397146.1, AD-1397147.1, AD-1397148.1, AD-1397149.1, AD-1397150.1, AD-1397151.1, AD-1397152.1, AD-1397153.1, AD-1397154.1, AD-1397155.1, AD-1397156.1, AD-1397157.1, AD-1397158.1, AD-1397159.1, AD-1397160.1, AD-1397161.1, AD-1397162.1, AD-1397163.1, AD-1397164.1, AD-1397165.1, AD-1397166.1, AD-1397167.1, AD-1397168.1, AD-1397169.1, AD-1397170.1, AD-1397171.1, AD-1397172.1, AD-1397173.1, AD-1397174.1, AD-1397175.1, AD-1397176.1, AD-1397177.1, AD-1397178.1, AD-1397179.1, AD-1397180.1, AD-1397181.1, AD-1397182.1, AD-1397183.1, AD-1397184.1, AD-1397185.1, AD-1397186.1, AD-1397187.1, AD-1397188.1, AD-1397189.1, AD-1397190.1, AD-1397191.1, AD-1397192.1, AD-1397193.1, AD-1397194.1, AD-1397195.1, AD-1397196.1, AD-1397197.1, AD-1397198.1, AD-1397199.1, AD-1397200.1, AD-1397201.1, AD-1397202.1, AD-1397203.1, AD-1397204.1, AD-1397205.1, AD-1397206.1, AD-1397207.1, AD-1397208.1, AD-1397209.1, AD-1397210.1, AD-1397211.1, AD-1397212.1, AD-1397213.1, AD-1397214.1, AD-1397215.1, AD-1397216.1, AD-1397217.1, AD-1397218.1, AD-1397219.1, AD-1397220.1, AD-1397221.1, AD-1397222.1, AD-1397223.1, AD-1397224.1, AD-1397225.1, AD-1397226.1, AD-1397227.1, AD-1397228.1, AD-1397229.1, AD-1397230.1, AD-1397231.1, AD-1397232.1, AD-1397233.1, AD-1397234.1, AD-1397235.1, AD-1397236.1, AD-1397237.1, AD-1397238.1, AD-1397239.1, AD-1397240.1, AD-1397241.1, AD-1397242.1, AD-1397243.1, AD-1397244.1, AD-1397245.1, AD-1397246.1, AD-1397247.1, AD-1397248.1, AD-1397249.1, AD-523565.1, AD-1397072.3, AD-1397073.3, AD-1397076.3, AD-1397077.3, AD-1397078.3, AD-1397252.2, AD-1397257.2, AD-1397258.2, AD-1397259.2, AD-1397263.2, AD-1397264.2, AD-1397309.2, AD-64958.114, AD-393758.4, AD-1397080.3, AD-1397293.2, AD-1397294.2, AD-1397081.3, AD-1397083.3, AD-1397298.2, AD-1397299.2, AD-1397084.2, AD-1397085.2, AD-1397087.3, AD-1397306.2, AD-1397307.2, AD-1397308.2 and AD-1397088.2.


In one embodiment, at least partial suppression of the expression of a MAPT gene, is assessed by a reduction of the amount of MAPT mRNA, e.g., sense mRNA, antisense mRNA, total MAPT mRNA, which can be isolated from or detected in a first cell or group of cells in which a MAPT gene is transcribed and which has or have been treated such that the expression of a MAPT gene is inhibited, as compared to a second cell or group of cells substantially identical to the first cell or group of cells but which has or have not been so treated (control cells). The degree of inhibition may be expressed in terms of:









(

mRNA


in


control


cells

)

-

(

mRNA


in


treated


cells

)



(

mRNA


in


control


cells

)


×
100




The phrase “contacting a cell with an RNAi agent,” such as a dsRNA, as used herein, includes contacting a cell by any possible means. Contacting a cell with an RNAi agent includes contacting a cell in vitro with the RNAi agent or contacting a cell in vivo with the RNAi agent. The contacting may be done directly or indirectly. Thus, for example, the RNAi agent may be put into physical contact with the cell by the individual performing the method, or alternatively, the RNAi agent may be put into a situation that will permit or cause it to subsequently come into contact with the cell.


Contacting a cell in vitro may be done, for example, by incubating the cell with the RNAi agent. Contacting a cell in vivo may be done, for example, by injecting the RNAi agent into or near the tissue where the cell is located, or by injecting the RNAi agent into another area, e.g., the central nervous system (CNS), optionally via intrathecal, intravitreal, intracisternal or other injection, or to the bloodstream or the subcutaneous space, such that the agent will subsequently reach the tissue where the cell to be contacted is located. For example, the RNAi agent may contain or be coupled to a ligand, e.g., a lipophilic moiety or moieties as described below and further detailed, e.g., in PCT/US2019/031170, which is incorporated herein by reference, that directs or otherwise stabilizes the RNAi agent at a site of interest, e.g., the CNS. Combinations of in vitro and in vivo methods of contacting are also possible. For example, a cell may also be contacted in vitro with an RNAi agent and subsequently transplanted into a subject.


In one embodiment, contacting a cell with an RNAi agent includes “introducing” or “delivering the RNAi agent into the cell” by facilitating or effecting uptake or absorption into the cell. Absorption or uptake of an RNAi agent can occur through unaided diffusive or active cellular processes, or by auxiliary agents or devices. Introducing an RNAi agent into a cell may be in vitro or in vivo. For example, for in vivo introduction, an RNAi agent can be injected into a tissue site or administered systemically. In vitro introduction into a cell includes methods known in the art such as electroporation and lipofection. Further approaches are described herein below or are known in the art.


The term “lipophile” or “lipophilic moiety” broadly refers to any compound or chemical moiety having an affinity for lipids. One way to characterize the lipophilicity of the lipophilic moiety is by the octanol-water partition coefficient, logKow, where Kow is the ratio of a chemical's concentration in the octanol-phase to its concentration in the aqueous phase of a two-phase system at equilibrium. The octanol-water partition coefficient is a laboratory-measured property of a substance. However, it may also be predicted by using coefficients attributed to the structural components of a chemical which are calculated using first-principle or empirical methods (see, for example, Tetko et al., J. Chem. Inf Comput. Sci. 41:1407-21 (2001), which is incorporated herein by reference in its entirety). It provides a thermodynamic measure of the tendency of the substance to prefer a non-aqueous or oily milieu rather than water (i.e. its hydrophilic/lipophilic balance). In principle, a chemical substance is lipophilic in character when its logKow exceeds 0. Typically, the lipophilic moiety possesses a logKow exceeding 1, exceeding 1.5, exceeding 2, exceeding 3, exceeding 4, exceeding 5, or exceeding 10. For instance, the logKow of 6-amino hexanol, for instance, is predicted to be approximately 0.7. Using the same method, the logKow of cholesteryl N-(hexan-6-ol) carbamate is predicted to be 10.7.


The lipophilicity of a molecule can change with respect to the functional group it carries. For instance, adding a hydroxyl group or amine group to the end of a lipophilic moiety can increase or decrease the partition coefficient (e.g., logKow) value of the lipophilic moiety.


Alternatively, the hydrophobicity of the double-stranded RNAi agent, conjugated to one or more lipophilic moieties, can be measured by its protein binding characteristics. For instance, in certain embodiments, the unbound fraction in the plasma protein binding assay of the double-stranded RNAi agent could be determined to positively correlate to the relative hydrophobicity of the double-stranded RNAi agent, which could then positively correlate to the silencing activity of the double-stranded RNAi agent.


In one embodiment, the plasma protein binding assay determined is an electrophoretic mobility shift assay (EMSA) using human serum albumin protein. An exemplary protocol of this binding assay is illustrated in detail in, e.g., PCT/US2019/031170. Briefly, duplexes were incubated with human serum albumin and the unbound fraction was determined. Exemplary assay protocol includes duplexes at a stock concentration of 10 μM, diluted to a final concentration of 0.5 μM (20 μL total volume) containing 0, 20, or 90% serum in lx PBS. The samples can be mixed, centrifuged for 30 seconds, and subsequently incubated at room temperature for 10 minutes. Once incubation step is completed, 4 μL of 6× EMSA Gel-loading solution can be added to each sample, centrifuged for 30 seconds, and 12 μL of each sample can be loaded onto a 26 well BioRad 10% PAGE (polyacrylamide gel electrophoresis). The gel can be run for 1 hour at 100 volts. After completion of the run, the gel is removed from the casing and washed in 50 mL of 10% TBE (Tris base, boric acid and EDTA). Once washing is complete, 5 μL of SYBR Gold can be added to the gel, which is then allowed to incubate at room temperature for 10 minutes, and the gel-washed again in 50 mL of 10% TBE. In this exemplary assay, a Gel Doc XR+ gel documentation system may be used to read the gel using the following parameters: the imaging application set to SYBR Gold, the size set to Bio-Rad criterion gel, the exposure set to automatic for intense bands, the highlight saturated pixels may be turned one and the color is set to gray. The detection, molecular weight analysis, and output can all disabled. Once a clean photo of the gel is obtained Image Lab 5.2 may be used to process the image. The lanes and bands can be manually set to measure band intensity. Band intensities of each sample can be normalized to PBS to obtain the fraction of unbound siRNA. From this measurement relative hydrophobicity can determined. The hydrophobicity of the double-stranded RNAi agent, measured by fraction of unbound siRNA in the binding assay, exceeds 0.15, exceeds 0.2, exceeds 0.25, exceeds 0.3, exceeds 0.35, exceeds 0.4, exceeds 0.45, or exceeds 0.5 for an enhanced in vivo delivery of siRNA.


Accordingly, conjugating the lipophilic moieties to the internal position(s) of the double-stranded RNAi agent provides optimal hydrophobicity for the enhanced in vivo delivery of siRNA.


The term “lipid nanoparticle” or “LNP” is a vesicle comprising a lipid layer encapsulating a pharmaceutically active molecule, such as a nucleic acid molecule, e.g., a RNAi agent or a plasmid from which an RNAi agent is transcribed. LNPs are described in, for example, U.S. Pat. Nos. 6,858,225, 6,815,432, 8,158,601, and 8,058,069, the entire contents of which are hereby incorporated herein by reference.


As used herein, a “subject” is an animal, such as a mammal, including a primate (such as a human, a non-human primate, e.g., a monkey, and a chimpanzee), or a non-primate (such as a rat, or a mouse). In a preferred embodiment, the subject is a human, such as a human being treated or assessed for a disease, disorder, or condition that would benefit from reduction in MAPT expression; a human at risk for a disease, disorder, or condition that would benefit from reduction in MAPT expression; a human having a disease, disorder, or condition that would benefit from reduction in MAPT expression; or human being treated for a disease, disorder, or condition that would benefit from reduction in MAPT expression as described herein. In some embodiments, the subject is a female human. In other embodiments, the subject is a male human. In one embodiment, the subject is an adult subject. In one embodiment, the subject is a pediatric subject. In another embodiment, the subject is a juvenile subject, i.e., a subject below 20 years of age.


As used herein, the terms “treating” or “treatment” refer to a beneficial or desired result including, but not limited to, alleviation or amelioration of one or more signs or symptoms associated with MAPT gene expression or Tau production in MAPT-associated diseases, such as Alzheimer's disease, FTD, PSP, or other tauopathies. “Treatment” can also mean prolonging survival as compared to expected survival in the absence of treatment.


The term “lower” in the context of the level of MAPT in a subject or a disease marker or symptom refers to a statistically significant decrease in such level. The decrease can be, for example, at least 10%, 15%, 20%, 25%, 30%, %, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more. In certain embodiments, a decrease is at least 20%. In certain embodiments, the decrease is at least 50% in a disease marker, e.g., the level of sense- or antisense-containing foci and/or the level of aberrant dipeptide repeat protein, e.g., a decrease of 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more. In some embodiments, a decrease is at least about 25% in a disease marker, e.g., Tau protein and/or gene expression level is decreased by, e.g., at least about 25%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or at least about 95% “Lower” in the context of the level of MAPT in a subject is preferably down to a level accepted as within the range of normal for an individual without such disorder. In certain embodiments, “lower” is the decrease in the difference between the level of a marker or symptom for a subject suffering from a disease and a level accepted within the range of normal for an individual, e.g., the level of decrease in bodyweight between an obese individual and an individual having a weight accepted within the range of normal.


As used herein, “prevention” or “preventing,” when used in reference to a disease, disorder, or condition thereof, that would benefit from a reduction in expression of a MAPT gene or production of a Tau, refers to a reduction in the likelihood that a subject will develop a symptom associated with such a disease, disorder, or condition, e.g., a symptom of a MAPT-associated disease. The failure to develop a disease, disorder, or condition, or the reduction in the development of a symptom associated with such a disease, disorder, or condition (e.g., by at least about 10% on a clinically accepted scale for that disease or disorder), or the exhibition of delayed symptoms delayed (e.g., by days, weeks, months or years) is considered effective prevention.


As used herein, the term “MAPT-associated disease” or “MAPT-associated disorder” or “tauopathy” includes any disease or disorder that would benefit from reduction in the expression and/or activity of MAPT. Exemplary MAPT-associated diseases include Alzheimer disease, frontotemporal dementia (FTD), behavioral variant frontotemporal dementia (bvFTD), nonfluent variant primary progressive aphasia (nfvPPA), primary progressive aphasia-semantic (PPA-S), primary progressive aphasia-logopenic (PPA-L), frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), Pick's disease (PiD), argyrophilic grain disease (AGD), multiple system tauopathy with presenile dementia (MSTD), white matter tauopathy with globular glial inclusions (FTLD with GGIs), FTLD with MAPT mutations, neurofibrillary tangle (NFT) dementia, FTD with motor neuron disease, amyotrophic lateral sclerosis (ALS), corticobasal syndrome (CBS), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), Parkinson's disease, postencephalitic Parkinsonism, Niemann-Pick disease, Huntington disease, type 1 myotonic dystrophy, and Down syndrome (DS).


“Therapeutically effective amount,” as used herein, is intended to include the amount of an RNAi agent that, when administered to a subject having a MAPT-associated disease, is sufficient to effect treatment of the disease (e.g., by diminishing, ameliorating, or maintaining the existing disease or one or more symptoms of disease). The “therapeutically effective amount” may vary depending on the RNAi agent, how the agent is administered, the disease and its severity and the history, age, weight, family history, genetic makeup, the types of preceding or concomitant treatments, if any, and other individual characteristics of the subject to be treated.


“Prophylactically effective amount,” as used herein, is intended to include the amount of an RNAi agent that, when administered to a subject having a MAPT-associated disorder, is sufficient to prevent or ameliorate the disease or one or more symptoms of the disease. Ameliorating the disease includes slowing the course of the disease or reducing the severity of later-developing disease. The “prophylactically effective amount” may vary depending on the RNAi agent, how the agent is administered, the degree of risk of disease, and the history, age, weight, family history, genetic makeup, the types of preceding or concomitant treatments, if any, and other individual characteristics of the patient to be treated.


A “therapeutically-effective amount” or “prophylactically effective amount” also includes an amount of an RNAi agent that produces some desired local or systemic effect at a reasonable benefit/risk ratio applicable to any treatment. An RNAi agent employed in the methods of the present disclosure may be administered in a sufficient amount to produce a reasonable benefit/risk ratio applicable to such treatment.


The phrase “pharmaceutically acceptable” is employed herein to refer to those compounds, materials, compositions, or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human subjects and animal subjects without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.


The phrase “pharmaceutically-acceptable carrier” as used herein means a pharmaceutically-acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, manufacturing aid (e.g., lubricant, talc magnesium, calcium or zinc stearate, or steric acid), or solvent encapsulating material, involved in carrying or transporting the subject compound from one organ, or portion of the body, to another organ, or portion of the body. Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the subject being treated. Some examples of materials which can serve as pharmaceutically-acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) lubricating agents, such as magnesium state, sodium lauryl sulfate and talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) pH buffered solutions; (21) polyesters, polycarbonates or polyanhydrides; (22) bulking agents, such as polypeptides and amino acids (23) serum component, such as serum albumin, HDL and LDL; and (22) other non-toxic compatible substances employed in pharmaceutical formulations.


The term “sample,” as used herein, includes a collection of similar fluids, cells, or tissues isolated from a subject, as well as fluids, cells, or tissues present within a subject. Examples of biological fluids include blood, serum and serosal fluids, plasma, cerebrospinal fluid, ocular fluids, lymph, urine, saliva, and the like. Tissue samples may include samples from tissues, organs or localized regions. For example, samples may be derived from particular organs, parts of organs, or fluids or cells within those organs. In certain embodiments, samples may be derived from the brain (e.g., whole brain or certain segments of brain, e.g., striatum, or certain types of cells in the brain, such as, e.g., neurons and glial cells (astrocytes, oligodendrocytes, microglial cells)). In some embodiments, a “sample derived from a subject” refers to blood drawn from the subject or plasma or serum derived therefrom. In further embodiments, a “sample derived from a subject” refers to brain tissue (or subcomponents thereof) or retinal tissue (or subcomponents thereof) derived from the subject.


The term “substituted” refers to the replacement of one or more hydrogen radicals in a given structure with the radical of a specified substituent including, but not limited to: alkyl, alkenyl, alkynyl, aryl, heterocyclyl, halo, thiol, alkylthio, arylthio, alkylthioalkyl, arylthioalkyl, alkylsulfonyl, alkylsulfonylalkyl, arylsulfonylalkyl, alkoxy, aryloxy, aralkoxy, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkyl, amino, trifluoromethyl, cyano, nitro, alkylamino, arylamino, alkylaminoalkyl, arylaminoalkyl, aminoalkylamino, hydroxy, alkoxyalkyl, carboxyalkyl, alkoxycarbonylalkyl, aminocarbonylalkyl, acyl, aralkoxycarbonyl, carboxylic acid, sulfonic acid, sulfonyl, phosphonic acid, aryl, heteroaryl, heterocyclic, and aliphatic. It is understood that the substituent can be further substituted.


The term “alkyl” refers to saturated and unsaturated non-aromatic hydrocarbon chains that may be a straight chain or branched chain, containing the indicated number of carbon atoms (these include without limitation propyl, allyl, or propargyl), which may be optionally inserted with N, O, or S. For example, “(C1-C6) alkyl” means a radical having from 1 6 carbon atoms in a linear or branched arrangement. “(C1-C6) alkyl” includes, for example, methyl, ethyl, propyl, iso-propyl, n-butyl, tert-butyl, pentyl and hexyl. In certain embodiments, a lipophilic moiety of the instant disclosure can include a C6-C18 alkyl hydrocarbon chain.


The term “alkylene” refers to an optionally substituted saturated aliphatic branched or straight chain divalent hydrocarbon radical having the specified number of carbon atoms. For example, “(C1-C6) alkylene” means a divalent saturated aliphatic radical having from 1-6 carbon atoms in a linear arrangement, e.g., [(CH2)n], where n is an integer from 1 to 6. “(C1-C6) alkylene” includes methylene, ethylene, propylene, butylene, pentylene and hexylene. Alternatively, “(C1-C6) alkylene” means a divalent saturated radical having from 1-6 carbon atoms in a branched arrangement, for example: [(CH2CH2CH2CH2CH(CH3)], [(CH2CH2CH2CH2C(CH3)2], [(CH2C(CH3)2CH(CH3))], and the like. The term “alkylenedioxo” refers to a divalent species of the structure —O—R—O—, in which R represents an alkylene.


The term “mercapto” refers to an —SH radical. The term “thioalkoxy” refers to an —S— alkyl radical.


The term “halo” refers to any radical of fluorine, chlorine, bromine or iodine. “Halogen” and “halo” are used interchangeably herein.


As used herein, the term “cycloalkyl” means a saturated or unsaturated nonaromatic hydrocarbon ring group having from 3 to 14 carbon atoms, unless otherwise specified. For example, “(C3-C10) cycloalkyl” means a hydrocarbon radical of a (3-10)-membered saturated aliphatic cyclic hydrocarbon ring. Examples of cycloalkyl groups include, but are not limited to, cyclopropyl, methyl-cyclopropyl, 2,2-dimethyl-cyclobutyl, 2-ethyl-cyclopentyl, cyclohexyl, etc. Cycloalkyls may include multiple spiro- or fused rings. Cycloalkyl groups are optionally mono-, di-, tri-, tetra-, or penta-substituted on any position as permitted by normal valency.


As used herein, the term “alkenyl” refers to a non-aromatic hydrocarbon radical, straight or branched, containing at least one carbon-carbon double bond, and having from 2 to 10 carbon atoms unless otherwise specified. Up to five carbon-carbon double bonds may be present in such groups. For example, “C2-C6” alkenyl is defined as an alkenyl radical having from 2 to 6 carbon atoms. Examples of alkenyl groups include, but are not limited to, ethenyl, propenyl, butenyl, and cyclohexenyl. The straight, branched, or cyclic portion of the alkenyl group may contain double bonds and is optionally mono-, di-, tri-, tetra-, or penta-substituted on any position as permitted by normal valency. The term “cycloalkenyl” means a monocyclic hydrocarbon group having the specified number of carbon atoms and at least one carbon-carbon double bond.


As used herein, the term “alkynyl” refers to a hydrocarbon radical, straight or branched, containing from 2 to 10 carbon atoms, unless otherwise specified, and containing at least one carbon-carbon triple bond. Up to 5 carbon-carbon triple bonds may be present. Thus, “C2-C6 alkynyl” means an alkynyl radical having from 2 to 6 carbon atoms. Examples of alkynyl groups include, but are not limited to, ethynyl, 2-propynyl, and 2-butynyl. The straight or branched portion of the alkynyl group may contain triple bonds as permitted by normal valency, and may be optionally mono-, di-, tri-, tetra-, or penta-substituted on any position as permitted by normal valency.


As used herein, “alkoxyl” or “alkoxy” refers to an alkyl group as defined above with the indicated number of carbon atoms attached through an oxygen bridge. For example, “(C1-C3)alkoxy” includes methoxy, ethoxy and propoxy. For example, “(C1-C6)alkoxy”, is intended to include C1, C2, C3, C4, C5, and C6 alkoxy groups. For example, “(C1-C8)alkoxy”, is intended to include C1, C2, C3, C4, C5, C6, C7, and C8 alkoxy groups. Examples of alkoxy include, but are not limited to, methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, s-butoxy, t-butoxy, n-pentoxy, s-pentoxy, n-heptoxy, and n-octoxy. “Alkylthio” means an alkyl radical attached through a sulfur linking atom. The terms “alkylamino” or “aminoalkyl”, means an alkyl radical attached through an NH linkage. “Dialkylamino” means two alkyl radical attached through a nitrogen linking atom. The amino groups may be unsubstituted, monosubstituted, or di-substituted. In some embodiments, the two alkyl radicals are the same (e.g., N,N-dimethylamino). In some embodiments, the two alkyl radicals are different (e.g., N-ethyl-N-methylamino).


As used herein, “aryl” or “aromatic” means any stable monocyclic or polycyclic carbon ring of up to 7 atoms in each ring, wherein at least one ring is aromatic. Examples of aryl groups include, but are not limited to, phenyl, naphthyl, anthracenyl, tetrahydronaphthyl, indanyl, and biphenyl. In cases where the aryl substituent is bicyclic and one ring is non-aromatic, it is understood that attachment is via the aromatic ring. Aryl groups are optionally mono-, di-, tri-, tetra-, or penta-substituted on any position as permitted by normal valency. The term “arylalkyl” or the term “aralkyl” refers to alkyl substituted with an aryl. The term “arylalkoxy” refers to an alkoxy substituted with aryl.


“Hetero” refers to the replacement of at least one carbon atom in a ring system with at least one heteroatom selected from N, S and O. “Hetero” also refers to the replacement of at least one carbon atom in an acyclic system. A hetero ring system or a hetero acyclic system may have, for example, 1, 2 or 3 carbon atoms replaced by a heteroatom.


As used herein, the term “heteroaryl” represents a stable monocyclic or polycyclic ring of up to 7 atoms in each ring, wherein at least one ring is aromatic and contains from 1 to 4 heteroatoms selected from the group consisting of O, N and S. Examples of heteroaryl groups include, but are not limited to, acridinyl, carbazolyl, cinnolinyl, quinoxalinyl, pyrrazolyl, indolyl, benzotriazolyl, furanyl, thienyl, benzothienyl, benzofuranyl, benzimidazolonyl, benzoxazolonyl, quinolinyl, isoquinolinyl, dihydroisoindolonyl, imidazopyridinyl, isoindolonyl, indazolyl, oxazolyl, oxadiazolyl, isoxazolyl, indolyl, pyrazinyl, pyridazinyl, pyridinyl, pyrimidinyl, pyrrolyl, tetrahydroquinoline. “Heteroaryl” is also understood to include the N-oxide derivative of any nitrogen-containing heteroaryl. In cases where the heteroaryl substituent is bicyclic and one ring is non-aromatic or contains no heteroatoms, it is understood that attachment is via the aromatic ring or via the heteroatom containing ring.


Heteroaryl groups are optionally mono-, di-, tri-, tetra-, or penta-substituted on any position as permitted by normal valency.


As used herein, the term “heterocycle,” “heterocyclic,” or “heterocyclyl” means a 3- to 14-membered aromatic or nonaromatic heterocycle containing from 1 to 4 heteroatoms selected from the group consisting of O, N and S, including polycyclic groups. As used herein, the term “heterocyclic” is also considered to be synonymous with the terms “heterocycle” and “heterocyclyl” and is understood as also having the same definitions set forth herein. “Heterocyclyl” includes the above mentioned heteroaryls, as well as dihydro and tetrahydro analogs thereof. Examples of heterocyclyl groups include, but are not limited to, azetidinyl, benzoimidazolyl, benzofuranyl, benzofurazanyl, benzopyrazolyl, benzotriazolyl, benzothiophenyl, benzoxazolyl, carbazolyl, carbolinyl, cinnolinyl, furanyl, imidazolyl, indolinyl, indolyl, indolazinyl, indazolyl, isobenzofuranyl, isoindolyl, isoquinolyl, isothiazolyl, isoxazolyl, naphthpyridinyl, oxadiazolyl, oxooxazolidinyl, oxazolyl, oxazoline, oxopiperazinyl, oxopyrrolidinyl, oxomorpholinyl, isoxazoline, oxetanyl, pyranyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridopyridinyl, pyridazinyl, pyridyl, pyridinonyl, pyrimidyl, pyrimidinonyl, pyrrolyl, quinazolinyl, quinolyl, quinoxalinyl, tetrahydropyranyl, tetrahydrofuranyl, tetrahydrothiopyranyl, tetrahydroisoquinolinyl, tetrazolyl, tetrazolopyridyl, thiadiazolyl, thiazolyl, thienyl, triazolyl, 1,4-dioxanyl, hexahydroazepinyl, piperazinyl, piperidinyl, pyridin-2-onyl, pyrrolidinyl, morpholinyl, thiomorpholinyl, dihydrobenzoimidazolyl, dihydrobenzofuranyl, dihydrobenzothiophenyl, dihydrobenzoxazolyl, dihydrofuranyl, dihydroimidazolyl, dihydroindolyl, dihydroisooxazolyl, dihydroisothiazolyl, dihydrooxadiazolyl, dihydrooxazolyl, dihydropyrazinyl, dihydropyrazolyl, dihydropyridinyl, dihydropyrimidinyl, dihydropyrrolyl, dihydroquinolinyl, dihydrotetrazolyl, dihydrothiadiazolyl, dihydrothiazolyl, dihydrothienyl, dihydrotriazolyl, dihydroazetidinyl, dioxidothiomorpholinyl, methylenedioxybenzoyl, tetrahydrofuranyl, and tetrahydrothienyl, and N-oxides thereof. Attachment of a heterocyclyl substituent can occur via a carbon atom or via a heteroatom. Heterocyclyl groups are optionally mono-, di-, tri-, tetra-, or penta-substituted on any position as permitted by normal valency.


“Heterocycloalkyl” refers to a cycloalkyl residue in which one to four of the carbons is replaced by a heteroatom such as oxygen, nitrogen or sulfur. Examples of heterocycles whose radicals are heterocyclyl groups include tetrahydropyran, morpholine, pyrrolidine, piperidine, thiazolidine, oxazole, oxazoline, isoxazole, dioxane, tetrahydrofuran and the like.


The term “heteroaryl” refers to an aromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (e.g., carbon atoms and 1-3, 1-6, or 1-9 heteroatoms of N, O, or S if monocyclic, bicyclic, or tricyclic, respectively), wherein 0, 1, 2, 3, or 4 atoms of each ring may be substituted by a substituent. Examples of heteroaryl groups include pyridyl, furyl or furanyl, imidazolyl, benzimidazolyl, pyrimidinyl, thiophenyl or thienyl, quinolinyl, indolyl, thiazolyl, and the like. The term “heteroarylalkyl” or the term “heteroaralkyl” refers to an alkyl substituted with a heteroaryl. The term “heteroarylalkoxy” refers to an alkoxy substituted with heteroaryl.


The term “cycloalkyl” as employed herein includes saturated and partially unsaturated cyclic hydrocarbon groups having 3 to 12 carbons, for example, 3 to 8 carbons, and, for example, 3 to 6 carbons, wherein the cycloalkyl group additionally may be optionally substituted. Cycloalkyl groups include, without limitation, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, and cyclooctyl.


The term “acyl” refers to an alkylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, heterocyclylcarbonyl, or heteroarylcarbonyl substituent, any of which may be further substituted by substituents.


As used herein, “keto” refers to any alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, or aryl group as defined herein attached through a carbonyl bridge.


Examples of keto groups include, but are not limited to, alkanoyl (e.g., acetyl, propionyl, butanoyl, pentanoyl, hexanoyl), alkenoyl (e.g., acryloyl) alkynoyl (e.g., ethynoyl, propynoyl, butynoyl, pentynoyl, hexynoyl), aryloyl (e.g., benzoyl), heteroaryloyl (e.g., pyrroloyl, imidazoloyl, quinolinoyl, pyridinoyl).


As used herein, “alkoxycarbonyl” refers to any alkoxy group as defined above attached through a carbonyl bridge (i.e., —C(O)O-alkyl). Examples of alkoxycarbonyl groups include, but are not limited to, methoxycarbonyl, ethoxycarbonyl, iso-propoxycarbonyl, n-propoxycarbonyl, t-butoxycarbonyl, benzyloxycarbonyl or n-pentoxycarbonyl.


As used herein, “aryloxycarbonyl” refers to any aryl group as defined herein attached through an oxycarbonyl bridge (i.e., —C(O)O-aryl). Examples of aryloxycarbonyl groups include, but are not limited to, phenoxycarbonyl and naphthyloxycarbonyl.


As used herein, “heteroaryloxycarbonyl” refers to any heteroaryl group as defined herein attached through an oxycarbonyl bridge (i.e., —C(O)O-heteroaryl). Examples of heteroaryloxycarbonyl groups include, but are not limited to, 2-pyridyloxycarbonyl, 2-oxazolyloxycarbonyl, 4-thiazolyloxycarbonyl, or pyrimidinyloxycarbonyl.


The term “oxo” refers to an oxygen atom, which forms a carbonyl when attached to carbon, an N-oxide when attached to nitrogen, and a sulfoxide or sulfone when attached to sulfur.


The person of ordinary skill in the art would readily understand and appreciate that the compounds and compositions disclosed herein may have certain atoms (e.g., N, O, or S atoms) in a protonated or deprotonated state, depending upon the environment in which the compound or composition is placed. Accordingly, as used herein, the structures disclosed herein envisage that certain functional groups, such as, for example, OH, SH, or NH, may be protonated or deprotonated. The disclosure herein is intended to cover the disclosed compounds and compositions regardless of their state of protonation based on the pH of the environment, as would be readily understood by the person of ordinary skill in the art.


II. RNAi Agents of the Disclosure

Described herein are RNAi agents which inhibit the expression of a MAPT gene. In one embodiment, the RNAi agent includes double stranded ribonucleic acid (dsRNA) molecules for inhibiting the expression of a MAPT gene in a cell, such as a cell within a subject, e.g., a mammal, such as a human having a MAPT-associated disease, e.g., Alzheimer's disease, FTD, PSP, or another tauopathy. The dsRNA includes an antisense strand having a region of complementarity which is complementary to at least a part of an mRNA formed in the expression of a MAPT gene. The region of complementarity is about 15-30 nucleotides or less in length. Upon contact with a cell expressing the MAPT gene, the RNAi agent inhibits the expression of the MAPT gene (e.g., a human gene, a primate gene, a non-primate gene) by at least 25%, or higher as described herein, when compared to a similar cell not contacted with the RNAi agent or an RNAi agent not complementary to the MAPT gene. Expression of the MAPT gene may be assayed by, for example, a PCR or branched DNA (bDNA)-based method, or by a protein-based method, such as by immunofluorescence analysis, using, for example, western blotting or flowcytometric techniques. In one embodiment, the level of knockdown is assayed in BE (2)-C cells using an assay method provided in Example 1 below. In some embodiments, the level of knockdown is assayed in primary mouse hepatocytes. In some embodiments, the level of knockdown is assayed in Neuro-2a cells.


A dsRNA includes two RNA strands that are complementary and hybridize to form a duplex structure under conditions in which the dsRNA will be used. One strand of a dsRNA (the antisense strand) includes a region of complementarity that is substantially complementary, and generally fully complementary, to a target sequence. The target sequence can be derived from the sequence of an mRNA formed during the expression of a MAPT gene. The other strand (the sense strand) includes a region that is complementary to the antisense strand, such that the two strands hybridize and form a duplex structure when combined under suitable conditions. As described elsewhere herein and as known in the art, the complementary sequences of a dsRNA can also be contained as self-complementary regions of a single nucleic acid molecule, as opposed to being on separate oligonucleotides.


Generally, the duplex structure is 15 to 30 base pairs in length, e.g., 15-29, 15-28, 15-27, 15-26, 15-25, 15-24, 15-23, 15-22, 15-21, 15-20, 15-19, 15-18, 15-17, 18-30, 18-29, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24,20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 base pairs in length. In certain preferred embodiments, the duplex structure is 18 to 25 base pairs in length, e.g., 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-25, 20-24,20-23, 20-22, 20-21, 21-25, 21-24, 21-23, 21-22, 22-25, 22-24, 22-23, 23-25, 23-24 or 24-25 base pairs in length, for example, 19-21 basepairs in length. Ranges and lengths intermediate to the above recited ranges and lengths are also contemplated to be part of the disclosure.


Similarly, the region of complementarity to the target sequence is 15 to 30 nucleotides in length, e.g., 15-29, 15-28, 15-27, 15-26, 15-25, 15-24, 15-23, 15-22, 15-21, 15-20, 15-19, 15-18, 15-17, 18-30, 18-29, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24,20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 nucleotides in length, for example 19-23 nucleotides in length or 21-23 nucleotides in length. Ranges and lengths intermediate to the above recited ranges and lengths are also contemplated to be part of the disclosure.


In some embodiments, the duplex structure is 19 to 30 base pairs in length. Similarly, the region of complementarity to the target sequence is 19 to 30 nucleotides in length.


In some embodiments, the dsRNA is 15 to 23 nucleotides in length, 19 to 23 nucleotides in length, or 25 to 30 nucleotides in length. In general, the dsRNA is long enough to serve as a substrate for the Dicer enzyme. For example, it is well known in the art that dsRNAs longer than about 21-23 nucleotides can serve as substrates for Dicer. As the ordinarily skilled person will also recognize, the region of an RNA targeted for cleavage will most often be part of a larger RNA molecule, often an mRNA molecule. Where relevant, a “part” of an mRNA target is a contiguous sequence of an mRNA target of sufficient length to allow it to be a substrate for RNAi-directed cleavage (i.e., cleavage through a RISC pathway).


One of skill in the art will also recognize that the duplex region is a primary functional portion of a dsRNA, e.g., a duplex region of about 15 to 36 base pairs, e.g., 15-36, 15-35, 15-34, 15-33, 15-32, 15-31, 15-30, 15-29, 15-28, 15-27, 15-26, 15-25, 15-24, 15-23, 15-22, 15-21, 15-20, 15-19, 15-18, 15-17, 18-30, 18-29, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24,20-23, 20-22, 20-21, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, or 21-22 base pairs, for example, 19-21 base pairs. Thus, in one embodiment, to the extent that it becomes processed to a functional duplex, of e.g., 15-30 base pairs, that targets a desired RNA for cleavage, an RNA molecule or complex of RNA molecules having a duplex region greater than 30 base pairs is a dsRNA. Thus, an ordinarily skilled artisan will recognize that in one embodiment, a miRNA is a dsRNA. In another embodiment, a dsRNA is not a naturally occurring miRNA. In another embodiment, an RNAi agent useful to target MAPT expression is not generated in the target cell by cleavage of a larger dsRNA.


A dsRNA as described herein can further include one or more single-stranded nucleotide overhangs e.g., 1, 2, 3, or 4 nucleotides. A nucleotide overhang can comprise or consist of a nucleotide/nucleoside analog, including a deoxynucleotide/nucleoside. The overhang(s) can be on the sense strand, the antisense strand or any combination thereof. Furthermore, the nucleotide(s) of an overhang can be present on the 5′-end, 3′-end or both ends of either an antisense or sense strand of a dsRNA.


A dsRNA can be synthesized by standard methods known in the art. Double stranded RNAi compounds of the invention may be prepared using a two-step procedure. First, the individual strands of the double stranded RNA molecule are prepared separately. Then, the component strands are annealed. The individual strands of the siRNA compound can be prepared using solution-phase or solid-phase organic synthesis or both. Organic synthesis offers the advantage that the oligonucleotide strands comprising unnatural or modified nucleotides can be easily prepared. Similarly, single-stranded oligonucleotides of the invention can be prepared using solution-phase or solid-phase organic synthesis or both.


In one aspect, a dsRNA of the disclosure includes at least two nucleotide sequences, a sense sequence and an antisense sequence. The sense strand sequence for MAPT may be selected from the group of sequences provided in any one of Tables 3-8, 12-13, and 16-28, and the corresponding nucleotide sequence of the antisense strand of the sense strand may be selected from the group of sequences of any one of Tables 3-8, 12-13, and 16-28. In this aspect, one of the two sequences is complementary to the other of the two sequences, with one of the sequences being substantially complementary to a sequence of an mRNA generated in the expression of a MAPT gene. As such, in this aspect, a dsRNA will include two oligonucleotides, where one oligonucleotide is described as the sense strand (passenger strand) in any one of Tables 3-8, 12-13, and 16-28, and the second oligonucleotide is described as the corresponding antisense strand (guide strand) of the sense strand in any one of Tables 3-8, 12-13, and 16-28.


In one embodiment, the sense strand comprises at least 15 contiguous nucleotides differing by no more than three nucleotides from any one of the nucleotide sequence of nucleotides 512-532, 513-533, 514-534, 515-535, 516-536, 517-537, 518-538, 519-539, 520-540, 1063-1083, 1067-1087, 1072-1092, 1074-1094, 1075-1095, 1125-1145, 1126-1146, 1127-1147, 1129-1149, 1170-1190, 1395-1415, 1905-1925, 1906-1926, 1909-1929, 1911-1931, 1912-1932, 1913-1933, 1914-1934, 1915-1935, 1916-1936, 1919-1939, 1951-1971, 1954-1974, 1958-1978, 2387-2407, 2409-2429, 2410-2430, 2469-2489, 2471-2491, 2472-2492, 2476-2496, 2477-2497, 2478-2498, 2480-2500, 2481-2501, 2482-2502, 2484-2504, 2762-2782, 2764-2784, 2766-2786, 2767-2787, 2768-2788, 2769-2789, 2819-2839, 2821-2841, 2828-2848, 2943-2963, 2944-2964, 2946-2966, 2947-2967, 3252-3272, 3277-3297, 3280-3300, 3281-3301, 3282-3302, 3284-3304, 3285-3305, 3286-3306, 3331-3351, 3332-3352, 3333-3353, 3334-3354, 3335-3355, 3336-3356, 3338-3358, 3340-3360, 3342-3362, 3343-3363, 3344-3364, 3345-3365, 3346-3366, 3347-3367, 3349-3369, 3350-3370, 3353-3373, 3364-3384, 3366-3386, 3367-3387, 3368-3388, 3369-3389, 3370-3390, 3412-3432, 3414-3434, 3415-3435, 3416-3436, 3417-3437, 3419-3439, 3420-3440, 3424-3444, 3425-3445, 3426-3446, 3427-3447, 3428-3448, 3429-3449, 3430-3450, 3431-3451, 3434-3454, 4132-4152, 4134-4154, 4179-4199, 4182-4202, 4184-4204, 4395-4415, 4425-4445, 4426-4446, 4429-4449, 4469-4489, 4470-4490, 4471-4491, 4472-4492, 4473-4493, 4474-4494, 4569-4589, 4571-4591, 4572-4592, 4596-4616, 4623-4643, 4721-4741, 4722-4742, 4725-4745, 4726-4746, 4766-4786, 4767-4787, 4768-4788, 4769-4789, 4770-4790, 4779-4799, 4805-4825, 4806-4826, 4807-4827, 4808-4828, 4809-4829, 4812-4832, 4813-4833, 4814-4834, 4936-4956, 5072-5092, 5073-5093, 5345-5365, 5346-5366, 5349-5369, 5350-5370, 5351-5371, 5460-5480, 5461-5481, 5463-5483, 5465-5485, 5467-5487, 5468-5488, 5469-5489, 5470-5490, 5471-5491, 5505-5525, 5506-5526, 5507-5527, 5508-5528, 5509-5529, 5511-5531, 5513-5533, 5514-5534, 5541-5561, 5544-5564, 5546-5566, 5547-5567, 5548-5568, 5550-5570, 5551-5571, 5574-5594, 5576-5596, 5614-5634, 521-541, 522-542, 523-543, 524-544, 525-545, 526-546, 527-547, 528-548, 529-549, 530-550, 531-551, 532-552, 533-553, 534-554, 535-555, 536-556, 1034-1054,1035-1055, 1036-1056, 1037-1057, 1038-1058, 1039-1059, 1040-1060, 1041-1061, 1042-1062, 1043-1063, 1044-1064, 1045-1065, 1046-1066, 1047-1067, 1048-1068, 1049-1069, 1050-1070, 1051-1071, 1052-1072, 1053-1073, 1054-1074, 1062-1082, 1064-1084, 1065-1085, 1066-1086, 1068-1088, 1069-1089, 1070-1090, 1071-1091, 1073-1093, 1076-1096, 1077-1097, 1078-1098, 1079-1099, 1080-1100, 1081-1101, 1082-1102, 1128-1148, 1129-1149, 1130-1150, 1131-1151, 1132-1152, 1133-1153, 1134-1154, 1135-1155, 1136-1156, 1137-1157, 1138-1158, 1139-1159, 1140-1160, 1141-1161, 1142-1162, 1143-1163, 1144-1164, 1145-1165, 1146-1166, 1147-1167, 1148-1168, 975-995, 976-996, 977-997, 978-998, 979-999, 980-1000, 981-1001, 982-1002, 983-1003, 984-1004, 985-1005, 986-1006, 987-1007, 988-1008, 989-1009, 990-1010, 991-1011, 992-1012, 993-1013, 994-1014, 995-1015, 996-1016, 997-1017, 998-1018, 999-1019, 1000-1020, 1001-1021, 1002-1022, 1003-1023, 1004-1024, 1005-1025, 1006-1026, 1007-1027, 1008-1028, 1009-1029, 1010-1030, 1011-1031,1012-1032, 1013-1033,1014-1034, 1015-1035,1016-1036, 1017-1037,1018-1038, 1019-1039, 1020-1040, 1021-1041, 1022-1042, 1023-1043, 1024-1044, 1025-1045, 1026-1046, 1027-1047, 1028-1048, 1029-1049, 1030-1050, 1031-1051, 1032-1052, 1033-1053, 1034-1054, 1035-1055, 1036-1056, 1037-1057, 1038-1058, 1039-1059, 1040-1060, 1041-1061, 1042-1062, 1043-1063 and 1045-1065 of SEQ ID NO: 3, and the antisense strand comprises at least 15 contiguous nucleotides from the corresponding nucleotide sequence of SEQ ID NO: 4.


In certain embodiments, the antisense polynucleotides disclosed herein are substantially complementary to a fragment of a target MAPT sequence and comprise a contiguous nucleotide sequence which is at least 80% complementary over its entire length to a fragment of SEQ ID NO: 4 selected from the group of nucleotides, wherein the sense strand comprises at least 15 contiguous nucleotides differing by no more than three nucleotides from any one of the nucleotide sequence of nucleotides 520-541, 520-556, 510-534, 512-536, 516-541, 516-540, 520-544, 524-547, 526-551, 529-556, 532-556, 1065-1089, 1068-1095, 1068-1094, 1075-1100, 1076-1100, 1079-1103, 1123-1147, 1127-1151, 1130-1155, 1903-1934, 1903-1930, 1914-1940, 1949-1975, 2470-2497, 2941-2965, 3275-3302, 3278-3302, 3329-3353, 3333-3357, 3338-3367, 3338-3366, 3348-3390, 3348-3388, 3351-3385, 5507-5562 and 5549-5597 of SEQ ID NO: 3, and the antisense strand comprises at least 15 contiguous nucleotides from the corresponding nucleotide sequence of SEQ ID NO: 4. In some embodiments, the antisense polynucleotides disclosed herein are substantially complementary to a fragment of a target MAPT sequence and comprise a contiguous nucleotide sequence complementary over its entire length to a fragment of SEQ ID NO: 4 selected from the group of nucleotides, wherein the sense strand comprises at least 15 contiguous nucleotides differing by no more than three nucleotides from any one of the nucleotide sequence of nucleotides 520-541, 520-556, 510-534, 512-536, 516-541, 516-540, 520-544, 524-547, 526-551, 529-556, 532-556, 1065-1089, 1068-1095, 1068-1094, 1075-1100, 1076-1100, 1079-1103, 1123-1147, 1127-1151, 1130-1155, 1903-1934, 1903-1930, 1914-1940, 1949-1975, 2470-2497, 2941-2965, 3275-3302, 3278-3302, 3329-3353, 3333-3357, 3338-3367, 3338-3366, 3348-3390, 3348-3388, 3351-3385, 5507-5562 and 5549-5597 of SEQ ID NO: 3, and the antisense strand comprises at least 15 contiguous nucleotides from the corresponding nucleotide sequence of SEQ ID NO: 4.


In one embodiment, the sense strand comprises at least 15 contiguous nucleotides differing by no more than three nucleotides from any one of the nucleotide sequence of nucleotides 977-997, 980-1000, 973-993, 988-1008, 987-1007, 972-992, 979-999, 1001-1021, 976-996, 994-1014, 1002-1022, 978-998, 974-994, 520-540, 521-541, 5464-5484, 1813-1833, 2378-2398, 3242-3262, 5442-5462, 1665-1685, 524-544, 5207-5227, 4670-4690, 3420-3440, 3328-3348, 5409-5429, 5439-5459, 4527-4547, 5441-5461, 5410-5430 and 5446-5466 of SEQ ID NO: 1, and the antisense strand comprises at least 15 contiguous nucleotides from the corresponding nucleotide sequence of SEQ ID NO: 2.


In one embodiment, the antisense strand comprises at least 15 contiguous nucleotides differing by no more than three nucleotides from any one of the antisense strand nucleotide sequences of a duplex selected from the group consisting of AD-523799.1, AD-523802.1, AD-523795.1, AD-523810.1, AD-523809.1, AD-1019331.1, AD-523801.1, AD-523823.1, AD-523798.1, AD-523816.1, AD-523824.1, AD-523800.1, AD-523796.1, AD-535094.1, AD-535094.1, AD-535095.1, AD-538647.1, AD-535922.1, AD-536317.1, AD-536911.1, AD-538626.1, AD-535864.1, AD-523561.1, AD-523565.1, AD-523562.1, AD-526914.1, AD-526394.1, AD-395452.1, AD-525343.1, AD-524274.1, AD-526956.1, AD-526986.1, AD-526296.1, AD-526988.1, AD-526957.1, AD-526993.1, AD-1397070.1, AD-1397070.2, AD-1397071.1, AD-1397071.2, AD-1397072.1, AD-1397072.2, AD-1397073.1, AD-1397073.2, AD-1397074.1, AD-1397074.2, AD-1397075.1, AD-1397075.2, AD-1397076.1, AD-1397076.2, AD-1397077.1, AD-1397077.2, AD-1397078.1, AD-1397078.2, AD-1397250.1, AD-1397251.1, AD-1397252.1, AD-1397253.1, AD-1397254.1, AD-1397255.1, AD-1397256.1, AD-1397257.1, AD-1397258.1, AD-1397259.1, AD-1397260.1, AD-1397261.1, AD-1397262.1, AD-1397263.1, AD-1397264.1, AD-1397265.1, AD-1423242.1, AD-1423243.1, AD-1423244.1, AD-1423245.1, AD-1423246.1, AD-1423247.1, AD-1423248.1, AD-1423249.1, AD-1423250.1, AD-1423251.1, AD-1423252.1, AD-1423253.1, AD-1423254.1, AD-1423255.1, AD-1423256.1, AD-1423257.1, AD-1423258.1, AD-1423259.1, AD-1423260.1, AD-1423261.1, AD-1423262.1, AD-1423263.1, AD-1423264.1, AD-1423265.1, AD-1423266.1, AD-1423267.1, AD-1423268.1, AD-1423269.1, AD-1423270.1, AD-1423271.1, AD-1423272.1, AD-1423273.1, AD-1423274.1, AD-1423275.1, AD-1423276.1, AD-1423277.1, AD-1423278.1, AD-1423279.1, AD-1423280.1, AD-1423281.1, AD-1423282.1, AD-1423283.1, AD-1423284.1, AD-1423285.1, AD-1423286.1, AD-1423287.1, AD-1423288.1, AD-1423289.1, AD-1423290.1, AD-1423291.1, AD-1423292.1, AD-1423293.1, AD-1423294.1, AD-1423295.1, AD-1423296.1, AD-1423297.1, AD-1423298.1, AD-1423299.1, AD-1423300.1, AD-1397266.1, AD-1397266.2, AD-1397267.1, AD-1423301.1, AD-1397268.1, AD-1397268.2, AD-1397269.1, AD-1423302.1, AD-1397270.1, AD-1397270.2, AD-1397271.1, AD-1397271.2, AD-1397272.1, AD-1423303.1, AD-1397273.1, AD-1423304.1, AD-1397274.1, AD-1423305.1, AD-1397275.1, AD-1423306.1, AD-1397276.1, AD-1397277.1, AD-1397277.2, AD-1397278.1, AD-1397279.1, AD-1397280.1, AD-1397281.1, AD-1397282.1, AD-1397283.1, AD-1397284.1, AD-1397285.1, AD-1397286.1, AD-1397287.1, AD-1397079.1, AD-1397079.2, AD-1397288.1, AD-1397289.1, AD-1397290.1, AD-1397080.1, AD-1397080.2, AD-1397291.1, AD-1397292.1, AD-1397293.1, AD-1397294.1, AD-1397081.1, AD-1397081.2, AD-1397295.1, AD-1397082.1, AD-1397082.2, AD-1397083.1, AD-1397083.2, AD-1397296.1, AD-1397297.1, AD-1397298.1, AD-1397299.1, AD-1397300.1, AD-1397301.1, AD-1397302.1, AD-1397084.1, AD-1397085.1, AD-1397086.1, AD-1397303.1, AD-1397087.1, AD-1397087.2, AD-1397304.1, AD-1397305.1, AD-1397306.1, AD-1397307.1, AD-1397308.1, AD-1397309.1, AD-1397310.1, AD-1397311.1, AD-1397312.1, AD-1397313.1, AD-1397314.1, AD-1397315.1, AD-1397316.1, AD-1397317.1, AD-1397318.1, AD-1397319.1, AD-1397320.1, AD-1397321.1, AD-1397322.1, AD-1397088.1, AD-1397089.1, AD-1397090.1, AD-1397091.1, AD-1397092.1, AD-1397093.1, AD-1397094.1, AD-1397095.1, AD-1397096.1, AD-1397097.1, AD-1397098.1, AD-1397099.1, AD-1397101.1, AD-1397102.1, AD-1397103.1, AD-1397104.1, AD-1397105.1, AD-1397106.1, AD-1397107.1, AD-1397108.1, AD-1397109.1, AD-1397110.1, AD-1397111.1, AD-1397112.1, AD-1397113.1, AD-1397114.1, AD-1397115.1, AD-1397116.1, AD-1397117.1, AD-1397118.1, AD-1397119.1, AD-1397120.1, AD-1397121.1, AD-1397122.1, AD-1397123.1, AD-1397124.1, AD-1397125.1, AD-1397126.1, AD-1397127.1, AD-1397128.1, AD-1397129.1, AD-1397130.1, AD-1397131.1, AD-1397132.1, AD-1397133.1, AD-1397134.1, AD-1397135.1, AD-1397136.1, AD-1397137.1, AD-1397138.1, AD-1397139.1, AD-1397140.1, AD-1397141.1, AD-1397142.1, AD-1397143.1, AD-1397144.1, AD-1397145.1, AD-1397146.1, AD-1397147.1, AD-1397148.1, AD-1397149.1, AD-1397150.1, AD-1397151.1, AD-1397152.1, AD-1397153.1, AD-1397154.1, AD-1397155.1, AD-1397156.1, AD-1397157.1, AD-1397158.1, AD-1397159.1, AD-1397160.1, AD-1397161.1, AD-1397162.1, AD-1397163.1, AD-1397164.1, AD-1397165.1, AD-1397166.1, AD-1397167.1, AD-1397168.1, AD-1397169.1, AD-1397170.1, AD-1397171.1, AD-1397172.1, AD-1397173.1, AD-1397174.1, AD-1397175.1, AD-1397176.1, AD-1397177.1, AD-1397178.1, AD-1397179.1, AD-1397180.1, AD-1397181.1, AD-1397182.1, AD-1397183.1, AD-1397184.1, AD-1397185.1, AD-1397186.1, AD-1397187.1, AD-1397188.1, AD-1397189.1, AD-1397190.1, AD-1397191.1, AD-1397192.1, AD-1397193.1, AD-1397194.1, AD-1397195.1, AD-1397196.1, AD-1397197.1, AD-1397198.1, AD-1397199.1, AD-1397200.1, AD-1397201.1, AD-1397202.1, AD-1397203.1, AD-1397204.1, AD-1397205.1, AD-1397206.1, AD-1397207.1, AD-1397208.1, AD-1397209.1, AD-1397210.1, AD-1397211.1, AD-1397212.1, AD-1397213.1, AD-1397214.1, AD-1397215.1, AD-1397216.1, AD-1397217.1, AD-1397218.1, AD-1397219.1, AD-1397220.1, AD-1397221.1, AD-1397222.1, AD-1397223.1, AD-1397224.1, AD-1397225.1, AD-1397226.1, AD-1397227.1, AD-1397228.1, AD-1397229.1, AD-1397230.1, AD-1397231.1, AD-1397232.1, AD-1397233.1, AD-1397234.1, AD-1397235.1, AD-1397236.1, AD-1397237.1, AD-1397238.1, AD-1397239.1, AD-1397240.1, AD-1397241.1, AD-1397242.1, AD-1397243.1, AD-1397244.1, AD-1397245.1, AD-1397246.1, AD-1397247.1, AD-1397248.1, AD-1397249.1, AD-523565.1, AD-1397072.3, AD-1397073.3, AD-1397076.3, AD-1397077.3, AD-1397078.3, AD-1397252.2, AD-1397257.2, AD-1397258.2, AD-1397259.2, AD-1397263.2, AD-1397264.2, AD-1397309.2, AD-64958.114, AD-393758.4, AD-1397080.3, AD-1397293.2, AD-1397294.2, AD-1397081.3, AD-1397083.3, AD-1397298.2, AD-1397299.2, AD-1397084.2, AD-1397085.2, AD-1397087.3, AD-1397306.2, AD-1397307.2, AD-1397308.2, AD-1397088.2, AD-1566238, AD-1566239, AD-1566240, AD-1566241, AD-1566242, AD-1566243, AD-1566244, AD-1566245, AD-1566246, AD-1091965, AD-1566248, AD-1566249, AD-1566250, AD-1091966, AD-1566251, AD-1566252, AD-1566253, AD-1566254, AD-1566255, AD-1566256, AD-1566257, AD-1566258, AD-1566259, AD-692906, AD-1566575, AD-1566576, AD-1566577, AD-1566580, AD-1566581, AD-1566582, AD-1566583, AD-1566584, AD-1566586, AD-1566587, AD-1566588, AD-1566590, AD-1566591, AD-1566634, AD-1566635, AD-1566638, AD-1566639, AD-1566641, AD-1566642, AD-1566643, AD-1566679, AD-1566861, AD-1567153, AD-1567154, AD-1567157, AD-1567159, AD-1567160, AD-1567161, AD-1567164, AD-1567167, AD-1567199, AD-1567202, AD-1567550, AD-1567554, AD-1567784, AD-1567896, AD-1567897, AD-1568105, AD-1568108, AD-1568109, AD-1568139, AD-1568140, AD-1568143, AD-1568144, AD-1568148, AD-1568150, AD-1568151, AD-1568152, AD-1568153, AD-1568154, AD-1568158, AD-1568161, AD-1568172, AD-1568174, AD-1568175, AD-692908, AD-1568176, AD-1569830, AD-1569832, AD-1569834, AD-1569835, AD-1569862, AD-1569872, AD-1569890 and AD-1569892.


In a particular embodiment, the antisense strand comprises at least 15 contiguous nucleotides differing by no more than three nucleotides from any one of the antisense strand nucleotide sequences of a duplex selected from the group consisting of AD-523799.1, AD-523802.1, AD-523795.1, AD-523810.1, AD-523809.1, AD-1019331.1, AD-523801.1, AD-523823.1, AD-523798.1, AD-523816.1, AD-523824.1, AD-523800.1, AD-523796.1, AD-535094.1, AD-535094.1, AD-535095.1, AD-538647.1, AD-535922.1, AD-536317.1, AD-536911.1, AD-538626.1, AD-535864.1, AD-523561.1, AD-523565.1, AD-523562.1, AD-526914.1, AD-526394.1, AD-395452.1, AD-525343.1, AD-524274.1, AD-526956.1, AD-526986.1, AD-526296.1, AD-526988.1, AD-526957.1 and AD-526993.1. In one embodiment, the antisense strand comprises at least 15 contiguous nucleotides differing by no more than three nucleotides from any one of the antisense strand nucleotide sequences of a duplex selected from the group consisting of AD-523799.1, AD-523802.1, AD-523795.1, AD-523810.1, AD-523809.1, AD-1019331.1, AD-523801.1, AD-523823.1, AD-523798.1, AD-523816.1, AD-523824.1, AD-523800.1 and AD-523796.1.


In some embodiments, the present invention provides a dsRNA agent for inhibiting expression of MAPT, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the antisense strand comprises a region of complementarity to an mRNA encoding Tau, and wherein the region of complementarity comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from any one of the antisense nucleotide sequences in any one of Tables 12-13.


In one embodiment, the sense strand comprises at least 15 contiguous nucleotides differing by no more than three nucleotides from any one of the nucleotide sequence of nucleotides 1065-1085, 1195-1215, 1066-1086, 1068-1088, 705-725, 1067-1087, 4520-4540, 3341-3361, 4515-4535, 5284-5304, 5285-5305, 344-364, 5283-5303, 5354-5374, 2459-2479, 1061-1081, 706-726, 972-992, 4564-4584, 995-1015, 4546-4566, 968-988, 1127-1147, 4534-4554, 158-178, 4494-4514, 1691-1711, 3544-3564, 198-218, 979-999, 4548-4568, 4551-4571, 543-563, 715-735, 542-562, 352-372, 362-382, 4556-4576, 4547-4567, 4542-4562, 4558-4578, 4549-4569, 5074-5094, 4552-4572, 5073-5093, 5076-5096, 4550-4570 and 2753-2773 of SEQ ID NO: 5, and the antisense strand comprises at least 15 contiguous nucleotides from the corresponding nucleotide sequence of SEQ ID NO: 6.


In one embodiment, the antisense strand comprises at least 15 contiguous nucleotides differing by no more than three nucleotides from any one of the antisense strand nucleotide sequences of a duplex selected from the group consisting of AD-393758.1, AD-393888.1, AD-393759.1, AD-393761.1, AD-393495.1, AD-393760.1, AD-396425.1, AD-395441.1, AD-396420.1, AD-397103.1, AD-397104.1, AD-393239.1, AD-397102.1, AD-397167.1, AD-394791.1, AD-393754.1, AD-393496.1, AD-393667.1, AD-396467.1, AD-393690.1, AD-396449.1, AD-393663.1, AD-393820.1, AD-396437.1, AD-393084.1, AD-396401.1, AD-394296.1, AD-395574.1, AD-393124.1, AD-393674.1, AD-396451.1, AD-396454.1, AD-393376.1, AD-393505.1, AD-393375.1, AD-393247.1, AD-393257.1, AD-396459.1, AD-396450.1, AD-396445.1, AD-396461.1, AD-396452.1, AD-396913.1, AD-396455.1, AD-396912.1, AD-396915.1, AD-396453.1 and AD-394991.1.


In one embodiment, the nucleotide sequence of the sense strand comprises at least 15 contiguous nucleotides corresponding to the MAPT gene exon 10 sense strand sequence set forth in SEQ ID NO.: 1533 and an antisense strand comprising a sequence complementary thereto.


In one embodiment, the substantially complementary sequences of the dsRNA are contained on separate oligonucleotides. In another embodiment, the substantially complementary sequences of the dsRNA are contained on a single oligonucleotide.


It will be understood that, although the sequences in Tables 6-8, 13, 17, 19, 21, 23, 26 and 28, are described as modified or conjugated sequences, the RNA of the RNAi agent of the disclosure e.g., a dsRNA of the disclosure, may comprise any one of the sequences set forth in any one of Tables 3-8, 12-13, and 16-28, that is un-modified, un-conjugated, or modified or conjugated differently than described therein. For example, although the sense strands of the agents of the invention may be conjugated to a GalNAc ligand, these agents may be conjugated to a moiety that directs delivery to the CNS, e.g., a C16 ligand, as described herein. In one embodiment, the lipophilic moiety contains a saturated or unsaturated C16 hydrocarbon chain (e.g., a linear C16 alkyl or alkenyl). A lipophilic ligand can be included in any of the positions provided in the instant application. In some embodiments, the lipophilic moiety is conjugated to a nucleobase, sugar moiety, or internucleosidic linkage of the double-stranded iRNA agent. For example, a C16 ligand may be conjugated via the 2′-oxygen of a ribonucleotide as shown in the following structure:




embedded image


where * denotes a bond to an adjacent nucleotide, and B is a nucleobase or a nucleobase analog, optionally where B is adenine, guanine, cytosine, thymine or uracil. Design and Synthesis of the ligands and monomers provided herein are described, for example, in PCT publication Nos. WO2019/217459, WO2020/132227, and WO2020/257194, contents of which are incorporated herein by reference in their entirety.


In some embodiments, the double-stranded iRNA agent further comprises a phosphate or phosphate mimic at the 5′-end of the antisense strand. In one embodiment, the phosphate mimic is a 5′-vinyl phosphonate (VP). In some embodiments, the 5′-end of the antisense strand of the double-stranded iRNA agent does not contain a 5′-vinyl phosphonate (VP).


The skilled person is well aware that dsRNAs having a duplex structure of about 20 to 23 base pairs, e.g., 21, base pairs have been hailed as particularly effective in inducing RNA interference (Elbashir et al., (2001) EMBO J., 20:6877-6888). However, others have found that shorter or longer RNA duplex structures can also be effective (Chu and Rana (2007) RNA 14:1714-1719; Kim et al. (2005) Nat Biotech 23:222-226). In the embodiments described above, by virtue of the nature of the oligonucleotide sequences provided herein, dsRNAs described herein can include at least one strand of a length of minimally 21 nucleotides. It can be reasonably expected that shorter duplexes minus only a few nucleotides on one or both ends can be similarly effective as compared to the dsRNAs described above. Hence, dsRNAs having a sequence of at least 15, 16, 17, 18, 19, 20, or more contiguous nucleotides derived from one of the sequences provided herein, and differing in their ability to inhibit the expression of a MAPT gene by at least about 25%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or at least about 95% inhibition relative to a control level, from a dsRNA comprising the full sequence using the in vitro assay with, e.g., A549 cells and a 10 nM concentration of the RNA agent and the PCR assay as provided in the examples herein, are contemplated to be within the scope of the present disclosure. In some embodiments, inhibition from a dsRNA comprising the full sequence was measured using the in vitro assay with primary mouse hepatocytes.


In addition, the RNAs described herein identify a site(s) in a MAPT transcript that is susceptible to RISC-mediated cleavage. As such, the present disclosure further features RNAi agents that target within this site(s). As used herein, an RNAi agent is said to target within a particular site of an RNA transcript if the RNAi agent promotes cleavage of the transcript anywhere within that particular site. Such an RNAi agent will generally include at least about 15 contiguous nucleotides, preferably at least 19 nucleotides, from one of the sequences provided herein coupled to additional nucleotide sequences taken from the region contiguous to the selected sequence in a MAPT gene.


III. Modified RNAi Agents of the Disclosure

In one embodiment, the RNA of the RNAi agent of the disclosure e.g., a dsRNA, is un-modified, and does not comprise, e.g., chemical modifications or conjugations known in the art and described herein. In preferred embodiments, the RNA of an RNAi agent of the disclosure, e.g., a dsRNA, is chemically modified to enhance stability or other beneficial characteristics. In certain embodiments of the disclosure, substantially all of the nucleotides of an RNAi agent of the disclosure are modified. In other embodiments of the disclosure, all of the nucleotides of an RNAi agent of the disclosure are modified. RNAi agents of the disclosure in which “substantially all of the nucleotides are modified” are largely but not wholly modified and can include not more than 5, 4, 3, 2, or unmodified nucleotides. In still other embodiments of the disclosure, RNAi agents of the disclosure can include not more than 5, 4, 3, 2 or 1 modified nucleotides.


The nucleic acids featured in the disclosure can be synthesized or modified by methods well established in the art, such as those described in “Current protocols in nucleic acid chemistry,” Beaucage, S. L. et al. (Edrs.), John Wiley & Sons, Inc., New York, N.Y., USA, which is hereby incorporated herein by reference. Modifications include, for example, end modifications, e.g., 5′-end modifications (phosphorylation, conjugation, inverted linkages) or 3′-end modifications (conjugation, DNA nucleotides, inverted linkages, etc.); base modifications, e.g., replacement with stabilizing bases, destabilizing bases, or bases that base pair with an expanded repertoire of partners, removal of bases (abasic nucleotides), or conjugated bases; sugar modifications (e.g., at the 2′-position or 4′-position) or replacement of the sugar; or backbone modifications, including modification or replacement of the phosphodiester linkages. Specific examples of RNAi agents useful in the embodiments described herein include, but are not limited to, RNAs containing modified backbones or no natural internucleoside linkages. RNAs having modified backbones include, among others, those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified RNAs that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides. In some embodiments, a modified RNAi agent will have a phosphorus atom in its internucleoside backbone.


Modified RNA backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3′-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3′-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3′-5′ linkages, 2′-5′-linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3′-5′ to 5′-3′ or 2′-5′ to 5′-2′.


Various salts, mixed salts and free acid forms are also included. In some embodiments of the invention, the dsRNA agents of the invention are in a free acid form. In other embodiments of the invention, the dsRNA agents of the invention are in a salt form. In one embodiment, the dsRNA agents of the invention are in a sodium salt form. In certain embodiments, when the dsRNA agents of the invention are in the sodium salt form, sodium ions are present in the agent as counterions for substantially all of the phosphodiester and/or phosphorothiotate groups present in the agent. Agents in which substantially all of the phosphodiester and/or phosphorothioate linkages have a sodium counterion include not more than 5, 4, 3, 2, or 1 phosphodiester and/or phosphorothioate linkages without a sodium counterion. In some embodiments, when the dsRNA agents of the invention are in the sodium salt form, sodium ions are present in the agent as counterions for all of the phosphodiester and/or phosphorothiotate groups present in the agent.


Representative U.S. patents that teach the preparation of the above phosphorus-containing linkages include, but are not limited to, U.S. Pat. Nos. 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,195; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,316; 5,550,111; 5,563,253; 5,571,799; 5,587,361; 5,625,050; 6,028,188; 6,124,445; 6,160,109; 6,169,170; 6,172,209; 6,239,265; 6,277,603; 6,326,199; 6,346,614; 6,444,423; 6,531,590; 6,534,639; 6,608,035; 6,683,167; 6,858,715; 6,867,294; 6,878,805; 7,015,315; 7,041,816; 7,273,933; 7,321,029; and U.S. Pat. RE39464, the entire contents of each of which are hereby incorporated herein by reference.


Modified RNA backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatoms and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH2 component parts.


Representative U.S. patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S. Pat. Nos. 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,64,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; and, 5,677,439, the entire contents of each of which are hereby incorporated herein by reference.


In other embodiments, suitable RNA mimetics are contemplated for use in RNAi agents, in which both the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with alternate groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, a RNA mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar backbone of an RNA is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative U.S. patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262, the entire contents of each of which are hereby incorporated herein by reference. Additional PNA compounds suitable for use in the RNAi agents of the disclosure are described in, for example, in Nielsen et al., Science, 1991, 254, 1497-1500.


Some embodiments featured in the disclosure include RNAs with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular —CH2—NH—CH2—, —CH2—N(CH3)—O—CH2-[known as a methylene (methylimino) or MMI backbone], —CH2—O—N(CH3)—CH2—, —CH2—N(CH3)—N(CH3)—CH2— and —N(CH3)—CH2-[wherein the native phosphodiester backbone is represented as —O—P—O—CH2—] of the above-referenced U.S. Pat. No. 5,489,677, and the amide backbones of the above-referenced U.S. Pat. No. 5,602,240. In some embodiments, the RNAs featured herein have morpholino backbone structures of the above-referenced U.S. Pat. No. 5,034,506.


Modified RNAs can also contain one or more substituted sugar moieties. The RNAi agents, e.g., dsRNAs, featured herein can include one of the following at the 2′-position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl can be substituted or unsubstituted C1 to C10 alkyl or C2 to C10 alkenyl and alkynyl. Exemplary suitable modifications include O[(CH2)nO]mCH3, O(CH2)·nOCH3, O(CH2)nNH2, O(CH2)nCH3, O(CH2)nONH2, and O(CH2)nON[(CH2)nCH3)]2, where n and m are from 1 to about 10. In other embodiments, dsRNAs include one of the following at the 2′ position: C1 to C10 lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2CH3, ONO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an RNAi agent, or a group for improving the pharmacodynamic properties of an RNAi agent, and other substituents having similar properties. In some embodiments, the modification includes a 2′-methoxyethoxy (2′-O—CH2CH2OCH3, also known as 2′-O-(2-methoxyethyl) or 2′-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78:486-504) i.e., an alkoxy-alkoxy group. Another exemplary modification is 2′-dimethylaminooxyethoxy, i.e., a O(CH2)2ON(CH3)2 group, also known as 2′-DMAOE, as described in examples herein below, and 2′-dimethylaminoethoxyethoxy (also known in the art as 2′-O-dimethylaminoethoxyethyl or 2′-DMAEOE), i.e., 2′-O—CH2—O—CH2—N(CH2)2. Further exemplary modifications include: 5′-Me-2′-F nucleotides, 5′-Me-2′-OMe nucleotides, 5′-Me-2′-deoxynucleotides, (both R and S isomers in these three families); 2′-alkoxyalkyl; and 2′-NMA (N-methylacetamide).


Other modifications include 2′-methoxy (2′-OCH3), 2′-aminopropoxy (2′-OCH2CH2CH2NH2), 2′-O-hexadecyl, and 2′-fluoro (2′-F). Similar modifications can also be made at other positions on the RNA of an RNAi agent, particularly the 3′ position of the sugar on the 3′ terminal nucleotide or in 2′-5′ linked dsRNAs and the 5′ position of 5′ terminal nucleotide. RNAi agents can also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative U.S. patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S. Pat. Nos. 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; and 5,700,920, certain of which are commonly owned with the instant application. The entire contents of each of the foregoing are hereby incorporated herein by reference.


An RNAi agent of the disclosure can also include nucleobase (often referred to in the art simply as “base”) modifications or substitutions. As used herein, “unmodified” or “natural” nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl anal other 8-substituted adenines and guanines, 5-halo, particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-daazaadenine and 3-deazaguanine and 3-deazaadenine. Further nucleobases include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in Modified Nucleosides in Biochemistry, Biotechnology and Medicine, Herdewijn, P. ed. Wiley-VCH, 2008; those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J. L, ed. John Wiley & Sons, 1990, these disclosed by Englisch et al., (1991) Angewandte Chemie, International Edition, 30:613, and those disclosed by Sanghvi, Y S., Chapter 15, dsRNA Research and Applications, pages 289-302, Crooke, S. T. and Lebleu, B., Ed., CRC Press, 1993. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds featured in the disclosure. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and 0-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. (Sanghvi, Y. S., Crooke, S. T. and Lebleu, B., Eds., dsRNA Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and are exemplary base substitutions, even more particularly when combined with 2′-O-methoxyethyl sugar modifications.


Representative U.S. patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include, but are not limited to, the above noted U.S. Pat. Nos. 3,687,808, 4,845,205; 5,130,30; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; 5,681,941; 5,750,692; 6,015,886; 6,147,200; 6,166,197; 6,222,025; 6,235,887; 6,380,368; 6,528,640; 6,639,062; 6,617,438; 7,045,610; 7,427,672; and 7,495,088, the entire contents of each of which are hereby incorporated herein by reference.


An RNAi agent of the disclosure can also be modified to include one or more locked nucleic acids (LNA). A locked nucleic acid is a nucleotide having a modified ribose moiety in which the ribose moiety comprises an extra bridge connecting the 2′ and 4′ carbons. This structure effectively “locks” the ribose in the 3′-endo structural conformation. The addition of locked nucleic acids to siRNAs has been shown to increase siRNA stability in serum, and to reduce off-target effects (Elmen, J. et al., (2005) Nucleic Acids Research 33(1):439-447; Mook, O R. et al., (2007) Mol Canc Ther 6(3):833-843; Grunweller, A. et al., (2003) Nucleic Acids Research 31(12):3185-3193).


An RNAi agent of the disclosure can also be modified to include one or more bicyclic sugar moieties. A “bicyclic sugar” is a furanosyl ring modified by the bridging of two atoms. A “bicyclic nucleoside” (“BNA”) is a nucleoside having a sugar moiety comprising a bridge connecting two carbon atoms of the sugar ring, thereby forming a bicyclic ring system. In certain embodiments, the bridge connects the 4′-carbon and the 2′-carbon of the sugar ring. Thus, in some embodiments an agent of the disclosure may include one or more locked nucleic acids (LNA). A locked nucleic acid is a nucleotide having a modified ribose moiety in which the ribose moiety comprises an extra bridge connecting the 2′ and 4′ carbons. In other words, an LNA is a nucleotide comprising a bicyclic sugar moiety comprising a 4′-CH2-O-2′ bridge. This structure effectively “locks” the ribose in the 3′-endo structural conformation. The addition of locked nucleic acids to siRNAs has been shown to increase siRNA stability in serum, and to reduce off-target effects (Elmen, J. et al., (2005) Nucleic Acids Research 33(1):439-447; Mook, O R. et al., (2007) Mol Canc Ther 6(3):833-843; Grunweller, A. et al., (2003) Nucleic Acids Research 31(12):3185-3193). Examples of bicyclic nucleosides for use in the polynucleotides of the disclosure include without limitation nucleosides comprising a bridge between the 4′ and the 2′ ribosyl ring atoms. In certain embodiments, the antisense polynucleotide agents of the disclosure include one or more bicyclic nucleosides comprising a 4′ to 2′ bridge. Examples of such 4′ to 2′ bridged bicyclic nucleosides, include but are not limited to 4′-(CH2)-O-2′ (LNA); 4′-(CH2)-S-2′; 4′-(CH2)2-O-2′ (ENA); 4′-CH(CH3)-O-2′ (also referred to as “constrained ethyl” or “cEt”) and 4′-CH(CH2OCH3)-O-2′ (and analogs thereof; see, e.g., U.S. Pat. No. 7,399,845); 4′-C(CH3)(CH3)-O-2′ (and analogs thereof; see e.g., U.S. Pat. No. 8,278,283); 4′-CH2-N(OCH3)-2′ (and analogs thereof; see e.g., U.S. Pat. No. 8,278,425); 4′-CH2-O—N(CH3)-2′ (see, e.g., U.S. Patent Publication No. 2004/0171570); 4′-CH2-N(R)—O-2′, wherein R is H, C1-C12 alkyl, or a protecting group (see, e.g., U.S. Pat. No. 7,427,672); 4′-CH2-C(H)(CH3)-2′ (see, e.g., Chattopadhyaya et al., J. Org. Chem., 2009, 74, 118-134); and 4′-CH2-C(═CH2)-2′ (and analogs thereof; see, e.g., U.S. Pat. No. 8,278,426). The entire contents of each of the foregoing are hereby incorporated herein by reference.


Additional representative US Patents and US Patent Publications that teach the preparation of locked nucleic acid nucleotides include, but are not limited to, the following: U.S. Pat. Nos. 6,268,490; 6,525,191; 6,670,461; 6,770,748; 6,794,499; 6,998,484; 7,053,207; 7,034,133;7,084,125; 7,399,845; 7,427,672; 7,569,686; 7,741,457; 8,022,193; 8,030,467; 8,278,425; 8,278,426; 8,278,283; US 2008/0039618; and US 2009/0012281, the entire contents of each of which are hereby incorporated herein by reference.


Any of the foregoing bicyclic nucleosides can be prepared having one or more stereochemical sugar configurations including for example α-L-ribofuranose and p-D-ribofuranose (see WO 99/14226).


An RNAi agent of the disclosure can also be modified to include one or more constrained ethyl nucleotides. As used herein, a “constrained ethyl nucleotide” or “cEt” is a locked nucleic acid comprising a bicyclic sugar moiety comprising a 4′-CH(CH3)-0-2′ bridge. In one embodiment, a constrained ethyl nucleotide is in the S conformation referred to herein as “S-cEt.”


An RNAi agent of the disclosure may also include one or more “conformationally restricted nucleotides” (“CRN”). CRN are nucleotide analogs with a linker connecting the C2′ and C4′ carbons of ribose or the C3 and —C5′ carbons of ribose. CRN lock the ribose ring into a stable conformation and increase the hybridization affinity to mRNA. The linker is of sufficient length to place the oxygen in an optimal position for stability and affinity resulting in less ribose ring puckering.


Representative publications that teach the preparation of certain of the above noted CRN include, but are not limited to, US 2013/0190383; and WO 2013/036868, the entire contents of each of which are hereby incorporated herein by reference.


In some embodiments, an RNAi agent of the disclosure comprises one or more monomers that are UNA (unlocked nucleic acid) nucleotides. UNA is unlocked acyclic nucleic acid, wherein any of the bonds of the sugar has been removed, forming an unlocked “sugar” residue. In one example, UNA also encompasses monomer with bonds between C1′—C4′ have been removed (i.e. the covalent carbon-oxygen-carbon bond between the C1′ and C4′ carbons). In another example, the C2′—C3′ bond (i.e. the covalent carbon-carbon bond between the C2′ and C3′ carbons) of the sugar has been removed (see Nuc. Acids Symp. Series, 52, 133-134 (2008) and Fluiter et al., Mol. Biosyst., 2009, 10, 1039 hereby incorporated by reference).


Representative U.S. publications that teach the preparation of UNA include, but are not limited to, U.S. Pat. No. 8,314,227; and US Patent Publication Nos. 2013/0096289; 2013/0011922; and 2011/0313020, the entire contents of each of which are hereby incorporated herein by reference.


An RNAi agent of the disclosure may also include one or more “cyclohexene nucleic acids” or (“CeNA”). CeNA are nucleotide analogs with a replacement of the furanose moiety of DNA by a cyclohexene ring. Incorporation of cylcohexenyl nucleosides in a DNA chain increases the stability of a DNA/RNA hybrid. CeNA is stable against degradation in serum and a CeNA/RNA hybrid is able to activate E. Coli RNase H, resulting in cleavage of the RNA strand. (see Wang et al., Am. Chem. Soc. 2000, 122, 36, 8595-8602, hereby incorporated by reference).


Potentially stabilizing modifications to the ends of RNA molecules can include N-(acetylaminocaproyl)-4-hydroxyprolinol (Hyp-C6-NHAc), N-(caproyl-4-hydroxyprolinol (Hyp-C6), N-(acetyl-4-hydroxyprolinol (Hyp-NHAc), thymidine-2′-O-deoxythymidine (ether), N-(aminocaproyl)4-hydroxyprolinol (Hyp-C6-amino), 2-docosanoyl-uridine-3″-phosphate, inverted base dT(idT) and others. Disclosure of this modification can be found in WO 2011/005861.


Other modifications of an RNAi agent of the disclosure include a 5′ phosphate or 5′ phosphate mimic, e.g., a 5′-terminal phosphate or phosphate mimic on the antisense strand of an RNAi agent. Suitable phosphate mimics are disclosed in, for example US 2012/0157511, the entire contents of which are incorporated herein by reference.


A. Modified Rnai Agents Comprising Motifs of the Disclosure


In certain aspects of the disclosure, the double-stranded RNAi agents of the disclosure include agents with chemical modifications as disclosed, for example, in WO 2013/075035, the entire contents of which are incorporated herein by reference. As shown herein and in WO 2013/075035, a superior result may be obtained by introducing one or more motifs of three identical modifications on three consecutive nucleotides into a sense strand or antisense strand of an RNAi agent, particularly at or near the cleavage site. In some embodiments, the sense strand and antisense strand of the RNAi agent may otherwise be completely modified. The introduction of these motifs interrupts the modification pattern, if present, of the sense or antisense strand. The RNAi agent may be optionally conjugated with a lipophilic ligand, e.g., a C16 ligand, for instance on the sense strand. The RNAi agent may be optionally modified with a (S)-glycol nucleic acid (GNA) modification, for instance on one or more residues of the antisense strand. The resulting RNAi agents present superior gene silencing activity.


Accordingly, the disclosure provides double stranded RNAi agents capable of inhibiting the expression of a target gene (i.e., a MAPT gene) in vivo. The RNAi agent comprises a sense strand and an antisense strand. Each strand of the RNAi agent may be 15-30 nucleotides in length. For example, each strand may be 16-30 nucleotides in length, 17-30 nucleotides in length, 25-30 nucleotides in length, 27-30 nucleotides in length, 17-23 nucleotides in length, 17-21 nucleotides in length, 17-19 nucleotides in length, 19-25 nucleotides in length, 19-23 nucleotides in length, 19-21 nucleotides in length, 21-25 nucleotides in length, or 21-23 nucleotides in length. In certain embodiments, each strand is 19-23 nucleotides in length.


The sense strand and antisense strand typically form a duplex double stranded RNA (“dsRNA”), also referred to herein as an “RNAi agent.” The duplex region of an RNAi agent may be 15-30 nucleotide pairs in length. For example, the duplex region can be 16-30 nucleotide pairs in length, 17-30 nucleotide pairs in length, 27-30 nucleotide pairs in length, 17-23 nucleotide pairs in length, 17-21 nucleotide pairs in length, 17-19 nucleotide pairs in length, 19-25 nucleotide pairs in length, 19-23 nucleotide pairs in length, 19-21 nucleotide pairs in length, 21-25 nucleotide pairs in length, or 21-23 nucleotide pairs in length. In another example, the duplex region is selected from 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, and 27 nucleotides in length. In preferred embodiments, the duplex region is 19-21 nucleotide pairs in length.


In one embodiment, the RNAi agent may contain one or more overhang regions or capping groups at the 3′-end, 5′-end, or both ends of one or both strands. The overhang can be 1-6 nucleotides in length, for instance 2-6 nucleotides in length, 1-5 nucleotides in length, 2-5 nucleotides in length, 14 nucleotides in length, 2-4 nucleotides in length, 1-3 nucleotides in length, 2-3 nucleotides in length, or 1-2 nucleotides in length. In preferred embodiments, the nucleotide overhang region is 2 nucleotides in length. The overhangs can be the result of one strand being longer than the other, or the result of two strands of the same length being staggered. The overhang can form a mismatch with the target mRNA or it can be complementary to the gene sequences being targeted or can be another sequence. The first and second strands can also be joined, e.g., by additional bases to form a hairpin, or by other non-base linkers.


In one embodiment, the nucleotides in the overhang region of the RNAi agent can each independently be a modified or unmodified nucleotide including, but no limited to 2′-sugar modified, such as, 2-F, 2′-O-methyl, thymidine (T), and any combinations thereof.


For example, TT can be an overhang sequence for either end on either strand. The overhang can form a mismatch with the target mRNA or it can be complementary to the gene sequences being targeted or can be another sequence.


The 5′- or 3′-overhangs at the sense strand, antisense strand or both strands of the RNAi agent may be phosphorylated. In some embodiments, the overhang region(s) contains two nucleotides having a phosphorothioate between the two nucleotides, where the two nucleotides can be the same or different. In one embodiment, the overhang is present at the 3′-end of the sense strand, antisense strand, or both strands. In one embodiment, this 3′-overhang is present in the antisense strand. In one embodiment, this 3′-overhang is present in the sense strand.


The RNAi agent may contain only a single overhang, which can strengthen the interference activity of the RNAi, without affecting its overall stability. For example, the single-stranded overhang may be located at the 3′-terminal end of the sense strand or, alternatively, at the 3′-terminal end of the antisense strand. The RNAi may also have a blunt end, located at the 5′-end of the antisense strand (or the 3′-end of the sense strand) or vice versa. Generally, the antisense strand of the RNAi has a nucleotide overhang at the 3′-end, and the 5′-end is blunt. While not wishing to be bound by theory, the asymmetric blunt end at the 5′-end of the antisense strand and 3′-end overhang of the antisense strand favor the guide strand loading into RISC process.


In one embodiment, the RNAi agent is double blunt-ended and 19 nucleotides in length, wherein the sense strand contains at least one motif of three 2′-F modifications on three consecutive nucleotides at positions 7, 8, 9 from the 5′end. The antisense strand contains at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at positions 11, 12, 13 from the 5′end.


In another embodiment, the RNAi agent is double blunt-ended and 20 nucleotides in length, wherein the sense strand contains at least one motif of three 2′-F modifications on three consecutive nucleotides at positions 8, 9, 10 from the 5′end. The antisense strand contains at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at positions 11, 12, 13 from the 5′end.


In yet another embodiment, the RNAi agent is a double blunt-ended and 21 nucleotides in length, wherein the sense strand contains at least one motif of three 2′-F modifications on three consecutive nucleotides at positions 9, 10, 11 from the 5′end. The antisense strand contains at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at positions 11, 12, 13 from the 5′end.


In one embodiment, the RNAi agent comprises a 21 nucleotide sense strand and a 23 nucleotide antisense strand, wherein the sense strand contains at least one motif of three 2′-F modifications on three consecutive nucleotides at positions 9, 10, 11 from the 5′end; the antisense strand contains at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at positions 11, 12, 13 from the 5′end, wherein one end of the RNAi agent is blunt, while the other end comprises a 2 nucleotide overhang. Preferably, the 2 nucleotide overhang is at the 3′-end of the antisense strand. When the 2 nucleotide overhang is at the 3′-end of the antisense strand, there may be two phosphorothioate internucleotide linkages between the terminal three nucleotides, wherein two of the three nucleotides are the overhang nucleotides, and the third nucleotide is a paired nucleotide next to the overhang nucleotide. In one embodiment, the RNAi agent additionally has two phosphorothioate internucleotide linkages between the terminal three nucleotides at both the 5′-end of the sense strand and at the 5′-end of the antisense strand. In one embodiment, every nucleotide in the sense strand and the antisense strand of the RNAi agent, including the nucleotides that are part of the motifs are modified nucleotides. In one embodiment each residue is independently modified with a 2′-O-methyl or 3′-fluoro, e.g., in an alternating motif. Optionally, the RNAi agent further comprises a ligand (e.g., a lipophilic ligand, optionally a C16 ligand).


In one embodiment, the RNAi agent comprises a sense and an antisense strand, wherein the sense strand is 25-30 nucleotide residues in length, wherein starting from the 5′ terminal nucleotide (position 1) positions 1 to 23 of the first strand comprise at least 8 ribonucleotides; the antisense strand is 36-66 nucleotide residues in length and, starting from the 3′ terminal nucleotide, comprises at least 8 ribonucleotides in the positions paired with positions 1-23 of sense strand to form a duplex; wherein at least the 3′ terminal nucleotide of antisense strand is unpaired with sense strand, and up to 6 consecutive 3′ terminal nucleotides are unpaired with sense strand, thereby forming a 3′ single stranded overhang of 1-6 nucleotides; wherein the 5′ terminus of antisense strand comprises from 10-consecutive nucleotides which are unpaired with sense strand, thereby forming a 10-30 nucleotide single stranded 5′ overhang; wherein at least the sense strand 5′ terminal and 3′ terminal nucleotides are base paired with nucleotides of antisense strand when sense and antisense strands are aligned for maximum complementarity, thereby forming a substantially duplexed region between sense and antisense strands; and antisense strand is sufficiently complementary to a target RNA along at least 19 ribonucleotides of antisense strand length to reduce target gene expression when the double stranded nucleic acid is introduced into a mammalian cell; and wherein the sense strand contains at least one motif of three 2′-F modifications on three consecutive nucleotides, where at least one of the motifs occurs at or near the cleavage site. The antisense strand contains at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at or near the cleavage site.


In one embodiment, the RNAi agent comprises sense and antisense strands, wherein the RNAi agent comprises a first strand having a length which is at least 25 and at most 29 nucleotides and a second strand having a length which is at most 30 nucleotides with at least one motif of three 2′-O-methyl modifications on three consecutive nucleotides at position 11, 12, 13 from the 5′ end; wherein the 3′ end of the first strand and the 5′ end of the second strand form a blunt end and the second strand is 14 nucleotides longer at its 3′ end than the first strand, wherein the duplex region which is at least 25 nucleotides in length, and the second strand is sufficiently complementary to a target mRNA along at least 19 nucleotide of the second strand length to reduce target gene expression when the RNAi agent is introduced into a mammalian cell, and wherein dicer cleavage of the RNAi agent preferentially results in an siRNA comprising the 3′ end of the second strand, thereby reducing expression of the target gene in the mammal. Optionally, the RNAi agent further comprises a ligand.


In one embodiment, the sense strand of the RNAi agent contains at least one motif of three identical modifications on three consecutive nucleotides, where one of the motifs occurs at the cleavage site in the sense strand.


In one embodiment, the antisense strand of the RNAi agent can also contain at least one motif of three identical modifications on three consecutive nucleotides, where one of the motifs occurs at or near the cleavage site in the antisense strand.


For an RNAi agent having a duplex region of 17-23 nucleotide in length, the cleavage site of the antisense strand is typically around the 10, 11 and 12 positions from the 5′-end. Thus the motifs of three identical modifications may occur at the 9, 10, 11 positions; 10, 11, 12 positions; 11, 12, 13 positions; 12, 13, 14 positions; or 13, 14, 15 positions of the antisense strand, the count starting from the 1st nucleotide from the 5′-end of the antisense strand, or, the count starting from the 1st paired nucleotide within the duplex region from the 5′-end of the antisense strand. The cleavage site in the antisense strand may also change according to the length of the duplex region of the RNAi from the 5′-end.


The sense strand of the RNAi agent may contain at least one motif of three identical modifications on three consecutive nucleotides at the cleavage site of the strand; and the antisense strand may have at least one motif of three identical modifications on three consecutive nucleotides at or near the cleavage site of the strand. When the sense strand and the antisense strand form a dsRNA duplex, the sense strand and the antisense strand can be so aligned that one motif of the three nucleotides on the sense strand and one motif of the three nucleotides on the antisense strand have at least one nucleotide overlap, i.e., at least one of the three nucleotides of the motif in the sense strand forms a base pair with at least one of the three nucleotides of the motif in the antisense strand. Alternatively, at least two nucleotides may overlap, or all three nucleotides may overlap.


In one embodiment, the sense strand of the RNAi agent may contain more than one motif of three identical modifications on three consecutive nucleotides. The first motif may occur at or near the cleavage site of the strand and the other motifs may be a wing modification. The term “wing modification” herein refers to a motif occurring at another portion of the strand that is separated from the motif at or near the cleavage site of the same strand. The wing modification is either adjacent to the first motif or is separated by at least one or more nucleotides. When the motifs are immediately adjacent to each other, then the chemistry of the motifs are distinct from each other and when the motifs are separated by one or more nucleotide than the chemistries can be the same or different. Two or more wing modifications may be present. For instance, when two wing modifications are present, each wing modification may occur at one end relative to the first motif which is at or near cleavage site or on either side of the lead motif.


Like the sense strand, the antisense strand of the RNAi agent may contain more than one motif of three identical modifications on three consecutive nucleotides, with at least one of the motifs occurring at or near the cleavage site of the strand. This antisense strand may also contain one or more wing modifications in an alignment similar to the wing modifications that may be present on the sense strand.


In one embodiment, the wing modification on the sense strand or antisense strand of the RNAi agent typically does not include the first one or two terminal nucleotides at the 3′-end, 5′-end or both ends of the strand.


In another embodiment, the wing modification on the sense strand or antisense strand of the RNAi agent typically does not include the first one or two paired nucleotides within the duplex region at the 3′-end, 5′-end or both ends of the strand.


When the sense strand and the antisense strand of the RNAi agent each contain at least one wing modification, the wing modifications may fall on the same end of the duplex region, and have an overlap of one, two or three nucleotides.


When the sense strand and the antisense strand of the RNAi agent each contain at least two wing modifications, the sense strand and the antisense strand can be so aligned that two modifications each from one strand fall on one end of the duplex region, having an overlap of one, two or three nucleotides; two modifications each from one strand fall on the other end of the duplex region, having an overlap of one, two or three nucleotides; two modifications one strand fall on each side of the lead motif, having an overlap of one, two, or three nucleotides in the duplex region.


In one embodiment, the RNAi agent comprises mismatch(es) with the target, within the duplex, or combinations thereof. The mismatch may occur in the overhang region or the duplex region. The base pair may be ranked on the basis of their propensity to promote dissociation or melting (e.g., on the free energy of association or dissociation of a particular pairing, the simplest approach is to examine the pairs on an individual pair basis, though next neighbor or similar analysis can also be used). In terms of promoting dissociation: A:U is preferred over G:C; G:U is preferred over G:C; and I:C is preferred over G:C (I=inosine). Mismatches, e.g., non-canonical or other than canonical pairings (as described elsewhere herein) are preferred over canonical (A:T, A:U, G:C) pairings; and pairings which include a universal base are preferred over canonical pairings.


In one embodiment, the RNAi agent comprises at least one of the first 1, 2, 3, 4, or 5 base pairs within the duplex regions from the 5′-end of the antisense strand independently selected from the group of: A:U, G:U, I:C, and mismatched pairs, e.g., non-canonical or other than canonical pairings or pairings which include a universal base, to promote the dissociation of the antisense strand at the 5′-end of the duplex.


In one embodiment, the nucleotide at the 1 position within the duplex region from the 5′-end in the antisense strand is selected from the group consisting of A, dA, dU, U, and dT. Alternatively, at least one of the first 1, 2 or 3 base pair within the duplex region from the 5′-end of the antisense strand is an AU base pair. For example, the first base pair within the duplex region from the 5′-end of the antisense strand is an AU base pair.


In another embodiment, the nucleotide at the 3′-end of the sense strand is deoxy-thymine (dT). In another embodiment, the nucleotide at the 3′-end of the antisense strand is deoxy-thymine (dT). In one embodiment, there is a short sequence of deoxy-thymine nucleotides, for example, two dT nucleotides on the 3′-end of the sense or antisense strand.


In one embodiment, the sense strand sequence may be represented by formula (I):











(I)



5′ np-Na-(X X )i-Nb-Y Y -Nb-(Z )j-Na-nq 3′






wherein:


i and j are each independently 0 or 1;


p and q are each independently 0-6;


each Na independently represents an oligonucleotide sequence comprising 0-25 modified nucleotides, each sequence comprising at least two differently modified nucleotides;


each Nb independently represents an oligonucleotide sequence comprising 0-10 modified nucleotides;


each np and nq independently represent an overhang nucleotide;


wherein Nb and Y do not have the same modification; and


XXX, YYY and ZZZ each independently represent one motif of three identical modifications on three consecutive nucleotides. Preferably YYY is all 2′-F modified nucleotides.


In one embodiment, the Na or Nb comprise modifications of alternating pattern.


In one embodiment, the YYY motif occurs at or near the cleavage site of the sense strand. For example, when the RNAi agent has a duplex region of 17-23 nucleotides in length, the YYY motif can occur at or the vicinity of the cleavage site (e.g.: can occur at positions 6, 7, 8, 7, 8, 9, 8, 9, 10, 9, 10, 11, 10, 11,12 or 11, 12, 13) of the sense strand, the count starting from the 1st nucleotide, from the 5′-end; or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′-end.


In one embodiment, i is 1 and j is 0, or i is 0 and j is 1, or both i and j are 1. The sense strand can therefore be represented by the following formulas:











(Ib)



5′ np-Na-YYY-Nb-ZZZ-Na-nq 3′;







(Ic)



5′ np-Na-XXX-Nb-YYY-Na-nq 3′;



or







(Id)



5′ np-Na-XXX-Nb-YYY-Nb-ZZZ-Na-nq 3′.






When the sense strand is represented by formula (Ib), Nb represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 04, 0-2 or 0 modified nucleotides.


Each Na independently can represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the sense strand is represented as formula (Ic), Nb represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na can independently represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the sense strand is represented as formula (Id), each Nb independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Preferably, Nb is 0, 1, 2, 3, 4, 5 or 6. Each Na can independently represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


Each of X, Y and Z may be the same or different from each other.


In other embodiments, i is 0 and j is 0, and the sense strand may be represented by the formula:











(Ia)



5′ np-Na-YYY-Na-nq 3′.






When the sense strand is represented by formula (Ia), each Na independently can represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


In one embodiment, the antisense strand sequence of the RNAi may be represented by formula (II):











(II)



5′ nq′-Na′-(Z′Z′Z′)k-Nb′-Y′Y′Y′-Nb′-(X′X′X′)l-



N′a-np′ 3′






wherein:


k and 1 are each independently 0 or 1;


p′ and q′ are each independently 0-6;


each Na′ independently represents an oligonucleotide sequence comprising 0-25 modified nucleotides, each sequence comprising at least two differently modified nucleotides;


each Nb′ independently represents an oligonucleotide sequence comprising 0-10 modified nucleotides; each np′ and nq′ independently represent an overhang nucleotide;


wherein Nb′ and Y′ do not have the same modification;


and X′X′X′, Y′Y′Y′ and Z′Z′Z′ each independently represent one motif of three identical modifications on three consecutive nucleotides.


In one embodiment, the Na′ or Nb′ comprise modifications of alternating pattern.


The Y′Y′Y′ motif occurs at or near the cleavage site of the antisense strand. For example, when the RNAi agent has a duplex region of 17-23 nucleotidein length, the Y′Y′Y′ motif can occur at positions 9, 10, 11;10, 11, 12; 11, 12, 13; 12, 13, 14; or 13, 14, 15 of the antisense strand, with the count starting from the 1st nucleotide, from the 5′-end; or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′-end. Preferably, the Y′Y′Y′ motif occurs at positions 11, 12, 13.


In one embodiment, Y′Y′Y′ motif is all 2′-OMe modified nucleotides.


In one embodiment, k is 1 and 1 is 0, or k is 0 and 1 is 1, or both k and 1 are 1.


The antisense strand can therefore be represented by the following formulas:









(IIb)


5′ nq′-Na′-Z′Z′Z′-Nb′-Y′Y′Y′-Na′-np′ 3′;





(IIc)


5′ nq′-Na′-Y′Y′Y′-Nb′-X′X′X′-np′ 3′;


or





(IId)


5′ nq′-Na′-Z′Z′Z′-Nb′-Y′Y′Y′-Nb′-X′X′X′-Na′-np′ 3′.






When the antisense strand is represented by formula (IIb), Nb represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the antisense strand is represented as formula (IIc), Nb′ represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the antisense strand is represented as formula (IId), each Nb′ independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides. Preferably, Nb is 0, 1, 2, 3, 4, 5 or 6.


In other embodiments, k is 0 and 1 is 0 and the antisense strand may be represented by the formula:











(Ia)



5′ np′-Na'-Y′Y′Y′-Na′-nq′ 3′.






When the antisense strand is represented as formula (IIa), each Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


Each of X′, Y′ and Z′ may be the same or different from each other.


Each nucleotide of the sense strand and antisense strand may be independently modified with LNA, HNA, CeNA, 2′-methoxyethyl, 2′-O-methyl, 2′-O-allyl, 2′-C-allyl, 2′-hydroxyl, or 2′-fluoro. For example, each nucleotide of the sense strand and antisense strand is independently modified with 2′-O-methyl or 2′-fluoro. Each X, Y, Z, X′, Y′ and Z′, in particular, may represent a 2′-O-methyl modification or a 2′-fluoro modification.


In one embodiment, the sense strand of the RNAi agent may contain YYY motif occurring at 9, 10 and 11 positions of the strand when the duplex region is 21 nt, the count starting from the 1st nucleotide from the 5′-end, or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′-end; and Y represents 2′-F modification. The sense strand may additionally contain XXX motif or ZZZ motifs as wing modifications at the opposite end of the duplex region; and XXX and ZZZ each independently represents a 2′-OMe modification or 2′-F modification.


In one embodiment the antisense strand may contain Y′Y′Y′ motif occurring at positions 11, 12, 13 of the strand, the count starting from the 1st nucleotide from the 5′-end, or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′-end; and Y′ represents 2′-O-methyl modification. The antisense strand may additionally contain X′X′X′ motif or Z′Z′Z′ motifs as wing modifications at the opposite end of the duplex region; and X′X′X′ and Z′Z′Z′ each independently represents a 2′-OMe modification or 2′-F modification.


The sense strand represented by any one of the above formulas (Ia), (Ib), (Ic), and (Id) forms a duplex with an antisense strand being represented by any one of formulas (IIa), (IIb), (IIc), and (IId), respectively.


Accordingly, the RNAi agents for use in the methods of the disclosure may comprise a sense strand and an antisense strand, each strand having 14 to 30 nucleotides, the RNAi duplex represented by formula (III):









(III)


sense:


5′ np-Na-(X X X)i-Nb-Y Y Y-Nb-(Z Z Z)j-Na-nq 3′





antisense:


3′ np′-Na′-(X′X′X′)k-Nb′-Y′Y′Y′-Nb′-(Z′Z′Z′)l-Na′-


nq′ 5′ 






wherein:


i, j, k, and 1 are each independently 0 or 1;


p, p′, q, and q′ are each independently 0-6;


each Na and Na′ independently represents an oligonucleotide sequence comprising 0-25 modified nucleotides, each sequence comprising at least two differently modified nucleotides;


each Nb and Nb′ independently represents an oligonucleotide sequence comprising 0-10 modified nucleotides;


wherein


each np′, np, nq′, and nq, each of which may or may not be present, independently represents an overhang nucleotide; and


XXX, YYY, ZZZ, X′X′X′, Y′Y′Y′, and Z′Z′Z′ each independently represent one motif of three identical modifications on three consecutive nucleotides.


In one embodiment, i is 0 and j is 0; or i is 1 and j is 0; or i is 0 and j is 1; or both i and j are 0; or both i and j are 1. In another embodiment, k is 0 and 1 is 0; or k is 1 and 1 is 0; k is 0 and 1 is 1; or both k and 1 are 0; or both k and 1 are 1.


Exemplary combinations of the sense strand and antisense strand forming an RNAi duplex include the formulas below:









5′ np-Na-Y Y Y-Na-nq 3′





(IIIa)


3′ np′-Na′-Y′Y′Y′-Na′nq′ 5′





5′ np-Na-Y Y Y-Nb-Z Z Z-Na-nq 3′





(IIIb)


3′ np′-Na′-Y′Y′Y′-Nb′-Z′Z′Z′-Na′nq′ 5′





5′ np-Na-X X X-Nb-Y Y Y-Na-nq 3′





(IIIc)


3′ np′-Na′-X′X′X′-Nb′-Y′Y′Y′-Na′-nq′ 5′





5′ np-Na-X X X-Nb-Y Y Y-Nb-Z Z Z-Na-nq 3′





(IIId)


3′ np′-Na′-X′X′X′-Nb′-Y′Y′Y′-Nb′-Z′Z′Z′-Na-nq′ 5′






When the RNAi agent is represented by formula (IIIa), each Na independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the RNAi agent is represented by formula (IIIb), each Nb independently represents an oligonucleotide sequence comprising 1-10, 1-7, 1-5 or 1-4 modified nucleotides. Each Na independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the RNAi agent is represented as formula (IIIc), each Nb, Nb′ independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the RNAi agent is represented as formula (IIId), each Nb, Nb′ independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na, Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides. Each of Na, Na′, Nb and Nb′ independently comprises modifications of alternating pattern.


In one embodiment, when the RNAi agent is represented by formula (IIId), the Na modifications are 2′-O-methyl or 2′-fluoro modifications. In another embodiment, when the RNAi agent is represented by formula (IIId), the Na modifications are 2′-O-methyl or 2′-fluoro modifications and np′>0 and at least one np′ is linked to a neighboring nucleotide a via phosphorothioate linkage. In yet another embodiment, when the RNAi agent is represented by formula (IIId), the Na modifications are 2′-O-methyl or 2′-fluoro modifications, np′>0 and at least one np′ is linked to a neighboring nucleotide via phosphorothioate linkage, and the sense strand is conjugated to one or more C16 (or related) moieties attached through a bivalent or trivalent branched linker (described below). In another embodiment, when the RNAi agent is represented by formula (IIId), the Na modifications are 2′-O-methyl or 2′-fluoro modifications, np′>0 and at least one np′ is linked to a neighboring nucleotide via phosphorothioate linkage, the sense strand comprises at least one phosphorothioate linkage, and the sense strand is conjugated to one or more lipophilic, e.g., C16 (or related) moieties, optionally attached through a bivalent or trivalent branched linker.


In one embodiment, when the RNAi agent is represented by formula (IIIa), the Na modifications are 2′-O-methyl or 2′-fluoro modifications, np′>0 and at least one np′ is linked to a neighboring nucleotide via phosphorothioate linkage, the sense strand comprises at least one phosphorothioate linkage, and the sense strand is conjugated to one or more lipophilic, e.g., C16 (or related) moieties attached through a bivalent or trivalent branched linker.


In one embodiment, the RNAi agent is a multimer containing at least two duplexes represented by formula (III), (IIIa), (IIIb), (IIIc), and (IIId), wherein the duplexes are connected by a linker. The linker can be cleavable or non-cleavable. Optionally, the multimer further comprises a ligand. Each of the duplexes can target the same gene or two different genes; or each of the duplexes can target same gene at two different target sites.


In one embodiment, the RNAi agent is a multimer containing three, four, five, six or more duplexes represented by formula (III), (IIIa), (IIIb), (IIIc), and (IIId), wherein the duplexes are connected by a linker. The linker can be cleavable or non-cleavable. Optionally, the multimer further comprises a ligand. Each of the duplexes can target the same gene or two different genes; or each of the duplexes can target same gene at two different target sites.


In one embodiment, two RNAi agents represented by formula (III), (IIIa), (IIIb), (IIIc), and (IIId) are linked to each other at the 5′ end, and one or both of the 3′ ends and are optionally conjugated to a ligand. Each of the agents can target the same gene or two different genes; or each of the agents can target same gene at two different target sites.


Various publications describe multimeric RNAi agents that can be used in the methods of the disclosure. Such publications include WO2007/091269, WO2010/141511, WO2007/117686, WO2009/014887, and WO2011/031520; and U.S. Pat. No. 7,858,769, the entire contents of each of which are hereby incorporated herein by reference.


In certain embodiments, the compositions and methods of the disclosure include a vinyl phosphonate (VP) modification of an RNAi agent as described herein. In exemplary embodiments, a vinyl phosphonate of the disclosure has the following structure:




embedded image


A vinyl phosphonate of the instant disclosure may be attached to either the antisense or the sense strand of a dsRNA of the disclosure. In certain embodiments, a vinyl phosphonate of the instant disclosure is attached to the antisense strand of a dsRNA, optionally at the 5′ end of the antisense strand of the dsRNA. The dsRNA agent can comprise a phosphorus-containing group at the 5′-end of the sense strand or antisense strand. The 5′-end phosphorus-containing group can be 5′-end phosphate (5′-P), 5′-end phosphorothioate (5′-PS), 5′-end phosphorodithioate (5′-PS2), 5′-end vinylphosphonate (5′-VP), 5′-end methylphosphonate (MePhos), or 5′-deoxy-5′-C-malonyl. When the 5′-end phosphorus-containing group is 5′-end vinylphosphonate (5′-VP), the 5′-VP can be either 5′-E-VP isomer (i.e., trans-vinylphosphate, isomer (i.e., cis-vinylphosphate,) or mixtures thereof.


For example, when the phosphate mimic is a 5′-vinyl phosphonate (VP), the 5′-terminal nucleotide can have the following structure,




embedded image


wherein * indicates the location of the bond to 5′-position of the adjacent nucleotide;


R is hydrogen, hydroxy, methoxy or fluoro (e.g., hydroxy); and


B is a nucleobase or a modified nucleobase, optionally where B is adenine, guanine, cytosine, thymine or uracil.


Vinyl phosphate modifications are also contemplated for the compositions and methods of the instant disclosure. An exemplary vinyl phosphate structure is:




embedded image


i. Thermally Destabilizing Modifications


In certain embodiments, a dsRNA molecule can be optimized for RNA interference by incorporating thermally destabilizing modifications in the seed region of the antisense strand (i.e., at positions 2-9 of the 5′-end of the antisense strand) to reduce or inhibit off-target gene silencing. It has been discovered that dsRNAs with an antisense strand comprising at least one thermally destabilizing modification of the duplex within the first 9 nucleotide positions, counting from the 5′ end, of the antisense strand have reduced off-target gene silencing activity. Accordingly, in some embodiments, the antisense strand comprises at least one (e.g., one, two, three, four, five or more) thermally destabilizing modification of the duplex within the first 9 nucleotide positions of the 5′ region of the antisense strand. In some embodiments, one or more thermally destabilizing modification(s) of the duplex is/are located in positions 2-9, or preferably positions 4-8, from the 5′-end of the antisense strand. In some further embodiments, the thermally destabilizing modification(s) of the duplex is/are located at position 6, 7 or 8 from the 5′-end of the antisense strand. In still some further embodiments, the thermally destabilizing modification of the duplex is located at position 7 from the 5′-end of the antisense strand. The term “thermally destabilizing modification(s)” includes modification(s) that would result with a dsRNA with a lower overall melting temperature (Tm) (preferably a Tm with one, two, three or four degrees lower than the Tm of the dsRNA without having such modification(s). In some embodiments, the thermally destabilizing modification of the duplex is located at position 2, 3, 4, 5 or 9 from the 5′-end of the antisense strand.


The thermally destabilizing modifications can include, but are not limited to, abasic modification; mismatch with the opposing nucleotide in the opposing strand; and sugar modification such as 2′-deoxy modification or acyclic nucleotide, e.g., unlocked nucleic acids (UNA) or glycol nucleic acid (GNA).


Exemplified abasic modifications include, but are not limited to the following:




embedded image


Wherein R═H, Me, Et or OMe; R′═H, Me, Et or OMe; R″═H, Me, Et or OMe



embedded image


wherein B is a modified or unmodified nucleobase.


Exemplified sugar modifications include, but are not limited to the following:




embedded image


wherein B is a modified or unmodified nucleobase.


In some embodiments the thermally destabilizing modification of the duplex is selected from the group consisting of:




embedded image


wherein B is a modified or unmodified nucleobase and the asterisk on each structure represents either R, S or racemic.


The term “acyclic nucleotide” refers to any nucleotide having an acyclic ribose sugar, for example, where any of bonds between the ribose carbons (e.g., C1′—C2′, C2′—C3′, C3′—C4′, C4′-O4′, or C1′-O4′) is absent or at least one of ribose carbons or oxygen (e.g., C1′, C2′, C3′, C4′ or O4′) are independently or in combination absent from the nucleotide. In some embodiments, acyclic nucleotide is




embedded image


wherein B is a modified or unmodified nucleobase, R1 and R2 independently are H, halogen, OR3, or alkyl; and R3 is H, alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or sugar). The acyclic derivative provides greater backbone flexibility without affecting the Watson-Crick pairings. The acyclic nucleotide can be linked via 2′-5′ or 3′-5′ linkage.


The term ‘GNA’ refers to glycol nucleic acid which is a polymer similar to DNA or RNA but differing in the composition of its “backbone” in that is composed of repeating glycerol units linked by phosphodiester bonds:




embedded image


The thermally destabilizing modification of the duplex can be mismatches (i.e., noncomplementary base pairs) between the thermally destabilizing nucleotide and the opposing nucleotide in the opposite strand within the dsRNA duplex. Exemplary mismatch base pairs include G:G, G:A, G:U, G:T, A:A, A:C, C:C, C:U, C:T, U:U, T:T, U:T, or a combination thereof. Other mismatch base pairings known in the art are also amenable to the present invention. A mismatch can occur between nucleotides that are either naturally occurring nucleotides or modified nucleotides, i.e., the mismatch base pairing can occur between the nucleobases from respective nucleotides independent of the modifications on the ribose sugars of the nucleotides. In certain embodiments, the dsRNA molecule contains at least one nucleobase in the mismatch pairing that is a 2′-deoxy nucleobase; e.g., the 2′-deoxy nucleobase is in the sense strand.


In some embodiments, the thermally destabilizing modification of the duplex in the seed region of the antisense strand includes nucleotides with impaired W-C H-bonding to complementary base on the target mRNA, such as:




embedded image


More examples of abasic nucleotide, acyclic nucleotide modifications (including UNA and GNA), and mismatch modifications have been described in detail in WO 2011/133876, which is herein incorporated by reference in its entirety.


The thermally destabilizing modifications may also include universal base with reduced or abolished capability to form hydrogen bonds with the opposing bases, and phosphate modifications.


In some embodiments, the thermally destabilizing modification of the duplex includes nucleotides with non-canonical bases such as, but not limited to, nucleobase modifications with impaired or completely abolished capability to form hydrogen bonds with bases in the opposite strand. These nucleobase modifications have been evaluated for destabilization of the central region of the dsRNA duplex as described in WO 2010/0011895, which is herein incorporated by reference in its entirety. Exemplary nucleobase modifications are:




embedded image


In some embodiments, the thermally destabilizing modification of the duplex in the seed region of the antisense strand includes one or more α-nucleotide complementary to the base on the target mRNA, such as:




embedded image


wherein R is H, OH, OCH3, F, NH2, NHMe, NMe2 or O-alkyl.


Exemplary phosphate modifications known to decrease the thermal stability of dsRNA duplexes compared to natural phosphodiester linkages are:




embedded image


The alkyl for the R group can be a C1-C6alkyl. Specific alkyls for the R group include, but are not limited to methyl, ethyl, propyl, isopropyl, butyl, pentyl and hexyl.


As the skilled artisan will recognize, in view of the functional role of nucleobases is defining specificity of an RNAi agent of the disclosure, while nucleobase modifications can be performed in the various manners as described herein, e.g., to introduce destabilizing modifications into an RNAi agent of the disclosure, e.g., for purpose of enhancing on-target effect relative to off-target effect, the range of modifications available and, in general, present upon RNAi agents of the disclosure tends to be much greater for non-nucleobase modifications, e.g., modifications to sugar groups or phosphate backbones of polyribonucleotides. Such modifications are described in greater detail in other sections of the instant disclosure and are expressly contemplated for RNAi agents of the disclosure, either possessing native nucleobases or modified nucleobases as described above or elsewhere herein.


In addition to the antisense strand comprising a thermally destabilizing modification, the dsRNA can also comprise one or more stabilizing modifications. For example, the dsRNA can comprise at least two (e.g., two, three, four, five, six, seven, eight, nine, ten or more) stabilizing modifications. Without limitations, the stabilizing modifications all can be present in one strand. In some embodiments, both the sense and the antisense strands comprise at least two stabilizing modifications. The stabilizing modification can occur on any nucleotide of the sense strand or antisense strand. For instance, the stabilizing modification can occur on every nucleotide on the sense strand or antisense strand; each stabilizing modification can occur in an alternating pattern on the sense strand or antisense strand; or the sense strand or antisense strand comprises both stabilizing modification in an alternating pattern. The alternating pattern of the stabilizing modifications on the sense strand may be the same or different from the antisense strand, and the alternating pattern of the stabilizing modifications on the sense strand can have a shift relative to the alternating pattern of the stabilizing modifications on the antisense strand.


In some embodiments, the antisense strand comprises at least two (e.g., two, three, four, five, six, seven, eight, nine, ten or more) stabilizing modifications. Without limitations, a stabilizing modification in the antisense strand can be present at any positions. In some embodiments, the antisense comprises stabilizing modifications at positions 2, 6, 8, 9, 14, and 16 from the 5′-end. In some other embodiments, the antisense comprises stabilizing modifications at positions 2, 6, 14, and 16 from the 5′-end. In still some other embodiments, the antisense comprises stabilizing modifications at positions 2, 14, and 16 from the 5′-end.


In some embodiments, the antisense strand comprises at least one stabilizing modification adjacent to the destabilizing modification. For example, the stabilizing modification can be the nucleotide at the 5′-end or the 3′-end of the destabilizing modification, i.e., at position −1 or +1 from the position of the destabilizing modification. In some embodiments, the antisense strand comprises a stabilizing modification at each of the 5′-end and the 3′-end of the destabilizing modification, i.e., positions −1 and +1 from the position of the destabilizing modification.


In some embodiments, the antisense strand comprises at least two stabilizing modifications at the 3′-end of the destabilizing modification, i.e., at positions +1 and +2 from the position of the destabilizing modification.


In some embodiments, the sense strand comprises at least two (e.g., two, three, four, five, six, seven, eight, nine, ten or more) stabilizing modifications. Without limitations, a stabilizing modification in the sense strand can be present at any positions. In some embodiments, the sense strand comprises stabilizing modifications at positions 7, 10, and 11 from the 5′-end. In some other embodiments, the sense strand comprises stabilizing modifications at positions 7, 9, 10, and 11 from the 5′-end. In some embodiments, the sense strand comprises stabilizing modifications at positions opposite or complementary to positions 11, 12, and 15 of the antisense strand, counting from the 5′-end of the antisense strand. In some other embodiments, the sense strand comprises stabilizing modifications at positions opposite or complementary to positions 11, 12, 13, and 15 of the antisense strand, counting from the 5′-end of the antisense strand. In some embodiments, the sense strand comprises a block of two, three, or four stabilizing modifications.


In some embodiments, the sense strand does not comprise a stabilizing modification in position opposite or complementary to the thermally destabilizing modification of the duplex in the antisense strand.


Exemplary thermally stabilizing modifications include, but are not limited to, 2′-fluoro modifications. Other thermally stabilizing modifications include, but are not limited to, LNA.


In some embodiments, the dsRNA of the disclosure comprises at least four (e.g., four, five, six, seven, eight, nine, ten, or more) 2′-fluoro nucleotides. Without limitations, the 2′-fluoro nucleotides all can be present in one strand. In some embodiments, both the sense and the antisense strands comprise at least two 2′-fluoro nucleotides. The 2′-fluoro modification can occur on any nucleotide of the sense strand or antisense strand. For instance, the 2′-fluoro modification can occur on every nucleotide on the sense strand or antisense strand; each 2′-fluoro modification can occur in an alternating pattern on the sense strand or antisense strand; or the sense strand or antisense strand comprises both 2′-fluoro modifications in an alternating pattern. The alternating pattern of the 2′-fluoro modifications on the sense strand may be the same or different from the antisense strand, and the alternating pattern of the 2′-fluoro modifications on the sense strand can have a shift relative to the alternating pattern of the 2′-fluoro modifications on the antisense strand.


In some embodiments, the antisense strand comprises at least two (e.g., two, three, four, five, six, seven, eight, nine, ten, or more) 2′-fluoro nucleotides. Without limitations, a 2′-fluoro modification in the antisense strand can be present at any positions. In some embodiments, the antisense comprises 2′-fluoro nucleotides at positions 2, 6, 8, 9, 14, and 16 from the 5′-end. In some other embodiments, the antisense comprises 2′-fluoro nucleotides at positions 2, 6, 14, and 16 from the 5′-end. In still some other embodiments, the antisense comprises 2′-fluoro nucleotides at positions 2, 14, and 16 from the 5′-end.


In some embodiments, the antisense strand comprises at least one 2′-fluoro nucleotide adjacent to the destabilizing modification. For example, the 2′-fluoro nucleotide can be the nucleotide at the 5′-end or the 3′-end of the destabilizing modification, i.e., at position −1 or +1 from the position of the destabilizing modification. In some embodiments, the antisense strand comprises a 2′-fluoro nucleotide at each of the 5′-end and the 3′-end of the destabilizing modification, i.e., positions −1 and +1 from the position of the destabilizing modification.


In some embodiments, the antisense strand comprises at least two 2′-fluoro nucleotides at the 3′-end of the destabilizing modification, i.e., at positions +1 and +2 from the position of the destabilizing modification.


In some embodiments, the sense strand comprises at least two (e.g., two, three, four, five, six, seven, eight, nine, ten or more) 2′-fluoro nucleotides. Without limitations, a 2′-fluoro modification in the sense strand can be present at any positions. In some embodiments, the antisense comprises 2′-fluoro nucleotides at positions 7, 10, and 11 from the 5′-end. In some other embodiments, the sense strand comprises 2′-fluoro nucleotides at positions 7, 9, 10, and 11 from the 5′-end. In some embodiments, the sense strand comprises 2′-fluoro nucleotides at positions opposite or complementary to positions 11, 12, and 15 of the antisense strand, counting from the 5′-end of the antisense strand. In some other embodiments, the sense strand comprises 2′-fluoro nucleotides at positions opposite or complementary to positions 11, 12, 13, and 15 of the antisense strand, counting from the 5′-end of the antisense strand. In some embodiments, the sense strand comprises a block of two, three or four 2′-fluoro nucleotides.


In some embodiments, the sense strand does not comprise a 2′-fluoro nucleotide in position opposite or complementary to the thermally destabilizing modification of the duplex in the antisense strand.


In some embodiments, the dsRNA molecule of the disclosure comprises a 21 nucleotides (nt) sense strand and a 23 nucleotides (nt) antisense, wherein the antisense strand contains at least one thermally destabilizing nucleotide, where the at least one thermally destabilizing nucleotide occurs in the seed region of the antisense strand (i.e., at position 2-9 of the 5′-end of the antisense strand), wherein one end of the dsRNA is blunt, while the other end is comprises a 2 nt overhang, and wherein the dsRNA optionally further has at least one (e.g., one, two, three, four, five, six or all seven) of the following characteristics: (i) the antisense comprises 2, 3, 4, 5 or 6 2′-fluoro modifications; (ii) the antisense comprises 1, 2, 3, 4 or 5 phosphorothioate internucleotide linkages; (iii) the sense strand is conjugated with a ligand; (iv) the sense strand comprises 2, 3, 4 or 5 2′-fluoro modifications; (v) the sense strand comprises 1, 2, 3, 4 or 5 phosphorothioate internucleotide linkages; (vi) the dsRNA comprises at least four 2′-fluoro modifications; and (vii) the dsRNA comprises a blunt end at 5′-end of the antisense strand. Preferably, the 2 nt overhang is at the 3′-end of the antisense.


In some embodiments, the dsRNA molecule of the disclosure comprising a sense and antisense strands, wherein: the sense strand is 25-30 nucleotide residues in length, wherein starting from the 5′ terminal nucleotide (position 1), positions 1 to 23 of said sense strand comprise at least 8 ribonucleotides; antisense strand is 36-66 nucleotide residues in length and, starting from the 3′ terminal nucleotide, at least 8 ribonucleotides in the positions paired with positions 1-23 of sense strand to form a duplex; wherein at least the 3′ terminal nucleotide of antisense strand is unpaired with sense strand, and up to 6 consecutive 3′ terminal nucleotides are unpaired with sense strand, thereby forming a 3′ single stranded overhang of 1-6 nucleotides; wherein the 5′ terminus of antisense strand comprises from 10-30 consecutive nucleotides which are unpaired with sense strand, thereby forming a 10-30 nucleotide single stranded 5′ overhang; wherein at least the sense strand 5′ terminal and 3′ terminal nucleotides are base paired with nucleotides of antisense strand when sense and antisense strands are aligned for maximum complementarity, thereby forming a substantially duplexed region between sense and antisense strands; and antisense strand is sufficiently complementary to a target RNA along at least 19 ribonucleotides of antisense strand length to reduce target gene expression when said double stranded nucleic acid is introduced into a mammalian cell; and wherein the antisense strand contains at least one thermally destabilizing nucleotide, where at least one thermally destabilizing nucleotide is in the seed region of the antisense strand (i.e. at position 2-9 of the 5′-end of the antisense strand). For example, the thermally destabilizing nucleotide occurs between positions opposite or complementary to positions 14-17 of the 5′-end of the sense strand, and wherein the dsRNA optionally further has at least one (e.g., one, two, three, four, five, six or all seven) of the following characteristics: (i) the antisense comprises 2, 3, 4, 5, or 6 2′-fluoro modifications; (ii) the antisense comprises 1, 2, 3, 4, or 5 phosphorothioate internucleotide linkages; (iii) the sense strand is conjugated with a ligand; (iv) the sense strand comprises 2, 3, 4, or 5 2′-fluoro modifications; (v) the sense strand comprises 1, 2, 3, 4, or 5 phosphorothioate internucleotide linkages; and (vi) the dsRNA comprises at least four 2′-fluoro modifications; and (vii) the dsRNA comprises a duplex region of 12-30 nucleotide pairs in length.


In some embodiments, the dsRNA molecule of the disclosure comprises a sense and antisense strands, wherein said dsRNA molecule comprises a sense strand having a length which is at least 25 and at most 29 nucleotides and an antisense strand having a length which is at most 30 nucleotides with the sense strand comprises a modified nucleotide that is susceptible to enzymatic degradation at position 11 from the 5′end, wherein the 3′ end of said sense strand and the 5′ end of said antisense strand form a blunt end and said antisense strand is 1-4 nucleotides longer at its 3′ end than the sense strand, wherein the duplex region which is at least 25 nucleotides in length, and said antisense strand is sufficiently complementary to a target mRNA along at least 19 nt of said antisense strand length to reduce target gene expression when said dsRNA molecule is introduced into a mammalian cell, and wherein dicer cleavage of said dsRNA preferentially results in an siRNA comprising said 3′ end of said antisense strand, thereby reducing expression of the target gene in the mammal, wherein the antisense strand contains at least one thermally destabilizing nucleotide, where the at least one thermally destabilizing nucleotide is in the seed region of the antisense strand (i.e. at position 2-9 of the 5′-end of the antisense strand), and wherein the dsRNA optionally further has at least one (e.g., one, two, three, four, five, six or all seven) of the following characteristics: (i) the antisense comprises 2, 3, 4, 5, or 6 2′-fluoro modifications; (ii) the antisense comprises 1, 2, 3, 4, or 5 phosphorothioate internucleotide linkages; (iii) the sense strand is conjugated with a ligand; (iv) the sense strand comprises 2, 3, 4, or 5 2′-fluoro modifications; (v) the sense strand comprises 1, 2, 3, 4, or 5 phosphorothioate internucleotide linkages; and (vi) the dsRNA comprises at least four 2′-fluoro modifications; and (vii) the dsRNA has a duplex region of 12-29 nucleotide pairs in length.


In some embodiments, every nucleotide in the sense strand and antisense strand of the dsRNA molecule may be modified. Each nucleotide may be modified with the same or different modification which can include one or more alteration of one or both of the non-linking phosphate oxygens or of one or more of the linking phosphate oxygens; alteration of a constituent of the ribose sugar, e.g., of the 2′ hydroxyl on the ribose sugar; wholesale replacement of the phosphate moiety with “dephospho” linkers; modification or replacement of a naturally occurring base; and replacement or modification of the ribose-phosphate backbone.


As nucleic acids are polymers of subunits, many of the modifications occur at a position which is repeated within a nucleic acid, e.g., a modification of a base, or a phosphate moiety, or a non-linking O of a phosphate moiety. In some cases, the modification will occur at all of the subject positions in the nucleic acid but in many cases it will not. By way of example, a modification may only occur at a 3′ or 5′ terminal position, may only occur in a terminal region, e.g., at a position on a terminal nucleotide or in the last 2, 3, 4, 5, or 10 nucleotides of a strand. A modification may occur in a double strand region, a single strand region, or in both. A modification may occur only in the double strand region of an RNA or may only occur in a single strand region of an RNA. E.g., a phosphorothioate modification at a non-linking O position may only occur at one or both termini, may only occur in a terminal region, e.g., at a position on a terminal nucleotide or in the last 2, 3, 4, 5, or 10 nucleotides of a strand, or may occur in double strand and single strand regions, particularly at termini. The 5′ end or ends can be phosphorylated.


It may be possible, e.g., to enhance stability, to include particular bases in overhangs, or to include modified nucleotides or nucleotide surrogates, in single strand overhangs, e.g., in a 5′ or 3′ overhang, or in both. E.g., it can be desirable to include purine nucleotides in overhangs. In some embodiments all or some of the bases in a 3′ or 5′ overhang may be modified, e.g., with a modification described herein. Modifications can include, e.g., the use of modifications at the 2′ position of the ribose sugar with modifications that are known in the art, e.g., the use of deoxyribonucleotides, 2′-deoxy-2′-fluoro (2′-F) or 2′-O-methyl modified instead of the ribosugar of the nucleobase, and modifications in the phosphate group, e.g., phosphorothioate modifications. Overhangs need not be homologous with the target sequence.


In some embodiments, each residue of the sense strand and antisense strand is independently modified with locked nucleic acid (LNA), unlocked nucleic acid (UNA), cyclohexene nucleic acid (CeNA), 2′-methoxyethyl, 2′-O-methyl, 2′-O-allyl, 2′-C-allyl, 2′-deoxy, or 2′-fluoro. The strands can contain more than one modification. In some embodiments, each residue of the sense strand and antisense strand is independently modified with 2′-O-methyl or 2′-fluoro. It is to be understood that these modifications are in addition to the at least one thermally destabilizing modification of the duplex present in the antisense strand.


At least two different modifications are typically present on the sense strand and antisense strand. Those two modifications may be the 2′-deoxy, 2′-O-methyl or 2′-fluoro modifications, acyclic nucleotides or others. In some embodiments, the sense strand and antisense strand each comprises two differently modified nucleotides selected from 2′-O-methyl or 2′-deoxy. In some embodiments, each residue of the sense strand and antisense strand is independently modified with 2′-O-methyl nucleotide, 2′-deoxy nucleotide, 2′-deoxy-2′-fluoro nucleotide, 2′-O—N-methylacetamido (2′-O-NMA) nucleotide, a 2′-O-dimethylaminoethoxyethyl (2′-O-DMAEOE) nucleotide, 2′-O-aminopropyl (2′-O-AP) nucleotide, or 2′-ara-F nucleotide. Again, it is to be understood that these modifications are in addition to the at least one thermally destabilizing modification of the duplex present in the antisense strand.


In some embodiments, the dsRNA molecule of the disclosure comprises modifications of an alternating pattern, particular in the B1, B2, B3, B1′, B2′, B3′, B4′ regions. The term “alternating motif” or “alternative pattern” as used herein refers to a motif having one or more modifications, each modification occurring on alternating nucleotides of one strand. The alternating nucleotide may refer to one per every other nucleotide or one per every three nucleotides, or a similar pattern. For example, if A, B and C each represent one type of modification to the nucleotide, the alternating motif can be “ABABABABABAB . . . ,” “AABBAABBAABB . . . ,” “AABAABAABAAB . . . ,” “AAABAAABAAAB . . . ,” “AAABBBAAABBB . . . ,” or “ABCABCABCABC . . . ,” etc.


The type of modifications contained in the alternating motif may be the same or different. For example, if A, B, C, D each represent one type of modification on the nucleotide, the alternating pattern, i.e., modifications on every other nucleotide, may be the same, but each of the sense strand or antisense strand can be selected from several possibilities of modifications within the alternating motif such as “ABABAB . . . ”, “ACACAC . . . ” “BDBDBD . . . ” or “CDCDCD . . . ,” etc.


In some embodiments, the dsRNA molecule of the disclosure comprises the modification pattern for the alternating motif on the sense strand relative to the modification pattern for the alternating motif on the antisense strand is shifted. The shift may be such that the modified group of nucleotides of the sense strand corresponds to a differently modified group of nucleotides of the antisense strand and vice versa. For example, the sense strand when paired with the antisense strand in the dsRNA duplex, the alternating motif in the sense strand may start with “ABABAB” from 5′-3′ of the strand and the alternating motif in the antisense strand may start with “BABABA” from 3′-5′ of the strand within the duplex region. As another example, the alternating motif in the sense strand may start with “AABBAABB” from 5′-3′ of the strand and the alternating motif in the antisense strand may start with “BBAABBAA” from 3′-5′ of the strand within the duplex region, so that there is a complete or partial shift of the modification patterns between the sense strand and the antisense strand.


The dsRNA molecule of the disclosure may further comprise at least one phosphorothioate or methylphosphonate internucleotide linkage. The phosphorothioate or methylphosphonate internucleotide linkage modification may occur on any nucleotide of the sense strand or antisense strand or both in any position of the strand. For instance, the internucleotide linkage modification may occur on every nucleotide on the sense strand or antisense strand; each internucleotide linkage modification may occur in an alternating pattern on the sense strand or antisense strand; or the sense strand or antisense strand comprises both internucleotide linkage modifications in an alternating pattern. The alternating pattern of the internucleotide linkage modification on the sense strand may be the same or different from the antisense strand, and the alternating pattern of the internucleotide linkage modification on the sense strand may have a shift relative to the alternating pattern of the internucleotide linkage modification on the antisense strand.


In some embodiments, the dsRNA molecule comprises the phosphorothioate or methylphosphonate internucleotide linkage modification in the overhang region. For example, the overhang region comprises two nucleotides having a phosphorothioate or methylphosphonate internucleotide linkage between the two nucleotides. Internucleotide linkage modifications also may be made to link the overhang nucleotides with the terminal paired nucleotides within duplex region. For example, at least 2, 3, 4, or all the overhang nucleotides may be linked through phosphorothioate or methylphosphonate internucleotide linkage, and optionally, there may be additional phosphorothioate or methylphosphonate internucleotide linkages linking the overhang nucleotide with a paired nucleotide that is next to the overhang nucleotide. For instance, there may be at least two phosphorothioate internucleotide linkages between the terminal three nucleotides, in which two of the three nucleotides are overhang nucleotides, and the third is a paired nucleotide next to the overhang nucleotide. Preferably, these terminal three nucleotides may be at the 3′-end of the antisense strand.


In some embodiments, the sense strand of the dsRNA molecule comprises 1-10 blocks of two to ten phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said sense strand is paired with an antisense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of two phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of three phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of four phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of five phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of six phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of seven phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, or 8 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of eight phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, or 6 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of nine phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, or 4 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the dsRNA molecule of the disclosure further comprises one or more phosphorothioate or methylphosphonate internucleotide linkage modification within 1-10 of the termini position(s) of the sense or antisense strand. For example, at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides may be linked through phosphorothioate or methylphosphonate internucleotide linkage at one end or both ends of the sense or antisense strand.


In some embodiments, the dsRNA molecule of the disclosure further comprises one or more phosphorothioate or methylphosphonate internucleotide linkage modification within 1-10 of the internal region of the duplex of each of the sense or antisense strand. For example, at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides may be linked through phosphorothioate methylphosphonate internucleotide linkage at position 8-16 of the duplex region counting from the 5′-end of the sense strand; the dsRNA molecule can optionally further comprise one or more phosphorothioate or methylphosphonate internucleotide linkage modification within 1-10 of the termini position(s).


In some embodiments, the dsRNA molecule of the disclosure further comprises one to five phosphorothioate or methylphosphonate internucleotide linkage modification(s) within position 1-5 and one to five phosphorothioate or methylphosphonate internucleotide linkage modification(s) within position 18-23 of the sense strand (counting from the 5′-end), and one to five phosphorothioate or methylphosphonate internucleotide linkage modifications at positions 1 and 2 and one to five within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification within position 1-5 and one phosphorothioate or methylphosphonate internucleotide linkage modification within position 18-23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at position 1 or 2 and two phosphorothioate or methylphosphonate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and one phosphorothioate internucleotide linkage modification within position 18-23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at position 1 or 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and two phosphorothioate internucleotide linkage modifications within position 18-23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at position 1 or 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and two phosphorothioate internucleotide linkage modifications within position 18-23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at position 1 or 2 and one phosphorothioate internucleotide linkage modification within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification within position 1-5 and one phosphorothioate internucleotide linkage modification within position 18-23 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification within position 1-5 and one within position 18-23 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and one phosphorothioate internucleotide linkage modification within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification within position 1-5 (counting from the 5′-end) of the sense strand, and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and one phosphorothioate internucleotide linkage modification within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 (counting from the 5′-end) of the sense strand, and one phosphorothioate internucleotide linkage modification at position 1 or 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within positions 1-5 and one within positions 18-23 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and one phosphorothioate internucleotide linkage modification within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within positions 1-5 and one phosphorothioate internucleotide linkage modification within positions 18-23 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within positions 1-5 and one phosphorothioate internucleotide linkage modification within positions 18-23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at position 1 or 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications at position 1 and 2, and two phosphorothioate internucleotide linkage modifications at positions 20 and 21 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at position 1 and one at position 21 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification at position 1, and one phosphorothioate internucleotide linkage modification at position 21 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications at positions 20 and 21 the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications at position 1 and 2, and two phosphorothioate internucleotide linkage modifications at position 21 and 22 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and one phosphorothioate internucleotide linkage modification at position 21 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification at position 1, and one phosphorothioate internucleotide linkage modification at position 21 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications at positions 21 and 22 the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications at positions 1 and 2, and two phosphorothioate internucleotide linkage modifications at position 22 and 23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at position 1 and one phosphorothioate internucleotide linkage modification at position 21 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification at position 1, and one phosphorothioate internucleotide linkage modification at position 21 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications at positions 23 and 23 the antisense strand (counting from the 5′-end).


In some embodiments, compound of the disclosure comprises a pattern of backbone chiral centers. In some embodiments, a common pattern of backbone chiral centers comprises at least 5 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 6 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 7 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 8 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 9 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 10 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 11 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 12 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 13 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 14 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 15 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 16 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 17 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 18 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 19 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 8 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 7 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 6 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 5 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 4 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 3 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 2 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 1 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 8 internucleotidic linkages which are not chiral (as a non-limiting example, a phosphodiester). In some embodiments, a common pattern of backbone chiral centers comprises no more than 7 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 6 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 5 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 4 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 3 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 2 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 1 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 10 internucleotidic linkages in the Sp configuration, and no more than 8 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 11 internucleotidic linkages in the Sp configuration, and no more than 7 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 12 internucleotidic linkages in the Sp configuration, and no more than 6 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 13 internucleotidic linkages in the Sp configuration, and no more than 6 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 14 internucleotidic linkages in the Sp configuration, and no more than 5 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 15 internucleotidic linkages in the Sp configuration, and no more than 4 internucleotidic linkages which are not chiral. In some embodiments, the internucleotidic linkages in the Sp configuration are optionally contiguous or not contiguous. In some embodiments, the internucleotidic linkages in the Rp configuration are optionally contiguous or not contiguous. In some embodiments, the internucleotidic linkages which are not chiral are optionally contiguous or not contiguous.


In some embodiments, compound of the disclosure comprises a block is a stereochemistry block. In some embodiments, a block is an Rp block in that each internucleotidic linkage of the block is Rp. In some embodiments, a 5′-block is an Rp block. In some embodiments, a 3′-block is an Rp block. In some embodiments, a block is an Sp block in that each internucleotidic linkage of the block is Sp. In some embodiments, a 5′-block is an Sp block. In some embodiments, a 3′-block is an Sp block. In some embodiments, provided oligonucleotides comprise both Rp and Sp blocks. In some embodiments, provided oligonucleotides comprise one or more Rp but no Sp blocks. In some embodiments, provided oligonucleotides comprise one or more Sp but no Rp blocks. In some embodiments, provided oligonucleotides comprise one or more PO blocks wherein each internucleotidic linkage in a natural phosphate linkage.


In some embodiments, compound of the disclosure comprises a 5′-block is an Sp block wherein each sugar moiety comprises a 2′-F modification. In some embodiments, a 5′-block is an Sp block wherein each of internucleotidic linkage is a modified internucleotidic linkage and each sugar moiety comprises a 2′-F modification. In some embodiments, a 5′-block is an Sp block wherein each of internucleotidic linkage is a phosphorothioate linkage and each sugar moiety comprises a 2′-F modification. In some embodiments, a 5′-block comprises 4 or more nucleoside units. In some embodiments, a 5′-block comprises 5 or more nucleoside units. In some embodiments, a 5′-block comprises 6 or more nucleoside units. In some embodiments, a 5′-block comprises 7 or more nucleoside units. In some embodiments, a 3′-block is an Sp block wherein each sugar moiety comprises a 2′-F modification. In some embodiments, a 3′-block is an Sp block wherein each of internucleotidic linkage is a modified internucleotidic linkage and each sugar moiety comprises a 2′-F modification. In some embodiments, a 3′-block is an Sp block wherein each of internucleotidic linkage is a phosphorothioate linkage and each sugar moiety comprises a 2′-F modification. In some embodiments, a 3′-block comprises 4 or more nucleoside units. In some embodiments, a 3′-block comprises 5 or more nucleoside units. In some embodiments, a 3′-block comprises 6 or more nucleoside units. In some embodiments, a 3′-block comprises 7 or more nucleoside units.


In some embodiments, compound of the disclosure comprises a type of nucleoside in a region or an oligonucleotide is followed by a specific type of internucleotidic linkage, e.g., natural phosphate linkage, modified internucleotidic linkage, Rp chiral internucleotidic linkage, Sp chiral internucleotidic linkage, etc. In some embodiments, A is followed by Sp. In some embodiments, A is followed by Rp. In some embodiments, A is followed by natural phosphate linkage (PO). In some embodiments, U is followed by Sp. In some embodiments, U is followed by Rp. In some embodiments, U is followed by natural phosphate linkage (PO). In some embodiments, C is followed by Sp. In some embodiments, C is followed by Rp. In some embodiments, C is followed by natural phosphate linkage (PO). In some embodiments, G is followed by Sp. In some embodiments, G is followed by Rp. In some embodiments, G is followed by natural phosphate linkage (PO). In some embodiments, C and U are followed by Sp. In some embodiments, C and U are followed by Rp. In some embodiments, C and U are followed by natural phosphate linkage (PO). In some embodiments, A and G are followed by Sp. In some embodiments, A and G are followed by Rp.


In some embodiments, the antisense strand comprises phosphorothioate internucleotide linkages between nucleotide positions 21 and 22, and between nucleotide positions 22 and 23, wherein the antisense strand contains at least one thermally destabilizing modification of the duplex located in the seed region of the antisense strand (i.e., at position 2-9 of the 5′-end of the antisense strand), and wherein the dsRNA optionally further has at least one (e.g., one, two, three, four, five, six, seven or all eight) of the following characteristics: (i) the antisense comprises 2, 3, 4, 5 or 6 2′-fluoro modifications; (ii) the antisense comprises 3, 4 or 5 phosphorothioate internucleotide linkages; (iii) the sense strand is conjugated with a ligand; (iv) the sense strand comprises 2, 3, 4 or 5 2′-fluoro modifications; (v) the sense strand comprises 1, 2, 3, 4 or 5 phosphorothioate internucleotide linkages; (vi) the dsRNA comprises at least four 2′-fluoro modifications; (vii) the dsRNA comprises a duplex region of 12-40 nucleotide pairs in length; and (viii) the dsRNA has a blunt end at 5′-end of the antisense strand.


In some embodiments, the antisense strand comprises phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, between nucleotide positions 2 and 3, between nucleotide positions 21 and 22, and between nucleotide positions 22 and 23, wherein the antisense strand contains at least one thermally destabilizing modification of the duplex located in the seed region of the antisense strand (i.e., at position 2-9 of the 5′-end of the antisense strand), and wherein the dsRNA optionally further has at least one (e.g., one, two, three, four, five, six, seven or all eight) of the following characteristics: (i) the antisense comprises 2, 3, 4, 5 or 6 2′-fluoro modifications; (ii) the sense strand is conjugated with a ligand; (iii) the sense strand comprises 2, 3, 4 or 5 2′-fluoro modifications; (iv) the sense strand comprises 1, 2, 3, 4 or 5 phosphorothioate internucleotide linkages; (v) the dsRNA comprises at least four 2′-fluoro modifications; (vi) the dsRNA comprises a duplex region of 12-40 nucleotide pairs in length; (vii) the dsRNA comprises a duplex region of 12-40 nucleotide pairs in length; and (viii) the dsRNA has a blunt end at 5′-end of the antisense strand.


In some embodiments, the sense strand comprises phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, and between nucleotide positions 2 and 3, wherein the antisense strand contains at least one thermally destabilizing modification of the duplex located in the seed region of the antisense strand (i.e., at position 2-9 of the 5′-end of the antisense strand), and wherein the dsRNA optionally further has at least one (e.g., one, two, three, four, five, six, seven or all eight) of the following characteristics: (i) the antisense comprises 2, 3, 4, 5 or 6 2′-fluoro modifications; (ii) the antisense comprises 1, 2, 3, 4 or 5 phosphorothioate internucleotide linkages; (iii) the sense strand is conjugated with a ligand; (iv) the sense strand comprises 2, 3, 4 or 5 2′-fluoro modifications; (v) the sense strand comprises 3, 4 or 5 phosphorothioate internucleotide linkages; (vi) the dsRNA comprises at least four 2′-fluoro modifications; (vii) the dsRNA comprises a duplex region of 12-40 nucleotide pairs in length; and (viii) the dsRNA has a blunt end at 5′-end of the antisense strand.


In some embodiments, the sense strand comprises phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, and between nucleotide positions 2 and 3, the antisense strand comprises phosphorothioate internucleotide linkages between nucleotide positions 1 and 2, between nucleotide positions 2 and 3, between nucleotide positions 21 and 22, and between nucleotide positions 22 and 23, wherein the antisense strand contains at least one thermally destabilizing modification of the duplex located in the seed region of the antisense strand (i.e., at position 2-9 of the 5′-end of the antisense strand), and wherein the dsRNA optionally further has at least one (e.g., one, two, three, four, five, six or all seven) of the following characteristics: (i) the antisense comprises 2, 3, 4, 5 or 6 2′-fluoro modifications; (ii) the sense strand is conjugated with a ligand; (iii) the sense strand comprises 2, 3, 4 or 5 2′-fluoro modifications; (iv) the sense strand comprises 3, 4 or 5 phosphorothioate internucleotide linkages; (v) the dsRNA comprises at least four 2′-fluoro modifications; (vi) the dsRNA comprises a duplex region of 12-40 nucleotide pairs in length; and (vii) the dsRNA has a blunt end at 5′-end of the antisense strand.


In some embodiments, the dsRNA molecule of the disclosure comprises mismatch(es) with the target, within the duplex, or combinations thereof. The mismatch can occur in the overhang region or the duplex region. The base pair can be ranked on the basis of their propensity to promote dissociation or melting (e.g., on the free energy of association or dissociation of a particular pairing, the simplest approach is to examine the pairs on an individual pair basis, though next neighbor or similar analysis can also be used). In terms of promoting dissociation: A:U is preferred over G:C; G:U is preferred over G:C; and I:C is preferred over G:C (I=inosine). Mismatches, e.g., non-canonical or other than canonical pairings (as described elsewhere herein) are preferred over canonical (A:T, A:U, G:C) pairings; and pairings which include a universal base are preferred over canonical pairings.


In some embodiments, the dsRNA molecule of the disclosure comprises at least one of the first 1, 2, 3, 4, or 5 base pairs within the duplex regions from the 5′-end of the antisense strand can be chosen independently from the group of: A:U, G:U, I:C, and mismatched pairs, e.g., non-canonical or other than canonical pairings or pairings which include a universal base, to promote the dissociation of the antisense strand at the 5′-end of the duplex.


In some embodiments, the nucleotide at the 1 position within the duplex region from the 5′-end in the antisense strand is selected from the group consisting of A, dA, dU, U, and dT. Alternatively, at least one of the first 1, 2 or 3 base pair within the duplex region from the 5′-end of the antisense strand is an AU base pair. For example, the first base pair within the duplex region from the 5′-end of the antisense strand is an AU base pair.


It was found that introducing 4′-modified or 5′-modified nucleotide to the 3′-end of a phosphodiester (PO), phosphorothioate (PS), or phosphorodithioate (PS2) linkage of a dinucleotide at any position of single stranded or double stranded oligonucleotide can exert steric effect to the internucleotide linkage and, hence, protecting or stabilizing it against nucleases. In some embodiments, the introduction of a 4′-modified or a 5′-modified nucleotide to the 3′-end of a PO, PS, or PS2 linkage of a dinucleotide modifies the second nucleotide in the dinucleotide pair. In other embodiments, the introduction of a 4′-modified or a 5′-modified nucleotide to the 3′-end of a PO, PS, or PS2 linkage of a dinucleotide modifies the nucleotide at the 3′-end of the dinucleotide pair.


In some embodiments, 5′-modified nucleotide is introduced at the 3′-end of a dinucleotide at any position of single stranded or double stranded siRNA. For instance, a 5′-alkylated nucleoside may be introduced at the 3′-end of a dinucleotide at any position of single stranded or double stranded siRNA. The alkyl group at the 5′ position of the ribose sugar can be racemic or chirally pure R or S isomer. An exemplary 5′-alkylated nucleotide is 5′-methyl nucleoside. The 5′-methyl can be either racemic or chirally pure R or S isomer.


In some embodiments, 4′-modified nucleotide is introduced at the 3′-end of a dinucleotide at any position of single stranded or double stranded siRNA. For instance, a 4′-alkylated nucleoside may be introduced at the 3′-end of a dinucleotide at any position of single stranded or double stranded siRNA. The alkyl group at the 4′ position of the ribose sugar can be racemic or chirally pure R or S isomer. An exemplary 4′-alkylated nucleotide is 4′-methyl nucleoside. The 4′-methyl can be either racemic or chirally pure R or S isomer. Alternatively, a 4′-O-alkylated nucleoside may be introduced at the 3′-end of a dinucleotide at any position of single stranded or double stranded siRNA. The 4′-O-alkyl of the ribose sugar can be racemic or chirally pure R or S isomer. An exemplary 4′-O-alkylated nucleotide is 4′-O-methyl nucleoside. The 4′-O-methyl can be either racemic or chirally pure R or S isomer.


In some embodiments, 5′-alkylated nucleotide is introduced at any position on the sense strand or antisense strand of a dsRNA, and such modification maintains or improves potency of the dsRNA. The 5′-alkyl can be either racemic or chirally pure R or S isomer. An exemplary 5′-alkylated nucleotide is 5′-methyl nucleoside. The 5′-methyl can be either racemic or chirally pure R or S isomer.


In some embodiments, 4′-alkylated nucleotide is introduced at any position on the sense strand or antisense strand of a dsRNA, and such modification maintains or improves potency of the dsRNA. The 4′-alkyl can be either racemic or chirally pure R or S isomer. An exemplary 4′-alkylated nucleotide is 4′-methyl nucleoside. The 4′-methyl can be either racemic or chirally pure R or S isomer.


In some embodiments, 4′-O-alkylated nucleotide is introduced at any position on the sense strand or antisense strand of a dsRNA, and such modification maintains or improves potency of the dsRNA. The 5′-alkyl can be either racemic or chirally pure R or S isomer. An exemplary 4′-O-alkylated nucleotide is 4′-O-methyl nucleoside. The 4′-O-methyl can be either racemic or chirally pure R or S isomer.


In some embodiments, the dsRNA molecule of the disclosure can comprise 2′-5′ linkages (with 2′-H, 2′-OH and 2′-OMe and with P═O or P═S). For example, the 2′-5′ linkages modifications can be used to promote nuclease resistance or to inhibit binding of the sense to the antisense strand, or can be used at the 5′ end of the sense strand to avoid sense strand activation by RISC.


In another embodiment, the dsRNA molecule of the disclosure can comprise L sugars (e.g., L ribose, L-arabinose with 2′-H, 2′-OH and 2′-OMe). For example, these L sugars modifications can be used to promote nuclease resistance or to inhibit binding of the sense to the antisense strand, or can be used at the 5′ end of the sense strand to avoid sense strand activation by RISC.


Various publications describe multimeric siRNA which can all be used with the dsRNA of the disclosure. Such publications include WO2007/091269, U.S. Pat. No. 7,858,769, WO2010/141511, WO2007/117686, WO2009/014887, and WO2011/031520 which are hereby incorporated by their entirely.


As described in more detail below, the RNAi agent that contains conjugations of one or more carbohydrate moieties to an RNAi agent can optimize one or more properties of the RNAi agent. In many cases, the carbohydrate moiety will be attached to a modified subunit of the RNAi agent. For example, the ribose sugar of one or more ribonucleotide subunits of a dsRNA agent can be replaced with another moiety, e.g., a non-carbohydrate (preferably cyclic) carrier to which is attached a carbohydrate ligand. A ribonucleotide subunit in which the ribose sugar of the subunit has been so replaced is referred to herein as a ribose replacement modification subunit (RRMS). A cyclic carrier may be a carbocyclic ring system, i.e., all ring atoms are carbon atoms, or a heterocyclic ring system, i.e., one or more ring atoms may be a heteroatom, e.g., nitrogen, oxygen, sulfur. The cyclic carrier may be a monocyclic ring system, or may contain two or more rings, e.g. fused rings. The cyclic carrier may be a fully saturated ring system, or it may contain one or more double bonds.


The ligand may be attached to the polynucleotide via a carrier. The carriers include (i) at least one “backbone attachment point,” preferably two “backbone attachment points” and (ii) at least one “tethering attachment point.” A “backbone attachment point” as used herein refers to a functional group, e.g. a hydroxyl group, or generally, a bond available for, and that is suitable for incorporation of the carrier into the backbone, e.g., the phosphate, or modified phosphate, e.g., sulfur containing, backbone, of a ribonucleic acid. A “tethering attachment point” (TAP) in some embodiments refers to a constituent ring atom of the cyclic carrier, e.g., a carbon atom or a heteroatom (distinct from an atom which provides a backbone attachment point), that connects a selected moiety. The moiety can be, e.g., a carbohydrate, e.g. monosaccharide, disaccharide, trisaccharide, tetrasaccharide, oligosaccharide and polysaccharide. Optionally, the selected moiety is connected by an intervening tether to the cyclic carrier. Thus, the cyclic carrier will often include a functional group, e.g., an amino group, or generally, provide a bond, that is suitable for incorporation or tethering of another chemical entity, e.g., a ligand to the constituent ring.


The RNAi agents may be conjugated to a ligand via a carrier, wherein the carrier can be cyclic group or acyclic group; preferably, the cyclic group is selected from pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolane, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuryl and decalin; preferably, the acyclic group is selected from serinol backbone or diethanolamine backbone.


In certain specific embodiments, the RNAi agent for use in the methods of the disclosure is an agent selected from the group of agents listed in any one of Tables 2-5, 9 or 10. These agents may further comprise a ligand.


IV. iRNAs Conjugated to Ligands

Another modification of the RNA of an iRNA of the invention involves chemically linking to the iRNA one or more ligands, moieties or conjugates that enhance the activity, cellular distribution or cellular uptake of the iRNA, e.g., into a cell. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acid. Sci. USA, 1989, 86: 6553-6556), cholic acid (Manoharan et al., Biorg. Med. Chem. Let., 1994, 4:1053-1060), a thioether, e.g., beryl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660:306-309; Manoharan et al., Biorg. Med. Chem. Let., 1993, 3:2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20:533-538), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J, 1991, 10:1111-1118; Kabanov et al., FEBS Lett., 1990, 259:327-330; Svinarchuk et al., Biochimie, 1993, 75:49-54), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethyl-ammonium 1,2-di-O-hexadecyl-rac-glycero-3-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36:3651-3654; Shea et al., Nucl. Acids Res., 1990, 18:3777-3783), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14:969-973), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36:3651-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264:229-237), or an octadecylamine or hexylamino-carbonyloxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277:923-937).


In certain embodiments, a ligand alters the distribution, targeting or lifetime of an iRNA agent into which it is incorporated. In some embodiments, a ligand provides an enhanced affinity for a selected target, e.g., molecule, cell or cell type, compartment, e.g., a cellular or organ compartment, tissue, organ or region of the body, as, e.g., compared to a species absent such a ligand. Typical ligands will not take part in duplex pairing in a duplexed nucleic acid.


Ligands can include a naturally occurring substance, such as a protein (e.g., human serum albumin (HSA), low-density lipoprotein (LDL), or globulin); carbohydrate (e.g., a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic acid); or a lipid. The ligand may also be a recombinant or synthetic molecule, such as a synthetic polymer, e.g., a synthetic polyamino acid. Examples of polyamino acids include polyamino acid is a polylysine (PLL), poly L-aspartic acid, poly L-glutamic acid, styrene-maleic acid anhydride copolymer, poly(L-lactide-co-glycolied) copolymer, divinyl ether-maleic anhydride copolymer, N-(2-hydroxypropyl) methacrylamide copolymer (HMPA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyurethane, poly (2-ethylacryllic acid), N-isopropylacrylamide polymers, or polyphosphazine. Example of polyamines include: polyethylenimine, polylysine (PLL), spermine, spermidine, polyamine, pseudopeptide-polyamine, peptidomimetic polyamine, dendrimer polyamine, arginine, amidine, protamine, cationic lipid, cationic porphyrin, quaternary salt of a polyamine, or an α helical peptide.


Ligands can also include targeting groups, e.g., a cell or tissue targeting agent, e.g., a lectin, glycoprotein, lipid or protein, e.g., an antibody, that binds to a specified cell type such as a kidney cell. A targeting group can be a thyrotropin, melanotropin, lectin, glycoprotein, surfactant protein A, Mucin carbohydrate, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-glucosamine multivalent mannose, multivalent fucose, glycosylated polyaminoacids, multivalent galactose, transferrin, bisphosphonate, polyglutamate, polyaspartate, a lipid, cholesterol, a steroid, bile acid, folate, vitamin B12, biotin, or an RGD peptide or RGD peptide mimetic. In certain embodiments, the ligand is a multivalent galactose, e.g., an N-acetyl-galactosamine.


Other examples of ligands include dyes, intercalating agents (e.g. acridines), cross-linkers (e.g. psoralene, mitomycin C), porphyrins (TPPC4, texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g. EDTA), lipophilic molecules, e.g., cholesterol, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis-O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine) and peptide conjugates (e.g., antennapedia peptide, Tat peptide), alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K), MPEG, [MPEG]2, polyamino, alkyl, substituted alkyl, radiolabeled markers, enzymes, haptens (e.g. biotin), transport/absorption facilitators (e.g., aspirin, vitamin E, folic acid), synthetic ribonucleases (e.g., imidazole, bisimidazole, histamine, imidazole clusters, acridine-imidazole conjugates, Eu3+ complexes of tetraazamacrocycles), dinitrophenyl, HRP, or AP.


Ligands can be proteins, e.g., glycoproteins, or peptides, e.g., molecules having a specific affinity for a co-ligand, or antibodies e.g., an antibody, that binds to a specified cell type such as a cancer cell, endothelial cell, or bone cell. Ligands may also include hormones and hormone receptors. They can also include non-peptidic species, such as lipids, lectins, carbohydrates, vitamins, cofactors, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-glucosamine multivalent mannose, or multivalent fucose. The ligand can be, for example, a lipopolysaccharide, an activator of p38 MAP kinase, or an activator of NF-κB.


The ligand can be a substance, e.g., a drug, which can increase the uptake of the iRNA agent into the cell, for example, by disrupting the cell's cytoskeleton, e.g., by disrupting the cell's microtubules, microfilaments, or intermediate filaments. The drug can be, for example, taxon, vincristine, vinblastine, cytochalasin, nocodazole, japlakinolide, latrunculin A, phalloidin, swinholide A, indanocine, or myoservin.


In some embodiments, a ligand attached to an iRNA as described herein acts as a pharmacokinetic modulator (PK modulator). PK modulators include lipophiles, bile acids, steroids, phospholipid analogues, peptides, protein binding agents, PEG, vitamins etc. Exemplary PK modulators include, but are not limited to, cholesterol, fatty acids, cholic acid, lithocholic acid, dialkylglycerides, diacylglyceride, phospholipids, sphingolipids, naproxen, ibuprofen, vitamin E, biotin etc. Oligonucleotides that comprise a number of phosphorothioate linkages are also known to bind to serum protein, thus short oligonucleotides, e.g., oligonucleotides of about 5 bases, 10 bases, 15 bases or 20 bases, comprising multiple of phosphorothioate linkages in the backbone are also amenable to the present invention as ligands (e.g. as PK modulating ligands). In addition, aptamers that bind serum components (e.g. serum proteins) are also suitable for use as PK modulating ligands in the embodiments described herein.


Ligand-conjugated iRNAs of the invention may be synthesized by the use of an oligonucleotide that bears a pendant reactive functionality, such as that derived from the attachment of a linking molecule onto the oligonucleotide (described below). This reactive oligonucleotide may be reacted directly with commercially-available ligands, ligands that are synthesized bearing any of a variety of protecting groups, or ligands that have a linking moiety attached thereto.


The oligonucleotides used in the conjugates of the present invention may be conveniently and routinely made through the well-known technique of solid-phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems® (Foster City, Calif.). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is also known to use similar techniques to prepare other oligonucleotides, such as the phosphorothioates and alkylated derivatives.


In the ligand-conjugated oligonucleotides and ligand-molecule bearing sequence-specific linked nucleosides of the present invention, the oligonucleotides and oligonucleosides may be assembled on a suitable DNA synthesizer utilizing standard nucleotide or nucleoside precursors, or nucleotide or nucleoside conjugate precursors that already bear the linking moiety, ligand-nucleotide or nucleoside-conjugate precursors that already bear the ligand molecule, or non-nucleoside ligand-bearing building blocks.


When using nucleotide-conjugate precursors that already bear a linking moiety, the synthesis of the sequence-specific linked nucleosides is typically completed, and the ligand molecule is then reacted with the linking moiety to form the ligand-conjugated oligonucleotide. In some embodiments, the oligonucleotides or linked nucleosides of the present invention are synthesized by an automated synthesizer using phosphoramidites derived from ligand-nucleoside conjugates in addition to the standard phosphoramidites and non-standard phosphoramidites that are commercially available and routinely used in oligonucleotide synthesis.


A. Lipid Conjugates


In certain embodiments, the ligand or conjugate is a lipid or lipid-based molecule. Such a lipid or lipid-based molecule can typically bind a serum protein, such as human serum albumin (HSA). An HSA binding ligand allows for distribution of the conjugate to a target tissue, e.g., a non-kidney target tissue of the body. For example, the target tissue can be the liver, including parenchymal cells of the liver. Other molecules that can bind HSA can also be used as ligands. For example, naproxen or aspirin can be used. A lipid or lipid-based ligand can (a) increase resistance to degradation of the conjugate, (b) increase targeting or transport into a target cell or cell membrane, or (c) can be used to adjust binding to a serum protein, e.g., HSA.


A lipid-based ligand can be used to modulate, e.g., control (e.g., inhibit) the binding of the conjugate to a target tissue. For example, a lipid or lipid-based ligand that binds to HSA more strongly will be less likely to be targeted to the kidney and therefore less likely to be cleared from the body. A lipid or lipid-based ligand that binds to HSA less strongly can be used to target the conjugate to the kidney.


In certain embodiments, the lipid-based ligand binds HSA. For example, the ligand can bind HSA with a sufficient affinity such that distribution of the conjugate to a non-kidney tissue is enhanced. However, the affinity is typically not so strong that the HSA-ligand binding cannot be reversed.


In certain embodiments, the lipid-based ligand binds HSA weakly or not at all, such that distribution of the conjugate to the kidney is enhanced. Other moieties that target to kidney cells can also be used in place of or in addition to the lipid-based ligand.


In another aspect, the ligand is a moiety, e.g., a vitamin, which is taken up by a target cell, e.g., a proliferating cell. These are particularly useful for treating disorders characterized by unwanted cell proliferation, e.g., of the malignant or non-malignant type, e.g., cancer cells. Exemplary vitamins include vitamin A, E, and K. Other exemplary vitamins include are B vitamin, e.g., folic acid, B12, riboflavin, biotin, pyridoxal or other vitamins or nutrients taken up by cancer cells. Also included are HSA and low density lipoprotein (LDL).


B. Cell Permeation Agents


In another aspect, the ligand is a cell-permeation agent, such as a helical cell-permeation agent. In certain embodiments, the agent is amphipathic. An exemplary agent is a peptide such as tat or antennopedia. If the agent is a peptide, it can be modified, including a peptidylmimetic, invertomers, non-peptide or pseudo-peptide linkages, and use of D-amino acids. The helical agent is typically an α-helical agent and can have a lipophilic and a lipophobic phase.


The ligand can be a peptide or peptidomimetic. A peptidomimetic (also referred to herein as an oligopeptidomimetic) is a molecule capable of folding into a defined three-dimensional structure similar to a natural peptide. The attachment of peptide and peptidomimetics to iRNA agents can affect pharmacokinetic distribution of the iRNA, such as by enhancing cellular recognition and absorption. The peptide or peptidomimetic moiety can be about 5-50 amino acids long, e.g., about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 amino acids long.


A peptide or peptidomimetic can be, for example, a cell permeation peptide, cationic peptide, amphipathic peptide, or hydrophobic peptide (e.g., consisting primarily of Tyr, Trp, or Phe). The peptide moiety can be a dendrimer peptide, constrained peptide or crosslinked peptide. In another alternative, the peptide moiety can include a hydrophobic membrane translocation sequence (MTS). An exemplary hydrophobic MTS-containing peptide is RFGF having the amino acid sequence AAVALLPAVLLALLAP (SEQ ID NO: 1534). An RFGF analogue (e.g., amino acid sequence AALLPVLLAAP (SEQ ID NO: 1535)) containing a hydrophobic MTS can also be a targeting moiety. The peptide moiety can be a “delivery” peptide, which can carry large polar molecules including peptides, oligonucleotides, and protein across cell membranes. For example, sequences from the HIV Tat protein (GRKKRRQRRRPPQ (SEQ ID NO: 1536)) and the Drosophila Antennapedia protein (RQIKIWFQNRRMKWKK (SEQ ID NO: 1537)) have been found to be capable of functioning as delivery peptides. A peptide or peptidomimetic can be encoded by a random sequence of DNA, such as a peptide identified from a phage-display library, or one-bead-one-compound (OBOC) combinatorial library (Lam et al., Nature, 354:82-84, 1991). Typically, the peptide or peptidomimetic tethered to a dsRNA agent via an incorporated monomer unit is a cell targeting peptide such as an arginine-glycine-aspartic acid (RGD)-peptide, or RGD mimic. A peptide moiety can range in length from about 5 amino acids to about 40 amino acids. The peptide moieties can have a structural modification, such as to increase stability or direct conformational properties. Any of the structural modifications described below can be utilized.


An RGD peptide for use in the compositions and methods of the invention may be linear or cyclic, and may be modified, e.g., glycosylated or methylated, to facilitate targeting to a specific tissue(s). RGD-containing peptides and peptidiomimemtics may include D-amino acids, as well as synthetic RGD mimics. In addition to RGD, one can use other moieties that target the integrin ligand. Preferred conjugates of this ligand target PECAM-1 or VEGF.


An RGD peptide moiety can be used to target a particular cell type, e.g., a tumor cell, such as an endothelial tumor cell or a breast cancer tumor cell (Zitzmann et al., Cancer Res., 62:5139-43, 2002). An RGD peptide can facilitate targeting of an dsRNA agent to tumors of a variety of other tissues, including the lung, kidney, spleen, or liver (Aoki et al., Cancer Gene Therapy 8:783-787, 2001). Typically, the RGD peptide will facilitate targeting of an iRNA agent to the kidney. The RGD peptide can be linear or cyclic, and can be modified, e.g., glycosylated or methylated to facilitate targeting to specific tissues. For example, a glycosylated RGD peptide can deliver an iRNA agent to a tumor cell expressing αvβ3 (Haubner et al., Jour. Nucl. Med., 42:326-336, 2001).


A “cell permeation peptide” is capable of permeating a cell, e.g., a microbial cell, such as a bacterial or fungal cell, or a mammalian cell, such as a human cell. A microbial cell-permeating peptide can be, for example, an α-helical linear peptide (e.g., LL-37 or Ceropin P1), a disulfide bond-containing peptide (e.g., α-defensin, β-defensin or bactenecin), or a peptide containing only one or two dominating amino acids (e.g., PR-39 or indolicidin). A cell permeation peptide can also include a nuclear localization signal (NLS). For example, a cell permeation peptide can be a bipartite amphipathic peptide, such as MPG, which is derived from the fusion peptide domain of HIV-1 gp41 and the NLS of SV40 large T antigen (Simeoni et al., Nucl. Acids Res. 31:2717-2724, 2003).


C. Carbohydrate Conjugates


In some embodiments of the compositions and methods of the invention, an iRNA further comprises a carbohydrate. The carbohydrate conjugated iRNA are advantageous for the in vivo delivery of nucleic acids, as well as compositions suitable for in vivo therapeutic use, as described herein. As used herein, “carbohydrate” refers to a compound which is either a carbohydrate per se made up of one or more monosaccharide units having at least 6 carbon atoms (which can be linear, branched or cyclic) with an oxygen, nitrogen or sulfur atom bonded to each carbon atom; or a compound having as a part thereof a carbohydrate moiety made up of one or more monosaccharide units each having at least six carbon atoms (which can be linear, branched or cyclic), with an oxygen, nitrogen or sulfur atom bonded to each carbon atom. Representative carbohydrates include the sugars (mono-, di-, tri- and oligosaccharides containing from about 4, 5, 6, 7, 8, or 9 monosaccharide units), and polysaccharides such as starches, glycogen, cellulose and polysaccharide gums. Specific monosaccharides include C5 and above (e.g., C5, C6, C7, or C8) sugars; di- and tri-saccharides include sugars having two or three monosaccharide units (e.g., C5, C6, C7, or C8).


In certain embodiments, a carbohydrate conjugate comprises a monosaccharide.


In certain embodiments, the monosaccharide is an N-acetylgalactosamine (GalNAc). GalNAc conjugates, which comprise one or more N-acetylgalactosamine (GalNAc) derivatives, are described, for example, in U.S. Pat. No. 8,106,022, the entire content of which is hereby incorporated herein by reference. In some embodiments, the GalNAc conjugate serves as a ligand that targets the iRNA to particular cells. In some embodiments, the GalNAc conjugate targets the iRNA to liver cells, e.g., by serving as a ligand for the asialoglycoprotein receptor of liver cells (e.g., hepatocytes).


In some embodiments, the carbohydrate conjugate comprises one or more GalNAc derivatives. The GalNAc derivatives may be attached via a linker, e.g., a bivalent or trivalent branched linker. In some embodiments the GalNAc conjugate is conjugated to the 3′ end of the sense strand. In some embodiments, the GalNAc conjugate is conjugated to the iRNA agent (e.g., to the 3′ end of the sense strand) via a linker, e.g., a linker as described herein. In some embodiments the GalNAc conjugate is conjugated to the 5′ end of the sense strand. In some embodiments, the GalNAc conjugate is conjugated to the iRNA agent (e.g., to the 5′ end of the sense strand) via a linker, e.g., a linker as described herein.


In certain embodiments of the invention, the GalNAc or GalNAc derivative is attached to an iRNA agent of the invention via a monovalent linker. In some embodiments, the GalNAc or GalNAc derivative is attached to an iRNA agent of the invention via a bivalent linker. In yet other embodiments of the invention, the GalNAc or GalNAc derivative is attached to an iRNA agent of the invention via a trivalent linker. In other embodiments of the invention, the GalNAc or GalNAc derivative is attached to an iRNA agent of the invention via a tetravalent linker.


In certain embodiments, the double stranded RNAi agents of the invention comprise one GalNAc or GalNAc derivative attached to the iRNA agent. In certain embodiments, the double stranded RNAi agents of the invention comprise a plurality (e.g., 2, 3, 4, 5, or 6) GalNAc or GalNAc derivatives, each independently attached to a plurality of nucleotides of the double stranded RNAi agent through a plurality of monovalent linkers.


In some embodiments, for example, when the two strands of an iRNA agent of the invention are part of one larger molecule connected by an uninterrupted chain of nucleotides between the 3′-end of one strand and the 5′-end of the respective other strand forming a hairpin loop comprising, a plurality of unpaired nucleotides, each unpaired nucleotide within the hairpin loop may independently comprise a GalNAc or GalNAc derivative attached via a monovalent linker. The hairpin loop may also be formed by an extended overhang in one strand of the duplex.


In some embodiments, for example, when the two strands of an iRNA agent of the invention are part of one larger molecule connected by an uninterrupted chain of nucleotides between the 3′-end of one strand and the 5′-end of the respective other strand forming a hairpin loop comprising, a plurality of unpaired nucleotides, each unpaired nucleotide within the hairpin loop may independently comprise a GalNAc or GalNAc derivative attached via a monovalent linker. The hairpin loop may also be formed by an extended overhang in one strand of the duplex.


In some embodiments, the GalNAc conjugate is




embedded image


In some embodiments, the RNAi agent is attached to the carbohydrate conjugate via a linker as shown in the following schematic, wherein X is O or S




embedded image


In some embodiments, the RNAi agent is conjugated to L96 as defined in Table 1 and shown below:




embedded image


In certain embodiments, a carbohydrate conjugate for use in the compositions and methods of the invention is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In certain embodiments, a carbohydrate conjugate for use in the compositions and methods of the invention is a monosaccharide. In certain embodiments, the monosaccharide is an N-acetylgalactosamine, such as




embedded image


Another representative carbohydrate conjugate for use in the embodiments described herein includes, but is not limited to,




embedded image


when one of X or Y is an oligonucleotide, the other is a hydrogen.


In some embodiments, a suitable ligand is a ligand disclosed in WO 2019/055633, the entire contents of which are incorporated herein by reference. In one embodiment the ligand comprises the structure below:




text missing or illegible when filed


In certain embodiments, the RNAi agents of the disclosure may include GalNAc ligands, even if such GalNAc ligands are currently projected to be of limited value for the preferred intrathecal/CNS delivery route(s) of the instant disclosure.


In certain embodiments of the invention, the GalNAc or GalNAc derivative is attached to an iRNA agent of the invention via a monovalent linker. In some embodiments, the GalNAc or GalNAc derivative is attached to an iRNA agent of the invention via a bivalent linker. In yet other embodiments of the invention, the GalNAc or GalNAc derivative is attached to an iRNA agent of the invention via a trivalent linker.


In one embodiment, the double stranded RNAi agents of the invention comprise one or more GalNAc or GalNAc derivative attached to the iRNA agent. The GalNAc may be attached to any nucleotide via a linker on the sense strand or antsisense strand. The GalNac may be attached to the 5′-end of the sense strand, the 3′ end of the sense strand, the 5′-end of the antisense strand, or the 3′-end of the antisense strand. In one embodiment, the GalNAc is attached to the 3′ end of the sense strand, e.g., via a trivalent linker.


In other embodiments, the double stranded RNAi agents of the invention comprise a plurality (e.g., 2, 3, 4, 5, or 6) GalNAc or GalNAc derivatives, each independently attached to a plurality of nucleotides of the double stranded RNAi agent through a plurality of linkers, e.g., monovalent linkers.


In some embodiments, for example, when the two strands of an iRNA agent of the invention is part of one larger molecule connected by an uninterrupted chain of nucleotides between the 3′-end of one strand and the 5′-end of the respective other strand forming a hairpin loop comprising, a plurality of unpaired nucleotides, each unpaired nucleotide within the hairpin loop may independently comprise a GalNAc or GalNAc derivative attached via a monovalent linker.


In some embodiments, the carbohydrate conjugate further comprises one or more additional ligands as described above, such as, but not limited to, a PK modulator or a cell permeation peptide.


Additional carbohydrate conjugates and linkers suitable for use in the present invention include those described in WO 2014/179620 and WO 2014/179627, the entire contents of each of which are incorporated herein by reference.


D. Linkers


In some embodiments, the conjugate or ligand described herein can be attached to an iRNA oligonucleotide with various linkers that can be cleavable or non-cleavable.


The term “linker” or “linking group” means an organic moiety that connects two parts of a compound, e.g., covalently attaches two parts of a compound. Linkers typically comprise a direct bond or an atom such as oxygen or sulfur, a unit such as NR8, C(O), C(O)NH, SO, SO2, SO2NH or a chain of atoms, such as, but not limited to, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, aryl, heteroaryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkylarylalkyl, alkylarylalkenyl, alkylarylalkynyl, alkenylarylalkyl, alkenylarylalkenyl, alkenylarylalkynyl, alkynylarylalkyl, alkynylarylalkenyl, alkynylarylalkynyl, alkylheteroarylalkyl, alkylheteroarylalkenyl, alkylheteroarylalkynyl, alkenylheteroarylalkyl, alkenylheteroarylalkenyl, alkenylheteroarylalkynyl, alkynylheteroarylalkyl, alkynylheteroarylalkenyl, alkynylheteroarylalkynyl, alkylheterocyclylalkyl, alkylheterocyclylalkenyl, alkylhererocyclylalkynyl, alkenylheterocyclylalkyl, alkenylheterocyclylalkenyl, alkenylheterocyclylalkynyl, alkynylheterocyclylalkyl, alkynylheterocyclylalkenyl, alkynylheterocyclylalkynyl, alkylaryl, alkenylaryl, alkynylaryl, alkylheteroaryl, alkenylheteroaryl, alkynylhereroaryl, which one or more methylenes can be interrupted or terminated by O, S, S(O), SO2, N(R8), C(O), substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heterocyclic; where R8 is hydrogen, acyl, aliphatic or substituted aliphatic. In certain embodiments, the linker is between about 1-24 atoms, 2-24, 3-24, 4-24, 5-24, 6-24, 6-18, 7-18, 8-18 atoms, 7-17, 8-17, 6-16, 7-16, or 8-16 atoms.


A cleavable linking group is one which is sufficiently stable outside the cell, but which upon entry into a target cell is cleaved to release the two parts the linker is holding together. In a preferred embodiment, the cleavable linking group is cleaved at least about 10 times, 20, times, 30 times, 40 times, 50 times, 60 times, 70 times, 80 times, 90 times or more, or at least about 100 times faster in a target cell or under a first reference condition (which can, e.g., be selected to mimic or represent intracellular conditions) than in the blood of a subject, or under a second reference condition (which can, e.g., be selected to mimic or represent conditions found in the blood or serum).


Cleavable linking groups are susceptible to cleavage agents, e.g., pH, redox potential or the presence of degradative molecules. Generally, cleavage agents are more prevalent or found at higher levels or activities inside cells than in serum or blood. Examples of such degradative agents include: redox agents which are selected for particular substrates or which have no substrate specificity, including, e.g., oxidative or reductive enzymes or reductive agents such as mercaptans, present in cells, that can degrade a redox cleavable linking group by reduction; esterases; endosomes or agents that can create an acidic environment, e.g., those that result in a pH of five or lower; enzymes that can hydrolyze or degrade an acid cleavable linking group by acting as a general acid, peptidases (which can be substrate specific), and phosphatases.


A cleavable linkage group, such as a disulfide bond can be susceptible to pH. The pH of human serum is 7.4, while the average intracellular pH is slightly lower, ranging from about 7.1-7.3. Endosomes have a more acidic pH, in the range of 5.5-6.0, and lysosomes have an even more acidic pH at around 5.0. Some linkers will have a cleavable linking group that is cleaved at a preferred pH, thereby releasing a cationic lipid from the ligand inside the cell, or into the desired compartment of the cell.


A linker can include a cleavable linking group that is cleavable by a particular enzyme. The type of cleavable linking group incorporated into a linker can depend on the cell to be targeted. For example, a liver-targeting ligand can be linked to a cationic lipid through a linker that includes an ester group. Liver cells are rich in esterases, and therefore the linker will be cleaved more efficiently in liver cells than in cell types that are not esterase-rich. Other cell-types rich in esterases include cells of the lung, renal cortex, and testis.


Linkers that contain peptide bonds can be used when targeting cell types rich in peptidases, such as liver cells and synoviocytes.


In general, the suitability of a candidate cleavable linking group can be evaluated by testing the ability of a degradative agent (or condition) to cleave the candidate linking group. It will also be desirable to also test the candidate cleavable linking group for the ability to resist cleavage in the blood or when in contact with other non-target tissue. Thus, one can determine the relative susceptibility to cleavage between a first and a second condition, where the first is selected to be indicative of cleavage in a target cell and the second is selected to be indicative of cleavage in other tissues or biological fluids, e.g., blood or serum. The evaluations can be carried out in cell free systems, in cells, in cell culture, in organ or tissue culture, or in whole animals. It can be useful to make initial evaluations in cell-free or culture conditions and to confirm by further evaluations in whole animals. In preferred embodiments, useful candidate compounds are cleaved at least about 2, 4, 10, 20, 30, 40, 50, 60, 70, 80, 90, or about 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood or serum (or under in vitro conditions selected to mimic extracellular conditions).


i. Redox Cleavable Linking Groups


In certain embodiments, a cleavable linking group is a redox cleavable linking group that is cleaved upon reduction or oxidation. An example of reductively cleavable linking group is a disulphide linking group (—S—S—). To determine if a candidate cleavable linking group is a suitable “reductively cleavable linking group,” or for example is suitable for use with a particular iRNA moiety and particular targeting agent one can look to methods described herein. For example, a candidate can be evaluated by incubation with dithiothreitol (DTT), or other reducing agent using reagents know in the art, which mimic the rate of cleavage which would be observed in a cell, e.g., a target cell. The candidates can also be evaluated under conditions which are selected to mimic blood or serum conditions. In one, candidate compounds are cleaved by at most about 10% in the blood. In other embodiments, useful candidate compounds are degraded at least about 2, 4, 10, 20, 30, 40, 50, 60, 70, 80, 90, or about 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood (or under in vitro conditions selected to mimic extracellular conditions). The rate of cleavage of candidate compounds can be determined using standard enzyme kinetics assays under conditions chosen to mimic intracellular media and compared to conditions chosen to mimic extracellular media.


ii. Phosphate-Based Cleavable Linking Groups


In certain embodiments, a cleavable linker comprises a phosphate-based cleavable linking group. A phosphate-based cleavable linking group is cleaved by agents that degrade or hydrolyze the phosphate group. An example of an agent that cleaves phosphate groups in cells are enzymes such as phosphatases in cells. Examples of phosphate-based linking groups are —O—P(O)(ORk)-O—, —O—P(S)(ORk)-O—, —O—P(S)(SRk)-O—, —S—P(O)(ORk)-O—, —O—P(O)(ORk)-S—, —S—P(O)(ORk)-S—, —O—P(S)(ORk)-S—, —S—P(S)(ORk)-O—, —O—P(O)(Rk)-O—, —O—P(S)(Rk)-O—, —S—P(O)(Rk)-O—, —S—P(S)(Rk)-O—, —S—P(O)(Rk)-S—, —O—P(S)(Rk)-S—. Preferred embodiments are —O—P(O)(OH)—O—, —O—P(S)(OH)—O—, —O—P(S)(SH)—O—, —S—P(O)(OH)—O—, —O—P(O)(OH)—S—, —S—P(O)(OH)—S—, —O—P(S)(OH)—S—, —S—P(S)(OH)—O—, —O—P(O)(H)—O—, —O—P(S)(H)—O—, —S—P(O)(H)—O, —S—P(S)(H)—O—, —S—P(O)(H)—S—, —O—P(S)(H)—S—. A preferred embodiment is —O—P(O)(OH)—O—. These candidates can be evaluated using methods analogous to those described above.


iii. Acid Cleavable Linking Groups


In certain embodiments, a cleavable linker comprises an acid cleavable linking group. An acid cleavable linking group is a linking group that is cleaved under acidic conditions. In preferred embodiments acid cleavable linking groups are cleaved in an acidic environment with a pH of about 6.5 or lower (e.g., about 6.0, 5.75, 5.5, 5.25, 5.0, or lower), or by agents such as enzymes that can act as a general acid. In a cell, specific low pH organelles, such as endosomes and lysosomes can provide a cleaving environment for acid cleavable linking groups. Examples of acid cleavable linking groups include but are not limited to hydrazones, esters, and esters of amino acids. Acid cleavable groups can have the general formula —C═NN—, C(O)O, or —OC(O). A preferred embodiment is when the carbon attached to the oxygen of the ester (the alkoxy group) is an aryl group, substituted alkyl group, or tertiary alkyl group such as dimethyl pentyl or t-butyl. These candidates can be evaluated using methods analogous to those described above.


iv. Ester-Based Cleavable Linking Groups


In certain embodiments, a cleavable linker comprises an ester-based cleavable linking group. An ester-based cleavable linking group is cleaved by enzymes such as esterases and amidases in cells. Examples of ester-based cleavable linking groups include but are not limited to esters of alkylene, alkenylene and alkynylene groups. Ester cleavable linking groups have the general formula —C(O)O—, or —OC(O)—. These candidates can be evaluated using methods analogous to those described above.


v. Peptide-Based Cleavable Linking Groups


In yet another embodiment, a cleavable linker comprises a peptide-based cleavable linking group. A peptide-based cleavable linking group is cleaved by enzymes such as peptidases and proteases in cells. Peptide-based cleavable linking groups are peptide bonds formed between amino acids to yield oligopeptides (e.g., dipeptides, tripeptides etc.) and polypeptides. Peptide-based cleavable groups do not include the amide group (—C(O)NH—). The amide group can be formed between any alkylene, alkenylene or alkynelene. A peptide bond is a special type of amide bond formed between amino acids to yield peptides and proteins. The peptide based cleavage group is generally limited to the peptide bond (i.e., the amide bond) formed between amino acids yielding peptides and proteins and does not include the entire amide functional group. Peptide-based cleavable linking groups have the general formula —NHCHRAC(O)NHCHRBC(O)—, where RA and RB are the R groups of the two adjacent amino acids. These candidates can be evaluated using methods analogous to those described above.


In some embodiments, an iRNA of the invention is conjugated to a carbohydrate through a linker. Non-limiting examples of iRNA carbohydrate conjugates with linkers of the compositions and methods of the invention include, but are not limited to,




embedded image


embedded image


embedded image


when one of X or Y is an oligonucleotide, the other is a hydrogen.


In certain embodiments of the compositions and methods of the invention, a ligand is one or more “GalNAc” (N-acetylgalactosamine) derivatives attached through a bivalent or trivalent branched linker.


In certain embodiments, a dsRNA of the invention is conjugated to a bivalent or trivalent branched linker selected from the group of structures shown in any of formula (XLV)-(XLVI):




embedded image


wherein q2A, q2B, q3A, q3B, q4A, q4B, q5A, q5B and q5C represent independently for each occurrence 0-20 and wherein the repeating unit can be the same or different;


P2A, P2B, P3A, P3B, P4A, P4B, P5A, P5B, P5C, T2A, T2B, T3A, T3B, T4A, T4B, T4A, T5B, T5C are each independently for each occurrence absent, CO, NH, O, S, OC(O), NHC(O), CH2, CH2NH or CH2O;


Q2A, Q2B, Q3A, Q3B, Q4A, Q4B, Q5A, Q5B, Q5C are independently for each occurrence absent, alkylene, substituted alkylene wherin one or more methylenes can be interrupted or terminated by one or more of O, S, S(O), SO2, N(RN), C(R′)═C(R″), C≡C or C(O);


R2A, R2B, R3A, R3B, R4A, R4B, R5A, R5B, R5C are each independently for each occurrence absent NH, O, S, CH2, C(O)O, C(O)NH, NHCH(Ra)C(O), —C(O)—CH(Ra)—NH—, CO, CH═N—O,




embedded image


or heterocyclyl;


L2A, L2B, L3A, L3B, L4A, L4B, L5A, L5B and L5C represent the ligand; i.e. each independently for each occurrence a monosaccharide (such as GalNAc), disaccharide, trisaccharide, tetrasaccharide, oligosaccharide, or polysaccharide; and Ra is H or amino acid side chain. Trivalent conjugating GalNAc derivatives are particularly useful for use with RNAi agents for inhibiting the expression of a target gene, such as those of formula (XLIX):




embedded image


wherein L5A, L5B and L5C represent a monosaccharide, such as GalNAc derivative.


Examples of suitable bivalent and trivalent branched linker groups conjugating GalNAc derivatives include, but are not limited to, the structures recited above as formulas II, VII, XI, X, and XIII.


Representative U.S. Patents that teach the preparation of RNA conjugates include, but are not limited to, U.S. Pat. Nos. 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928;5,688,941; 6,294,664; 6,320,017; 6,576,752; 6,783,931; 6,900,297; 7,037,646; and 8,106,022, the entire contents of each of which are hereby incorporated herein by reference.


It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications can be incorporated in a single compound or even at a single nucleoside within an iRNA. The present invention also includes iRNA compounds that are chimeric compounds.


“Chimeric” iRNA compounds or “chimeras,” in the context of this invention, are iRNA compounds, preferably dsRNA agents, that contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of a dsRNA compound. These iRNAs typically contain at least one region wherein the RNA is modified so as to confer upon the iRNA increased resistance to nuclease degradation, increased cellular uptake, or increased binding affinity for the target nucleic acid. An additional region of the iRNA can serve as a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNase H is a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of iRNA inhibition of gene expression. Consequently, comparable results can often be obtained with shorter iRNAs when chimeric dsRNAs are used, compared to phosphorothioate deoxy dsRNAs hybridizing to the same target region. Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art.


In certain instances, the RNA of an iRNA can be modified by a non-ligand group. A number of non-ligand molecules have been conjugated to iRNAs in order to enhance the activity, cellular distribution or cellular uptake of the iRNA, and procedures for performing such conjugations are available in the scientific literature. Such non-ligand moieties have included lipid moieties, such as cholesterol (Kubo, T. et al., Biochem. Biophys. Res. Comm., 2007, 365(1):54-61; Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86:6553), cholic acid (Manoharan et al., Bioorg. Med. Chem. Lett., 1994, 4:1053), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660:306; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3:2765), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20:533), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J., 1991, 10:111; Kabanov et al., FEBS Lett., 1990, 259:327; Svinarchuk et al., Biochimie, 1993, 75:49), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36:3651; Shea et al., Nucl. Acids Res., 1990, 18:3777), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14:969), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36:3651), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264:229), or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277:923). Representative United States patents that teach the preparation of such RNA conjugates have been listed above. Typical conjugation protocols involve the synthesis of RNAs bearing an aminolinker at one or more positions of the sequence. The amino group is then reacted with the molecule being conjugated using appropriate coupling or activating reagents. The conjugation reaction can be performed either with the RNA still bound to the solid support or following cleavage of the RNA, in solution phase. Purification of the RNA conjugate by HPLC typically affords the pure conjugate.


V. Delivery of an RNAi Agent of the Disclosure

The delivery of an RNAi agent of the disclosure to a cell e.g., a cell within a subject, such as a human subject (e.g., a subject in need thereof, such as a subject having a MAPT-associated disorder, for example, Alzheimer's disease, FTD, PSP, or another tauopathy), can be achieved in a number of different ways. For example, delivery may be performed by contacting a cell with an RNAi agent of the disclosure either in vitro or in vivo. In vivo delivery may also be performed directly by administering a composition comprising an RNAi agent, e.g., a dsRNA, to a subject. Alternatively, in vivo delivery may be performed indirectly by administering one or more vectors that encode and direct the expression of the RNAi agent. These alternatives are discussed further below.


In general, any method of delivering a nucleic acid molecule (in vitro or in vivo) can be adapted for use with an RNAi agent of the disclosure (see e.g., Akhtar S. and Julian R L., (1992) Trends Cell. Biol. 2(5):139-144 and WO94/02595, which are incorporated herein by reference in their entireties). For in vivo delivery, factors to consider in order to deliver an RNAi agent include, for example, biological stability of the delivered agent, prevention of non-specific effects, and accumulation of the delivered agent in the target tissue. The non-specific effects of an RNAi agent can be minimized by local administration, for example, by direct injection or implantation into a tissue or topically administering the preparation. Local administration to a treatment site maximizes local concentration of the agent, limits the exposure of the agent to systemic tissues that can otherwise be harmed by the agent or that can degrade the agent, and permits a lower total dose of the RNAi agent to be administered. Several studies have shown successful knockdown of gene products when an RNAi agent is administered locally. For example, intraocular delivery of a VEGF dsRNA by intravitreal injection in cynomolgus monkeys (Tolentino, M J. et al., (2004) Retina 24:132-138) and subretinal injections in mice (Reich, S J. et al. (2003) Mol. Vis. 9:210-216) were both shown to prevent neovascularization in an experimental model of age-related macular degeneration. In addition, direct intratumoral injection of a dsRNA in mice reduces tumor volume (Pille, J. et al. (2005) Mol. Ther. 11:267-274) and can prolong survival of tumor-bearing mice (Kim, W J. et al., (2006) Mol. Ther. 14:343-350; Li, S. et al., (2007) Mol. Ther. 15:515-523). RNA interference has also shown success with local delivery to the CNS by direct injection (Dorn, G. et al., (2004) Nucleic Acids 32:e49; Tan, P H. et al. (2005) Gene Ther. 12:59-66; Makimura, H. et a.l (2002) BMC Neurosci. 3:18; Shishkina, G T., et al. (2004) Neuroscience 129:521-528; Thakker, E R., et al. (2004) Proc. Natl. Acad. Sci. U.S.A. 101:17270-17275; Akaneya, Y., et al. (2005) J. Neurophysiol. 93:594-602) and to the lungs by intranasal administration (Howard, K A. et al., (2006) Mol. Ther. 14:476-484; Zhang, X. et al., (2004) J. Biol. Chem. 279:10677-10684; Bitko, V. et al., (2005) Nat. Med. 11:50-55). For administering an RNAi agent systemically for the treatment of a disease, the RNA can be modified or alternatively delivered using a drug delivery system; both methods act to prevent the rapid degradation of the dsRNA by endo- and exo-nucleases in vivo. Modification of the RNA or the pharmaceutical carrier can also permit targeting of the RNAi agent to the target tissue and avoid undesirable off-target effects (e.g., without wishing to be bound by theory, use of GNAs as described herein has been identified to destabilize the seed region of a dsRNA, resulting in enhanced preference of such dsRNAs for on-target effectiveness, relative to off-target effects, as such off-target effects are significantly weakened by such seed region destabilization). RNAi agents can be modified by chemical conjugation to lipophilic groups such as cholesterol to enhance cellular uptake and prevent degradation. For example, an RNAi agent directed against ApoB conjugated to a lipophilic cholesterol moiety was injected systemically into mice and resulted in knockdown of apoB mRNA in both the liver and jejunum (Soutschek, J. et al., (2004) Nature 432:173-178). Conjugation of an RNAi agent to an aptamer has been shown to inhibit tumor growth and mediate tumor regression in a mouse model of prostate cancer (McNamara, J O. et al., (2006) Nat. Biotechnol. 24:1005-1015). In an alternative embodiment, the RNAi agent can be delivered using drug delivery systems such as a nanoparticle, a dendrimer, a polymer, liposomes, or a cationic delivery system. Positively charged cationic delivery systems facilitate binding of molecule RNAi agent (negatively charged) and also enhance interactions at the negatively charged cell membrane to permit efficient uptake of an RNAi agent by the cell. Cationic lipids, dendrimers, or polymers can either be bound to an RNAi agent, or induced to form a vesicle or micelle (see e.g., Kim S H. et al., (2008) Journal of Controlled Release 129(2):107-116) that encases an RNAi agent. The formation of vesicles or micelles further prevents degradation of the RNAi agent when administered systemically. Methods for making and administering cationic-RNAi agent complexes are well within the abilities of one skilled in the art (see e.g., Sorensen, D R., et al. (2003) J. Mol. Biol 327:761-766; Verma, U N. et al., (2003) Clin. Cancer Res. 9:1291-1300; Arnold, A S et al. (2007) J. Hypertens. 25:197-205, which are incorporated herein by reference in their entirety). Some non-limiting examples of drug delivery systems useful for systemic delivery of RNAi agents include DOTAP (Sorensen, D R., et al (2003), supra; Verma, U N. et al., (2003), supra), Oligofectamine, “solid nucleic acid lipid particles” (Zimmermann, T S. et al., (2006) Nature 441:111-114), cardiolipin (Chien, P Y. et al., (2005) Cancer Gene Ther. 12:321-328; Pal, A. et al., (2005) Int J. Oncol. 26:1087-1091), polyethyleneimine (Bonnet M E. et al., (2008) Pharm. Res. Aug 16 Epub ahead of print; Aigner, A. (2006) J. Biomed. Biotechnol. 71659), Arg-Gly-Asp (RGD) peptides (Liu, S. (2006) Mol. Pharm. 3:472-487), and polyamidoamines (Tomalia, D A. et al., (2007) Biochem. Soc. Trans. 35:61-67; Yoo, H. et al., (1999) Pharm. Res. 16:1799-1804). In some embodiments, an RNAi agent forms a complex with cyclodextrin for systemic administration. Methods for administration and pharmaceutical compositions of RNAi agents and cyclodextrins can be found in U.S. Patent No. 7, 427, 605, which is herein incorporated by reference in its entirety.


Certain aspects of the instant disclosure relate to a method of reducing the expression of a MAPT target gene in a cell, comprising contacting said cell with the double-stranded RNAi agent of the disclosure. In one embodiment, the cell is an extraheptic cell, optionally a CNS cell. In other embodiment, the cell is a heptic cell.


Another aspect of the disclosure relates to a method of reducing the expression of a MAPT target gene in a subject, comprising administering to the subject the double-stranded RNAi agent of the disclosure.


Another aspect of the disclosure relates to a method of treating a subject having a CNS disorder (neurodegenerative disorder), comprising administering to the subject a therapeutically effective amount of the double-stranded MAPT-targeting RNAi agent of the disclosure, thereby treating the subject. The neurodegenerative disorder of the subject is associated with an abnormality of MAPT gene encoded protein Tau. The abnormality of MAPT gene encoded protein Tau may result in aggregation of Tau in subject's brain.


Exemplary CNS disorders that can be treated by the method of the disclosure include MAPT-associated disease CNS disorder such as tauopathy, Alzheimer disease, frontotemporal dementia (FTD), behavioral variant frontotemporal dementia (bvFTD), nonfluent variant primary progressive aphasia (nfvPPA), primary progressive aphasia-semantic (PPA-S), primary progressive aphasia-logopenic (PPA-L), frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), Pick's disease (PiD), argyrophilic grain disease (AGD), multiple system tauopathy with presenile dementia (MSTD), white matter tauopathy with globular glial inclusions (FTLD with GGIs), FTLD with MAPT mutations, neurofibrillary tangle (NFT) dementia, FTD with motor neuron disease, amyotrophic lateral sclerosis (ALS), corticobasal syndrome (CBS), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), Parkinson's disease, postencephalitic Parkinsonism, Niemann-Pick disease, Huntington disease, type 1 myotonic dystrophy, and Down syndrome (DS).


In one embodiment, the double-stranded RNAi agent is administered intrathecally. By intrathecal administration of the double-stranded RNAi agent, the method can reduce the expression of a MAPT target gene in a brain (e.g., striatum) or spine tissue, for instance, cortex, cerebellum, cervical spine, lumbar spine, and thoracic spine, immune cells such as monocytes and T-cells.


For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to modified siRNA compounds. It may be understood, however, that these formulations, compositions and methods can be practiced with other siRNA compounds, e.g., unmodified siRNA compounds, and such practice is within the disclosure. A composition that includes an RNAi agent can be delivered to a subject by a variety of routes. Exemplary routes include: intrathecal, intravenous, topical, rectal, anal, vaginal, nasal, pulmonary, and ocular.


The RNAi agents of the disclosure can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically include one or more species of RNAi agent and a pharmaceutically acceptable carrier. As used herein the language “pharmaceutically acceptable carrier” is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.


The pharmaceutical compositions of the present disclosure may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic, vaginal, rectal, intranasal, transdermal), intrathecal, oral, or parenteral. Parenteral administration includes intravenous drip, subcutaneous, intraperitoneal or intramuscular injection, or intrathecal or intraventricular administration.


The route and site of administration may be chosen to enhance targeting. For example, to target neural or spinal tissue, intrathecal injection would be a logical choice. Lung cells might be targeted by administering the RNAi agent in aerosol form. The vascular endothelial cells could be targeted by coating a balloon catheter with the RNAi agent and mechanically introducing the RNA.


Formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids, and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful.


Compositions for oral administration include powders or granules, suspensions or solutions in water, syrups, elixirs or non-aqueous media, tablets, capsules, lozenges, or troches. In the case of tablets, carriers that can be used include lactose, sodium citrate and salts of phosphoric acid. Various disintegrants such as starch, and lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc, are commonly used in tablets. For oral administration in capsule form, useful diluents are lactose and high molecular weight polyethylene glycols. When aqueous suspensions are required for oral use, the nucleic acid compositions can be combined with emulsifying and suspending agents. If desired, certain sweetening or flavoring agents can be added.


Compositions for intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents, and other suitable additives.


Formulations for parenteral administration may include sterile aqueous solutions which may also contain buffers, diluents, and other suitable additives. Intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir. For intravenous use, the total concentration of solutes may be controlled to render the preparation isotonic.


In one embodiment, the administration of the siRNA compound, e.g., a double-stranded siRNA compound, or ssiRNA compound, composition is parenteral, e.g., intravenous (e.g., as a bolus or as a diffusible infusion), intradermal, intraperitoneal, intramuscular, intrathecal, intraventricular, intracranial, subcutaneous, transmucosal, buccal, sublingual, endoscopic, rectal, oral, vaginal, topical, pulmonary, intranasal, urethral, or ocular. Administration can be provided by the subject or by another person, e.g., a health care provider. The medication can be provided in measured doses or in a dispenser which delivers a metered dose. Selected modes of delivery are discussed in more detail below.


A. Intrathecal Administration.


In one embodiment, the double-stranded RNAi agent is delivered by intrathecal injection (i.e., injection into the spinal fluid which bathes the brain and spinal cord tissue). Intrathecal injection of RNAi agents into the spinal fluid can be performed as a bolus injection or via minipumps which can be implanted beneath the skin, providing a regular and constant delivery of siRNA into the spinal fluid. The circulation of the spinal fluid from the choroid plexus, where it is produced, down around the spinal chord and dorsal root ganglia and subsequently up past the cerebellum and over the cortex to the arachnoid granulations, where the fluid can exit the CNS, that, depending upon size, stability, and solubility of the compounds injected, molecules delivered intrathecally could hit targets throughout the entire CNS.


In some embodiments, the intrathecal administration is via a pump. The pump may be a surgically implanted osmotic pump. In one embodiment, the osmotic pump is implanted into the subarachnoid space of the spinal canal to facilitate intrathecal administration.


In some embodiments, the intrathecal administration is via an intrathecal delivery system for a pharmaceutical including a reservoir containing a volume of the pharmaceutical agent, and a pump configured to deliver a portion of the pharmaceutical agent contained in the reservoir. More details about this intrathecal delivery system may be found in WO 2015/116658, which is incorporated by reference in its entirety.


The amount of intrathecally injected RNAi agents may vary from one target gene to another target gene and the appropriate amount that has to be applied may have to be determined individually for each target gene. Typically, this amount ranges from 10 μg to 2 mg, preferably 50 μg to 1500 μg, more preferably 100 μg to 1000 μg.


B. Vector Encoded RNAi Agents of the Disclosure


RNAi agents targeting the MAPT gene can be expressed from transcription units inserted into DNA or RNA vectors (see, e.g., Couture, A, et al., TIG. (1996), 12:5-10; WO 00/22113, WO 00/22114, and U.S. Pat. No. 6,054,299). Expression is preferablysustained (months or longer), depending upon the specific construct used and the target tissue or cell type. These transgenes can be introduced as a linear construct, a circular plasmid, or a viral vector, which can be an integrating or non-integrating vector. The transgene can also be constructed to permit it to be inherited as an extrachromosomal plasmid (Gassmann, et al., (1995) Proc. Natl. Acad. Sci. USA 92:1292).


The individual strand or strands of an RNAi agent can be transcribed from a promoter on an expression vector. Where two separate strands are to be expressed to generate, for example, a dsRNA, two separate expression vectors can be co-introduced (e.g., by transfection or infection) into a target cell. Alternatively, each individual strand of a dsRNA can be transcribed by promoters both of which are located on the same expression plasmid. In one embodiment, a dsRNA is expressed as inverted repeat polynucleotides joined by a linker polynucleotide sequence such that the dsRNA has a stem and loop structure.


RNAi agent expression vectors are generally DNA plasmids or viral vectors. Expression vectors compatible with eukaryotic cells, preferably those compatible with vertebrate cells, can be used to produce recombinant constructs for the expression of an RNAi agent as described herein. Delivery of RNAi agent expressing vectors can be systemic, such as by intravenous or intramuscular administration, by administration to target cells ex-planted from the patient followed by reintroduction into the patient, or by any other means that allows for introduction into a desired target cell.


Viral vector systems which can be utilized with the methods and compositions described herein include, but are not limited to, (a) adenovirus vectors; (b) retrovirus vectors, including but not limited to lentiviral vectors, moloney murine leukemia virus, etc.; (c) adeno-associated virus vectors; (d) herpes simplex virus vectors; (e) SV 40 vectors; (f) polyoma virus vectors; (g) papilloma virus vectors; (h) picornavirus vectors; (i) pox virus vectors such as an orthopox, e.g., vaccinia virus vectors or avipox, e.g. canary pox or fowl pox; and (j) a helper-dependent or gutless adenovirus. Replication-defective viruses can also be advantageous. Different vectors will or will not become incorporated into the cells' genome. The constructs can include viral sequences for transfection, if desired. Alternatively, the construct can be incorporated into vectors capable of episomal replication, e.g. EPV and EBV vectors. Constructs for the recombinant expression of an RNAi agent will generally require regulatory elements, e.g., promoters, enhancers, etc., to ensure the expression of the RNAi agent in target cells. Other aspects to consider for vectors and constructs are known in the art.


VI. Pharmaceutical Compositions of the Invention

The present disclosure also includes pharmaceutical compositions and formulations which include the RNAi agents of the disclosure. In one embodiment, provided herein are pharmaceutical compositions containing an RNAi agent, as described herein, and a pharmaceutically acceptable carrier. The pharmaceutical compositions containing the RNAi agent are useful for treating a disease or disorder associated with the expression or activity of MAPT, e.g., MAPT-associated disease.


In some embodiments, the pharmaceutical composition of the invention is the dsRNA agent for selective inhibition of exon 10-containing MAPT transcripts.


In some embodiments, the pharmaceutical compositions of the invention are sterile. In another embodiment, the pharmaceutical compositions of the invention are pyrogen free.


Such pharmaceutical compositions are formulated based on the mode of delivery. One example is compositions that are formulated for systemic administration via parenteral delivery, e.g., by intravenous (IV), intramuscular (IM), or for subcutaneous (subQ) delivery. Another example is compositions that are formulated for direct delivery into the CNS, e.g., by intrathecal or intravitreal routes of injection, optionally by infusion into the brain (e.g., striatum), such as by continuous pump infusion.


The pharmaceutical compositions of the disclosure may be administered in dosages sufficient to inhibit expression of a MAPT gene. In general, a suitable dose of an RNAi agent of the disclosure will be in the range of about 0.001 to about 200.0 milligrams per kilogram body weight of the recipient per day, generally in the range of about 1 to 50 mg per kilogram body weight per day.


A repeat-dose regimen may include administration of a therapeutic amount of an RNAi agent on a regular basis, such as monthly to once every six months. In certain embodiments, the RNAi agent is administered about once per quarter (i.e., about once every three months) to about twice per year.


After an initial treatment regimen (e.g., loading dose), the treatments can be administered on a less frequent basis.


In other embodiments, a single dose of the pharmaceutical compositions can be long lasting, such that subsequent doses are administered at not more than 1, 2, 3, or 4 or more month intervals. In some embodiments of the disclosure, a single dose of the pharmaceutical compositions of the disclosure is administered once per month. In other embodiments of the disclosure, a single dose of the pharmaceutical compositions of the disclosure is administered once per quarter to twice per year.


The skilled artisan will appreciate that certain factors can influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of a composition can include a single treatment or a series of treatments.


Advances in mouse genetics have generated a number of mouse models for the study of various human diseases, such as ALS and FTD that would benefit from reduction in the expression of MAPT. Such models can be used for in vivo testing of RNAi agents, as well as for determining a therapeutically effective dose. Suitable rodent models are known in the art and include, for example, those described in, for example, Cepeda, et al. (ASN Neuro (2010) 2(2):e00033) and Pouladi, et al. (Nat Reviews (2013) 14:708).


The pharmaceutical compositions of the present disclosure can be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration can be topical (e.g., by a transdermal patch), pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal, oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; subdermal, e.g., via an implanted device; or intracranial, e.g., by intraparenchymal, intrathecal or intraventricular, administration.


The RNAi agents can be delivered in a manner to target a particular tissue, such as the CNS (e.g., neuronal, glial or vascular tissue of the brain).


Pharmaceutical compositions and formulations for topical administration can include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like can be necessary or desirable. Coated condoms, gloves and the like can also be useful. Suitable topical formulations include those in which the RNAi agents featured in the disclosure are in admixture with a topical delivery agent such as lipids, liposomes, fatty acids, fatty acid esters, steroids, chelating agents and surfactants. Suitable lipids and liposomes include neutral (e.g., dioleoylphosphatidyl DOPE ethanolamine, dimyristoylphosphatidyl choline DMPC, distearolyphosphatidyl choline) negative (e.g., dimyristoylphosphatidyl glycerol DMPG) and cationic (e.g., dioleoyltetramethylaminopropyl DOTAP and dioleoylphosphatidyl ethanolamine DOTMA). RNAi agents featured in the disclosure can be encapsulated within liposomes or can form complexes thereto, in particular to cationic liposomes. Alternatively, RNAi agents can be complexed to lipids, in particular to cationic lipids. Suitable fatty acids and esters include but are not limited to arachidonic acid, oleic acid, eicosanoic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a C1-20 alkyl ester (e.g., isopropylmyristate IPM), monoglyceride, diglyceride or pharmaceutically acceptable salt thereof. Topical formulations are described in detail in U.S. Pat. No. 6,747,014, which is incorporated herein by reference.


A. RNAi Agent Formulations Comprising Membranous Molecular Assemblies


An RNAi agent for use in the compositions and methods of the disclosure can be formulated for delivery in a membranous molecular assembly, e.g., a liposome or a micelle. As used herein, the term “liposome” refers to a vesicle composed of amphiphilic lipids arranged in at least one bilayer, e.g., one bilayer or a plurality of bilayers. Liposomes include unilamellar and multilamellar vesicles that have a membrane formed from a lipophilic material and an aqueous interior. The aqueous portion contains the RNAi agent composition. The lipophilic material isolates the aqueous interior from an aqueous exterior, which typically does not include the RNAi agent composition, although in some examples, it may. Liposomes are useful for the transfer and delivery of active ingredients to the site of action. Because the liposomal membrane is structurally similar to biological membranes, when liposomes are applied to a tissue, the liposomal bilayer fuses with bilayer of the cellular membranes. As the merging of the liposome and cell progresses, the internal aqueous contents that include the RNAi agent are delivered into the cell where the RNAi agent can specifically bind to a target RNA and can mediate RNAi. In some cases, the liposomes are also specifically targeted, e.g., to direct the RNAi agent to particular cell types.


A liposome containing an RNAi agent can be prepared by a variety of methods. In one example, the lipid component of a liposome is dissolved in a detergent so that micelles are formed with the lipid component. For example, the lipid component can be an amphipathic cationic lipid or lipid conjugate. The detergent can have a high critical micelle concentration and may be nonionic. Exemplary detergents include cholate, CHAPS, octylglucoside, deoxycholate, and lauroyl sarcosine. The RNAi agent preparation is then added to the micelles that include the lipid component. The cationic groups on the lipid interact with the RNAi agent and condense around the RNAi agent to form a liposome. After condensation, the detergent is removed, e.g., by dialysis, to yield a liposomal preparation of RNAi agent.


If necessary a carrier compound that assists in condensation can be added during the condensation reaction, e.g., by controlled addition. For example, the carrier compound can be a polymer other than a nucleic acid (e.g., spermine or spermidine). pH can also be adjusted to favor condensation.


Methods for producing stable polynucleotide delivery vehicles, which incorporate a polynucleotide/cationic lipid complex as structural components of the delivery vehicle, are further described in, e.g., WO 96/37194, the entire contents of which are incorporated herein by reference. Liposome formation can also include one or more aspects of exemplary methods described in Felgner, P. L. et al., (1987) Proc. Natl. Acad. Sci. USA 8:7413-7417; U.S. Pat. Nos. 4,897,355; 5,171,678; Bangham et al., (1965) M. Mol. Biol. 23:238; Olson et al., (1979) Biochim. Biophys. Acta 557:9; Szoka et al., (1978) Proc. Natl. Acad. Sci. 75: 4194; Mayhew et al., (1984) Biochim. Biophys. Acta 775:169; Kim et al., (1983) Biochim. Biophys. Acta 728:339; and Fukunaga et al., (1984) Endocrinol. 115:757. Commonly used techniques for preparing lipid aggregates of appropriate size for use as delivery vehicles include sonication and freeze-thaw plus extrusion (see, e.g., Mayer et al., (1986) Biochim. Biophys. Acta 858:161. Microfluidization can be used when consistently small (50 to 200 nm) and relatively uniform aggregates are desired (Mayhew et al., (1984) Biochim. Biophys. Acta 775:169. These methods are readily adapted to packaging RNAi agent preparations into liposomes.


Liposomes fall into two broad classes. Cationic liposomes are positively charged liposomes which interact with the negatively charged nucleic acid molecules to form a stable complex. The positively charged nucleic acid/liposome complex binds to the negatively charged cell surface and is internalized in an endosome. Due to the acidic pH within the endosome, the liposomes are ruptured, releasing their contents into the cell cytoplasm (Wang et al. (1987) Biochem. Biophys. Res. Commun., 147:980-985).


Liposomes, which are pH-sensitive or negatively charged, entrap nucleic acids rather than complex with them. Since both the nucleic acid and the lipid are similarly charged, repulsion rather than complex formation occurs. Nevertheless, some nucleic acid is entrapped within the aqueous interior of these liposomes. pH sensitive liposomes have been used to deliver nucleic acids encoding the thymidine kinase gene to cell monolayers in culture. Expression of the exogenous gene was detected in the target cells (Zhou et al. (1992) Journal of Controlled Release, 19:269-274).


One major type of liposomal composition includes phospholipids other than naturally-derived phosphatidylcholine. Neutral liposome compositions, for example, can be formed from dimyristoyl phosphatidylcholine (DMPC) or dipalmitoyl phosphatidylcholine (DPPC). Anionic liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are formed primarily from dioleoyl phosphatidylethanolamine (DOPE). Another type of liposomal composition is formed from phosphatidylcholine (PC) such as, for example, soybean PC, and egg PC. Another type is formed from mixtures of phospholipid or phosphatidylcholine or cholesterol.


Examples of other methods to introduce liposomes into cells in vitro and in vivo include U.S. Pat. Nos. 5,283,185; 5,171,678; WO 94/00569; WO 93/24640; WO 91/16024; Felgner, (1994) J. Biol. Chem. 269:2550; Nabel, (1993) Proc. Natl. Acad. Sci. 90:11307; Nabel, (1992) Human Gene Ther. 3:649; Gershon, (1993) Biochem. 32:7143; and Strauss, (1992) EMBO J. 11:417.


Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising Novasome™ I (glyceryl dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and Novasome™ II (glyceryl distearate/cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver cyclosporin-A into the dermis of mouse skin. Results indicated that such non-ionic liposomal systems were effective in facilitating the deposition of cyclosporine A into different layers of the skin (Hu et al., (1994) S.T.P.Pharma. Sci., 4(6):466).


Liposomes also include “sterically stabilized” liposomes, a term which, as used herein, refers to liposomes comprising one or more specialized lipids that, when incorporated into liposomes, result in enhanced circulation lifetimes relative to liposomes lacking such specialized lipids. Examples of sterically stabilized liposomes are those in which part of the vesicle-forming lipid portion of the liposome (A) comprises one or more glycolipids, such as monosialoganglioside GM1, or (B) is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol (PEG) moiety. While not wishing to be bound by any particular theory, it is thought in the art that, at least for sterically stabilized liposomes containing gangliosides, sphingomyelin, or PEG-derivatized lipids, the enhanced circulation half-life of these sterically stabilized liposomes derives from a reduced uptake into cells of the reticuloendothelial system (RES) (Allen et al., (1987) FEBS Letters, 223:42; Wu et al., (1993) Cancer Research, 53:3765).


Various liposomes comprising one or more glycolipids are known in the art. Papahadjopoulos et al. (Ann. N.Y. Acad. Sci., (1987), 507:64) reported the ability of monosialoganglioside GM1, galactocerebroside sulfate and phosphatidylinositol to improve blood half-lives of liposomes. These findings were expounded upon by Gabizon et al. (Proc. Natl. Acad. Sci. U.S.A., (1988), 85,:6949). U.S. Pat. No. 4,837,028 and WO 88/04924, both to Allen et al., disclose liposomes comprising (1) sphingomyelin and (2) the ganglioside GM1 or a galactocerebroside sulfate ester. U.S. Pat. No. 5,543,152 (Webb et al.) discloses liposomes comprising sphingomyelin. Liposomes comprising 1,2-sn-dimyristoylphosphatidylcholine are disclosed in WO 97/13499 (Lim et al).


In one embodiment, cationic liposomes are used. Cationic liposomes possess the advantage of being able to fuse to the cell membrane. Non-cationic liposomes, although not able to fuse as efficiently with the plasma membrane, are taken up by macrophages in vivo and can be used to deliver RNAi agents to macrophages.


Further advantages of liposomes include: liposomes obtained from natural phospholipids are biocompatible and biodegradable; liposomes can incorporate a wide range of water and lipid soluble drugs; liposomes can protect encapsulated RNAi agents in their internal compartments from metabolism and degradation (Rosoff, in “Pharmaceutical Dosage Forms,” Lieberman, Rieger and Banker (Eds.), 1988, volume 1, p. 245). Important considerations in the preparation of liposome formulations are the lipid surface charge, vesicle size and the aqueous volume of the liposomes.


A positively charged synthetic cationic lipid, N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) can be used to form small liposomes that interact spontaneously with nucleic acid to form lipid-nucleic acid complexes which are capable of fusing with the negatively charged lipids of the cell membranes of tissue culture cells, resulting in delivery of RNAi agent (see, e.g., Felgner, P. L. et al., (1987) Proc. Natd. Acad. Sci. USA 8:7413-7417, and U.S. Pat. No. 4,897,355 for a description of DOTMA and its use with DNA).


A DOTMA analogue, 1,2-bis(oleoyloxy)-3-(trimethylammonia)propane (DOTAP) can be used in combination with a phospholipid to form DNA-complexing vesicles. Lipofectin™ Bethesda Research Laboratories, Gaithersburg, Md.) is an effective agent for the delivery of highly anionic nucleic acids into living tissue culture cells that comprise positively charged DOTMA liposomes which interact spontaneously with negatively charged polynucleotides to form complexes. When enough positively charged liposomes are used, the net charge on the resulting complexes is also positive. Positively charged complexes prepared in this way spontaneously attach to negatively charged cell surfaces, fuse with the plasma membrane, and efficiently deliver functional nucleic acids into, for example, tissue culture cells. Another commercially available cationic lipid, 1,2-bis(oleoyloxy)-3,3-(trimethylammonia)propane (“DOTAP”) (Boehringer Mannheim, Indianapolis, Ind.) differs from DOTMA in that the oleoyl moieties are linked by ester, rather than ether linkages.


Other reported cationic lipid compounds include those that have been conjugated to a variety of moieties including, for example, carboxyspermine which has been conjugated to one of two types of lipids and includes compounds such as 5-carboxyspermylglycine dioctaoleoylamide (“DOGS”) (Transfectam™, Promega, Madison, Wis.) and dipalmitoylphosphatidylethanolamine 5-carboxyspermyl-amide (“DPPES”) (see, e.g., U.S. Pat. No. 5,171,678).


Another cationic lipid conjugate includes derivatization of the lipid with cholesterol (“DC-Chol”) which has been formulated into liposomes in combination with DOPE (See, Gao, X. and Huang, L., (1991) Biochim. Biophys. Res. Commun. 179:280). Lipopolylysine, made by conjugating polylysine to DOPE, has been reported to be effective for transfection in the presence of serum (Zhou, X. et al., (1991) Biochim. Biophys. Acta 1065:8). For certain cell lines, these liposomes containing conjugated cationic lipids, are said to exhibit lower toxicity and provide more efficient transfection than the DOTMA-containing compositions. Other commercially available cationic lipid products include DMRIE and DMRIE-HP (Vical, La Jolla, Calif.) and Lipofectamine (DOSPA) (Life Technology, Inc., Gaithersburg, Md.). Other cationic lipids suitable for the delivery of oligonucleotides are described in WO 98/39359 and WO 96/37194.


Liposomal formulations are particularly suited for topical administration; liposomes present several advantages over other formulations. Such advantages include reduced side effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target, and the ability to administer RNAi agent into the skin. In some implementations, liposomes are used for delivering RNAi agent to epidermal cells and also to enhance the penetration of RNAi agent into dermal tissues, e.g., into skin. For example, the liposomes can be applied topically. Topical delivery of drugs formulated as liposomes to the skin has been documented (see, e.g., Weiner et al., (1992) Journal of Drug Targeting, vol. 2,405-410 and du Plessis et al., (1992) Antiviral Research, 18:259-265; Mannino, R. J. and Fould-Fogerite, S., (1998) Biotechniques 6:682-690; Itani, T. et al., (1987) Gene 56:267-276; Nicolau, C. et al. (1987) Meth. Enzymol. 149:157-176; Straubinger, R. M. and Papahadjopoulos, D. (1983) Meth. Enzymol. 101:512-527; Wang, C. Y. and Huang, L., (1987) Proc. Natl. Acad. Sci. USA 84:7851-7855).


Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising Novasome I (glyceryl dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and Novasome II (glyceryl distearate/cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver a drug into the dermis of mouse skin. Such formulations with RNAi agent are useful for treating a dermatological disorder.


Liposomes that include RNAi agents can be made highly deformable. Such deformability can enable the liposomes to penetrate through pore that are smaller than the average radius of the liposome. For example, transfersomes are a type of deformable liposomes. Transferosomes can be made by adding surface edge activators, usually surfactants, to a standard liposomal composition. Transfersomes that include RNAi agent can be delivered, for example, subcutaneously by infection in order to deliver RNAi agent to keratinocytes in the skin. In order to cross intact mammalian skin, lipid vesicles must pass through a series of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. In addition, due to the lipid properties, these transferosomes can be self-optimizing (adaptive to the shape of pores, e.g., in the skin), self-repairing, and can frequently reach their targets without fragmenting, and often self-loading.


Other formulations amenable to the present disclosure are described in U.S. provisional application Ser. No. 61/018,616, filed Jan. 2, 2008; 61/018,611, filed Jan. 2, 2008; 61/039,748, filed Mar. 26, 2008; 61/047,087, filed Apr. 22, 2008 and 61/051,528, filed May 8, 2008. PCT application number PCT/US2007/080331, filed Oct. 3, 2007, also describes formulations that are amenable to the present disclosure.


Transfersomes, yet another type of liposomes, are highly deformable lipid aggregates which are attractive candidates for drug delivery vehicles. Transfersomes can be described as lipid droplets which are so highly deformable that they are easily able to penetrate through pores which are smaller than the droplet. Transfersomes are adaptable to the environment in which they are used, e.g., they are self-optimizing (adaptive to the shape of pores in the skin), self-repairing, frequently reach their targets without fragmenting, and often self-loading. To make transfersomes it is possible to add surface edge-activators, usually surfactants, to a standard liposomal composition. Transfersomes have been used to deliver serum albumin to the skin. The transfersome-mediated delivery of serum albumin has been shown to be as effective as subcutaneous injection of a solution containing serum albumin.


Surfactants find wide application in formulations such as those described herein, particularlay in emulsions (including microemulsions) and liposomes. The most common way of classifying and ranking the properties of the many different types of surfactants, both natural and synthetic, is by the use of the hydrophile/lipophile balance (HLB). The nature of the hydrophilic group (also known as the “head”) provides the most useful means for categorizing the different surfactants used in formulations (Rieger, in Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, N.Y., 1988, p. 285).


If the surfactant molecule is not ionized, it is classified as a nonionic surfactant. Nonionic surfactants find wide application in pharmaceutical and cosmetic products and are usable over a wide range of pH values. In general, their HLB values range from 2 to about 18 depending on their structure. Nonionic surfactants include nonionic esters such as ethylene glycol esters, propylene glycol esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, and ethoxylated esters. Nonionic alkanolamides and ethers such as fatty alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propoxylated block polymers are also included in this class. The polyoxyethylene surfactants are the most popular members of the nonionic surfactant class.


If the surfactant molecule carries a negative charge when it is dissolved or dispersed in water, the surfactant is classified as anionic. Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfuric acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene sulfonates, acyl isethionates, acyl taurates and sulfosuccinates, and phosphates. The most important members of the anionic surfactant class are the alkyl sulfates and the soaps.


If the surfactant molecule carries a positive charge when it is dissolved or dispersed in water, the surfactant is classified as cationic. Cationic surfactants include quaternary ammonium salts and ethoxylated amines. The quaternary ammonium salts are the most used members of this class.


If the surfactant molecule has the ability to carry either a positive or negative charge, the surfactant is classified as amphoteric. Amphoteric surfactants include acrylic acid derivatives, substituted alkylamides, N-alkylbetaines and phosphatides.


The use of surfactants in drug products, formulations and in emulsions has been reviewed (Rieger, in Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, N.Y., 1988, p. 285).


The RNAi agent for use in the methods of the disclosure can also be provided as micellar formulations. “Micelles” are defined herein as a particular type of molecular assembly in which amphipathic molecules are arranged in a spherical structure such that all the hydrophobic portions of the molecules are directed inward, leaving the hydrophilic portions in contact with the surrounding aqueous phase. The converse arrangement exists if the environment is hydrophobic.


A mixed micellar formulation suitable for delivery through transdermal membranes may be prepared by mixing an aqueous solution of the siRNA composition, an alkali metal C8 to C22 alkyl sulphate, and a micelle forming compounds. Exemplary micelle forming compounds include lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linoleic acid, linolenic acid, monoolein, monooleates, monolaurates, borage oil, evening of primrose oil, menthol, trihydroxy oxo cholanyl glycine and pharmaceutically acceptable salts thereof, glycerin, polyglycerin, lysine, polylysine, triolein, polyoxyethylene ethers and analogues thereof, polidocanol alkyl ethers and analogues thereof, chenodeoxycholate, deoxycholate, and mixtures thereof. The micelle forming compounds may be added at the same time or after addition of the alkali metal alkyl sulphate. Mixed micelles will form with substantially any kind of mixing of the ingredients but vigorous mixing in order to provide smaller size micelles.


In one method a first micellar composition is prepared which contains the siRNA composition and at least the alkali metal alkyl sulphate. The first micellar composition is then mixed with at least three micelle forming compounds to form a mixed micellar composition. In another method, the micellar composition is prepared by mixing the siRNA composition, the alkali metal alkyl sulphate and at least one of the micelle forming compounds, followed by addition of the remaining micelle forming compounds, with vigorous mixing.


Phenol or m-cresol may be added to the mixed micellar composition to stabilize the formulation and protect against bacterial growth. Alternatively, phenol or m-cresol may be added with the micelle forming ingredients. An isotonic agent such as glycerin may also be added after formation of the mixed micellar composition.


For delivery of the micellar formulation as a spray, the formulation can be put into an aerosol dispenser and the dispenser is charged with a propellant. The propellant, which is under pressure, is in liquid form in the dispenser. The ratios of the ingredients are adjusted so that the aqueous and propellant phases become one, i.e., there is one phase. If there are two phases, it is necessary to shake the dispenser prior to dispensing a portion of the contents, e.g., through a metered valve. The dispensed dose of pharmaceutical agent is propelled from the metered valve in a fine spray.


Propellants may include hydrogen-containing chlorofluorocarbons, hydrogen-containing fluorocarbons, dimethyl ether and diethyl ether. In certain embodiments, HFA 134a (1,1,1,2 tetrafluoroethane) may be used.


The specific concentrations of the essential ingredients can be determined by relatively straightforward experimentation. For absorption through the oral cavities, it is often desirable to increase, e.g., at least double or triple, the dosage for through injection or administration through the gastrointestinal tract.


B. Lipid Particles


RNAi agents, e.g., dsRNAs of in the disclosure may be fully encapsulated in a lipid formulation, e.g., a LNP, or other nucleic acid-lipid particle.


As used herein, the term “LNP” refers to a stable nucleic acid-lipid particle. LNPs typically contain a cationic lipid, a non-cationic lipid, and a lipid that prevents aggregation of the particle (e.g., a PEG-lipid conjugate). LNPs are extremely useful for systemic applications, as they exhibit extended circulation lifetimes following intravenous (i.v.) injection and accumulate at distal sites (e.g., sites physically separated from the administration site). LNPs include “pSPLP,” which include an encapsulated condensing agent-nucleic acid complex as set forth in WO 00/03683. The particles of the present disclosure typically have a mean diameter of about 50 nm to about 150 nm, more typically about 60 nm to about 130 nm, more typically about 70 nm to about 110 nm, most typically about 70 nm to about 90 nm, and are substantially nontoxic. In addition, the nucleic acids when present in the nucleic acid-lipid particles of the present disclosure are resistant in aqueous solution to degradation with a nuclease. Nucleic acid-lipid particles and their method of preparation are disclosed in, e.g., U.S. Pat. Nos. 5,976,567; 5,981,501; 6,534,484; 6,586,410; 6,815,432; United States Patent Publication No. 2010/0324120 and WO 96/40964.


In one embodiment, the lipid to drug ratio (mass/mass ratio) (e.g., lipid to dsRNA ratio) will be in the range of from about 1:1 to about 50:1, from about 1:1 to about 25:1, from about 3:1 to about 15:1, from about 4:1 to about 10:1, from about 5:1 to about 9:1, or about 6:1 to about 9:1. Ranges intermediate to the above recited ranges are also contemplated to be part of the disclosure.


Certain specific LNP formulations for delivery of RNAi agents have been described in the art, including, e.g., “LNP01” formulations as described in, e.g., WO 2008/042973, which is hereby incorporated by reference.


Additional exemplary lipid-dsRNA formulations are identified in the Table 1 below.











TABLE 1







cationic lipid/non-cationic




lipid/cholesterol/PEG-lipid conjugate



Ionizable/Cationic Lipid
Lipid:siRNA ratio







SNALP-1
1,2-Dilinolenyloxy-N,N-
DLinDMA/DPPC/Cholesterol/PEG-



dimethylaminopropane (DLinDMA)
cDMA




(57.1/7.1/34.4/1.4)




lipid:siRNA~7:1


2-XTC
2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-
XTC/DPPC/Cholesterol/PEG-cDMA



dioxolane (XTC)
57.1/7.1/34.4/1.4




lipid:siRNA~7:1


LNP05
2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-
XTC/DSPC/Cholesterol/PEG-DMG



dioxolane (XTC)
57.5/7.5/31.5/3.5




lipid:siRNA~6:1


LNP06
2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-
XTC/DSPC/Cholesterol/PEG-DMG



dioxolane (XTC)
57.5/7.5/31.5/3.5




lipid:siRNA~11:1


LNP07
2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-
XTC/DSPC/Cholesterol/PEG-DMG



dioxolane (XTC)
60/7.5/31/1.5,




lipid:siRNA~6:1


LNP08
2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-
XTC/DSPC/Cholesterol/PEG-DMG



dioxolane (XTC)
60/7.5/31/1.5,




lipid:siRNA~11:1


LNP09
2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-
XTC/DSPC/Cholesterol/PEG-DMG



dioxolane (XTC)
50/10/38.5/1.5




Lipid:siRNA 10:1


LNP10
(3aR,5s,6aS)-N,N-dimethyl-2,2-
ALN100/DSPC/Cholesterol/PEG-



di((9Z, 12Z)-octadeca-9,12-
DMG



dienyl)tetrahydro-3aH-
50/10/38.5/1.5



cyclopenta[d][1,3]dioxol-5-amine
Lipid:siRNA 10:1



(ALN100)



LNP11
(6Z, 9Z, 28Z, 31Z)-heptatriaconta-6,9,28,31-
MC-3/DSPC/Cholesterol/PEG-DMG



tetraen-19-yl 4-(dimethylamino)butanoate
50/10/38.5/1.5



(MC3)
Lipid:siRNA 10:1


LNP12
1,1′-(2-(4-(2-((2-(bis(2-
Tech G1/DSPC/Cholesterol/PEG-



hydroxydodecyl)amino)ethyl)(2-
DMG



hydroxydodecyl)amino)ethyl)piperazin-1-
50/10/38.5/1.5



yl)ethylazanediyl)didodecan-2-ol (Tech
Lipid:siRNA 10:1



G1)



LNP13
XTC
XTC/DSPC/Chol/PEG-DMG




50/10/38.5/1.5




Lipid:siRNA:33:1


LNP14
MC3
MC3/DSPC/Chol/PEG-DMG




40/15/40/5




Lipid:siRNA:11:1


LNP15
MC3
MC3/DSPC/Chol/PEG-DSG/GalNAc-




PEG-DSG




50/10/35/4.5/0.5




Lipid:siRNA:11:1


LNP16
MC3
MC3/DSPC/Chol/PEG-DMG




50/10/38.5/1.5




Lipid:siRNA:7:1


LNP17
MC3
MC3/DSPC/Chol/PEG-DSG




50/10/38.5/1.5




Lipid:siRNA:10:1


LNP18
MC3
MC3/DSPC/Chol/PEG-DMG




50/10/38.5/1.5




Lipid:siRNA:12:1


LNP19
MC3
MC3/DSPC/Chol/PEG-DMG




50/10/35/5




Lipid:siRNA:8:1


LNP20
MC3
MC3/DSPC/Chol/PEG-DPG




50/10/38.5/1.5




Lipid:siRNA:10:1


LNP21
C12-200
C12-200/DSPC/Chol/PEG-DSG




50/10/38.5/1.5




Lipid:siRNA:7:1


LNP22
XTC
XTC/DSPC/Chol/PEG-DSG




50/10/38.5/1.5




Lipid:siRNA:10:1










DSPC: distearoylphosphatidylcholine; DPPC: dipalmitoylphosphatidylcholine; PEG-DMG: PEG-didimyristoyl glycerol (C14-PEG, or PEG-C14) (PEG with avg mol wt of 2000); PEG-DSG: PEG-distyryl glycerol (C18-PEG, or PEG-C18) (PEG with avg mol wt of 2000); PEG-cDMA: PEG-carbamoyl-1,2-dimyristyloxypropylamine (PEG with avg mol wt of 2000) and SNALP (1,2-Dilinolenyloxy-N,N-dimethylaminopropane (DLinDMA)) comprising formulations are described in WO 2009/127060, which is hereby incorporated by reference.


XTC comprising formulations are described in WO 2010/088537, the entire contents of which are hereby incorporated herein by reference.


MC3 comprising formulations are described, e.g., in United States Patent Publication No. 2010/0324120, the entire contents of which are hereby incorporated by reference.


ALNY-100 comprising formulations are described in WO 2010/054406, the entire contents of which are hereby incorporated herein by reference.


C12-200 comprising formulations are described in WO 2010/129709, the entire contents of which are hereby incorporated herein by reference.


Compositions and formulations for oral administration include powders or granules, microparticulates, nanoparticulates, suspensions or solutions in water or non-aqueous media, capsules, gel capsules, sachets, tablets or minitablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders can be desirable. In some embodiments, oral formulations are those in which dsRNAs featured in the disclosure are administered in conjunction with one or more penetration enhancer surfactants and chelators. Suitable surfactants include fatty acids or esters or salts thereof, bile acids or salts thereof. Suitable bile acids/salts include chenodeoxycholic acid (CDCA) and ursodeoxychenodeoxycholic acid (UDCA), cholic acid, dehydrocholic acid, deoxycholic acid, glucholic acid, glycholic acid, glycodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, sodium tauro-24,25-dihydro-fusidate and sodium glycodihydrofusidate. Suitable fatty acids include arachidonic acid, undecanoic acid, oleic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a monoglyceride, a diglyceride or a pharmaceutically acceptable salt thereof (e.g., sodium). In some embodiments, combinations of penetration enhancers are used, for example, fatty acids/salts in combination with bile acids/salts. One exemplary combination is the sodium salt of lauric acid, capric acid and UDCA. Further penetration enhancers include polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether. DsRNAs featured in the disclosure can be delivered orally, in granular form including sprayed dried particles, or complexed to form micro or nanoparticles. DsRNA complexing agents include poly-amino acids; polyimines; polyacrylates; polyalkylacrylates, polyoxethanes, polyalkylcyanoacrylates; cationized gelatins, albumins, starches, acrylates, polyethyleneglycols (PEG) and starches; polyalkylcyanoacrylates; DEAE-derivatized polyimines, pollulans, celluloses and starches. Suitable complexing agents include chitosan, N-trimethylchitosan, poly-L-lysine, polyhistidine, polyornithine, polyspermines, protamine, polyvinylpyridine, polythiodiethylaminomethylethylene P(TDAE), polyaminostyrene (e.g., p-amino), poly(methylcyanoacrylate), poly(ethylcyanoacrylate), poly(butylcyanoacrylate), poly(isobutylcyanoacrylate), poly(isohexylcynaoacrylate), DEAE-methacrylate, DEAE-hexylacrylate, DEAE-acrylamide, DEAE-albumin and DEAE-dextran, polymethylacrylate, polyhexylacrylate, poly(D,L-lactic acid), poly(DL-lactic-co-glycolic acid (PLGA), alginate, and polyethyleneglycol (PEG). Oral formulations for dsRNAs and their preparation are described in detail in U.S. Pat. No. 6,887,906, U.S. 2003/0027780, and U.S. Pat. No. 6,747,014, each of which is incorporated herein by reference.


Compositions and formulations for parenteral, intraparenchymal (into the brain), intrathecal, intraventricular or intrahepatic administration can include sterile aqueous solutions which can also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.


Pharmaceutical compositions of the present disclosure include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions can be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids. Particularly preferred are formulations that target the brain when treating MAPT associated diseases or disorders.


The pharmaceutical formulations of the present disclosure, which can conveniently be presented in unit dosage form, can be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.


The compositions of the present disclosure can be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions of the present disclosure can also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions can further contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol or dextran. The suspension can also contain stabilizers.


C. Additional Formulations


i. Emulsions


The compositions of the present disclosure can be prepared and formulated as emulsions. Emulsions are typically heterogeneous systems of one liquid dispersed in another in the form of droplets usually exceeding 0.1 m in diameter (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., Volume 1, p. 245; Block in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 2, p. 335; Higuchi et al., in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., 1985, p. 301). Emulsions are often biphasic systems comprising two immiscible liquid phases intimately mixed and dispersed with each other. In general, emulsions can be of either the water-in-oil (w/o) or the oil-in-water (o/w) variety. When an aqueous phase is finely divided into and dispersed as minute droplets into a bulk oily phase, the resulting composition is called a water-in-oil (w/o) emulsion. Alternatively, when an oily phase is finely divided into and dispersed as minute droplets into a bulk aqueous phase, the resulting composition is called an oil-in-water (o/w) emulsion. Emulsions can contain additional components in addition to the dispersed phases, and the active drug which can be present as a solution in either aqueous phase, oily phase or itself as a separate phase. Pharmaceutical excipients such as emulsifiers, stabilizers, dyes, and anti-oxidants can also be present in emulsions as needed. Pharmaceutical emulsions can also be multiple emulsions that are comprised of more than two phases such as, for example, in the case of oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w) emulsions. Such complex formulations often provide certain advantages that simple binary emulsions do not. Multiple emulsions in which individual oil droplets of an o/w emulsion enclose small water droplets constitute a w/o/w emulsion. Likewise, a system of oil droplets enclosed in globules of water stabilized in an oily continuous phase provides an o/w/o emulsion.


Emulsions are characterized by little or no thermodynamic stability. Often, the dispersed or discontinuous phase of the emulsion is well dispersed into the external or continuous phase and maintained in this form through the means of emulsifiers or the viscosity of the formulation. Either of the phases of the emulsion can be a semisolid or a solid, as is the case of emulsion-style ointment bases and creams. Other means of stabilizing emulsions entail the use of emulsifiers that can be incorporated into either phase of the emulsion. Emulsifiers can broadly be classified into four categories: synthetic surfactants, naturally occurring emulsifiers, absorption bases, and finely dispersed solids (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).


Synthetic surfactants, also known as surface active agents, have found wide applicability in the formulation of emulsions and have been reviewed in the literature (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Rieger, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), Marcel Dekker, Inc., New York, N.Y., 1988, volume 1, p. 199). Surfactants are typically amphiphilic and comprise a hydrophilic and a hydrophobic portion. The ratio of the hydrophilic to the hydrophobic nature of the surfactant has been termed the hydrophile/lipophile balance (HLB) and is a valuable tool in categorizing and selecting surfactants in the preparation of formulations. Surfactants can be classified into different classes based on the nature of the hydrophilic group: nonionic, anionic, cationic and amphoteric (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y. Rieger, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285).


Naturally occurring emulsifiers used in emulsion formulations include lanolin, beeswax, phosphatides, lecithin and acacia. Absorption bases possess hydrophilic properties such that they can soak up water to form w/o emulsions yet retain their semisolid consistencies, such as anhydrous lanolin and hydrophilic petrolatum. Finely divided solids have also been used as good emulsifiers especially in combination with surfactants and in viscous preparations. These include polar inorganic solids, such as heavy metal hydroxides, nonswelling clays such as bentonite, attapulgite, hectorite, kaolin, montmorillonite, colloidal aluminum silicate and colloidal magnesium aluminum silicate, pigments and nonpolar solids such as carbon or glyceryl tristearate.


A large variety of non-emulsifying materials are also included in emulsion formulations and contribute to the properties of emulsions. These include fats, oils, waxes, fatty acids, fatty alcohols, fatty esters, humectants, hydrophilic colloids, preservatives and antioxidants (Block, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).


Hydrophilic colloids or hydrocolloids include naturally occurring gums and synthetic polymers such as polysaccharides (for example, acacia, agar, alginic acid, carrageenan, guar gum, karaya gum, and tragacanth), cellulose derivatives (for example, carboxymethylcellulose and carboxypropylcellulose), and synthetic polymers (for example, carbomers, cellulose ethers, and carboxyvinyl polymers). These disperse or swell in water to form colloidal solutions that stabilize emulsions by forming strong interfacial films around the dispersed-phase droplets and by increasing the viscosity of the external phase.


Since emulsions often contain a number of ingredients such as carbohydrates, proteins, sterols and phosphatides that can readily support the growth of microbes, these formulations often incorporate preservatives. Commonly used preservatives included in emulsion formulations include methyl paraben, propyl paraben, quaternary ammonium salts, benzalkonium chloride, esters of p-hydroxybenzoic acid, and boric acid. Antioxidants are also commonly added to emulsion formulations to prevent deterioration of the formulation. Antioxidants used can be free radical scavengers such as tocopherols, alkyl gallates, butylated hydroxyanisole, butylated hydroxytoluene, or reducing agents such as ascorbic acid and sodium metabisulfite, and antioxidant synergists such as citric acid, tartaric acid, and lecithin.


The application of emulsion formulations via dermatological, oral and parenteral routes and methods for their manufacture have been reviewed in the literature (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Emulsion formulations for oral delivery have been very widely used because of ease of formulation, as well as efficacy from an absorption and bioavailability standpoint (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Mineral-oil base laxatives, oil-soluble vitamins and high fat nutritive preparations are among the materials that have commonly been administered orally as o/w emulsions.


ii. Microemulsions


In one embodiment of the present disclosure, the compositions of RNAi agents and nucleic acids are formulated as microemulsions. A microemulsion can be defined as a system of water, oil and amphiphile which is a single optically isotropic and thermodynamically stable liquid solution (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Typically, microemulsions are systems that are prepared by first dispersing an oil in an aqueous surfactant solution and then adding a sufficient amount of a fourth component, generally an intermediate chain-length alcohol to form a transparent system. Therefore, microemulsions have also been described as thermodynamically stable, isotropically clear dispersions of two immiscible liquids that are stabilized by interfacial films of surface-active molecules (Leung and Shah, in: Controlled Release of Drugs: Polymers and Aggregate Systems, Rosoff, M., Ed., 1989, VCH Publishers, New York, pages 185-215). Microemulsions commonly are prepared via a combination of three to five components that include oil, water, surfactant, cosurfactant and electrolyte. Whether the microemulsion is of the water-in-oil (w/o) or an oil-in-water (o/w) type is dependent on the properties of the oil and surfactant used, and on the structure and geometric packing of the polar heads and hydrocarbon tails of the surfactant molecules (Schott, in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., 1985, p. 271).


The phenomenological approach utilizing phase diagrams has been extensively studied and has yielded a comprehensive knowledge, to one skilled in the art, of how to formulate microemulsions (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Block, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335). Compared to conventional emulsions, microemulsions offer the advantage of solubilizing water-insoluble drugs in a formulation of thermodynamically stable droplets that are formed spontaneously.


Surfactants used in the preparation of microemulsions include, but are not limited to, ionic surfactants, non-ionic surfactants, Brij 96, polyoxyethylene oleyl ethers, polyglycerol fatty acid esters, tetraglycerol monolaurate (ML310), tetraglycerol monooleate (MO310), hexaglycerol monooleate (PO310), hexaglycerol pentaoleate (PO500), decaglycerol monocaprate (MCA750), decaglycerol monooleate (MO750), decaglycerol sequioleate (SO750), decaglycerol decaoleate (DA0750), alone or in combination with cosurfactants. The cosurfactant, usually a short-chain alcohol such as ethanol, 1-propanol, and 1-butanol, serves to increase the interfacial fluidity by penetrating into the surfactant film and consequently creating a disordered film because of the void space generated among surfactant molecules. Microemulsions can, however, be prepared without the use of cosurfactants and alcohol-free self-emulsifying microemulsion systems are known in the art. The aqueous phase can typically be, but is not limited to, water, an aqueous solution of the drug, glycerol, PEG300, PEG400, polyglycerols, propylene glycols, and derivatives of ethylene glycol. The oil phase can include, but is not limited to, materials such as Captex 300, Captex 355, Capmul MCM, fatty acid esters, medium chain (C8-C12) mono, di, and tri-glycerides, polyoxyethylated glyceryl fatty acid esters, fatty alcohols, polyglycolized glycerides, saturated polyglycolized C8-C10 glycerides, vegetable oils and silicone oil.


Microemulsions are particularly of interest from the standpoint of drug solubilization and the enhanced absorption of drugs. Lipid based microemulsions (both o/w and w/o) have been proposed to enhance the oral bioavailability of drugs, including peptides (see e.g., U.S. Pat. Nos. 6,191,105; 7,063,860; 7,070,802; 7,157,099; Constantinides et al., Pharmaceutical Research, 1994, 11, 1385-1390; Ritschel, Meth. Find. Exp. Clin. Pharmacol., 1993, 13, 205). Microemulsions afford advantages of improved drug solubilization, protection of drug from enzymatic hydrolysis, possible enhancement of drug absorption due to surfactant-induced alterations in membrane fluidity and permeability, ease of preparation, ease of oral administration over solid dosage forms, improved clinical potency, and decreased toxicity (see e.g., U.S. Pat. Nos. 6,191,105; 7,063,860; 7,070,802; 7,157,099; Constantinides et al., Pharmaceutical Research, 1994, 11, 1385; Ho et al., J. Pharm. Sci., 1996, 85, 138-143). Often microemulsions can form spontaneously when their components are brought together at ambient temperature. This can be particularly advantageous when formulating thermolabile drugs, peptides or RNAi agents. Microemulsions have also been effective in the transdermal delivery of active components in both cosmetic and pharmaceutical applications. It is expected that the microemulsion compositions and formulations of the present disclosure will facilitate the increased systemic absorption of RNAi agents and nucleic acids from the gastrointestinal tract, as well as improve the local cellular uptake of RNAi agents and nucleic acids.


Microemulsions of the present disclosure can also contain additional components and additives such as sorbitan monostearate (Grill 3), Labrasol, and penetration enhancers to improve the properties of the formulation and to enhance the absorption of the RNAi agents and nucleic acids of the present disclosure. Penetration enhancers used in the microemulsions of the present disclosure can be classified as belonging to one of five broad categories—surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92). Each of these classes has been discussed above.


iii. Microparticles


An RNAi agent of the disclosure may be incorporated into a particle, e.g., a microparticle. Microparticles can be produced by spray-drying, but may also be produced by other methods including lyophilization, evaporation, fluid bed drying, vacuum drying, or a combination of these techniques.


iv. Penetration Enhancers


In one embodiment, the present disclosure employs various penetration enhancers to effect the efficient delivery of nucleic acids, particularly RNAi agents, to the skin of animals. Most drugs are present in solution in both ionized and nonionized forms. However, usually only lipid soluble or lipophilic drugs readily cross cell membranes. It has been discovered that even non-lipophilic drugs can cross cell membranes if the membrane to be crossed is treated with a penetration enhancer. In addition to aiding the diffusion of non-lipophilic drugs across cell membranes, penetration enhancers also enhance the permeability of lipophilic drugs.


Penetration enhancers can be classified as belonging to one of five broad categories, i.e., surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, N.Y., 2002; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p.92). Each of the above mentioned classes of penetration enhancers are described below in greater detail.


Surfactants (or “surface-active agents”) are chemical entities which, when dissolved in an aqueous solution, reduce the surface tension of the solution or the interfacial tension between the aqueous solution and another liquid, with the result that absorption of RNAi agents through the mucosa is enhanced. In addition to bile salts and fatty acids, these penetration enhancers include, for example, sodium lauryl sulfate, polyoxyethylene-9-lauryl ether and polyoxyethylene-20-cetyl ether) (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, N.Y., 2002; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p.92); and perfluorochemical emulsions, such as FC-43. Takahashi et al., J. Pharm. Pharmacol., 1988, 40, 252).


Various fatty acids and their derivatives which act as penetration enhancers include, for example, oleic acid, lauric acid, capric acid (n-decanoic acid), myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein (1-monooleoyl-rac-glycerol), dilaurin, caprylic acid, arachidonic acid, glycerol 1-monocaprate, 1-dodecylazacycloheptan-2-one, acylcarnitines, acylcholines, C1-20 alkyl esters thereof (e.g., methyl, isopropyl and t-butyl), and mono- and di-glycerides thereof (i.e., oleate, laurate, caprate, myristate, palmitate, stearate, linoleate, etc.) (see e.g., Touitou, E., et al. Enhancement in Drug Delivery, CRC Press, Danvers, Mass., 2006; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p.92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; El Hariri et al., J. Pharm. Pharmacol., 1992, 44, 651-654).


The physiological role of bile includes the facilitation of dispersion and absorption of lipids and fat-soluble vitamins (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, N.Y., 2002; Brunton, Chapter 38 in: Goodman & Gilman's The Pharmacological Basis of Therapeutics, 9th Ed., Hardman et al. Eds., McGraw-Hill, New York, 1996, pp. 934-935). Various natural bile salts, and their synthetic derivatives, act as penetration enhancers. Thus the term “bile salts” includes any of the naturally occurring components of bile as well as any of their synthetic derivatives. Suitable bile salts include, for example, cholic acid (or its pharmaceutically acceptable sodium salt, sodium cholate), dehydrocholic acid (sodium dehydrocholate), deoxycholic acid (sodium deoxycholate), glucholic acid (sodium glucholate), glycholic acid (sodium glycocholate), glycodeoxycholic acid (sodium glycodeoxycholate), taurocholic acid (sodium taurocholate), taurodeoxycholic acid (sodium taurodeoxycholate), chenodeoxycholic acid (sodium chenodeoxycholate), ursodeoxycholic acid (UDCA), sodium tauro-24,25-dihydro-fusidate (STDHF), sodium glycodihydrofusidate and polyoxyethylene-9-lauryl ether (POE) (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, N.Y., 2002; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Swinyard, Chapter 39 In: Remington's Pharmaceutical Sciences, 18th Ed., Gennaro, ed., Mack Publishing Co., Easton, Pa., 1990, pages 782-783; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Yamamoto et al., J. Pharm. Exp. Ther., 1992, 263, 25; Yamashita et al., J. Pharm. Sci., 1990, 79, 579-583).


Chelating agents, as used in connection with the present disclosure, can be defined as compounds that remove metallic ions from solution by forming complexes therewith, with the result that absorption of RNAi agents through the mucosa is enhanced. With regards to their use as penetration enhancers in the present disclosure, chelating agents have the added advantage of also serving as DNase inhibitors, as most characterized DNA nucleases require a divalent metal ion for catalysis and are thus inhibited by chelating agents (Jarrett, J. Chromatogr., 1993, 618, 315-339). Suitable chelating agents include but are not limited to disodium ethylenediaminetetraacetate (EDTA), citric acid, salicylates (e.g., sodium salicylate, 5-methoxysalicylate and homovanilate), N-acyl derivatives of collagen, laureth-9 and N-amino acyl derivatives of beta-diketones (enamines)(see e.g., Katdare, A. et al., Excipient development for pharmaceutical, biotechnology, and drug delivery, CRC Press, Danvers, Mass., 2006; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Buur et al., J. Control Rel., 1990, 14, 43-51).


As used herein, non-chelating non-surfactant penetration enhancing compounds can be defined as compounds that demonstrate insignificant activity as chelating agents or as surfactants but that nonetheless enhance absorption of RNAi agents through the alimentary mucosa (see e.g., Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33). This class of penetration enhancers includes, for example, unsaturated cyclic ureas, 1-alkyl- and 1-alkenylazacyclo-alkanone derivatives (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92); and non-steroidal anti-inflammatory agents such as diclofenac sodium, indomethacin and phenylbutazone (Yamashita et al., J. Pharm. Pharmacol., 1987, 39, 621-626).


Agents that enhance uptake of RNAi agents at the cellular level can also be added to the pharmaceutical and other compositions of the present disclosure. For example, cationic lipids, such as lipofectin (Junichi et al, U.S. Pat. No. 5,705,188), cationic glycerol derivatives, and polycationic molecules, such as polylysine (WO 97/30731), are also known to enhance the cellular uptake of dsRNAs.


Other agents can be utilized to enhance the penetration of the administered nucleic acids, including glycols such as ethylene glycol and propylene glycol, pyrrols such as 2-pyrrol, azones, and terpenes such as limonene and menthone.


v. Excipients


In contrast to a carrier compound, a “pharmaceutical carrier” or “excipient” is a pharmaceutically acceptable solvent, suspending agent or any other pharmacologically inert vehicle for delivering one or more nucleic acids to an animal. The excipient can be liquid or solid and is selected, with the planned manner of administration in mind, so as to provide for the desired bulk, consistency, etc., when combined with a nucleic acid and the other components of a given pharmaceutical composition. Typical pharmaceutical carriers include, but are not limited to, binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose, etc.); fillers (e.g., lactose and other sugars, microcrystalline cellulose, pectin, gelatin, calcium sulfate, ethyl cellulose, polyacrylates or calcium hydrogen phosphate, etc.); lubricants (e.g., magnesium stearate, talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium benzoate, sodium acetate, etc.); disintegrants (e.g., starch, sodium starch glycolate, etc.); and wetting agents (e.g., sodium lauryl sulphate, etc).


Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration which do not deleteriously react with nucleic acids can also be used to formulate the compositions of the present disclosure. Suitable pharmaceutically acceptable carriers include, but are not limited to, water, salt solutions, alcohols, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.


Formulations for topical administration of nucleic acids can include sterile and non-sterile aqueous solutions, non-aqueous solutions in common solvents such as alcohols, or solutions of the nucleic acids in liquid or solid oil bases. The solutions can also contain buffers, diluents and other suitable additives. Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration which do not deleteriously react with nucleic acids can be used.


Suitable pharmaceutically acceptable excipients include, but are not limited to, water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.


vi. Other Components


The compositions of the present disclosure can additionally contain other adjunct components conventionally found in pharmaceutical compositions, at their art-established usage levels. Thus, for example, the compositions can contain additional, compatible, pharmaceutically-active materials such as, for example, antipruritics, astringents, local anesthetics or anti-inflammatory agents, or can contain additional materials useful in physically formulating various dosage forms of the compositions of the present disclosure, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However, such materials, when added, should not unduly interfere with the biological activities of the components of the compositions of the present disclosure. The formulations can be sterilized and, if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings or aromatic substances and the like which do not deleteriously interact with the nucleic acid(s) of the formulation.


Aqueous suspensions can contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol or dextran. The suspension can also contain stabilizers.


In some embodiments, pharmaceutical compositions featured in the disclosure include (a) one or more RNAi agents and (b) one or more agents which function by a non-RNAi mechanism and which are useful in treating a MAPT-associated disorder. Examples of such agents include, but are not lmited to, cholinesterase inhibitors, memantine, monoamine inhibitors, reserpine, anticonvulsants, antipsychotic agents, and antidepressants.


Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds that exhibit high therapeutic indices are preferred.


The data obtained from cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of compositions featured herein in the disclosure lies generally within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage can vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the methods featured in the disclosure, the therapeutically effective dose can be estimated initially from cell culture assays. A dose can be formulated in animal models to achieve a circulating plasma concentration range of the compound or, when appropriate, of the polypeptide product of a target sequence (e.g., achieving a decreased concentration of the polypeptide) that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma can be measured, for example, by high performance liquid chromatography.


In addition to their administration, as discussed above, the RNAi agents featured in the disclosure can be administered in combination with other known agents effective in treatment of pathological processes mediated by nucleotide repeat expression. In any event, the administering physician can adjust the amount and timing of RNAi agent administration on the basis of results observed using standard measures of efficacy known in the art or described herein.


VII. Kits

In certain aspects, the instant disclosure provides kits that include a suitable container containing a pharmaceutical formulation of a siRNA compound, e.g., a double-stranded siRNA compound, or ssiRNA compound, (e.g., a precursor, e.g., a larger siRNA compound which can be processed into a ssiRNA compound, or a DNA which encodes an siRNA compound, e.g., a double-stranded siRNA compound, or ssiRNA compound, or precursor thereof).


Such kits include one or more dsRNA agent(s) and instructions for use, e.g., instructions for administering a prophylactically or therapeutically effective amount of a dsRNA agent(s). The dsRNA agent may be in a vial or a pre-filled syringe. The kits may optionally further comprise means for administering the dsRNA agent (e.g., an injection device, such as a pre-filled syringe or an intrathecal pump), or means for measuring the inhibition of MAPT (e.g., means for measuring the inhibition of MAPT mRNA, Tau, and/or MAPT activity). Such means for measuring the inhibition of MAPT may comprise a means for obtaining a sample from a subject, such as, e.g., a CSF and/or plasma sample. The kits of the invention may optionally further comprise means for determining the therapeutically effective or prophylactically effective amount.


In certain embodiments the individual components of the pharmaceutical formulation may be provided in one container. Alternatively, it may be desirable to provide the components of the pharmaceutical formulation separately in two or more containers, e.g., one container for a siRNA compound preparation, and at least another for a carrier compound. The kit may be packaged in a number of different configurations such as one or more containers in a single box. The different components can be combined, e.g., according to instructions provided with the kit. The components can be combined according to a method described herein, e.g., to prepare and administer a pharmaceutical composition. The kit can also include a delivery device.


VIII. Methods for Inhibiting MAPT Expression

The present disclosure also provides methods of inhibiting expression of a MAPT gene in a cell. The methods include contacting a cell with an RNAi agent, e.g., double stranded RNAi agent, in an amount effective to inhibit expression and/or activity of MAPT in the cell, thereby inhibiting expression and/or activity of MAPT in the cell. The present disclosure also provides methods of selective inhibition of exon 10-containing MAPT transcripts in a cell. The methods include contacting the cell with a dsRNA agent of the present disclosure, or a pharmaceutical composition of the present disclosure, thereby selectively degrading exon 10-containing MAPT transcripts in the cell. In certain embodiments, the cell is within a subject. In certain embodiments, the subject is a human. In certain embodiments, the subject has a MAPT-associated disorder. In certain embodiments, the MAPT-associated disorder is a neuro-degenerative disorder. In certain embodiments, the neurodegenerative disorder is associated with an abnormality of MAPT gene encoded protein Tau. In certain embodiments, the abnormality of MAPT gene encoded protein Tau results in aggregation of Tau in subject's brain.


In certain embodiments of the disclosure, MAPT expression and/or activity is inhibited by at leat 30% preferentially in CNS (e.g., brain) cells. In specific embodiments, MAPT expression and/or activity is inhibited by at least 30%. In certain embodiments, Tau protein level in serum of the subject is inhibited by at least 30%. In certain other embodiments of the disclosure, MAPT expression and/or activity is inhibited by at least 30% preferentially in hepatocytes.


Contacting of a cell with an RNAi agent, e.g., a double stranded RNAi agent, may be done in vitro or in vivo. Contacting a cell in vivo with the RNAi agent includes contacting a cell or group of cells within a subject, e.g., a human subject, with the RNAi agent. Combinations of in vitro and in vivo methods of contacting a cell are also possible. A108868_1030US_P2_Specification


Contacting a cell may be direct or indirect, as discussed above. Furthermore, contacting a cell may be accomplished via a targeting ligand, including any ligand described herein or known in the art. In some embodiments, the targeting ligand is a carbohydrate moiety, e.g., a GalNAc ligand, or any other ligand that directs the RNAi agent to a site of interest.


The term “inhibiting,” as used herein, is used interchangeably with “reducing,” “silencing,” “downregulating,” “suppressing” and other similar terms, and includes any level of inhibition. In certain embodiments, a level of inhibition, e.g., for an RNAi agent of the instant disclosure, can be assessed in cell culture conditions, e.g., wherein cells in cell culture are transfected via Lipofectamine™-mediated transfection at a concentration in the vicinity of a cell of 10 nM or less, 1 nM or less, etc. Knockdown of a given RNAi agent can be determined via comparison of pre-treated levels in cell culture versus post-treated levels in cell culture, optionally also comparing against cells treated in parallel with a scrambled or other form of control RNAi agent. Knockdown in cell culture of, e.g., at least about 30%, can thereby be identified as indicative of “inhibiting” or “reducing”, “downregulating” or “suppressing”, etc. having occurred. It is expressly contemplated that assessment of targeted mRNA or encoded protein levels (and therefore an extent of “inhibiting”, etc. caused by an RNAi agent of the disclosure) can also be assessed in in vivo systems for the RNAi agents of the instant disclosure, under properly controlled conditions as described in the art.


The phrase “inhibiting MAPT,” “inhibiting expression of a MAPT gene” or “inhibiting expression of MAPT,” as used herein, includes inhibition of expression of any MAPT gene (such as, e.g., a mouse MAPT gene, a rat MAPT gene, a monkey MAPT gene, or a human MAPT gene) as well as variants or mutants of a MAPT gene that encode a Tau. Thus, the MAPT gene may be a wild-type MAPT gene, a mutant MAPT gene, or a transgenic MAPT gene in the context of a genetically manipulated cell, group of cells, or organism.


“Inhibiting expression of a MAPT gene” includes any level of inhibition of a MAPT gene, e.g., at least partial suppression of the expression of a MAPT gene, such as an inhibition by at least about 25%. In certain embodiments, inhibition is at least about 25%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or at least about 95%, or at least about 99%, relative to a control level. MAPT inhibition can be measured using the in vitro assay with, e.g., A549 cells and a 10 nM concentration of the RNA agent and the PCR assay as provided in the examples herein, are contemplated to be within the scope of the present disclosure. In some embodiments, MAPT inhibition can be measured using the in vitro assay with BE(2)-C cells. In some embodiments, MAPT inhibition can be measured using the in vitro assay with Neuro-2a cells. In another embodiment, MAPT inhibition can be measured using the in vitro assay with Cos-7 (Dual-Luciferase psiCHECK2 vector). In yet another embodiment, MAPT inhibition can be measured using the in vitro assay with primary mouse hepatocytes.


The expression of a MAPT gene may be assessed based on the level of any variable associated with MAPT gene expression, e.g., MAPT mRNA level (e.g., sense mRNA, antisense mRNA, total MAPT mRNA, sense MAPT repeat-containing mRNA, and/or antisense MAPT repeat-containing mRNA) or Tau level (e.g., total Tau, wild-type Tau, or expanded repeat-containing protein), or, for example, the level of sense- or antisense-containing foci and/or the level of aberrant dipeptide repeat protein.


Inhibition may be assessed by a decrease in an absolute or relative level of one or more of these variables compared with a control level. The control level may be any type of control level that is utilized in the art, e.g., a pre-dose baseline level, or a level determined from a similar subject, cell, or sample that is untreated or treated with a control (such as, e.g., buffer only control or inactive agent control).


For example, in some embodiments of the methods of the disclosure, expression of a MAPT gene (e.g., as assessed by sense- or antisense-containing foci and/or aberrant dipeptide repeat protein level) is inhibited by at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, or 95%, relative to a control level, or to below the level of detection of the assay. In other embodiments of the methods of the disclosure, expression of a MAPT gene (e.g., as assessed by mRNA or protein expression level) is inhibited by at least about 25%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or at least about 95% relative to a control level. In certain embodiments, the methods include a clinically relevant inhibition of expression of MAPT, e.g. as demonstrated by a clinically relevant outcome after treatment of a subject with an agent to reduce the expression of MAPT.


Inhibition of the expression of a MAPT gene may be manifested by a reduction of the amount of mRNA expressed by a first cell or group of cells (such cells may be present, for example, in a sample derived from a subject) in which a MAPT gene is transcribed and which has or have been treated (e.g., by contacting the cell or cells with an RNAi agent of the disclosure, or by administering an RNAi agent of the disclosure to a subject in which the cells are or were present) such that the expression of a MAPT gene is inhibited, as compared to a second cell or group of cells substantially identical to the first cell or group of cells but which has not or have not been so treated (control cell(s) not treated with an RNAi agent or not treated with an RNAi agent targeted to the gene of interest). The degree of inhibition may be expressed in terms of:









(

mRNA


in


control


cells

)

-

(

mRNA


in


treated


cells

)



(

mRNA


in


control


cells

)


×
100

%




In other embodiments, inhibition of the expression of a MAPT gene may be assessed in terms of a reduction of a parameter that is functionally linked to a MAPT gene expression, e.g., Tau expression, sense- or antisense-containing foci and/or the level of aberrant dipeptide repeat protein. MAPT gene silencing may be determined in any cell expressing MAPT, either endogenous or heterologous from an expression construct, and by any assay known in the art.


Inhibition of the expression of MAPT gene may be manifested by a reduction in the level of the Tau protein (or functional parameter, e.g., reduction in microtubule assembly) that is expressed by a cell or group of cells (e.g., the level of protein expressed in a sample derived from a subject). As explained above, for the assessment of mRNA suppression, the inhibiton of protein expression levels in a treated cell or group of cells may similarly be expressed as a percentage of the level of protein in a control cell or group of cells. In some embodiments, the phrase “inhibiting MAPT”, can also refer to the inhibition of Tau protein expression, e.g., at least partial suppression Tau expression, such as an inhibition by at least about 25%. In certain embodiments, inhibition of the MAPT activity is by at least about 25%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or at least about 95%, or at least about 99%, relative to a control level. Tau protein levels can be measured using the in vitro assay with, e.g., the assay described in (Rubenstein et al. (2015) J. Neurotrauma 2015 Marl: 32 (5):342-352; Lim et al. (2014) Comput Struct Biotechnol J. 2014;12(20-21):7-13). MAPT expression can be measured using the in vitro assay with, e.g., the assay described in (Caillet-Boudin et al. (2015) Mol Neurodegener. 2015; 10:28; Hefti et al. (2018) PLoS ONE 13(4): e0195771).


A control cell or group of cells that may be used to assess the inhibition of the expression of a MAPT gene includes a cell or group of cells that has not yet been contacted with an RNAi agent of the disclosure. For example, the control cell or group of cells may be derived from an individual subject (e.g., a human or animal subject) prior to treatment of the subject with an RNAi agent.


The level of MAPT mRNA that is expressed by a cell or group of cells may be determined using any method known in the art for assessing mRNA expression. In one embodiment, the level of expression of MAPT in a sample is determined by detecting a transcribed polynucleotide, or portion thereof, e.g., mRNA of the MAPT gene. RNA may be extracted from cells using RNA extraction techniques including, for example, using acid phenol/guanidine isothiocyanate extraction (RNAzol B; Biogenesis), RNeasy™ RNA preparation kits (Qiagen®) or PAXgene (PreAnalytix, Switzerland). Typical assay formats utilizing ribonucleic acid hybridization include nuclear run-on assays, RT-PCR, RNase protection assays, northern blotting, in situ hybridization, and microarray analysis. Strand specific MAPT mRNAs may be detected using the quantitative RT-PCR and or droplet digital PCR methods described in, for example, Jiang, et al. supra, Lagier-Tourenne, et al., supra and Jiang, et al., supra. Circulating MAPT mRNA may be detected using methods the described in WO2012/177906, the entire contents of which are hereby incorporated herein by reference.


In some embodiments, the level of expression of MAPT is determined using a nucleic acid probe. The term “probe”, as used herein, refers to any molecule that is capable of selectively binding to a specific MAPT nucleic acid or protein, or fragment thereof. Probes can be synthesized by one of skill in the art, or derived from appropriate biological preparations. Probes may be specifically designed to be labeled. Examples of molecules that can be utilized as probes include, but are not limited to, RNA, DNA, proteins, antibodies, and organic molecules.


Isolated mRNA can be used in hybridization or amplification assays that include, but are not limited to, Southern or northern analyses, polymerase chain reaction (PCR) analyses and probe arrays. One method for the determination of mRNA levels involves contacting the isolated mRNA with a nucleic acid molecule (probe) that can hybridize to MAPT mRNA. In one embodiment, the mRNA is immobilized on a solid surface and contacted with a probe, for example by running the isolated mRNA on an agarose gel and transferring the mRNA from the gel to a membrane, such as nitrocellulose. In an alternative embodiment, the probe(s) are immobilized on a solid surface and the mRNA is contacted with the probe(s), for example, in an Affymetrix® gene chip array. A skilled artisan can readily adapt known mRNA detection methods for use in determining the level of MAPT mRNA.


An alternative method for determining the level of expression of MAPT in a sample involves the process of nucleic acid amplification or reverse transcriptase (to prepare cDNA) of for example mRNA in the sample, e.g., by RT-PCR (the experimental embodiment set forth in Mullis, 1987, U.S. Pat. No. 4,683,202), ligase chain reaction (Barany (1991) Proc. Natl. Acad. Sci. USA 88:189-193), self sustained sequence replication (Guatelli et al. (1990) Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh et al. (1989) Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi et al. (1988) Bio/Technology 6:1197), rolling circle replication (Lizardi et al., U.S. Pat. No. 5,854,033) or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers. In particular aspects of the disclosure, the level of expression of MAPT is determined by quantitative fluorogenic RT-PCR (i.e., the TaqMan™ System), by a Dual-Glo® Luciferase assay, or by other art-recognized method for measurement of MAPT expression or mRNA level.


The expression level of MAPT mRNA may be monitored using a membrane blot (such as used in hybridization analysis such as northern, Southern, dot, and the like), or microwells, sample tubes, gels, beads or fibers (or any solid support comprising bound nucleic acids). See U.S. Pat. Nos. 5,770,722, 5,874,219, 5,744,305, 5,677,195 and 5,445,934, which are incorporated herein by reference. The determination of MAPT expression level may also comprise using nucleic acid probes in solution.


In some embodiments, the level of mRNA expression is assessed using branched DNA (bDNA) assays or real time PCR (qPCR). The use of this PCR method is described and exemplified in the Examples presented herein. Such methods can also be used for the detection of MAPT nucleic acids.


The level of Tau expression may be determined using any method known in the art for the measurement of protein levels. Such methods include, for example, electrophoresis, capillary electrophoresis, high performance liquid chromatography (HPLC), thin layer chromatography (TLC), hyperdiffusion chromatography, fluid or gel precipitin reactions, absorption spectroscopy, a colorimetric assays, spectrophotometric assays, flow cytometry, immunodiffusion (single or double), immunoelectrophoresis, western blotting, radioimmunoassay (RIA), enzyme-linked immunosorbent assays (ELISAs), immunofluorescent assays, electrochemiluminescence assays, and the like. Such assays can also be used for the detection of proteins indicative of the presence or replication of Tau. Tau protein levels can be measured using the in vitro assay with, e.g., the assay described in (Rubenstein et al. (2015) J. Neurotrauma 2015 Marl: 32 (5):342-352; Lim et al. (2014) Comput Struct Biotechnol J. 2014;12(20-21):7-13).


The level of sense- or antisense-containing foci and the level of aberrant dipeptide repeat protein may be assessed using methods well-known to one of ordinary skill in the art, including, for example, fluorescent in situ hybridization (FISH), immunohistochemistry and immunoassay (see, e.g., Jiang, et al. supra). In some embodiments, the efficacy of the methods of the disclosure in the treatment of a MAPT-associated disease is assessed by a decrease in MAPT mRNA level (e.g, by assessment of a CSF sample and/or plasma sample for MAPT level, by brain biopsy, or otherwise).


In some embodiments of the methods of the disclosure, the RNAi agent is administered to a subject such that the RNAi agent is delivered to a specific site within the subject. The inhibition of expression of MAPT may be assessed using measurements of the level or change in the level of MAPT mRNA (e.g., sense mRNA, antisense mRNA, total MAPT mRNA), Tau protein (e.g., total Tau protein, wild-type Tau protein), sense-containing foci, antisense-containing foci, aberrant dipeptide repeat protein in a sample derived from a specific site within the subject, e.g., CNS cells. In certain embodiments, the methods include a clinically relevant inhibition of expression of MAPT, e.g. as demonstrated by a clinically relevant outcome after treatment of a subject with an agent to reduce the expression of MAPT, such as, for example, stabilization or inhibition of caudate atrophy (e.g., as assessed by volumetric MRI (vMRI)), a stabilization or reduction in neurofilament light chain (NfL) levels in a CSF sample from a subject, a reduction in mutant MAPT mRNA or a cleaved mutant Tau, e.g., full-length mutant MAPT mRNA or protein and a cleaved mutant MAPT mRNA or protein.


As used herein, the terms detecting or determining a level of an analyte are understood to mean performing the steps to determine if a material, e.g., protein, RNA, is present. As used herein, methods of detecting or determining include detection or determination of an analyte level that is below the level of detection for the method used.


IX. Methods of Treating or Preventing MAPT-Associated Diseases

The present disclosure also provides methods of using an RNAi agent of the disclosure or a composition containing an RNAi agent of the disclosure to reduce or inhibit MAPT expression in a cell. The methods include contacting the cell with a dsRNA of the disclosure and maintaining the cell for a time sufficient to obtain degradation of the mRNA transcript of a MAPT gene, thereby inhibiting expression of the MAPT gene in the cell.


In addition, the present disclosure also provides methods of using an RNAi agent of the disclosure or a composition containing an RNAi agent of the disclosure to reduce the level and/or inhibit formation of sense- and antisense-containing foci in a cell. The methods include contacting the cell with a dsRNA of the disclosure, thereby reducing the level of the MAPT sense- and antisense-containing foci in the cell.


The present disclosure also provides methods of using an RNAi agent of the disclosure or a composition containing an RNAi agent of the disclosure to reduce the level and/or inhibit formation of aberrant dipeptide repeat protein in a cell. The methods include contacting the cell with a dsRNA of the disclosure, thereby reducing the level of the aberrant dipeptide repeat protein in the cell.


Reduction in gene expression, the level of MAPT sense- and antisense-containing foci, and/or aberrant dipeptide repeat protein can be assessed by any methods known in the art. For example, a reduction in the expression of MAPT may be determined by determining the mRNA expression level of MAPT using methods routine to one of ordinary skill in the art, e.g., northern blotting, qRT-PCR; by determining the protein level of MAPT using methods routine to one of ordinary skill in the art, such as western blotting, immunological techniques.


In the methods of the disclosure the cell may be contacted in vitro or in vivo, i.e., the cell may be within a subject. The subject may be a human. The subject may have a MAPT-associated disorder. The MAPT-associated disorder may be a neurodegenerative disorder. The neurodegenerative disorder of the subject that can be associated with an abnormality of MAPT gene encoded protein Tau. The abnormality of MAPT gene encoded protein Tau may result in aggregation of Tau in subject's brain.


A cell suitable for treatment using the methods of the disclosure may be any cell that expresses a MAPT gene. A cell suitable for use in the methods of the disclosure may be a mammalian cell, e.g., a primate cell (such as a human cell or a non-human primate cell, e.g., a monkey cell or a chimpanzee cell), a non-primate cell (such as a rat cell, or a mouse cell). In one embodiment, the cell is a human cell, e.g., a human CNS cell.


MAPT expression (e.g., as assessed by sense mRNA, antisense mRNA, total MAPT mRNA, total Tau protein) is inhibited in the cell by about 20%, 25%, 30%, 35%, 40%, 45%, or 50% relative to the expression in a control cell. In certain embodiments, MAPT expression is inhibited by at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or at least about 95% relative to a control level.


In preferred embodiments, MAPT expression is inhibited in the cell by at least 30%. In particular embodiments, inhibiting expression of MAPT may decrease Tau protein level in serum of the subject by at least 30%.


Inhibition, as assessed by sense- or antisense-containing foci and/or aberrant dipeptide repeat protein level) is inhibited in the cell by at least 20%, 30%, 40%, preferably at least 50%, 60%, 70%, 80%, 85%, 90%, or 95%, or to below the level of detection of the assay.


The in vivo methods of the disclosure may include administering to a subject a composition containing an RNAi agent, where the RNAi agent includes a nucleotide sequence that is complementary to at least a part of an RNA transcript of the MAPT gene of the mammal to be treated. When the organism to be treated is a mammal such as a human, the composition can be administered by any means known in the art including, but not limited to oral, intraperitoneal, or parenteral routes, including intracranial (e.g., intraventricular, intraparenchymal, and intrathecal), intravenous, intramuscular, intravitreal, subcutaneous, transdermal, airway (aerosol), nasal, rectal, and topical (including buccal and sublingual) administration. In certain embodiments, the compositions are administered by intravenous infusion or injection. In certain embodiments, the compositions are administered by subcutaneous injection. In certain embodiments, the compositions are administered by intrathecal injection.


In some embodiments, the administration is via a depot injection. A depot injection may release the RNAi agent in a consistent way over a prolonged time period. Thus, a depot injection may reduce the frequency of dosing needed to obtain a desired effect, e.g., a desired inhibition of MAPT, or a therapeutic or prophylactic effect. A depot injection may also provide more consistent serum concentrations. Depot injections may include subcutaneous injections or intramuscular injections. In preferred embodiments, the depot injection is a subcutaneous injection.


In some embodiments, the administration is via a pump. The pump may be an external pump or a surgically implanted pump. In certain embodiments, the pump is a subcutaneously implanted osmotic pump. In other embodiments, the pump is an infusion pump. An infusion pump may be used for intracranial, intravenous, subcutaneous, arterial, or epidural infusions. In preferred embodiments, the infusion pump is a subcutaneous infusion pump. In other embodiments, the pump is a surgically implanted pump that delivers the RNAi agent to the CNS.


The mode of administration may be chosen based upon whether local or systemic treatment is desired and based upon the area to be treated. The route and site of administration may be chosen to enhance targeting.


In one aspect, the present disclosure also provides methods for inhibiting the expression of a MAPT gene in a mammal. The methods include administering to the mammal a composition comprising a dsRNA that targets a MAPT gene in a cell of the mammal, thereby inhibiting expression of the MAPT gene in the cell. Reduction in gene expression can be assessed by any methods known it the art and by methods, e.g. qRT-PCR, described herein. Reduction in protein production can be assessed by any methods known it the art and by methods, e.g. ELISA, described herein. In one embodiment, a CNS biopsy sample or a cerebrospinal fluid (CSF) sample serves as the tissue material for monitoring the reduction in MAPT gene or protein expression (or of a proxy therefore).


The present disclosure further provides methods of treatment of a subject in need thereof. The treatment methods of the disclosure include administering an RNAi agent of the disclosure to a subject, e.g., a subject that would benefit from inhibition of MAPT expression, such as a subject having a missense and/or deleteion mutations in the MAPT gene, in a therapeutically effective amount of an RNAi agent targeting a MAPT gene or a pharmaceutical composition comprising an RNAi agent targeting a MAPT gene.


In addition, the present disclosure provides methods of preventing, treating or inhibiting the progression of a MAPT-associated disease or disorder (e.g., Alzheimer's disease, FTD, PSP, or another tauopathy), in a subject. The methods include administering to the subject a therapeutically effective amount of any of the RNAi agent, e.g., dsRNA agents, or the pharmaceutical composition provided herein, thereby preventing, treating or inhibiting the progression of a MAPT-associated disease or disorder in the subject. A MAPT-associated disease or disorder that can be prevented by the method of the disclosure can be associated with an abnormality of MAPT gene encoded protein Tau. The abnormality of MAPT gene encoded protein Tau results in aggregation of Tau in subject's brain. The subject may be human. Administration of a dsRNA agent of the disclosure, or a pharmaceutical composition of the disclosure, may cause a decrease in Tau aggregation in the subject's brain.


An RNAi agent of the disclosure may be administered as a “free RNAi agent.” A free RNAi agent is administered in the absence of a pharmaceutical composition. The naked RNAi agent may be in a suitable buffer solution. The buffer solution may comprise acetate, citrate, prolamine, carbonate, or phosphate, or any combination thereof. In one embodiment, the buffer solution is phosphate buffered saline (PBS). The pH and osmolarity of the buffer solution containing the RNAi agent can be adjusted such that it is suitable for administering to a subject.


Alternatively, an RNAi agent of the disclosure may be administered as a pharmaceutical composition, such as a dsRNA liposomal formulation.


Subjects that would benefit from a reduction or inhibition of MAPT gene expression are those having a MAPT-associated disease. Exemplary MAPT-associated diseases include, but are not limited to, tauopathy, Alzheimer disease, frontotemporal dementia (FTD), behavioral variant frontotemporal dementia (bvFTD), nonfluent variant primary progressive aphasia (nfvPPA), primary progressive aphasia-semantic (PPA-S), primary progressive aphasia-logopenic (PPA-L), frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), Pick's disease (PiD), argyrophilic grain disease (AGD), multiple system tauopathy with presenile dementia (MSTD), white matter tauopathy with globular glial inclusions (FTLD with GGIs), FTLD with MAPT mutations, neurofibrillary tangle (NFT) dementia, FTD with motor neuron disease, amyotrophic lateral sclerosis (ALS), corticobasal syndrome (CBS), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), Parkinson's disease, postencephalitic Parkinsonism, Niemann-Pick disease, Huntington disease, type 1 myotonic dystrophy, and Down syndrome (DS).


The disclosure further provides methods for the use of an RNAi agent or a pharmaceutical composition thereof, e.g., for treating a subject that would benefit from reduction or inhibition of MAPT expression, e.g., a subject having a MAPT-associated disorder, in combination with other pharmaceuticals or other therapeutic methods, e.g., with known pharmaceuticals or known therapeutic methods, such as, for example, those which are currently employed for treating these disorders. For example, in certain embodiments, an RNAi agent targeting MAPT is administered in combination with, e.g., an agent useful in treating a MAPT-associated disorder as described elsewhere herein or as otherwise known in the art. For example, additional agents suitable for treating a subject that would benefit from reduction in MAPT expression, e.g., a subject having a MAPT-associated disorder, may include agents currently used to treat symptoms of MAPT-associated diseases. The RNAi agent and additional therapeutic agents may be administered at the same time or in the same combination, e.g., intrathecally, or the additional therapeutic agent can be administered as part of a separate composition or at separate times or by another method known in the art or described herein.


Exemplary additional therapeutics include, for example, a monoamine inhibitor, e.g., tetrabenazine (Xenazine), deutetrabenazine (Austedo), and reserpine, an anticonvulsant, e.g., valproic acid (Depakote, Depakene, Depacon), and clonazepam (Klonopin), an antipsychotic agent, e.g., risperidone (Risperdal), and haloperidol (Haldol), and an antidepressant, e.g., paroxetine (Paxil).


In one embodiment, the method includes administering a composition featured herein such that expression of the target MAPT gene is decreased, for at least one month. In preferred embodiments, expression is decreased for at least 2 months, 3 months, or 6 months.


Preferably, the RNAi agents useful for the methods and compositions featured herein specifically target RNAs (primary or processed) of the target MAPT gene. Compositions and methods for inhibiting the expression of these genes using RNAi agents can be prepared and performed as described herein.


Administration of the dsRNA according to the methods of the disclosure may result in a reduction of the severity, signs, symptoms, or markers of such diseases or disorders in a patient with a MAPT-associated disorder. By “reduction” in this context is meant a statistically significant or clinically significant decrease in such level. The reduction can be, for example, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100% relative to a control level. Efficacy of treatment or prevention of disease can be assessed, for example by measuring disease progression, disease remission, symptom severity, reduction in pain, quality of life, dose of a medication required to sustain a treatment effect, level of a disease marker or any other measurable parameter appropriate for a given disease being treated or targeted for prevention. It is well within the ability of one skilled in the art to monitor efficacy of treatment or prevention by measuring any one of such parameters, or any combination of parameters. For example, efficacy of treatment of a MAPT-associated disorder may be assessed, for example, by periodic monitoring of a subject's. Comparisons of the later readings with the initial readings provide a physician an indication of whether the treatment is effective. It is well within the ability of one skilled in the art to monitor efficacy of treatment or prevention by measuring any one of such parameters, or any combination of parameters. In connection with the administration of an RNAi agent targeting MAPT or pharmaceutical composition thereof, “effective against” a MAPT-associated disorder indicates that administration in a clinically appropriate manner results in a beneficial effect for at least a statistically significant fraction of patients, such as an improvement of symptoms, a cure, a reduction in disease, extension of life, improvement in quality of life, or other effect generally recognized as positive by medical doctors familiar with treating MAPT-associated disorders and the related causes.


A treatment or preventive effect is evident when there is a statistically significant improvement in one or more parameters of disease status, or by a failure to worsen or to develop symptoms where they would otherwise be anticipated. As an example, a favorable change of at least 10% in a measurable parameter of disease, and preferably at least 20%, 30%, 40%, 50% or more can be indicative of effective treatment. Efficacy for a given RNAi agent drug or formulation of that drug can also be judged using an experimental animal model for the given disease as known in the art. When using an experimental animal model, efficacy of treatment is evidenced when a statistically significant reduction in a marker or symptom is observed.


Alternatively, the efficacy can be measured by a reduction in the severity of disease as determined by one skilled in the art of diagnosis based on a clinically accepted disease severity grading scale. Any positive change resulting in e.g., lessening of severity of disease measured using the appropriate scale, represents adequate treatment using an RNAi agent or RNAi agent formulation as described herein.


In certain embodiments, subjects can be administered a therapeutic amount of dsRNA, such as about 0.01 mg/kg to about 200 mg/kg. In other embodiments, subjects can be administered a therapeutic amount of dsRNA, such as about 0.01 mg/kg to about 500 mg/kg. In yet other embodiments, subjects can be administered a therapeutic amount of dsRNA of about 500 mg/kg or more.


The RNAi agent can be administered intrathecally, via intravitreal injection, or by intravenous infusion over a period of time, on a regular basis. In certain embodiments, after an initial treatment regimen, the treatments can be administered on a less frequent basis. Administration of the RNAi agent can reduce MAPT levels, e.g., in a cell, tissue, blood, CSF sample or other compartment of the patient. In one embodiment, administration of the RNAi agent can reduce MAPT levels, e.g., in a cell, tissue, blood, CSF sample or other compartment of the patient by at least about 25%, such as about 25%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, or about 95% relative to a control level.


Before administration of a full dose of the RNAi agent, patients can be administered a smaller dose, such as a 5% infusion reaction, and monitored for adverse effects, such as an allergic reaction. In another example, the patient can be monitored for unwanted immunostimulatory effects, such as increased cytokine (e.g., TNF-alpha or INF-alpha) levels.


Alternatively, the RNAi agent can be administered subcutaneously, i.e., by subcutaneous injection. One or more injections may be used to deliver the desired, e.g., monthly dose of RNAi agent to a subject. The injections may be repeated over a period of time. The administration may be repeated on a regular basis. In certain embodiments, after an initial treatment regimen, the treatments can be administered on a less frequent basis. A repeat-dose regimen may include administration of a therapeutic amount of RNAi agent on a regular basis, such as monthly or extending to once a quarter, twice per year, once per year. In certain embodiments, the RNAi agent is administered about once per month to about once per quarter (i.e., about once every three months).


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the RNAi agents and methods featured in the invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


An informal Sequence Listing is filed herewith and forms part of the specification as filed.


EXAMPLES
Example 1. RNAi Agent Design, Synthesis, Selection, and In Vitro Evaluation

This Example describes methods for the design, synthesis, selection, and in vitro evaluation of MAPT RNAi agents.


Source of Reagents

Where the source of a reagent is not specifically given herein, such reagent can be obtained from any supplier of reagents for molecular biology at a quality/purity standard for application in molecular biology.


Bioinformatics

siRNAs targeting the human MAPT transcripts (Homo sapiens microtubule associated protein tau (MAPT), transcript variant 4, mRNA, NCBI refseqID NM_016841.4; NCBI GeneID: 4137 and Homo sapiens microtubule associated protein tau (MAPT), transcript variant 2, mRNA, NCBI refseqID NM_005910.6; NCBI GeneID: 4137) were designed using custom R and Python scripts. The human NM_016841.4mRNA has a length of 5544 bases. The human NM_005910.6 mRNA has a length of 5639 bases.


Detailed lists of the unmodified MAPT sense and antisense strand nucleotide sequences targeting human MAPT transcript are shown in Tables 3-5, 16, 18, 20, 22, 25 and 27. Detailed lists of the modified MAPT sense and antisense strand nucleotide sequences targeting human MAPT transcript are shown in Table 6-8, 17, 19, 21, 23, 26 and 28.


siRNAs targeting the mouse MAPT transcript (Mus musculus microtubule-associated protein tau (Mapt), mRNA, NCBI refseqID NM_001038609; NCBI GeneID: 17762) were designed using custom R and Python scripts. The mouse NM_001038609.2 mRNA has a length of 5396 bases.


siRNAs targeting the macaque MAPT transcript (Macaca fascicularis microtubule associated protein tau (MAPT), transcript variant X13, NCBI refseqID XM_005584540.1; NCBI GeneID: 102119414) were designed using custom R and Python scripts. The mouse XM_005584540.1 mRNA has a length of 5790 bases.


Detailed lists of the unmodified MAPT sense and antisense strand nucleotide sequences targeting mouse MAPT transcript are shown in Table 12. Detailed lists of the modified MAPT sense and antisense strand nucleotide sequences targeting mouse MAPT transcript are shown in Table 13.


It is to be understood that, throughout the application, a duplex name without a decimal is equivalent to a duplex name with a decimal which merely references the batch number of the duplex. For example, AD-523561 is equivalent to AD-523561.1.


In Vitro Screening in BE(2)-C and Neuro-2a Cells

i. Cell Culture and Transfections:


BE(2)-C(ATCC) were transfected by adding 5 μl of Opti-MEM plus 0.1 μl of Lipofectamine RNAimax per well (Invitrogen, Carlsbad Calif. cat #13778-150) to 5 μl of siRNA duplexes per well, with 4 replicates of each siRNA duplex, into a 384-well plate, and incubated at room temperature for 15 minutes. Forty μl of 1:1 mixture of Minimum Essential Medium and F12 Medium (ThermoFisher) containing ˜5×103 cells were then added to the siRNA mixture. Cells were incubated for 24 hours prior to RNA purification. The results of the screening of the dsRNA agents listed in Tables 3-8 and 12-13 in BE(2)-C cells are shown in Tables 9-11 and table 14, respectively. For screen 1 shown in Table 9, four dose experiments were performed at 50 nM, 10 nM 1 nM and 0.1 nM. For screens 2-3 shown in Tables 10-11, three dose experiments were performed at 10 nM, 1 nM and 0.1 nM. For screen 4 shown in Table 14, two dose experiments were performed at 10 nM and 0.1 nM. The results of the screening of the dsRNA agents for screens 5-8 listed in Tables 16-23 in BE(2)-C cells are shown in Table 24. For screens 5-8, three dose experiments were performed at 10 nM, 1 nM and 0.1 nM.


Neuro-2a (ATCC) were transfected by adding 5 μl of Opti-MEM plus 0.1 μl of Lipofectamine RNAimax per well (Invitrogen, Carlsbad Calif. cat #13778-150) to 5 μl of siRNA duplexes per well, with 4 replicates of each siRNA duplex, into a 384-well plate, and incubated at room temperature for 15 minutes. Forty 1 of Minimum Essential Medium (ThermoFisher) containing ˜5×103 cells were then added to the siRNA mixture. Cells were incubated for 24 hours prior to RNA purification. The results of the screening of the dsRNA agents listed in Tables 12-13 in Neuro-2a (mouse) cells are shown in Table 15. For screen 4 shown in Table 15, two dose experiments were performed at 10 nM and 0.1 nM.


ii. Total RNA Isolation Using DYNABEADS mRNA Isolation Kit:


RNA was isolated using an automated protocol on a BioTek-EL406 platform using DYNABEADs (Invitrogen, cat #61012). Briefly, 70 ul of Lysis/Binding Buffer and 10 ul of lysis buffer containing 3 ul of magnetic beads were added to the plate with cells. Plates were incubated on an electromagnetic shaker for 10 minutes at room temperature and then magnetic beads were captured and the supernatant was removed. Bead-bound RNA was then washed 2 times with 150 ul Wash Buffer A and once with Wash Buffer B. Beads were then washed with 150 ul Elution Buffer, re-captured and supernatant removed.


iii. cDNA Synthesis Using ABI High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, Calif., Cat #4368813):


Ten μl of a master mix containing 1 μl 10× Buffer, 0.4 ul 25× dNTPs, 1 μl 10× Random primers, 0.5 μl Reverse Transcriptase, 0.5 μl RNase inhibitor and 6.6 μl of H2O per reaction was added to RNA isolated above. Plates were sealed, mixed, and incubated on an electromagnetic shaker for 10 minutes at room temperature, followed by 2 h 37° C.


iv. Real Time PCR:


Two μl of cDNA and 5 μl Lightcycler 480 probe master mix (Roche Cat #04887301001) were added to either 0.5 μl of Human GAPDH TaqMan Probe (4326317E) and 0.5 μl human MAPT probe (hs00902194_m1, Thermo) or 0.5 μl Mouse GAPDH TaqMan Probe (4352339E) and 0.5 μl mouse MAPT probe (Mm00521988_m1, Thermo) per well in a 384 well plates (Roche cat #04887301001). Real time PCR was done in a LightCycler480 Real Time PCR system (Roche). Each duplex was tested at least two times and data were normalized to cells transfected with a non-targeting control siRNA. To calculate relative fold change, real time data were analyzed using the ΔΔCt method and normalized to assays performed with cells transfected with a non-targeting control siRNA.









TABLE 2







Abbreviations of nucleotide monomers used in nucleic acid sequence representation. It will be understood


that these monomers, when present in an oligonucleotide, are mutually linked by 5′-3′-phosphodiester bonds, and it is


understood that when the nucleotide contains a 2′-fluoro modification, then the fluoro replaces the hydroxy at that


position in the parent nucleotide (i.e., it is a 2′-deoxy-2′-fluoronucleotide).








Abbrevi-



ation
Nucleotide(s)





A
Adenosine-3′-phosphate


Ab
beta-L-adenosine-3′-phosphate


Abs
beta-L-adenosine-3′-phosphorothioate


Af
2′-fluoroadenosine-3′-phosphate


Afs
2′-fluoroadenosine-3′-phosphorothioate


As
adenosine-3′-phosphorothioate


C
cytidine-3′-phosphate


Cb
beta-L-cytidine-3′-phosphate


Cbs
beta-L-cytidine-3′-phosphorothioate


Cf
2′-fluorocytidine-3′-phosphate


Cfs
2′-fluorocytidine-3′-phosphorothioate


Cs
cytidine-3′-phosphorothioate


G
guanosine-3′-phosphate


Gb
beta-L-guanosine-3′-phosphate


Gbs
beta-L-guanosine-3′-phosphorothioate


Gf
2′-fluoroguanosine-3′-phosphate


Gfs
2′-fluoroguanosine-3′-phosphorothioate


Gs
guanosine-3′-phosphorothioate


T
5′-methyluridine-3′-phosphate


Tf
2′-fluoro-5-methyluridine-3′-phosphate


Tfs
2′-fluoro-5-methyluridine-3′-phosphorothioate


Ts
5-methyluridine-3′-phosphorothioate


U
Uridine-3′-phosphate


Uf
2′-fluorouridine-3′-phosphate


Ufs
2′-fluorouridine-3′-phosphorothioate


Us
uridine-3′-phosphorothioate


N
any nucleotide, modified or unmodified


a
2′-O-methyladenosine-3′-phosphate


as
2′-O-methyladenosine-3′-phosphorothioate


c
2′-O-methylcytidine-3′-phosphate


cs
2′-O-methylcytidine-3′-phosphorothioate


g
2′-O-methylguanosine-3′-phosphate


gs
2′-O-methylguanosine-3′-phosphorothioate


t
2′-O-methyl-5-methyluridine-3′-phosphate


ts
2′-O-methyl-5-methyluridine-3’-phosphorothioate


u
2′-O-methyluridine-3′-phosphate


us
2′-O-methyluridine-3′-phosphorothioate


s
phosphorothioate linkage


L96
N-[tris(GalNAc-alkyl)-amidodecanoyl)]-4-hydroxyprolinol



Hyp-(GalNAc-alkyl)3








embedded image







Y34
2-hydroxymethyl-tetrahydrofurane-4-methoxy-3-phosphate (abasic 2′-OMe



furanose)


Y44
inverted abasic DNA (2-hydroxymethyl-tetrahydrofurane-5-phosphate)


(Agn)
Adenosine-glycol nucleic acid (GNA)


(Cgn)
Cytidine-glycol nucleic acid (GNA)


(Ggn)
Guanosine-glycol nucleic acid (GNA)


(Tgn)
Thymidine-glycol nucleic acid (GNA) S-Isomer


P
Phosphate


VP
Vinyl-phosphonate


dA
2′-deoxyadenosine-3′-phosphate


dAs
2′-deoxyadenosine-3′-phosphorothioate


dC
2′-deoxycytidine-3′-phosphate


dCs
2′-deoxycytidine-3′-phosphorothioate


dG
2′-deoxyguanosine-3′-phosphate


dGs
2′-deoxyguanosine-3′-phosphorothioate


dT
2′-deoxythymidine-3′-phosphate


dTs
2′-deoxythymidine-3′-phosphorothioate


dU
2′-deoxyuridine


dUs
2′-deoxyuridine-3-phosphorothioate


(Ahd)
2′-O-hexadecyl-adenosine-3′-phosphate


(Ahds)
2′-O-hexadecyl-adenosine-3′-phosphorothioate


(Chd)
2′-O-hexadecyl-cytidine-3′-phosphate


(Chds)
2′-O-hexadecyl-cytidine-3′-phosphorothioate


(Ghd)
2′-O-hexadecyl-guanosine-3′-phosphate


(Ghds)
2′-O-hexadecyl-guanosine-3′-phosphorothioate


(Uhd)
2′-O-hexadecyl-uridine-3′-phosphate


(Uhds)
2′-O-hexadecyl-uridine-3′-phosphorothioate
















TABLE 3







Unmodified Sense and Antisense Strand Sequences of MAPT dsRNA Agents- Screen 1
















Sense
SEQ

Range in
Antisense
SEQ

Range


Duplex
Sequence
ID
Source and
NM_
Sequence
ID
Source and
in NM_


Name
5′ to 3′
NO:
Range
016841.4
5′ to 3′
NO:
Range
016841.4





AD-
AUAGUCUACAA
13
NM_016841.4_
 977-997
UUCAACUGGUUUG
 88
NM_016841.4_
 975-997


523799.1
ACCAGUUGAA

977-

UAGACUAUUU

975-






997_C21U_s



997_G1A_as






AD-
GUCUACAAACC
14
NM_016841.4_
 980-1000
UAGGUCAACUGGU
 89
NM_016841.4_
 978-1000


523802.1
AGUUGACCUA

980-

UUGUAGACUA

978-






1000_G21U_s



1000_C1A_as






AD-
GCAAAUAGUCU
15
NM_016841.4_
 973-993
UCUGGUUUGUAGA
 90
NM_016841.4_
 971-993


523795.1
ACAAACCAGA

973-993_s

CUAUUUGCAC

971-993_as






AD-
ACCAGUUGACC
16
NM_016841.4_
 988-1008
UCCUUGCUCAGGU
 91
NM_016841.4_
 986-1008


523810.1
UGAGCAAGGA

988-1008_s

CAACUGGUUU

986-1008_as






AD-
AACCAGUUGAC
17
NM_016841.4_
 987-1007
UCUUGCUCAGGUC
 92
NM_016841.4_
 985-1007


523809.1
CUGAGCAAGA

987-

AACUGGUUUG

985-






1007_G21U_s



1007_C1A_as






AD-
UGCAAAUAGUC
18
NM_016841.4_
 972-992
UUGGUUUGUAGAC
 93
NM_005910.5_
 970-992


1019331.1
UACAAACCAA

972-

UAUUUGCACA

1237-






992_G21U_s



1259_C1U_as






AD-
AGUCUACAAAC
19
NM_016841.4_
 979-999
UGGUCAACUGGUU
 94
NM_016841.4_
 977-999


523801.1
CAGUUGACCA

979-999_s

UGUAGACUAU

977-999_as






AD-
AGCAAGGUGAC
20
NM_016841.4_
1001-1021
UCACUUGGAGGUC
 95
NM_016841.4_
 999-1021


523823.1
CUCCAAGUGA

1001-1021_s

ACCUUGCUCA

999-1021_as






AD-
AAUAGUCUACA
21
NM_016841.4_
 976-996
UCAACUGGUUUGU
 96
NM_016841.4_
 974-996


523798.1
AACCAGUUGA

976-

AGACUAUUUG

974-






996_A21U_s



996_U1A_as






AD-
UGACCUGAGCA
22
NM_016841.4_
 994-1014
UAGGUCACCUUGC
 97
NM_016841.4_
 992-1014


523816.1
AGGUGACCUA

994-

UCAGGUCAAC

992-






1014_C21U_s



1014_G1A_as






AD-
GCAAGGUGACC
23
NM_016841.4_
1002-1022
UACACUUGGAGGU
 98
NM_016841.4_
1000-1022


523824.1
UCCAAGUGUA

1002-

CACCUUGCUC

1000-






1022_G21U_s



1022_C1A_as






AD-
UAGUCUACAAA
24
NM_016841.4_
 978-998
UGUCAACUGGUUU
 99
NM_016841.4_
 976-998


523800.1
CCAGUUGACA

978-

GUAGACUAUU

976-






998_C21U_s



998_G1A_as






AD-
CAAAUAGUCUA
25
NM_016841.4_
 974-994
UACUGGUUUGUAG
100
NM_016841.4_
 972-994


523796.1
CAAACCAGUA

974-994_s

ACUAUUUGCA

972-994_as






AD-
UCUACAAACCA
26
NM_016841.4_
 981-1001
UCAGGUCAACUGG
101
NM_016841.4_
 979-1001


523803.1
GUUGACCUGA

981-

UUUGUAGACU

979-






1001_A21U_s



1001_U1A_as






AD-
GACCUGAGCAA
27
NM_016841.4_
 995-1015
UGAGGUCACCUUG
102
NM_016841.4_
 993-1015


523817.1
GGUGACCUCA

995-

CUCAGGUCAA

993-






1015_C21U_s



1015_G1A_as






AD-
CAAGGUGACCU
28
NM_016841.4_
1003-1023
UCACACUUGGAGG
103
NM_016841.4_
1001-1023


523825.1
CCAAGUGUGA

1003-

UCACCUUGCU

1001-






1023_G21U_s



1023_C1A_as






AD-
CCAGUUGACCU
29
NM_016841.4_
 989-1009
UACCUUGCUCAGG
104
NM_016841.4_
 987-1009


523811.1
GAGCAAGGUA

989-

UCAACUGGUU

987-






1009_G21U_s



1009_C1A_as






AD-
GGCAACAUCCA
30
NM_016841.4_
1031-1051
UGGUUUAUGAUGG
105
NM_016841.4_
1029-1051


523854.1
UCAUAAACCA

1031-

AUGUUGCCUA

1029-






1051_A21U_s



1051_U1A_as






AD-
AAAUAGUCUAC
31
NM_016841.4_
 975-995
UAACUGGUUUGUA
106
NM_016841.4_
 973-995


523797.1
AAACCAGUUA

975-

GACUAUUUGC

973-






995_G21U_s



995_C1A_as






AD-
UACAAACCAGU
32
NM_016841.4_
 983-1003
UCUCAGGUCAACU
107
NM_016841.4_
 981-1003


523805.1
UGACCUGAGA

983-

GGUUUGUAGA

981-






1003_C21U_s



1003_G1A_as






AD-
GUUGACCUGAG
33
NM_016841.4_
 992-1012
UGUCACCUUGCUC
108
NM_016841.4_
 990-1012


523814.1
CAAGGUGACA

992-

AGGUCAACUG

990-






1012_C21U_s



1012_G1A_as






AD-
CUACAAACCAG
34
NM_016841.4_
 982-1002
UUCAGGUCAACUG
109
NM_016841.4_
 980-1002


523804.1
UUGACCUGAA

982-

GUUUGUAGAC

980-






1002_G21U_s



1002_C1A_as






AD-
GUGUGCAAAUA
35
NM_005910.5_
1236-1256
UUUUGUAGACUAU
110
NM_005910.5_
1234-1256


1019356.1
GUCUACAAAA

1236-

UUGCACACUG

1234-






1256_C21A_s



1256_G1U_as






AD-
GCUCAUUAGGC
36
NM_016841.4_
1023-1043
UAUGGAUGUUGCC
111
NM_016841.4_
1021-1043


523846.1
AACAUCCAUA

1023-

UAAUGAGCCA

1021-






1043_C21U_s



1043_G1A_as






AD-
AAACCAGUUGA
37
NM_016841.4_
 986-1006
UUUGCUCAGGUCA
112
NM_016841.4_
 984-1006


523808.1
CCUGAGCAAA

986-

ACUGGUUUGU

984-






1006_G21U_s



1006_C1A_as






AD-
CCAAGUGUGGC
38
NM_016841.4_
1014-1034
UGCCUAAUGAGCC
113
NM_016841.4_
1012-1034


523835.1
UCAUUAGGCA

1014-

ACACUUGGAG

1012-






1034_A21U_s



1034_U1A_as






AD-
UGUGCAAAUAG
39
NM_005910.5_
1237-1257
UGUUUGUAGACUA
114
NM_005910.5_
1235-1257


1019357.1
UCUACAAACA

1237-

UUUGCACACU

1235-






1257_C21A_s



1257_G1U_as






AD-
AGGCAACAUCC
40
NM_016841.4_
1030-1050
UGUUUAUGAUGGA
115
NM_016841.4_
1028-1050


523853.1
AUCAUAAACA

1030-

UGUUGCCUAA

1028-






1050_C21U_s



1050_G1A_as






AD-
CCUGAGCAAGG
41
NM_016841.4_
 997-1017
UUGGAGGUCACCU
116
NM_016841.4_
 995-1017


523819.1
UGACCUCCAA

997-

UGCUCAGGUC

995-






1017_A21U_s



1017_U1A_as






AD-
GACCUCCAAGU
42
NM_016841.4_
1009-1029
UAUGAGCCACACU
117
NM_016841.4_
1007-1029


523830.1
GUGGCUCAUA

1009-1029_s

UGGAGGUCAC

1007-1029_as






AD-
UCCAAGUGUGG
43
NM_016841.4_
1013-1033
UCCUAAUGAGCCA
118
NM_016841.4_
1011-1033


523834.1
CUCAUUAGGA

1013-

CACUUGGAGG

1011-1033






1033_C21U_s



1033_G1A_as






AD-
AUUAGGCAACA
44
NM_016841.4_
1027-1047
UUAUGAUGGAUGU
119
NM_016841.4_
1025-1047


523850.1
UCCAUCAUAA

1027-

UGCCUAAUGA

1025-






1047_A21U_s



1047_U1A_as






AD-
CUGAGCAAGGU
45
NM_016841.4_
 998-1018
UUUGGAGGUCACC
120
NM_016841.4_
 996-1018


523820.1
GACCUCCAAA

998-

UUGCUCAGGU

996-






1018_G21U_s



1018_C1A_as






AD-
CAUUAGGCAAC
46
NM_016841.4_
1026-1046
UAUGAUGGAUGUU
121
NM_016841.4_
1024-1046


523849.1
AUCCAUCAUA

1026-

GCCUAAUGAG

1024-






1046_A21U_s



1046_U1A_as






AD-
GGCUCAUUAGG
47
NM_016841.4_
1022-1042
UUGGAUGUUGCCU
122
NM_016841.4_
1020-1042


523845.1
CAACAUCCAA

1022-1042_s

AAUGAGCCAC

1020-1042_as






AD-
AGUGUGCAAAU
48
NM_
1065-1085
UUUGUAGACUAUU
123
NM_
1063-1085


393758.3
AGUCUACAAA

001038609.2_

UGCACACUGC

001038609.2_






1065-1085_



1063-1085_






G21U_s



C1A_as






AD-
UCAUUAGGCAA
49
NM_016841.4_
1025-1045
UUGAUGGAUGUUG
124
NM_016841.4_
1023-1045


523848.1
CAUCCAUCAA

1025-1045_s

CCUAAUGAGC

1023-1045_as






AD-
AGUGUGGCUCA
50
NM_016841.4_
1017-1037
UGUUGCCUAAUGA
125
NM_016841.4_
1015-1037


523840.1
UUAGGCAACA

1017-

GCCACACUUG

1015-






1037_A21U_s



1037_U1A_as






AD-
GGUGACCUCCA
51
NM_016841.4_
1006-1026
UAGCCACACUUGG
126
NM_016841.4_
1004-1026


523828.1
AGUGUGGCUA

1006-

AGGUCACCUU

1004-






1026_C21U_s



1026_G1A_as






AD-
GAGCAAGGUGA
52
NM_016841.4_
1000-1020
UACUUGGAGGUCA
127
NM_016841.4_
 998-1020


523822.1
CCUCCAAGUA

1000-

CCUUGCUCAG

998-






1020_G21U_s



1020_C1A_as






AD-
ACAAACCAGUU
53
NM_016841.4_
 984-1004
UGCUCAGGUCAAC
128
NM_016841.4_
 982-1004


523806.1
GACCUGAGCA

984-

UGGUUUGUAG

982-






1004_A21U_s



1004_U1A_as






AD-
ACCUCCAAGUG
54
NM_016841.4_
1010-1030
UAAUGAGCCACAC
129
NM_016841.4_
1008-1030


523831.1
UGGCUCAUUA

1010-

UUGGAGGUCA

1008-






1030_A21U_s



1030_U1A_as






AD-
CAGUGUGCAAA
55
NM_
1064-1084
UUGUAGACUAUUU
130
NM_
1062-1084


393757.1
UAGUCUACAA

001038609.2_

GCACACUGCC

001038609.2_






1064-1084_s



1062-1084_as






AD-
AAGUGUGGCUC
56
NM_016841.4_
1016-1036
UUUGCCUAAUGAG
131
NM_016841.4_
1014-1036


523839.1
AUUAGGCAAA

1016-

CCACACUUGG

1014-






1036_C21U_s



1036_G1A_as






AD-
UUGACCUGAGC
57
NM_016841.4_
 993-1013
UGGUCACCUUGCU
132
NM_016841.4_
 991-1013


523815.1
AAGGUGACCA

993-1013_s

CAGGUCAACU

991-1013_as






AD-
CAACAUCCAUC
58
NM_016841.4_
1033-1053
UCUGGUUUAUGAU
133
NM_016841.4_
1031-1053


523856.1
AUAAACCAGA

1033-

GGAUGUUGCC

1031-






1053_G21U_s



1053_C1A_as






AD-
GUGCAAAUAGU
59
NM_016841.4_
 971-991
UGGUUUGUAGACU
134
NM_005910.5_
 969-971


1019330.1
CUACAAACCA

971-

AUUUGCACAC

1236-1258_as






991_A21U_s










AD-
UGACCUCCAAG
60
NM_016841.4_
1008-1028
UUGAGCCACACUU
135
NM_016841.4_
1006-1028


523829.1
UGUGGCUCAA

1008-1028_s

GGAGGUCACC

1006-1028_as






AD-
GCAACAUCCAU
61
NM_016841.4_
1032-1052
UUGGUUUAUGAUG
136
NM_016841.4_
1030-1052


523855.1
CAUAAACCAA

1032-

GAUGUUGCCU

1030-






1052_G21U_s



1052_C1A_as






AD-
CAAGUGUGGCU
62
NM_016841.4_
1015-1035
UUGCCUAAUGAGC
137
NM_016841.4_
1013-1035


523836.1
CAUUAGGCAA

1015-

CACACUUGGA

1013-






1035_A21U_s



1035_U1A_as






AD-
GCAGUGUGCAA
63
NM_
1063-1083
UGUAGACUAUUUG
138
NM_005910.5_
1061-1083


1019329.1
AUAGUCUACA

001038609.2_

CACACUGCCG

1231-1253_as






1063-1083_s










AD-
GUGGCUCAUUA
64
NM_016841.4_
1020-1040
UGAUGUUGCCUAA
139
NM_016841.4_
1018-1040


523843.1
GGCAACAUCA

1020-

UGAGCCACAC

1018-






1040_C21U_s



1040_G1A_as






AD-
CAAACCAGUUG
65
NM_016841.4_
 985-1005
UUGCUCAGGUCAA
140
NM_016841.4_
 983-1005


523807.1
ACCUGAGCAA

985-

CUGGUUUGUA

983-






1005_A21U_s



1005_U1A_as






AD-
UGAGCAAGGUG
66
NM_016841.4_
 999-1019
UCUUGGAGGUCAC
141
NM_016841.4_
 997-1019


523821.1
ACCUCCAAGA

999-1019_s

CUUGCUCAGG

997-1019_as






AD-
AAGGUGACCUC
67
NM_016841.4_
1004-1024
UCCACACUUGGAG
142
NM_016841.4_
1002-1024


523826.1
CAAGUGUGGA

1004-

GUCACCUUGC

1002-






1024_C21U_s



1024_G1A_as






AD-
CUCAUUAGGCA
68
NM_016841.4_
1024-1044
UGAUGGAUGUUGC
143
NM_016841.4_
1022-1044


523847.1
ACAUCCAUCA

1024-

CUAAUGAGCC

1022-






1044_A21U_s



1044_U1A_as






AD-
GUGACCUCCAA
69
NM_
1104-1124
UGAGCCACACUUG
144
NM_016841.4_
1102-1124


523786.1
GUGUGGCUCA

001038609.2_

GAGGUCACCU

1005-






1104-1124_



1027_U1A_as






G21U_s










AD-
CAGUUGACCUG
70
NM_016841.4_
 990-1010
UCACCUUGCUCAG
145
NM_016841.4_
 988-1010


523812.1
AGCAAGGUGA

990-

GUCAACUGGU

988-






1010_A21U_s



1010_U1A_as






AD-
AGGUGACCUCC
71
NM_016841.4_
1005-1025
UGCCACACUUGGA
146
NM_016841.4_
1003-1025


523827.1
AAGUGUGGCA

1005-1025_s

GGUCACCUUG

1003-1025_as






AD-
UGGCUCAUUAG
72
NM_016841.4_
1021-1041
UGGAUGUUGCCUA
147
NM_016841.4_
1019-1041


523844.1
GCAACAUCCA

1021-

AUGAGCCACA

1019-






1041_A21U_s



1041_U1A_as






AD-
UUAGGCAACAU
73
NM_016841.4_
1028-1048
UUUAUGAUGGAUG
148
NM_016841.4_
1026-1048


523851.1
CCAUCAUAAA

1028-

UUGCCUAAUG

1026-






1048_A21U_s



1048_U1A_as






AD-
ACCUGAGCAAG
74
NM_016841.4_
 996-1016
UGGAGGUCACCUU
149
NM_016841.4_
 994-1016


523818.1
GUGACCUCCA

996-

GCUCAGGUCA

994-






1016_A21U_s



1016_U1A_as






AD-
CCUCCAAGUGU
75
NM_016841.4_
1011-1031
UUAAUGAGCCACA
150
NM_016841.4_
1009-1031


523832.1
GGCUCAUUAA

1011-

CUUGGAGGUC

1009-






1031_G21U_s



1031_C1A_as






AD-
AGUUGACCUGA
76
NM_016841.4_
 991-1011
UUCACCUUGCUCA
151
NM_016841.4_
 989-1011


523813.1
GCAAGGUGAA

991-

GGUCAACUGG

989-






1011_C21U_s



1011_G1A_as






AD-
GUGUGGCUCAU
77
NM_016841.4_
1018-1038
UUGUUGCCUAAUG
152
NM_016841.4_
1016-1038


523841.1
UAGGCAACAA

1018-1038_s

AGCCACACUU

1016-1038_as






AD-
AGGCGGCAGUG
78
NM_005910.5_
1228-1248
UCUAUUUGCACAC
153
NM_005910.5_
1226-1248


1019352.1
UGCAAAUAGA

1228-

UGCCGCCUCC

1226-






1248_U21A_s



1248_A1U_as






AD-
GCGGCAGUGUG
79
NM_005910.5_
1230-1250
UGACUAUUUGCAC
154
NM_005910.5_
1228-1250


1019354.1
CAAAUAGUCA

1230-

ACUGCCGCCU

1228-






1250_U21A_s



1250_A1U_as






AD-
UAGGCAACAUC
80
NM_016841.4_
1029-1049
UUUUAUGAUGGAU
155
NM_016841.4_
1027-1049


523852.1
CAUCAUAAAA

1029-

GUUGCCUAAU

1027-






1049_C21U_s



1049_G1A_as






AD-
UGUGGCUCAUU
81
NM_016841.4_
1019-1039
UAUGUUGCCUAAU
156
NM_016841.4_
1017-1039


523842.1
AGGCAACAUA

1019-

GAGCCACACU

1017-






1039_C21U_s



1039_G1A_as






AD-
CUCCAAGUGUG
82
NM_016841.4_
1012-1032
UCUAAUGAGCCAC
157
NM_016841.4_
1010-1032


523833.1
GCUCAUUAGA

1012-

ACUUGGAGGU

1010-






1032_G21U_s



1032_C1A_as






AD-
GGCAGUGUGCA
83
NM_00103860
1062-1082
UUAGACUAUUUGC
158
NM_005910.5_
1060-1082


1019328.1
AAUAGUCUAA

9.2_1062-

ACACUGCCGC

1230-






1082_C21U_s



1252_G1U_as






AD-
CGGCAGUGUGC
84
NM_005910.5_
1231-1251
UAGACUAUUUGCA
159
NM_005910.5_
1229-1251


1019355.1
AAAUAGUCUA

1231-1251_s

CACUGCCGCC

1229-1251_as






AD-
GGCGGCAGUGU
85
NM_005910.5_
1229-1249
UACUAUUUGCACA
160
NM_005910.5_
1227-1249


1019353.1
GCAAAUAGUA

1229-

CUGCCGCCUC

1227-






1249_C21A_s



1249_G1U_as






AD-
GGAGGCGGCAG
86
NM_005910.5_
1226-1246
UAUUUGCACACUG
161
NM_005910.5_
1224-1246


1019350.1
UGUGCAAAUA

1226-1246_s

CCGCCUCCCG

1224-1246_as






AD-
GAGGCGGCAGU
87
NM_005910.5_
1227-1247
UUAUUUGCACACU
162
NM_005910.5_
1225-1247


1019351.1
GUGCAAAUAA

1227-

GCCGCCUCCC

1225-






1247_G21A_s



1247_C1U_as
















TABLE 4







Unmodified Sense and Antisense Strand Sequences of MAPT dsRNA Agents- Screen 2
















Sense
SEQ

Range in
Antisense
SEQ
Source
Range in


Duplex
Sequence
ID
Source and
NM_
Sequence
ID
and
NM_


Name
5′ to 3′
NO:
Range
016841.4
5′ to 3′
NO:
Range
016841.4





AD-
AGCUCGCAU
388
NM_016841.4_
 520-540
UUUUUACUGAC
476
NM_016841.4_
 518-540


535094.1
GGUCAGUA

520-540_

CAUGCGAGCUU

518-540_




AAAA

G21U_s

G

C1A_as






AD-
GCUCGCAUG
389
NM_016841.4_
 521-541
UCUUUUACUGA
477
NM_016841.4_
 519-541


535095.1
GUCAGUAA

521-541_

CCAUGCGAGCUU

519-541_




AAGA

C21U_s



G1A_as






AD-
UAUUGUGU
390
NM_016841.4_
5464-5484
UAUUUGTUAAA
478
NM_016841.4_
5462-5484


538647.1
GUUUUAAC

5464-

ACACACAAUACA

5462-




AAAUA

5484_G21U_s



5484_C1A_as






AD-
CAGCAACAA
391
NM_016841.4_
1813-1833
UUUUCAAAUCC
479
NM_016841.4_
1811-1833


535922.1
AGGAUUUG

1813-

UUUGUUGCUGC

1811-




AAAA

1833_C21U_s

C

1833_G1A_as






AD-
GCUAACCAG
392
NM_016841.4_
2378-2398
UUACAAAGAGA
480
NM_016841.4_
2376-2398


536317.1
UUCUCUUUG

2378-

ACUGGUUAGCCC

2376-




UAA

2398_A21U_s



2398_U1A_as






AD-
UAGUUGGA
393
NM_016841.4_
3242-3262
UUAAACAGACA
481
NM_016841.4_
3240-3262


536911.1
UUUGUCUG

3242-3262_s

AAUCCAACUACA

3240-3262_as




UUUAA












AD-
GUCUGUGA
394
NM_016841.4_
5442-5462
UCUAUATAGACA
482
NM_016841.4_
5440-5462


538626.1
AUGUCUAU

5442-5462_s

UUCACAGACAG

5440-5462_as




AUAGA












AD-
CAGGCAAUU
395
NM_016841.4_
1665-1685
UGAAUCAAAAG
483
NM_016841.4_
1663-1685


535864.1
CCUUUUGAU

1665-1685_s

GAAUUGCCUGA

1663-1685_as




UCA



G








AD-
CAACAAAGG
396
NM_016841.4_
1816-1836
UAAGUUTCAAAU
484
NM_016841.4_
1814-1836


535925.1
AUUUGAAA

1816-

CCUUUGUUGCU

1814-




CUUA

1836_G21U_s



1836_C1A_as






AD-
GCUGACUCA
397
NM_016841.4_
4667-4687
UUAUUGAUAAA
485
NM_016841.4_
4665-4687


538012.1
CUUUAUCAA

4667-

GUGAGUCAGCA

4665-




UAA

4687_G21U_s

G

4687_C1A_as






AD-
GCAGCUGAA
398
NM_016841.4_
3183-3203
UCUAUGTAUAUG
486
NM_016841.4_
3181-3203


536872.1
CAUAUACAU

3183-

UUCAGCUGCUC

3181-




AGA

3203_A21U_s



3203_U1A_as






AD-
AGGACGCAU
399
NM_
3422-3442
UUUUCAAGAUA
487
NM_016841.4_
3420-3442


536954.1
GUAUCUUG

001038609.2_

CAUGCGUCCUUU

3314-3336_as




AAAA

3422-3442_s










AD-
UAUCUUGA
400
NM_016841.4_
3326-3346
UUUUACAAGCA
488
NM_016841.4_
3324-3346


536964.1
AAUGCUUG

326-

UUUCAAGAUAC

3324-




UAAAA

33346_G21U_s

A

3346_C1A_as






AD-
CUAACCAGU
401
NM_016841.4_
2379-2399
UUUACAAAGAG
489
NM_016841.4_
2377-2399


536318.1
UCUCUUUGU

2379-

AACUGGUUAGC

2377-




AAA

2399_G21U_s

C

2399_C1A_as






AD-
CUUGUAAA
402
NM_016841.4_
3338-3358
UGUUAGAAACC
490
NM_016841.4_
3336-3358


536976.1
GAGGUUUC

3338-

UCUUUACAAGC

3336-




UAACA

3358_C21U_s

A

3358_G1A_as






AD-
GUGAAUGU
403
NM_016841.4_
5446-5466
UUACACTAUAUA
491
NM_016841.4_
5444-5466


538630.1
CUAUAUAG

5446-5466_s

GACAUUCACAG

5444-5466_as




UGUAA












AD-
CUGUCUGUG
404
NM_016841.4_
5440-5460
UAUAUAGACAU
492
NM_016841.4_
5438-5460


538624.1
AAUGUCUA

5440-

UCACAGACAGA

5438-




UAUA

5460_A21U_s

A

5460_U1A_as






AD-
AGGGACAU
405
NM_016841.4_
5410-5430
UUAAGATGAUU
493
NM_016841.4_
5408-5430


538594.1
GAAAUCAUC

5410-

UCAUGUCCCUCC

5408-




UUAA

5430_G21U_s



5430_C1A_as






AD-
UGGAUUUG
406
NM_016841.4_
3246-3266
UAGCAUAAACA
494
NM_016841.4_
3244-3266


536915.1
UCUGUUUA

3246-3266_s

GACAAAUCCAAC

3244-3266_as




UGCUA












AD-
GAGCAGCUG
407
NM_016841.4_
3181-3201
UAUGUATAUGU
495
NM_016841.4_
3179-3201


536870.1
AACAUAUAC

3181-

UCAGCUGCUCCA

3179-




AUA

3201_A21U_s



3201_U1A_as






AD-
ACAGAAACC
408
NM_016841.4_
2297-2317
UCAAUAAAACA
496
NM_016841.4_
2295-2317


536236.1
CUGUUUUA

2297-

GGGUUUCUGUG

2295-




UUGA

2317_A21U_s

G

2317_U1A_as






AD-
UAACCAGUU
409
NM_016841.4_
2380-2400
UCUUACAAAGA
497
NM_016841.4_
2378-2400


536319.1
CUCUUUGUA

2380-

GAACUGGUUAG

2378-




AGA

2400_G21U_s

C

2400_C1A_as






AD-
UCUUGAAA
410
NM_016841.4_
3328-3348
UUCUUUACAAG
498
NM_016841.4_
3326-3348


536966.1
UGCUUGUA

3328-

CAUUUCAAGAU

3326-




AAGAA

3348_G21U_s

A

3348_C1A_as






AD-
AGUGUAUU
411
NM_016841.4_
5460-5480
UGUUAAAACAC
499
NM_016841.4_
5458-5480


538643.1
GUGUGUUU

5460-

ACAAUACACUA

5458-




UAACA

5480_A21U_s

U

5480_U1A_as






AD-
CAGCUGAAC
412
NM_016841.4_
3184-3204
UUCUAUGUAUA
500
NM_016841.4_
3182-3204


536873.1
AUAUACAU

3184-3204_s

UGUUCAGCUGC

3182-3204_as




AGAA



U








AD-
AAAGGACGC
413
NM_
3420-3440
UUCAAGAUACA
501
NM_016841.4_
3418-3440


536952.1
AUGUAUCU

001038609.2_

UGCGUCCUUUU

3312-




UGAA

3420-3440_s

U

3334_U1A_as






AD-
GCAUGUAUC
414
NM_016841.4_
3321-3341
UAAGCATUUCAA
502
NM_016841.4_
3319-3341


536959.1
UUGAAAUG

3321-

GAUACAUGCGU

3319-




CUUA

3341_G21U_s



3341_C1A_as






AD-
ACGCUGGCU
415
NM_016841.4_
4529-4549
UUUAAGAUCAC
503
NM_016841.4_
4527-4549


537921.1
UGUGAUCU

4529-

AAGCCAGCGUGC

4527-




UAAA

4549_A21U_s



4549_U1A_as






AD-
UUUUAACA
416
NM_016841.4_
5473-5493
UGUGUAAAUCA
504
NM_016841.4_
5471-5493


538652.1
AAUGAUUU

5473-5493_s

UUUGUUAAAAC

5471-5493_as




ACACA



A








AD-
UUGUGUGU
417
NM_016841.4_
5466-5486
UUCAUUTGUUAA
505
NM_016841.4_
5464-5486


538649.1
UUUAACAA

5466-5486_s

AACACACAAUA

5464-5486_as




AUGAA












AD-
UCUGUCUGU
418
NM_016841.4_
5439-5459
UUAUAGACAUU
506
NM_016841.4_
5437-5459


538623.1
GAAUGUCU

5439-5459_s

CACAGACAGAA

5437-5459_as




AUAA



A








AD-
GCAAGUCCC
419
NM_016841.4_
5369-5389
UGAAGAAAUCA
507
NM_016841.4_
5367-5389


538573.1
AUGAUUUC

5369-

UGGGACUUGCA

5367-




UUCA

5389_G21U_s

A

5389_C1A_as






AD-
CACGCUGGC
420
NM_016841.4_
4528-4548
UUAAGATCACAA
508
NM_016841.4_
4526-4548


537920.1
UUGUGAUC

4528-

GCCAGCGUGCC

4526-




UUAA

4548_A21U_s



4548_U1A_as






AD-
UUCACCAGA
421
NM_
3338-3358
UAUCAUAGUCA
509
NM_016841.4_
3336-3358


536939.1
GUGACUAU

001038609.2_

CUCUGGUGAAU

3268-




GAUA

3338-3358_s

C

3290_U1A_as






AD-
GACUCACUU
422
NM_016841.4_
4670-4690
UAACUATUGAUA
510
NM_016841.4_
4668-4690


538015.1
UAUCAAUA

4670-

AAGUGAGUCAG

6468-




GUUA

4690_C21U_s



4690_G1A_as






AD-
AAGGACGCA
423
NM_
3421-3441
UUUCAAGAUAC
511
NM_016841.4_
3419-3441


536953.1
UGUAUCUU

001038609.2_

AUGCGUCCUUU

3313-




GAAA

3421-3441_s

U

3335_U1A_as






AD-
CAGAAACCC
424
NM_016841.4_
2298-2318
UUCAAUAAAAC
512
NM_016841.4_
2296-2318


536237.1
UGUUUUAU

2298-

AGGGUUUCUGU

2296-




UGAA

2318_G21U_s

G

2318_C1A_as






AD-
CUGUGAAU
425
NM_016841.4_
5444-5464
UCACUATAUAGA
513
NM_016841.4_
5442-5464


538628.1
GUCUAUAU

5444-5464_s

CAUUCACAGAC

5442-5464_as




AGUGA












AD-
GAAUGUCU
426
NM_016841.4_
5448-5468
UAAUACACUAU
514
NM_016841.4_
5446-5468


538632.1
AUAUAGUG

5448-

AUAGACAUUCA

5446-




UAUUA

5468_G21U_s

C

5468_C1A_as






AD-
GCUUGUAA
427
NM_016841.4_
3337-3357
UUUAGAAACCU
515
NM_016841.4_
3335-3357


536975.1
AGAGGUUU

3337-

CUUUACAAGCA

3335-




CUAAA

3357_C21U_s

U

3357_G1A_as






AD-
CAUGAAAUC
428
NM_016841.4_
5415-5435
UUAAGCTAAGAU
516
NM_016841.4_
5413-5435


538599.1
AUCUUAGCU

5415-

GAUUUCAUGUC

5413-




UAA

5435_G21U_s



5435_C1A_as






AD-
UGUAAAGA
429
NM_016841.4_
3340-3360
UGGGUUAGAAA
517
NM_016841.4_
3338-3360


536978.1
GGUUUCUA

3340-

CCUCUUUACAAG

3338-




ACCCA

3360_A21U_s



3360_U1A_as






AD-
GACGCAUGU
430
NM_016841.4_
3318-3338
UCAUUUCAAGA
518
NM_016841.4_
3316-3338


536956.1
AUCUUGAA

3318-

UACAUGCGUCCU

3316-




AUGA

3338_C21U_s



3338_G1A_as






AD-
UUGCAAGUC
431
NM_
5207-5227
UAGAAATCAUGG
519
NM_016841.4_
5205-5227


538571.1
CCAUGAUUU

001038609.2_

GACUUGCAAGU

5365-5387_as




CUA

5207-5227_s










AD-
GCAGCAACA
432
NM_016841.4_
1812-1832
UUUCAAAUCCU
520
NM_016841.4_
1810-1832


535921.1
AAGGAUUU

1812-

UUGUUGCUGCC

1810-




GAAA

1832_A21U_s

A

1832_U1A_as






AD-
GAGGGACA
433
NM_016841.4_
5409-5429
UAAGAUGAUUU
521
NM_016841.4_
5407-5429


538593.1
UGAAAUCA

5409-

CAUGUCCCUCCC

5407-




UCUUA

5429_A21U_s



5429_U1A_as






AD-
GCUAGAUA
434
NM_016841.4_
4629-4649
UUACAGTAUAUC
522
NM_016841.4_
4627-4649


537974.1
GGAUAUAC

4629-4649_s

CUAUCUAGCCC

6427-4649_as




UGUAA












AD-
GGCUAGAU
435
NM_016841.4_
4628-4648
UACAGUAUAUC
523
NM_016841.4_
4626-4648


537973.1
AGGAUAUA

4628-

CUAUCUAGCCCA

4626-




CUGUA

4648_A21U_s



4648_U1A_as






AD-
AAGAGGUU
436
NM_016841.4_
3344-3364
UGGGUGGGUUA
524
NM_016841.4_
3342-3364


536982.1
UCUAACCCA

3344-3364_s

GAAACCUCUUU

3342-3364_as




CCCA



A








AD-
GUGGCAGCA
437
NM_016841.4_
1809-1829
UAAAUCCUUUG
525
NM_016841.4_
1807-1829


535918.1
ACAAAGGA

1809-

UUGCUGCCACUG

1807-




UUUA

1829_G21U_s



1829_C1A_as






AD-
UCUGUGAA
438
NM_016841.4_
5443-5463
UACUAUAUAGA
526
NM_016841.4_
5441-5463


538627.1
UGUCUAUA

5443-

CAUUCACAGACA

5441-




UAGUA

5463_G21U_s



5463_C1A_as






AD-
GUUGGAUU
439
NM_016841.4_
3244-3264
UCAUAAACAGA
527
NM_016841.4_
3242-3264


536913.1
UGUCUGUU

3244-

CAAAUCCAACUA

3242-




UAUGA

3264_C21U_s



3264_G1A_as






AD-
GGAGCAGCU
440
NM_016841.4_
3180-3200
UUGUAUAUGUU
528
NM_016841.4_
3178-3200


536869.1
GAACAUAU

3180-3200_s

CAGCUGCUCCAG

3178-3200_as




ACAA












AD-
AUCUUGAA
441
NM_016841.4_
3327-3347
UCUUUACAAGC
529
NM_016841.4_
3325-3347


536965.1
AUGCUUGU

3327-

AUUUCAAGAUA

3325-




AAAGA

3347_A21U_s

C

3347_U1A_as






AD-
AAAAGGCAC
442
NM_016841.4_
4522-4542
UCACAAGCCAGC
530
NM_016841.4_
4520-4542


537914.1
GCUGGCUUG

4522-

GUGCCUUUUCA

4520-




UGA

4542_A21U_s



4542_U1A_as






AD-
CCAUACUGA
443
NM_016841.4_
2667-2687
UUAAUUTCACCC
531
NM_016841.4_
2665-2687


536504.1
GGGUGAAA

2667-

UCAGUAUGGAG

2665-




UUAA

2687_A21U_s



2687_U1A_as






AD-
CUGACUCAC
444
NM_016841.4_
4668-4688
UCUAUUGAUAA
532
NM_016841.4_
4666-4688


538013.1
UUUAUCAA

4668-4688_s

AGUGAGUCAGC

4666-4688_as




UAGA



A








AD-
UUCUGGUU
445
NM_016841.4_
4083-4103
UUAACUGUACCC
533
NM_016841.4_
4081-4103


537579.1
UGGGUACA

4083-

AAACCAGAAGU

0481-




GUUAA

4103_A21U_s



4103_U1A_as






AD-
UGUGAAUG
446
NM_016841.4_
5445-5465
UACACUAUAUA
534
NM_016841.4_
5443-5465


538629.1
UCUAUAUA

5445-

GACAUUCACAG

5443-




GUGUA

5465_A21U_s

A

5465_U1A_as






AD-
UCCACAGAA
447
NM_016841.4_
2294-2314
UUAAAACAGGG
535
NM_016841.4_
2292-2314


536233.1
ACCCUGUUU

2294-2314_s

UUUCUGUGGAG

2292-2314_as




UAA



C








AD-
GAUUUCAAC
448
NM_016841.4_
4842-4862
UUAGCAAAUGU
536
NM_016841.4_
4840-4862


538141.1
CACAUUUGC

8442-

GGUUGAAAUCA

4840-




UAA

4862_G21U_s

U

4862_C1A_as






AD-
UUCUGUCUG
449
NM_016841.4_
5438-5458
UAUAGACAUUC
537
NM_016841.4_
5436-5458


538622.1
UGAAUGUC

5438-

ACAGACAGAAA

5436-




UAUA

5458_A21U_s

G

5458_U1A_as






AD-
UCUGGUUU
450
NM_016841.4_
4084-4104
UUUAACTGUACC
538
NM_016841.4_
4082-4104


537580.1
GGGUACAG

4084-

CAAACCAGAAG

4082-




UUAAA

4104_A21U_s



4104_U1A_as






AD-
CAUACUGAG
451
NM_016841.4_
2668-2688
UUUAAUTUCACC
539
NM_016841.4_
2666-2688


536505.1
GGUGAAAU

2668-

CUCAGUAUGGA

2666-




UAAA

2688_G21U_s



2688_C1A_as






AD-
GGCACGCUG
452
NM_016841.4_
4526-4546
UAGAUCACAAG
540
NM_016841.4_
4524-4546


537918.1
GCUUGUGA

4526-4546_s

CCAGCGUGCCUU

4524-4546_as




UCUA












AD-
GAAAAGGC
453
NM_016841.4_
4521-4541
UACAAGCCAGCG
541
NM_016841.4_
4519-4541


537913.1
ACGCUGGCU

5421-

UGCCUUUUCAA

4519-




UGUA

4541_G21U_s



4541_C1A_as






AD-
UAGUGUAU
454
NM_016841.4_
5459-5479
UUUAAAACACA
542
NM_016841.4_
5457-5479


538642.1
UGUGUGUU

5459-

CAAUACACUAU

5457-




UUAAA

5479_C21U_s

A

5479_G1A_as






AD-
UGAACAUA
455
NM_016841.4_
3188-3208
UAACAUCUAUG
543
NM_016841.4_
3186-3208


536877.1
UACAUAGA

3188-

UAUAUGUUCAG

3186-




UGUUA

3208_G21U_s

C

3208_C1A_as






AD-
UGUGUGUU
456
NM_016841.4_
5467-5487
UAUCAUTUGUUA
544
NM_016841.4_
5465-5487


538650.1
UUAACAAA

5467-5487_s

AAACACACAAU

5465-5487_as




UGAUA












AD-
UGUCUGUG
457
NM_016841.4_
5441-5461
UUAUAUAGACA
545
NM_016841.4_
5439-5461


538625.1
AAUGUCUA

5441-

UUCACAGACAG

5439-




UAUAA

5461_G21U_s

A

5461_C1A_as






AD-
UUGAAAAG
458
NM_016841.4_
4519-4539
UAAGCCAGCGU
546
NM_016841.4_
4517-4539


537911.1
GCACGCUGG

4519-

GCCUUUUCAAU

4517-




CUUA

4539_G21U_s

U

4539_C1A_as






AD-
UGACUCACU
459
NM_016841.4_
4669-4689
UACUAUTGAUAA
547
NM_016841.4_
4667-4689


538014.1
UUAUCAAU

4669-4689_s

AGUGAGUCAGC

4667-4689_as




AGUA












AD-
AUGUCUAU
460
NM_016841.4_
5450-5470
UACAAUACACU
548
NM_016841.4_
5448-5470


538634.1
AUAGUGUA

5450-

AUAUAGACAUU

5448-




UUGUA

5470_G21U_s

c

5470_C1A_as






AD-
GUAAAGAG
461
NM_016841.4_
3341-3361
UUGGGUTAGAA
549
NM_016841.4_
3339-3361


536979.1
GUUUCUAAC

3341-

ACCUCUUUACAA

3339-




CCAA

3361_C21U_s



3361_G1A_as






AD-
AUAGUGUA
462
NM_016841.4_
5458-5478
UUAAAACACAC
550
NM_016841.4_
5456-5478


538641.1
UUGUGUGU

5458-

AAUACACUAUA

5456-




UUUAA

5478_A21U_s

U

5478_U1A_as






AD-
UGAAAAGG
463
NM_016841.4_
4520-4540
UCAAGCCAGCGU
551
NM_016841.4_
4518-4540


537912.1
CACGCUGGC

4520-4540_s

GCCUUUUCAAU

4518-4540_as




UUGA












AD-
CUCAUUACU
464
NM_016841.4_
4329-4349
UAAACUGUUGG
552
NM_016841.4_
4327-4349


537761.1
GCCAACAGU

4329-

CAGUAAUGAGG

4327-




UUA

4349_C21U_s

G

4349_G1A_as






AD-
AGGCACGCU
465
NM_016841.4_
4525-4545
UGAUCACAAGCC
553
NM_016841.4_
4523-4545


537917.1
GGCUUGUG

4525-4545_s

AGCGUGCCUUU

4523-4545_as




AUCA












AD-
AAGGCACGC
466
NM_016841.4_
4524-4544
UAUCACAAGCCA
554
NM_016841.4_
4522-4544


537916.1
UGGCUUGU

4524-

GCGUGCCUUUU

4522-




GAUA

4544_C21U_s



4544_G1A_as






AD-
GAUCACCUG
467
NM_016841.4_
5208-5228
UGAUGGGACAC
555
NM_016841.4_
5206-5228


538432.1
CGUGUCCCA

5208-5228_s

GCAGGUGAUCA

5206-5228_as




UCA



C








AD-
CUCACCUCC
468
NM_016841.4_
5305-5325
UUAAGUCUAUU
556
NM_016841.4_
5303-5325


538529.1
UAAUAGAC

3505-

AGGAGGUGAGG

5303-




UUAA

5325_G21U_s

C

5325_C1A_as






AD-
CAGCCUAAG
469
NM_016841.4_
4475-4495
UUAAACCAUGA
557
NM_016841.4_
4473-4495


537867.1
AUCAUGGU

4475-

UCUUAGGCUGG

4473-




UUAA

4495_G21U_s

C

4495_C1A_as






AD-
UCCAUACUG
470
NM_016841.4_
2666-2686
UAAUUUCACCCU
558
NM_016841.4_
2664-2686


536503.1
AGGGUGAA

2666-

CAGUAUGGAGU

2664-




AUUA

2686_A21U_s



2686_U1A_as






AD-
UGGUUUGG
471
NM_016841.4_
4086-4106
UCUUUAACUGU
559
NM_016841.4_
4084-4106


537582.1
GUACAGUU

4086-

ACCCAAACCAGA

4084-




AAAGA

4106_G21U_s



4106_C1A_as






AD-
AAAGGCACG
472
NM_016841.4_
4523-4543
UUCACAAGCCAG
560
NM_016841.4_
4521-4543


537915.1
CUGGCUUGU

4523-4543_s

CGUGCCUUUUC

4521-4543_as




GAA












AD-
GCACGCUGG
473
NM_016841.4_
4527-4547
UAAGAUCACAA
561
NM_016841.4_
4525-4547


537919.1
CUUGUGAUC

4527-

GCCAGCGUGCCU

4525-




UUA

4547_A21U_s



4547_U1A_as






AD-
CUGGUUUG
474
NM_016841.4_
4085-4105
UUUUAACUGUA
562
NM_016841.4_
4083-4105


537581.1
GGUACAGU

4085-

CCCAAACCAGAA

4083-




UAAAA

4105_G21U_s



4105_C1A_as






AD-
UUCUCUUCA
475
NM_016841.4_
5259-5279
UCUUUUCAAAG
563
NM_016841.4_
5257-5279


538483.1
GCUUUGAA

5259-

CUGAAGAGAAA

5257-




AAGA

5279_G21U_s

U

5279_C1A_as
















TABLE 5







Unmodified Sense and Antisense Strand Sequences of MAPT dsRNA Agents-Screen 3



















Range



Range



Sense
SEQ

in
Antisense
SEQ

in


Duplex
Sequence
ID
Source and
NM_
Sequence
ID
Source
NM_


Name
5′ to 3′
NO:
Range
016841.4
5′ to 3′
NO:
and Range
016841.4


















AD-
AGCUCGCAUGG
828
NM_016841.4_
 520-540
UUUUUACUGACC
921
NM_016841.4_
 518-540


523561.1
UCAGUAAAAA

520-

AUGCGAGCUUG

518-540_






540_G21U_s



C1A_as






AD-
CGCAUGGUCAG
829
NM_016841.4_
 524-544
UUUGCUUUUACU
922
NM_016841.4_
 522-544


523565.1
UAAAAGCAAA

524-

GACCAUGCGAG

522-544_






544_A21U_s



U1A_as






AD-
GCUCGCAUGGU
830
NM_016841.4_
 521-541
UCUUUUACUGAC
923
NM_016841.4_
 519-541


523562.1
CAGUAAAAGA

521-

CAUGCGAGCUU

519-541_






541_C21U_s



G1A_as






AD-
UUGCAAGUCCC
831
NM_
5207-5227
UAGAAAUCAUGG
924
NM_016841.4_
5205-5227


526914.1
AUGAUUUCUA

001038609.2_

GACUUGCAAGU

5365-






5207-5227_s



5387_as






AD-
GACUCACUUUA
832
NM_016841.4_
4670-4690
UAACUAUUGAUA
925
NM_016841.4_
4668-4690


526394.1
UCAAUAGUUA

4670-

AAGUGAGUCAG

4668-4690_






4690_C21U_s



G1A_as






AD-
AAAGGACGCAU
833
NM_
3420-3440
UUCAAGAUACAU
926
NM_
3418-3440


395452.1
GUAUCUUGAA

001038609.2_

GCGUCCUUUUU

001038609.2_






3420-3440_s



3418-3440_as






AD-
UCUUGAAAUGC
834
NM_016841.4_
3328-3348
UUCUUUACAAGC
927
NM_016841.4_
3326-3348


525343.1
UUGUAAAGAA

3328-

AUUUCAAGAUA

3326-3348_






3348_G21U_s



C1A_as






AD-
CAGGCAAUUCC
835
NM_016841.4_
1665-1685
UGAAUCAAAAGG
928
NM_016841.4_
1663-1685


524274.1
UUUUGAUUCA

1665-1685_s

AAUUGCCUGAG

1663-










1685_as






AD-
GAGGGACAUGA
836
NM_016841.4_
5409-5429
UAAGAUGAUUUC
929
NM_016841.4_
5407-5429


526956.1
AAUCAUCUUA

5409-

AUGUCCCUCCC

5407-5429_






5429_A21U_s



U1A_as






AD-
UCUGUCUGUGA
837
NM_016841.4_
5439-5459
UUAUAGACAUUC
930
NM_016841.4_
5437-5459


526986.1
AUGUCUAUAA

5439-5459_s

ACAGACAGAAA

5437-










5459_as






AD-
GCACGCUGGCU
838
NM_016841.4_
4527-4547
UAAGAUCACAAG
931
NM_016841.4_
4525-4547


526296.1
UGUGAUCUUA

4527-

CCAGCGUGCCU

4525-4547_






4547_A21U_s



U1A_as






AD-
UGUCUGUGAAU
839
NM_016841.4_
5441-5461
UUAUAUAGACAU
932
NM_016841.4_
5439-5461


526988.1
GUCUAUAUAA

5441-

UCACAGACAGA

5439-5461_






5461_G21U_s



C1A_as






AD-
AGGGACAUGAA
840
NM_016841.4_
5410-5430
UUAAGAUGAUUU
933
NM_016841.4_
5408-5430


526957.1
AUCAUCUUAA

5410-

CAUGUCCCUCC

5408-5430_






5430_G21U_s



C1A_as






AD-
GUGAAUGUCUA
841
NM_016841.4_
5446-5466
UUACACUAUAUA
934
NM_016841.4_
5444-5466


526993.1
UAUAGUGUAA

5446-5466_s

GACAUUCACAG

5444-










5466_as






AD-
UGUGUGUUUUA
842
NM_016841.4_
5467-5487
UAUCAUUUGUUA
935
NM_016841.4_
5465-5487


527013.1
ACAAAUGAUA

5467-5487_s

AAACACACAAU

5465-










5487_as






AD-
GCAAGUCCCAU
843
NM_016841.4_
5369-5389
UGAAGAAAUCAU
936
NM_016841.4_
5367-5389


526936.1
GAUUUCUUCA

5369-

GGGACUUGCAA

5367-5389_






5389_G21U_s



C1A_as






AD-
AAGGACGCAUG
844
NM_
3421-3441
UUUCAAGAUACA
937
NM_
3419-3441


395453.1
UAUCUUGAAA

001038609.2_

UGCGUCCUUUU

001038609.2_






3421-3441_s



3419-










3441_as






AD-
GUCUGUGAAUG
845
NM_016841.4_
5442-5462
UCUAUAUAGACA
938
NM_016841.4_
5440-5462


526989.1
UCUAUAUAGA

5442-5462_s

UUCACAGACAG

5440-










5462_as






AD-
CUAACCAGUUC
846
NM_016841.4_
2379-2399
UUUACAAAGAGA
939
NM_016841.4_
2377-2399


524719.1
UCUUUGUAAA

2379-

ACUGGUUAGCC

2377-2399_






2399_G21U_s



C1A_as






AD-
GACUGUAUCCU
847
NM_016841.4_
4715-4735
UAUAGCAAACAG
940
NM_016841.4_
4713-4735


526423.1
GUUUGCUAUA

4715-4735_s

GAUACAGUCUC

4713-










4735_as






AD-
UAUUGUGUGUU
848
NM_016841.4_
5464-5484
UAUUUGUUAAAA
941
NM_016841.4_
5462-5484


527010.1
UUAACAAAUA

5464-

CACACAAUACA

5462-5484_






5484_G21U_s



C1A_as






AD-
GUUGGAUUUGU
849
NM_016841.4_
3244-3264
UCAUAAACAGAC
942
NM_016841.4_
3242-3264


525305.1
CUGUUUAUGA

3244-

AAAUCCAACUA

3242-3264_






3264_C21U_s



G1A_as






AD-
CUGUCUGUGAA
850
NM_016841.4_
5440-5460
UAUAUAGACAUU
943
NM_016841.4_
5438-5460


526987.1
UGUCUAUAUA

5440-

CACAGACAGAA

5438-5460_






5460_A21U_s



U1A_as






AD-
GCAGCAACAAA
851
NM_016841.4_
1812-1832
UUUCAAAUCCUU
944
NM_016841.4_
1810-1832


524331.1
GGAUUUGAAA

1812-

UGUUGCUGCCA

1810-1832_






1832_A21U_s



U1A_as






AD-
GAGCAGCUGAA
852
NM_016841.4_
3181-3201
UAUGUAUAUGUU
945
NM_016841.4_
3179-3201


525266.1
CAUAUACAUA

3181-

CAGCUGCUCCA

3179-3201_






3201_A21U_s



U1A_as






AD-
AUCUUGAAAUG
853
NM_016841.4_
3327-3347
UCUUUACAAGCA
946
NM_016841.4_
3325-3347


525342.1
CUUGUAAAGA

3327-

UUUCAAGAUAC

3325-3347_






3347_A21U_s



U1A_as






AD-
GAAUGUCUAUA
854
NM_016841.4_
5448-5468
UAAUACACUAUA
947
NM_016841.4_
5446-5468


526995.1
UAGUGUAUUA

5448-

UAGACAUUCAC

5446-5468_






5468_G21U_s



C1A_as






AD-
ACGCUGGCUUG
855
NM_016841.4_
4529-4549
UUUAAGAUCACA
948
NM_016841.4_
4527-4549


526298.1
UGAUCUUAAA

4529-

AGCCAGCGUGC

4527-4549_






4549_A21U_s



U1A_as






AD-
GCUAACCAGUU
856
NM_016841.4_
2378-2398
UUACAAAGAGAA
949
NM_016841.4_
2376-2398


524718.1
CUCUUUGUAA

2378-

CUGGUUAGCCC

2376-2398_






2398_A21U_s



U1A_as






AD-
CUGACUCACUU
857
NM_016841.4_
4668-4688
UCUAUUGAUAAA
950
NM_016841.4_
4666-4688


526392.1
UAUCAAUAGA

4668-4688_s

GUGAGUCAGCA

4666-










4688_as






AD-
UUCUGUCUGUG
858
NM_016841.4_
5438-5458
UAUAGACAUUCA
951
NM_016841.4_
5436-5458


526985.1
AAUGUCUAUA

5438-

CAGACAGAAAG

5436-5458_






5458_A21U_s



U1A_as






AD-
AUUGUGUGUUU
859
NM_016841.4_
5465-5485
UCAUUUGUUAAA
952
NM_016841.4_
5463-5485


527011.1
UAACAAAUGA

5465-

ACACACAAUAC

5463-5485_






5485_A21U_s



U1A_as






AD-
UAUCUUGAAAU
860
NM_016841.4_
3326-3346
UUUUACAAGCAU
953
NM_016841.4_
3324-3346


525341.1
GCUUGUAAAA

3326-

UUCAAGAUACA

3324-3346_






3346_G21U_s



C1A_as






AD-
GGAGCAGCUGA
861
NM_016841.4_
3180-3200
UUGUAUAUGUUC
954
NM_016841.4_
3178-3200


525265.1
ACAUAUACAA

3180-3200_s

AGCUGCUCCAG

3178-










3200_as






AD-
AUAGUGUAUUG
862
NM_016841.4_
5458-5478
UUAAAACACACA
955
NM_016841.4_
5456-5478


527004.1
UGUGUUUUAA

5458-

AUACACUAUAU

5456-5478_






5478_A21U_s



U1A_as






AD-
GCAUGUAUCUU
863
NM_016841.4_
3321-3341
UAAGCAUUUCAA
956
NM_016841.4_
3319-3341


525336.1
GAAAUGCUUA

3321-

GAUACAUGCGU

3319-3341_






3341_G21U_s



C1A_as






AD-
CUUGUAAAGAG
864
NM_016841.4_
3338-3358
UGUUAGAAACCU
957
NM_016841.4_
3336-3358


525353.1
GUUUCUAACA

3338-

CUUUACAAGCA

3336-3358_






3358_C21U_s



G1A_as






AD-
UGAACAUAUAC
865
NM_016841.4_
3188-3208
UAACAUCUAUGU
958
NM_016841.4_
3186-3208


525273.1
AUAGAUGUUA

3188-

AUAUGUUCAGC

3186-3208_






3208_G21U_s



C1A_as






AD-
UCCACAGAAAC
866
NM_016841.4_
2294-2314
UUAAAACAGGGU
959
NM_016841.4_
2292-2314


524638.1
CCUGUUUUAA

2294-2314_s

UUCUGUGGAGC

2292-










2314_as






AD-
GGCUAGAUAGG
867
NM_016841.4_
4628-4648
UACAGUAUAUCC
960
NM_016841.4_
4626-4648


526350.1
AUAUACUGUA

4628-

UAUCUAGCCCA

4626-4648_






4648_A21U_s



U1A_as






AD-
CAUGAAAUCAU
868
NM_016841.4_
5415-5435
UUAAGCUAAGAU
961
NM_016841.4_
5413-5435


526962.1
CUUAGCUUAA

5415-

GAUUUCAUGUC

5413-5435_






5435_G21U_s



C1A_as






AD-
UAGUGUAUUGU
869
NM_016841.4_
5459-5479
UUUAAAACACAC
962
NM_016841.4_
5457-5479


527005.1
GUGUUUUAAA

5459-

AAUACACUAUA

5457-5479_






5479_C21U_s



G1A_as






AD-
CAGCUGAACAU
870
NM_016841.4_
3184-3204
UUCUAUGUAUAU
963
NM_016841.4_
3182-3204


525269.1
AUACAUAGAA

3184-3204_s

GUUCAGCUGCU

3182-










3204_as






AD-
AGGGCUAACCA
871
NM_016841.4_
2375-2395
UAAAGAGAACUG
964
NM_016841.4_
2373-2395


524715.1
GUUCUCUUUA

2375-

GUUAGCCCUAA

2373-2395_






2395_G21U_s



C1A_as






AD-
AGGACGCAUGU
872
NM_
3422-3442
UUUUCAAGAUAC
965
NM_
3420-3442


395454.1
AUCUUGAAAA

001038609.2_

AUGCGUCCUUU

001038609.2_






3422-3442_s



3420-3442_as






AD-
UGGAUUUGUCU
873
NM_016841.4_
3246-3266
UAGCAUAAACAG
966
NM_016841.4_
3244-3266


525307.1
GUUUAUGCUA

3246-3266_s

ACAAAUCCAAC

3244-










3266_as






AD-
GCUUGUAAAGA
874
NM_016841.4_
3337-3357
UUUAGAAACCUC
967
NM_016841.4_
3335-3357


525352.1
GGUUUCUAAA

3337-

UUUACAAGCAU

3335-3357_






3357_C21U_s



G1A_as






AD-
ACAGAAACCCU
875
NM_016841.4_
2297-2317
UCAAUAAAACAG
968
NM_016841.4_
2295-2317


524641.1
GUUUUAUUGA

2297-

GGUUUCUGUGG

2295-2317_






2317_A21U_s



U1A_as






AD-
CACGCUGGCUU
876
NM_016841.4_
4528-4548
UUAAGAUCACAA
969
NM_016841.4_
4526-4548


526297.1
GUGAUCUUAA

4528-

GCCAGCGUGCC

4526-4548_






4548_A21U_s



U1A_as






AD-
GCAGCUGAACA
877
NM_016841.4_
3183-3203
UCUAUGUAUAUG
970
NM_016841.4_
3181-3203


525268.1
UAUACAUAGA

3183-

UUCAGCUGCUC

3181-3203_






3203_A21U_s



U1A_as






AD-
AUGUCUAUAUA
878
NM_016841.4_
5450-5470
UACAAUACACUA
971
NM_016841.4_
5448-5470


526997.1
GUGUAUUGUA

5450-

UAUAGACAUUC

5448-5470_






5470_G21U_s



C1A_as






AD-
CUGUGAAUGUC
879
NM_016841.4_
5444-5464
UCACUAUAUAGA
972
NM_016841.4_
5442-5464


526991.1
UAUAUAGUGA

5444-5464_s

CAUUCACAGAC

5442-










5464_as






AD-
UUGUGUGUUUU
880
NM_016841.4_
5466-5486
UUCAUUUGUUAA
973
NM_016841.4_
5464-5486


527012.1
AACAAAUGAA

5466-5486_s

AACACACAAUA

5464-










5486_as






AD-
UAACCAGUUCU
881
NM_016841.4_
2380-2400
UCUUACAAAGAG
974
NM_016841.4_
2378-2400


524720.1
CUUUGUAAGA

2380-

AACUGGUUAGC

2378-2400_






2400_G21U_s



C1A_as






AD-
UAGUUGGAUUU
882
NM_016841.4_
3242-3262
UUAAACAGACAA
975
NM_016841.4_
3240-3262


525303.1
GUCUGUUUAA

3242-3262_s

AUCCAACUACA

3240-










3262_as






AD-
UGAAAAGGCAC
883
NM_016841.4_
4520-4540
UCAAGCCAGCGU
976
NM_016841.4_
4518-4540


526289.1
GCUGGCUUGA

4520-4540_s

GCCUUUUCAAU

4518-










4540_as






AD-
UGUGAAUGUCU
884
NM_016841.4_
5445-5465
UACACUAUAUAG
977
NM_016841.4_
5443-5465


526992.1
AUAUAGUGUA

5445-

ACAUUCACAGA

5443-5465_






5465_A21U_s



U1A_as






AD-
GACGCAUGUAU
885
NM_016841.4_
3318-3338
UCAUUUCAAGAU
978
NM_016841.4_
3316-3338


525333.1
CUUGAAAUGA

3318-

ACAUGCGUCCU

3316-3338_






3338_C21U_s



G1A_as






AD-
CAACAAAGGAU
886
NM_016841.4_
1816-1836
UAAGUUUCAAAU
979
NM_016841.4_
1814-1836


524335.1
UUGAAACUUA

1816-

CCUUUGUUGCU

1814-1836_






1836_G21U_s



C1A_as






AD-
UCUGUGAAUGU
887
NM_016841.4_
5443-5463
UACUAUAUAGAC
980
NM_016841.4_
5441-5463


526990.1
CUAUAUAGUA

5443-

AUUCACAGACA

5441-5463_






5463_G21U_s



C1A_as






AD-
AGUGUAUUGUG
888
NM_016841.4_
5460-5480
UGUUAAAACACA
981
NM_016841.4_
5458-5480


527006.1
UGUUUUAACA

5460-

CAAUACACUAU

5458-5480_






5480_A21U_s



U1A_as






AD-
GAUUUCAACCA
889
NM_016841.4_
4842-4862
UUAGCAAAUGUG
982
NM_016841.4_
4840-4862


526505.1
CAUUUGCUAA

4842-

GUUGAAAUCAU

4840-4862_






4862_G21U_s



C1A_as






AD-
UUCACCAGAGU
890
NM_
3338-3358
UAUCAUAGUCAC
983
NM_016841.4_
3336-3358


525309.1
GACUAUGAUA

001038609.2_

UCUGGUGAAUC

3268-3290_






3338-3358_s



U1A_as






AD-
GUGGCAGCAAC
891
NM_016841.4_
1809-1829
UAAAUCCUUUGU
984
NM_016841.4_
1807-1829


524328.1
AAAGGAUUUA

1809-

UGCUGCCACUG

1807-1829_






1829_G21U_s



C1A_as






AD-
GGACGCAUGUA
892
NM_
3423-3443
UAUUUCAAGAUA
985
NM_
3421-3443


395455.1
UCUUGAAAUA

001038609.2_

CAUGCGUCCUU

001038609.2_






3423-3443_s



3421-3443_as






AD-
UAUCCUGUUUG
893
NM_016841.4_
4720-4740
UAAGCAAUAGCA
986
NM_016841.4_
4718-4740


526428.1
CUAUUGCUUA

4720-

AACAGGAUACA

4718-4740_






4740_G21U_s



C1A_as






AD-
UUCUCUUCAGC
894
NM_016841.4_
5259-5279
UCUUUUCAAAGC
987
NM_016841.4_
5257-5279


526847.1
UUUGAAAAGA

5259-

UGAAGAGAAAU

5257-5279_






5279_G21U_s



C1A_as






AD-
UCUGGUUUGGG
895
NM_016841.4_
4084-4104
UUUAACUGUACC
988
NM_016841.4_
4082-4104


525957.1
UACAGUUAAA

4084-

CAAACCAGAAG

4082-4104_






4104_A21U_s



U1A_as






AD-
CAGCAACAAAG
896
NM_016841.4_
1813-1833
UUUUCAAAUCCU
989
NM_016841.4_
1811-1833


524332.1
GAUUUGAAAA

1813-

UUGUUGCUGCC

1811-1833_






1833_C21U_s



G1A_as






AD-
AAAAGGCACGC
897
NM_016841.4_
4522-4542
UCACAAGCCAGC
990
NM_016841.4_
4520-4542


526291.1
UGGCUUGUGA

4522-

GUGCCUUUUCA

4520-4542_






4542_A21U_s



U1A_as






AD-
UGCCUCGUAAC
898
NM_016841.4_
4822-4842
UAUGAAAAGGGU
991
NM_016841.4_
4820-4842


526485.1
CCUUUUCAUA

4822-

UACGAGGCAGU

4820-4842_






4842_G21U_s



C1A_as






AD-
AAAGGCACGCU
899
NM_016841.4_
4523-4543
UUCACAAGCCAG
992
NM_016841.4_
4521-4543


526292.1
GGCUUGUGAA

4523-4543_s

CGUGCCUUUUC

4521-










4543_as






AD-
CAGAAACCCUG
900
NM_016841.4_
2298-2318
UUCAAUAAAACA
993
NM_016841.4_
2296-2318


524642.1
UUUUAUUGAA

2298-

GGGUUUCUGUG

2296-2318_






2318_G21U_s



C1A_as






AD-
GAAAAGGCACG
901
NM_016841.4_
4521-4541
UACAAGCCAGCG
994
NM_016841.4_
4519-4541


526290.1
CUGGCUUGUA

4521-

UGCCUUUUCAA

4519-4541_






4541_G21U_s



C1A_as






AD-
UGGUUUGGGUA
902
NM_016841.4_
4086-4106
UCUUUAACUGUA
995
NM_016841.4_
4084-4106


525959.1
CAGUUAAAGA

4086-

CCCAAACCAGA

4084-4106_






4106_G21U_s



C1A_as






AD-
AAGGCACGCUG
903
NM_016841.4_
4524-4544
UAUCACAAGCCA
996
NM_016841.4_
4522-4544


526293.1
GCUUGUGAUA

4524-

GCGUGCCUUUU

4522-4544_






4544_C21U_s



G1A_as






AD-
CAUACUGAGGG
904
NM_016841.4_
2668-2688
UUUAAUUUCACC
997
NM_016841.4_
2666-2688


524899.1
UGAAAUUAAA

2668-

CUCAGUAUGGA

2666-2688_






2688_G21U_s



C1A_as






AD-
GCUGACUCACU
905
NM_016841.4_
4667-4687
UUAUUGAUAAAG
998
NM_016841.4_
4665-4687


526391.1
UUAUCAAUAA

4667-

UGAGUCAGCAG

4665-4687_






4687_G21U_s



C1A_as






AD-
UUCUGGUUUGG
906
NM_016841.4_
4083-4103
UUAACUGUACCC
999
NM_016841.4_
4081-4103


525956.1
GUACAGUUAA

4083-

AAACCAGAAGU

4081-4103_






4103_A21U_s



U1A_as






AD-
CUGGUUUGGGU
907
NM_016841.4_
4085-4105
UUUUAACUGUAC
1000
NM_016841.4_
4083-4105


525958.1
ACAGUUAAAA

4085-

CCAAACCAGAA

4083-4105_






4105_G21U_s



C1A_as






AD-
GCUAGAUAGGA
908
NM_016841.4_
4629-4649
UUACAGUAUAUC
1001
NM_016841.4_
4627-4649


526351.1
UAUACUGUAA

4629-4649_s

CUAUCUAGCCC

4627-










4649_as






AD-
CUCAUUACUGC
909
NM_016841.4_
4329-4349
UAAACUGUUGGC
1002
NM_016841.4_
4327-4349


526138.1
CAACAGUUUA

4329-

AGUAAUGAGGG

4327-4349_






4349_C21U_s



G1A_as






AD-
CCAUACUGAGG
910
NM_016841.4_
2667-2687
UUAAUUUCACCC
1003
NM_016841.4_
2665-2687


524898.1
GUGAAAUUAA

2667-

UCAGUAUGGAG

2665-2687_






2687_A21U_s



U1A_as






AD-
CAGCCUAAGAU
911
NM_016841.4_
4475-4495
UUAAACCAUGAU
1004
NM_016841.4_
4473-4495


526244.1
CAUGGUUUAA

4475-

CUUAGGCUGGC

4473-4495_






4495_G21U_s



C1A_as






AD-
AAGAGGUUUCU
912
NM_016841.4_
3344-3364
UGGGUGGGUUAG
1005
NM_016841.4_
3342-3364


525359.1
AACCCACCCA

3344-3364_s

AAACCUCUUUA

3342-










3364_as






AD-
UGACUCACUUU
913
NM_016841.4_
4669-4689
UACUAUUGAUAA
1006
NM_016841.4_
4667-4689


526393.1
AUCAAUAGUA

4669-4689_s

AGUGAGUCAGC

4667-










4689_as






AD-
UGUAAAGAGGU
914
NM_016841.4_
3340-3360
UGGGUUAGAAAC
1007
NM_016841.4_
3338-3360


525355.1
UUCUAACCCA

3340-

CUCUUUACAAG

3338-3360_






3360_A21U_s



U1A_as






AD-
UUGAAAAGGCA
915
NM_016841.4_
4519-4539
UAAGCCAGCGUG
1008
NM_016841.4_
4517-4539


526288.1
CGCUGGCUUA

4519-

CCUUUUCAAUU

4517-4539_






4539_G21U_s



C1A_as






AD-
UCCAUACUGAG
916
NM_016841.4_
2666-2686
UAAUUUCACCCU
1009
NM_016841.4_
2664-2686


524897.1
GGUGAAAUUA

2666-

CAGUAUGGAGU

2664-2686_






2686_A21U_s



U1A_as






AD-
GAUCACCUGCG
917
NM_016841.4_
5208-5228
UGAUGGGACACG
1010
NM_016841.4_
5206-5228


526796.1
UGUCCCAUCA

5208-5228_s

CAGGUGAUCAC

5206-










5228_as






AD-
GGCACGCUGGC
918
NM_016841.4_
4526-4546
UAGAUCACAAGC
1011
NM_016841.4_
4524-4546


526295.1
UUGUGAUCUA

4526-4546_s

CAGCGUGCCUU

4524-










4546_as






AD-
AGGCACGCUGG
919
NM_016841.4_
4525-4545
UGAUCACAAGCC
1012
NM_016841.4_
4523-4545


526294.1
CUUGUGAUCA

4525-4545_s

AGCGUGCCUUU

4523-










4545_as






AD-
GUAAAGAGGUU
920
NM_016841.4_
3341-3361
UUGGGUUAGAAA
1013
NM_016841.4_
3339-3361


525356.1
UCUAACCCAA

3341-

CCUCUUUACAA

3339-3361_






3361_C21U_s



G1A_as
















TABLE 6







Modified Sense and Antisense Strand Sequences of MAPT dsRNA Agents-Screen 1















SEQ

SEQ
mRNA Target
SEQ



Sense Sequence 
ID
Antisense Sequence
ID
Sequence
ID


Duplex ID
5′ to 3′
NO:
5′ to 3′
NO:
5′ to 3′
NO:





AD-523799.1
asusagucUfaCfAfAf
163
VPusUfscaaCfuGfGfuuu
238
AAAUAGUCUACAAACC
313



accaguugaaL96

gUfaGfacuaususu

AGUUGAC






AD-523802.1
gsuscuacAfaAfCfCf
164
VPusAfsgguCfaAfCfug
239
UAGUCUACAAACCAGU
314



aguugaccuaL96

guUfuGfuagacsusa

UGACCUG






AD-523795.1
gscsaaauAfgUfCfUf
165
VPusCfsuggUfuUfGfua
240
GUGCAAAUAGUCUACA
315



acaaaccagaL96

gaCfuAfuuugcsasc

AACCAGU






AD-523810.1
ascscaguUfgAfCfCf
166
VPusCfscuuGfcUfCfagg
241
AAACCAGUUGACCUGA
316



ugagcaaggaL96

uCfaAfcuggususu

GCAAGGU






AD-523809.1
asasccagUfuGfAfCf
167
VPusCfsuugCfuCfAfgg
242
CAAACCAGUUGACCUG
317



cugagcaagaL96

ucAfaCfugguususg

AGCAAGG






AD-1019331.1
usgscaaaUfaGfUfCf
168
VPusUfsgguUfuGfUfag
243
AGGUGCAAAUAGUCU
318



uacaaaccaaL96

acUfaUfuugcascsa

ACAAACCA






AD-523801.1
asgsucuaCfaAfAfCf
169
VPusGfsgucAfaCfUfgg
244
AUAGUCUACAAACCAG
319



caguugaccaL96

uuUfgUfagacusasu

UUGACCU






AD-523823.1
asgscaagGfuGfAfCf
170
VPusCfsacuUfgGfAfgg
245
UGAGCAAGGUGACCUC
320



cuccaagugaL96

ucAfcCfuugcuscsa

CAAGUGU






AD-523798.1
asasuaguCfuAfCfAf
171
VPusCfsaacUfgGfUfuug
246
CAAAUAGUCUACAAAC
321



aaccaguugaL96

uAfgAfcuauususg

CAGUUGA






AD-523816.1
usgsaccuGfaGfCfAf
172
VPusAfsgguCfaCfCfuug
247
GUUGACCUGAGCAAGG
322



aggugaccuaL96

cUfcAfggucasasc

UGACCUC






AD-523824.1
gscsaaggUfgAfCfCf
173
VPusAfscacUfuGfGfagg
248
GAGCAAGGUGACCUCC
323



uccaaguguaL96

uCfaCfcuugcsusc

AAGUGUG






AD-523800.1
usasgucuAfcAfAfA
174
VPusGfsucaAfcUfGfgu
249
AAUAGUCUACAAACCA
324



fccaguugacaL96

uuGfuAfgacuasusu

GUUGACC






AD-523796.1
csasaauaGfuCfUfAf
175
VPusAfscugGfuUfUfgu
250
UGCAAAUAGUCUACAA
325



caaaccaguaL96

agAfcUfauuugscsa

ACCAGUU






AD-523803.1
uscsuacaAfaCfCfAf
176
VPusCfsaggUfcAfAfcug
251
AGUCUACAAACCAGUU
326



guugaccugaL96

gUfuUfguagascsu

GACCUGA






AD-523817.1
gsasccugAfgCfAfA
177
VPusGfsaggUfcAfCfcuu
252
UUGACCUGAGCAAGGU
327



fggugaccucaL96

gCfuCfaggucsasa

GACCUCC






AD-523825.1
csasagguGfaCfCfUf
178
VPusCfsacaCfuUfGfgag
253
AGCAAGGUGACCUCCA
328



ccaagugugaL96

gUfcAfccuugscsu

AGUGUGG






AD-523811.1
cscsaguuGfaCfCfUf
179
VPusAfsccuUfgCfUfcag
254
AACCAGUUGACCUGAG
329



gagcaagguaL96

gUfcAfacuggsusu

CAAGGUG






AD-523854.1
gsgscaacAfuCfCfAf
180
VPusGfsguuUfaUfGfau
255
UAGGCAACAUCCAUCA
330



ucauaaaccaL96

ggAfuGfuugccsusa

UAAACCA






AD-523797.1
asasauagUfcUfAfCf
181
VPusAfsacuGfgUfUfug
256
GCAAAUAGUCUACAAA
331



aaaccaguuaL96

uaGfaCfuauuusgsc

CCAGUUG






AD-523805.1
usascaaaCfcAfGfUf
182
VPusCfsucaGfgUfCfaac
257
UCUACAAACCAGUUGA
332



ugaccugagaL96

uGfgUfuuguasgsa

CCUGAGC






AD-523814.1
gsusugacCfuGfAfG
183
VPusGfsucaCfcUfUfgcu
258
CAGUUGACCUGAGCAA
333



fcaaggugacaL96

cAfgGfucaacsusg

GGUGACC






AD-523804.1
csusacaaAfcCfAfGf
184
VPusUfscagGfuCfAfacu
259
GUCUACAAACCAGUUG
334



uugaccugaaL96

gGfuUfuguagsasc

ACCUGAG






AD-1019356.1
gsusgugcAfaAfUfA
185
VPusUfsuugUfaGfAfcu
260
CAGUGUGCAAAUAGUC
335



fgucuacaaaaL96

auUfuGfcacacsusg

UACAAAC






AD-523846.1
gscsucauUfaGfGfCf
186
VPusAfsuggAfuGfUfug
261
UGGCUCAUUAGGCAAC
336



aacauccauaL96

ccUfaAfugagcscsa

AUCCAUC






AD-523808.1
asasaccaGfuUfGfAf
187
VPusUfsugcUfcAfGfgu
262
ACAAACCAGUUGACCU
337



ccugagcaaaL96

caAfcUfgguuusgsu

GAGCAAG






AD-523835.1
cscsaaguGfuGfGfCf
188
VPusGfsccuAfaUfGfagc
263
CUCCAAGUGUGGCUCA
338



ucauuaggcaL96

cAfcAfcuuggsasg

UUAGGCA






AD-1019357.1
usgsugcaAfaUfAfG
189
VPusGfsuuuGfuAfGfac
264
AGUGUGCAAAUAGUC
339



fucuacaaacaL96

uaUfuUfgcacascsu

UACAAACC






AD-523853.1
asgsgcaaCfaUfCfCf
190
VPusGfsuuuAfuGfAfug
265
UUAGGCAACAUCCAUC
340



aucauaaacaL96

gaUfgUfugccusasa

AUAAACC






AD-523819.1
cscsugagCfaAfGfGf
191
VPusUfsggaGfgUfCfacc
266
GACCUGAGCAAGGUGA
341



ugaccuccaaL96

uUfgCfucaggsusc

CCUCCAA






AD-523830.1
gsasccucCfaAfGfUf
192
VPusAfsugaGfcCfAfcac
267
GUGACCUCCAAGUGUG
342



guggcucauaL96

uUfgGfaggucsasc

GCUCAUU






AD-523834.1
uscscaagUfgUfGfG
193
VPusCfscuaAfuGfAfgcc
268
CCUCCAAGUGUGGCUC
343



fcucauuaggaL96

aCfaCfuuggasgsg

AUUAGGC






AD-523850.1
asusuaggCfaAfCfAf
194
VPusUfsaugAfuGfGfau
269
UCAUUAGGCAACAUCC
344



uccaucauaaL96

guUfgCfcuaausgsa

AUCAUAA






AD-523820.1
csusgagcAfaGfGfU
195
VPusUfsuggAfgGfUfca
270
ACCUGAGCAAGGUGAC
345



fgaccuccaaaL96

ccUfuGfcucagsgsu

CUCCAAG






AD-523849.1
csasuuagGfcAfAfCf
196
VPusAfsugaUfgGfAfug
271
CUCAUUAGGCAACAUC
346



auccaucauaL96

uuGfcCfuaaugsasg

CAUCAUA






AD-523845.1
gsgscucaUfuAfGfG
197
VPusUfsggaUfgUfUfgc
272
GUGGCUCAUUAGGCAA
347



fcaacauccaaL96

cuAfaUfgagccsasc

CAUCCAU






AD-393758.3
asgsugugCfaAfAfU
198
VPusUfsuguAfgAfCfua
273
GCAGUGUGCAAAUAG
348



fagucuacaaaL96

uuUfgCfacacusgsc

UCUACAAG






AD-523848.1
uscsauuaGfgCfAfA
199
VPusUfsgauGfgAfUfgu
274
GCUCAUUAGGCAACAU
349



fcauccaucaaL96

ugCfcUfaaugasgsc

CCAUCAU






AD-523840.1
asgsugugGfcUfCfA
200
VPusGfsuugCfcUfAfau
275
CAAGUGUGGCUCAUUA
350



fuuaggcaacaL96

gaGfcCfacacususg

GGCAACA






AD-523828.1
gsgsugacCfuCfCfAf
201
VPusAfsgccAfcAfCfuug
276
AAGGUGACCUCCAAGU
351



aguguggcuaL96

gAfgGfucaccsusu

GUGGCUC






AD-523822.1
gsasgcaaGfgUfGfA
202
VPusAfscuuGfgAfGfgu
277
CUGAGCAAGGUGACCU
352



fccuccaaguaL96

caCfcUfugcucsasg

CCAAGUG






AD-523806.1
ascsaaacCfaGfUfUf
203
VPusGfscucAfgGfUfcaa
278
CUACAAACCAGUUGAC
353



gaccugagcaL96

cUfgGfuuugusasg

CUGAGCA






AD-523831.1
ascscuccAfaGfUfGf
204
VPusAfsaugAfgCfCfaca
279
UGACCUCCAAGUGUGG
354



uggcucauuaL96

cUfuGfgagguscsa

CUCAUUA






AD-393757.1
csasguguGfcAfAfA
205
VPusUfsguaGfaCfUfauu
280
GGCAGUGUGCAAAUA
355



fuagucuacaaL96

uGfcAfcacugscsc

GUCUACAA






AD-523839.1
asasguguGfgCfUfC
206
VPusUfsugcCfuAfAfug
281
CCAAGUGUGGCUCAUU
356



fauuaggcaaaL96

agCfcAfcacuusgsg

AGGCAAC






AD-523815.1
ususgaccUfgAfGfC
207
VPusGfsgucAfcCfUfugc
282
AGUUGACCUGAGCAAG
357



faaggugaccaL96

uCfaGfgucaascsu

GUGACCU






AD-523856.1
csasacauCfcAfUfCf
208
VPusCfsuggUfuUfAfug
283
GGCAACAUCCAUCAUA
358



auaaaccagaL96

auGfgAfuguugscsc

AACCAGG






AD-1019330.1
gsusgcaaAfuAfGfU
209
VPusGfsguuUfgUfAfga
284
AGGUGCAAAUAGUCU
359



fcuacaaaccaL96

cuAfuUfugcacsasc

ACAAACCA






AD-523829.1
usgsaccuCfcAfAfGf
210
VPusUfsgagCfcAfCfacu
285
GGUGACCUCCAAGUGU
360



uguggcucaaL96

uGfgAfggucascsc

GGCUCAU






AD-523855.1
gscsaacaUfcCfAfUf
211
VPusUfsgguUfuAfUfga
286
AGGCAACAUCCAUCAU
361



cauaaaccaaL96

ugGfaUfguugcscsu

AAACCAG






AD-523836.1
csasagugUfgGfCfU
212
VPusUfsgccUfaAfUfgag
287
UCCAAGUGUGGCUCAU
362



fcauuaggcaaL96

cCfaCfacuugsgsa

UAGGCAA






AD-1019329.1
gscsagugUfgCfAfA
213
VPusGfsuagAfcUfAfuu
288
GCAGUGUGCAAAUAG
363



fauagucuacaL96

ugCfaCfacugcscsg

UCUACA






AD-523843.1
gsusggcuCfaUfUfA
214
VPusGfsaugUfuGfCfcua
289
GUGUGGCUCAUUAGGC
364



fggcaacaucaL96

aUfgAfgccacsasc

AACAUCC






AD-523807.1
csasaaccAfgUfUfGf
215
VPusUfsgcuCfaGfGfuca
290
UACAAACCAGUUGACC
365



accugagcaaL96

aCfuGfguuugsusa

UGAGCAA






AD-523821.1
usgsagcaAfgGfUfG
216
VPusCfsuugGfaGfGfuca
291
CCUGAGCAAGGUGACC
366



faccuccaagaL96

cCfuUfgcucasgsg

UCCAAGU






AD-523826.1
asasggugAfcCfUfCf
217
VPusCfscacAfcUfUfgga
292
GCAAGGUGACCUCCAA
367



caaguguggaL96

gGfuCfaccuusgsc

GUGUGGC






AD-523847.1
csuscauuAfgGfCfA
218
VPusGfsaugGfaUfGfuu
293
GGCUCAUUAGGCAACA
368



facauccaucaL96

gcCfuAfaugagscsc

UCCAUCA






AD-523786.1
gsusgaccUfcCfAfAf
219
VPusGfsagcCfaCfAfcuu
294
AGGUGACCUCCAAGUG
369



guguggcucaL96

gGfaGfgucacscsu

UGGCUCA






AD-523812.1
csasguugAfcCfUfG
220
VPusCfsaccUfuGfCfuca
295
ACCAGUUGACCUGAGC
370



fagcaaggugaL96

gGfuCfaacugsgsu

AAGGUGA






AD-523827.1
asgsgugaCfcUfCfCf
221
VPusGfsccaCfaCfUfugg
296
CAAGGUGACCUCCAAG
371



aaguguggcaL96

aGfgUfcaccususg

UGUGGCU






AD-523844.1
usgsgcucAfuUfAfG
222
VPusGfsgauGfuUfGfcc
297
UGUGGCUCAUUAGGCA
372



fgcaacauccaL96

uaAfuGfagccascsa

ACAUCCA






AD-523851.1
ususaggcAfaCfAfU
223
VPusUfsuauGfaUfGfga
298
CAUUAGGCAACAUCCA
373



fccaucauaaaL96

ugUfuGfccuaasusg

UCAUAAA






AD-523818.1
ascscugaGfcAfAfGf
224
VPusGfsgagGfuCfAfccu
299
UGACCUGAGCAAGGUG
374



gugaccuccaL96

uGfcUfcagguscsa

ACCUCCA






AD-523832.1
cscsuccaAfgUfGfUf
225
VPusUfsaauGfaGfCfcac
300
GACCUCCAAGUGUGGC
375



ggcucauuaaL96

aCfuUfggaggsusc

UCAUUAG






AD-523813.1
asgsuugaCfcUfGfA
226
VPusUfscacCfuUfGfcuc
301
CCAGUUGACCUGAGCA
376



fgcaaggugaaL96

aGfgUfcaacusgsg

AGGUGAC






AD-523841.1
gsusguggCfuCfAfU
227
VPusUfsguuGfcCfUfaau
302
AAGUGUGGCUCAUUA
377



fuaggcaacaaL96

gAfgCfcacacsusu

GGCAACAU






AD-1019352.1
asgsgcggCfaGfUfG
228
VPusCfsuauUfuGfCfaca
303
GGAGGCGGCAGUGUGC
378



fugcaaauagaL96

cUfgCfcgccuscsc

AAAUAGU






AD-1019354.1
gscsggcaGfuGfUfG
229
VPusGfsacuAfuUfUfgca
304
AGGCGGCAGUGUGCAA
379



fcaaauagucaL96

cAfcUfgccgcscsu

AUAGUCU






AD-523852.1
usasggcaAfcAfUfCf
230
VPusUfsuuaUfgAfUfgg
305
AUUAGGCAACAUCCAU
380



caucauaaaaL96

auGfuUfgccuasasu

CAUAAAC






AD-523842.1
usgsuggcUfcAfUfU
231
VPusAfsuguUfgCfCfuaa
306
AGUGUGGCUCAUUAG
381



faggcaacauaL96

uGfaGfccacascsu

GCAACAUC






AD-523833.1
csusccaaGfuGfUfGf
232
VPusCfsuaaUfgAfGfcca
307
ACCUCCAAGUGUGGCU
382



gcucauuagaL96

cAfcUfuggagsgsu

CAUUAGG






AD-1019328.1
gsgscaguGfuGfCfA
233
VPusUfsagaCfuAfUfuu
308
GCGGCAGUGUGCAAAU
383



faauagucuaaL96

gcAfcAfcugccsgsc

AGUCUAC






AD-1019355.1
csgsgcagUfgUfGfC
234
VPusAfsgacUfaUfUfugc
309
GGCGGCAGUGUGCAAA
384



faaauagucuaL96

aCfaCfugccgscsc

UAGUCUA






AD-1019353.1
gsgscggcAfgUfGfU
235
VPusAfscuaUfuUfGfcac
310
GAGGCGGCAGUGUGCA
385



fgcaaauaguaL96

aCfuGfccgccsusc

AAUAGUC






AD-1019350.1
gsgsaggcGfgCfAfG
236
VPusAfsuuuGfcAfCfacu
311
CGGGAGGCGGCAGUGU
386



fugugcaaauaL96

gCfcGfccuccscsg

GCAAAUA






AD-1019351.1
gsasggcgGfcAfGfU
237
VPusUfsauuUfgCfAfcac
312
GGGAGGCGGCAGUGU
387



fgugcaaauaaL96

uGfcCfgccucscsc

GCAAAUAG
















TABLE 7







Modified Sense and Antisense Strand Sequences of MAPT dsRNA Agents-Screen 2















SEQ

SEQ
mRNA Target
SEQ



Sense Sequence 
ID
Antisense Sequence
ID
Sequence
ID


Duplex ID
5′ to 3′
NO:
5′ to 3′
NO:
5′ to 3′
NO:





AD-535094.1
asgscucgCfaUfGfGfuca
564
VPusUfsuuua(Cgn)ug
652
CAAGCUCGCAUGG
740



guaaaaaL96

accaUfgCfgagcususg

UCAGUAAAAG






AD-535095.1
gscsucgcAfuGfGfUfcag
565
VPusCfsuuuu(Agn)cu
653
AAGCUCGCAUGGU
741



uaaaagaL96

gaccAfuGfcgagcsusu

CAGUAAAAGC






AD-538647.1
usasuuguGfuGfUfUfuua
566
VPusAfsuuug(Tgn)uaa
654
UGUAUUGUGUGUU
742



acaaauaL96

aacAfcAfcaauascsa

UUAACAAAUG






AD-535922.1
csasgcaaCfaAfAfGfgau
567
VPusUfsuuca(Agn)auc
655
GGCAGCAACAAAG
743



uugaaaaL96

cuuUfgUfugcugscsc

GAUUUGAAAC






AD-536317.1
gscsuaacCfaGfUfUfcuc
568
VPusUfsacaa(Agn)gag
656
GGGCUAACCAGUU
744



uuuguaaL96

aacUfgGfuuagcscsc

CUCUUUGUAA






AD-536911.1
usasguugGfaUfUfUfguc
569
VPusUfsaaac(Agn)gac
657
UGUAGUUGGAUUU
745



uguuuaaL96

aaaUfcCfaacuascsa

GUCUGUUUAU






AD-538626.1
gsuscuguGfaAfUfGfucu
570
VPusCfsuaua(Tgn)aga
658
CUGUCUGUGAAUG
746



auauagaL96

cauUfcAfcagacsasg

UCUAUAUAGU






AD-535864.1
csasggcaAfuUfCfCfuuu
571
VPusGfsaauc(Agn)aaa
659
CUCAGGCAAUUCCU
747



ugauucaL96

ggaAfuUfgccugsasg

UUUGAUUCU






AD-535925.1
csasacaaAfgGfAfUfuug
572
VPusAfsaguu(Tgn)caa
660
AGCAACAAAGGAU
748



aaacuuaL96

aucCfuUfuguugscsu

UUGAAACUUG






AD-538012.1
gscsugacUfcAfCfUfuua
573
VPusUfsauug(Agn)ua
661
CUGCUGACUCACUU
749



ucaauaaL96

aaguGfaGfucagcsasg

UAUCAAUAG






AD-536872.1
gscsagcuGfaAfCfAfuau
574
VPusCfsuaug(Tgn)aua
662
GAGCAGCUGAACA
750



acauagaL96

uguUfcAfgcugcsusc

UAUACAUAGA






AD-536954.1
asgsgacgCfaUfGfUfauc
575
VPusUfsuuca(Agn)ga
663
AAAGGACGCAUGU
751



uugaaaaL96

uacaUfgCfguccususu

AUCUUGAAAU






AD-536964.1
usasucuuGfaAfAfUfgcu
576
VPusUfsuuac(Agn)agc
664
UGUAUCUUGAAAU
752



uguaaaaL96

auuUfcAfagauascsa

GCUUGUAAAG






AD-536318.1
csusaaccAfgUfUfCfucu
577
VPusUfsuaca(Agn)aga
665
GGCUAACCAGUUC
753



uuguaaaL96

gaaCfuGfguuagscsc

UCUUUGUAAG






AD-536976.1
csusuguaAfaGfAfGfguu
578
VPusGfsuuag(Agn)aac
666
UGCUUGUAAAGAG
754



ucuaacaL96

cucUfuUfacaagscsa

GUUUCUAACC






AD-538630.1
gsusgaauGfuCfUfAfuau
579
VPusUfsacac(Tgn)aua
667
CUGUGAAUGUCUA
755



aguguaaL96

uagAfcAfuucacsasg

UAUAGUGUAU






AD-538624.1
csusgucuGfuGfAfAfugu
580
VPusAfsuaua(Ggn)aca
668
UUCUGUCUGUGAA
756



cuauauaL96

uucAfcAfgacagsasa

UGUCUAUAUA






AD-538594.1
asgsggacAfuGfAfAfauc
581
VPusUfsaaga(Tgn)gau
669
GGAGGGACAUGAA
757



aucuuaaL96

uucAfuGfucccuscsc

AUCAUCUUAG






AD-536915.1
usgsgauuUfgUfCfUfguu
582
VPusAfsgcau(Agn)aac
670
GUUGGAUUUGUCU
758



uaugcuaL96

agaCfaAfauccasasc

GUUUAUGCUU






AD-536870.1
gsasgcagCfuGfAfAfcau
583
VPusAfsugua(Tgn)aug
671
UGGAGCAGCUGAA
759



auacauaL96

uucAfgCfugcucscsa

CAUAUACAUA






AD-536236.1
ascsagaaAfcCfCfUfguu
584
VPusCfsaaua(Agn)aac
672
CCACAGAAACCCUG
760



uuauugaL96

aggGfuUfucugusgsg

UUUUAUUGA






AD-536319.1
usasaccaGfuUfCfUfcuu
585
VPusCfsuuac(Agn)aag
673
GCUAACCAGUUCUC
761



uguaagaL96

agaAfcUfgguuasgsc

UUUGUAAGG






AD-536966.1
uscsuugaAfaUfGfCfuug
586
VPusUfscuuu(Agn)caa
674
UAUCUUGAAAUGC
762



uaaagaaL96

gcaUfuUfcaagasusa

UUGUAAAGAG






AD-538643.1
asgsuguaUfuGfUfGfugu
587
VPusGfsuuaa(Agn)aca
675
AUAGUGUAUUGUG
763



uuuaacaL96

cacAfaUfacacusasu

UGUUUUAACA






AD-536873.1
csasgcugAfaCfAfUfaua
588
VPusUfscuau(Ggn)ua
676
AGCAGCUGAACAU
764



cauagaaL96

uaugUfuCfagcugscsu

AUACAUAGAU






AD-536952.1
asasaggaCfgCfAfUfgua
589
VPusUfscaag(Agn)uac
677
AAAAAGGACGCAU
765



ucuugaaL96

augCfgUfccuuususu

GUAUCUUGAA






AD-536959.1
gscsauguAfuCfUfUfgaa
590
VPusAfsagca(Tgn)uuc
678
ACGCAUGUAUCUU
766



augcuuaL96

aagAfuAfcaugcsgsu

GAAAUGCUUG






AD-537921.1
ascsgcugGfcUfUfGfuga
591
VPusUfsuaag(Agn)uca
679
GCACGCUGGCUUG
767



ucuuaaaL96

caaGfcCfagcgusgsc

UGAUCUUAAA






AD-538652.1
ususuuaaCfaAfAfUfgau
592
VPusGfsugua(Agn)au
680
UGUUUUAACAAAU
768



uuacacaL96

cauuUfgUfuaaaascsa

GAUUUACACU






AD-538649.1
ususguguGfuUfUfUfaac
593
VPusUfscauu(Tgn)guu
681
UAUUGUGUGUUUU
769



aaaugaaL96

aaaAfcAfcacaasusa

AACAAAUGAU






AD-538623.1
uscsugucUfgUfGfAfaug
594
VPusUfsauag(Agn)cau
682
UUUCUGUCUGUGA
770



ucuauaaL96

ucaCfaGfacagasasa

AUGUCUAUAU






AD-538573.1
gscsaaguCfcCfAfUfgau
595
VPusGfsaaga(Agn)auc
683
UUGCAAGUCCCAU
771



uucuucaL96

augGfgAfcuugcsasa

GAUUUCUUCG






AD-537920.1
csascgcuGfgCfUfUfgug
596
VPusUfsaaga(Tgn)cac
684
GGCACGCUGGCUU
772



aucuuaaL96

aagCfcAfgcgugscsc

GUGAUCUUAA






AD-536939.1
ususcaccAfgAfGfUfgac
597
VPusAfsucau(Agn)gu
685
GAUUCACCAGAGU
773



uaugauaL96

cacuCfuGfgugaasusc

GACUAUGAUA






AD-538015.1
gsascucaCfuUfUfAfuca
598
VPusAfsacua(Tgn)uga
686
CUGACUCACUUUA
774



auaguuaL96

uaaAfgUfgagucsasg

UCAAUAGUUC






AD-536953.1
asasggacGfcAfUfGfuau
599
VPusUfsucaa(Ggn)aua
687
AAAAGGACGCAUG
775



cuugaaaL96

cauGfcGfuccuususu

UAUCUUGAAA






AD-536237.1
csasgaaaCfcCfUfGfuuu
600
VPusUfscaau(Agn)aaa
688
CACAGAAACCCUGU
776



uauugaaL96

cagGfgUfuucugsusg

UUUAUUGAG






AD-538628.1
csusgugaAfuGfUfCfuau
601
VPusCfsacua(Tgn)aua
689
GUCUGUGAAUGUC
777



auagugaL96

gacAfuUfcacagsasc

UAUAUAGUGU






AD-538632.1
gsasauguCfuAfUfAfuag
602
VPusAfsauac(Agn)cua
690
GUGAAUGUCUAUA
778



uguauuaL96

uauAfgAfcauucsasc

UAGUGUAUUG






AD-536975.1
gscsuuguAfaAfGfAfggu
603
VPusUfsuaga(Agn)acc
691
AUGCUUGUAAAGA
779



uucuaaaL96

ucuUfuAfcaagcsasu

GGUUUCUAAC






AD-538599.1
csasugaaAfuCfAfUfcuu
604
VPusUfsaagc(Tgn)aag
692
GACAUGAAAUCAU
780



agcuuaaL96

augAfuUfucaugsusc

CUUAGCUUAG






AD-536978.1
usgsuaaaGfaGfGfUfuuc
605
VPusGfsgguu(Agn)ga
693
CUUGUAAAGAGGU
781



uaacccaL96

aaccUfcUfuuacasasg

UUCUAACCCA






AD-536956.1
gsascgcaUfgUfAfUfcuu
606
VPusCfsauuu(Cgn)aag
694
AGGACGCAUGUAU
782



gaaaugaL96

auaCfaUfgcgucscsu

CUUGAAAUGC






AD-538571.1
ususgcaaGfuCfCfCfaug
607
VPusAfsgaaa(Tgn)cau
695
ACUUGCAAGUCCCA
783



auuucuaL96

gggAfcUfugcaasgsu

UGAUUUCUU






AD-535921.1
gscsagcaAfcAfAfAfgga
608
VPusUfsucaa(Agn)ucc
696
UGGCAGCAACAAA
784



uuugaaaL96

uuuGfuUfgcugcscsa

GGAUUUGAAA






AD-538593.1
gsasgggaCfaUfGfAfaau
609
VPusAfsagau(Ggn)au
697
GGGAGGGACAUGA
785



caucuuaL96

uucaUfgUfcccucscsc

AAUCAUCUUA






AD-537974.1
gscsuagaUfaGfGfAfuau
610
VPusUfsacag(Tgn)aua
698
GGGCUAGAUAGGA
786



acuguaaL96

uccUfaUfcuagcscsc

UAUACUGUAU






AD-537973.1
gsgscuagAfuAfGfGfaua
611
VPusAfscagu(Agn)ua
699
UGGGCUAGAUAGG
787



uacuguaL96

uccuAfuCfuagccscsa

AUAUACUGUA






AD-536982.1
asasgaggUfuUfCfUfaac
612
VPusGfsggug(Ggn)gu
700
UAAAGAGGUUUCU
788



ccacccaL96

uagaAfaCfcucuususa

AACCCACCCU






AD-535918.1
gsusggcaGfcAfAfCfaaa
613
VPusAfsaauc(Cgn)uuu
701
CAGUGGCAGCAAC
789



ggauuuaL96

guuGfcUfgccacsusg

AAAGGAUUUG






AD-538627.1
uscsugugAfaUfGfUfcua
614
VPusAfscuau(Agn)ua
702
UGUCUGUGAAUGU
790



uauaguaL96

gacaUfuCfacagascsa

CUAUAUAGUG






AD-536913.1
gsusuggaUfuUfGfUfcug
615
VPusCfsauaa(Agn)cag
703
UAGUUGGAUUUGU
791



uuuaugaL96

acaAfaUfccaacsusa

CUGUUUAUGC






AD-536869.1
gsgsagcaGfcUfGfAfaca
616
VPusUfsguau(Agn)ug
704
CUGGAGCAGCUGA
792



uauacaaL96

uucaGfcUfgcuccsasg

ACAUAUACAU






AD-536965.1
asuscuugAfaAfUfGfcuu
617
VPusCfsuuua(Cgn)aag
705
GUAUCUUGAAAUG
793



guaaagaL96

cauUfuCfaagausasc

CUUGUAAAGA






AD-537914.1
asasaaggCfaCfGfCfugg
618
VPusCfsacaa(Ggn)cca
706
UGAAAAGGCACGC
794



cuugugaL96

gcgUfgCfcuuuuscsa

UGGCUUGUGA






AD-536504.1
cscsauacUfgAfGfGfgug
619
VPusUfsaauu(Tgn)cac
707
CUCCAUACUGAGG
795



aaauuaaL96

ccuCfaGfuauggsasg

GUGAAAUUAA






AD-538013.1
csusgacuCfaCfUfUfuau
620
VPusCfsuauu(Ggn)aua
708
UGCUGACUCACUU
796



caauagaL96

aagUfgAfgucagscsa

UAUCAAUAGU






AD-537579.1
ususcuggUfuUfGfGfgua
621
VPusUfsaacu(Ggn)uac
709
ACUUCUGGUUUGG
797



caguuaaL96

ccaAfaCfcagaasgsu

GUACAGUUAA






AD-538629.1
usgsugaaUfgUfCfUfaua
622
VPusAfscacu(Agn)uau
710
UCUGUGAAUGUCU
798



uaguguaL96

agaCfaUfucacasgsa

AUAUAGUGUA






AD-536233.1
uscscacaGfaAfAfCfccu
623
VPusUfsaaaa(Cgn)agg
711
GCUCCACAGAAACC
799



guuuuaaL96

guuUfcUfguggasgsc

CUGUUUUAU






AD-538141.1
gsasuuucAfaCfCfAfcau
624
VPusUfsagca(Agn)aug
712
AUGAUUUCAACCA
800



uugcuaaL96

uggUfuGfaaaucsasu

CAUUUGCUAG






AD-538622.1
ususcuguCfuGfUfGfaau
625
VPusAfsuaga(Cgn)auu
713
CUUUCUGUCUGUG
801



gucuauaL96

cacAfgAfcagaasasg

AAUGUCUAUA






AD-537580.1
uscsugguUfuGfGfGfuac
626
VPusUfsuaac(Tgn)gua
714
CUUCUGGUUUGGG
802



aguuaaaL96

cccAfaAfccagasasg

UACAGUUAAA






AD-536505.1
csasuacuGfaGfGfGfuga
627
VPusUfsuaau(Tgn)uca
715
UCCAUACUGAGGG
803



aauuaaaL96

cccUfcAfguaugsgsa

UGAAAUUAAG






AD-537918.1
gsgscacgCfuGfGfCfuug
628
VPusAfsgauc(Agn)caa
716
AAGGCACGCUGGC
804



ugaucuaL96

gccAfgCfgugccsusu

UUGUGAUCUU






AD-537913.1
gsasaaagGfcAfCfGfcug
629
VPusAfscaag(Cgn)cag
717
UUGAAAAGGCACG
805



gcuuguaL96

cguGfcCfuuuucsasa

CUGGCUUGUG






AD-538642.1
usasguguAfuUfGfUfgu
630
VPusUfsuaaa(Agn)cac
718
UAUAGUGUAUUGU
806



guuuuaaaL96

acaAfuAfcacuasusa

GUGUUUUAAC






AD-536877.1
usgsaacaUfaUfAfCfaua
631
VPusAfsacau(Cgn)uau
719
GCUGAACAUAUAC
807



gauguuaL96

guaUfaUfguucasgsc

AUAGAUGUUG






AD-538650.1
usgsugugUfuUfUfAfaca
632
VPusAfsucau(Tgn)ugu
720
AUUGUGUGUUUUA
808



aaugauaL96

uaaAfaCfacacasasu

ACAAAUGAUU






AD-538625.1
usgsucugUfgAfAfUfguc
633
VPusUfsauau(Agn)gac
721
UCUGUCUGUGAAU
809



uauauaaL96

auuCfaCfagacasgsa

GUCUAUAUAG






AD-537911.1
ususgaaaAfgGfCfAfcgc
634
VPusAfsagcc(Agn)gcg
722
AAUUGAAAAGGCA
810



uggcuuaL96

ugcCfuUfuucaasusu

CGCUGGCUUG






AD-538014.1
usgsacucAfcUfUfUfauc
635
VPusAfscuau(Tgn)gau
723
GCUGACUCACUUU
811



aauaguaL96

aaaGfuGfagucasgsc

AUCAAUAGUU






AD-538634.1
asusgucuAfuAfUfAfgug
636
VPusAfscaau(Agn)cac
724
GAAUGUCUAUAUA
812



uauuguaL96

uauAfuAfgacaususc

GUGUAUUGUG






AD-536979.1
gsusaaagAfgGfUfUfucu
637
VPusUfsgggu(Tgn)aga
725
UUGUAAAGAGGUU
813



aacccaaL96

aacCfuCfuuuacsasa

UCUAACCCAC






AD-538641.1
asusagugUfaUfUfGfugu
638
VPusUfsaaaa(Cgn)aca
726
AUAUAGUGUAUUG
814



guuuuaaL96

caaUfaCfacuausasu

UGUGUUUUAA






AD-537912.1
usgsaaaaGfgCfAfCfgcu
639
VPusCfsaagc(Cgn)agc
727
AUUGAAAAGGCAC
815



ggcuugaL96

gugCfcUfuuucasasu

GCUGGCUUGU






AD-537761.1
csuscauuAfcUfGfCfcaa
640
VPusAfsaacu(Ggn)uu
728
CCCUCAUUACUGCC
816



caguuuaL96

ggcaGfuAfaugagsgsg

AACAGUUUC






AD-537917.1
asgsgcacGfcUfGfGfcuu
641
VPusGfsauca(Cgn)aag
729
AAAGGCACGCUGG
817



gugaucaL96

ccaGfcGfugccususu

CUUGUGAUCU






AD-537916.1
asasggcaCfgCfUfGfgcu
642
VPusAfsucac(Agn)agc
730
AAAAGGCACGCUG
818



ugugauaL96

cagCfgUfgccuususu

GCUUGUGAUC






AD-538432.1
gsasucacCfuGfCfGfugu
643
VPusGfsaugg(Ggn)aca
731
GUGAUCACCUGCG
819



cccaucaL96

cgcAfgGfugaucsasc

UGUCCCAUCU






AD-538529.1
csuscaccUfcCfUfAfaua
644
VPusUfsaagu(Cgn)uau
732
GCCUCACCUCCUAA
820



gacuuaaL96

uagGfaGfgugagsgsc

UAGACUUAG






AD-537867.1
csasgccuAfaGfAfUfcau
645
VPusUfsaaac(Cgn)aug
733
GCCAGCCUAAGAUC
821



gguuuaaL96

aucUfuAfggcugsgsc

AUGGUUUAG






AD-536503.1
uscscauaCfuGfAfGfggu
646
VPusAfsauuu(Cgn)acc
734
ACUCCAUACUGAG
822



gaaauuaL96

cucAfgUfauggasgsu

GGUGAAAUUA






AD-537582.1
usgsguuuGfgGfUfAfcag
647
VPusCfsuuua(Agn)cu
735
UCUGGUUUGGGUA
823



uuaaagaL96

guacCfcAfaaccasgsa

CAGUUAAAGG






AD-537915.1
asasaggcAfcGfCfUfggc
648
VPusUfscaca(Agn)gcc
736
GAAAAGGCACGCU
824



uugugaaL96

agcGfuGfccuuususc

GGCUUGUGAU






AD-537919.1
gscsacgcUfgGfCfUfugu
649
VPusAfsagau(Cgn)aca
737
AGGCACGCUGGCU
825



gaucuuaL96

agcCfaGfcgugcscsu

UGUGAUCUUA






AD-537581.1
csusgguuUfgGfGfUfaca
650
VPusUfsuuaa(Cgn)ug
738
UUCUGGUUUGGGU
826



guuaaaaL96

uaccCfaAfaccagsasa

ACAGUUAAAG






AD-538483.1
ususcucuUfcAfGfCfuuu
651
VPusCfsuuuu(Cgn)aaa
739
AUUUCUCUUCAGC
827



gaaaagaL96

gcuGfaAfgagaasasu

UUUGAAAAGG
















TABLE 8







Modified Sense and Antisense Strand Sequences of MAPT dsRNA Agents-Screen 3















SEQ

SEQ
mRNA Target
SEQ



Sense Sequence 
ID
Antisense Sequence 
ID
Sequence
ID


Duplex ID
5′ to 3′
NO:
5′ to 3′
NO:
5′ to 3′
NO:





AD-523561.1
asgscucgCfaUfGfGf
1014
VPusUfsuuuAfcUfGfa
1107
CAAGCUCGCAUGGU
1200



ucaguaaaaaL96

ccaUfgCfgagcususg

CAGUAAAAG






AD-523565.1
csgscaugGfuCfAfGf
1015
VPusUfsugcUfuUfUfa
1108
CUCGCAUGGUCAGU
1201



uaaaagcaaaL96

cugAfcCfaugcgsasg

AAAAGCAAA






AD-523562.1
gscsucgcAfuGfGfUf
1016
VPusCfsuuuUfaCfUfga
1109
AAGCUCGCAUGGUC
1202



caguaaaagaL96

ccAfuGfcgagcsusu

AGUAAAAGC






AD-526914.1
ususgcaaGfuCfCfCfa
1017
VPusAfsgaaAfuCfAfu
1110
ACUUGCAAGUCCCA
1203



ugauuucuaL96

gggAfcUfugcaasgsu

UGAUUUCUU






AD-526394.1
gsascucaCfuUfUfAf
1018
VPusAfsacuAfuUfGfa
1111
CUGACUCACUUUAU
1204



ucaauaguuaL96

uaaAfgUfgagucsasg

CAAUAGUUC






AD-395452.1
asasaggaCfgCfAfUfg
1019
VPusUfscaaGfaUfAfca
1112
AAAAAGGACGCAUG
1205



uaucuugaaL96

ugCfgUfccuuususu

UAUCUUGAA






AD-525343.1
uscsuugaAfaUfGfCf
1020
VPusUfscuuUfaCfAfag
1113
UAUCUUGAAAUGCU
1206



uuguaaagaaL96

caUfuUfcaagasusa

UGUAAAGAG






AD-524274.1
csasggcaAfuUfCfCfu
1021
VPusGfsaauCfaAfAfag
1114
CUCAGGCAAUUCCU
1207



uuugauucaL96

gaAfuUfgccugsasg

UUUGAUUCU






AD-526956.1
gsasgggaCfaUfGfAf
1022
VPusAfsagaUfgAfUfu
1115
GGGAGGGACAUGA
1208



aaucaucuuaL96

ucaUfgUfcccucscsc

AAUCAUCUUA






AD-526986.1
uscsugucUfgUfGfAf
1023
VPusUfsauaGfaCfAfuu
1116
UUUCUGUCUGUGAA
1209



augucuauaaL96

caCfaGfacagasasa

UGUCUAUAU






AD-526296.1
gscsacgcUfgGfCfUf
1024
VPusAfsagaUfcAfCfaa
1117
AGGCACGCUGGCUU
1210



ugugaucuuaL96

gcCfaGfcgugcscsu

GUGAUCUUA






AD-526988.1
usgsucugUfgAfAfUf
1025
VPusUfsauaUfaGfAfca
1118
UCUGUCUGUGAAUG
1211



gucuauauaaL96

uuCfaCfagacasgsa

UCUAUAUAG






AD-526957.1
asgsggacAfuGfAfAf
1026
VPusUfsaagAfuGfAfu
1119
GGAGGGACAUGAA
1212



aucaucuuaaL96

uucAfuGfucccuscsc

AUCAUCUUAG






AD-526993.1
gsusgaauGfuCfUfAf
1027
VPusUfsacaCfuAfUfau
1120
CUGUGAAUGUCUAU
1213



uauaguguaaL96

agAfcAfuucacsasg

AUAGUGUAU






AD-527013.1
usgsugugUfuUfUfAf
1028
VPusAfsucaUfuUfGfu
1121
AUUGUGUGUUUUA
1214



acaaaugauaL96

uaaAfaCfacacasasu

ACAAAUGAUU






AD-526936.1
gscsaaguCfcCfAfUfg
1029
VPusGfsaagAfaAfUfca
1122
UUGCAAGUCCCAUG
1215



auuucuucaL96

ugGfgAfcuugcsasa

AUUUCUUCG






AD-395453.1
asasggacGfcAfUfGf
1030
VPusUfsucaAfgAfUfac
1123
AAAAGGACGCAUGU
1216



uaucuugaaaL96

auGfcGfuccuususu

AUCUUGAAA






AD-526989.1
gsuscuguGfaAfUfGf
1031
VPusCfsuauAfuAfGfac
1124
CUGUCUGUGAAUGU
1217



ucuauauagaL96

auUfcAfcagacsasg

CUAUAUAGU






AD-524719.1
csusaaccAfgUfUfCfu
1032
VPusUfsuacAfaAfGfag
1125
GGCUAACCAGUUCU
1218



cuuuguaaaL96

aaCfuGfguuagscsc

CUUUGUAAG






AD-526423.1
gsascuguAfuCfCfUf
1033
VPusAfsuagCfaAfAfca
1126
GAGACUGUAUCCUG
1219



guuugcuauaL96

ggAfuAfcagucsusc

UUUGCUAUU






AD-527010.1
usasuuguGfuGfUfUf
1034
VPusAfsuuuGfuUfAfa
1127
UGUAUUGUGUGUU
1220



uuaacaaauaL96

aacAfcAfcaauascsa

UUAACAAAUG






AD-525305.1
gsusuggaUfuUfGfUf
1035
VPusCfsauaAfaCfAfga
1128
UAGUUGGAUUUGU
1221



cuguuuaugaL96

caAfaUfccaacsusa

CUGUUUAUGC






AD-526987.1
csusgucuGfuGfAfAf
1036
VPusAfsuauAfgAfCfa
1129
UUCUGUCUGUGAAU
1222



ugucuauauaL96

uucAfcAfgacagsasa

GUCUAUAUA






AD-524331.1
gscsagcaAfcAfAfAf
1037
VPusUfsucaAfaUfCfcu
1130
UGGCAGCAACAAAG
1223



ggauuugaaaL96

uuGfuUfgcugcscsa

GAUUUGAAA






AD-525266.1
gsasgcagCfuGfAfAf
1038
VPusAfsuguAfuAfUfg
1131
UGGAGCAGCUGAAC
1224



cauauacauaL96

uucAfgCfugcucscsa

AUAUACAUA






AD-525342.1
asuscuugAfaAfUfGf
1039
VPusCfsuuuAfcAfAfg
1132
GUAUCUUGAAAUGC
1225



cuuguaaagaL96

cauUfuCfaagausasc

UUGUAAAGA






AD-526995.1
gsasauguCfuAfUfAf
1040
VPusAfsauaCfaCfUfau
1133
GUGAAUGUCUAUA
1226



uaguguauuaL96

auAfgAfcauucsasc

UAGUGUAUUG






AD-526298.1
ascsgcugGfcUfUfGf
1041
VPusUfsuaaGfaUfCfac
1134
GCACGCUGGCUUGU
1227



ugaucuuaaaL96

aaGfcCfagcgusgsc

GAUCUUAAA






AD-524718.1
gscsuaacCfaGfUfUfc
1042
VPusUfsacaAfaGfAfga
1135
GGGCUAACCAGUUC
1228



ucuuuguaaL96

acUfgGfuuagcscsc

UCUUUGUAA






AD-526392.1
csusgacuCfaCfUfUfu
1043
VPusCfsuauUfgAfUfaa
1136
UGCUGACUCACUUU
1229



aucaauagaL96

agUfgAfgucagscsa

AUCAAUAGU






AD-526985.1
ususcuguCfuGfUfGf
1044
VPusAfsuagAfcAfUfu
1137
CUUUCUGUCUGUGA
1230



aaugucuauaL96

cacAfgAfcagaasasg

AUGUCUAUA






AD-527011.1
asusugugUfgUfUfUf
1045
VPusCfsauuUfgUfUfaa
1138
GUAUUGUGUGUUU
1231



uaacaaaugaL96

aaCfaCfacaausasc

UAACAAAUGA






AD-525341.1
usasucuuGfaAfAfUf
1046
VPusUfsuuaCfaAfGfca
1139
UGUAUCUUGAAAU
1232



gcuuguaaaaL96

uuUfcAfagauascsa

GCUUGUAAAG






AD-525265.1
gsgsagcaGfcUfGfAf
1047
VPusUfsguaUfaUfGfu
1140
CUGGAGCAGCUGAA
1233



acauauacaaL96

ucaGfcUfgcuccsasg

CAUAUACAU






AD-527004.1
asusagugUfaUfUfGf
1048
VPusUfsaaaAfcAfCfac
1141
AUAUAGUGUAUUG
1234



uguguuuuaaL96

aaUfaCfacuausasu

UGUGUUUUAA






AD-525336.1
gscsauguAfuCfUfUf
1049
VPusAfsagcAfuUfUfca
1142
ACGCAUGUAUCUUG
1235



gaaaugcuuaL96

agAfuAfcaugcsgsu

AAAUGCUUG






AD-525353.1
csusuguaAfaGfAfGf
1050
VPusGfsuuaGfaAfAfcc
1143
UGCUUGUAAAGAG
1236



guuucuaacaL96

ucUfuUfacaagscsa

GUUUCUAACC






AD-525273.1
usgsaacaUfaUfAfCfa
1051
VPusAfsacaUfcUfAfug
1144
GCUGAACAUAUACA
1237



uagauguuaL96

uaUfaUfguucasgsc

UAGAUGUUG






AD-524638.1
uscscacaGfaAfAfCfc
1052
VPusUfsaaaAfcAfGfgg
1145
GCUCCACAGAAACC
1238



cuguuuuaaL96

uuUfcUfguggasgsc

CUGUUUUAU






AD-526350.1
gsgscuagAfuAfGfGf
1053
VPusAfscagUfaUfAfuc
1146
UGGGCUAGAUAGG
1239



auauacuguaL96

cuAfuCfuageescsa

AUAUACUGUA






AD-526962.1
csasugaaAfuCfAfUfc
1054
VPusUfsaagCfuAfAfga
1147
GACAUGAAAUCAUC
1240



uuagcuuaaL96

ugAfuUfucaugsusc

UUAGCUUAG






AD-527005.1
usasguguAfuUfGfUf
1055
VPusUfsuaaAfaCfAfca
1148
UAUAGUGUAUUGU
1241



guguuuuaaaL96

caAfuAfcacuasusa

GUGUUUUAAC






AD-525269.1
csasgcugAfaCfAfUfa
1056
VPusUfscuaUfgUfAfu
1149
AGCAGCUGAACAUA
1242



uacauagaaL96

augUfuCfagcugscsu

UACAUAGAU






AD-524715.1
asgsggcuAfaCfCfAf
1057
VPusAfsaagAfgAfAfc
1150
UUAGGGCUAACCAG
1243



guucucuuuaL96

uggUfuAfgcccusasa

UUCUCUUUG






AD-395454.1
asgsgacgCfaUfGfUfa
1058
VPusUfsuucAfaGfAfu
1151
AAAGGACGCAUGUA
1244



ucuugaaaaL96

acaUfgCfguccususu

UCUUGAAAU






AD-525307.1
usgsgauuUfgUfCfUf
1059
VPusAfsgcaUfaAfAfca
1152
GUUGGAUUUGUCU
1245



guuuaugcuaL96

gaCfaAfauccasasc

GUUUAUGCUU






AD-525352.1
gscsuuguAfaAfGfAf
1060
VPusUfsuagAfaAfCfcu
1153
AUGCUUGUAAAGA
1246



gguuucuaaaL96

cuUfuAfcaagcsasu

GGUUUCUAAC






AD-524641.1
ascsagaaAfcCfCfUfg
1061
VPusCfsaauAfaAfAfca
1154
CCACAGAAACCCUG
1247



uuuuauugaL96

ggGfuUfucugusgsg

UUUUAUUGA






AD-526297.1
csascgcuGfgCfUfUf
1062
VPusUfsaagAfuCfAfca
1155
GGCACGCUGGCUUG
1248



gugaucuuaaL96

agCfcAfgcgugscsc

UGAUCUUAA






AD-525268.1
gscsagcuGfaAfCfAf
1063
VPusCfsuauGfuAfUfa
1156
GAGCAGCUGAACAU
1249



uauacauagaL96

uguUfcAfgcugcsusc

AUACAUAGA






AD-526997.1
asusgucuAfuAfUfAf
1064
VPusAfscaaUfaCfAfcu
1157
GAAUGUCUAUAUA
1250



guguauuguaL96

auAfuAfgacaususc

GUGUAUUGUG






AD-526991.1
csusgugaAfuGfUfCf
1065
VPusCfsacuAfuAfUfag
1158
GUCUGUGAAUGUCU
1251



uauauagugaL96

acAfuUfcacagsasc

AUAUAGUGU






AD-527012.1
ususguguGfuUfUfUf
1066
VPusUfscauUfuGfUfu
1159
UAUUGUGUGUUUU
1252



aacaaaugaaL96

aaaAfcAfcacaasusa

AACAAAUGAU






AD-524720.1
usasaccaGfuUfCfUfc
1067
VPusCfsuuaCfaAfAfga
1160
GCUAACCAGUUCUC
1253



uuuguaagaL96

gaAfcUfgguuasgsc

UUUGUAAGG






AD-525303.1
usasguugGfaUfUfUf
1068
VPusUfsaaaCfaGfAfca
1161
UGUAGUUGGAUUU
1254



gucuguuuaaL96

aaUfcCfaacuascsa

GUCUGUUUAU






AD-526289.1
usgsaaaaGfgCfAfCfg
1069
VPusCfsaagCfcAfGfcg
1162
AUUGAAAAGGCACG
1255



cuggcuugaL96

ugCfcUfuuucasasu

CUGGCUUGU






AD-526992.1
usgsugaaUfgUfCfUf
1070
VPusAfscacUfaUfAfua
1163
UCUGUGAAUGUCUA
1256



auauaguguaL96

gaCfaUfucacasgsa

UAUAGUGUA






AD-525333.1
gsascgcaUfgUfAfUf
1071
VPusCfsauuUfcAfAfga
1164
AGGACGCAUGUAUC
1257



cuugaaaugaL96

uaCfaUfgcgucscsu

UUGAAAUGC






AD-524335.1
csasacaaAfgGfAfUfu
1072
VPusAfsaguUfuCfAfaa
1165
AGCAACAAAGGAUU
1258



ugaaacuuaL96

ucCfuUfuguugscsu

UGAAACUUG






AD-526990.1
uscsugugAfaUfGfUf
1073
VPusAfscuaUfaUfAfga
1166
UGUCUGUGAAUGUC
1259



cuauauaguaL96

caUfuCfacagascsa

UAUAUAGUG






AD-527006.1
asgsuguaUfuGfUfGf
1074
VPusGfsuuaAfaAfCfac
1167
AUAGUGUAUUGUG
1260



uguuuuaacaL96

acAfaUfacacusasu

UGUUUUAACA






AD-526505.1
gsasuuucAfaCfCfAfc
1075
VPusUfsagcAfaAfUfg
1168
AUGAUUUCAACCAC
1261



auuugcuaaL96

uggUfuGfaaaucsasu

AUUUGCUAG






AD-525309.1
ususcaccAfgAfGfUf
1076
VPusAfsucaUfaGfUfca
1169
GAUUCACCAGAGUG
1262



gacuaugauaL96

cuCfuGfgugaasusc

ACUAUGAUA






AD-524328.1
gsusggcaGfcAfAfCf
1077
VPusAfsaauCfcUfUfug
1170
CAGUGGCAGCAACA
1263



aaaggauuuaL96

uuGfcUfgccacsusg

AAGGAUUUG






AD-395455.1
gsgsacgcAfuGfUfAf
1078
VPusAfsuuuCfaAfGfa
1171
AAGGACGCAUGUAU
1264



ucuugaaauaL96

uacAfuGfcguccsusu

CUUGAAAUA






AD-526428.1
usasuccuGfuUfUfGf
1079
VPusAfsagcAfaUfAfgc
1172
UGUAUCCUGUUUGC
1265



cuauugcuuaL96

aaAfcAfggauascsa

UAUUGCUUG






AD-526847.1
ususcucuUfcAfGfCf
1080
VPusCfsuuuUfcAfAfa
1173
AUUUCUCUUCAGCU
1266



uuugaaaagaL96

gcuGfaAfgagaasasu

UUGAAAAGG






AD-525957.1
uscsugguUfuGfGfGf
1081
VPusUfsuaaCfuGfUfac
1174
CUUCUGGUUUGGGU
1267



uacaguuaaaL96

ccAfaAfccagasasg

ACAGUUAAA






AD-524332.1
csasgcaaCfaAfAfGfg
1082
VPusUfsuucAfaAfUfcc
1175
GGCAGCAACAAAGG
1268



auuugaaaaL96

uuUfgUfugcugscsc

AUUUGAAAC






AD-526291.1
asasaaggCfaCfGfCfu
1083
VPusCfsacaAfgCfCfag
1176
UGAAAAGGCACGCU
1269



ggcuugugaL96

cgUfgCfcuuuuscsa

GGCUUGUGA






AD-526485.1
usgsccucGfuAfAfCf
1084
VPusAfsugaAfaAfGfg
1177
ACUGCCUCGUAACC
1270



ccuuuucauaL96

guuAfcGfaggcasgsu

CUUUUCAUG






AD-526292.1
asasaggcAfcGfCfUfg
1085
VPusUfscacAfaGfCfca
1178
GAAAAGGCACGCUG
1271



gcuugugaaL96

gcGfuGfccuuususc

GCUUGUGAU






AD-524642.1
csasgaaaCfcCfUfGfu
1086
VPusUfscaaUfaAfAfac
1179
CACAGAAACCCUGU
1272



uuuauugaaL96

agGfgUfuucugsusg

UUUAUUGAG






AD-526290.1
gsasaaagGfcAfCfGfc
1087
VPusAfscaaGfcCfAfgc
1180
UUGAAAAGGCACGC
1273



uggcuuguaL96

guGfcCfuuuucsasa

UGGCUUGUG






AD-525959.1
usgsguuuGfgGfUfAf
1088
VPusCfsuuuAfaCfUfg
1181
UCUGGUUUGGGUAC
1274



caguuaaagaL96

uacCfcAfaaccasgsa

AGUUAAAGG






AD-526293.1
asasggcaCfgCfUfGfg
1089
VPusAfsucaCfaAfGfcc
1182
AAAAGGCACGCUGG
1275



cuugugauaL96

agCfgUfgccuususu

CUUGUGAUC






AD-524899.1
csasuacuGfaGfGfGf
1090
VPusUfsuaaUfuUfCfac
1183
UCCAUACUGAGGGU
1276



ugaaauuaaaL96

ccUfcAfguaugsgsa

GAAAUUAAG






AD-526391.1
gscsugacUfcAfCfUf
1091
VPusUfsauuGfaUfAfaa
1184
CUGCUGACUCACUU
1277



uuaucaauaaL96

guGfaGfucagcsasg

UAUCAAUAG






AD-525956.1
ususcuggUfuUfGfGf
1092
VPusUfsaacUfgUfAfcc
1185
ACUUCUGGUUUGGG
1278



guacaguuaaL96

caAfaCfcagaasgsu

UACAGUUAA






AD-525958.1
csusgguuUfgGfGfUf
1093
VPusUfsuuaAfcUfGfu
1186
UUCUGGUUUGGGU
1279



acaguuaaaaL96

accCfaAfaccagsasa

ACAGUUAAAG






AD-526351.1
gscsuagaUfaGfGfAf
1094
VPusUfsacaGfuAfUfau
1187
GGGCUAGAUAGGA
1280



uauacuguaaL96

ccUfaUfcuagcscsc

UAUACUGUAU






AD-526138.1
csuscauuAfcUfGfCfc
1095
VPusAfsaacUfgUfUfg
1188
CCCUCAUUACUGCC
1281



aacaguuuaL96

gcaGfuAfaugagsgsg

AACAGUUUC






AD-524898.1
cscsauacUfgAfGfGf
1096
VPusUfsaauUfuCfAfcc
1189
CUCCAUACUGAGGG
1282



gugaaauuaaL96

cuCfaGfuauggsasg

UGAAAUUAA






AD-526244.1
csasgccuAfaGfAfUfc
1097
VPusUfsaaaCfcAfUfga
1190
GCCAGCCUAAGAUC
1283



augguuuaaL96

ucUfuAfggcugsgsc

AUGGUUUAG






AD-525359.1
asasgaggUfuUfCfUf
1098
VPusGfsgguGfgGfUfu
1191
UAAAGAGGUUUCU
1284



aacccacccaL96

agaAfaCfcucuususa

AACCCACCCU






AD-526393.1
usgsacucAfcUfUfUf
1099
VPusAfscuaUfuGfAfu
1192
GCUGACUCACUUUA
1285



aucaauaguaL96

aaaGfuGfagucasgsc

UCAAUAGUU






AD-525355.1
usgsuaaaGfaGfGfUf
1100
VPusGfsgguUfaGfAfa
1193
CUUGUAAAGAGGU
1286



uucuaacccaL96

accUfcUfuuacasasg

UUCUAACCCA






AD-526288.1
ususgaaaAfgGfCfAf
1101
VPusAfsagcCfaGfCfgu
1194
AAUUGAAAAGGCAC
1287



cgcuggcuuaL96

gcCfuUfuucaasusu

GCUGGCUUG






AD-524897.1
uscscauaCfuGfAfGf
1102
VPusAfsauuUfcAfCfcc
1195
ACUCCAUACUGAGG
1288



ggugaaauuaL96

ucAfgUfauggasgsu

GUGAAAUUA






AD-526796.1
gsasucacCfuGfCfGfu
1103
VPusGfsaugGfgAfCfac
1196
GUGAUCACCUGCGU
1289



gucccaucaL96

gcAfgGfugaucsasc

GUCCCAUCU






AD-526295.1
gsgscacgCfuGfGfCf
1104
VPusAfsgauCfaCfAfag
1197
AAGGCACGCUGGCU
1290



uugugaucuaL96

ccAfgCfgugccsusu

UGUGAUCUU






AD-526294.1
asgsgcacGfcUfGfGfc
1105
VPusGfsaucAfcAfAfgc
1198
AAAGGCACGCUGGC
1291



uugugaucaL96

caGfcGfugccususu

UUGUGAUCU






AD-525356.1
gsusaaagAfgGfUfUf
1106
VPusUfsgggUfuAfGfa
1199
UUGUAAAGAGGUU
1292



ucuaacccaaL96

aacCfuCfuuuacsasa

UCUAACCCAC
















TABLE 9







MAPT Single Dose Screens in BE(2)C Cells-Screen 1












50 nM Dose
10 nM Dose
1 nM Dose
0.1 nM Dose
















Avg %

Avg %

Avg %

Avg %




MAPT

MAPT

MAPT

MAPT




mRNA

mRNA

mRNA

mRNA



Duplex
Remaining
SD
Remaining
SD
Remaining
SD
Remaining
SD


















AD-523799.1
17.36
3.97
11.83
1.28
17.00
3.42
33.86
5.82


AD-523802.1
24.65
6.12
14.26
4.22
17.60
1.38
37.77
4.80


AD-523795.1
15.06
1.14
14.32
4.31
19.43
2.63
49.55
5.88


AD-523810.1
22.03
2.01
15.54
0.42
24.58
3.23
66.10
9.27


AD-523809.1
22.64
1.86
16.37
1.29
22.27
1.48
51.72
4.70


AD-1019331.1
22.45
6.03
17.14
2.18
18.12
5.03
46.43
8.15


AD-523801.1
30.34
5.46
17.25
1.28
23.02
0.44
50.53
3.94


AD-523823.1
32.84
3.33
17.73
1.68
30.11
4.13
52.21
5.32


AD-523798.1
20.68
2.76
17.96
1.61
21.10
2.03
38.97
3.21


AD-523816.1
24.91
6.18
18.77
1.88
29.33
5.29
54.12
7.24


AD-523824.1
34.17
4.53
18.89
1.66
27.31
3.46
60.77
7.82


AD-523800.1
27.52
5.67
19.43
2.27
27.63
3.56
60.07
5.86


AD-523796.1
19.03
6.36
20.64
3.71
21.27
3.35
54.11
3.40


AD-523803.1
25.88
7.39
21.13
2.70
26.60
1.32
67.90
18.26


AD-523817.1
37.63
2.85
21.47
2.78
29.58
4.88
69.18
10.99


AD-523825.1
23.52
3.91
22.27
6.00
30.65
8.26
69.55
14.02


AD-523811.1
23.44
3.46
23.39
1.57
31.07
4.77
80.50
9.46


AD-523854.1
38.58
6.09
23.51
4.93
41.01
4.24
82.38
10.53


AD-523797.1
34.14
5.08
25.19
1.67
31.86
1.84
66.73
4.15


AD-523805.1
39.86
2.59
25.33
2.96
34.54
6.80
72.34
9.00


AD-523814.1
31.62
5.51
25.33
3.91
38.60
1.56
66.76
9.04


AD-523804.1
34.84
5.59
25.45
1.55
32.22
6.74
68.98
4.43


AD-1019356.1
30.49
5.19
25.70
1.16
37.22
3.05
83.40
4.07


AD-523846.1
29.77
3.31
25.92
2.07
41.48
6.52
82.33
5.66


AD-523808.1
41.79
5.30
26.76
2.40
33.67
3.71
74.54
4.14


AD-523835.1
30.93
7.93
26.84
2.16
39.37
2.31
62.21
4.90


AD-1019357.1
36.22
1.99
26.90
3.71
37.60
3.98
76.42
5.26


AD-523853.1
27.78
6.30
28.49
4.67
43.46
5.81
88.34
9.82


AD-523819.1
N/A
N/A
28.54
3.64
42.29
7.21
93.19
4.81


AD-523830.1
34.94
3.25
29.70
1.93
46.68
9.09
84.11
14.32


AD-523834.1
31.77
2.15
29.97
0.78
50.66
10.05
79.85
15.25


AD-523850.1
35.59
7.65
30.23
0.56
32.27
2.34
72.88
4.06


AD-523820.1
41.60
4.75
30.69
3.92
63.61
3.48
86.22
4.77


AD-523849.1
36.88
6.27
30.74
9.03
65.52
11.32
117.05
8.49


AD-523845.1
41.26
4.71
31.05
3.90
52.35
9.41
87.04
13.11


AD-393758.3
102.71
7.60
31.14
9.50
48.85
7.58
94.84
5.35


AD-523848.1
38.58
0.98
31.32
4.94
30.21
6.74
82.58
19.58


AD-523840.1
38.40
3.17
31.47
5.14
49.17
3.50
80.62
7.66


AD-523828.1
38.31
0.88
31.80
1.25
56.98
11.05
96.66
8.50


AD-523822.1
40.68
3.68
32.06
7.63
48.94
5.35
73.53
9.58


AD-523806.1
42.23
3.39
33.39
4.10
38.73
4.97
76.41
7.34


AD-523831.1
45.89
4.78
33.75
4.48
36.69
5.48
76.20
6.09


AD-393757.1
28.66
5.31
33.83
4.47
45.96
8.04
90.16
7.54


AD-523839.1
47.43
3.54
34.37
2.50
54.71
3.17
87.09
7.01


AD-523815.1
51.86
3.12
34.40
4.52
43.71
10.84
78.90
3.64


AD-523856.1
47.69
9.26
34.49
1.24
49.13
4.20
106.48
4.88


AD-1019330.1
42.05
8.45
34.61
5.05
45.07
5.15
88.42
8.85


AD-523829.1
46.44
4.53
38.58
3.44
61.47
4.02
84.88
9.60


AD-523855.1
58.26
9.58
38.87
5.19
58.64
6.76
91.31
33.98


AD-523836.1
46.88
8.29
39.08
4.02
60.37
8.65
84.60
12.08


AD-1019329.1
46.82
5.33
40.62
4.47
50.55
6.13
79.08
7.40


AD-523843.1
44.23
2.98
41.23
4.16
56.43
7.41
83.33
14.89


AD-523807.1
53.76
7.43
41.33
7.22
53.88
6.20
76.36
8.12


AD-523821.1
57.09
5.83
43.35
3.19
68.52
7.26
96.94
7.49


AD-523826.1
66.07
3.43
43.54
4.85
85.29
8.12
113.96
30.15


AD-523847.1
62.91
2.16
44.18
5.29
65.26
11.48
99.54
8.60


AD-523786.1
57.38
1.50
47.58
10.57
59.96
6.62
107.01
4.44


AD-523812.1
N/A
N/A
47.59
4.50
61.83
2.47
107.93
3.85


AD-523827.1
62.22
4.24
48.54
3.90
74.19
9.00
114.87
3.91


AD-523844.1
60.08
3.38
50.30
5.01
75.30
8.54
84.25
8.63


AD-523851.1
60.77
13.33
53.50
4.43
74.46
6.10
112.55
11.72


AD-523818.1
57.31
6.99
53.83
6.54
69.76
6.65
101.09
12.70


AD-523832.1
54.56
8.91
56.40
7.44
79.87
12.26
122.46
16.33


AD-523813.1
86.63
8.22
65.84
5.07
74.62
9.81
86.86
8.21


AD-523841.1
70.75
1.45
71.81
17.54
100.34
11.20
126.55
3.27


AD-1019352.1
90.08
4.18
81.29
7.58
82.18
8.87
106.93
10.34


AD-1019354.1
100.85
16.07
84.77
8.38
84.08
14.32
115.08
11.91


AD-523852.1
104.45
6.49
85.75
5.16
105.39
7.11
124.46
13.53


AD-523842.1
101.86
4.42
86.70
6.16
104.06
5.91
117.32
12.82


AD-523833.1
66.80
6.03
88.60
33.58
80.46
22.83
100.71
19.71


AD-1019328.1
100.92
11.47
90.93
7.76
93.23
13.25
100.56
4.59


AD-1019355.1
89.32
13.16
99.94
15.77
90.59
5.30
95.12
3.94


AD-1019353.1
118.09
10.16
100.93
9.24
92.43
3.47
109.80
3.42


AD-1019350.1
123.59
27.60
119.47
14.52
110.74
9.75
107.58
8.73


AD-1019351.1
126.66
52.81
138.14
16.24
121.09
3.59
112.83
10.46
















TABLE 10







MAPT Single Dose Screens in BE(2)C Cells-Screen 2











10 nM Dose
1 nM Dose
0.1 nM Dose














Avg %

Avg %

Avg %




MAPT

MAPT

MAPT




mRNA

mRNA

mRNA



Duplex
Remaining
SD
Remaining
SD
Remaining
SD
















AD-535094.1
35.76
3.97
46.85
7.73
73.63
8.23


AD-535095.1
47.10
5.31
57.17
5.03
84.07
8.69


AD-538647.1
48.79
1.19
51.77
5.37
69.46
5.30


AD-535922.1
49.19
4.51
58.00
3.65
66.15
4.62


AD-536317.1
52.43
6.66
67.63
16.86
76.08
4.48


AD-536911.1
52.76
7.29
73.99
19.66
60.59
12.06


AD-538626.1
52.98
4.51
67.94
7.88
87.83
11.34


AD-535864.1
53.86
1.57
53.45
4.96
58.45
7.29


AD-535925.1
54.21
16.94
55.64
7.40
67.07
14.57


AD-538012.1
54.39
5.16
68.15
11.29
80.64
10.99


AD-536872.1
56.50
3.43
63.99
5.43
74.55
7.14


AD-536954.1
57.36
6.40
67.98
5.59
64.86
5.82


AD-536964.1
57.85
7.00
63.81
9.50
78.27
9.12


AD-536318.1
58.28
5.21
74.33
10.15
74.24
3.98


AD-536976.1
58.40
5.31
69.37
6.99
77.16
8.95


AD-538630.1
58.93
4.10
71.69
5.10
80.90
5.93


AD-538624.1
59.72
3.62
76.16
7.62
88.40
6.89


AD-538594.1
60.04
5.54
68.11
3.65
96.64
8.71


AD-536915.1
60.28
4.41
66.46
5.44
81.81
15.47


AD-536870.1
60.55
6.78
67.17
5.88
67.38
7.16


AD-536236.1
60.81
4.65
72.33
2.87
81.77
6.44


AD-536319.1
60.97
3.59
78.50
6.73
82.85
5.52


AD-536966.1
61.25
8.38
65.89
5.53
85.73
15.42


AD-538643.1
61.41
7.04
67.98
5.76
82.79
8.84


AD-536873.1
62.21
2.32
72.29
7.01
78.21
10.07


AD-536952.1
62.32
6.66
65.83
7.80
76.44
11.24


AD-536959.1
62.62
22.64
71.73
16.89
63.72
16.30


AD-537921.1
62.72
6.15
77.86
6.92
101.16
7.46


AD-538652.1
62.75
2.52
66.45
5.20
85.73
7.62


AD-538649.1
62.78
5.41
69.25
5.14
79.92
5.74


AD-538623.1
62.95
4.71
77.45
4.67
93.85
10.54


AD-538573.1
63.02
10.35
71.64
4.35
96.74
7.54


AD-537920.1
63.37
11.00
69.38
5.51
96.52
13.11


AD-536939.1
63.57
5.74
71.47
5.84
83.48
16.47


AD-538015.1
63.70
8.95
85.29
13.45
94.52
15.51


AD-536953.1
63.93
7.91
66.90
6.78
72.74
4.40


AD-536237.1
64.02
4.11
72.66
8.39
82.24
11.96


AD-538628.1
64.33
5.43
70.86
3.41
87.75
6.31


AD-538632.1
64.48
4.39
73.73
9.24
97.61
8.34


AD-536975.1
64.98
9.64
70.42
9.15
69.13
7.30


AD-538599.1
65.71
6.32
66.54
8.25
93.84
5.77


AD-536978.1
66.37
7.47
65.89
5.50
77.09
7.81


AD-536956.1
67.30
6.10
77.35
9.48
80.58
7.54


AD-538571.1
68.13
20.52
84.47
18.75
102.13
30.34


AD-535921.1
68.19
8.02
73.24
7.87
74.22
6.27


AD-538593.1
68.56
3.04
81.22
2.63
104.96
4.62


AD-537974.1
68.68
2.97
71.22
5.75
97.28
5.14


AD-537973.1
69.43
10.63
81.52
8.52
112.03
1.48


AD-536982.1
69.89
19.69
85.54
37.34
82.26
33.94


AD-535918.1
70.04
7.81
75.07
4.56
78.75
6.80


AD-538627.1
70.23
7.23
77.23
7.74
95.64
5.67


AD-536913.1
70.95
13.00
73.73
15.50
98.54
13.42


AD-536869.1
71.88
6.62
84.66
2.07
80.49
10.02


AD-536965.1
72.02
4.46
76.02
5.30
99.07
7.12


AD-537914.1
72.08
5.66
82.07
2.69
107.92
8.77


AD-536504.1
72.23
3.63
83.85
15.57
103.03
9.41


AD-538013.1
72.37
7.91
87.46
5.78
98.39
7.19


AD-537579.1
72.49
6.16
82.27
12.01
100.88
8.48


AD-538629.1
73.44
5.16
79.31
3.85
104.68
9.84


AD-536233.1
73.57
12.33
79.27
11.10
92.54
15.86


AD-538141.1
73.58
2.10
79.05
4.13
104.80
16.39


AD-538622.1
73.71
5.63
79.32
3.90
99.78
7.36


AD-537580.1
73.92
12.56
91.82
8.93
114.56
10.74


AD-536505.1
76.21
3.52
91.14
8.18
102.96
13.26


AD-537918.1
76.41
5.11
82.87
15.29
101.61
13.29


AD-537913.1
76.78
6.94
89.67
10.98
116.55
13.66


AD-538642.1
76.78
10.38
78.85
1.90
94.35
11.27


AD-536877.1
77.42
6.51
89.31
13.19
90.03
16.22


AD-538650.1
77.44
7.13
82.05
11.20
103.07
6.80


AD-538625.1
77.58
29.08
92.50
30.50
105.00
26.42


AD-537911.1
78.19
6.04
84.02
5.02
102.26
10.54


AD-538014.1
78.92
8.65
91.67
10.62
103.65
7.94


AD-538634.1
79.38
5.33
92.21
11.29
102.96
11.07


AD-536979.1
80.06
7.58
83.89
9.75
83.49
9.04


AD-538641.1
82.10
16.21
108.21
33.90
106.27
20.95


AD-537912.1
82.11
8.49
90.65
7.62
117.90
9.60


AD-537761.1
82.92
9.96
89.07
9.42
96.90
3.72


AD-537917.1
83.41
6.99
93.61
12.88
94.23
7.10


AD-537916.1
83.48
8.36
93.61
6.79
100.30
3.39


AD-538432.1
84.04
12.10
88.02
4.69
118.69
12.50


AD-538529.1
86.01
6.49
100.18
3.64
110.99
17.88


AD-537867.1
86.51
7.59
104.38
17.22
98.08
7.46


AD-536503.1
89.05
17.95
96.08
13.91
80.32
18.37


AD-537582.1
89.85
4.17
114.48
4.03
110.08
14.89


AD-537915.1
90.25
14.83
109.37
7.19
128.31
18.33


AD-537919.1
91.79
17.57
102.61
16.28
118.80
34.98


AD-537581.1
94.66
8.07
98.82
12.41
116.58
8.07


AD-538483.1
100.69
3.19
110.69
9.92
104.44
11.39
















TABLE 11







MAPT Single Dose Screens in BE(2)C Cells-Screen 3











10 nM Dose
1 nM Dose
0.1 nM Dose














Avg %

Avg %

Avg %




MAPT

MAPT

MAPT




mRNA

mRNA

mRNA



Duplex
Remaining
SD
Remaining
SD
Remaining
SD
















AD-523561.1
24.25
4.75
41.99
4.98
82.19
23.42


AD-523565.1
27.04
2.31
38.72
1.37
64.07
18.18


AD-523562.1
31.34
4.59
63.36
2.89
79.88
8.60


AD-526914.1
51.27
5.89
68.78
8.49
73.60
10.78


AD-526394.1
51.80
4.57
68.62
7.93
85.80
13.09


AD-395452.1
52.02
6.28
70.03
2.56
71.84
2.62


AD-525343.1
53.14
2.47
73.00
9.09
65.65
5.26


AD-524274.1
53.18
11.25
73.03
13.76
74.86
16.82


AD-526956.1
55.49
2.40
69.19
3.74
83.47
5.73


AD-526986.1
55.75
12.71
67.26
6.74
82.19
5.91


AD-526296.1
57.10
7.67
62.13
1.83
88.80
5.26


AD-526988.1
57.17
4.10
68.30
1.72
70.09
2.53


AD-526957.1
57.35
2.66
71.03
6.52
83.66
8.91


AD-526993.1
57.49
2.34
73.71
10.34
74.47
7.49


AD-527013.1
59.03
9.70
78.09
9.74
83.15
9.66


AD-526936.1
59.58
2.95
76.70
5.34
82.47
1.93


AD-395453.1
59.92
9.75
76.90
5.81
79.27
1.57


AD-526989.1
60.47
8.42
79.80
9.09
79.67
9.60


AD-524719.1
60.48
1.36
76.63
2.48
95.71
6.15


AD-526423.1
60.79
7.37
71.34
2.60
80.78
2.42


AD-527010.1
60.86
8.24
71.48
7.52
76.33
6.19


AD-525305.1
61.31
9.29
101.55
49.60
71.50
3.58


AD-526987.1
61.65
7.18
101.29
40.95
93.55
14.50


AD-524331.1
61.89
7.55
69.03
4.56
96.90
9.09


AD-525266.1
62.38
0.43
81.15
9.74
78.98
10.39


AD-525342.1
62.96
2.46
73.61
4.98
67.30
3.67


AD-526995.1
63.38
5.58
73.78
4.08
79.53
10.96


AD-526298.1
63.43
9.00
61.85
5.32
89.31
8.65


AD-524718.1
63.50
2.14
92.54
9.33
105.11
6.99


AD-526392.1
63.79
9.35
65.84
9.52
75.66
3.01


AD-526985.1
63.91
14.65
76.32
2.35
78.06
6.17


AD-527011.1
64.03
3.23
78.11
8.73
78.45
5.83


AD-525341.1
64.23
5.92
72.27
5.91
67.06
7.45


AD-525265.1
64.79
6.18
75.73
10.69
87.89
9.59


AD-527004.1
64.82
7.28
63.29
4.61
76.33
3.53


AD-525336.1
64.83
11.12
80.03
20.95
67.48
5.03


AD-525353.1
64.90
5.94
85.77
10.42
91.67
11.10


AD-525273.1
65.56
5.72
78.29
12.90
78.31
19.70


AD-524638.1
65.61
1.80
92.33
21.29
90.73
7.19


AD-526350.1
65.71
6.19
63.29
4.00
87.15
5.74


AD-526962.1
65.96
10.41
75.90
7.41
89.12
5.59


AD-527005.1
65.99
4.44
64.80
10.69
75.15
6.07


AD-525269.1
66.10
2.88
83.00
6.51
69.89
10.33


AD-524715.1
66.47
3.71
84.61
15.13
89.26
15.60


AD-395454.1
66.86
7.80
87.90
3.70
64.50
14.56


AD-525307.1
66.97
6.41
74.53
7.67
65.62
4.65


AD-525352.1
67.17
13.74
73.45
9.77
74.40
6.13


AD-524641.1
67.37
2.96
69.97
9.15
81.33
9.62


AD-526297.1
67.73
3.10
61.09
2.81
81.82
3.96


AD-525268.1
67.83
5.44
78.87
12.21
96.08
2.23


AD-526997.1
68.00
9.39
92.04
34.36
102.14
18.87


AD-526991.1
68.04
5.87
79.31
8.41
83.68
3.96


AD-527012.1
68.67
4.36
76.25
4.13
78.09
6.83


AD-524720.1
68.77
2.59
82.86
10.38
112.52
15.70


AD-525303.1
69.44
15.86
107.37
33.92
123.02
51.68


AD-526289.1
69.83
4.96
84.13
9.96
86.99
5.63


AD-526992.1
69.85
6.36
76.94
7.30
83.97
12.58


AD-525333.1
69.96
8.49
110.83
33.93
123.94
65.67


AD-524335.1
70.15
22.32
74.57
26.56
82.47
9.69


AD-526990.1
70.16
2.78
88.92
9.37
82.68
8.97


AD-527006.1
70.32
9.10
73.70
7.13
77.32
4.98


AD-526505.1
71.05
1.71
68.69
10.79
89.52
9.27


AD-525309.1
71.25
6.44
74.02
14.37
75.43
12.20


AD-524328.1
71.41
4.91
75.62
9.86
91.35
14.35


AD-395455.1
71.54
12.98
86.22
6.66
79.04
11.18


AD-526428.1
72.21
3.20
68.14
8.91
82.27
4.63


AD-526847.1
72.53
5.07
78.38
4.07
94.95
12.28


AD-525957.1
72.71
3.10
73.73
4.87
82.24
6.38


AD-524332.1
73.34
3.13
86.68
9.09
121.33
17.30


AD-526291.1
73.45
10.45
82.25
9.88
82.01
7.79


AD-526485.1
75.46
7.07
88.92
17.06
110.64
6.07


AD-526292.1
76.34
3.87
84.96
5.08
91.33
6.41


AD-524642.1
76.36
4.44
89.36
5.71
78.17
9.16


AD-526290.1
76.40
0.35
81.85
2.77
93.57
6.41


AD-525959.1
80.21
5.70
78.87
10.19
94.76
11.52


AD-526293.1
80.56
4.21
87.13
12.23
90.70
13.76


AD-524899.1
80.63
7.75
99.24
7.93
96.78
3.60


AD-526391.1
81.11
11.53
67.87
4.96
88.18
5.14


AD-525956.1
81.17
12.92
82.75
4.11
76.04
7.59


AD-525958.1
81.48
5.89
97.77
16.51
86.08
9.55


AD-526351.1
81.74
7.87
80.06
6.54
83.31
5.66


AD-526138.1
82.32
1.60
78.42
13.50
86.18
3.40


AD-524898.1
83.75
11.29
133.26
47.06
89.58
15.95


AD-526244.1
85.72
8.98
81.31
12.02
88.47
4.25


AD-525359.1
88.09
37.42
79.82
4.76
78.34
2.90


AD-526393.1
90.24
27.07
77.17
13.67
83.78
12.77


AD-525355.1
91.77
20.82
95.83
12.89
91.45
4.65


AD-526288.1
93.76
43.34
71.19
8.02
94.88
12.86


AD-524897.1
96.55
23.90
129.17
45.05
96.85
22.02


AD-526796.1
104.68
6.01
94.28
11.15
105.95
5.95


AD-526295.1
107.65
29.68
103.40
23.46
98.05
19.18


AD-526294.1
112.78
6.67
99.54
7.26
89.79
6.44


AD-525356.1
129.10
42.23
111.99
33.71
82.86
5.42
















TABLE 12







Unmodified Sense and Antisense Strand Sequences of MAPT dsRNA Agents-Screen 4
















Sense
SEQ

Range
Antisense
SEQ

Range


Duplex
Sequence
ID
Source and
in NM_
Sequence
ID
Source and
in NM_


Name
5’ to 3’
NO:
Range
001038609.2
5’ to 3’
NO:
Range
001038609.2





AD-
AGUGUGCAAAU
1293
NM_
1065-1085
UUUGUAGACU
1341
NM_
1063-1085


393758.1
AGUCUACAAA

001038609.2_

AUUUGCACAC

001038609.2_






1065-1085_

UGC

1063-1085_






G21U_s



C1A_as






AD-
ACAGAGUCCAG
1294
NM_
1195-1215
UAAUCUUCGA
1342
NM_
1193-1215


393888.1
UCGAAGAUUA

001038609.2_

CUGGACUCUG

001038609.2_






1195-1215_

UCC

1193-1215_






G21U_s



C1A_as






AD-
GUGUGCAAAUA
1295
NM_
1066-1086
UCUUGUAGAC
1343
NM_
1064-1086


393759.1
GUCUACAAGA

001038609.2_

UAUUUGCACA

001038609.2_






1066-1086_

CUG

1064-1086_






C21U_s



G1A_as






AD-
GUGCAAAUAGU
1296
NM_
1068-1088
UGGCUUGUAG
1344
NM_
1066-1088


393761.1
CUACAAGCCA

001038609.2_

ACUAUUUGCA

001038609.2_






1068-1088_

CAC

1066-1088_






G21U_s



C1A_as






AD-
UCAGGUGAACC
1297
NM_
 705-725
UGAUUUUGGU
1345
NM_
 703-725


393495.1
ACCAAAAUCA

001038609.2_

GGUUCACCUG

001038609.2_






705-725_

ACC

703-725_






C21U_s



G1A_as






AD-
UGUGCAAAUAG
1298
NM_
1067-1087
UGCUUGUAGA
1346
NM_
1065-1087


393760.1
UCUACAAGCA

001038609.2_

CUAUUUGCAC

001038609.2_






1067-1087_

ACU

1065-1087_






C21U_s



G1A_as






AD-
UUUAUCAAUAG
1299
NM_
4520-4540
UUAAAUGGAA
1347
NM_
4518-4540


396425.1
UUCCAUUUAA

001038609.2_

CUAUUGAUAA

001038609.2_






4520-4540_s

AGU

4518-4540_as






AD-
ACCAGAGUGAC
1300
NM_
3341-3361
UACUAUCAUA
1348
NM_
3339-3361


395441.1
UAUGAUAGUA

001038609.2_

GUCACUCUGG

001038609.2_






3341-3361_

UGA

3339-3361_






G21U_s



C1A_as






AD-
UUCACUUUAUC
1301
NM_
4515-4535
UGGAACUAUU
1349
NM_
4513-4535


396420.1
AAUAGUUCCA

001038609.2_

GAUAAAGUGA

001038609.2_






4515-4535_s

AUU

4513-4535_as






AD-
UGUGAAUGUCC
1302
NM_
5284-5304
UACACUAUAU
1350
NM_
5282-5304


397103.1
AUAUAGUGUA

001038609.2_

GGACAUUCAC

001038609.2_






5284-5304_s

AGA

5282-5304_as






AD-
GUGAAUGUCCA
1303
NM_
5285-5305
UUACACUAUA
1351
NM_
5283-5305


397104.1
UAUAGUGUAA

001038609.2_

UGGACAUUCA

001038609.2_






5285-5305_s

CAG

5283-5305_as






AD-
CGAUGCUAAGA
1304
NM_
 344-364
UUUGGAGUGC
1352
NM_
 342-364


393239.1
GCACUCCAAA

001038609.2_

UCUUAGCAUC

001038609.2_






344-364_

GGA

342-364_






C21U_s



G1A_as






AD-
CUGUGAAUGUC
1305
NM_
5283-5303
UCACUAUAUG
1353
NM_
5281-5303


397102.1
CAUAUAGUGA

001038609.2_

GACAUUCACA

001038609.2_






5283-5303_s

GAC

5281-5303_as






AD-
UGGAAAUAAAG
1306
NM_
5354-5374
UGAGUAAUAA
1354
NM_
5352-5374


397167.1
UUAUUACUCA

001038609.2_

CUUUAUUUCC

001038609.2_






5354-5374_s

AAA

5352-5374_as






AD-
UGGGACUUUAG
1307
NM_
2459-2479
UUGGUUAGCC
1355
NM_
2457-2479


394791.1
GGCUAACCAA

001038609.2_

CUAAAGUCCC

001038609.2_






2459-2479_

AGG

2457-2479_






G21U_s



C1A_as






AD-
AGGCAGUGUGC
1308
NM_
1061-1081
UAGACUAUUU
1356
NM_
1059-1081


393754.1
AAAUAGUCUA

001038609.2_

GCACACUGCC

001038609.2_






1061-1081_s

UCC

1059-1081_as






AD-
CAGGUGAACCA
1309
NM_
 706-726
UGGAUUUUGG
1357
NM_
 704-726


393496.1
CCAAAAUCCA

001038609.2_

UGGUUCACCU

001038609.2_






706-726_

GAC

704-726_






G21U_s



C1A_as






AD-
AAGGUGCAGAU
1310
NM_
 972-992
UUUAUUAAUU
1358
NM_
 970-992


393667.1
AAUUAAUAAA

001038609.2_

AUCUGCACCU

001038609.2_






972-992_

UGC

970-992_






G21U_s



C1A_as






AD-
AUCCCAUUUGA
1311
NM_
4564-4584
UCAAGCAAUC
1359
NM_
4562-4584


396467.1
GAUUGCUUGA

001038609.2_

UCAAAUGGGA

001038609.2_






4564-4584_

UAC

4562-4584_






C21U_s



G1A_as






AD-
GCUGGAUCUUA
1312
NM_
 995-1015
UGGACGUUGC
1360
NM_
 993-1015


393690.1
GCAACGUCCA

001038609.2_

UAAGAUCCAG

001038609.2_






995-1015_s

CUU

993-1015_as






AD-
CUUCAAUGAUA
1313
NM_
4546-4566
UAUACACUCU
1361
NM_
4544-4566


396449.1
AGAGUGUAUA

001038609.2_

UAUCAUUGAA

001038609.2_






4546-4566_

GUC

4544-4566_






C21U_s



G1A_as






AD-
UGGCAAGGUGC
1314
NM_
 968-988
UUAAUUAUCU
1362
NM_
 966-988


393663.1
AGAUAAUUAA

001038609.2_

GCACCUUGCC

001038609.2_






968-988_s

ACC

966-988_as






AD-
AGGGAACAUCC
1315
NM_
1127-1147
UGCUUGUGAU
1363
NM_
1125-1147


393820.1
AUCACAAGCA

001038609.2_

GGAUGUUCCC

001038609.2_






1127-1147_

UAA

1125-1147_






C21U_s



G1A_as






AD-
CAUUUAAAUUG
1316
NM_
4534-4554
UCAUUGAAGU
1364
NM_
4532-4554


396437.1
ACUUCAAUGA

001038609.2_

CAAUUUAAAU

001038609.2_






4534-4554_s

GGA

4532-4554_as






AD-
UCUGUCGAUUA
1317
NM_
 158-178
UAAAGCCUGA
1365
NM_
 156-178


393084.1
UCAGGCUUUA

001038609.2_

UAAUCGACAG

001038609.2_






158-178_s

AAG

156-178_as






AD-
CUGGUUCCUCC
1318
NM_
4494-4514
UUAAGAGCUU
1366
NM_
4492-4514


396401.1
AAGCUCUUAA

001038609.2_

GGAGGAACCA

001038609.2_






4494-4514_s

GGC

4492-4514_as






AD-
CCAAAUUGAUU
1319
NM_
1691-1711
UUAGCCCACA
1367
NM_
1689-1711


394296.1
UGUGGGCUAA

001038609.2_

AAUCAAUUUG

001038609.2_






1691-1711_s

GAA

1689-1711_as






AD-
AUGUUUUGAAG
1320
NM_
3544-3564
UGAAGAAACC
1368
NM_
3542-3564


395574.1
GGUUUCUUCA

001038609.2_

CUUCAAAACA

001038609.2_






3544-3564_s

UGG

3542-3564_as






AD-
CGCCAGGAGUU
1321
NM_
 198-218
UAUUGUGUCA
1369
NM_
 196-218


393124.1
UGACACAAUA

001038609.2_

AACUCCUGGC

001038609.2_






198-218_

GAG

196-218_






G21U_s



C1A_as






AD-
AGAUAAUUAAU
1322
NM_
 979-999
UCAGCUUCUU
1370
NM_
 977-999


393674.1
AAGAAGCUGA

001038609.2_

AUUAAUUAUC

001038609.2_






979-999_

UGC

977-999_






G21U_s



C1A_as






AD-
UCAAUGAUAAG
1323
NM_
4548-4568
UGGAUACACU
1371
NM_
4546-4568


396451.1
AGUGUAUCCA

001038609.2_

CUUAUCAUUG

001038609.2_






4548-4568_

AAG

4546-4568_






C21U_s



G1A_as






AD-
AUGAUAAGAGU
1324
NM_
4551-4571
UAUGGGAUAC
1372
NM_
4549-4571


396454.1
GUAUCCCAUA

001038609.2_

ACUCUUAUCA

001038609.2_






4551-4571_s

UUG

4549-4571_as






AD-
GACAGGACAGG
1325
NM_
 543-563
UUCGUCAUUU
1373
NM_
 541-563


393376.1
AAAUGACGAA

001038609.2_

CCUGUCCUGU

001038609.2_






543-563_

cuu

541-563_






G21U_s



C1A_as






AD-
CACCAAAAUCC
1326
NM_
 715-735
UUCGUUCUCC
1374
NM_
 713-735


393505.1
GGAGAACGAA

001038609.2_

GGAUUUUGGU

001038609.2_






715-735_s

GGU

713-735_as






AD-
AGACAGGACAG
1327
NM_
 542-562
UCGUCAUUUC
1375
NM_
 540-562


393375.1
GAAAUGACGA

001038609.2_

CUGUCCUGUC

001038609.2_






542-562_s

uuu

540-562_as






AD-
AGAGCACUCCA
1328
NM_
 352-372
UUUCAGCAGU
1376
NM_
 350-372


393247.1
ACUGCUGAAA

001038609.2_

UGGAGUGCUC

001038609.2_






352-372_

UUA

350-372_






G21U_s



C1A_as






AD-
AACUGCUGAAG
1329
NM_
 362-382
UCAGUCACGU
1377
NM_
 360-382


393257.1
ACGUGACUGA

001038609.2

CUUCAGCAGU

001038609.2_






362-382_

UGG

360-382_






C21U_s



G1A_as






AD-
AAGAGUGUAUC
1330
NM_
4556-4576
UCUCAAAUGG
1378
NM_
4554-4576


396459.1
CCAUUUGAGA

001038609.2_

GAUACACUCU

001038609.2_






4556-4576_s

UAU

4554-4576_as






AD-
UUCAAUGAUAA
1331
NM_
4547-4567
UGAUACACUC
1379
NM_
4545-4567


396450.1
GAGUGUAUCA

001038609.2_

UUAUCAUUGA

001038609.2_






4547-4567_

AGU

4545-4567_






C21U_s



G1A_as






AD-
UUGACUUCAAU
1332
NM_
4542-4562
UACUCUUAUC
1380
NM_
4540-4562


396445.1
GAUAAGAGUA

001038609.2_

AUUGAAGUCA

001038609.2_






4542-4562_

AUU

4540-4562_






G21U_s



C1A_as






AD-
GAGUGUAUCCC
1333
NM_
4558-4578
UAUCUCAAAU
1381
NM_
4556-4578


396461.1
AUUUGAGAUA

001038609.2_

GGGAUACACU

001038609.2_






4558-4578_s

CUU

4556-4578_as






AD-
CAAUGAUAAGA
1334
NM_
4549-4569
UGGGAUACAC
1382
NM_
4547-4569


396452.1
GUGUAUCCCA

001038609.2_

UCUUAUCAUU

001038609.2_






4549-4569_s

GAA

4547-4569_as






AD-
AUCUGUGGCUU
1335
NM_
5074-5094
UAGGCUCAUA
1383
NM_
5072-5094


396913.1
UAUGAGCCUA

001038609.2_

AAGCCACAGA

001038609.2_






5074-5094_s

UCU

5072-5094_as






AD-
UGAUAAGAGUG
1336
NM_
4552-4572
UAAUGGGAUA
1384
NM_
4550-4572


396455.1
UAUCCCAUUA

001038609.2_

CACUCUUAUC

001038609.2_






4552-4572_s

AUU

4550-4572_as






AD-
GAUCUGUGGCU
1337
NM_
5073-5093
UGGCUCAUAA
1385
NM_
5071-5093


396912.1
UUAUGAGCCA

001038609.2_

AGCCACAGAU

001038609.2_






5073-5093_s

CUA

5071-5093_as






AD-
CUGUGGCUUUA
1338
NM_
5076-5096
UGAAGGCUCA
1386
NM_
5074-5096


396915.1
UGAGCCUUCA

001038609.2_

UAAAGCCACA

001038609.2_






5076-5096_s

GAU

5074-5096_as






AD-
AAUGAUAAGAG
1339
NM_
4550-4570
UUGGGAUACA
1387
NM_
4548-4570


396453.1
UGUAUCCCAA

001038609.2_

CUCUUAUCAU

001038609.2_






4550-4570_s

UGA

4548-4570_as






AD-
CAAUAUCUGCU
1340
NM_
2753-2773
UCUAGUGUAG
1388
NM_
2751-2773


394991.1
CUACACUAGA

001038609.2_

AGCAGAUAUU

001038609.2_






2753-2773_

GCC

2751-2773_






G21U_s



C1A_as
















TABLE 13







Modified Sense and Antisense Strand Sequences of MAPT dsRNA Agents-Screen 4


















mRNA Target




Sense Sequence 
SEQ ID
Antisense Sequence 
SEQ ID
Sequence
SEQ ID


Duplex ID
5’ to 3’
NO:
5’ to 3’
NO:
5’ to 3’
NO:





AD-393758.1
asgsugugCfaAfAfU
1389
VPusUfsuguAfgAfCfu
1437
GCAGUGUGCAAAU
1485



fagucuacaaaL96

auuUfgCfacacusgsc

AGUCUACAAG






AD-393888.1
ascsagagUfcCfAfGf
1390
VPusAfsaucUfuCfGfac
1438
GGACAGAGUCCAG
1486



ucgaagauuaL96

ugGfaCfucuguscsc

UCGAAGAUUG






AD-393759.1
gsusgugcAfaAfUfA
1391
VPusCfsuugUfaGfAfcu
1439
CAGUGUGCAAAUA
1487



fgucuacaagaL96

auUfuGfcacacsusg

GUCUACAAGC






AD-393761.1
gsusgcaaAfuAfGfU
1392
VPusGfsgcuUfgUfAfg
1440
GUGUGCAAAUAGU
1488



fcuacaagccaL96

acuAfuUfugcacsasc

CUACAAGCCG






AD-393495.1
uscsagguGfaAfCfCf
1393
VPusGfsauuUfuGfGfu
1441
GGUCAGGUGAACC
1489



accaaaaucaL96

gguUfcAfccugascsc

ACCAAAAUCC






AD-393760.1
usgsugcaAfaUfAfG
1394
VPusGfscuuGfuAfGfac
1442
AGUGUGCAAAUAG
1490



fucuacaagcaL96

uaUfuUfgcacascsu

UCUACAAGCC






AD-396425.1
ususuaucAfaUfAfG
1395
VPusUfsaaaUfgGfAfac
1443
ACUUUAUCAAUAG
1491



fuuccauuuaaL96

uaUfuGfauaaasgsu

UUCCAUUUAA






AD-395441.1
ascscagaGfuGfAfCf
1396
VPusAfscuaUfcAfUfag
1444
UCACCAGAGUGAC
1492



uaugauaguaL96

ucAfcUfcuggusgsa

UAUGAUAGUG






AD-396420.1
ususcacuUfuAfUfCf
1397
VPusGfsgaaCfuAfUfug
1445
AAUUCACUUUAUC
1493



aauaguuccaL96

auAfaAfgugaasusu

AAUAGUUCCA






AD-397103.1
usgsugaaUfgUfCfCf
1398
VPusAfscacUfaUfAfug
1446
UCUGUGAAUGUCC
1494



auauaguguaL96

gaCfaUfucacasgsa

AUAUAGUGUA






AD-397104.1
gsusgaauGfuCfCfAf
1399
VPusUfsacaCfuAfUfan
1447
CUGUGAAUGUCCA
1495



uauaguguaaL96

ggAfcAfuucacsasg

UAUAGUGUAU






AD-393239.1
csgsaugcUfaAfGfAf
1400
VPusUfsuggAfgUfGfc
1448
UCCGAUGCUAAGA
1496



gcacuccaaaL96

ucuUfaGfcaucgsgsa

GCACUCCAAC






AD-397102.1
csusgugaAfuGfUfC
1401
VPusCfsacuAfuAfUfgg
1449
GUCUGUGAAUGUC
1497



fcauauagugaL96

acAfuUfcacagsasc

CAUAUAGUGU






AD-397167.1
usgsgaaaUfaAfAfGf
1402
VPusGfsaguAfaUfAfac
1450
UUUGGAAAUAAAG
1498



uuauuacucaL96

uuUfaUfuuccasasa

UUAUUACUCU






AD-394791.1
usgsggacUfuUfAfG
1403
VPusUfsgguUfaGfCfcc
1451
CCUGGGACUUUAG
1499



fggcuaaccaaL96

uaAfaGfucccasgsg

GGCUAACCAG






AD-393754.1
asgsgcagUfgUfGfCf
1404
VPusAfsgacUfaUfUfug
1452
GGAGGCAGUGUGC
1500



aaauagucuaL96

caCfaCfugccuscsc

AAAUAGUCUA






AD-393496.1
csasggugAfaCfCfAf
1405
VPusGfsgauUfuUfGfg
1453
GUCAGGUGAACCA
1501



ccaaaauccaL96

uggUfuCfaccugsasc

CCAAAAUCCG






AD-393667.1
asasggugCfaGfAfUf
1406
VPusUfsuauUfaAfUfua
1454
GCAAGGUGCAGAU
1502



aauuaauaaaL96

ucUfgCfaccuusgsc

AAUUAAUAAG






AD-396467.1
asuscccaUfuUfGfAf
1407
VPusCfsaagCfaAfUfcu
1455
GUAUCCCAUUUGA
1503



gauugcuugaL96

caAfaUfgggausasc

GAUUGCUUGC






AD-393690.1
gscsuggaUfcUfUfA
1408
VPusGfsgacGfuUfGfcu
1456
AAGCUGGAUCUUA
1504



fgcaacguccaL96

aaGfaUfccagcsusu

GCAACGUCCA






AD-396449.1
csusucaaUfgAfUfAf
1409
VPusAfsuacAfcUfCfuu
1457
GACUUCAAUGAUA
1505



agaguguauaL96

auCfaUfugaagsusc

AGAGUGUAUC






AD-393663.1
usgsgcaaGfgUfGfCf
1410
VPusUfsaauUfaUfCfug
1458
GGUGGCAAGGUGC
1506



agauaauuaaL96

caCfcUfugccascsc

AGAUAAUUAA






AD-393820.1
asgsggaaCfaUfCfCf
1411
VPusGfscuuGfuGfAfu
1459
UUAGGGAACAUCC
1507



aucacaagcaL96

ggaUfgUfucccusasa

AUCACAAGCC






AD-396437.1
csasuuuaAfaUfUfGf
1412
VPusCfsauuGfaAfGfuc
1460
UCCAUUUAAAUUG
1508



acuucaaugaL96

aaUfuUfaaaugsgsa

ACUUCAAUGA






AD-393084.1
uscsugucGfaUfUfA
1413
VPusAfsaagCfcUfGfau
1461
CUUCUGUCGAUUA
1509



fucaggcuuuaL96

aaUfcGfacagasasg

UCAGGCUUUG






AD-396401.1
csusgguuCfcUfCfCf
1414
VPusUfsaagAfgCfUfug
1462
GCCUGGUUCCUCC
1510



aagcucuuaaL96

gaGfgAfaccagsgsc

AAGCUCUUAA






AD-394296.1
cscsaaauUfgAfUfUf
1415
VPusUfsagcCfcAfCfaa
1463
UUCCAAAUUGAUU
1511



ugugggcuaaL96

auCfaAfuuuggsasa

UGUGGGCUAA






AD-395574.1
asusguuuUfgAfAfG
1416
VPusGfsaagAfaAfCfcc
1464
CCAUGUUUUGAAG
1512



fgguuucuucaL96

uuCfaAfaacausgsg

GGUUUCUUCU






AD-393124.1
csgsccagGfaGfUfUf
1417
VPusAfsuugUfgUfCfaa
1465
CUCGCCAGGAGUU
1513



ugacacaauaL96

acUfcCfuggcgsasg

UGACACAAUG






AD-393674.1
asgsauaaUfuAfAfUf
1418
VPusCfsagcUfuCfUfua
1466
GCAGAUAAUUAAU
1514



aagaagcugaL96

uuAfaUfuaucusgsc

AAGAAGCUGG






AD-396451.1
uscsaaugAfuAfAfG
1419
VPusGfsgauAfcAfCfuc
1467
CUUCAAUGAUAAG
1515



faguguauccaL96

uuAfuCfauugasasg

AGUGUAUCCC






AD-396454.1
asusgauaAfgAfGfU
1420
VPusAfsuggGfaUfAfca
1468
CAAUGAUAAGAGU
1516



fguaucccauaL96

cuCfuUfaucaususg

GUAUCCCAUU






AD-393376.1
gsascaggAfcAfGfGf
1421
VPusUfscguCfaUfUfuc
1469
AAGACAGGACAGG
1517



aaaugacgaaL96

cuGfuCfcugucsusu

AAAUGACGAG






AD-393505.1
csasccaaAfaUfCfCf
1422
VPusUfscguUfcUfCfcg
1470
ACCACCAAAAUCC
1518



ggagaacgaaL96

gaUfuUfuggugsgsu

GGAGAACGAA






AD-393375.1
asgsacagGfaCfAfGf
1423
VPusCfsgucAfuUfUfcc
1471
AAAGACAGGACAG
1519



gaaaugacgaL96

ugUfcCfugucususu

GAAAUGACGA






AD-393247.1
asgsagcaCfuCfCAf
1424
VPusUfsucaGfcAfGfuu
1472
UAAGAGCACUCCA
1520



acugcugaaaL96

ggAfgUfgcucususa

ACUGCUGAAG






AD-393257.1
asascugcUfgAfAfGf
1425
VPusCfsaguCfaCfGfuc
1473
CCAACUGCUGAAG
1521



acgugacugaL96

uuCfaGfcaguusgsg

ACGUGACUGC






AD-396459.1
asasgaguGfuAfUfCf
1426
VPusCfsucaAfaUfGfgg
1474
AUAAGAGUGUAUC
1522



ccauuugagaL96

auAfcAfcucuusasu

CCAUUUGAGA






AD-396450.1
ususcaauGfaUfAfAf
1427
VPusGfsauaCfaCfUfcu
1475
ACUUCAAUGAUAA
1523



gaguguaucaL96

uaUfcAfuugaasgsu

GAGUGUAUCC






AD-396445.1
ususgacuUfcAfAfU
1428
VPusAfscucUfuAfUfca
1476
AAUUGACUUCAAU
1524



fgauaagaguaL96

uuGfaAfgucaasusu

GAUAAGAGUG






AD-396461.1
gsasguguAfuCfCfCf
1429
VPusAfsucuCfaAfAfug
1477
AAGAGUGUAUCCC
1525



auuugagauaL96

ggAfuAfcacucsusu

AUUUGAGAUU






AD-396452.1
csasaugaUfaAfGfAf
1430
VPusGfsggaUfaCfAfcu
1478
UUCAAUGAUAAGA
1526



guguaucccaL96

cuUfaUfcauugsasa

GUGUAUCCCA






AD-396913.1
asuscuguGfgCfUfU
1431
VPusAfsggcUfcAfUfaa
1479
AGAUCUGUGGCUU
1527



fuaugagccuaL96

agCfcAfcagauscsu

UAUGAGCCUU






AD-396455.1
usgsauaaGfaGfUfGf
1432
VPusAfsaugGfgAfUfac
1480
AAUGAUAAGAGUG
1528



uaucccauuaL96

acUfcUfuaucasusu

UAUCCCAUUU






AD-396912.1
gsasucugUfgGfCfU
1433
VPusGfsgcuCfaUfAfaa
1481
UAGAUCUGUGGCU
1529



fuuaugagccaL96

gcCfaCfagaucsusa

UUAUGAGCCU






AD-396915.1
csusguggCfuUfUfA
1434
VPusGfsaagGfcUfCfau
1482
AUCUGUGGCUUUA
1530



fugagccuucaL96

aaAfgCfcacagsasu

UGAGCCUUCA






AD-396453.1
asasugauAfaGfAfGf
1435
VPusUfsgggAfuAfCfac
1483
UCAAUGAUAAGAG
1531



uguaucccaaL96

ucUfuAfucauusgsa

UGUAUCCCAU






AD-394991.1
csasauauCfuGfCfUf
1436
VPusCfsuagUfgUfAfga
1484
GGCAAUAUCUGCU
1532



cuacacuagaL96

gcAfgAfuauugscsc

CUACACUAGG
















TABLE 14







MAPT Single Dose Screens in BE(2)C (human) Cells-Screen 4










10 nM Dose
0.1 nM Dose












Avg % MAPT

Avg % MAPT



Duplex
mRNA Remaining
SD
mRNA Remaining
SD














AD-393758.1
4.4
1.1
41.8
7.3


AD-393888.1
6.8
0.4
50.8
4.0


AD-393759.1
8.0
1.0
43.5
6.4


AD-393761.1
14.0
2.0
72.3
13.3


AD-393495.1
14.0
1.7
33.5
7.0


AD-393760.1
19.0
2.1
67.3
3.6


AD-396425.1
24.9
4.2
40.9
7.1


AD-395441.1
26.3
6.9
39.2
7.5


AD-396420.1
30.5
6.3
41.5
7.2


AD-397103.1
40.9
6.4
55.8
7.4


AD-397104.1
41.8
8.9
62.1
4.6


AD-393239.1
42.5
7.2
74.1
5.9


AD-397102.1
44.8
4.6
59.6
4.8


AD-397167.1
45.9
12.3
53.6
5.2


AD-394791.1
47.4
10.1
78.5
4.3


AD-393754.1
50.7
3.3
81.5
20.2


AD-393496.1
51.5
4.4
85.4
10.1


AD-393667.1
54.1
12.4
78.0
6.5


AD-396467.1
58.0
9.1
90.8
7.3


AD-393690.1
58.3
3.2
78.3
13.8


AD-396449.1
60.0
10.9
82.7
11.5


AD-393663.1
61.0
12.9
76.1
9.5


AD-393820.1
61.2
10.3
93.5
11.4


AD-396437.1
64.3
7.0
80.5
9.7


AD-393084.1
68.9
9.0
92.4
4.9


AD-396401.1
70.8
7.2
94.3
3.6


AD-394296.1
77.3
5.0
93.7
7.5


AD-395574.1
77.7
11.0
80.0
6.3


AD-393124.1
78.7
18.8
97.3
3.1


AD-393674.1
79.4
15.1
82.3
11.7


AD-396451.1
79.8
11.9
102.6
7.8


AD-396454.1
87.3
4.4
99.4
5.4


AD-393376.1
88.4
14.9
106.2
17.8


AD-393505.1
91.4
0.9
105.9
13.2


AD-393375.1
92.2
14.6
98.6
7.8


AD-393247.1
94.4
14.8
103.4
4.0


AD-393257.1
96.2
9.4
101.5
6.0


AD-396459.1
96.4
9.3
104.6
6.7


AD-396450.1
97.5
13.8
99.5
4.6


AD-396445.1
98.6
10.3
97.9
8.8


AD-396461.1
102.7
15.3
105.9
2.4


AD-396452.1
104.4
8.2
99.4
5.6


AD-396913.1
105.9
10.8
91.7
4.1


AD-396455.1
106.3
4.4
100.2
5.5


AD-396912.1
108.0
13.8
95.6
6.8


AD-396915.1
110.6
11.4
98.6
0.8


AD-396453.1
113.6
20.1
101.5
6.3


AD-394991.1
115.6
6.5
101.7
9.5
















TABLE 15







MAPT Single Dose Screens in NEuro2a (mouse) Cells-Screen 4










10 nM Dose
0.1 nM Dose












Avg % MAPT

Avg % MAPT



Duplex
mRNA Remaining
SD
mRNA Remaining
SD














AD-393758.1
13.0
1.9
83.3
33.8


AD-393888.1
18.2
1.8
85.7
14.5


AD-393759.1
14.0
3.5
71.5
13.1


AD-393761.1
20.3
1.9
74.0
13.5


AD-393495.1
17.6
3.2
77.0
11.7


AD-393760.1
21.3
4.1
89.0
10.8


AD-396425.1
9.4
0.9
34.3
8.1


AD-395441.1
13.7
3.8
34.1
4.4


AD-396420.1
16.5
2.5
38.7
7.6


AD-397103.1
25.0
3.6
50.5
15.8


AD-397104.1
17.7
4.3
49.6
9.1


AD-393239.1
40.3
10.7
96.4
15.0


AD-397102.1
20.3
3.4
56.6
7.7


AD-397167.1
26.8
2.8
49.6
11.2


AD-394791.1
48.0
6.0
103.5
21.6


AD-393754.1
32.9
4.5
86.0
23.0


AD-393496.1
13.9
3.7
59.5
10.5


AD-393667.1
14.7
2.5
85.0
18.5


AD-396467.1
17.5
3.9
54.5
12.9


AD-393690.1
58.6
15.7
114.5
31.9


AD-396449.1
16.9
2.0
51.3
16.8


AD-393663.1
21.9
6.2
88.8
20.0


AD-393820.1
31.6
3.0
96.0
23.0


AD-396437.1
34.0
4.2
93.0
9.3


AD-393084.1
10.6
1.5
49.0
16.7


AD-396401.1
29.2
1.7
78.9
16.3


AD-394296.1
19.2
3.1
78.3
17.2


AD-395574.1
22.0
2.4
65.4
21.1


AD-393124.1
13.7
3.4
45.9
8.3


AD-393674.1
38.1
13.3
109.3
28.4


AD-396451.1
33.1
4.5
72.5
5.9


AD-396454.1
25.9
4.4
52.2
18.0


AD-393376.1
24.6
6.6
95.6
21.9


AD-393505.1
23.8
1.5
86.4
16.8


AD-393375.1
13.8
0.6
74.5
14.4


AD-393247.1
40.5
3.8
93.2
18.7


AD-393257.1
65.3
5.3
93.0
18.7


AD-396459.1
17.9
1.4
50.9
5.6


AD-396450.1
18.4
1.1
44.0
8.4


AD-396445.1
28.4
3.7
71.9
22.4


AD-396461.1
18.8
2.1
56.7
16.7


AD-396452.1
14.8
1.0
50.1
13.0


AD-396913.1
28.4
3.6
92.6
14.1


AD-396455.1
33.3
6.4
91.5
29.3


AD-396912.1
37.9
2.4
96.0
10.0


AD-396915.1
31.6
4.8
108.7
28.2


AD-396453.1
17.5
1.5
49.1
9.6


AD-394991.1
45.0
5.7
113.4
17.1
















TABLE 16







Unmodified Sense and Antisense Strand Sequences of MAPT dsRNA Agents-Screen 5













Duplex
Sense Sequence
SEQ ID
Range in
Antisense Sequence
SEQ ID
Range in


Name
5’ to 3’
NO:
NM_005910.6
5’ to 3’
NO:
NM_005910.6





AD-
ACGUGACCCAAGCU
1538
 512-532
UCAUGCGAGCUTGG
1627
 510-532


1397070.1
CGCAUGA


GUCACGUGA







AD-
CGUGACCCAAGCUC
1539
 513-533
UCCATGCGAGCUUG
1628
 511-533


1397071.1
GCAUGGA


GGUCACGUG







AD-
GUGACCCAAGCUCG
1540
 514-534
UACCAUGCGAGCU
1629
 512-534


1397072.1
CAUGGUA


UGGGUCACGU







AD-
UGACCCAAGCUCGC
1541
 515-535
UGACCATGCGAGCU
1630
 513-535


1397073.1
AUGGUCA


UGGGUCACG







AD-
GACCCAAGCUCGCA
1542
 516-536
UUGACCAUGCGAG
1631
 514-536


1397074.1
UGGUCAA


CUUGGGUCAC







AD-
ACCCAAGCUCGCAU
1543
 517-537
UCUGACCAUGCGA
1632
 515-537


1397075.1
GGUCAGA


GCUUGGGUCA







AD-
CCCAAGCUCGCAUG
1544
 518-538
UACUGACCAUGCG
1633
 516-538


1397076.1
GUCAGUA


AGCUUGGGUC







AD-
CCAAGCUCGCAUGG
1545
 519-539
UUACTGACCAUGCG
1634
 517-539


1397077.1
UCAGUAA


AGCUUGGGU







AD-
CAAGCUCGCAUGGU
1546
 520-540
UUUACUGACCAUG
1635
 518-540


1397078.1
CAGUAAA


CGAGCUUGGG







AD-
AGUGUGCAAAUAGU
1547
1063-1083
UUUGTAGACUAUU
1636
1061-1083


1397079.1
CUACAAA


UGCACACUGC







AD-
UGCAAAUAGUCUAC
1548
1067-1087
UUGGTUTGUAGACU
1637
1065-1087


1397080.1
AAACCAA


AUUUGCACA







AD-
AUAGUCUACAAACC
1549
1072-1092
UUCAACTGGUUUG
1638
1070-1092


1397081.1
AGUUGAA


UAGACUAUUU







AD-
AGUCUACAAACCAG
1550
1074-1094
UGGUCAACUGGUU
1639
1072-1094


1397082.1
UUGACCA


UGUAGACUAU







AD-
GUCUACAAACCAGU
1551
1075-1095
UAGGTCAACUGGU
1640
1073-1095


1397083.1
UGACCUA


UUGUAGACUA







AD-
AGGCAACAUCCAUC
1552
1125-1145
UGUUTATGAUGGA
1641
1123-1145


1397084.1
AUAAACA


UGUUGCCUAA







AD-
GGCAACAUCCAUCA
1553
1126-1146
UGGUTUAUGAUGG
1642
1124-1146


1397085.1
UAAACCA


AUGUUGCCUA







AD-
GCAACAUCCAUCAU
1554
1127-1147
UUGGTUTAUGAUG
1643
1125-1147


1397086.1
AAACCAA


GAUGUUGCCU







AD-
AACAUCCAUCAUAA
1555
1129-1149
UCCUGGTUUAUGA
1644
1127-1149


1397087.1
ACCAGGA


UGGAUGUUGC







AD-
AUCUGAGAAGCUUG
1556
1170-1190
UUGAAGTCAAGCU
1645
1168-1190


1397088.1
ACUUCAA


UCUCAGAUUU







AD-
CAGCAUCGACAUGG
1557
1395-1415
UAGUCUACCAUGU
1646
1393-1415


1397089.1
UAGACUA


CGAUGCUGCC







AD-
UGGCAGCAACAAAG
1558
1905-1925
UCAAAUCCUUUGU
1647
1903-1925


1397090.1
GAUUUGA


UGCUGCCACU







AD-
GGCAGCAACAAAGG
1559
1906-1926
UTCAAATCCUUTGU
1648
1904-1926


1397091.1
AUUUGAA


UGCUGCCAC







AD-
AGCAACAAAGGAUU
1560
1909-1929
UGUUTCAAAUCCUU
1649
1907-1929


1397092.1
UGAAACA


UGUUGCUGC







AD-
CAACAAAGGAUUUG
1561
1911-1931
UAAGTUTCAAAUCC
1650
1909-1931


1397093.1
AAACUUA


UUUGUUGCU







AD-
AACAAAGGAUUUGA
1562
1912-1932
UCAAGUTUCAAAUC
1651
1910-1932


1397094.1
AACUUGA


CUUUGUUGC







AD-
ACAAAGGAUUUGAA
1563
1913-1933
UCCAAGTUUCAAAU
1652
1911-1933


1397095.1
ACUUGGA


CCUUUGUUG







AD-
CAAAGGAUUUGAAA
1564
1914-1934
UACCAAGUUUCAA
1653
1912-1934


1397096.1
CUUGGUA


AUCCUUUGUU







AD-
AAAGGAUUUGAAAC
1565
1915-1935
UCACCAAGUUUCA
1654
1913-1935


1397097.1
UUGGUGA


AAUCCUUUGU







AD-
AAGGAUUUGAAACU
1566
1916-1936
UACACCAAGUUTCA
1655
1914-1936


1397098.1
UGGUGUA


AAUCCUUUG







AD-
GAUUUGAAACUUGG
1567
1919-1939
UAACACACCAAGU
1656
1917-1939


1397099.1
UGUGUUA


UUCAAAUCCU







AD-
GGCAGACGAUGUCA
1568
1951-1971
UCAAGGTUGACAUC
1657
1949-1971


1397101.1
ACCUUGA


GUCUGCCUG







AD-
AGACGAUGUCAACC
1569
1954-1974
UACACAAGGUUGA
1658
1952-1974


1397102.1
UUGUGUA


CAUCGUCUGC







AD-
GAUGUCAACCUUGU
1570
1958-1978
UACUCACACAAGG
1659
1956-1978


1397103.1
GUGAGUA


UUGACAUCGU







AD-
GCUCCACAGAAACC
1571
2387-2407
UAAACAGGGUUUC
1660
2385-2407


1397104.1
CUGUUUA


UGUGGAGCAG







AD-
UUGAGUUCUGAAGG
1572
2409-2429
UUUCCAACCUUCAG
1661
2407-2429


1397105.1
UUGGAAA


AACUCAAUA







AD-
UGAGUUCUGAAGGU
1573
2410-2430
UGUUCCAACCUUCA
1662
2408-2430


1397106.1
UGGAACA


GAACUCAAU







AD-
UAGGGCUAACCAGU
1574
2469-2489
UAAGAGAACUGGU
1663
2467-2489


1397107.1
UCUCUUA


UAGCCCUAAA







AD-
GGGCUAACCAGUUC
1575
2471-2491
UCAAAGAGAACTG
1664
2469-2491


1397108.1
UCUUUGA


GUUAGCCCUA







AD-
GGCUAACCAGUUCU
1576
2472-2492
UACAAAGAGAACU
1665
2470-2492


1397109.1
CUUUGUA


GGUUAGCCCU







AD-
AACCAGUUCUCUUU
1577
2476-2496
UCCUTACAAAGAGA
1666
2474-2496


1397110.1
GUAAGGA


ACUGGUUAG







AD-
ACCAGUUCUCUUUG
1578
2477-2497
UUCCTUACAAAGAG
1667
2475-2497


1397111.1
UAAGGAA


AACUGGUUA







AD-
CCAGUUCUCUUUGU
1579
2478-2498
UGUCCUTACAAAGA
1668
2476-2498


1397112.1
AAGGACA


GAACUGGUU







AD-
AGUUCUCUUUGUAA
1580
2480-2500
UAAGTCCUUACAAA
1669
2478-2500


1397113.1
GGACUUA


GAGAACUGG







AD-
GUUCUCUUUGUAAG
1581
2481-2501
UCAAGUCCUUACA
1670
2479-2501


1397114.1
GACUUGA


AAGAGAACUG







AD-
UUCUCUUUGUAAGG
1582
2482-2502
UACAAGTCCUUACA
1671
2480-2502


1397115.1
ACUUGUA


AAGAGAACU







AD-
CUCUUUGUAAGGAC
1583
2484-2504
UGCACAAGUCCTUA
1672
2482-2504


1397116.1
UUGUGCA


CAAAGAGAA







AD-
CCAUACUGAGGGUG
1584
2762-2782
UUAATUTCACCCUC
1673
2760-2782


1397117.1
AAAUUAA


AGUAUGGAG







AD-
AUACUGAGGGUGAA
1585
2764-2784
UCUUAATUUCACCC
1674
2762-2784


1397118.1
AUUAAGA


UCAGUAUGG







AD-
ACUGAGGGUGAAAU
1586
2766-2786
UCCCTUAAUUUCAC
1675
2764-2786


1397119.1
UAAGGGA


CCUCAGUAU







AD-
CUGAGGGUGAAAUU
1587
2767-2787
UTCCCUTAAUUTCA
1676
2765-2787


1397120.1
AAGGGAA


CCCUCAGUA







AD-
UGAGGGUGAAAUUA
1588
2768-2788
UUUCCCTUAAUUUC
1677
2766-2788


1397121.1
AGGGAAA


ACCCUCAGU







AD-
GAGGGUGAAAUUAA
1589
2769-2789
UCUUCCCUUAAUU
1678
2767-2789


1397122.1
GGGAAGA


UCACCCUCAG







AD-
GCCUCUCACUCUCA
1590
2819-2839
UUGGAACUGAGAG
1679
2817-2839


1397123.1
GUUCCAA


UGAGAGGCUG







AD-
CUCUCACUCUCAGU
1591
2821-2841
UAGUGGAACUGAG
1680
2819-2841


1397124.1
UCCACUA


AGUGAGAGGC







AD-
UCUCAGUUCCACUC
1592
2828-2848
UUUGGATGAGUGG
1681
2826-2848


1397125.1
AUCCAAA


AACUGAGAGU







AD-
UAGGUGUUUCUGCC
1593
2943-2963
UCAACAAGGCAGA
1682
2941-2963


1397126.1
UUGUUGA


AACACCUAGG







AD-
AGGUGUUUCUGCCU
1594
2944-2964
UTCAACAAGGCAGA
1683
2942-2964


1397127.1
UGUUGAA


AACACCUAG







AD-
GUGUUUCUGCCUUG
1595
2946-2966
UUGUCAACAAGGC
1684
2944-2966


1397128.1
UUGACAA


AGAAACACCU







AD-
UGUUUCUGCCUUGU
1596
2947-2967
UAUGTCAACAAGGC
1685
2945-2967


1397129.1
UGACAUA


AGAAACACC







AD-
GAAGCCAUGCUGUC
1597
3252-3272
UAGAACAGACAGC
1686
3250-3272


1397130.1
UGUUCUA


AUGGCUUCCA







AD-
AGCAGCUGAACAUA
1598
3277-3297
UUAUGUAUAUGUU
1687
3275-3297


1397131.1
UACAUAA


CAGCUGCUCC







AD-
AGCUGAACAUAUAC
1599
3280-3300
UAUCTATGUAUAUG
1688
3278-3300


1397132.1
AUAGAUA


UUCAGCUGC







AD-
GCUGAACAUAUACA
1600
3281-3301
UCAUCUAUGUATA
1689
3279-3301


1397133.1
UAGAUGA


UGUUCAGCUG







AD-
CUGAACAUAUACAU
1601
3282-3302
UACATCTAUGUAUA
1690
3280-3302


1397134.1
AGAUGUA


UGUUCAGCU







AD-
GAACAUAUACAUAG
1602
3284-3304
UCAACATCUAUGUA
1691
3282-3304


1397135.1
AUGUUGA


UAUGUUCAG







AD-
AACAUAUACAUAGA
1603
3285-3305
UGCAACAUCUAUG
1692
3283-3305


1397136.1
UGUUGCA


UAUAUGUUCA







AD-
ACAUAUACAUAGAU
1604
3286-3306
UGGCAACAUCUAU
1693
3284-3306


1397137.1
GUUGCCA


GUAUAUGUUC







AD-
GAGUUGUAGUUGGA
1605
3331-3351
UGACAAAUCCAAC
1694
3329-3351


1397138.1
UUUGUCA


UACAACUCAA







AD-
AGUUGUAGUUGGAU
1606
3332-3352
UAGACAAAUCCAA
1695
3330-3352


1397139.1
UUGUCUA


CUACAACUCA







AD-
GUUGUAGUUGGAUU
1607
3333-3353
UCAGACAAAUCCA
1696
3331-3353


1397140.1
UGUCUGA


ACUACAACUC







AD-
UUGUAGUUGGAUUU
1608
3334-3354
UACAGACAAAUCC
1697
3332-3354


1397141.1
GUCUGUA


AACUACAACU







AD-
UGUAGUUGGAUUUG
1609
3335-3355
UAACAGACAAAUC
1698
3333-3355


1397142.1
UCUGUUA


CAACUACAAC







AD-
GUAGUUGGAUUUGU
1610
3336-3356
UAAACAGACAAAU
1699
3334-3356


1397143.1
CUGUUUA


CCAACUACAA







AD-
AGUUGGAUUUGUCU
1611
3338-3358
UAUAAACAGACAA
1700
3336-3358


1397144.1
GUUUAUA


AUCCAACUAC







AD-
UUGGAUUUGUCUGU
1612
3340-3360
UGCATAAACAGACA
1701
3338-3360


1397145.1
UUAUGCA


AAUCCAACU







AD-
GGAUUUGUCUGUUU
1613
3342-3362
UAAGCATAAACAG
1702
3340-3362


1397146.1
AUGCUUA


ACAAAUCCAA







AD-
GAUUUGUCUGUUUA
1614
3343-3363
UCAAGCAUAAACA
1703
3341-3363


1397147.1
UGCUUGA


GACAAAUCCA







AD-
AUUUGUCUGUUUAU
1615
3344-3364
UCCAAGCAUAAAC
1704
3342-3364


1397148.1
GCUUGGA


AGACAAAUCC







AD-
UUUGUCUGUUUAUG
1616
3345-3365
UUCCAAGCAUAAA
1705
3343-3365


1397149.1
CUUGGAA


CAGACAAAUC







AD-
UUGUCUGUUUAUGC
1617
3346-3366
UAUCCAAGCAUAA
1706
3344-3366


1397150.1
UUGGAUA


ACAGACAAAU







AD-
UGUCUGUUUAUGCU
1618
3347-3367
UAAUCCAAGCAUA
1707
3345-3367


1397151.1
UGGAUUA


AACAGACAAA







AD-
UCUGUUUAUGCUUG
1619
3349-3369
UUGAAUCCAAGCA
1708
3347-3369


1397152.1
GAUUCAA


UAAACAGACA







AD-
CUGUUUAUGCUUGG
1620
3350-3370
UGUGAATCCAAGCA
1709
3348-3370


1397153.1
AUUCACA


UAAACAGAC







AD-
UUUAUGCUUGGAUU
1621
3353-3373
UCUGGUGAAUCCA
1710
3351-3373


1397154.1
CACCAGA


AGCAUAAACA







AD-
AUUCACCAGAGUGA
1622
3364-3384
UUCATAGUCACUCU
1711
3362-3384


1397155.1
CUAUGAA


GGUGAAUCC







AD-
UCACCAGAGUGACU
1623
3366-3386
UUAUCATAGUCACU
1712
3364-3386


1397156.1
AUGAUAA


CUGGUGAAU







AD-
CACCAGAGUGACUA
1624
3367-3387
UCUATCAUAGUCAC
1713
3365-3387


1397157.1
UGAUAGA


UCUGGUGAA







AD-
ACCAGAGUGACUAU
1625
3368-3388
UACUAUCAUAGUC
1714
3366-3388


1397158.1
GAUAGUA


ACUCUGGUGA







AD-
CCAGAGUGACUAUG
1626
3369-3389
UCACTATCAUAGUC
1715
3367-3389


1397159.1
AUAGUGA


ACUCUGGUG
















TABLE 17







Modified Sense and Antisense Strand Sequences of MAPT dsRNA Agents-Screen 5















SEQ

SEQ
mRNA Target
SEQ



Sense Sequence
ID
Antisense Sequence 
ID
Sequence
ID


Duplex ID
5’ to 3’
NO:
5’ to 3’
NO:
5’ to 3’
NO:





AD-1397070.1
ascsgug(Ahd)ccCfAfA
1716
VPusdCsaudGcdGagcud
1805
UCACGUGACCCAA
1894



fgcucgcaugaL96

TgGfgucacgusgsa

GCUCGCAUGG






AD-1397071.1
csgsuga(Chd)ccAfAfG
1717
VPusCfscadTg(C2p)gagc
1806
CACGUGACCCAAG
1895



fcucgcauggaL96

uuGfgGfucacgsusg

CUCGCAUGGU






AD-1397072.1
gsusgac(Chd)caAfGfCf
1718
VPusAfsccdAu(G2p)cga
1807
ACGUGACCCAAGC
1896



ucgcaugguaL96

gcuUfgGfgucacsgsu

UCGCAUGGUC






AD-1397073.1
usgsacc(Chd)aaGfCfUf
1719
VPusdGsacdCadTgcgad
1808
CGUGACCCAAGCU
1897



cgcauggucaL96

GcUfugggucascsg

CGCAUGGUCA






AD-1397074.1
gsasccc(Ahd)agCfUfCf
1720
VPusUfsgadCc(Agn)ugc
1809
GUGACCCAAGCUC
1898



gcauggucaaL96

gagCfuUfgggucsasc

GCAUGGUCAG






AD-1397075.1
ascscca(Ahd)gcUfCfGf
1721
VPusdCsugdAcdCaugcd
1810
UGACCCAAGCUCG
1899



cauggucagaL96

GaGfcuuggguscsa

CAUGGUCAGU






AD-1397076.1
cscscaa(Ghd)cuCfGfCf
1722
VPusAfscudGa(C2p)cau
1811
GACCCAAGCUCGC
1900



auggucaguaL96

gcgAfgCfuugggsusc

AUGGUCAGUA






AD-1397077.1
cscsaag(Chd)ucGfCfAf
1723
VPusUfsacdTg(Agn)cca
1812
ACCCAAGCUCGCA
1901



uggucaguaaL96

ugcGfaGfcuuggsgsu

UGGUCAGUAA






AD-1397078.1
csasagc(Uhd)cgCfAfUf
1724
VPusUfsuadCu(G2p)acc
1813
CCCAAGCUCGCAU
1902



ggucaguaaaL96

augCfgAfgcuugsgsg

GGUCAGUAAA






AD-1397079.1
asgsugu(Ghd)caAfAfU
1725
VPusUfsugdTa(G2p)acu
1814
GCAGUGUGCAAAU
1903



fagucuacaaaL96

auuUfgCfacacusgsc

AGUCUACAAA






AD-1397080.1
usgscaa(Ahd)uaGfUfC
1726
VPusUfsggdTu(Tgn)gua
1815
UGUGCAAAUAGUC
1904



fuacaaaccaaL96

gacUfaUfuugcascsa

UACAAACCAG






AD-1397081.1
asusagu(Chd)uaCfAfA
1727
VPusUfscadAc(Tgn)ggu
1816
AAAUAGUCUACAA
1905



faccaguugaaL96

uugUfaGfacuaususu

ACCAGUUGAC






AD-1397082.1
asgsucu(Ahd)caAfAfC
1728
VPusGfsgudCa(Agn)cug
1817
AUAGUCUACAAAC
1906



fcaguugaccaL96

guuUfgUfagacusasu

CAGUUGACCU






AD-1397083.1
gsuscua(Chd)aaAfCfCf
1729
VPusAfsggdTc(Agn)acu
1818
UAGUCUACAAACC
1907



aguugaccuaL96

gguUfuGfuagacsusa

AGUUGACCUG






AD-1397084.1
asgsgca(Ahd)caUfCfCf
1730
VPusGfsuudTa(Tgn)gau
1819
UUAGGCAACAUCC
1908



aucauaaacaL96

ggaUfgUfugccusasa

AUCAUAAACC






AD-1397085.1
gsgscaa(Chd)auCfCfAf
1731
VPusGfsgudTu(Agn)uga
1820
UAGGCAACAUCCA
1909



ucauaaaccaL96

uggAfuGfuugccsusa

UCAUAAACCA






AD-1397086.1
gscsaac(Ahd)ucCfAfUf
1732
VPusUfsggdTu(Tgn)aug
1821
AGGCAACAUCCAU
1910



cauaaaccaaL96

augGfaUfguugcscsu

CAUAAACCAG






AD-1397087.1
asascau(Chd)caUfCfAf
1733
VPusCfscudGg(Tgn)uua
1822
GCAACAUCCAUCA
1911



uaaaccaggaL96

ugaUfgGfauguusgsc

UAAACCAGGA






AD-1397088.1
asuscug(Ahd)gaAfGfC
1734
VPusUfsgadAg(Tgn)caa
1823
AAAUCUGAGAAGC
1912



fuugacuucaaL96

gcuUfcUfcagaususu

UUGACUUCAA






AD-1397089.1
csasgca(Uhd)cgAfCfAf
1735
VPusAfsgudCu(Agn)cca
1824
GGCAGCAUCGACA
1913



ugguagacuaL96

uguCfgAfugcugscsc

UGGUAGACUC






AD-1397090.1
usgsgca(Ghd)caAfCfA
1736
VPusdCsaadAudCcuuud
1825
AGUGGCAGCAACA
1914



faaggauuugaL96

GuUfgcugccascsu

AAGGAUUUGA






AD-1397091.1
gsgscag(Chd)aaCfAfAf
1737
VPusdTscadAadTccuud
1826
GUGGCAGCAACAA
1915



aggauuugaaL96

TgUfugcugccsasc

AGGAUUUGAA






AD-1397092.1
asgscaa(Chd)aaAfGfGf
1738
VPusGfsuudTc(Agn)aau
1827
GCAGCAACAAAGG
1916



auuugaaacaL96

ccuUfuGfuugcusgsc

AUUUGAAACU






AD-1397093.1
csasaca(Ahd)agGfAfUf
1739
VPusAfsagdTu(Tgn)caaa
1828
AGCAACAAAGGAU
1917



uugaaacuuaL96

ucCfuUfuguugscsu

UUGAAACUUG






AD-1397094.1
asascaa(Ahd)ggAfUfU
1740
VPusdCsaadGudTucaad
1829
GCAACAAAGGAUU
1918



fugaaacuugaL96

AuCfcuuuguusgsc

UGAAACUUGG






AD-1397095.1
ascsaaa(Ghd)gaUfUfUf
1741
VPusdCscadAgdTuucad
1830
CAACAAAGGAUUU
1919



gaaacuuggaL96

AaUfccuuugususg

GAAACUUGGU






AD-1397096.1
csasaag(Ghd)auUfUfG
1742
VPusdAsccdAadGuuucd
1831
AACAAAGGAUUUG
1920



faaacuugguaL96

AaAfuccuuugsusu

AAACUUGGUG






AD-1397097.1
asasagg(Ahd)uuUfGfA
1743
VPusdCsacdCadAguuud
1832
ACAAAGGAUUUGA
1921



faacuuggugaL96

CaAfauccuuusgsu

AACUUGGUGU






AD-1397098.1
asasgga(Uhd)uuGfAfA
1744
VPusdAscadCcdAaguud
1833
CAAAGGAUUUGAA
1922



facuugguguaL96

TcAfaauccuususg

ACUUGGUGUG






AD-1397099.1
gsasuuu(Ghd)aaAfCfU
1745
VPusAfsacdAc(Agn)cca
1834
AGGAUUUGAAACU
1923



fugguguguuaL96

aguUfuCfaaaucscsu

UGGUGUGUUC






AD-1397101.1
gsgscag(Ahd)cgAfUfG
1746
VPusCfsaadGg(Tgn)uga
1835
CAGGCAGACGAUG
1924



fucaaccuugaL96

cauCfgUfcugccsusg

UCAACCUUGU






AD-1397102.1
asgsacg(Ahd)ugUfCfA
1747
VPusdAscadCadAgguud
1836
GCAGACGAUGUCA
1925



faccuuguguaL96

GaCfaucgucusgsc

ACCUUGUGUG






AD-1397103.1
gsasugu(Chd)aaCfCfUf
1748
VPusAfscudCa(C2p)acaa
1837
ACGAUGUCAACCU
1926



ugugugaguaL96

ggUfuGfacaucsgsu

UGUGUGAGUG






AD-1397104.1
gscsucc(Ahd)caGfAfA
1749
VPusAfsaadCa(G2p)ggu
1838
CUGCUCCACAGAA
1927



facccuguuuaL96

uucUfgUfggagcsasg

ACCCUGUUUU






AD-1397105.1
ususgag(Uhd)ucUfGfA
1750
VPusUfsucdCa(Agn)ccu
1839
UAUUGAGUUCUGA
1928



fagguuggaaaL96

ucaGfaAfcucaasusa

AGGUUGGAAC






AD-1397106.1
usgsagu(Uhd)cuGfAfA
1751
VPusGfsuudCc(Agn)acc
1840
AUUGAGUUCUGAA
1929



fgguuggaacaL96

uucAfgAfacucasasu

GGUUGGAACU






AD-1397107.1
usasggg(Chd)uaAfCfC
1752
VPusdAsagdAgdAacugd
1841
UUUAGGGCUAACC
1930



faguucucuuaL96

GuUfagcccuasasa

AGUUCUCUUU






AD-1397108.1
gsgsgcu(Ahd)acCfAfG
1753
VPusdCsaadAgdAgaacd
1842
UAGGGCUAACCAG
1931



fuucucuuugaL96

TgGfuuageccsusa

UUCUCUUUGU






AD-1397109.1
gsgscua(Ahd)ccAfGfU
1754
VPusdAscadAadGagaad
1843
AGGGCUAACCAGU
1932



fucucuuuguaL96

CuGfguuagccscsu

UCUCUUUGUA






AD-1397110.1
asascca(Ghd)uuCfUfCf
1755
VPusdCscudTadCaaagd
1844
CUAACCAGUUCUC
1933



uuuguaaggaL96

AgAfacugguusasg

UUUGUAAGGA






AD-1397111.1
ascscag(Uhd)ucUfCfUf
1756
VPusUfsccdTu(Agn)caaa
1845
UAACCAGUUCUCU
1934



uuguaaggaaL96

gaGfaAfcuggususa

UUGUAAGGAC






AD-1397112.1
cscsagu(Uhd)cuCfUfU
1757
VPusGfsucdCu(Tgn)acaa
1846
AACCAGUUCUCUU
1935



fuguaaggacaL96

agAfgAfacuggsusu

UGUAAGGACU






AD-1397113.1
asgsuuc(Uhd)cuUfUfG
1758
VPusAfsagdTc(C2p)uua
1847
CCAGUUCUCUUUG
1936



fuaaggacuuaL96

caaAfgAfgaacusgsg

UAAGGACUUG






AD-1397114.1
gsusucu(Chd)uuUfGfU
1759
VPusCfsaadGu(C2p)cuu
1848
CAGUUCUCUUUGU
1937



faaggacuugaL96

acaAfaGfagaacsusg

AAGGACUUGU






AD-1397115.1
ususcuc(Uhd)uuGfUfA
1760
VPusAfscadAg(Tgn)ccu
1849
AGUUCUCUUUGUA
1938



faggacuuguaL96

uacAfaAfgagaascsu

AGGACUUGUG






AD-1397116.1
csuscuu(Uhd)guAfAfG
1761
VPusdGscadCadAguccd
1850
UUCUCUUUGUAAG
1939



fgacuugugcaL96

TuAfcaaagagsasa

GACUUGUGCC






AD-1397117.1
cscsaua(Chd)ugAfGfG
1762
VPusUfsaadTu(Tgn)cacc
1851
CUCCAUACUGAGG
1940



fgugaaauuaaL96

cuCfaGfuauggsasg

GUGAAAUUAA






AD-1397118.1
asusacu(Ghd)agGfGfU
1763
VPusdCsuudAadTuucad
1852
CCAUACUGAGGGU
1941



fgaaauuaagaL96

CcCfucaguausgsg

GAAAUUAAGG






AD-1397119.1
ascsuga(Ghd)ggUfGfA
1764
VPusdCsccdTudAauuud
1853
AUACUGAGGGUGA
1942



faauuaagggaL96

CaCfccucagusasu

AAUUAAGGGA






AD-1397120.1
csusgag(Ghd)guGfAfA
1765
VPusdTsccdCudTaauud
1854
UACUGAGGGUGAA
1943



fauuaagggaaL96

TcAfcccucagsusa

AUUAAGGGAA






AD-1397121.1
usgsagg(Ghd)ugAfAfA
1766
VPusUfsucdCc(Tgn)uaa
1855
ACUGAGGGUGAAA
1944



fuuaagggaaaL96

uuuCfaCfccucasgsu

UUAAGGGAAG






AD-1397122.1
gsasggg(Uhd)gaAfAfU
1767
VPusCfsuudCc(C2p)uua
1856
CUGAGGGUGAAAU
1945



fuaagggaagaL96

auuUfcAfcccucsasg

UAAGGGAAGG






AD-1397123.1
gscscuc(Uhd)caCfUfCf
1768
VPusUfsggdAa(C2p)uga
1857
CAGCCUCUCACUC
1946



ucaguuccaaL96

gagUfgAfgaggcsusg

UCAGUUCCAC






AD-1397124.1
csuscuc(Ahd)cuCfUfCf
1769
VPusAfsgudGg(Agn)acu
1858
GCCUCUCACUCUC
1947



aguuccacuaL96

gagAfgUfgagagsgsc

AGUUCCACUC






AD-1397125.1
uscsuca(Ghd)uuCfCfA
1770
VPusUfsugdGa(Tgn)gag
1859
ACUCUCAGUUCCA
1948



fcucauccaaaL96

uggAfaCfugagasgsu

CUCAUCCAAC






AD-1397126.1
usasggu(Ghd)uuUfCfU
1771
VPusdCsaadCadAggcad
1860
CCUAGGUGUUUCU
1949



fgccuuguugaL96

GaAfacaccuasgsg

GCCUUGUUGA






AD-1397127.1
asgsgug(Uhd)uuCfUfG
1772
VPusdTscadAcdAaggcd
1861
CUAGGUGUUUCUG
1950



fccuuguugaaL96

AgAfaacaccusasg

CCUUGUUGAC






AD-1397128.1
gsusguu(Uhd)cuGfCfC
1773
VPusUfsgudCa(Agn)caa
1862
AGGUGUUUCUGCC
1951



fuuguugacaaL96

ggcAfgAfaacacscsu

UUGUUGACAU






AD-1397129.1
usgsuuu(Chd)ugCfCfU
1774
VPusAfsugdTc(Agn)aca
1863
GGUGUUUCUGCCU
1952



fuguugacauaL96

aggCfaGfaaacascsc

UGUUGACAUG






AD-1397130.1
gsasagc(Chd)auGfCfUf
1775
VPusAfsgadAc(Agn)gac
1864
UGGAAGCCAUGCU
1953



gucuguucuaL96

agcAfuGfgcuucscsa

GUCUGUUCUG






AD-1397131.1
asgscag(Chd)ugAfAfC
1776
VPusUfsaudGu(Agn)uau
1865
GGAGCAGCUGAAC
1954



fauauacauaaL96

guuCfaGfcugcuscsc

AUAUACAUAG






AD-1397132.1
asgscug(Ahd)acAfUfA
1777
VPusdAsucdTadTguaud
1866
GCAGCUGAACAUA
1955



fuacauagauaL96

AuGfuucagcusgsc

UACAUAGAUG






AD-1397133.1
gscsuga(Ahd)caUfAfU
1778
VPusdCsaudCudAuguad
1867
CAGCUGAACAUAU
1956



facauagaugaL96

TaUfguucagcsusg

ACAUAGAUGU






AD-1397134.1
csusgaa(Chd)auAfUfA
1779
VPusAfscadTc(Tgn)augu
1868
AGCUGAACAUAUA
1957



fcauagauguaL96

auAfuGfuucagscsu

CAUAGAUGUU






AD-1397135.1
gsasaca(Uhd)auAfCfAf
1780
VPusdCsaadCadTcuaud
1869
CUGAACAUAUACA
1958



uagauguugaL96

GuAfuauguucsasg

UAGAUGUUGC






AD-1397136.1
asascau(Ahd)uaCfAfUf
1781
VPusGfscadAc(Agn)ucu
1870
UGAACAUAUACAU
1959



agauguugcaL96

augUfaUfauguuscsa

AGAUGUUGCC






AD-1397137.1
ascsaua(Uhd)acAfUfAf
1782
VPusGfsgcdAa(C2p)auc
1871
GAACAUAUACAUA
1960



gauguugccaL96

uauGfuAfuaugususc

GAUGUUGCCC






AD-1397138.1
gsasguu(Ghd)uaGfUfU
1783
VPusdGsacdAadAuccad
1872
UUGAGUUGUAGUU
1961



fggauuugucaL96

AcUfacaacucsasa

GGAUUUGUCU






AD-1397139.1
asgsuug(Uhd)agUfUfG
1784
VPusdAsgadCadAauccd
1873
UGAGUUGUAGUUG
1962



fgauuugucuaL96

AaCfuacaacuscsa

GAUUUGUCUG






AD-1397140.1
gsusugu(Ahd)guUfGfG
1785
VPusdCsagdAcdAaaucd
1874
GAGUUGUAGUUGG
1963



fauuugucugaL96

CaAfcuacaacsusc

AUUUGUCUGU






AD-1397141.1
ususgua(Ghd)uuGfGfA
1786
VPusAfscadGa(C2p)aaa
1875
AGUUGUAGUUGGA
1964



fuuugucuguaL96

uccAfaCfuacaascsu

UUUGUCUGUU






AD-1397142.1
usgsuag(Uhd)ugGfAfU
1787
VPusAfsacdAg(Agn)caa
1876
GUUGUAGUUGGAU
1965



fuugucuguuaL96

aucCfaAfcuacasasc

UUGUCUGUUU






AD-1397143.1
gsusagu(Uhd)ggAfUfU
1788
VPusAfsaadCa(G2p)acaa
1877
UUGUAGUUGGAUU
1966



fugucuguuuaL96

auCfcAfacuacsasa

UGUCUGUUUA






AD-1397144.1
asgsuug(Ghd)auUfUfG
1789
VPusdAsuadAadCagacd
1878
GUAGUUGGAUUUG
1967



fucuguuuauaL96

AaAfuccaacusasc

UCUGUUUAUG






AD-1397145.1
ususgga(Uhd)uuGfUfC
1790
VPusdGscadTadAacagd
1879
AGUUGGAUUUGUC
1968



fuguuuaugcaL96

AcAfaauccaascsu

UGUUUAUGCU






AD-1397146.1
gsgsauu(Uhd)guCfUfG
1791
VPusAfsagdCa(Tgn)aaac
1880
UUGGAUUUGUCUG
1969



fuuuaugcuuaL96

agAfcAfaauccsasa

UUUAUGCUUG






AD-1397147.1
gsasuuu(Ghd)ucUfGfU
1792
VPusCfsaadGc(Agn)uaa
1881
UGGAUUUGUCUGU
1970



fuuaugcuugaL96

acaGfaCfaaaucscsa

UUAUGCUUGG






AD-1397148.1
asusuug(Uhd)cuGfUfU
1793
VPusCfscadAg(C2p)aua
1882
GGAUUUGUCUGUU
1971



fuaugcuuggaL96

aacAfgAfcaaauscsc

UAUGCUUGGA






AD-1397149.1
ususugu(Chd)ugUfUfU
1794
VPusUfsccdAa(G2p)cau
1883
GAUUUGUCUGUUU
1972



faugcuuggaaL96

aaaCfaGfacaaasusc

AUGCUUGGAU






AD-1397150.1
ususguc(Uhd)guUfUfA
1795
VPusdAsucdCadAgcaud
1884
AUUUGUCUGUUUA
1973



fugcuuggauaL96

AaAfcagacaasasu

UGCUUGGAUU






AD-1397151.1
usgsucu(Ghd)uuUfAfU
1796
VPusAfsaudCc(Agn)agc
1885
UUUGUCUGUUUAU
1974



fgcuuggauuaL96

auaAfaCfagacasasa

GCUUGGAUUC






AD-1397152.1
uscsugu(Uhd)uaUfGfC
1797
VPusUfsgadAu(C2p)caa
1886
UGUCUGUUUAUGC
1975



fuuggauucaaL96

gcaUfaAfacagascsa

UUGGAUUCAC






AD-1397153.1
csusguu(Uhd)auGfCfU
1798
VPusGfsugdAa(Tgn)cca
1887
GUCUGUUUAUGCU
1976



fuggauucacaL96

agcAfuAfaacagsasc

UGGAUUCACC






AD-1397154.1
ususuau(Ghd)cuUfGfG
1799
VPusCfsugdGu(G2p)aau
1888
UGUUUAUGCUUGG
1977



fauucaccagaL96

ccaAfgCfauaaascsa

AUUCACCAGA






AD-1397155.1
asusuca(Chd)caGfAfGf
1800
VPusUfscadTa(G2p)ucac
1889
GGAUUCACCAGAG
1978



ugacuaugaaL96

ucUfgGfugaauscsc

UGACUAUGAU






AD-1397156.1
uscsacc(Ahd)gaGfUfG
1801
VPusUfsaudCa(Tgn)agu
1890
AUUCACCAGAGUG
1979



facuaugauaaL96

cacUfcUfggugasasu

ACUAUGAUAG






AD-1397157.1
csascca(Ghd)agUfGfAf
1802
VPusCfsuadTc(Agn)uag
1891
UUCACCAGAGUGA
1980



cuaugauagaL96

ucaCfuCfuggugsasa

CUAUGAUAGU






AD-1397158.1
ascscag(Ahd)guGfAfC
1803
VPusAfscudAu(C2p)aua
1892
UCACCAGAGUGAC
1981



fuaugauaguaL96

gucAfcUfcuggusgsa

UAUGAUAGUG






AD-1397159.1
cscsaga(Ghd)ugAfCfU
1804
VPusdCsacdTadTcauad
1893
CACCAGAGUGACU
1982



faugauagugaL96

GuCfacucuggsusg

AUGAUAGUGA
















TABLE 18







Unmodified Sense and Antisense Strand Sequences of MAPT dsRNA Agents-Screen 6














Sense

Range in
Antisense

Range in



Sequence
SEQ ID
NM_
Sequence
SEQ ID
NM_


Duplex Name
5’ to 3’
NO:
005910.6
5’ to 3’
NO:
005910.6





AD-1397160.1
CAGAGUGACUAUG
1983
3370-3390
UTCACUAUCAUAGUCA
2073
3368-3390



AUAGUGAA


CUCUGGU







AD-1397161.1
GGACGCAUGUAUC
1984
3412-3432
UAUUTCAAGAUACAUG
2074
3410-3432



UUGAAAUA


CGUCCUU







AD-1397162.1
ACGCAUGUAUCUU
1985
3414-3434
UGCATUTCAAGAUACA
2075
3412-3434



GAAAUGCA


UGCGUCC







AD-1397163.1
CGCAUGUAUCUUG
1986
3415-3435
UAGCAUTUCAAGAUAC
2076
3413-3435



AAAUGCUA


AUGCGUC







AD-1397164.1
GCAUGUAUCUUGA
1987
3416-3436
UAAGCATUUCAAGAUA
2077
3414-3436



AAUGCUUA


CAUGCGU







AD-1397165.1
CAUGUAUCUUGAA
1988
3417-3437
UCAAGCAUUUCAAGAU
2078
3415-3437



AUGCUUGA


ACAUGCG







AD-1397166.1
UGUAUCUUGAAAU
1989
3419-3439
UUACAAGCAUUUCAAG
2079
3417-3439



GCUUGUAA


AUACAUG







AD-1397167.1
GUAUCUUGAAAUG
1990
3420-3440
UUUACAAGCAUUUCAA
2080
3418-3440



CUUGUAAA


GAUACAU







AD-1397168.1
CUUGAAAUGCUUG
1991
3424-3444
UCUCTUTACAAGCAUU
2081
3422-3444



UAAAGAGA


UCAAGAU







AD-1397169.1
UUGAAAUGCUUGU
1992
3425-3445
UCCUCUTUACAAGCAU
2082
3423-3445



AAAGAGGA


UUCAAGA







AD-1397170.1
UGAAAUGCUUGUA
1993
3426-3446
UACCTCTUUACAAGCA
2083
3424-3446



AAGAGGUA


UUUCAAG







AD-1397171.1
GAAAUGCUUGUAA
1994
3427-3447
UAACCUCUUUACAAGC
2084
3425-3447



AGAGGUUA


AUUUCAA







AD-1397172.1
AAAUGCUUGUAAA
1995
3428-3448
UAAACCTCUUUACAAG
2085
3426-3448



GAGGUUUA


CAUUUCA







AD-1397173.1
AAUGCUUGUAAAG
1996
3429-3449
UGAAACCUCUUUACAA
2086
3427-3449



AGGUUUCA


GCAUUUC







AD-1397174.1
AUGCUUGUAAAGA
1997
3430-3450
UAGAAACCUCUTUACA
2087
3428-3450



GGUUUCUA


AGCAUUU







AD-1397175.1
UGCUUGUAAAGAG
1998
3431-3451
UTAGAAACCUCTUUAC
2088
3429-3451



GUUUCUAA


AAGCAUU







AD-1397176.1
UUGUAAAGAGGUU
1999
3434-3454
UGGUTAGAAACCUCUU
2089
3432-3454



UCUAACCA


UACAAGC







AD-1397177.1
AUUGCUGCCUAAA
2000
4132-4152
UGAGTUTCUUUAGGCA
2090
4130-4152



GAAACUCA


GCAAUGU







AD-1397178.1
UGCUGCCUAAAGA
2001
4134-4154
UCUGAGTUUCUUUAGG
2091
4132-4154



AACUCAGA


CAGCAAU







AD-1397179.1
UCUGGUUUGGGUA
2002
4179-4199
UUUAACTGUACCCAAA
2092
4177-4199



CAGUUAAA


CCAGAAG







AD-1397180.1
GGUUUGGGUACAG
2003
4182-4202
UCCUTUAACUGTACCCA
2093
4180-4202



UUAAAGGA


AACCAG







AD-1397181.1
UUUGGGUACAGUU
2004
4184-4204
UUGCCUTUAACUGUAC
2094
4182-4204



AAAGGCAA


CCAAACC







AD-1397182.1
GAUUUGGUGGUGG
2005
4395-4415
UTCUCUAACCACCACCA
2095
4393-4415



UUAGAGAA


AAUCUA







AD-1397183.1
UCAUUACUGCCAA
2006
4425-4445
UGAAACTGUUGGCAGU
2096
4423-4445



CAGUUUCA


AAUGAGG







AD-1397184.1
CAUUACUGCCAAC
2007
4426-4446
UCGAAACUGUUGGCAG
2097
4424-4446



AGUUUCGA


UAAUGAG







AD-1397185.1
UACUGCCAACAGU
2008
4429-4449
UAGCCGAAACUGUUGG
2098
4427-4449



UUCGGCUA


CAGUAAU







AD-1397186.1
GUUCCUCUUCCUG
2009
4469-4489
UAGAACTUCAGGAAGA
2099
4467-4489



AAGUUCUA


GGAACCG







AD-1397187.1
UUCCUCUUCCUGA
2010
4470-4490
UAAGAACUUCAGGAAG
2100
4468-4490



AGUUCUUA


AGGAACC







AD-1397188.1
UCCUCUUCCUGAA
2011
4471-4491
UCAAGAACUUCAGGAA
2101
4469-4491



GUUCUUGA


GAGGAAC







AD-1397189.1
CCUCUUCCUGAAG
2012
4472-4492
UACAAGAACUUCAGGA
2102
4470-4492



UUCUUGUA


AGAGGAA







AD-1397190.1
CUCUUCCUGAAGU
2013
4473-4493
UCACAAGAACUTCAGG
2103
4471-4493



UCUUGUGA


AAGAGGA







AD-1397191.1
UCUUCCUGAAGUU
2014
4474-4494
UGCACAAGAACTUCAG
2104
4472-4494



CUUGUGCA


GAAGAGG







AD-1397192.1
CCAGCCUAAGAUC
2015
4569-4589
UAAACCAUGAUCUUAG
2105
4567-4589



AUGGUUUA


GCUGGCC







AD-1397193.1
AGCCUAAGAUCAU
2016
4571-4591
UCUAAACCAUGAUCUU
2106
4569-4591



GGUUUAGA


AGGCUGG







AD-1397194.1
GCCUAAGAUCAUG
2017
4572-4592
UCCUAAACCAUGAUCU
2107
4570-4592



GUUUAGGA


UAGGCUG







AD-1397195.1
UCAGUGCUGGCAG
2018
4596-4616
UAAUTUAUCUGCCAGC
2108
4594-4616



AUAAAUUA


ACUGAUC







AD-1397196.1
CACGCUGGCUUGU
2019
4623-4643
UUAAGATCACAAGCCA
2109
4621-4643



GAUCUUAA


GCGUGCC







AD-1397197.1
UGGGCUAGAUAGG
2020
4721-4741
UAGUAUAUCCUAUCUA
2110
4719-4741



AUAUACUA


GCCCACC







AD-1397198.1
GGGCUAGAUAGGA
2021
4722-4742
UCAGTATAUCCTAUCUA
2111
4720-4742



UAUACUGA


GCCCAC







AD-1397199.1
CUAGAUAGGAUAU
2022
4725-4745
UAUACAGUAUAUCCUA
2112
4723-4745



ACUGUAUA


UCUAGCC







AD-1397200.1
UAGAUAGGAUAUA
2023
4726-4746
UCAUACAGUAUAUCCU
2113
4724-4746



CUGUAUGA


AUCUAGC







AD-1397201.1
ACUCACUUUAUCA
2024
4766-4786
UGAACUAUUGATAAAG
2114
4764-4786



AUAGUUCA


UGAGUCA







AD-1397202.1
CUCACUUUAUCAA
2025
4767-4787
UGGAACTAUUGAUAAA
2115
4765-4787



UAGUUCCA


GUGAGUC







AD-1397203.1
UCACUUUAUCAAU
2026
4768-4788
UUGGAACUAUUGAUAA
2116
4766-4788



AGUUCCAA


AGUGAGU







AD-1397204.1
CACUUUAUCAAUA
2027
4769-4789
UAUGGAACUAUUGAUA
2117
4767-4789



GUUCCAUA


AAGUGAG







AD-1397205.1
ACUUUAUCAAUAG
2028
4770-4790
UAAUGGAACUAUUGAU
2118
4768-4790



UUCCAUUA


AAAGUGA







AD-1397206.1
AUAGUUCCAUUUA
2029
4779-4799
UGUCAATUUAAAUGGA
2119
4777-4799



AAUUGACA


ACUAUUG







AD-1397207.1
GGUGAGACUGUAU
2030
4805-4825
UAAACAGGAUACAGUC
2120
4803-4825



CCUGUUUA


UCACCAC







AD-1397208.1
GUGAGACUGUAUC
2031
4806-4826
UCAAACAGGAUACAGU
2121
4804-4826



CUGUUUGA


CUCACCA







AD-1397209.1
UGAGACUGUAUCC
2032
4807-4827
UGCAAACAGGATACAG
2122
4805-4827



UGUUUGCA


UCUCACC







AD-1397210.1
GAGACUGUAUCCU
2033
4808-4828
UAGCAAACAGGAUACA
2123
4806-4828



GUUUGCUA


GUCUCAC







AD-1397211.1
AGACUGUAUCCUG
2034
4809-4829
UTAGCAAACAGGAUAC
2124
4807-4829



UUUGCUAA


AGUCUCA







AD-1397212.1
CUGUAUCCUGUUU
2035
4812-4832
UCAATAGCAAACAGGA
2125
4810-4832



GCUAUUGA


UACAGUC







AD-1397213.1
UGUAUCCUGUUUG
2036
4813-4833
UGCAAUAGCAAACAGG
2126
4811-4833



CUAUUGCA


AUACAGU







AD-1397214.1
GUAUCCUGUUUGC
2037
4814-4834
UAGCAATAGCAAACAG
2127
4812-4834



UAUUGCUA


GAUACAG







AD-1397215.1
UGAUUUCAACCAC
2038
4936-4956
UAGCAAAUGUGGUUGA
2128
4934-4956



AUUUGCUA


AAUCAUG







AD-1397216.1
UAUGGACAUCUGG
2039
5072-5092
UAAAGCAACCAGAUGU
2129
5070-5092



UUGCUUUA


CCAUAUU







AD-1397217.1
AUGGACAUCUGGU
2040
5073-5093
UCAAAGCAACCAGAUG
2130
5071-5093



UGCUUUGA


UCCAUAU







AD-1397218.1
ACUUCUGAUUUCU
2041
5345-5365
UGCUGAAGAGAAAUCA
2131
5343-5365



CUUCAGCA


GAAGUUU







AD-1397219.1
CUUCUGAUUUCUC
2042
5346-5366
UAGCTGAAGAGAAAUC
2132
5344-5366



UUCAGCUA


AGAAGUU







AD-1397220.1
CUGAUUUCUCUUC
2043
5349-5369
UCAAAGCUGAAGAGAA
2133
5347-5369



AGCUUUGA


AUCAGAA







AD-1397221.1
UGAUUUCUCUUCA
2044
5350-5370
UUCAAAGCUGAAGAGA
2134
5348-5370



GCUUUGAA


AAUCAGA







AD-1397222.1
GAUUUCUCUUCAG
2045
5351-5371
UTUCAAAGCUGAAGAG
2135
5349-5371



CUUUGAAA


AAAUCAG







AD-1397223.1
ACUUGCAAGUCCC
2046
5460-5480
UAAATCAUGGGACUUG
2136
5458-5480



AUGAUUUA


CAAGUGC







AD-1397224.1
CUUGCAAGUCCCA
2047
5461-5481
UGAAAUCAUGGGACUU
2137
5459-5481



UGAUUUCA


GCAAGUG







AD-1397225.1
UGCAAGUCCCAUG
2048
5463-5483
UAAGAAAUCAUGGGAC
2138
5461-5483



AUUUCUUA


UUGCAAG







AD-1397226.1
CAAGUCCCAUGAU
2049
5465-5485
UCGAAGAAAUCAUGGG
2139
5463-5485



UUCUUCGA


ACUUGCA







AD-1397227.1
AGUCCCAUGAUUU
2050
5467-5487
UACCGAAGAAATCAUG
2140
5465-5487



CUUCGGUA


GGACUUG







AD-1397228.1
GUCCCAUGAUUUC
2051
5468-5488
UTACCGAAGAAAUCAU
2141
5466-5488



UUCGGUAA


GGGACUU







AD-1397229.1
UCCCAUGAUUUCU
2052
5469-5489
UTUACCGAAGAAAUCA
2142
5467-5489



UCGGUAAA


UGGGACU







AD-1397230.1
CCCAUGAUUUCUU
2053
5470-5490
UAUUACCGAAGAAAUC
2143
5468-5490



CGGUAAUA


AUGGGAC







AD-1397231.1
CCAUGAUUUCUUC
2054
5471-5491
UAAUTACCGAAGAAAU
2144
5469-5491



GGUAAUUA


CAUGGGA







AD-1397232.1
AGGGACAUGAAAU
2055
5505-5525
UUAAGATGAUUUCAUG
2145
5503-5525



CAUCUUAA


UCCCUCC







AD-1397233.1
GGGACAUGAAAUC
2056
5506-5526
UCUAAGAUGAUTUCAU
2146
5504-5526



AUCUUAGA


GUCCCUC







AD-1397234.1
GGACAUGAAAUCA
2057
5507-5527
UGCUAAGAUGATUUCA
2147
5505-5527



UCUUAGCA


UGUCCCU







AD-1397235.1
GACAUGAAAUCAU
2058
5508-5528
UAGCTAAGAUGAUUUC
2148
5506-5528



CUUAGCUA


AUGUCCC







AD-1397236.1
ACAUGAAAUCAUC
2059
5509-5529
UAAGCUAAGAUGAUUU
2149
5507-5529



UUAGCUUA


CAUGUCC







AD-1397237.1
AUGAAAUCAUCUU
2060
5511-5531
UCUAAGCUAAGAUGAU
2150
5509-5531



AGCUUAGA


UUCAUGU







AD-1397238.1
GAAAUCAUCUUAG
2061
5513-5533
UAGCTAAGCUAAGAUG
2151
5511-5533



CUUAGCUA


AUUUCAU







AD-1397239.1
AAAUCAUCUUAGC
2062
5514-5534
UAAGCUAAGCUAAGAU
2152
5512-5534



UUAGCUUA


GAUUUCA







AD-1397240.1
GUGAAUGUCUAUA
2063
5541-5561
UUACACTAUAUAGACA
2153
5539-5561



UAGUGUAA


UUCACAG







AD-1397241.1
AAUGUCUAUAUAG
2064
5544-5564
UCAATACACUATAUAG
2154
5542-5564



UGUAUUGA


ACAUUCA







AD-1397242.1
UGUCUAUAUAGUG
2065
5546-5566
UCACAATACACTAUAU
2155
5544-5566



UAUUGUGA


AGACAUU







AD-1397243.1
GUCUAUAUAGUGU
2066
5547-5567
UACACAAUACACUAUA
2156
5545-5567



AUUGUGUA


UAGACAU







AD-1397244.1
UCUAUAUAGUGUA
2067
5548-5568
UCACACAAUACACUAU
2157
5546-5568



UUGUGUGA


AUAGACA







AD-1397245.1
UAUAUAGUGUAUU
2068
5550-5570
UAACACACAAUACACU
2158
5548-5570



GUGUGUUA


AUAUAGA







AD-1397246.1
AUAUAGUGUAUUG
2069
5551-5571
UAAACACACAAUACAC
2159
5549-5571



UGUGUUUA


UAUAUAG







AD-1397247.1
CAAAUGAUUUACA
2070
5574-5594
UCAGTCAGUGUAAAUC
2160
5572-5594



CUGACUGA


AUUUGUU







AD-1397248.1
AAUGAUUUACACU
2071
5576-5596
UAACAGTCAGUGUAAA
2161
5574-5596



GACUGUUA


UCAUUUG







AD-1397249.1
GAAAUAAAGUUAU
2072
5614-5634
UCAGAGTAAUAACUUU
2162
5612-5634



UACUCUGA


AUUUCCA
















TABLE 19







Modified Sense and Antisense Strand Sequences of MAPT dsRNA Agents-Screen 6

















SEQ
mRNA Target
SEQ



Sense Sequence 
SEQ
Antisense Sequence 
ID
Sequence
ID


Duplex ID
5’ to 3’
ID NO:
5’ to 3’
NO:
5’ to 3’
NO:





AD-1397160.1
csasgag(Uhd)gaCfUfA
2163
VPusdCsaudGcdGagcud
2253
ACCAGAGUGACUA
2343



fugauagugaaL96

TgGfgucacgusgsa

UGAUAGUGAA






AD-1397161.1
gsgsacg(Chd)auGfUf
2164
VPusCfscadTg(C2p)gag
2254
AAGGACGCAUGUA
2344



AfucuugaaauaL96

cuuGfgGfucacgsusg

UCUUGAAAUG






AD-1397162.1
ascsgca(Uhd)guAfUfC
2165
VPusAfsccdAu(G2p)cga
2255
GGACGCAUGUAUC
2345



fuugaaaugcaL96

gcuUfgGfgucacsgsu

UUGAAAUGCU






AD-1397163.1
csgscau(Ghd)uaUfCfU
2166
VPusdGsacdCadTgcgad
2256
GACGCAUGUAUCU
2346



fugaaaugcuaL96

GcUfugggucascsg

UGAAAUGCUU






AD-1397164.1
gscsaug(Uhd)auCfUf
2167
VPusUfsgadCc(Agn)ugc
2257
ACGCAUGUAUCUU
2347



UfgaaaugcuuaL96

gagCfuUfgggucsasc

GAAAUGCUUG






AD-1397165.1
csasugu(Ahd)ucUfUf
2168
VPusdCsugdAcdCaugcd
2258
CGCAUGUAUCUUG
2348



GfaaaugcuugaL96

GaGfcuuggguscsa

AAAUGCUUGU






AD-1397166.1
usgsuau(Chd)uuGfAf
2169
VPusAfscudGa(C2p)cau
2259
CAUGUAUCUUGAA
2349



AfaugcuuguaaL96

gcgAfgCfuugggsusc

AUGCUUGUAA






AD-1397167.1
gsusauc(Uhd)ugAfAf
2170
VPusUfsacdTg(Agn)cca
2260
AUGUAUCUUGAAA
2350



AfugcuuguaaaL96

ugcGfaGfcuuggsgsu

UGCUUGUAAA






AD-1397168.1
csusuga(Ahd)auGfCf
2171
VPusUfsuadCu(G2p)acc
2261
AUCUUGAAAUGCU
2351



UfuguaaagagaL96

augCfgAfgcuugsgsg

UGUAAAGAGG






AD-1397169.1
ususgaa(Ahd)ugCfUf
2172
VPusUfsugdTa(G2p)acu
2262
UCUUGAAAUGCUU
2352



UfguaaagaggaL96

auuUfgCfacacusgsc

GUAAAGAGGU






AD-1397170.1
usgsaaa(Uhd)gcUfUfG
2173
VPusUfsggdTu(Tgn)gua
2263
CUUGAAAUGCUUG
2353



fuaaagagguaL96

gacUfaUfuugcascsa

UAAAGAGGUU






AD-1397171.1
gsasaau(Ghd)cuUfGfU
2174
VPusUfscadAc(Tgn)ggu
2264
UUGAAAUGCUUGU
2354



faaagagguuaL96

uugUfaGfacuaususu

AAAGAGGUUU






AD-1397172.1
asasaug(Chd)uuGfUf
2175
VPusGfsgudCa(Agn)cug
2265
UGAAAUGCUUGUA
2355



AfaagagguuuaL96

guuUfgUfagacusasu

AAGAGGUUUC






AD-1397173.1
asasugc(Uhd)ugUfAf
2176
VPusAfsggdTc(Agn)acu
2266
GAAAUGCUUGUAA
2356



AfagagguuucaL96

gguUfuGfuagacsusa

AGAGGUUUCU






AD-1397174.1
asusgcu(Uhd)guAfAf
2177
VPusGfsuudTa(Tgn)gau
2267
AAAUGCUUGUAAA
2357



AfgagguuucuaL96

ggaUfgUfugccusasa

GAGGUUUCUA






AD-1397175.1
usgscuu(Ghd)uaAfAf
2178
VPusGfsgudTu(Agn)uga
2268
AAUGCUUGUAAAG
2358



GfagguuucuaaL96

uggAfuGfuugecsusa

AGGUUUCUAA






AD-1397176.1
ususgua(Ahd)agAfGf
2179
VPusUfsggdTu(Tgn)aug
2269
GCUUGUAAAGAGG
2359



GfuuucuaaccaL96

augGfaUfguugcscsu

UUUCUAACCC






AD-1397177.1
asusugc(Uhd)gcCfUf
2180
VPusCfscudGg(Tgn)uua
2270
ACAUUGCUGCCUA
2360



AfaagaaacucaL96

ugaUfgGfauguusgsc

AAGAAACUCA






AD-1397178.1
usgscug(Chd)cuAfAf
2181
VPusUfsgadAg(Tgn)caa
2271
AUUGCUGCCUAAA
2361



AfgaaacucagaL96

gcuUfcUfcagaususu

GAAACUCAGC






AD-1397179.1
uscsugg(Uhd)uuGfGf
2182
VPusAfsgudCu(Agn)cca
2272
CUUCUGGUUUGGG
2362



GfuacaguuaaaL96

uguCfgAfugcugscsc

UACAGUUAAA






AD-1397180.1
gsgsuuu(Ghd)ggUfAf
2183
VPusdCsaadAudCcuuud
2273
CUGGUUUGGGUAC
2363



CfaguuaaaggaL96

GuUfgcugccascsu

AGUUAAAGGC






AD-1397181.1
ususugg(Ghd)uaCfAf
2184
VPusdTscadAadTccuud
2274
GGUUUGGGUACAG
2364



GfuuaaaggcaaL96

TgUfugcugccsasc

UUAAAGGCAA






AD-1397182.1
gsasuuu(Ghd)guGfGf
2185
VPusGfsuudTc(Agn)aau
2275
UAGAUUUGGUGGU
2365



UfgguuagagaaL96

ccuUfuGfuugcusgsc

GGUUAGAGAU






AD-1397183.1
uscsauu(Ahd)cuGfCfC
2186
VPusAfsagdTu(Tgn)caa
2276
CCUCAUUACUGCC
2366



faacaguuucaL96

aucCfuUfuguugscsu

AACAGUUUCG






AD-1397184.1
csasuua(Chd)ugCfCfA
2187
VPusdCsaadGudTucaad
2277
CUCAUUACUGCCA
2367



facaguuucgaL96

AuCfcuuuguusgsc

ACAGUUUCGG






AD-1397185.1
usascug(Chd)caAfCfA
2188
VPusdCscadAgdTuucad
2278
AUUACUGCCAACA
2368



fguuucggcuaL96

AaUfccuuugususg

GUUUCGGCUG






AD-1397186.1
gsusucc(Uhd)cuUfCfC
2189
VPusdAsccdAadGuuucd
2279
CGGUUCCUCUUCC
2369



fugaaguucuaL96

AaAfuccuuugsusu

UGAAGUUCUU






AD-1397187.1
ususccu(Chd)uuCfCfU
2190
VPusdCsacdCadAguuud
2280
GGUUCCUCUUCCU
2370



fgaaguucuuaL96

CaAfauccuuusgsu

GAAGUUCUUG






AD-1397188.1
uscscuc(Uhd)ucCfUfG
2191
VPusdAscadCcdAaguud
2281
GUUCCUCUUCCUG
2371



faaguucuugaL96

TcAfaauccuususg

AAGUUCUUGU






AD-1397189.1
cscsucu(Uhd)ccUfGfA
2192
VPusAfsacdAc(Agn)cca
2282
UUCCUCUUCCUGA
2372



faguucuuguaL96

aguUfuCfaaaucscsu

AGUUCUUGUG






AD-1397190.1
csuscuu(Chd)cuGfAf
2193
VPusCfsaadGg(Tgn)uga
2283
UCCUCUUCCUGAA
2373



AfguucuugugaL96

cauCfgUfcugccsusg

GUUCUUGUGC






AD-1397191.1
uscsuuc(Chd)ugAfAf
2194
VPusdAscadCadAgguud
2284
CCUCUUCCUGAAG
2374



GfuucuugugcaL96

GaCfaucgucusgsc

UUCUUGUGCC






AD-1397192.1
cscsagc(Chd)uaAfGfA
2195
VPusAfscudCa(C2p)acaa
2285
GGCCAGCCUAAGA
2375



fucaugguuuaL96

ggUfuGfacaucsgsu

UCAUGGUUUA






AD-1397193.1
asgsccu(Ahd)agAfUfC
2196
VPusAfsaadCa(G2p)ggu
2286
CCAGCCUAAGAUC
2376



faugguuuagaL96

uucUfgUfggagcsasg

AUGGUUUAGG






AD-1397194.1
gscscua(Ahd)gaUfCfA
2197
VPusUfsucdCa(Agn)ccu
2287
CAGCCUAAGAUCA
2377



fugguuuaggaL96

ucaGfaAfcucaasusa

UGGUUUAGGG






AD-1397195.1
uscsagu(Ghd)cuGfGf
2198
VPusGfsuudCc(Agn)acc
2288
GAUCAGUGCUGGC
2378



CfagauaaauuaL96

uucAfgAfacucasasu

AGAUAAAUUG






AD-1397196.1
csascgc(Uhd)ggCfUfU
2199
VPusdAsagdAgdAacugd
2289
GGCACGCUGGCUU
2379



fgugaucuuaaL96

GuUfagcccuasasa

GUGAUCUUAA






AD-1397197.1
usgsggc(Uhd)agAfUf
2200
VPusdTscadCudAucaud
2290
GGUGGGCUAGAUA
2380



AfggauauacuaL96

AgUfcacucugsgsu

GGAUAUACUG






AD-1397198.1
gsgsgcu(Ahd)gaUfAf
2201
VPusAfsuudTc(Agn)aga
2291
GUGGGCUAGAUAG
2381



GfgauauacugaL96

uacAfuGfcguccsusu

GAUAUACUGU






AD-1397199.1
csusaga(Uhd)agGfAfU
2202
VPusGfscadTu(Tgn)caa
2292
GGCUAGAUAGGAU
2382



fauacuguauaL96

gauAfcAfugcguscsc

AUACUGUAUG






AD-1397200.1
usasgau(Ahd)ggAfUf
2203
VPusdAsgcdAudTucaad
2293
GCUAGAUAGGAUA
2383



AfuacuguaugaL96

GaUfacaugcgsusc

UACUGUAUGC






AD-1397201.1
ascsuca(Chd)uuUfAfU
2204
VPusAfsagdCa(Tgn)uuc
2294
UGACUCACUUUAU
2384



fcaauaguucaL96

aagAfuAfcaugcsgsu

CAAUAGUUCC






AD-1397202.1
csuscac(Uhd)uuAfUfC
2205
VPusCfsaadGc(Agn)uuu
2295
GACUCACUUUAUC
2385



faauaguuccaL96

caaGfaUfacaugscsg

AAUAGUUCCA






AD-1397203.1
uscsacu(Uhd)uaUfCfA
2206
VPusUfsacdAa(G2p)cau
2296
ACUCACUUUAUCA
2386



fauaguuccaaL96

uucAfaGfauacasusg

AUAGUUCCAU






AD-1397204.1
csascuu(Uhd)auCfAfA
2207
VPusUfsuadCa(Agn)gca
2297
CUCACUUUAUCAA
2387



fuaguuccauaL96

uuuCfaAfgauacsasu

UAGUUCCAUU






AD-1397205.1
ascsuuu(Ahd)ucAfAf
2208
VPusdCsucdTudTacaad
2298
UCACUUUAUCAAU
2388



UfaguuccauuaL96

GcAfuuucaagsasu

AGUUCCAUUU






AD-1397206.1
asusagu(Uhd)ccAfUfU
2209
VPusdCscudCudTuacad
2299
CAAUAGUUCCAUU
2389



fuaaauugacaL96

AgCfauuucaasgsa

UAAAUUGACU






AD-1397207.1
gsgsuga(Ghd)acUfGf
2210
VPusAfsccdTc(Tgn)uuac
2300
GUGGUGAGACUGU
2390



UfauccuguuuaL96

aaGfcAfuuucasasg

AUCCUGUUUG






AD-1397208.1
gsusgag(Ahd)cuGfUf
2211
VPusAfsacdCu(C2p)uuu
2301
UGGUGAGACUGUA
2391



AfuccuguuugaL96

acaAfgCfauuucsasa

UCCUGUUUGC






AD-1397209.1
usgsaga(Chd)ugUfAf
2212
VPusAfsaadCc(Tgn)cuu
2302
GGUGAGACUGUAU
2392



UfccuguuugcaL96

uacAfaGfcauuuscsa

CCUGUUUGCU






AD-1397210.1
gsasgac(Uhd)guAfUf
2213
VPusGfsaadAc(C2p)ucu
2303
GUGAGACUGUAUC
2393



CfcuguuugcuaL96

uuaCfaAfgcauususc

CUGUUUGCUA






AD-1397211.1
asgsacu(Ghd)uaUfCfC
2214
VPusdAsgadAadCcucud
2304
UGAGACUGUAUCC
2394



fuguuugcuaaL96

TuAfcaagcaususu

UGUUUGCUAU






AD-1397212.1
csusgua(Uhd)ccUfGfU
2215
VPusdTsagdAadAccucd
2305
GACUGUAUCCUGU
2395



fuugcuauugaL96

TuUfacaagcasusu

UUGCUAUUGC






AD-1397213.1
usgsuau(Chd)cuGfUf
2216
VPusGfsgudTa(G2p)aaa
2306
ACUGUAUCCUGUU
2396



UfugcuauugcaL96

ccuCfuUfuacaasgsc

UGCUAUUGCU






AD-1397214.1
gsusauc(Chd)ugUfUf
2217
VPusGfsagdTu(Tgn)cuu
2307
CUGUAUCCUGUUU
2397



UfgcuauugcuaL96

uagGfcAfgcaausgsu

GCUAUUGCUU






AD-1397215.1
usgsauu(Uhd)caAfCfC
2218
VPusCfsugdAg(Tgn)uuc
2308
CAUGAUUUCAACC
2398



facauuugcuaL96

uuuAfgGfcagcasasu

ACAUUUGCUA






AD-1397216.1
usasugg(Ahd)caUfCf
2219
VPusUfsuadAc(Tgn)gua
2309
AAUAUGGACAUCU
2399



UfgguugcuuuaL96

cccAfaAfccagasasg

GGUUGCUUUG






AD-1397217.1
asusgga(Chd)auCfUfG
2220
VPusdCscudTudAacugd
2310
AUAUGGACAUCUG
2400



fguugcuuugaL96

TaCfccaaaccsasg

GUUGCUUUGG






AD-1397218.1
ascsuuc(Uhd)gaUfUfU
2221
VPusUfsgcdCu(Tgn)uaa
2311
AAACUUCUGAUUU
2401



fcucuucagcaL96

cugUfaCfccaaascsc

CUCUUCAGCU






AD-1397219.1
csusucu(Ghd)auUfUf
2222
VPusdTscudCudAaccad
2312
AACUUCUGAUUUC
2402



CfucuucagcuaL96

CcAfccaaaucsusa

UCUUCAGCUU






AD-1397220.1
csusgau(Uhd)ucUfCf
2223
VPusGfsaadAc(Tgn)guu
2313
UUCUGAUUUCUCU
2403



UfucagcuuugaL96

ggcAfgUfaaugasgsg

UCAGCUUUGA






AD-1397221.1
usgsauu(Uhd)cuCfUf
2224
VPusdCsgadAadCuguud
2314
UCUGAUUUCUCUU
2404



UfcagcuuugaaL96

GgCfaguaaugsasg

CAGCUUUGAA






AD-1397222.1
gsasuuu(Chd)ucUfUf
2225
VPusdAsgcdCgdAaacud
2315
CUGAUUUCUCUUC
2405



CfagcuuugaaaL96

GuUfggcaguasasu

AGCUUUGAAA






AD-1397223.1
ascsuug(Chd)aaGfUfC
2226
VPusAfsgadAc(Tgn)uca
2316
GCACUUGCAAGUC
2406



fccaugauuuaL96

ggaAfgAfggaacscsg

CCAUGAUUUC






AD-1397224.1
csusugc(Ahd)agUfCfC
2227
VPusdAsagdAadCuucad
2317
CACUUGCAAGUCC
2407



fcaugauuucaL96

GgAfagaggaascsc

CAUGAUUUCU






AD-1397225.1
usgscaa(Ghd)ucCfCfA
2228
VPusdCsaadGadAcuucd
2318
CUUGCAAGUCCCA
2408



fugauuucuuaL96

AgGfaagaggasasc

UGAUUUCUUC






AD-1397226.1
csasagu(Chd)ccAfUfG
2229
VPusdAscadAgdAacuud
2319
UGCAAGUCCCAUG
2409



fauuucuucgaL96

CaGfgaagaggsasa

AUUUCUUCGG






AD-1397227.1
asgsucc(Chd)auGfAfU
2230
VPusdCsacdAadGaacud
2320
CAAGUCCCAUGAU
2410



fuucuucgguaL96

TcAfggaagagsgsa

UUCUUCGGUA






AD-1397228.1
gsusccc(Ahd)ugAfUf
2231
VPusdGscadCadAgaacd
2321
AAGUCCCAUGAUU
2411



UfucuucgguaaL96

TuCfaggaagasgsg

UCUUCGGUAA






AD-1397229.1
uscscca(Uhd)gaUfUfU
2232
VPusAfsaadCc(Agn)uga
2322
AGUCCCAUGAUUU
2412



fcuucgguaaaL96

ucuUfaGfgcuggscsc

CUUCGGUAAU






AD-1397230.1
cscscau(Ghd)auUfUfC
2233
VPusdCsuadAadCcaugd
2323
GUCCCAUGAUUUC
2413



fuucgguaauaL96

AuCfuuaggcusgsg

UUCGGUAAUU






AD-1397231.1
cscsaug(Ahd)uuUfCf
2234
VPusdCscudAadAccaud
2324
UCCCAUGAUUUCU
2414



UfucgguaauuaL96

GaUfcuuaggcsusg

UCGGUAAUUC






AD-1397232.1
asgsgga(Chd)auGfAf
2235
VPusdAsaudTudAucugd
2325
GGAGGGACAUGAA
2415



AfaucaucuuaaL96

CcAfgcacugasusc

AUCAUCUUAG






AD-1397233.1
gsgsgac(Ahd)ugAfAf
2236
VPusUfsaadGa(Tgn)cac
2326
GAGGGACAUGAAA
2416



AfucaucuuagaL96

aagCfcAfgcgugscsc

UCAUCUUAGC






AD-1397234.1
gsgsaca(Uhd)gaAfAfU
2237
VPusdAsgudAudAuccud
2327
AGGGACAUGAAAU
2417



fcaucuuagcaL96

AuCfuagcccascsc

CAUCUUAGCU






AD-1397235.1
gsascau(Ghd)aaAfUfC
2238
VPusdCsagdTadTauccdT
2328
GGGACAUGAAAUC
2418



faucuuagcuaL96

aUfcuagcccsasc

AUCUUAGCUU






AD-1397236.1
ascsaug(Ahd)aaUfCfA
2239
VPusAfsuadCa(G2p)uau
2329
GGACAUGAAAUCA
2419



fucuuagcuuaL96

aucCfuAfucuagscsc

UCUUAGCUUA






AD-1397237.1
asusgaa(Ahd)ucAfUfC
2240
VPusdCsaudAcdAguaud
2330
ACAUGAAAUCAUC
2420



fuuagcuuagaL96

AuCfcuaucuasgsc

UUAGCUUAGC






AD-1397238.1
gsasaau(Chd)auCfUfU
2241
VPusdGsaadCudAuugad
2331
AUGAAAUCAUCUU
2421



fagcuuagcuaL96

TaAfagugaguscsa

AGCUUAGCUU






AD-1397239.1
asasauc(Ahd)ucUfUfA
2242
VPusGfsgadAc(Tgn)auu
2332
UGAAAUCAUCUUA
2422



fgcuuagcuuaL96

gauAfaAfgugagsusc

GCUUAGCUUU






AD-1397240.1
gsusgaa(Uhd)guCfUf
2243
VPusUfsggdAa(C2p)uau
2333
CUGUGAAUGUCUA
2423



AfuauaguguaaL96

ugaUfaAfagugasgsu

UAUAGUGUAU






AD-1397241.1
asasugu(Chd)uaUfAf
2244
VPusAfsugdGa(Agn)cua
2334
UGAAUGUCUAUAU
2424



UfaguguauugaL96

uugAfuAfaagugsasg

AGUGUAUUGU






AD-1397242.1
usgsucu(Ahd)uaUfAf
2245
VPusAfsaudGg(Agn)acu
2335
AAUGUCUAUAUAG
2425



GfuguauugugaL96

auuGfaUfaaagusgsa

UGUAUUGUGU






AD-1397243.1
gsuscua(Uhd)auAfGf
2246
VPusdGsucdAadTuuaad
2336
AUGUCUAUAUAGU
2426



UfguauuguguaL96

AuGfgaacuaususg

GUAUUGUGUG






AD-1397244.1
uscsuau(Ahd)uaGfUf
2247
VPusAfsaadCa(G2p)gau
2337
UGUCUAUAUAGUG
2427



GfuauugugugaL96

acaGfuCfucaccsasc

UAUUGUGUGU






AD-1397245.1
usasuau(Ahd)guGfUf
2248
VPusdCsaadAcdAggaud
2338
UCUAUAUAGUGUA
2428



AfuuguguguuaL96

AcAfgucucacscsa

UUGUGUGUUU






AD-1397246.1
asusaua(Ghd)ugUfAf
2249
VPusdGscadAadCaggad
2339
CUAUAUAGUGUAU
2429



UfuguguguuuaL96

TaCfagucucascsc

UGUGUGUUUU






AD-1397247.1
csasaau(Ghd)auUfUfA
2250
VPusdAsgcdAadAcaggd
2340
AACAAAUGAUUUA
2430



fcacugacugaL96

AuAfcagucucsasc

CACUGACUGU






AD-1397248.1
asasuga(Uhd)uuAfCf
2251
VPusdTsagdCadAacagd
2341
CAAAUGAUUUACA
2431



AfcugacuguuaL96

GaUfacagucuscsa

CUGACUGUUG






AD-1397249.1
gsasaau(Ahd)aaGfUfU
2252
VPusdCsaadTadGcaaad
2342
UGGAAAUAAAGUU
2432



fauuacucugaL96

CaGfgauacagsusc

AUUACUCUGA
















TABLE 20







Unmodified Sense and Antisense Strand Sequences of MAPT dsRNA Agents-Screen 7
















Range in

SEQ
Range in



Sense Sequence
SEQ ID
NM_
Antisense Sequence
ID
NM_


Duplex Name
5’ to 3’
NO:
005910.6
5’ to 3’
NO:
005910.6





AD-1397070.2
ACGUGACCCAAGC
2433
 512-532
UCAUGCGAGCUT
2521
 510-532



UCGCAUGA


GGGUCACGUGA







AD-1397071.2
CGUGACCCAAGCU
2434
 513-533
UCCATGCGAGCU
2522
 511-533



CGCAUGGA


UGGGUCACGUG







AD-1397072.2
GUGACCCAAGCUC
2435
 514-534
UACCAUGCGAGC
2523
 512-534



GCAUGGUA


UUGGGUCACGU







AD-1397073.2
UGACCCAAGCUCG
2436
 515-535
UGACCATGCGAG
2524
 513-535



CAUGGUCA


CUUGGGUCACG







AD-1397074.2
GACCCAAGCUCGC
2437
 516-536
UUGACCAUGCGA
2525
 514-536



AUGGUCAA


GCUUGGGUCAC







AD-1397075.2
ACCCAAGCUCGCA
2438
 517-537
UCUGACCAUGCG
2526
 515-537



UGGUCAGA


AGCUUGGGUCA







AD-1397076.2
CCCAAGCUCGCAU
2439
 518-538
UACUGACCAUGC
2527
 516-538



GGUCAGUA


GAGCUUGGGUC







AD-1397077.2
CCAAGCUCGCAUG
2440
 519-539
UUACTGACCAUG
2528
 517-539



GUCAGUAA


CGAGCUUGGGU







AD-1397078.2
CAAGCUCGCAUGG
2441
 520-540
UUUACUGACCAU
2529
 518-540



UCAGUAAA


GCGAGCUUGGG







AD-1397250.1
AAGCUCGCAUGGU
2442
 521-541
UUUUACTGACCA
2530
 519-541



CAGUAAAA


UGCGAGCUUGG







AD-1397251.1
AGCUCGCAUGGUC
2443
 522-542
UUUUTACUGACC
2531
 520-542



AGUAAAAA


AUGCGAGCUUG







AD-1397252.1
GCUCGCAUGGUCA
2444
 523-543
UCUUTUACUGAC
2532
 521-543



GUAAAAGA


CAUGCGAGCUU







AD-1397253.1
CUCGCAUGGUCAG
2445
 524-544
UGCUTUTACUGA
2533
 522-544



UAAAAGCA


CCAUGCGAGCU







AD-1397254.1
UCGCAUGGUCAGU
2446
 525-545
UUGCTUTUACUG
2534
 523-545



AAAAGCAA


ACCAUGCGAGC







AD-1397255.1
CGCAUGGUCAGUA
2447
 526-546
UUUGCUTUUACU
2535
 524-546



AAAGCAAA


GACCAUGCGAG







AD-1397256.1
GCAUGGUCAGUA
2448
 527-547
UUUUGCTUUUAC
2536
 525-547



AAAGCAAAA


UGACCAUGCGA







AD-1397257.1
CAUGGUCAGUAA
2449
 528-548
UCUUTGCUUUUA
2537
 526-548



AAGCAAAGA


CUGACCAUGCG







AD-1397258.1
AUGGUCAGUAAA
2450
 529-549
UUCUTUGCUUUU
2538
 527-549



AGCAAAGAA


ACUGACCAUGC







AD-1397259.1
UGGUCAGUAAAA
2451
 530-550
UGUCTUTGCUUU
2539
 528-550



GCAAAGACA


UACUGACCAUG







AD-1397260.1
GGUCAGUAAAAG
2452
 531-551
UCGUCUTUGCUU
2540
 529-551



CAAAGACGA


UUACUGACCAU







AD-1397261.1
GUCAGUAAAAGC
2453
 532-552
UCCGTCTUUGCTU
2541
 530-552



AAAGACGGA


UUACUGACCA







AD-1397262.1
UCAGUAAAAGCA
2454
 533-553
UCCCGUCUUUGC
2542
 531-553



AAGACGGGA


UUUUACUGACC







AD-1397263.1
CAGUAAAAGCAA
2455
 534-554
UTCCCGTCUUUGC
2543
 532-554



AGACGGGAA


UUUUACUGAC







AD-1397264.1
AGUAAAAGCAAA
2456
 535-555
UGUCCCGUCUUU
2544
 533-555



GACGGGACA


GCUUUUACUGA







AD-1397265.1
GUAAAAGCAAAG
2457
 536-556
UAGUCCCGUCUU
2545
 534-556



ACGGGACUA


UGCUUUUACUG







AD-1397266.1
AUAAUAUCAAAC
2458
1034-1054
UCGGGACGUGUT
2546
1032-1054



ACGUCCCGA


UGAUAUUAUCC







AD-1397267.1
UAAUAUCAAACAC
2459
1035-1055
UCCGGGACGUGU
2547
1033-1055



GUCCCGGA


UUGAUAUUAUC







AD-1397268.1
AAUAUCAAACACG
2460
1036-1056
UCCCGGGACGUG
2548
1034-1056



UCCCGGGA


UUUGAUAUUAU







AD-1397269.1
AUAUCAAACACGU
2461
1037-1057
UUCCCGGGACGU
2549
1035-1057



CCCGGGAA


GUUUGAUAUUA







AD-1397270.1
UAUCAAACACGUC
2462
1038-1058
UCUCCCGGGACG
2550
1036-1058



CCGGGAGA


UGUUUGAUAUU







AD-1397271.1
AUCAAACACGUCC
2463
1039-1059
UCCUCCCGGGAC
2551
1037-1059



CGGGAGGA


GUGUUUGAUAU







AD-1397272.1
UCAAACACGUCCC
2464
1040-1060
UGCCTCCCGGGAC
2552
1038-1060



GGGAGGCA


GUGUUUGAUA







AD-1397273.1
CAAACACGUCCCG
2465
1041-1061
UCGCCUCCCGGG
2553
1039-1061



GGAGGCGA


ACGUGUUUGAU







AD-1397274.1
AAACACGUCCCGG
2466
1042-1062
UCCGCCTCCCGGG
2554
1040-1062



GAGGCGGA


ACGUGUUUGA







AD-1397275.1
AACACGUCCCGGG
2467
1043-1063
UGCCGCCUCCCG
2555
1041-1063



AGGCGGCA


GGACGUGUUUG







AD-1397276.1
ACACGUCCCGGGA
2468
1044-1064
UUGCCGCCUCCC
2556
1042-1064



GGCGGCAA


GGGACGUGUUU







AD-1397277.1
CACGUCCCGGGAG
2469
1045-1065
UCUGCCGCCUCCC
2557
1043-1065



GCGGCAGA


GGGACGUGUU







AD-1397278.1
ACGUCCCGGGAGG
2470
1046-1066
UACUGCCGCCUC
2558
1044-1066



CGGCAGUA


CCGGGACGUGU







AD-1397279.1
CGUCCCGGGAGGC
2471
1047-1067
UCACTGCCGCCUC
2559
1045-1067



GGCAGUGA


CCGGGACGUG







AD-1397280.1
GUCCCGGGAGGCG
2472
1048-1068
UACACUGCCGCC
2560
1046-1068



GCAGUGUA


UCCCGGGACGU







AD-1397281.1
UCCCGGGAGGCGG
2473
1049-1069
UCACACTGCCGCC
2561
1047-1069



CAGUGUGA


UCCCGGGACG







AD-1397282.1
CCCGGGAGGCGGC
2474
1050-1070
UGCACACUGCCG
2562
1048-1070



AGUGUGCA


CCUCCCGGGAC







AD-1397283.1
CCGGGAGGCGGCA
2475
1051-1071
UUGCACACUGCC
2563
1049-1071



GUGUGCAA


GCCUCCCGGGA







AD-1397284.1
CGGGAGGCGGCAG
2476
1052-1072
UUUGCACACUGC
2564
1050-1072



UGUGCAAA


CGCCUCCCGGG







AD-1397285.1
GGGAGGCGGCAG
2477
1053-1073
UUUUGCACACUG
2565
1051-1073



UGUGCAAAA


CCGCCUCCCGG







AD-1397286.1
GGAGGCGGCAGU
2478
1054-1074
UAUUTGCACACU
2566
1052-1074



GUGCAAAUA


GCCGCCUCCCG







AD-1397287.1
CAGUGUGCAAAU
2479
1062-1082
UUGUAGACUAUU
2567
1060-1082



AGUCUACAA


UGCACACUGCC







AD-1397079.2
AGUGUGCAAAUA
2480
1063-1083
UUUGTAGACUAU
2568
1061-1083



GUCUACAAA


UUGCACACUGC







AD-1397288.1
GUGUGCAAAUAG
2481
1064-1084
UUUUGUAGACUA
2569
1062-1084



UCUACAAAA


UUUGCACACUG







AD-1397289.1
UGUGCAAAUAGU
2482
1065-1085
UGUUTGTAGACU
2570
1063-1085



CUACAAACA


AUUUGCACACU







AD-1397290.1
GUGCAAAUAGUC
2483
1066-1086
UGGUTUGUAGAC
2571
1064-1086



UACAAACCA


UAUUUGCACAC







AD-1397080.2
UGCAAAUAGUCU
2484
1067-1087
UUGGTUTGUAGA
2572
1065-1087



ACAAACCAA


CUAUUUGCACA







AD-1397291.1
GCAAAUAGUCUAC
2485
1068-1088
UCUGGUTUGUAG
2573
1066-1088



AAACCAGA


ACUAUUUGCAC







AD-1397292.1
CAAAUAGUCUACA
2486
1069-1089
UACUGGTUUGUA
2574
1067-1089



AACCAGUA


GACUAUUUGCA







AD-1397293.1
AAAUAGUCUACA
2487
1070-1090
UAACTGGUUUGU
2575
1068-1090



AACCAGUUA


AGACUAUUUGC







AD-1397294.1
AAUAGUCUACAA
2488
1071-1091
UCAACUGGUUUG
2576
1069-1091



ACCAGUUGA


UAGACUAUUUG







AD-1397081.2
AUAGUCUACAAAC
2489
1072-1092
UUCAACTGGUUU
2577
1070-1092



CAGUUGAA


GUAGACUAUUU







AD-1397295.1
UAGUCUACAAACC
2490
1073-1093
UGUCAACUGGUT
2578
1071-1093



AGUUGACA


UGUAGACUAUU







AD-1397082.2
AGUCUACAAACCA
2491
1074-1094
UGGUCAACUGGU
2579
1072-1094



GUUGACCA


UUGUAGACUAU







AD-1397083.2
GUCUACAAACCAG
2492
1075-1095
UAGGTCAACUGG
2580
1073-1095



UUGACCUA


UUUGUAGACUA







AD-1397296.1
UCUACAAACCAGU
2493
1076-1096
UCAGGUCAACUG
2581
1074-1096



UGACCUGA


GUUUGUAGACU







AD-1397297.1
CUACAAACCAGUU
2494
1077-1097
UUCAGGTCAACU
2582
1075-1097



GACCUGAA


GGUUUGUAGAC







AD-1397298.1
UACAAACCAGUUG
2495
1078-1098
UCUCAGGUCAAC
2583
1076-1098



ACCUGAGA


UGGUUUGUAGA







AD-1397299.1
ACAAACCAGUUGA
2496
1079-1099
UGCUCAGGUCAA
2584
1077-1099



CCUGAGCA


CUGGUUUGUAG







AD-1397300.1
CAAACCAGUUGAC
2497
1080-1100
UUGCTCAGGUCA
2585
1078-1100



CUGAGCAA


ACUGGUUUGUA







AD-1397301.1
AAACCAGUUGACC
2498
1081-1101
UUUGCUCAGGUC
2586
1079-1101



UGAGCAAA


AACUGGUUUGU







AD-1397302.1
AACCAGUUGACCU
2499
1082-1102
UCUUGCTCAGGU
2587
1080-1102



GAGCAAGA


CAACUGGUUUG







AD-1397303.1
CAACAUCCAUCAU
2500
1128-1148
UCUGGUTUAUGA
2588
1126-1148



AAACCAGA


UGGAUGUUGCC







AD-1397087.2
AACAUCCAUCAUA
2501
1129-1149
UCCUGGTUUAUG
2589
1127-1149



AACCAGGA


AUGGAUGUUGC







AD-1397304.1
ACAUCCAUCAUAA
2502
1130-1150
UUCCTGGUUUAU
2590
1128-1150



ACCAGGAA


GAUGGAUGUUG







AD-1397305.1
CAUCCAUCAUAAA
2503
1131-1151
UCUCCUGGUUUA
2591
1129-1151



CCAGGAGA


UGAUGGAUGUU







AD-1397306.1
AUCCAUCAUAAAC
2504
1132-1152
UCCUCCTGGUUTA
2592
1130-1152



CAGGAGGA


UGAUGGAUGU







AD-1397307.1
UCCAUCAUAAACC
2505
1133-1153
UACCTCCUGGUU
2593
1131-1153



AGGAGGUA


UAUGAUGGAUG







AD-1397308.1
CCAUCAUAAACCA
2506
1134-1154
UCACCUCCUGGT
2594
1132-1154



GGAGGUGA


UUAUGAUGGAU







AD-1397309.1
CAUCAUAAACCAG
2507
1135-1155
UCCACCTCCUGGU
2595
1133-1155



GAGGUGGA


UUAUGAUGGA







AD-1397310.1
AUCAUAAACCAGG
2508
1136-1156
UGCCACCUCCUG
2596
1134-1156



AGGUGGCA


GUUUAUGAUGG







AD-1397311.1
UCAUAAACCAGGA
2509
1137-1157
UGGCCACCUCCU
2597
1135-1157



GGUGGCCA


GGUUUAUGAUG







AD-1397312.1
CAUAAACCAGGAG
2510
1138-1158
UUGGCCACCUCC
2598
1136-1158



GUGGCCAA


UGGUUUAUGAU







AD-1397313.1
AUAAACCAGGAG
2511
1139-1159
UCUGGCCACCUC
2599
1137-1159



GUGGCCAGA


CUGGUUUAUGA







AD-1397314.1
UAAACCAGGAGG
2512
1140-1160
UCCUGGCCACCU
2600
1138-1160



UGGCCAGGA


CCUGGUUUAUG







AD-1397315.1
AAACCAGGAGGU
2513
1141-1161
UACCTGGCCACCU
2601
1139-1161



GGCCAGGUA


CCUGGUUUAU







AD-1397316.1
AACCAGGAGGUG
2514
1142-1162
UCACCUGGCCAC
2602
1140-1162



GCCAGGUGA


CUCCUGGUUUA







AD-1397317.1
ACCAGGAGGUGGC
2515
1143-1163
UCCACCTGGCCAC
2603
1141-1163



CAGGUGGA


CUCCUGGUUU







AD-1397318.1
CCAGGAGGUGGCC
2516
1144-1164
UUCCACCUGGCC
2604
1142-1164



AGGUGGAA


ACCUCCUGGUU







AD-1397319.1
CAGGAGGUGGCCA
2517
1145-1165
UUUCCACCUGGC
2605
1143-1165



GGUGGAAA


CACCUCCUGGU







AD-1397320.1
AGGAGGUGGCCA
2518
1146-1166
UCUUCCACCUGG
2606
1144-1166



GGUGGAAGA


CCACCUCCUGG







AD-1397321.1
GGAGGUGGCCAG
2519
1147-1167
UACUTCCACCUG
2607
1145-1167



GUGGAAGUA


GCCACCUCCUG







AD-1397322.1
GAGGUGGCCAGG
2520
1148-1168
UUACTUCCACCU
2608
1146-1168



UGGAAGUAA


GGCCACCUCCU
















TABLE 21







Modified Sense and Antisense Strand Sequences of MAPT dsRNA Agents- Screen 7















SEQ

SEQ
mRNA Target
SEQ



Sense Sequence 5′ to
ID
Antisense Sequence 5′
ID
Sequence
ID


Duplex ID
3′
NO:
to 3′
NO:
5′ to 3′
NO:





AD-1397070.2
ascsgug(Ahd)ccCfAfA
2609
VPusdCsaudGcdGagcud
2697
UCACGUGACCCAA
2785



fgcucgcaugaL96

TgGfgucacgusgsa

GCUCGCAUGG






AD-1397071.2
csgsuga(Chd)ccAfAfG
2610
VPusCfscadTg(C2p)gagc
2698
CACGUGACCCAAG
2786



fcucgcauggaL96

uuGfgGfucacgsusg

CUCGCAUGGU






AD-1397072.2
gsusgac(Chd)caAfGfCf
2611
VPusAfsccdAu(G2p)cga
2699
ACGUGACCCAAGC
2787



ucgcaugguaL96

gcuUfgGfgucacsgsu

UCGCAUGGUC






AD-1397073.2
usgsacc(Chd)aaGfCfUf
2612
VPusdGsacdCadTgcgad
2700
CGUGACCCAAGCU
2788



cgcauggucaL96

GcUfugggucascsg

CGCAUGGUCA






AD-1397074.2
gsasccc(Ahd)agCfUfCf
2613
VPusUfsgadCc(Agn)ugc
2701
GUGACCCAAGCUC
2789



gcauggucaaL96

gagCfuUfgggucsasc

GCAUGGUCAG






AD-1397075.2
ascscca(Ahd)gcUfCfGf
2614
VPusdCsugdAcdCaugcd
2702
UGACCCAAGCUCG
2790



cauggucagaL96

GaGfcuuggguscsa

CAUGGUCAGU






AD-1397076.2
cscscaa(Ghd)cuCfGfCf
2615
VPusAfscudGa(C2p)cau
2703
GACCCAAGCUCGC
2791



auggucaguaL96

gcgAfgCfuugggsusc

AUGGUCAGUA






AD-1397077.2
cscsaag(Chd)ucGfCfAf
2616
VPusUfsacdTg(Agn)cca
2704
ACCCAAGCUCGCA
2792



uggucaguaaL96

ugcGfaGfcuuggsgsu

UGGUCAGUAA






AD-1397078.2
csasagc(Uhd)cgCfAfUf
2617
VPusUfsuadCu(G2p)acc
2705
CCCAAGCUCGCAU
2793



ggucaguaaaL96

augCfgAfgcuugsgsg

GGUCAGUAAA






AD-1397250.1
asasgcu(Chd)gcAfUfG
2618
VPusUfsuudAc(Tgn)gac
2706
CCAAGCUCGCAUG
2794



fgucaguaaaaL96

cauGfcGfagcuusgsg

GUCAGUAAAA






AD-1397251.1
asgscuc(Ghd)caUfGfG
2619
VPusUfsuudTa(C2p)uga
2707
CAAGCUCGCAUGG
2795



fucaguaaaaaL96

ccaUfgCfgagcususg

UCAGUAAAAG






AD-1397252.1
gscsucg(Chd)auGfGfU
2620
VPusdCsuudTudAcugad
2708
AAGCUCGCAUGGU
2796



fcaguaaaagaL96

CcAfugcgagcsusu

CAGUAAAAGC






AD-1397253.1
csuscgc(Ahd)ugGfUfC
2621
VPusdGscudTudTacugd
2709
AGCUCGCAUGGUC
2797



faguaaaagcaL96

AcCfaugcgagscsu

AGUAAAAGCA






AD-1397254.1
uscsgca(Uhd)ggUfCfA
2622
VPusUfsgcdTu(Tgn)uac
2710
GCUCGCAUGGUCA
2798



fguaaaagcaaL96

ugaCfcAfugcgasgsc

GUAAAAGCAA






AD-1397255.1
csgscau(Ghd)guCfAfG
2623
VPusUfsugdCu(Tgn)uua
2711
CUCGCAUGGUCAG
2799



fuaaaagcaaaL96

cugAfcCfaugcgsasg

UAAAAGCAAA






AD-1397256.1
gscsaug(Ghd)ucAfGfU
2624
VPusUfsuudGc(Tgn)uuu
2712
UCGCAUGGUCAGU
2800



faaaagcaaaaL96

acuGfaCfcaugcsgsa

AAAAGCAAAG






AD-1397257.1
csasugg(Uhd)caGfUfA
2625
VPusCfsuudTg(C2p)uuu
2713
CGCAUGGUCAGUA
2801



faaagcaaagaL96

uacUfgAfccaugscsg

AAAGCAAAGA






AD-1397258.1
asusggu(Chd)agUfAfA
2626
VPusUfscudTu(G2p)cuu
2714
GCAUGGUCAGUAA
2802



faagcaaagaaL96

uuaCfuGfaccausgsc

AAGCAAAGAC






AD-1397259.1
usgsguc(Ahd)guAfAfA
2627
VPusGfsucdTu(Tgn)gcu
2715
CAUGGUCAGUAAA
2803



fagcaaagacaL96

uuuAfcUfgaccasusg

AGCAAAGACG






AD-1397260.1
gsgsuca(Ghd)uaAfAfA
2628
VPusCfsgudCu(Tgn)ugc
2716
AUGGUCAGUAAAA
2804



fgcaaagacgaL96

uuuUfaCfugaccsasu

GCAAAGACGG






AD-1397261.1
gsuscag(Uhd)aaAfAfG
2629
VPusdCscgdTcdTuugcd
2717
UGGUCAGUAAAAG
2805



fcaaagacggaL96

TuUfuacugacscsa

CAAAGACGGG






AD-1397262.1
uscsagu(Ahd)aaAfGfC
2630
VPusdCsccdGudCuuugd
2718
GGUCAGUAAAAGC
2806



faaagacgggaL96

CuUfuuacugascsc

AAAGACGGGA






AD-1397263.1
csasgua(Ahd)aaGfCfAf
2631
VPusdTsccdCgdTcuuud
2719
GUCAGUAAAAGCA
2807



aagacgggaaL96

GcUfuuuacugsasc

AAGACGGGAC






AD-1397264.1
asgsuaa(Ahd)agCfAfA
2632
VPusGfsucdCc(G2p)ucu
2720
UCAGUAAAAGCAA
2808



fagacgggacaL96

uugCfuUfuuacusgsa

AGACGGGACU






AD-1397265.1
gsusaaa(Ahd)gcAfAfA
2633
VPusAfsgudCc(C2p)guc
2721
CAGUAAAAGCAAA
2809



fgacgggacuaL96

uuuGfcUfuuuacsusg

GACGGGACUG






AD-1397266.1
asusaau(Ahd)ucAfAfA
2634
VPusdCsggdGadCgugud
2722
GGAUAAUAUCAAA
2810



fcacgucccgaL96

TuGfauauuauscsc

CACGUCCCGG






AD-1397267.1
usasaua(Uhd)caAfAfCf
2635
VPusCfscgdGg(Agn)cgu
2723
GAUAAUAUCAAAC
2811



acgucccggaL96

guuUfgAfuauuasusc

ACGUCCCGGG






AD-1397268.1
asasuau(Chd)aaAfCfAf
2636
VPusdCsccdGgdGacgud
2724
AUAAUAUCAAACA
2812



cgucccgggaL96

GuUfugauauusasu

CGUCCCGGGA






AD-1397269.1
asusauc(Ahd)aaCfAfCf
2637
VPusUfsccdCg(G2p)gac
2725
UAAUAUCAAACAC
2813



gucccgggaaL96

gugUfuUfgauaususa

GUCCCGGGAG






AD-1397270.1
usasuca(Ahd)acAfCfGf
2638
VPusdCsucdCcdGggacd
2726
AAUAUCAAACACG
2814



ucccgggagaL96

GuGfuuugauasusu

UCCCGGGAGG






AD-1397271.1
asuscaa(Ahd)caCfGfUf
2639
VPusdCscudCcdCgggad
2727
AUAUCAAACACGU
2815



cccgggaggaL96

CgUfguuugausasu

CCCGGGAGGC






AD-1397272.1
uscsaaa(Chd)acGfUfCf
2640
VPusGfsccdTc(C2p)cgg
2728
UAUCAAACACGUC
2816



ccgggaggcaL96

gacGfuGfuuugasusa

CCGGGAGGCG






AD-1397273.1
csasaac(Ahd)cgUfCfCf
2641
VPusCfsgcdCu(C2p)ccg
2729
AUCAAACACGUCC
2817



cgggaggcgaL96

ggaCfgUfguuugsasu

CGGGAGGCGG






AD-1397274.1
asasaca(Chd)guCfCfCf
2642
VPusCfscgdCc(Tgn)cccg
2730
UCAAACACGUCCC
2818



gggaggcggaL96

ggAfcGfuguuusgsa

GGGAGGCGGC






AD-1397275.1
asascac(Ghd)ucCfCfGf
2643
VPusGfsccdGc(C2p)ucc
2731
CAAACACGUCCCG
2819



ggaggcggcaL96

cggGfaCfguguususg

GGAGGCGGCA






AD-1397276.1
ascsacg(Uhd)ccCfGfGf
2644
VPusUfsgcdCg(C2p)cuc
2732
AAACACGUCCCGG
2820



gaggcggcaaL96

ccgGfgAfcgugususu

GAGGCGGCAG






AD-1397277.1
csascgu(Chd)ccGfGfGf
2645
VPusdCsugdCcdGccucd
2733
AACACGUCCCGGG
2821



aggcggcagaL96

CcGfggacgugsusu

AGGCGGCAGU






AD-1397278.1
ascsguc(Chd)cgGfGfA
2646
VPusAfscudGc(C2p)gcc
2734
ACACGUCCCGGGA
2822



fggcggcaguaL96

uccCfgGfgacgusgsu

GGCGGCAGUG






AD-1397279.1
csgsucc(Chd)ggGfAfG
2647
VPusCfsacdTg(C2p)cgcc
2735
CACGUCCCGGGAG
2823



fgcggcagugaL96

ucCfcGfggacgsusg

GCGGCAGUGU






AD-1397280.1
gsusccc(Ghd)ggAfGfG
2648
VPusAfscadCu(G2p)ccg
2736
ACGUCCCGGGAGG
2824



fcggcaguguaL96

ccuCfcCfgggacsgsu

CGGCAGUGUG






AD-1397281.1
uscsccg(Ghd)gaGfGfC
2649
VPusdCsacdAcdTgccgd
2737
CGUCCCGGGAGGC
2825



fggcagugugaL96

CcUfcccgggascsg

GGCAGUGUGC






AD-1397282.1
cscscgg(Ghd)agGfCfG
2650
VPusGfscadCa(C2p)ugc
2738
GUCCCGGGAGGCG
2826



fgcagugugcaL96

cgcCfuCfccgggsasc

GCAGUGUGCA






AD-1397283.1
cscsggg(Ahd)ggCfGfG
2651
VPusUfsgcdAc(Agn)cug
2739
UCCCGGGAGGCGG
2827



fcagugugcaaL96

ccgCfcUfcccggsgsa

CAGUGUGCAA






AD-1397284.1
csgsgga(Ghd)gcGfGfC
2652
VPusUfsugdCa(C2p)acu
2740
CCCGGGAGGCGGC
2828



fagugugcaaaL96

gccGfcCfucccgsgsg

AGUGUGCAAA






AD-1397285.1
gsgsgag(Ghd)cgGfCfA
2653
VPusUfsuudGc(Agn)cac
2741
CCGGGAGGCGGCA
2829



fgugugcaaaaL96

ugcCfgCfcucccsgsg

GUGUGCAAAU






AD-1397286.1
gsgsagg(Chd)ggCfAfG
2654
VPusAfsuudTg(C2p)aca
2742
CGGGAGGCGGCAG
2830



fugugcaaauaL96

cugCfcGfccuccscsg

UGUGCAAAUA






AD-1397287.1
csasgug(Uhd)gcAfAfA
2655
VPusUfsgudAg(Agn)cua
2743
GGCAGUGUGCAAA
2831



fuagucuacaaL96

uuuGfcAfcacugscsc

UAGUCUACAA






AD-1397079.2
asgsugu(Ghd)caAfAfU
2656
VPusUfsugdTa(G2p)acu
2744
GCAGUGUGCAAAU
2832



fagucuacaaaL96

auuUfgCfacacusgsc

AGUCUACAAA






AD-1397288.1
gsusgug(Chd)aaAfUfA
2657
VPusUfsuudGu(Agn)gac
2745
CAGUGUGCAAAUA
2833



fgucuacaaaaL96

uauUfuGfcacacsusg

GUCUACAAAC






AD-1397289.1
usgsugc(Ahd)aaUfAfG
2658
VPusGfsuudTg(Tgn)aga
2746
AGUGUGCAAAUAG
2834



fucuacaaacaL96

cuaUfuUfgcacascsu

UCUACAAACC






AD-1397290.1
gsusgca(Ahd)auAfGfU
2659
VPusGfsgudTu(G2p)uag
2747
GUGUGCAAAUAGU
2835



fcuacaaaccaL96

acuAfuUfugcacsasc

CUACAAACCA






AD-1397080.2
usgscaa(Ahd)uaGfUfC
2660
VPusUfsggdTu(Tgn)gua
2748
UGUGCAAAUAGUC
2836



fuacaaaccaaL96

gacUfaUfuugcascsa

UACAAACCAG






AD-1397291.1
gscsaaa(Uhd)agUfCfUf
2661
VPusdCsugdGudTuguad
2749
GUGCAAAUAGUCU
2837



acaaaccagaL96

GaCfuauuugcsasc

ACAAACCAGU






AD-1397292.1
csasaau(Ahd)guCfUfA
2662
VPusAfscudGg(Tgn)uug
2750
UGCAAAUAGUCUA
2838



fcaaaccaguaL96

uagAfcUfauuugscsa

CAAACCAGUU






AD-1397293.1
asasaua(Ghd)ucUfAfCf
2663
VPusAfsacdTg(G2p)uuu
2751
GCAAAUAGUCUAC
2839



aaaccaguuaL96

guaGfaCfuauuusgsc

AAACCAGUUG






AD-1397294.1
asasuag(Uhd)cuAfCfA
2664
VPusdCsaadCudGguuud
2752
CAAAUAGUCUACA
2840



faaccaguugaL96

GuAfgacuauususg

AACCAGUUGA






AD-1397081.2
asusagu(Chd)uaCfAfA
2665
VPusUfscadAc(Tgn)ggu
2753
AAAUAGUCUACAA
2841



faccaguugaaL96

uugUfaGfacuaususu

ACCAGUUGAC






AD-1397295.1
usasguc(Uhd)acAfAfA
2666
VPusdGsucdAadCuggud
2754
AAUAGUCUACAAA
2842



fccaguugacaL96

TuGfuagacuasusu

CCAGUUGACC






AD-1397082.2
asgsucu(Ahd)caAfAfC
2667
VPusGfsgudCa(Agn)cug
2755
AUAGUCUACAAAC
2843



fcaguugaccaL96

guuUfgUfagacusasu

CAGUUGACCU






AD-1397083.2
gsuscua(Chd)aaAfCfCf
2668
VPusAfsggdTc(Agn)acu
2756
UAGUCUACAAACC
2844



aguugaccuaL96

gguUfuGfuagacsusa

AGUUGACCUG






AD-1397296.1
uscsuac(Ahd)aaCfCfAf
2669
VPusCfsagdGu(C2p)aac
2757
AGUCUACAAACCA
2845



guugaccugaL96

uggUfuUfguagascsu

GUUGACCUGA






AD-1397297.1
csusaca(Ahd)acCfAfGf
2670
VPusUfscadGg(Tgn)caac
2758
GUCUACAAACCAG
2846



uugaccugaaL96

ugGfuUfuguagsasc

UUGACCUGAG






AD-1397298.1
usascaa(Ahd)ccAfGfUf
2671
VPusCfsucdAg(G2p)uca
2759
UCUACAAACCAGU
2847



ugaccugagaL96

acuGfgUfuuguasgsa

UGACCUGAGC






AD-1397299.1
ascsaaa(Chd)caGfUfUf
2672
VPusGfscudCa(G2p)guc
2760
CUACAAACCAGUU
2848



gaccugagcaL96

aacUfgGfuuugusasg

GACCUGAGCA






AD-1397300.1
csasaac(Chd)agUfUfGf
2673
VPusUfsgcdTc(Agn)ggu
2761
UACAAACCAGUUG
2849



accugagcaaL96

caaCfuGfguuugsusa

ACCUGAGCAA






AD-1397301.1
asasacc(Ahd)guUfGfA
2674
VPusUfsugdCu(C2p)agg
2762
ACAAACCAGUUGA
2850



fccugagcaaaL96

ucaAfcUfgguuusgsu

CCUGAGCAAG






AD-1397302.1
asascca(Ghd)uuGfAfCf
2675
VPusCfsuudGc(Tgn)cag
2763
CAAACCAGUUGAC
2851



cugagcaagaL96

gucAfaCfugguususg

CUGAGCAAGG






AD-1397303.1
csasaca(Uhd)ccAfUfCf
2676
VPusdCsugdGudTuaugd
2764
GGCAACAUCCAUC
2852



auaaaccagaL96

AuGfgauguugscsc

AUAAACCAGG






AD-1397087.2
asascau(Chd)caUfCfAf
2677
VPusCfscudGg(Tgn)uua
2765
GCAACAUCCAUCA
2853



uaaaccaggaL96

ugaUfgGfauguusgsc

UAAACCAGGA






AD-1397304.1
ascsauc(Chd)auCfAfUf
2678
VPusUfsccdTg(G2p)uuu
2766
CAACAUCCAUCAU
2854



aaaccaggaaL96

augAfuGfgaugususg

AAACCAGGAG






AD-1397305.1
csasucc(Ahd)ucAfUfA
2679
VPusCfsucdCu(G2p)guu
2767
AACAUCCAUCAUA
2855



faaccaggagaL96

uauGfaUfggaugsusu

AACCAGGAGG






AD-1397306.1
asuscca(Uhd)caUfAfAf
2680
VPusdCscudCcdTgguud
2768
ACAUCCAUCAUAA
2856



accaggaggaL96

TaUfgauggausgsu

ACCAGGAGGU






AD-1397307.1
uscscau(Chd)auAfAfA
2681
VPusAfsccdTc(C2p)ugg
2769
CAUCCAUCAUAAA
2857



fccaggagguaL96

uuuAfuGfauggasusg

CCAGGAGGUG






AD-1397308.1
cscsauc(Ahd)uaAfAfCf
2682
VPusdCsacdCudCcuggd
2770
AUCCAUCAUAAAC
2858



caggaggugaL96

TuUfaugauggsasu

CAGGAGGUGG






AD-1397309.1
csasuca(Uhd)aaAfCfCf
2683
VPusdCscadCcdTccugd
2771
UCCAUCAUAAACC
2859



aggagguggaL96

GuUfuaugaugsgsa

AGGAGGUGGC






AD-1397310.1
asuscau(Ahd)aaCfCfAf
2684
VPusGfsccdAc(C2p)ucc
2772
CCAUCAUAAACCA
2860



ggagguggcaL96

uggUfuUfaugausgsg

GGAGGUGGCC






AD-1397311.1
uscsaua(Ahd)acCfAfGf
2685
VPusGfsgcdCa(C2p)cuc
2773
CAUCAUAAACCAG
2861



gagguggccaL96

cugGfuUfuaugasusg

GAGGUGGCCA






AD-1397312.1
csasuaa(Ahd)ccAfGfGf
2686
VPusUfsggdCc(Agn)ccu
2774
AUCAUAAACCAGG
2862



agguggccaaL96

ccuGfgUfuuaugsasu

AGGUGGCCAG






AD-1397313.1
asusaaa(Chd)caGfGfAf
2687
VPusCfsugdGc(C2p)acc
2775
UCAUAAACCAGGA
2863



gguggccagaL96

uccUfgGfuuuausgsa

GGUGGCCAGG






AD-1397314.1
usasaac(Chd)agGfAfGf
2688
VPusCfscudGg(C2p)cac
2776
CAUAAACCAGGAG
2864



guggccaggaL96

cucCfuGfguuuasusg

GUGGCCAGGU






AD-1397315.1
asasacc(Ahd)ggAfGfG
2689
VPusAfsccdTg(G2p)ccac
2777
AUAAACCAGGAGG
2865



fuggccagguaL96

cuCfcUfgguuusasu

UGGCCAGGUG






AD-1397316.1
asascca(Ghd)gaGfGfUf
2690
VPusCfsacdCu(G2p)gcc
2778
UAAACCAGGAGGU
2866



ggccaggugaL96

accUfcCfugguususa

GGCCAGGUGG






AD-1397317.1
ascscag(Ghd)agGfUfG
2691
VPusdCscadCcdTggccd
2779
AAACCAGGAGGUG
2867



fgccagguggaL96

AcCfuccuggususu

GCCAGGUGGA






AD-1397318.1
cscsagg(Ahd)ggUfGfG
2692
VPusUfsccdAc(C2p)ugg
2780
AACCAGGAGGUGG
2868



fccagguggaaL96

ccaCfcUfccuggsusu

CCAGGUGGAA






AD-1397319.1
csasgga(Ghd)guGfGfC
2693
VPusUfsucdCa(C2p)cug
2781
ACCAGGAGGUGGC
2869



fcagguggaaaL96

gccAfcCfuccugsgsu

CAGGUGGAAG






AD-1397320.1
asgsgag(Ghd)ugGfCfC
2694
VPusCfsuudCc(Agn)ccu
2782
CCAGGAGGUGGCC
2870



fagguggaagaL96

ggcCfaCfcuccusgsg

AGGUGGAAGU






AD-1397321.1
gsgsagg(Uhd)ggCfCfA
2695
VPusAfscudTc(C2p)accu
2783
CAGGAGGUGGCCA
2871



fgguggaaguaL96

ggCfcAfccuccsusg

GGUGGAAGUA






AD-1397322.1
gsasggu(Ghd)gcCfAfG
2696
VPusUfsacdTu(C2p)cacc
2784
AGGAGGUGGCCAG
2872



fguggaaguaaL96

ugGfcCfaccucscsu

GUGGAAGUAA
















TABLE 22







Unmodified Sense and Antisense Strand Sequences of MAPT dsRNA Agents- Screen 8














Sense Sequence
SEQ ID
Range in
Antisense Sequence
SEQ ID
Range in


Duplex Name
5′ to 3′
NO:
NM_005910.6
5′ to 3′
NO:
NM_005910.6





AD-1423242.1
GCAGAUAAUUAAU
2873
975-995
UGCUTCTUAUUAAU
2943
973-995



AAGAAGCA


UAUCUGCAC







AD-1423243.1
CAGAUAAUUAAUA
2874
976-996
UAGCTUCUUAUTAA
2944
974-996



AGAAGCUA


UUAUCUGCA







AD-1423244.1
AGAUAAUUAAUAA
2875
977-997
UCAGCUTCUUATUA
2945
975-997



GAAGCUGA


AUUAUCUGC







AD-1423245.1
GAUAAUUAAUAAG
2876
978-998
UCCAGCTUCUUAUU
2946
976-998



AAGCUGGA


AAUUAUCUG







AD-1423246.1
AUAAUUAAUAAGA
2877
979-999
UTCCAGCUUCUTAU
2947
977-999



AGCUGGAA


UAAUUAUCU







AD-1423247.1
UAAUUAAUAAGAA
2878
 980-1000
UAUCCAGCUUCTUA
2948
 978-1000



GCUGGAUA


UUAAUUAUC







AD-1423248.1
AAUUAAUAAGAAG
2879
 981-1001
UGAUCCAGCUUCU
2949
 979-1001



CUGGAUCA


UAUUAAUUAU







AD-1423249.1
AUUAAUAAGAAGC
2880
 982-1002
UAGATCCAGCUTCU
2950
 980-1002



UGGAUCUA


UAUUAAUUA







AD-1423250.1
UUAAUAAGAAGCU
2881
 983-1003
UAAGAUCCAGCTUC
2951
 981-1003



GGAUCUUA


UUAUUAAUU







AD-1423251.1
UAAUAAGAAGCUG
2882
 984-1004
UTAAGATCCAGCUU
2952
 982-1004



GAUCUUAA


CUUAUUAAU







AD-1423252.1
AAUAAGAAGCUGG
2883
 985-1005
UCUAAGAUCCAGC
2953
 983-1005



AUCUUAGA


UUCUUAUUAA







AD-1423253.1
AUAAGAAGCUGGA
2884
 986-1006
UGCUAAGAUCCAG
2954
 984-1006



UCUUAGCA


CUUCUUAUUA







AD-1423254.1
UAAGAAGCUGGAU
2885
 987-1007
UTGCTAAGAUCCAG
2955
 985-1007



CUUAGCAA


CUUCUUAUU







AD-1423255.1
AAGAAGCUGGAUC
2886
 988-1008
UTUGCUAAGAUCCA
2956
 986-1008



UUAGCAAA


GCUUCUUAU







AD-1423256.1
AGAAGCUGGAUCU
2887
 989-1009
UGUUGCTAAGATCC
2957
 987-1009



UAGCAACA


AGCUUCUUA







AD-1423257.1
GAAGCUGGAUCUU
2888
 990-1010
UCGUTGCUAAGAUC
2958
 988-1010



AGCAACGA


CAGCUUCUU







AD-1423258.1
AAGCUGGAUCUUA
2889
 991-1011
UACGTUGCUAAGA
2959
 989-1011



GCAACGUA


UCCAGCUUCU







AD-1423259.1
AGCUGGAUCUUAG
2890
 992-1012
UGACGUTGCUAAG
2960
 990-1012



CAACGUCA


AUCCAGCUUC







AD-1423260.1
GCUGGAUCUUAGC
2891
 993-1013
UGGACGTUGCUAA
2961
 991-1013



AACGUCCA


GAUCCAGCUU







AD-1423261.1
CUGGAUCUUAGCA
2892
 994-1014
UTGGACGUUGCTAA
2962
 992-1014



ACGUCCAA


GAUCCAGCU







AD-1423262.1
UGGAUCUUAGCAA
2893
 995-1015
UCUGGACGUUGCU
2963
 993-1015



CGUCCAGA


AAGAUCCAGC







AD-1423263.1
GGAUCUUAGCAAC
2894
 996-1016
UACUGGACGUUGC
2964
 994-1016



GUCCAGUA


UAAGAUCCAG







AD-1423264.1
GAUCUUAGCAACG
2895
 997-1017
UGACTGGACGUTGC
2965
 995-1017



UCCAGUCA


UAAGAUCCA







AD-1423265.1
AUCUUAGCAACGU
2896
 998-1018
UGGACUGGACGTU
2966
 996-1018



CCAGUCCA


GCUAAGAUCC







AD-1423266.1
UCUUAGCAACGUC
2897
 999-1019
UTGGACTGGACGUU
2967
 997-1019



CAGUCCAA


GCUAAGAUC







AD-1423267.1
CUUAGCAACGUCC
2898
1000-1020
UTUGGACUGGACG
2968
 998-1020



AGUCCAAA


UUGCUAAGAU







AD-1423268.1
UUAGCAACGUCCA
2899
1001-1021
UCUUGGACUGGAC
2969
 999-1021



GUCCAAGA


GUUGCUAAGA







AD-1423269.1
UAGCAACGUCCAG
2900
1002-1022
UACUTGGACUGGAC
2970
1000-1022



UCCAAGUA


GUUGCUAAG







AD-1423270.1
AGCAACGUCCAGU
2901
1003-1023
UCACTUGGACUGGA
2971
1001-1023



CCAAGUGA


CGUUGCUAA







AD-1423271.1
GCAACGUCCAGUC
2902
1004-1024
UACACUTGGACTGG
2972
1002-1024



CAAGUGUA


ACGUUGCUA







AD-1423272.1
CAACGUCCAGUCC
2903
1005-1025
UCACACTUGGACUG
2973
1003-1025



AAGUGUGA


GACGUUGCU







AD-1423273.1
AACGUCCAGUCCA
2904
1006-1026
UCCACACUUGGACU
2974
1004-1026



AGUGUGGA


GGACGUUGC







AD-1423274.1
ACGUCCAGUCCAA
2905
1007-1027
UGCCACACUUGGAC
2975
1005-1027



GUGUGGCA


UGGACGUUG







AD-1423275.1
CGUCCAGUCCAAG
2906
1008-1028
UAGCCACACUUGG
2976
1006-1028



UGUGGCUA


ACUGGACGUU







AD-1423276.1
GUCCAGUCCAAGU
2907
1009-1029
UGAGCCACACUTGG
2977
1007-1029



GUGGCUCA


ACUGGACGU







AD-1423277.1
UCCAGUCCAAGUG
2908
1010-1030
UTGAGCCACACTUG
2978
1008-1030



UGGCUCAA


GACUGGACG







AD-1423278.1
CCAGUCCAAGUGU
2909
1011-1031
UTUGAGCCACACUU
2979
1009-1031



GGCUCAAA


GGACUGGAC







AD-1423279.1
CAGUCCAAGUGUG
2910
1012-1032
UTUUGAGCCACACU
2980
1010-1032



GCUCAAAA


UGGACUGGA







AD-1423280.1
AGUCCAAGUGUGG
2911
1013-1033
UCUUTGAGCCACAC
2981
1011-1033



CUCAAAGA


UUGGACUGG







AD-1423281.1
GUCCAAGUGUGGC
2912
1014-1034
UCCUTUGAGCCACA
2982
1012-1034



UCAAAGGA


CUUGGACUG







AD-1423282.1
UCCAAGUGUGGCU
2913
1015-1035
UTCCTUTGAGCCAC
2983
1013-1035



CAAAGGAA


ACUUGGACU







AD-1423283.1
CCAAGUGUGGCUC
2914
1016-1036
UAUCCUTUGAGCCA
2984
1014-1036



AAAGGAUA


CACUUGGAC







AD-1423284.1
CAAGUGUGGCUCA
2915
1017-1037
UTAUCCTUUGAGCC
2985
1015-1037



AAGGAUAA


ACACUUGGA







AD-1423285.1
AAGUGUGGCUCAA
2916
1018-1038
UTUATCCUUUGAGC
2986
1016-1038



AGGAUAAA


CACACUUGG







AD-1423286.1
AGUGUGGCUCAAA
2917
1019-1039
UAUUAUCCUUUGA
2987
1017-1039



GGAUAAUA


GCCACACUUG







AD-1423287.1
GUGUGGCUCAAAG
2918
1020-1040
UTAUTATCCUUTGA
2988
1018-1040



GAUAAUAA


GCCACACUU







AD-1423288.1
UGUGGCUCAAAGG
2919
1021-1041
UAUATUAUCCUTUG
2989
1019-1041



AUAAUAUA


AGCCACACU







AD-1423289.1
GUGGCUCAAAGGA
2920
1022-1042
UGAUAUTAUCCTUU
2990
1020-1042



UAAUAUCA


GAGCCACAC







AD-1423290.1
UGGCUCAAAGGAU
2921
1023-1043
UTGATATUAUCCUU
2991
1021-1043



AAUAUCAA


UGAGCCACA







AD-1423291.1
GGCUCAAAGGAUA
2922
1024-1044
UTUGAUAUUAUCC
2992
1022-1044



AUAUCAAA


UUUGAGCCAC







AD-1423292.1
GCUCAAAGGAUAA
2923
1025-1045
UTUUGATAUUATCC
2993
1023-1045



UAUCAAAA


UUUGAGCCA







AD-1423293.1
CUCAAAGGAUAAU
2924
1026-1046
UGUUTGAUAUUAU
2994
1024-1046



AUCAAACA


CCUUUGAGCC







AD-1423294.1
UCAAAGGAUAAUA
2925
1027-1047
UTGUTUGAUAUTAU
2995
1025-1047



UCAAACAA


CCUUUGAGC







AD-1423295.1
CAAAGGAUAAUAU
2926
1028-1048
UGUGTUTGAUATUA
2996
1026-1048



CAAACACA


UCCUUUGAG







AD-1423296.1
AAAGGAUAAUAUC
2927
1029-1049
UCGUGUTUGAUAU
2997
1027-1049



AAACACGA


UAUCCUUUGA







AD-1423297.1
AAGGAUAAUAUCA
2928
1030-1050
UACGTGTUUGATAU
2998
1028-1050



AACACGUA


UAUCCUUUG







AD-1423298.1
AGGAUAAUAUCAA
2929
1031-1051
UGACGUGUUUGAU
2999
1029-1051



ACACGUCA


AUUAUCCUUU







AD-1423299.1
GGAUAAUAUCAAA
2930
1032-1052
UGGACGTGUUUGA
3000
1030-1052



CACGUCCA


UAUUAUCCUU







AD-1423300.1
GAUAAUAUCAAAC
2931
1033-1053
UGGGACGUGUUTG
3001
1031-1053



ACGUCCCA


AUAUUAUCCU







AD-1397266.2
AUAAUAUCAAACA
2932
1034-1054
UCGGGACGUGUTU
3002
1032-1054



CGUCCCGA


GAUAUUAUCC







AD-1423301.1
UAAUAUCAAACAC
2933
1035-1055
UCCGGGACGUGTUU
3003
1033-1055



GUCCCGGA


GAUAUUAUC







AD-1397268.2
AAUAUCAAACACG
2934
1036-1056
UCCCGGGACGUGU
3004
1034-1056



UCCCGGGA


UUGAUAUUAU







AD-1423302.1
AUAUCAAACACGU
2935
1037-1057
UTCCCGGGACGTGU
3005
1035-1057



CCCGGGAA


UUGAUAUUA







AD-1397270.2
UAUCAAACACGUC
2936
1038-1058
UCUCCCGGGACGUG
3006
1036-1058



CCGGGAGA


UUUGAUAUU







AD-1397271.2
AUCAAACACGUCC
2937
1039-1059
UCCUCCCGGGACGU
3007
1037-1059



CGGGAGGA


GUUUGAUAU







AD-1423303.1
UCAAACACGUCCC
2938
1040-1060
UGCCTCCCGGGACG
3008
1038-1060



GGGAGGCA


UGUUUGAUA







AD-1423304.1
CAAACACGUCCCG
2939
1041-1061
UCGCCUCCCGGGAC
3009
1039-1061



GGAGGCGA


GUGUUUGAU







AD-1423305.1
AAACACGUCCCGG
2940
1042-1062
UCCGCCTCCCGGGA
3010
1040-1062



GAGGCGGA


CGUGUUUGA







AD-1423306.1
AACACGUCCCGGG
2941
1043-1063
UGCCGCCUCCCGGG
3011
1041-1063



AGGCGGCA


ACGUGUUUG







AD-1397277.2
CACGUCCCGGGAG
2942
1045-1065
UCUGCCGCCUCCCG
3012
1043-1065



GCGGCAGA


GGACGUGUU
















TABLE 23







Modified Sense and Antisense Strand Sequences of MAPT dsRNA Agents- Screen 8















SEQ

SEQ
mRNA Target
SEQ



Sense Sequence 5′ to
ID
Antisense Sequence 5′
ID
Sequence
ID


Duplex ID
3′
NO:
to 3′
NO:
5′ to 3′
NO:





AD-1423242.1
gscsaga(Uhd)aaUfUfA
3013
VPusdGscudTc(Tgn)uau
3083
GUGCAGAUAAUUA
3153



fauaagaagcaL96

udAaUfuaucugcsasc

AUAAGAAGCU






AD-1423243.1
csasgau(Ahd)auUfAfA
3014
VPusdAsgcdTu(C2p)uua
3084
UGCAGAUAAUUAA
3154



fuaagaagcuaL96

udTaAfuuaucugscsa

UAAGAAGCUG






AD-1423244.1
asgsaua(Ahd)uuAfAfU
3015
VPusdCsagdCudTcuuad
3085
GCAGAUAAUUAAU
3155



faagaagcugaL96

TuAfauuaucusgsc

AAGAAGCUGG






AD-1423245.1
gsasuaa(Uhd)uaAfUfA
3016
VPusdCscadGc(Tgn)ucu
3086
CAGAUAAUUAAUA
3156



fagaagcuggaL96

udAuUfaauuaucsusg

AGAAGCUGGA






AD-1423246.1
asusaau(Uhd)aaUfAfA
3017
VPusdTsecdAg(C2p)uuc
3087
AGAUAAUUAAUAA
3157



fgaagcuggaaL96

udTaUfuaauuauscsu

GAAGCUGGAU






AD-1423247.1
usasauu(Ahd)auAfAfG
3018
VPusdAsucdCa(G2p)cuu
3088
GAUAAUUAAUAAG
3158



faagcuggauaL96

cdTuAfuuaauuasusc

AAGCUGGAUC






AD-1423248.1
asasuua(Ahd)uaAfGfA
3019
VPusdGsaudCc(Agn)gcu
3089
AUAAUUAAUAAGA
3159



fagcuggaucaL96

udCuUfauuaauusasu

AGCUGGAUCU






AD-1423249.1
asusuaa(Uhd)aaGfAfA
3020
VPusdAsgadTc(C2p)agc
3090
UAAUUAAUAAGAA
3160



fgcuggaucuaL96

udTcUfuauuaaususa

GCUGGAUCUU






AD-1423250.1
ususaau(Ahd)agAfAfG
3021
VPusdAsagdAudCcagcd
3091
AAUUAAUAAGAAG
3161



fcuggaucuuaL96

TuCfuuauuaasusu

CUGGAUCUUA






AD-1423251.1
usasaua(Ahd)gaAfGfC
3022
VPusdTsaadGa(Tgn)cca
3092
AUUAAUAAGAAGC
3162



fuggaucuuaaL96

gdCuUfcuuauuasasu

UGGAUCUUAG






AD-1423252.1
asasuaa(Ghd)aaGfCfUf
3023
VPusdCsuadAg(Agn)ucc
3093
UUAAUAAGAAGCU
3163



ggaucuuagaL96

adGcUfucuuauusasa

GGAUCUUAGC






AD-1423253.1
asusaag(Ahd)agCfUfG
3024
VPusdGscudAadGauccd
3094
UAAUAAGAAGCUG
3164



fgaucuuagcaL96

AgCfuucuuaususa

GAUCUUAGCA






AD-1423254.1
usasaga(Ahd)gcUfGfG
3025
VPusdTsgcdTa(Agn)gau
3095
AAUAAGAAGCUGG
3165



faucuuagcaaL96

cdCaGfcuucuuasusu

AUCUUAGCAA






AD-1423255.1
asasgaa(Ghd)cuGfGfA
3026
VPusdTsugdCu(Agn)aga
3096
AUAAGAAGCUGGA
3166



fucuuagcaaaL96

udCcAfgcuucuusasu

UCUUAGCAAC






AD-1423256.1
asgsaag(Chd)ugGfAfU
3027
VPusdGsuudGc(Tgn)aag
3097
UAAGAAGCUGGAU
3167



fcuuagcaacaL96

adTcCfagcuucususa

CUUAGCAACG






AD-1423257.1
gsasagc(Uhd)ggAfUfC
3028
VPusdCsgudTg(C2p)uaa
3098
AAGAAGCUGGAUC
3168



fuuagcaacgaL96

gdAuCfcagcuucsusu

UUAGCAACGU






AD-1423258.1
asasgcu(Ghd)gaUfCfU
3029
VPusdAscgdTu(G2p)cua
3099
AGAAGCUGGAUCU
3169



fuagcaacguaL96

adGaUfccagcuuscsu

UAGCAACGUC






AD-1423259.1
asgscug(Ghd)auCfUfU
3030
VPusdGsacdGudTgcuad
3100
GAAGCUGGAUCUU
3170



fagcaacgucaL96

AgAfuccagcususc

AGCAACGUCC






AD-1423260.1
gscsugg(Ahd)ucUfUfA
3031
VPusdGsgadCgdTugcud
3101
AAGCUGGAUCUUA
3171



fgcaacguccaL96

AaGfauccagcsusu

GCAACGUCCA






AD-1423261.1
csusgga(Uhd)cuUfAfG
3032
VPusdTsggdAc(G2p)uug
3102
AGCUGGAUCUUAG
3172



fcaacguccaaL96

cdTaAfgauccagscsu

CAACGUCCAG






AD-1423262.1
usgsgau(Chd)uuAfGfC
3033
VPusdCsugdGadCguugd
3103
GCUGGAUCUUAGC
3173



faacguccagaL96

CuAfagauccasgsc

AACGUCCAGU






AD-1423263.1
gsgsauc(Uhd)uaGfCfA
3034
VPusdAscudGg(Agn)cgu
3104
CUGGAUCUUAGCA
3174



facguccaguaL96

udGcUfaagauccsasg

ACGUCCAGUC






AD-1423264.1
gsasucu(Uhd)agCfAfA
3035
VPusdGsacdTg(G2p)acg
3105
UGGAUCUUAGCAA
3175



fcguccagucaL96

udTgCfuaagaucscsa

CGUCCAGUCC






AD-1423265.1
asuscuu(Ahd)gcAfAfC
3036
VPusdGsgadCu(G2p)gac
3106
GGAUCUUAGCAAC
3176



fguccaguccaL96

gdTuGfcuaagauscsc

GUCCAGUCCA






AD-1423266.1
uscsuua(Ghd)caAfCfG
3037
VPusdTsggdAc(Tgn)gga
3107
GAUCUUAGCAACG
3177



fuccaguccaaL96

cdGuUfgcuaagasusc

UCCAGUCCAA






AD-1423267.1
csusuag(Chd)aaCfGfUf
3038
VPusdTsugdGa(C2p)ugg
3108
AUCUUAGCAACGU
3178



ccaguccaaaL96

adCgUfugcuaagsasu

CCAGUCCAAG






AD-1423268.1
ususagc(Ahd)acGfUfC
3039
VPusdCsuudGg(Agn)cug
3109
UCUUAGCAACGUC
3179



fcaguccaagaL96

gdAcGfuugcuaasgsa

CAGUCCAAGU






AD-1423269.1
usasgca(Ahd)cgUfCfCf
3040
VPusdAscudTg(G2p)acu
3110
CUUAGCAACGUCC
3180



aguccaaguaL96

gdGaCfguugcuasasg

AGUCCAAGUG






AD-1423270.1
asgscaa(Chd)guCfCfAf
3041
VPusdCsacdTu(G2p)gac
3111
UUAGCAACGUCCA
3181



guccaagugaL96

udGgAfcguugcusasa

GUCCAAGUGU






AD-1423271.1
gscsaac(Ghd)ucCfAfGf
3042
VPusdAscadCudTggacd
3112
UAGCAACGUCCAG
3182



uccaaguguaL96

TgGfacguugcsusa

UCCAAGUGUG






AD-1423272.1
csasacg(Uhd)ccAfGfUf
3043
VPusdCsacdAcdTuggad
3113
AGCAACGUCCAGU
3183



ccaagugugaL96

CuGfgacguugscsu

CCAAGUGUGG






AD-1423273.1
asascgu(Chd)caGfUfCf
3044
VPusdCscadCadCuuggd
3114
GCAACGUCCAGUC
3184



caaguguggaL96

AcUfggacguusgsc

CAAGUGUGGC






AD-1423274.1
ascsguc(Chd)agUfCfCf
3045
VPusdGsccdAc(Agn)cuu
3115
CAACGUCCAGUCC
3185



aaguguggcaL96

gdGaCfuggacgususg

AAGUGUGGCU






AD-1423275.1
csgsucc(Ahd)guCfCfA
3046
VPusdAsgcdCa(C2p)acu
3116
AACGUCCAGUCCA
3186



faguguggcuaL96

udGgAfcuggacgsusu

AGUGUGGCUC






AD-1423276.1
gsuscca(Ghd)ucCfAfA
3047
VPusdGsagdCc(Agn)cac
3117
ACGUCCAGUCCAA
3187



fguguggcucaL96

udTgGfacuggacsgsu

GUGUGGCUCA






AD-1423277.1
uscscag(Uhd)ccAfAfG
3048
VPusdTsgadGc(C2p)aca
3118
CGUCCAGUCCAAG
3188



fuguggcucaaL96

cdTuGfgacuggascsg

UGUGGCUCAA






AD-1423278.1
cscsagu(Chd)caAfGfUf
3049
VPusdTsugdAg(C2p)cac
3119
GUCCAGUCCAAGU
3189



guggcucaaaL96

adCuUfggacuggsasc

GUGGCUCAAA






AD-1423279.1
csasguc(Chd)aaGfUfGf
3050
VPusdTsuudGa(G2p)cca
3120
UCCAGUCCAAGUG
3190



uggcucaaaaL96

cdAcUfuggacugsgsa

UGGCUCAAAG






AD-1423280.1
asgsucc(Ahd)agUfGfU
3051
VPusdCsuudTg(Agn)gcc
3121
CCAGUCCAAGUGU
3191



fggcucaaagaL96

adCaCfuuggacusgsg

GGCUCAAAGG






AD-1423281.1
gsuscca(Ahd)guGfUfG
3052
VPusdCscudTudGagccd
3122
CAGUCCAAGUGUG
3192



fgcucaaaggaL96

AcAfcuuggacsusg

GCUCAAAGGA






AD-1423282.1
uscscaa(Ghd)ugUfGfG
3053
VPusdTsccdTudTgagcd
3123
AGUCCAAGUGUGG
3193



fcucaaaggaaL96

CaCfacuuggascsu

CUCAAAGGAU






AD-1423283.1
cscsaag(Uhd)guGfGfC
3054
VPusdAsucdCudTugagd
3124
GUCCAAGUGUGGC
3194



fucaaaggauaL96

CcAfcacuuggsasc

UCAAAGGAUA






AD-1423284.1
csasagu(Ghd)ugGfCfU
3055
VPusdTsaudCc(Tgn)uug
3125
UCCAAGUGUGGCU
3195



fcaaaggauaaL96

adGcCfacacuugsgsa

CAAAGGAUAA






AD-1423285.1
asasgug(Uhd)ggCfUfC
3056
VPusdTsuadTc(C2p)uuu
3126
CCAAGUGUGGCUC
3196



faaaggauaaaL96

gdAgCfcacacuusgsg

AAAGGAUAAU






AD-1423286.1
asgsugu(Ghd)gcUfCfA
3057
VPusdAsuudAu(C2p)cuu
3127
CAAGUGUGGCUCA
3197



faaggauaauaL96

udGaGfccacacususg

AAGGAUAAUA






AD-1423287.1
gsusgug(Ghd)cuCfAfA
3058
VPusdTsaudTa(Tgn)ccu
3128
AAGUGUGGCUCAA
3198



faggauaauaaL96

udTgAfgccacacsusu

AGGAUAAUAU






AD-1423288.1
usgsugg(Chd)ucAfAfA
3059
VPusdAsuadTu(Agn)ucc
3129
AGUGUGGCUCAAA
3199



fggauaauauaL96

udTuGfagccacascsu

GGAUAAUAUC






AD-1423289.1
gsusggc(Uhd)caAfAfG
3060
VPusdGsaudAudTauccd
3130
GUGUGGCUCAAAG
3200



fgauaauaucaL96

TuUfgagccacsasc

GAUAAUAUCA






AD-1423290.1
usgsgcu(Chd)aaAfGfG
3061
VPusdTsgadTa(Tgn)uau
3131
UGUGGCUCAAAGG
3201



fauaauaucaaL96

cdCuUfugagccascsa

AUAAUAUCAA






AD-1423291.1
gsgscuc(Ahd)aaGfGfA
3062
VPusdTsugdAudAuuaud
3132
GUGGCUCAAAGGA
3202



fuaauaucaaaL96

CcUfuugagccsasc

UAAUAUCAAA






AD-1423292.1
gscsuca(Ahd)agGfAfU
3063
VPusdTsuudGa(Tgn)auu
3133
UGGCUCAAAGGAU
3203



faauaucaaaaL96

adTcCfuuugagcscsa

AAUAUCAAAC






AD-1423293.1
csuscaa(Ahd)ggAfUfA
3064
VPusdGsuudTg(Agn)uau
3134
GGCUCAAAGGAUA
3204



fauaucaaacaL96

udAuCfcuuugagscsc

AUAUCAAACA






AD-1423294.1
uscsaaa(Ghd)gaUfAfA
3065
VPusdTsgudTu(G2p)aua
3135
GCUCAAAGGAUAA
3205



fuaucaaacaaL96

udTaUfccuuugasgsc

UAUCAAACAC






AD-1423295.1
csasaag(Ghd)auAfAfU
3066
VPusdGsugdTu(Tgn)gau
3136
CUCAAAGGAUAAU
3206



faucaaacacaL96

adTuAfuccuuugsasg

AUCAAACACG






AD-1423296.1
asasagg(Ahd)uaAfUfA
3067
VPusdCsgudGu(Tgn)uga
3137
UCAAAGGAUAAUA
3207



fucaaacacgaL96

udAuUfauccuuusgsa

UCAAACACGU






AD-1423297.1
asasgga(Uhd)aaUfAfU
3068
VPusdAscgdTg(Tgn)uug
3138
CAAAGGAUAAUAU
3208



fcaaacacguaL96

adTaUfuauccuususg

CAAACACGUC






AD-1423298.1
asgsgau(Ahd)auAfUfC
3069
VPusdGsacdGu(G2p)uuu
3139
AAAGGAUAAUAUC
3209



faaacacgucaL96

gdAuAfuuauccususu

AAACACGUCC






AD-1423299.1
gsgsaua(Ahd)uaUfCfA
3070
VPusdGsgadCgdTguuud
3140
AAGGAUAAUAUCA
3210



faacacguccaL96

GaUfauuauccsusu

AACACGUCCC






AD-1423300.1
gsasuaa(Uhd)auCfAfA
3071
VPusdGsggdAc(G2p)ug
3141
AGGAUAAUAUCAA
3211



facacgucccaL96

uudTgAfuauuaucscsu

ACACGUCCCG






AD-1397266.2
asusaau(Ahd)ucAfAfA
3072
VPusdCsggdGadCgugud
3142
GGAUAAUAUCAAA
3212



fcacgucccgaL96

TuGfauauuauscsc

CACGUCCCGG






AD-1423301.1
usasaua(Uhd)caAfAfCf
3073
VPusdCscgdGg(Agn)cgu
3143
GAUAAUAUCAAAC
3213



acgucccggaL96

gdTuUfgauauuasusc

ACGUCCCGGG






AD-1397268.2
asasuau(Chd)aaAfCfAf
3074
VPusdCsccdGgdGacgud
3144
AUAAUAUCAAACA
3214



cgucccgggaL96

GuUfugauauusasu

CGUCCCGGGA






AD-1423302.1
asusauc(Ahd)aaCfAfCf
3075
VPusdTsccdCg(G2p)gac
3145
UAAUAUCAAACAC
3215



gucccgggaaL96

gdTgUfuugauaususa

GUCCCGGGAG






AD-1397270.2
usasuca(Ahd)acAfCfGf
3076
VPusdCsucdCcdGggacd
3146
AAUAUCAAACACG
3216



ucccgggagaL96

GuGfuuugauasusu

UCCCGGGAGG






AD-1397271.2
asuscaa(Ahd)caCfGfUf
3077
VPusdCscudCcdCgggad
3147
AUAUCAAACACGU
3217



cccgggaggaL96

CgUfguuugausasu

CCCGGGAGGC






AD-1423303.1
uscsaaa(Chd)acGfUfCf
3078
VPusdGsccdTc(C2p)cgg
3148
UAUCAAACACGUC
3218



ccgggaggcaL96

gdAcGfuguuugasusa

CCGGGAGGCG






AD-1423304.1
csasaac(Ahd)cgUfCfCf
3079
VPusdCsgcdCu(C2p)ccg
3149
AUCAAACACGUCC
3219



cgggaggcgaL96

gdGaCfguguuugsasu

CGGGAGGCGG






AD-1423305.1
asasaca(Chd)guCfCfCf
3080
VPusdCscgdCc(Tgn)ccc
3150
UCAAACACGUCCC
3220



gggaggcggaL96

gdGgAfcguguuusgsa

GGGAGGCGGC






AD-1423306.1
asascac(Ghd)ucCfCfGf
3081
VPusdGsccdGc(C2p)ucc
3151
CAAACACGUCCCG
3221



ggaggcggcaL96

cdGgGfacguguususg

GGAGGCGGCA






AD-1397277.2
csascgu(Chd)ccGfGfGf
3082
VPusdCsugdCcdGccucd
3152
AACACGUCCCGGG
3222



aggcggcagaL96

CcGfggacgugsusu

AGGCGGCAGU
















TABLE 24







MAPT Single Dose Screens in BE(2)C Cells-Screens 5-8











10 nM Dose
1 nM Dose
0.1 nM Dose














Avg %

Avg %

Avg %




MAPT

MAPT

MAPT




mRNA

mRNA

mRNA



Duplex
Remaining
SD
Remaining
SD
Remaining
SD
















AD-1397070.1
29
4
37
18
76
4


AD-1397070.2
35
2
48
6
45
7


AD-1397071.1
28
6
44
9
84
10


AD-1397071.2
41
6
54
12
50
5


AD-1397072.1
12
3
16
2
44
3


AD-1397072.2
19
3
24
7
25
8


AD-1397073.1
20
10
26
4
79
4


AD-1397073.2
25
2
30
5
30
5


AD-1397074.1
52
14
55
12
93
16


AD-1397074.2
53
4
73
17
67
17


AD-1397075.1
47
10
59
25
80
4


AD-1397075.2
56
5
63
9
48
4


AD-1397076.1
16
6
29
10
65
5


AD-1397076.2
21
4
29
3
39
5


AD-1397077.1
17
6
24
5
79
13


AD-1397077.2
20
2
33
5
44
7


AD-1397078.1
22
5
28
7
75
13


AD-1397078.2
34
8
36
8
52
16


AD-1397250.1
75
10
69
11
76
18


AD-1397251.1
15
3
37
21
24
8


AD-1397252.1
24
6
24
7
35
12


AD-1397253.1
31
5
56
5
69
23


AD-1397254.1
40
8
41
2
49
9


AD-1397255.1
36
17
40
17
49
10


AD-1397256.1
53
7
65
11
75
15


AD-1397257.1
19
5
25
11
30
18


AD-1397258.1
17
2
24
6
32
11


AD-1397259.1
22
6
26
3
32
9


AD-1397260.1
41
11
54
10
75
11


AD-1397261.1
35
12
34
13
65
19


AD-1397262.1
34
16
44
19
45
10


AD-1397263.1
23
4
29
4
86
23


AD-1397264.1
27
7
26
3
58
15


AD-1397265.1
52
13
56
13
85
11


AD-1423242.1
130
30
96
27
84
15


AD-1423243.1
76
17
89
20
90
20


AD-1423244.1
85
8
90
26
90
10


AD-1423245.1
86
23
79
15
86
9


AD-1423246.1
83
8
85
27
83
10


AD-1423247.1
81
16
97
25
94
9


AD-1423248.1
90
21
84
24
91
16


AD-1423249.1
83
13
97
25
92
21


AD-1423250.1
88
19
85
24
92
11


AD-1423251.1
78
9
93
24
92
19


AD-1423252.1
81
14
94
22
94
20


AD-1423253.1
75
13
88
15
105
16


AD-1423254.1
90
10
104
27
97
20


AD-1423255.1
75
7
96
30
89
16


AD-1423256.1
130
34
126
33
149
34


AD-1423257.1
105
21
104
28
90
12


AD-1423258.1
89
19
105
33
89
20


AD-1423259.1
69
14
78
13
84
18


AD-1423260.1
78
10
93
27
86
17


AD-1423261.1
110
23
112
22
116
28


AD-1423262.1
115
39
117
37
94
22


AD-1423263.1
84
20
93
23
97
18


AD-1423264.1
97
25
95
20
98
23


AD-1423265.1
85
25
100
31
94
18


AD-1423266.1
95
15
107
29
95
21


AD-1423267.1
101
17
106
23
104
22


AD-1423268.1
102
29
115
30
110
23


AD-1423269.1
87
15
110
25
97
27


AD-1423270.1
117
36
133
31
118
36


AD-1423271.1
127
30
143
41
103
26


AD-1423272.1
98
26
89
23
109
28


AD-1423273.1
74
15
89
20
91
15


AD-1423274.1
89
12
92
20
98
17


AD-1423275.1
79
10
88
17
97
21


AD-1423276.1
92
20
102
13
120
27


AD-1423277.1
85
11
120
24
129
35


AD-1423278.1
38
7
79
10
114
21


AD-1423279.1
41
8
78
11
115
15


AD-1423280.1
89
21
96
28
99
23


AD-1423281.1
79
15
96
19
94
15


AD-1423282.1
79
13
86
12
103
18


AD-1423283.1
47
6
76
15
97
17


AD-1423284.1
62
8
91
17
113
18


AD-1423285.1
98
20
110
23
125
25


AD-1423286.1
121
28
133
27
152
16


AD-1423287.1
105
21
97
24
125
28


AD-1423288.1
86
17
89
14
92
11


AD-1423289.1
47
6
69
13
95
18


AD-1423290.1
91
18
89
25
99
23


AD-1423291.1
86
16
88
15
101
27


AD-1423292.1
110
22
109
18
130
29


AD-1423293.1
123
23
105
24
139
30


AD-1423294.1
159
19
132
22
130
33


AD-1423295.1
97
27
89
21
91
20


AD-1423296.1
75
13
89
22
83
7


AD-1423297.1
72
10
86
15
89
14


AD-1423298.1
69
10
91
20
84
6


AD-1423299.1
96
28
84
21
108
27


AD-1423300.1
93
24
93
19
105
24


AD-1397266.1
70

82
22
91
32


AD-1397266.2
94
10
104
16
113
21


AD-1397267.1
89
27
107
41
113
33


AD-1423301.1
131
18
112
27
135
33


AD-1397268.1
133
45
98
34
116
39


AD-1397268.2
87
17
95
20
108
20


AD-1397269.1
104
49
115
42
128
34


AD-1423302.1
85
13
98
19
102
13


AD-1397270.1
86
12
103
35
112
25


AD-1397270.2
99
19
94
19
92
19


AD-1397271.1
110
30
89
31
124
42


AD-1397271.2
84
16
106
25
108
18


AD-1397272.1
91
7
86
24
95
28


AD-1423303.1
93
18
111
24
102
16


AD-1397273.1
102
15
101
24
87
12


AD-1423304.1
108
24
124
32
123
23


AD-1397274.1
86
7
90
14
119
19


AD-1423305.1
114
19
135
14
136
16


AD-1397275.1
109
36
107
29
124
8


AD-1423306.1
72
10
95
26
82
13


AD-1397276.1
128
42
135
27
142
22


AD-1397277.1
137
29
117
30
131
17


AD-1397277.2
76
16
81
13
80
8


AD-1397278.1
166
21
156
33
167
24


AD-1397279.1
99
36
92
27
105
27


AD-1397280.1
99
21
80
13
87
6


AD-1397281.1
100
14
89
29
88
29


AD-1397282.1
104
25
99
17
80
19


AD-1397283.1
118
18
115
35
122
7


AD-1397284.1
120
24
118
37
133
20


AD-1397285.1
175
25
161
32
151
37


AD-1397286.1
130
43
130
27
128
14


AD-1397287.1
79
11
72
20
91
19


AD-1397079.1
25
5
37
12
85
22


AD-1397079.2
34
6
46
17
58
12


AD-1397288.1
48
10
60
16
66
9


AD-1397289.1
57
16
46
10
52
12


AD-1397290.1
44
11
57
15
76
13


AD-1397080.1
12
5
14
3
77
12


AD-1397080.2
23
9
34
8
35
9


AD-1397291.1
33
5
46
14
61
11


AD-1397292.1
65
7
74
17
66
14


AD-1397293.1
17
3
20
4
22
3


AD-1397294.1
21
7
31
10
32
6


AD-1397081.1
14
4
19
7
67
15


AD-1397081.2
22
4
26
5
25
5


AD-1397295.1
18
4
34
10
40
10


AD-1397082.1
25
9
38
8
86
4


AD-1397082.2
49
13
50
12
62
20


AD-1397083.1
15
4
26
16
80
2


AD-1397083.2
31
6
50
7
63
20


AD-1397296.1
52
11
68
22
87
9


AD-1397297.1
28
8
42
9
60
13


AD-1397298.1
19
5
25
3
20
3


AD-1397299.1
18
5
27
5
34
9


AD-1397300.1
73
28
89
15
87
14


AD-1397301.1
51
12
49
15
61
19


AD-1397302.1
42
7
47
6
57
17


AD-1397084.1
18
6
26
4
100
20


AD-1397085.1
16
5
27
10
79
6


AD-1397086.1
65
12
62
16
85
5


AD-1397303.1
45
8
72
11
89
24


AD-1397087.1
18
5
31
7
90
11


AD-1397087.2
23
6
36
3
49
16


AD-1397304.1
33
3
36
6
38
2


AD-1397305.1
75
21
69
5
61
5


AD-1397306.1
28
6
41
3
44
10


AD-1397307.1
32
8
33
3
50
15


AD-1397308.1
33
7
44
10
51
14


AD-1397309.1
84
16
83
29
92
30


AD-1397310.1
37
11
39
11
54
18


AD-1397311.1
63
18
64
10
60
11


AD-1397312.1
59
4
56
10
58
16


AD-1397313.1
72
11
55
5
60
16


AD-1397314.1
75
7
68
9
58
10


AD-1397315.1
30
11
40
8
52
22


AD-1397316.1
70
13
74
22
86
19


AD-1397317.1
ill
4
130
12
99
32


AD-1397318.1
39
6
65
21
60
9


AD-1397319.1
43
29
37
7
42
6


AD-1397320.1
68
12
77
21
59
13


AD-1397321.1
81
17
74
18
63
14


AD-1397322.1
53
10
57
8
67
13


AD-1397088.1
11
3
13
2
62
2


AD-1397089.1
19
5
27
7
110
29


AD-1397090.1
54
15
42
13
73
15


AD-1397091.1
42
9
43
8
89
29


AD-1397092.1
41
12
44
11
105
2


AD-1397093.1
37
8
49
19
102
25


AD-1397094.1
43
9
40
14
74
6


AD-1397095.1
54
13
46
15
83
5


AD-1397096.1
54
13
63
27
84
13


AD-1397097.1
59
17
58
23
117
28


AD-1397098.1
52
15
44
16
96
23


AD-1397099.1
51
14
48
16
107
31


AD-1397101.1
50
12
39
7
73
11


AD-1397102.1
52
13
47
16
78
5


AD-1397103.1
56
16
54
22
92
16


AD-1397104.1
68
22
69
31
92
10


AD-1397105.1
72
20
68
33
ill
18


AD-1397106.1
82
25
84
37
97
12


AD-1397107.1
75
28
78
38
86
4


AD-1397108.1
52
19
59
38
95
24


AD-1397109.1
48
2
45
24
81
11


AD-1397110.1
51
3
40
18
79
3


AD-1397111.1
63
6
63
35
98
8


AD-1397112.1
57
13
57
29
114
23


AD-1397113.1
57
5
59
36
113
19


AD-1397114.1
58
15
81
51
134
14


AD-1397115.1
80
15
85
33
121
17


AD-1397116.1
65
16
63
26
82
11


AD-1397117.1
57
17
54
16
100
14


AD-1397118.1
64
15
68
24
98
21


AD-1397119.1
71
25
85
35
103
24


AD-1397120.1
73
20
75
32
118
28


AD-1397121.1
82
25
99
39
119
19


AD-1397122.1
81
24
89
28
156
17


AD-1397123.1
83
22
57
10
104
24


AD-1397124.1
73
20
59
16
89
5


AD-1397125.1
46
6
49
15
94
13


AD-1397126.1
55
13
46
12
81
2


AD-1397127.1
63
16
49
9
95
14


AD-1397128.1
78
22
56
25
87
13


AD-1397129.1
79
20
73
28
118
24


AD-1397130.1
86
29
81
42
116
24


AD-1397131.1
62
17
49
15
86
12


AD-1397132.1
46
10
42
18
73
8


AD-1397133.1
66
19
41
11
64
5


AD-1397134.1
47
12
51
16
83
12


AD-1397135.1
53
15
42
10
92
20


AD-1397136.1
54
16
52
13
106
30


AD-1397137.1
65
17
65
24
84
11


AD-1397138.1
39
10
33
7
62
15


AD-1397139.1
39
7
33
9
56
4


AD-1397140.1
44
13
57
23
79
31


AD-1397141.1
43
8
101
29
119



AD-1397142.1
49
15
39
13
59
6


AD-1397143.1
45
14
38
14
52
3


AD-1397144.1
49
16
60
23
61
1


AD-1397145.1
50
14
36
11
52
2


AD-1397146.1
45
12
34
6
57
7


AD-1397147.1
42
13
38
14
61
1


AD-1397148.1
38
8
31
8
47
5


AD-1397149.1
42
13
37
14
54
3


AD-1397150.1
46
12
43
16
52
6


AD-1397151.1
52
16
57
29
80
13


AD-1397152.1
63
19
57
28
53
6


AD-1397153.1
43
12
37
13
79
9


AD-1397154.1
41
13
35
13
51
7


AD-1397155.1
39
10
30
5
50
4


AD-1397156.1
43
8
37
9
66
10


AD-1397157.1
50
17
35
6
64
4


AD-1397158.1
51
14
41
16
57
8


AD-1397159.1
50
12
41
17
62
11


AD-1397160.1
55
12
54
10
61
7


AD-1397161.1
63
17
53
7
66
13


AD-1397162.1
52
11
53
11
56
4


AD-1397163.1
57
20
58
16
51
4


AD-1397164.1
60
21
45
4
57
5


AD-1397165.1
57
13
52
8
54
6


AD-1397166.1
44
6
46
6
52
7


AD-1397167.1
55
7
54
8
62
11


AD-1397168.1
57
17
55
10
65
15


AD-1397169.1
54
11
53
9
65
9


AD-1397170.1
63
13
58
13
77
17


AD-1397171.1
63
17
59
14
64
15


AD-1397172.1
61
20
53
10
57
7


AD-1397173.1
59
23
50
5
54
6


AD-1397174.1
51
8
57
18
82
13


AD-1397175.1
54
10
55
9
66
7


AD-1397176.1
52
7
54
11
71
19


AD-1397177.1
81
14
80
13
86
13


AD-1397178.1
76
10
76
8
85
6


AD-1397179.1
63
11
81
12
107
29


AD-1397180.1
68
16
93
30
134
37


AD-1397181.1
71
11
63
9
79
12


AD-1397182.1
64
16
65
12
91
18


AD-1397183.1
59
13
61
14
76
19


AD-1397184.1
53
10
56
8
76
11


AD-1397185.1
43
11
51
7
76
14


AD-1397186.1
77
23
63
12
82
19


AD-1397187.1
67
9
63
10
86
20


AD-1397188.1
70
21
72
25
80
20


AD-1397189.1
64
17
70
21
93
25


AD-1397190.1
47
17
55
11
69
11


AD-1397191.1
58
10
58
10
75
11


AD-1397192.1
65
13
72
10
89
10


AD-1397193.1
69
19
71
10
87
15


AD-1397194.1
93
22
91
16
102
11


AD-1397195.1
84
26
71
16
117
26


AD-1397196.1
80
22
77
16
100
18


AD-1397197.1
91
13
101
21
146
35


AD-1397198.1
59
12
70
17
101
25


AD-1397199.1
56
8
57
8
79
13


AD-1397200.1
64
8
58
6
68
9


AD-1397201.1
57
8
51
8
64
11


AD-1397202.1
72
17
63
14
82
22


AD-1397203.1
69
22
62
11
86
19


AD-1397204.1
84
24
74
23
129
23


AD-1397205.1
82
16
82
16
123
17


AD-1397206.1
57
15
55
10
62
12


AD-1397207.1
56
9
64
10
88
13


AD-1397208.1
58
10
53
6
70
6


AD-1397209.1
58
11
60
10
75
12


AD-1397210.1
64
12
66
17
85
11


AD-1397211.1
71
17
73
17
90
24


AD-1397212.1
71
15
72
16
97
10


AD-1397213.1
56
19
52
10
73
20


AD-1397214.1
49
9
49
4
67
11


AD-1397215.1
51
8
56
13
68
11


AD-1397216.1
66
6
75
11
92
12


AD-1397217.1
71
9
81
17
98
15


AD-1397218.1
80
24
87
17
104
17


AD-1397219.1
61
19
71
13
98
18


AD-1397220.1
76
19
76
17
107
18


AD-1397221.1
54
12
62
15
79
16


AD-1397222.1
52
11
55
12
75
12


AD-1397223.1
58
12
63
16
84
19


AD-1397224.1
60
11
58
10
68
10


AD-1397225.1
61
15
55
11
68
11


AD-1397226.1
61
17
64
14
72
19


AD-1397227.1
66
15
72
16
84
22


AD-1397228.1
47
7
53
6
62
12


AD-1397229.1
49
9
48
8
53
4


AD-1397230.1
65
25
51
9
61
10


AD-1397231.1
67
26
57
16
61
5


AD-1397232.1
59
25
61
9
75
16


AD-1397233.1
61
15
66
17
93
27


AD-1397234.1
64
17
71
19
88
18


AD-1397235.1
61
19
56
11
90
23


AD-1397236.1
47
11
49
7
57
6


AD-1397237.1
45
9
48
4
61
9


AD-1397238.1
46
7
48
9
51
4


AD-1397239.1
49
10
47
7
55
3


AD-1397240.1
49
11
48
10
68
18


AD-1397241.1
66
23
57
13
72
12


AD-1397242.1
64
15
69
17
91
22


AD-1397243.1
65
28
62
14
78
19


AD-1397244.1
52
20
42
5
64
31


AD-1397245.1
55
12
50
10
66
12


AD-1397246.1
46
12
49
10
54
8


AD-1397247.1
45
10
42
5
47
8


AD-1397248.1
52
13
50
10
55
11


AD-1397249.1
56
13
52
12
58
8
















TABLE 25







Unmodified Sense and Antisense Strand Sequences of MAPT dsRNA Agents- Screen 9

















SEQ



SEQ




Duplex
Sense Sequence
ID


Antisense Sequence
ID




Name
5′ to 3′
NO:
Source
Range
5′ to 3′
NO:
Source
Range





AD-
UGGAAAUAAAG
3223
NM_001038609.
5354-
UGAGUAAUAACU
3252
NM_001038609.
5352-


397167.1
UUAUUACUCA

2_5354-
5374
UUAUUUCCAAA

2_5352-5374_as
5374





5374_s










AD-
AGUGUGCAAAU
3224
NM_001038609.
1065-
UUUGUAGACUAU
3253
NM_001038609.
1063-


393758.4
AGUCUACAAA

2_1065-
1085
UUGCACACUGC

2_1063-
1085





1085_G21U_s



1085_C1A_as






AD-
UGCAAAUAGUC
3225
NM_005910.6
1067-
UUGGTUTGUAGA
3254
NM_005910.6
1065-


1397080.3
UACAAACCAA


1087
CUAUUUGCACA


1087





AD-
AAAUAGUCUAC
3226
NM_005910.6
1070-
UAACTGGUUUGU
3255
NM_005910.6
1068-


1397293.2
AAACCAGUUA


1090
AGACUAUUUGC


1090





AD-
AAUAGUCUACA
3227
NM_005910.6
1071-
UCAACUGGUUUG
3256
NM_005910.6
1069-


1397294.2
AACCAGUUGA


1091
UAGACUAUUUG


1091





AD-
AUAGUCUACAA
3228
NM_005910.6
1072-
UUCAACTGGUUU
3257
NM_005910.6
1070-


1397081.3
ACCAGUUGAA


1092
GUAGACUAUUU


1092





AD-
GUCUACAAACC
3229
NM_005910.6
1075-
UAGGTCAACUGG
3258
NM_005910.6
1073-


1397083.3
AGUUGACCUA


1095
UUUGUAGACUA


1095





AD-
UACAAACCAGU
3230
NM_005910.6
1078-
UCUCAGGUCAAC
3259
NM_005910.6
1076-


1397298.2
UGACCUGAGA


1098
UGGUUUGUAGA


1098





AD-
ACAAACCAGUU
3231
NM_005910.6
1079-
UGCUCAGGUCAA
3260
NM_005910.6
1077-


1397299.2
GACCUGAGCA


1099
CUGGUUUGUAG


1099





AD-
AGGCAACAUCC
3232
NM_005910.6
1125-
UGUUTATGAUGG
3261
NM_005910.6
1123-


1397084.2
AUCAUAAACA


1145
AUGUUGCCUAA


1145





AD-
GGCAACAUCCA
3233
NM_005910.6
1126-
UGGUTUAUGAUG
3262
NM_005910.6
1124-


1397085.2
UCAUAAACCA


1146
GAUGUUGCCUA


1146





AD-
AACAUCCAUCA
3234
NM_005910.6
1129-
UCCUGGTUUAUG
3263
NM_005910.6
1127-


1397087.3
UAAACCAGGA


1149
AUGGAUGUUGC


1149





AD-
AUCCAUCAUAA
3235
NM_005910.6
1132-
UCCUCCTGGUUTA
3264
NM_005910.6
1 BO-


1397306.2
ACCAGGAGGA


1152
UGAUGGAUGU


1152





AD-
UCCAUCAUAAA
3236
NM_005910.6
1133-
UACCTCCUGGUU
3265
NM_005910.6
1131-


1397307.2
CCAGGAGGUA


1153
UAUGAUGGAUG


1153





AD-
CCAUCAUAAAC
3237
NM_005910.6
1134-
UCACCUCCUGGT
3266
NM_005910.6
1132-


1397308.2
CAGGAGGUGA


1154
UUAUGAUGGAU


1154





AD-
AUCUGAGAAGC
3238
NM_005910.6
1170-
UUGAAGTCAAGC
3267
NM_005910.6
1168-


1397088.2
UUGACUUCAA


1190
UUCUCAGAUUU


1190





AD-
CGCAUGGUCAG
3239
NM_016841.4
 524-
UUUGCUUUUACU
3268
NM_016841.4_
 522-


523565.1
UAAAAGCAAA

_524-
 544
GACCAUGCGAG

522-544_UlA_as
 544





544_A21U_s










AD-
GUGACCCAAGC
3240
NM_005910.6
 514-
UACCAUGCGAGC
3269
NM_005910.6
 512-


1397072.3
UCGCAUGGUA


 534
UUGGGUCACGU


 534





AD-
UGACCCAAGCU
3241
NM_005910.6
 515-
UGACCATGCGAG
3270
NM_005910.6
 513-


1397073.3
CGCAUGGUCA


 535
CUUGGGUCACG


 535





AD-
CCCAAGCUCGC
3242
NM_005910.6
 518-
UACUGACCAUGC
3271
NM_005910.6
 516-


1397076.3
AUGGUCAGUA


 538
GAGCUUGGGUC


 538





AD-
CCAAGCUCGCA
3243
NM_005910.6
 519-
UUACTGACCAUG
3272
NM_005910.6
 517-


1397077.3
UGGUCAGUAA


 539
CGAGCUUGGGU


 539





AD-
CAAGCUCGCAU
3244
NM_005910.6
 520-
UUUACUGACCAU
3273
NM_005910.6
 518-


1397078.3
GGUCAGUAAA


 540
GCGAGCUUGGG


 540





AD-
GCUCGCAUGGU
3245
NM_005910.6
 523-
UCUUTUACUGAC
3274
NM_005910.6
 521-


1397252.2
CAGUAAAAGA


 543
CAUGCGAGCUU


 543





AD-
CAUGGUCAGUA
3246
NM_005910.6
 528-
UCUUTGCUUUUA
3275
NM_005910.6
 526-


1397257.2
AAAGCAAAGA


 548
CUGACCAUGCG


 548





AD-
AUGGUCAGUAA
3247
NM_005910.6
 529-
UUCUTUGCUUUU
3276
NM_005910.6
 527-


1397258.2
AAGCAAAGAA


 549
ACUGACCAUGC


 549





AD-
UGGUCAGUAAA
3248
NM_005910.6
 530-
UGUCTUTGCUUU
3277
NM_005910.6
 528-


1397259.2
AGCAAAGACA


 550
UACUGACCAUG


 550





AD-
CAGUAAAAGCA
3249
NM_005910.6
 534-
UTCCCGTCUUUGC
3278
NM_005910.6
 532-


1397263.2
AAGACGGGAA


 554
UUUUACUGAC


 554





AD-
AGUAAAAGCAA
3250
NM_005910.6
 535-
UGUCCCGUCUUU
3279
NM_005910.6
 533-


1397264.2
AGACGGGACA


 555
GCUUUUACUGA


 555





AD-
CAUCAUAAACC
3251
NM_005910.6
1135-
UCCACCTCCUGGU
3280
NM_005910.6
1133-


1397309.2
AGGAGGUGGA


1155
UUAUGAUGGA


1155
















TABLE 26







Modified Sense and Antisense Strand Sequences of MAPT dsRNA Agents- Screen 9















SEQ

SEQ
mRNA Target
SEQ



Sense Sequence 5′ to
ID
Antisense Sequence 5′
ID
Sequence
ID


Duplex ID
3′
NO:
to 3′
NO:
5′ to 3′
NO:





AD-397167.1
usgsgaaaUfaAfAfGfuu
3281
VPusGfsaguAfaUfAfacu
3310
UUUGGAAAUAAAG
3339



auuacucaL96

uUfaUfuuccasasa

UUAUUACUCU






AD-393758.4
asgsugugCfaAfAfUfag
3282
VPusUfsuguAfgAfCfuau
3311
GCAGUGUGCAAAU
3340



ucuacaaaL96

uUfgCfacacusgsc

AGUCUACAAG






AD-1397080.3
usgscaa(Ahd)uaGfUfC
3283
VPusUfsggdTu(Tgn)gua
3312
UGUGCAAAUAGUC
3341



fuacaaaccaaL96

gacUfaUfuugcascsa

UACAAACCAG






AD-1397293.2
asasaua(Ghd)ucUfAfCf
3284
VPusAfsacdTg(G2p)uuu
3313
GCAAAUAGUCUAC
3342



aaaccaguuaL96

guaGfaCfuauuusgsc

AAACCAGUUG






AD-1397294.2
asasuag(Uhd)cuAfCfA
3285
VPusdCsaadCudGguuud
3314
CAAAUAGUCUACA
3343



faaccaguugaL96

GuAfgacuauususg

AACCAGUUGA






AD-1397081.3
asusagu(Chd)uaCfAfA
3286
VPusUfscadAc(Tgn)ggu
3315
AAAUAGUCUACAA
3344



faccaguugaaL96

uugUfaGfacuaususu

ACCAGUUGAC






AD-1397083.3
gsuscua(Chd)aaAfCfCf
3287
VPusAfsggdTc(Agn)acu
3316
UAGUCUACAAACC
3345



aguugaccuaL96

gguUfuGfuagacsusa

AGUUGACCUG






AD-1397298.2
usascaa(Ahd)ccAfGfUf
3288
VPusCfsucdAg(G2p)uca
3317
UCUACAAACCAGU
3346



ugaccugagaL96

acuGfgUfuuguasgsa

UGACCUGAGC






AD-1397299.2
ascsaaa(Chd)caGfUfUf
3289
VPusGfscudCa(G2p)guc
3318
CUACAAACCAGUU
3347



gaccugagcaL96

aacUfgGfuuugusasg

GACCUGAGCA






AD-1397084.2
asgsgca(Ahd)caUfCfCf
3290
VPusGfsuudTa(Tgn)gau
3319
UUAGGCAACAUCC
3348



aucauaaacaL96

ggaUfgUfugccusasa

AUCAUAAACC






AD-1397085.2
gsgscaa(Chd)auCfCfAf
3291
VPusGfsgudTu(Agn)uga
3320
UAGGCAACAUCCA
3349



ucauaaaccaL96

uggAfuGfuugccsusa

UCAUAAACCA






AD-1397087.3
asascau(Chd)caUfCfAf
3292
VPusCfscudGg(Tgn)uua
3321
GCAACAUCCAUCA
3350



uaaaccaggaL96

ugaUfgGfauguusgsc

UAAACCAGGA






AD-1397306.2
asuscca(Uhd)caUfAfAf
3293
VPusdCscudCcdTgguud
3322
ACAUCCAUCAUAA
3351



accaggaggaL96

TaUfgauggausgsu

ACCAGGAGGU






AD-1397307.2
uscscau(Chd)auAfAfA
3294
VPusAfsccdTc(C2p)ugg
3323
CAUCCAUCAUAAA
3352



fccaggagguaL96

uuuAfuGfauggasusg

CCAGGAGGUG






AD-1397308.2
cscsauc(Ahd)uaAfAfCf
3295
VPusdCsacdCudCcuggd
3324
AUCCAUCAUAAAC
3353



caggaggugaL96

TuUfaugauggsasu

CAGGAGGUGG






AD-1397088.2
asuscug(Ahd)gaAfGfC
3296
VPusUfsgadAg(Tgn)caa
3325
AAAUCUGAGAAGC
3354



fuugacuucaaL96

gcuUfcUfcagaususu

UUGACUUCAA






AD-523565.1
csgscaugGfuCfAfGfua
3297
VPusUfsugcUfuUfUfacu
3326
CUCGCAUGGUCAG
3355



aaagcaaaL96

gAfcCfaugcgsasg

UAAAAGCAAA






AD-1397072.3
gsusgac(Chd)caAfGfCf
3298
VPusAfsccdAu(G2p)cga
3327
ACGUGACCCAAGC
3356



ucgcaugguaL96

gcuUfgGfgucacsgsu

UCGCAUGGUC






AD-1397073.3
usgsacc(Chd)aaGfCfUf
3299
VPusdGsacdCadTgcgad
3328
CGUGACCCAAGCU
3357



cgcauggucaL96

GcUfugggucascsg

CGCAUGGUCA






AD-1397076.3
cscscaa(Ghd)cuCfGfCf
3300
VPusAfscudGa(C2p)cau
3329
GACCCAAGCUCGC
3358



auggucaguaL96

gcgAfgCfuugggsusc

AUGGUCAGUA






AD-1397077.3
cscsaag(Chd)ucGfCfAf
3301
VPusUfsacdTg(Agn)cca
3330
ACCCAAGCUCGCA
3359



uggucaguaaL96

ugcGfaGfcuuggsgsu

UGGUCAGUAA






AD-1397078.3
csasagc(Uhd)cgCfAfUf
3302
VPusUfsuadCu(G2p)acc
3331
CCCAAGCUCGCAU
3360



ggucaguaaaL96

augCfgAfgcuugsgsg

GGUCAGUAAA






AD-1397252.2
gscsucg(Chd)auGfGfU
3303
VPusdCsuudTudAcugad
3332
AAGCUCGCAUGGU
3361



fcaguaaaagaL96

CcAfugcgagcsusu

CAGUAAAAGC






AD-1397257.2
csasugg(Uhd)caGfUfA
3304
VPusCfsuudTg(C2p)uuu
3333
CGCAUGGUCAGUA
3362



faaagcaaagaL96

uacUfgAfccaugscsg

AAAGCAAAGA






AD-1397258.2
asusggu(Chd)agUfAfA
3305
VPusUfscudTu(G2p)cuu
3334
GCAUGGUCAGUAA
3363



faagcaaagaaL96

uuaCfuGfaccausgsc

AAGCAAAGAC






AD-1397259.2
usgsguc(Ahd)guAfAfA
3306
VPusGfsucdTu(Tgn)gcu
3335
CAUGGUCAGUAAA
3364



fagcaaagacaL96

uuuAfcUfgaccasusg

AGCAAAGACG






AD-1397263.2
csasgua(Ahd)aaGfCfAf
3307
VPusdTsccdCgdTcuuud
3336
GUCAGUAAAAGCA
3365



aagacgggaaL96

GcUfuuuacugsasc

AAGACGGGAC






AD-1397264.2
asgsuaa(Ahd)agCfAfA
3308
VPusGfsucdCc(G2p)ucu
3337
UCAGUAAAAGCAA
3366



fagacgggacaL96

uugCfuUfuuacusgsa

AGACGGGACU






AD-1397309.2
csasuca(Uhd)aaAfCfCf
3309
VPusdCscadCcdTccugd
3338
UCCAUCAUAAACC
3367



aggagguggaL96

GuUfuaugaugsgsa

AGGAGGUGGC
















TABLE 27







Unmodified Sense and Antisense Strand Sequences of MAPT dsRNA Agents- Screen 10













Duplex
Sense Sequence
SEQ ID
Range in
Antisense Sequence
SEQ ID
Range in


Name
5′ to 3′
NO:
NM_005910.6
5′ to 3′
NO:
NM_005910.6





AD-1566238
ACGUGACCCAAGCU
3368
512-532
UCAUGCGAGCUUG
3457
510-532



CGCAUGA


GGUCACGUGA







AD-1566239
CGUGACCCAAGCUC
3369
513-533
UCCAUGCGAGCUU
3458
511-533



GCAUGGA


GGGUCACGUG







AD-1566240
GUGACCCAAGCUCG
3370
514-534
UACCAUGCGAGCU
3459
512-534



CAUGGUA


UGGGUCACGU







AD-1566241
UGACCCAAGCUCGC
3371
515-535
UGACCAUGCGAGC
3460
513-535



AUGGUCA


UUGGGUCACG







AD-1566242
GACCCAAGCUCGCA
3372
516-536
UUGACCAUGCGAG
3461
514-536



UGGUCAA


CUUGGGUCAC







AD-1566243
ACCCAAGCUCGCAU
3373
517-537
UCUGACCAUGCGA
3462
515-537



GGUCAGA


GCUUGGGUCA







AD-1566244
CCCAAGCUCGCAUG
3374
518-538
UACUGACCAUGCG
3463
516-538



GUCAGUA


AGCUUGGGUC







AD-1566245
CCAAGCUCGCAUGG
3375
519-539
UUACUGACCAUGC
3464
517-539



UCAGUAA


GAGCUUGGGU







AD-1566246
CAAGCUCGCAUGGU
3376
520-540
UUUACUGACCAUG
3465
518-540



CAGUAAA


CGAGCUUGGG







AD-1091965
AGCUCGCAUGGUCA
3377
522-542
UUUUUACUGACCA
3466
520-542



GUAAAAA


UGCGAGCUUG







AD-1566248
GCUCGCAUGGUCAG
3378
523-543
UCUUUUACUGACC
3467
521-543



UAAAAGA


AUGCGAGCUU







AD-1566249
CUCGCAUGGUCAGU
3379
524-544
UGCUUUUACUGAC
3468
522-544



AAAAGCA


CAUGCGAGCU







AD-1566250
UCGCAUGGUCAGUA
3380
525-545
UUGCUUUUACUGA
3469
523-545



AAAGCAA


CCAUGCGAGC







AD-1091966
CGCAUGGUCAGUAA
3381
526-546
UUUGCUUUUACUG
3470
524-546



AAGCAAA


ACCAUGCGAG







AD-1566251
GCAUGGUCAGUAAA
3382
527-547
UUUUGCUUUUACU
3471
525-547



AGCAAAA


GACCAUGCGA







AD-1566252
CAUGGUCAGUAAAA
3383
528-548
UCUUUGCUUUUAC
3472
526-548



GCAAAGA


UGACCAUGCG







AD-1566253
AUGGUCAGUAAAAG
3384
529-549
UUCUUUGCUUUUA
3473
527-549



CAAAGAA


CUGACCAUGC







AD-1566254
UGGUCAGUAAAAGC
3385
530-550
UGUCUUUGCUUUU
3474
528-550



AAAGACA


ACUGACCAUG







AD-1566255
GGUCAGUAAAAGCA
3386
531-551
UCGUCUUUGCUUU
3475
529-551



AAGACGA


UACUGACCAU







AD-1566256
GUCAGUAAAAGCAA
3387
532-552
UCCGUCUUUGCUU
3476
530-552



AGACGGA


UUACUGACCA







AD-1566257
UCAGUAAAAGCAAA
3388
533-553
UCCCGUCUUUGCUU
3477
531-553



GACGGGA


UUACUGACC







AD-1566258
CAGUAAAAGCAAAG
3389
534-554
UUCCCGUCUUUGCU
3478
532-554



ACGGGAA


UUUACUGAC







AD-1566259
AGUAAAAGCAAAGA
3390
535-555
UGUCCCGUCUUUGC
3479
533-555



CGGGACA


UUUUACUGA







AD-692906
AGUGUGCAAAUAGU
3391
1063-1083
UUUGUAGACUAUU
3480
1061-1083



CUACAAA


UGCACACUGC







AD-1566575
GUGCAAAUAGUCUA
3392
1066-1086
UGGUUUGUAGACU
3481
1064-1086



CAAACCA


AUUUGCACAC







AD-1566576
UGCAAAUAGUCUAC
3393
1067-1087
UUGGUUUGUAGAC
3482
1065-1087



AAACCAA


UAUUUGCACA







AD-1566577
GCAAAUAGUCUACA
3394
1068-1088
UCUGGUUUGUAGA
3483
1066-1088



AACCAGA


CUAUUUGCAC







AD-1566580
AAUAGUCUACAAAC
3395
1071-1091
UCAACUGGUUUGU
3484
1069-1091



CAGUUGA


AGACUAUUUG







AD-1566581
AUAGUCUACAAACC
3396
1072-1092
UUCAACUGGUUUG
3485
1070-1092



AGUUGAA


UAGACUAUUU







AD-1566582
UAGUCUACAAACCA
3397
1073-1093
UGUCAACUGGUUU
3486
1071-1093



GUUGACA


GUAGACUAUU







AD-1566583
AGUCUACAAACCAG
3398
1074-1094
UGGUCAACUGGUU
3487
1072-1094



UUGACCA


UGUAGACUAU







AD-1566584
GUCUACAAACCAGU
3399
1075-1095
UAGGUCAACUGGU
3488
1073-1095



UGACCUA


UUGUAGACUA







AD-1566586
CUACAAACCAGUUG
3400
1077-1097
UUCAGGUCAACUG
3489
1075-1097



ACCUGAA


GUUUGUAGAC







AD-1566587
UACAAACCAGUUGA
3401
1078-1098
UCUCAGGUCAACU
3490
1076-1098



CCUGAGA


GGUUUGUAGA







AD-1566588
ACAAACCAGUUGAC
3402
1079-1099
UGCUCAGGUCAAC
3491
1077-1099



CUGAGCA


UGGUUUGUAG







AD-1566590
AAACCAGUUGACCU
3403
1081-1101
UUUGCUCAGGUCA
3492
1079-1101



GAGCAAA


ACUGGUUUGU







AD-1566591
AACCAGUUGACCUG
3404
1082-1102
UCUUGCUCAGGUC
3493
1080-1102



AGCAAGA


AACUGGUUUG







AD-1566634
AGGCAACAUCCAUC
3405
1125-1145
UGUUUAUGAUGGA
3494
1123-1145



AUAAACA


UGUUGCCUAA







AD-1566635
GGCAACAUCCAUCA
3406
1126-1146
UGGUUUAUGAUGG
3495
1124-1146



UAAACCA


AUGUUGCCUA







AD-1566638
AACAUCCAUCAUAA
3407
1129-1149
UCCUGGUUUAUGA
3496
1127-1149



ACCAGGA


UGGAUGUUGC







AD-1566639
ACAUCCAUCAUAAA
3408
1130-1150
UUCCUGGUUUAUG
3497
1128-1150



CCAGGAA


AUGGAUGUUG







AD-1566641
AUCCAUCAUAAACC
3409
1132-1152
UCCUCCUGGUUUA
3498
1130-1152



AGGAGGA


UGAUGGAUGU







AD-1566642
UCCAUCAUAAACCA
3410
1133-1153
UACCUCCUGGUUU
3499
1131-1153



GGAGGUA


AUGAUGGAUG







AD-1566643
CCAUCAUAAACCAG
3411
1134-1154
UCACCUCCUGGUUU
3500
1132-1154



GAGGUGA


AUGAUGGAU







AD-1566679
AUCUGAGAAGCUUG
3412
1170-1190
UUGAAGUCAAGCU
3501
1168-1190



ACUUCAA


UCUCAGAUUU







AD-1566861
CAGCAUCGACAUGG
3413
1395-1415
UAGUCUACCAUGU
3502
1393-1415



UAGACUA


CGAUGCUGCC







AD-1567153
UGGCAGCAACAAAG
3414
1905-1925
UCAAAUCCUUUGU
3503
1903-1925



GAUUUGA


UGCUGCCACU







AD-1567154
GGCAGCAACAAAGG
3415
1906-1926
UUCAAAUCCUUUG
3504
1904-1926



AUUUGAA


UUGCUGCCAC







AD-1567157
AGCAACAAAGGAUU
3416
1909-1929
UGUUUCAAAUCCU
3505
1907-1929



UGAAACA


UUGUUGCUGC







AD-1567159
CAACAAAGGAUUUG
3417
1911-1931
UAAGUUUCAAAUC
3506
1909-1931



AAACUUA


CUUUGUUGCU







AD-1567160
AACAAAGGAUUUGA
3418
1912-1932
UCAAGUUUCAAAU
3507
1910-1932



AACUUGA


CCUUUGUUGC







AD-1567161
ACAAAGGAUUUGAA
3419
1913-1933
UCCAAGUUUCAAA
3508
1911-1933



ACUUGGA


UCCUUUGUUG







AD-1567164
AAGGAUUUGAAACU
3420
1916-1936
UACACCAAGUUUC
3509
1914-1936



UGGUGUA


AAAUCCUUUG







AD-1567167
GAUUUGAAACUUGG
3421
1919-1939
UAACACACCAAGU
3510
1917-1939



UGUGUUA


UUCAAAUCCU







AD-1567199
GGCAGACGAUGUCA
3422
1951-1971
UCAAGGUUGACAU
3511
1949-1971



ACCUUGA


CGUCUGCCUG







AD-1567202
AGACGAUGUCAACC
3423
1954-1974
UACACAAGGUUGA
3512
1952-1974



UUGUGUA


CAUCGUCUGC







AD-1567550
GGCUAACCAGUUCU
3424
2472-2492
UACAAAGAGAACU
3513
2470-2492



CUUUGUA


GGUUAGCCCU







AD-1567554
AACCAGUUCUCUUU
3425
2476-2496
UCCUUACAAAGAG
3514
2474-2496



GUAAGGA


AACUGGUUAG







AD-1567784
UCUCAGUUCCACUC
3426
2828-2848
UUUGGAUGAGUGG
3515
2826-2848



AUCCAAA


AACUGAGAGU







AD-1567896
UAGGUGUUUCUGCC
3427
2943-2963
UCAACAAGGCAGA
3516
2941-2963



UUGUUGA


AACACCUAGG







AD-1567897
AGGUGUUUCUGCCU
3428
2944-2964
UUCAACAAGGCAG
3517
2942-2964



UGUUGAA


AAACACCUAG







AD-1568105
AGCAGCUGAACAUA
3429
3277-3297
UUAUGUAUAUGUU
3518
3275-3297



UACAUAA


CAGCUGCUCC







AD-1568108
AGCUGAACAUAUAC
3430
3280-3300
UAUCUAUGUAUAU
3519
3278-3300



AUAGAUA


GUUCAGCUGC







AD-1568109
GCUGAACAUAUACA
3431
3281-3301
UCAUCUAUGUAUA
3520
3279-3301



UAGAUGA


UGUUCAGCUG







AD-1568139
GAGUUGUAGUUGGA
3432
3331-3351
UGACAAAUCCAAC
3521
3329-3351



UUUGUCA


UACAACUCAA







AD-1568140
AGUUGUAGUUGGAU
3433
3332-3352
UAGACAAAUCCAA
3522
3330-3352



UUGUCUA


CUACAACUCA







AD-1568143
UGUAGUUGGAUUUG
3434
3335-3355
UAACAGACAAAUC
3523
3333-3355



UCUGUUA


CAACUACAAC







AD-1568144
GUAGUUGGAUUUGU
3435
3336-3356
UAAACAGACAAAU
3524
3334-3356



CUGUUUA


CCAACUACAA







AD-1568148
UUGGAUUUGUCUGU
3436
3340-3360
UGCAUAAACAGAC
3525
3338-3360



UUAUGCA


AAAUCCAACU







AD-1568150
GGAUUUGUCUGUUU
3437
3342-3362
UAAGCAUAAACAG
3526
3340-3362



AUGCUUA


ACAAAUCCAA







AD-1568151
GAUUUGUCUGUUUA
3438
3343-3363
UCAAGCAUAAACA
3527
3341-3363



UGCUUGA


GACAAAUCCA







AD-1568152
AUUUGUCUGUUUAU
3439
3344-3364
UCCAAGCAUAAAC
3528
3342-3364



GCUUGGA


AGACAAAUCC







AD-1568153
UUUGUCUGUUUAUG
3440
3345-3365
UUCCAAGCAUAAA
3529
3343-3365



CUUGGAA


CAGACAAAUC







AD-1568154
UUGUCUGUUUAUGC
3441
3346-3366
UAUCCAAGCAUAA
3530
3344-3366



UUGGAUA


ACAGACAAAU







AD-1568158
CUGUUUAUGCUUGG
3442
3350-3370
UGUGAAUCCAAGC
3531
3348-3370



AUUCACA


AUAAACAGAC







AD-1568161
UUUAUGCUUGGAUU
3443
3353-3373
UCUGGUGAAUCCA
3532
3351-3373



CACCAGA


AGCAUAAACA







AD-1568172
AUUCACCAGAGUGA
3444
3364-3384
UUCAUAGUCACUC
3533
3362-3384



CUAUGAA


UGGUGAAUCC







AD-1568174
UCACCAGAGUGACU
3445
3366-3386
UUAUCAUAGUCAC
3534
3364-3386



AUGAUAA


UCUGGUGAAU







AD-1568175
CACCAGAGUGACUA
3446
3367-3387
UCUAUCAUAGUCA
3535
3365-3387



UGAUAGA


CUCUGGUGAA







AD-692908
ACCAGAGUGACUAU
3447
3368-3388
UACUAUCAUAGUC
3536
3366-3388



GAUAGUA


ACUCUGGUGA







AD-1568176
CCAGAGUGACUAUG
3448
3369-3389
UCACUAUCAUAGU
3537
3367-3389



AUAGUGA


CACUCUGGUG







AD-1569830
ACAUGAAAUCAUCU
3449
5509-5529
UAAGCUAAGAUGA
3538
5507-5529



UAGCUUA


UUUCAUGUCC







AD-1569832
AUGAAAUCAUCUUA
3450
5511-5531
UCUAAGCUAAGAU
3539
5509-5531



GCUUAGA


GAUUUCAUGU







AD-1569834
GAAAUCAUCUUAGC
3451
5513-5533
UAGCUAAGCUAAG
3540
5511-5533



UUAGCUA


AUGAUUUCAU







AD-1569835
AAAUCAUCUUAGCU
3452
5514-5534
UAAGCUAAGCUAA
3541
5512-5534



UAGCUUA


GAUGAUUUCA







AD-1569862
GUGAAUGUCUAUAU
3453
5541-5561
UUACACUAUAUAG
3542
5539-5561



AGUGUAA


ACAUUCACAG







AD-1569872
AUAUAGUGUAUUGU
3454
5551-5571
UAAACACACAAUA
3543
5549-5571



GUGUUUA


CACUAUAUAG







AD-1569890
CAAAUGAUUUACAC
3455
5574-5594
UCAGUCAGUGUAA
3544
5572-5594



UGACUGA


AUCAUUUGUU







AD-1569892
AAUGAUUUACACUG
3456
5576-5596
UAACAGUCAGUGU
3545
5574-5596



ACUGUUA


AAAUCAUUUG
















TABLE 28







Modified Sense and Antisense Strand Sequences of MAPT dsRNA Agents- Screen 10















SEQ

SEQ
mRNA Target
SEQ



Sense Sequence 5′ to
ID
Antisense Sequence 5′
ID
Sequence
ID


Duplex ID
3′
NO:
to 3′
NO:
5′ to 3′
NO:
















AD-1566238
ascsgug(Ahd)CfcCfAf
3546
VPusCfsaugCfgAfGfcuu
3635
UCACGUGACCCAA
1894



Afgcucgcausgsa

gGfgUfcacgusgsa

GCUCGCAUGG






AD-1566239
csgsuga(Chd)CfcAfAf
3547
VPusCfscauGfcGfAfgcu
3636
CACGUGACCCAAG
1895



Gfcucgcaugsgsa

uGfgGfucacgsusg

CUCGCAUGGU






AD-1566240
gsusgac(Chd)CfaAfGf
3548
VPusAfsccaUfgCfGfagc
3637
ACGUGACCCAAGC
1896



Cfucgcauggsusa

uUfgGfgucacsgsu

UCGCAUGGUC






AD-1566241
usgsacc(Chd)AfaGfCf
3549
VPusGfsaccAfuGfCfgag
3638
CGUGACCCAAGCU
1897



Ufcgcaugguscsa

cUfuGfggucascsg

CGCAUGGUCA






AD-1566242
gsasccc(Ahd)AfgCfUf
3550
VPusUfsgacCfaUfGfcga
3639
GUGACCCAAGCUC
1898



Cfgcauggucsasa

gCfuUfgggucsasc

GCAUGGUCAG






AD-1566243
ascscca(Ahd)GfcUfCf
3551
VPusCfsugaCfcAfUfgcg
3640
UGACCCAAGCUCG
1899



Gfcauggucasgsa

aGfcUfuggguscsa

CAUGGUCAGU






AD-1566244
cscscaa(Ghd)CfuCfGf
3552
VPusAfscugAfcCfAfugc
3641
GACCCAAGCUCGC
1900



Cfauggucagsusa

gAfgCfuugggsusc

AUGGUCAGUA






AD-1566245
cscsaag(Chd)UfcGfCf
3553
VPusUfsacuGfaCfCfaug
3642
ACCCAAGCUCGCA
1901



Afuggucagusasa

cGfaGfcuuggsgsu

UGGUCAGUAA






AD-1566246
csasagc(Uhd)CfgCfAf
3554
VPusUfsuacUfgAfCfcau
3643
CCCAAGCUCGCAU
1902



Ufggucaguasasa

gCfgAfgcuugsgsg

GGUCAGUAAA






AD-1091965
asgscuc(Ghd)CfaUfGf
3555
VPusUfsuuuAfcUfGfacc
3644
CAAGCUCGCAUGG
740



Gfucaguaaasasa

aUfgCfgagcususg

UCAGUAAAAG






AD-1566248
gscsucg(Chd)AfuGfGf
3556
VPusCfsuuuUfaCfUfgac
3645
AAGCUCGCAUGGU
741



Ufcaguaaaasgsa

cAfuGfcgagcsusu

CAGUAAAAGC






AD-1566249
csuscgc(Ahd)UfgGfUf
3557
VPusGfscuuUfuAfCfuga
3646
AGCUCGCAUGGUC
2797



Cfaguaaaagscsa

cCfaUfgcgagscsu

AGUAAAAGCA






AD-1566250
uscsgca(Uhd)GfgUfCf
3558
VPusUfsgcuUfuUfAfcug
3647
GCUCGCAUGGUCA
2798



Afguaaaagcsasa

aCfcAfugcgasgsc

GUAAAAGCAA






AD-1091966
csgscau(Ghd)GfuCfAf
3559
VPusUfsugcUfuUfUfacu
3648
CUCGCAUGGUCAG
1201



Gfuaaaagcasasa

gAfcCfaugcgsasg

UAAAAGCAAA






AD-1566251
gscsaug(Ghd)UfcAfGf
3560
VPusUfsuugCfuUfUfuac
3649
UCGCAUGGUCAGU
2800



Ufaaaagcaasasa

uGfaCfcaugcsgsa

AAAAGCAAAG






AD-1566252
csasugg(Uhd)CfaGfUf
3561
VPusCfsuuuGfcUfUfuua
3650
CGCAUGGUCAGUA
2801



Afaaagcaaasgsa

cUfgAfccaugscsg

AAAGCAAAGA






AD-1566253
asusggu(Chd)AfgUfAf
3562
VPusUfscuuUfgCfUfuuu
3651
GCAUGGUCAGUAA
2802



Afaagcaaagsasa

aCfuGfaccausgsc

AAGCAAAGAC






AD-1566254
usgsguc(Ahd)GfuAfAf
3563
VPusGfsucuUfuGfCfuuu
3652
CAUGGUCAGUAAA
2803



Afagcaaagascsa

uAfcUfgaccasusg

AGCAAAGACG






AD-1566255
gsgsuca(Ghd)UfaAfAf
3564
VPusCfsgucUfuUfGfcuu
3653
AUGGUCAGUAAAA
2804



Afgcaaagacsgsa

uUfaCfugaccsasu

GCAAAGACGG






AD-1566256
gsuscag(Uhd)AfaAfAf
3565
VPusCfscguCfuUfUfgcu
3654
UGGUCAGUAAAAG
2805



Gfcaaagacgsgsa

uUfuAfcugacscsa

CAAAGACGGG






AD-1566257
uscsagu(Ahd)AfaAfGf
3566
VPusCfsccgUfcUfUfugc
3655
GGUCAGUAAAAGC
2806



Cfaaagacggsgsa

uUfuUfacugascsc

AAAGACGGGA






AD-1566258
csasgua(Ahd)AfaGfCf
3567
VPusUfscccGfuCfUfuug
3656
GUCAGUAAAAGCA
2807



Afaagacgggsasa

cUfuUfuacugsasc

AAGACGGGAC






AD-1566259
asgsuaa(Ahd)AfgCfAf
3568
VPusGfsuccCfgUfCfuuu
3657
UCAGUAAAAGCAA
2808



Afagacgggascsa

gCfuUfuuacusgsa

AGACGGGACU






AD-692906
asgsugu(Ghd)CfaAfAf
3569
VPusUfsuguAfgAfCfuau
3658
GCAGUGUGCAAAU
1903



Ufagucuacasasa

uUfgCfacacusgsc

AGUCUACAAA






AD-1566575
gsusgca(Ahd)AfuAfGf
3570
VPusGfsguuUfgUfAfgac
3659
GUGUGCAAAUAGU
2835



Ufcuacaaacscsa

uAfuUfugcacsasc

CUACAAACCA






AD-1566576
usgscaa(Ahd)UfaGfUf
3571
VPusUfsgguUfuGfUfaga
3660
UGUGCAAAUAGUC
1904



Cfuacaaaccsasa

cUfaUfuugcascsa

UACAAACCAG






AD-1566577
gscsaaa(Uhd)AfgUfCf
3572
VPusCfsuggUfuUfGfuag
3661
GUGCAAAUAGUCU
315



Ufacaaaccasgsa

aCfuAfuuugcsasc

ACAAACCAGU






AD-1566580
asasuag(Uhd)CfuAfCf
3573
VPusCfsaacUfgGfUfuug
3662
CAAAUAGUCUACA
321



Afaaccaguusgsa

uAfgAfcuauususg

AACCAGUUGA






AD-1566581
asusagu(Chd)UfaCfAf
3574
VPusUfscaaCfuGfGfuuu
3663
AAAUAGUCUACAA
313



Afaccaguugsasa

gUfaGfacuaususu

ACCAGUUGAC






AD-1566582
usasguc(Uhd)AfcAfAf
3575
VPusGfsucaAfcUfGfguu
3664
AAUAGUCUACAAA
324



Afccaguugascsa

uGfuAfgacuasusu

CCAGUUGACC






AD-1566583
asgsucu(Ahd)CfaAfAf
3576
VPusGfsgucAfaCfUfggu
3665
AUAGUCUACAAAC
319



Cfcaguugacscsa

uUfgUfagacusasu

CAGUUGACCU






AD-1566584
gsuscua(Chd)AfaAfCf
3577
VPusAfsgguCfaAfCfugg
3666
UAGUCUACAAACC
314



Cfaguugaccsusa

uUfuGfuagacsusa

AGUUGACCUG






AD-1566586
csusaca(Ahd)AfcCfAf
3578
VPusUfscagGfuCfAfacu
3667
GUCUACAAACCAG
334



Gfuugaccugsasa

gGfuUfuguagsasc

UUGACCUGAG






AD-1566587
usascaa(Ahd)CfcAfGf
3579
VPusCfsucaGfgUfCfaac
3668
UCUACAAACCAGU
332



Ufugaccugasgsa

uGfgUfuuguasgsa

UGACCUGAGC






AD-1566588
ascsaaa(Chd)CfaGfUf
3580
VPusGfscucAfgGfUfcaa
3669
CUACAAACCAGUU
353



Ufgaccugagscsa

cUfgGfuuugusasg

GACCUGAGCA






AD-1566590
asasacc(Ahd)GfuUfGf
3581
VPusUfsugcUfcAfGfguc
3670
ACAAACCAGUUGA
337



Afccugagcasasa

aAfcUfgguuusgsu

CCUGAGCAAG






AD-1566591
asascca(Ghd)UfuGfAf
3582
VPusCfsuugCfuCfAfggu
3671
CAAACCAGUUGAC
317



Cfcugagcaasgsa

cAfaCfugguususg

CUGAGCAAGG






AD-1566634
asgsgca(Ahd)CfaUfCf
3583
VPusGfsuuuAfuGfAfugg
3672
UUAGGCAACAUCC
340



Cfaucauaaascsa

aUfgUfugccusasa

AUCAUAAACC






AD-1566635
gsgscaa(Chd)AfuCfCf
3584
VPusGfsguuUfaUfGfaug
3673
UAGGCAACAUCCA
330



Afucauaaacscsa

gAfuGfuugccsusa

UCAUAAACCA






AD-1566638
asascau(Chd)CfaUfCf
3585
VPusCfscugGfuUfUfaug
3674
GCAACAUCCAUCA
1911



Afuaaaccagsgsa

aUfgGfauguusgsc

UAAACCAGGA






AD-1566639
ascsauc(Chd)AfuCfAf
3586
VPusUfsccuGfgUfUfuau
3675
CAACAUCCAUCAU
2854



Ufaaaccaggsasa

gAfuGfgaugususg

AAACCAGGAG






AD-1566641
asuscca(Uhd)CfaUfAf
3587
VPusCfscucCfuGfGfuuu
3676
ACAUCCAUCAUAA
2856



Afaccaggagsgsa

aUfgAfuggausgsu

ACCAGGAGGU






AD-1566642
uscscau(Chd)AfuAfAf
3588
VPusAfsccuCfcUfGfguu
3677
CAUCCAUCAUAAA
2857



Afccaggaggsusa

uAfuGfauggasusg

CCAGGAGGUG






AD-1566643
cscsauc(Ahd)UfaAfAf
3589
VPusCfsaccUfcCfUfggu
3678
AUCCAUCAUAAAC
2858



Cfcaggaggusgsa

uUfaUfgauggsasu

CAGGAGGUGG






AD-1566679
asuscug(Ahd)GfaAfGf
3590
VPusUfsgaaGfuCfAfagc
3679
AAAUCUGAGAAGC
1912



Cfuugacuucsasa

uUfcUfcagaususu

UUGACUUCAA






AD-1566861
csasgca(Uhd)CfgAfCf
3591
VPusAfsgucUfaCfCfaug
3680
GGCAGCAUCGACA
1913



Afugguagacsusa

uCfgAfugcugscsc

UGGUAGACUC






AD-1567153
usgsgca(Ghd)CfaAfCf
3592
VPusCfsaaaUfcCfUfuug
3681
AGUGGCAGCAACA
1914



Afaaggauuusgsa

uUfgCfugccascsu

AAGGAUUUGA






AD-1567154
gsgscag(Chd)AfaCfAf
3593
VPusUfscaaAfuCfCfuuu
3682
GUGGCAGCAACAA
1915



Afaggauuugsasa

gUfuGfcugccsasc

AGGAUUUGAA






AD-1567157
asgscaa(Chd)AfaAfGf
3594
VPusGfsuuuCfaAfAfucc
3683
GCAGCAACAAAGG
1916



Gfauuugaaascsa

uUfuGfuugcusgsc

AUUUGAAACU






AD-1567159
csasaca(Ahd)AfgGfAf
3595
VPusAfsaguUfuCfAfaau
3684
AGCAACAAAGGAU
748



Ufuugaaacususa

cCfuUfuguugscsu

UUGAAACUUG






AD-1567160
asascaa(Ahd)GfgAfUf
3596
VPusCfsaagUfuUfCfaaa
3685
GCAACAAAGGAUU
1918



Ufugaaacuusgsa

uCfcUfuuguusgsc

UGAAACUUGG






AD-1567161
ascsaaa(Ghd)GfaUfUf
3597
VPusCfscaaGfuUfUfcaa
3686
CAACAAAGGAUUU
1919



Ufgaaacuugsgsa

aUfcCfuuugususg

GAAACUUGGU






AD-1567164
asasgga(Uhd)UfuGfAf
3598
VPusAfscacCfaAfGfuuu
3687
CAAAGGAUUUGAA
1922



Afacuuggugsusa

cAfaAfuccuususg

ACUUGGUGUG






AD-1567167
gsasuuu(Ghd)AfaAfCf
3599
VPusAfsacaCfaCfCfaagu
3688
AGGAUUUGAAACU
1923



Ufuggugugususa

UfuCfaaaucscsu

UGGUGUGUUC






AD-1567199
gsgscag(Ahd)CfgAfUf
3600
VPusCfsaagGfuUfGfaca
3689
CAGGCAGACGAUG
1924



Gfucaaccuusgsa

uCfgUfcugccsusg

UCAACCUUGU






AD-1567202
asgsacg(Ahd)UfgUfCf
3601
VPusAfscacAfaGfGfuug
3690
GCAGACGAUGUCA
1925



Afaccuugugsusa

aCfaUfcgucusgsc

ACCUUGUGUG






AD-1567550
gsgscua(Ahd)CfcAfGf
3602
VPusAfscaaAfgAfGfaac
3691
AGGGCUAACCAGU
1932



Ufucucuuugsusa

uGfgUfuagccscsu

UCUCUUUGUA






AD-1567554
asascca(Ghd)UfuCfUf
3603
VPusCfscuuAfcAfAfaga
3692
CUAACCAGUUCUC
1933



Cfuuuguaagsgsa

gAfaCfugguusasg

UUUGUAAGGA






AD-1567784
uscsuca(Ghd)UfuCfCf
3604
VPusUfsuggAfuGfAfgug
3693
ACUCUCAGUUCCA
1948



Afcucauccasasa

gAfaCfugagasgsu

CUCAUCCAAC






AD-1567896
usasggu(Ghd)UfuUfCf
3605
VPusCfsaacAfaGfGfcag
3694
CCUAGGUGUUUCU
1949



Ufgccuuguusgsa

aAfaCfaccuasgsg

GCCUUGUUGA






AD-1567897
asgsgug(Uhd)UfuCfUf
3606
VPusUfscaaCfaAfGfgca
3695
CUAGGUGUUUCUG
1950



Gfccuuguugsasa

gAfaAfcaccusasg

CCUUGUUGAC






AD-1568105
asgscag(Chd)UfgAfAf
3607
VPusUfsaugUfaUfAfugu
3696
GGAGCAGCUGAAC
1954



Cfauauacausasa

uCfaGfcugcuscsc

AUAUACAUAG






AD-1568108
asgscug(Ahd)AfcAfUf
3608
VPusAfsucuAfuGfUfaua
3697
GCAGCUGAACAUA
1955



Afuacauagasusa

uGfuUfcagcusgsc

UACAUAGAUG






AD-1568109
gscsuga(Ahd)CfaUfAf
3609
VPusCfsaucUfaUfGfuau
3698
CAGCUGAACAUAU
1956



Ufacauagausgsa

aUfgUfucagcsusg

ACAUAGAUGU






AD-1568139
gsasguu(Ghd)UfaGfUf
3610
VPusGfsacaAfaUfCfcaac
3699
UUGAGUUGUAGUU
1961



Ufggauuuguscsa

UfaCfaacucsasa

GGAUUUGUCU






AD-1568140
asgsuug(Uhd)AfgUfUf
3611
VPusAfsgacAfaAfUfcca
3700
UGAGUUGUAGUUG
1962



Gfgauuugucsusa

aCfuAfcaacuscsa

GAUUUGUCUG






AD-1568143
usgsuag(Uhd)UfgGfAf
3612
VPusAfsacaGfaCfAfaau
3701
GUUGUAGUUGGAU
1965



Ufuugucugususa

cCfaAfcuacasasc

UUGUCUGUUU






AD-1568144
gsusagu(Uhd)GfgAfUf
3613
VPusAfsaacAfgAfCfaaa
3702
UUGUAGUUGGAUU
1966



Ufugucuguususa

uCfcAfacuacsasa

UGUCUGUUUA






AD-1568148
ususgga(Uhd)UfuGfUf
3614
VPusGfscauAfaAfCfaga
3703
AGUUGGAUUUGUC
1968



Cfuguuuaugscsa

cAfaAfuccaascsu

UGUUUAUGCU






AD-1568150
gsgsauu(Uhd)GfuCfUf
3615
VPusAfsagcAfuAfAfaca
3704
UUGGAUUUGUCUG
1969



Gfuuuaugcususa

gAfcAfaauccsasa

UUUAUGCUUG






AD-1568151
gsasuuu(Ghd)UfcUfGf
3616
VPusCfsaagCfaUfAfaaca
3705
UGGAUUUGUCUGU
1970



Ufuuaugcuusgsa

GfaCfaaaucscsa

UUAUGCUUGG






AD-1568152
asusuug(Uhd)CfuGfUf
3617
VPusCfscaaGfcAfUfaaac
3706
GGAUUUGUCUGUU
1971



Ufuaugcuugsgsa

AfgAfcaaauscsc

UAUGCUUGGA






AD-1568153
ususugu(Chd)UfgUfUf
3618
VPusUfsccaAfgCfAfuaa
3707
GAUUUGUCUGUUU
1972



Ufaugcuuggsasa

aCfaGfacaaasusc

AUGCUUGGAU






AD-1568154
ususguc(Uhd)GfuUfUf
3619
VPusAfsuccAfaGfCfaua
3708
AUUUGUCUGUUUA
1973



Afugcuuggasusa

aAfcAfgacaasasu

UGCUUGGAUU






AD-1568158
csusguu(Uhd)AfuGfCf
3620
VPusGfsugaAfuCfCfaag
3709
GUCUGUUUAUGCU
1976



Ufuggauucascsa

cAfuAfaacagsasc

UGGAUUCACC






AD-1568161
ususuau(Ghd)CfuUfGf
3621
VPusCfsuggUfgAfAfucc
3710
UGUUUAUGCUUGG
1977



Gfauucaccasgsa

aAfgCfauaaascsa

AUUCACCAGA






AD-1568172
asusuca(Chd)CfaGfAf
3622
VPusUfscauAfgUfCfacu
3711
GGAUUCACCAGAG
1978



Gfugacuaugsasa

cUfgGfugaauscsc

UGACUAUGAU






AD-1568174
uscsacc(Ahd)GfaGfUf
3623
VPusUfsaucAfuAfGfuca
3712
AUUCACCAGAGUG
1979



Gfacuaugausasa

cUfcUfggugasasu

ACUAUGAUAG






AD-1568175
csascca(Ghd)AfgUfGf
3624
VPusCfsuauCfaUfAfguc
3713
UUCACCAGAGUGA
1980



Afcuaugauasgsa

aCfuCfuggugsasa

CUAUGAUAGU






AD-692908
ascscag(Ahd)GfuGfAf
3625
VPusAfscuaUfcAfUfagu
3714
UCACCAGAGUGAC
1492



Cfuaugauagsusa

cAfcUfcuggusgsa

UAUGAUAGUG






AD-1568176
cscsaga(Ghd)UfgAfCf
3626
VPusCfsacuAfuCfAfuag
3715
CACCAGAGUGACU
1982



Ufaugauagusgsa

uCfaCfucuggsusg

AUGAUAGUGA






AD-1569830
ascsaug(Ahd)AfaUfCf
3627
VPusAfsagcUfaAfGfaug
3716
GGACAUGAAAUCA
2419



Afucuuagcususa

aUfuUfcauguscsc

UCUUAGCUUA






AD-1569832
asusgaa(Ahd)UfcAfUf
3628
VPusCfsuaaGfcUfAfaga
3717
ACAUGAAAUCAUC
2420



Cfuuagcuuasgsa

uGfaUfuucausgsu

UUAGCUUAGC






AD-1569834
gsasaau(Chd)AfuCfUf
3629
VPusAfsgcuAfaGfCfuaa
3718
AUGAAAUCAUCUU
2421



Ufagcuuagcsusa

gAfuGfauuucsasu

AGCUUAGCUU






AD-1569835
asasauc(Ahd)UfcUfUf
3630
VPusAfsagcUfaAfGfcua
3719
UGAAAUCAUCUUA
2422



Afgcuuagcususa

aGfaUfgauuuscsa

GCUUAGCUUU






AD-1569862
gsusgaa(Uhd)GfuCfUf
3631
VPusUfsacaCfu AfUfaua
3720
CUGUGAAUGUCUA
755



Afuauagugusasa

gAfcAfuucacsasg

UAUAGUGUAU






AD-1569872
asusaua(Ghd)UfgUfAf
3632
VPusAfsaacAfcAfCfaau
3721
CUAUAUAGUGUAU
2429



Ufuguguguususa

aCfaCfuauausasg

UGUGUGUUUU






AD-1569890
csasaau(Ghd)AfuUfUf
3633
VPusCfsaguCfaGfUfgua
3722
AACAAAUGAUUUA
2430



Afcacugacusgsa

aAfuCfauuugsusu

CACUGACUGU






AD-1569892
asasuga(Uhd)UfuAfCf
3634
VPusAfsacaGfuCfAfgug
3723
CAAAUGAUUUACA
2431



Afcugacugususa

uAfaAfucauususg

CUGACUGUUG









Example 2. In Vivo Evaluation in Transgenic Mice

This Example describes methods for the in vivo evaluation of MAPT RNAi agents in transgenic mice expressing human MAPT RNAs.


The ability of selected dsRNA agents designed and assayed in Example 1 are assessed for their ability to reduce the level of both sense- or antisense-containing foci in mice expressing human MAPT RNAs.


Briefly, duplexes of interest, identified from the above in vitro studies and shown in Tables 2-7 and 11-12, were evaluated in vivo. In particular, at pre-dose day 14 wild-type, 8 week old female mice (C57BL/6) were transduced by retroorbital administration of 2×1010 genome copies of AAV that expresses a portion of the human MAPT gene. In particular, mice were administered an AAV encoding a portion of human MAPT gene coding sequence (323-1648) and part of 3′UTR (4473-5811) of NM_016841.4, cloned in it.


Two weeks later and at day 0, the mice are administered subcutaneously a single dose of one of the dsRNA agents of interest at 3 mg/Kg or PBS control. The administered duplexes are selected from AD-393752, AD-396420, AD-396425, AD-393239, AD-397167, AD-523561, AD-523565, AD-523562, and AD-535094. Two weeks' post-duplex dosing and at day 14, animals were sacrificed, liver samples were collected and snap-frozen in liquid nitrogen. Tissue mRNA was extracted and analyzed by the RT-QPCR method for human MAPT expression.


Human MAPT mRNA levels were compared to housekeeping gene GAPDH. The values were then normalized to the average of PBS vehicle control group. The data were expressed as percent of baseline value, and presented as mean plus standard deviation. The results, listed in Table 29 and shown in FIG. 1, demonstrate that the exemplary duplex agents tested effectively reduce the level of the human MAPT mRNA in vivo.













TABLE 29







Group
Average
Std Dev




















PBS
100
19



AD-393758
48
5



AD-396420
30
10



AD-396425
16
4



AD-393239
41
19



AD-397167
11
8



AD-523561
40
10



AD-523565
26
5



AD-523562
67
20



AD-535094
74
33










Example 3. In Vivo Evaluation of MAPT mRNA Supression in Mice

This Example describes methods for the in vivo evaluation of MAPT RNAi agents in transgenic mice expressing human MAPT RNAs.


The ability of selected dsRNA agents designed and assayed in Tables 25-26 in Example 1 are assessed for their ability to reduce the level of both sense- or antisense-containing foci in mice expressing human MAPT RNAs.


Briefly, duplexes of interest, identified from the above in vitro studies and shown in Tables 25-26, were evaluated in vivo. In particular, the first study included 72 wild-type, 6-8 weeks old female mice (C57BL/6) that were transduced by retroorbital administration of 2×1010 genome copies of AAV that expresses a portion of the human MAPT gene at pre-dose day. The second study included 60 wild-type, 6-8 weeks old female mice (C57BL/6) that were transduced by retroorbital administration of 2×1010 genome copies of AAV that expresses a portion of the human MAPT gene at pre-dose day. In both the first and second studies, mice were administered an AAV encoding a portion of human MAPT gene coding sequence of NM_005910, cloned in it.


Two weeks later and at day 0, 48 mice in the first study divided into 16 groups of 3 animals per group, were administered subcutaneously a single dose of one of the dsRNA agents of interest at 3 mg/Kg or PBS control. The administered duplexes are selected from AD-397167.1, AD-523565.1, AD-1397072.3, AD-1397073.3, AD-1397076.3, AD-1397077.3, AD-1397078.3, AD-1397252.2, AD-1397257.2, AD-1397258.2, AD-1397259.2, AD-1397263.2, AD-1397264.2, AD-1397309.2 and AD-64958.114. Similarly, at day 0, 54 mice in the second study divided into 18 groups of 3 animals per group, were administered subcutaneously a single dose of one of the dsRNA agents of interest at 3 mg/Kg or PBS control. The administered duplexes are selected from AD-397167.1, AD-393758.4, AD-1397080.3, AD-1397293.2, AD-1397294.2, AD-1397081.3, AD-1397083.3, AD-1397298.2, AD-1397299.2, AD-1397084.2, AD-1397085.2, AD-1397087.3, AD-1397306.2, AD-1397307.2, AD-1397308.2 and AD-1397088.2. Two weeks' post-duplex dosing and at day 14, animals in both the study were sacrificed, liver samples were collected and snap-frozen in liquid nitrogen. Tissue mRNA was extracted and analyzed by the RT-QPCR method for human MAPT expression.


Human MAPT mRNA levels were compared to housekeeping gene GAPDH and normalized to the average of levels in the corresponding PBS vehicle control group. The data were expressed as percent of baseline value, and presented as mean plus standard deviation. The results, listed in Tables 29 and 30, respectively and shown in FIGS. 2 and 3, respectively. The results demonstrate that select exemplary duplex agents tested effectively reduce the level of the human MAPT mRNA in vivo.













TABLE 29







Group
Average
Std Dev




















PBS
100.0
19



AD-397167.1
13.0
9



AD-523565.1
3.9
3



AD-1397072.3
29.3
1



AD-1397073.3
82.7
36



AD-1397076.3
34.8
6



AD-1397077.3
50.0
15



AD-1397078.3
53.6
35



AD-1397252.2
17.0
7



AD-1397257.2
29.0
9



AD-1397258.2
23.8
9



AD-1397259.2
33.7
11



AD-1397263.2
59.6
6



AD-1397264.2
45.6
16



AD-1397309.2
65.9
37



AD-64958.114
21.2
6





















TABLE 30







Group
Average
Std Dev




















PBS
105
11



AD-397167.1
18
5



AD-393758.4
38
5



AD-1397080.3
14
4



AD-1397293.2
32
7



AD-1397294.2
57
18



AD-1397081.3
28
12



AD-1397083.3
48
29



AD-1397298.2
50
18



AD-1397299.2
22
5



AD-1397084.2
41
19



AD-1397085.2
20
4



AD-1397087.3
58
24



AD-1397306.2
111
34



AD-1397307.2
40
26



AD-1397308.2
64
11



AD-1397088.2
21
1



AD-64958.114
49
20










EQUIVALENTS

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments and methods described herein. Such equivalents are intended to be encompassed by the scope of the following claims.












MAPT SEQUENCES















SEQ ID NO: 1


>NM_016841.4 Homo sapiens microtubule associated protein tau (MAPT),


transcript variant 4, mRNA


GGACGGCCGAGCGGCAGGGCGCTCGCGCGCGCCCACTAGTGGCCGGAGGAGAAGGCTCCCGCGGAGGCCG


CGCTGCCCGCCCCCTCCCCTGGGGAGGCTCGCGTTCCCGCTGCTCGCGCCTGCGCCGCCCGCCGGCCTCA


GGAACGCGCCCTCTTCGCCGGCGCGCGCCCTCGCAGTCACCGCCACCCACCAGCTCCGGCACCAACAGCA


GCGCCGCTGCCACCGCCCACCTTCTGCCGCCGCCACCACAGCCACCTTCTCCTCCTCCGCTGTCCTCTCC


CGTCCTCGCCTCTGTCGACTATCAGGTGAACTTTGAACCAGGATGGCTGAGCCCCGCCAGGAGTTCGAAG


TGATGGAAGATCACGCTGGGACGTACGGGTTGGGGGACAGGAAAGATCAGGGGGGCTACACCATGCACCA


AGACCAAGAGGGTGACACGGACGCTGGCCTGAAAGCTGAAGAAGCAGGCATTGGAGACACCCCCAGCCTG


GAAGACGAAGCTGCTGGTCACGTGACCCAAGCTCGCATGGTCAGTAAAAGCAAAGACGGGACTGGAAGCG


ATGACAAAAAAGCCAAGGGGGCTGATGGTAAAACGAAGATCGCCACACCGCGGGGAGCAGCCCCTCCAGG


CCAGAAGGGCCAGGCCAACGCCACCAGGATTCCAGCAAAAACCCCGCCCGCTCCAAAGACACCACCCAGC


TCTGGTGAACCTCCAAAATCAGGGGATCGCAGCGGCTACAGCAGCCCCGGCTCCCCAGGCACTCCCGGCA


GCCGCTCCCGCACCCCGTCCCTTCCAACCCCACCCACCCGGGAGCCCAAGAAGGTGGCAGTGGTCCGTAC


TCCACCCAAGTCGCCGTCTTCCGCCAAGAGCCGCCTGCAGACAGCCCCCGTGCCCATGCCAGACCTGAAG


AATGTCAAGTCCAAGATCGGCTCCACTGAGAACCTGAAGCACCAGCCGGGAGGCGGGAAGGTGCAAATAG


TCTACAAACCAGTTGACCTGAGCAAGGTGACCTCCAAGTGTGGCTCATTAGGCAACATCCATCATAAACC


AGGAGGTGGCCAGGTGGAAGTAAAATCTGAGAAGCTTGACTTCAAGGACAGAGTCCAGTCGAAGATTGGG


TCCCTGGACAATATCACCCACGTCCCTGGCGGAGGAAATAAAAAGATTGAAACCCACAAGCTGACCTTCC


GCGAGAACGCCAAAGCCAAGACAGACCACGGGGCGGAGATCGTGTACAAGTCGCCAGTGGTGTCTGGGGA


CACGTCTCCACGGCATCTCAGCAATGTCTCCTCCACCGGCAGCATCGACATGGTAGACTCGCCCCAGCTC


GCCACGCTAGCTGACGAGGTGTCTGCCTCCCTGGCCAAGCAGGGTTTGTGATCAGGCCCCTGGGGCGGTC


AATAATTGTGGAGAGGAGAGAATGAGAGAGTGTGGAAAAAAAAAGAATAATGACCCGGCCCCCGCCCTCT


GCCCCCAGCTGCTCCTCGCAGTTCGGTTAATTGGTTAATCACTTAACCTGCTTTTGTCACTCGGCTTTGG


CTCGGGACTTCAAAATCAGTGATGGGAGTAAGAGCAAATTTCATCTTTCCAAATTGATGGGTGGGCTAGT


AATAAAATATTTAAAAAAAAACATTCAAAAACATGGCCACATCCAACATTTCCTCAGGCAATTCCTTTTG


ATTCTTTTTTCTTCCCCCTCCATGTAGAAGAGGGAGAAGGAGAGGCTCTGAAAGCTGCTTCTGGGGGATT


TCAAGGGACTGGGGGTGCCAACCACCTCTGGCCCTGTTGTGGGGGTGTCACAGAGGCAGTGGCAGCAACA


AAGGATTTGAAACTTGGTGTGTTCGTGGAGCCACAGGCAGACGATGTCAACCTTGTGTGAGTGTGACGGG


GGTTGGGGTGGGGCGGGAGGCCACGGGGGAGGCCGAGGCAGGGGCTGGGCAGAGGGGAGAGGAAGCACAA


GAAGTGGGAGTGGGAGAGGAAGCCACGTGCTGGAGAGTAGACATCCCCCTCCTTGCCGCTGGGAGAGCCA


AGGCCTATGCCACCTGCAGCGTCTGAGCGGCCGCCTGTCCTTGGTGGCCGGGGGTGGGGGCCTGCTGTGG


GTCAGTGTGCCACCCTCTGCAGGGCAGCCTGTGGGAGAAGGGACAGCGGGTAAAAAGAGAAGGCAAGCTG


GCAGGAGGGTGGCACTTCGTGGATGACCTCCTTAGAAAAGACTGACCTTGATGTCTTGAGAGCGCTGGCC


TCTTCCTCCCTCCCTGCAGGGTAGGGGGCCTGAGTTGAGGGGCTTCCCTCTGCTCCACAGAAACCCTGTT


TTATTGAGTTCTGAAGGTTGGAACTGCTGCCATGATTTTGGCCACTTTGCAGACCTGGGACTTTAGGGCT


AACCAGTTCTCTTTGTAAGGACTTGTGCCTCTTGGGAGACGTCCACCCGTTTCCAAGCCTGGGCCACTGG


CATCTCTGGAGTGTGTGGGGGTCTGGGAGGCAGGTCCCGAGCCCCCTGTCCTTCCCACGGCCACTGCAGT


CACCCCGTCTGCGCCGCTGTGCTGTTGTCTGCCGTGAGAGCCCAATCACTGCCTATACCCCTCATCACAC


GTCACAATGTCCCGAATTCCCAGCCTCACCACCCCTTCTCAGTAATGACCCTGGTTGGTTGCAGGAGGTA


CCTACTCCATACTGAGGGTGAAATTAAGGGAAGGCAAAGTCCAGGCACAAGAGTGGGACCCCAGCCTCTC


ACTCTCAGTTCCACTCATCCAACTGGGACCCTCACCACGAATCTCATGATCTGATTCGGTTCCCTGTCTC


CTCCTCCCGTCACAGATGTGAGCCAGGGCACTGCTCAGCTGTGACCCTAGGTGTTTCTGCCTTGTTGACA


TGGAGAGAGCCCTTTCCCCTGAGAAGGCCTGGCCCCTTCCTGTGCTGAGCCCACAGCAGCAGGCTGGGTG


TCTTGGTTGTCAGTGGTGGCACCAGGATGGAAGGGCAAGGCACCCAGGGCAGGCCCACAGTCCCGCTGTC


CCCCACTTGCACCCTAGCTTGTAGCTGCCAACCTCCCAGACAGCCCAGCCCGCTGCTCAGCTCCACATGC


ATAGTATCAGCCCTCCACACCCGACAAAGGGGAACACACCCCCTTGGAAATGGTTCTTTTCCCCCAGTCC


CAGCTGGAAGCCATGCTGTCTGTTCTGCTGGAGCAGCTGAACATATACATAGATGTTGCCCTGCCCTCCC


CATCTGCACCCTGTTGAGTTGTAGTTGGATTTGTCTGTTTATGCTTGGATTCACCAGAGTGACTATGATA


GTGAAAAGAAAAAAAAAAAAAAAAAAGGACGCATGTATCTTGAAATGCTTGTAAAGAGGTTTCTAACCCA


CCCTCACGAGGTGTCTCTCACCCCCACACTGGGACTCGTGTGGCCTGTGTGGTGCCACCCTGCTGGGGCC


TCCCAAGTTTTGAAAGGCTTTCCTCAGCACCTGGGACCCAACAGAGACCAGCTTCTAGCAGCTAAGGAGG


CCGTTCAGCTGTGACGAAGGCCTGAAGCACAGGATTAGGACTGAAGCGATGATGTCCCCTTCCCTACTTC


CCCTTGGGGCTCCCTGTGTCAGGGCACAGACTAGGTCTTGTGGCTGGTCTGGCTTGCGGCGCGAGGATGG


TTCTCTCTGGTCATAGCCCGAAGTCTCATGGCAGTCCCAAAGGAGGCTTACAACTCCTGCATCACAAGAA


AAAGGAAGCCACTGCCAGCTGGGGGGATCTGCAGCTCCCAGAAGCTCCGTGAGCCTCAGCCACCCCTCAG


ACTGGGTTCCTCTCCAAGCTCGCCCTCTGGAGGGGCAGCGCAGCCTCCCACCAAGGGCCCTGCGACCACA


GCAGGGATTGGGATGAATTGCCTGTCCTGGATCTGCTCTAGAGGCCCAAGCTGCCTGCCTGAGGAAGGAT


GACTTGACAAGTCAGGAGACACTGTTCCCAAAGCCTTGACCAGAGCACCTCAGCCCGCTGACCTTGCACA


AACTCCATCTGCTGCCATGAGAAAAGGGAAGCCGCCTTTGCAAAACATTGCTGCCTAAAGAAACTCAGCA


GCCTCAGGCCCAATTCTGCCACTTCTGGTTTGGGTACAGTTAAAGGCAACCCTGAGGGACTTGGCAGTAG


AAATCCAGGGCCTCCCCTGGGGCTGGCAGCTTCGTGTGCAGCTAGAGCTTTACCTGAAAGGAAGTCTCTG


GGCCCAGAACTCTCCACCAAGAGCCTCCCTGCCGTTCGCTGAGTCCCAGCAATTCTCCTAAGTTGAAGGG


ATCTGAGAAGGAGAAGGAAATGTGGGGTAGATTTGGTGGTGGTTAGAGATATGCCCCCCTCATTACTGCC


AACAGTTTCGGCTGCATTTCTTCACGCACCTCGGTTCCTCTTCCTGAAGTTCTTGTGCCCTGCTCTTCAG


CACCATGGGCCTTCTTATACGGAAGGCTCTGGGATCTCCCCCTTGTGGGGCAGGCTCTTGGGGCCAGCCT


AAGATCATGGTTTAGGGTGATCAGTGCTGGCAGATAAATTGAAAAGGCACGCTGGCTTGTGATCTTAAAT


GAGGACAATCCCCCCAGGGCTGGGCACTCCTCCCCTCCCCTCACTTCTCCCACCTGCAGAGCCAGTGTCC


TTGGGTGGGCTAGATAGGATATACTGTATGCCGGCTCCTTCAAGCTGCTGACTCACTTTATCAATAGTTC


CATTTAAATTGACTTCAGTGGTGAGACTGTATCCTGTTTGCTATTGCTTGTTGTGCTATGGGGGGAGGGG


GGAGGAATGTGTAAGATAGTTAACATGGGCAAAGGGAGATCTTGGGGTGCAGCACTTAAACTGCCTCGTA


ACCCTTTTCATGATTTCAACCACATTTGCTAGAGGGAGGGAGCAGCCACGGAGTTAGAGGCCCTTGGGGT


TTCTCTTTTCCACTGACAGGCTTTCCCAGGCAGCTGGCTAGTTCATTCCCTCCCCAGCCAGGTGCAGGCG


TAGGAATATGGACATCTGGTTGCTTTGGCCTGCTGCCCTCTTTCAGGGGTCCTAAGCCCACAATCATGCC


TCCCTAAGACCTTGGCATCCTTCCCTCTAAGCCGTTGGCACCTCTGTGCCACCTCTCACACTGGCTCCAG


ACACACAGCCTGTGCTTTTGGAGCTGAGATCACTCGCTTCACCCTCCTCATCTTTGTTCTCCAAGTAAAG


CCACGAGGTCGGGGCGAGGGCAGAGGTGATCACCTGCGTGTCCCATCTACAGACCTGCAGCTTCATAAAA


CTTCTGATTTCTCTTCAGCTTTGAAAAGGGTTACCCTGGGCACTGGCCTAGAGCCTCACCTCCTAATAGA


CTTAGCCCCATGAGTTTGCCATGTTGAGCAGGACTATTTCTGGCACTTGCAAGTCCCATGATTTCTTCGG


TAATTCTGAGGGTGGGGGGAGGGACATGAAATCATCTTAGCTTAGCTTTCTGTCTGTGAATGTCTATATA


GTGTATTGTGTGTTTTAACAAATGATTTACACTGACTGTTGCTGTAAAAGTGAATTTGGAAATAAAGTTA


TTACTCTGATTAAA





SEQ ID NO: 2


>Reverse Complement of SEQ ID NO: 1


TTTAATCAGAGTAATAACTTTATTTCCAAATTCACTTTTACAGCAACAGTCAGTGTAAATCATTTGTTAAAACACA


CAATACACTATATAGACATTCACAGACAGAAAGCTAAGCTAAGATGATTTCATGTCCCTCCCCCCACCCTCAGAAT


TACCGAAGAAATCATGGGACTTGCAAGTGCCAGAAATAGTCCTGCTCAACATGGCAAACTCATGGGGCTAAG


TCTATTAGGAGGTGAGGCTCTAGGCCAGTGCCCAGGGTAACCCTTTTCAAAGCTGAAGAGAAATCAGAAG


TTTTATGAAGCTGCAGGTCTGTAGATGGGACACGCAGGTGATCACCTCTGCCCTCGCCCCGACCTCGTGG


CTTTACTTGGAGAACAAAGATGAGGAGGGTGAAGCGAGTGATCTCAGCTCCAAAAGCACAGGCTGTGTGT


CTGGAGCCAGTGTGAGAGGTGGCACAGAGGTGCCAACGGCTTAGAGGGAAGGATGCCAAGGTCTTAGGGA


GGCATGATTGTGGGCTTAGGACCCCTGAAAGAGGGCAGCAGGCCAAAGCAACCAGATGTCCATATTCCTA


CGCCTGCACCTGGCTGGGGAGGGAATGAACTAGCCAGCTGCCTGGGAAAGCCTGTCAGTGGAAAAGAGAA


ACCCCAAGGGCCTCTAACTCCGTGGCTGCTCCCTCCCTCTAGCAAATGTGGTTGAAATCATGAAAAGGGT


TACGAGGCAGTTTAAGTGCTGCACCCCAAGATCTCCCTTTGCCCATGTTAACTATCTTACACATTCCTCC


CCCCTCCCCCCATAGCACAACAAGCAATAGCAAACAGGATACAGTCTCACCACTGAAGTCAATTTAAATG


GAACTATTGATAAAGTGAGTCAGCAGCTTGAAGGAGCCGGCATACAGTATATCCTATCTAGCCCACCCAA


GGACACTGGCTCTGCAGGTGGGAGAAGTGAGGGGAGGGGAGGAGTGCCCAGCCCTGGGGGGATTGTCCTC


ATTTAAGATCACAAGCCAGCGTGCCTTTTCAATTTATCTGCCAGCACTGATCACCCTAAACCATGATCTT


AGGCTGGCCCCAAGAGCCTGCCCCACAAGGGGGAGATCCCAGAGCCTTCCGTATAAGAAGGCCCATGGTG


CTGAAGAGCAGGGCACAAGAACTTCAGGAAGAGGAACCGAGGTGCGTGAAGAAATGCAGCCGAAACTGTT


GGCAGTAATGAGGGGGGCATATCTCTAACCACCACCAAATCTACCCCACATTTCCTTCTCCTTCTCAGAT


CCCTTCAACTTAGGAGAATTGCTGGGACTCAGCGAACGGCAGGGAGGCTCTTGGTGGAGAGTTCTGGGCC


CAGAGACTTCCTTTCAGGTAAAGCTCTAGCTGCACACGAAGCTGCCAGCCCCAGGGGAGGCCCTGGATTT


CTACTGCCAAGTCCCTCAGGGTTGCCTTTAACTGTACCCAAACCAGAAGTGGCAGAATTGGGCCTGAGGC


TGCTGAGTTTCTTTAGGCAGCAATGTTTTGCAAAGGCGGCTTCCCTTTTCTCATGGCAGCAGATGGAGTT


TGTGCAAGGTCAGCGGGCTGAGGTGCTCTGGTCAAGGCTTTGGGAACAGTGTCTCCTGACTTGTCAAGTC


ATCCTTCCTCAGGCAGGCAGCTTGGGCCTCTAGAGCAGATCCAGGACAGGCAATTCATCCCAATCCCTGC


TGTGGTCGCAGGGCCCTTGGTGGGAGGCTGCGCTGCCCCTCCAGAGGGCGAGCTTGGAGAGGAACCCAGT


CTGAGGGGTGGCTGAGGCTCACGGAGCTTCTGGGAGCTGCAGATCCCCCCAGCTGGCAGTGGCTTCCTTT


TTCTTGTGATGCAGGAGTTGTAAGCCTCCTTTGGGACTGCCATGAGACTTCGGGCTATGACCAGAGAGAA


CCATCCTCGCGCCGCAAGCCAGACCAGCCACAAGACCTAGTCTGTGCCCTGACACAGGGAGCCCCAAGGG


GAAGTAGGGAAGGGGACATCATCGCTTCAGTCCTAATCCTGTGCTTCAGGCCTTCGTCACAGCTGAACGG


CCTCCTTAGCTGCTAGAAGCTGGTCTCTGTTGGGTCCCAGGTGCTGAGGAAAGCCTTTCAAAACTTGGGA


GGCCCCAGCAGGGTGGCACCACACAGGCCACACGAGTCCCAGTGTGGGGGTGAGAGACACCTCGTGAGGG


TGGGTTAGAAACCTCTTTACAAGCATTTCAAGATACATGCGTCCTTTTTTTTTTTTTTTTTTCTTTTCAC


TATCATAGTCACTCTGGTGAATCCAAGCATAAACAGACAAATCCAACTACAACTCAACAGGGTGCAGATG


GGGAGGGCAGGGCAACATCTATGTATATGTTCAGCTGCTCCAGCAGAACAGACAGCATGGCTTCCAGCTG


GGACTGGGGGAAAAGAACCATTTCCAAGGGGGTGTGTTCCCCTTTGTCGGGTGTGGAGGGCTGATACTAT


GCATGTGGAGCTGAGCAGCGGGCTGGGCTGTCTGGGAGGTTGGCAGCTACAAGCTAGGGTGCAAGTGGGG


GACAGCGGGACTGTGGGCCTGCCCTGGGTGCCTTGCCCTTCCATCCTGGTGCCACCACTGACAACCAAGA


CACCCAGCCTGCTGCTGTGGGCTCAGCACAGGAAGGGGCCAGGCCTTCTCAGGGGAAAGGGCTCTCTCCA


TGTCAACAAGGCAGAAACACCTAGGGTCACAGCTGAGCAGTGCCCTGGCTCACATCTGTGACGGGAGGAG


GAGACAGGGAACCGAATCAGATCATGAGATTCGTGGTGAGGGTCCCAGTTGGATGAGTGGAACTGAGAGT


GAGAGGCTGGGGTCCCACTCTTGTGCCTGGACTTTGCCTTCCCTTAATTTCACCCTCAGTATGGAGTAGG


TACCTCCTGCAACCAACCAGGGTCATTACTGAGAAGGGGTGGTGAGGCTGGGAATTCGGGACATTGTGAC


GTGTGATGAGGGGTATAGGCAGTGATTGGGCTCTCACGGCAGACAACAGCACAGCGGCGCAGACGGGGTG


ACTGCAGTGGCCGTGGGAAGGACAGGGGGCTCGGGACCTGCCTCCCAGACCCCCACACACTCCAGAGATG


CCAGTGGCCCAGGCTTGGAAACGGGTGGACGTCTCCCAAGAGGCACAAGTCCTTACAAAGAGAACTGGTT


AGCCCTAAAGTCCCAGGTCTGCAAAGTGGCCAAAATCATGGCAGCAGTTCCAACCTTCAGAACTCAATAA


AACAGGGTTTCTGTGGAGCAGAGGGAAGCCCCTCAACTCAGGCCCCCTACCCTGCAGGGAGGGAGGAAGA


GGCCAGCGCTCTCAAGACATCAAGGTCAGTCTTTTCTAAGGAGGTCATCCACGAAGTGCCACCCTCCTGC


CAGCTTGCCTTCTCTTTTTACCCGCTGTCCCTTCTCCCACAGGCTGCCCTGCAGAGGGTGGCACACTGAC


CCACAGCAGGCCCCCACCCCCGGCCACCAAGGACAGGCGGCCGCTCAGACGCTGCAGGTGGCATAGGCCT


TGGCTCTCCCAGCGGCAAGGAGGGGGATGTCTACTCTCCAGCACGTGGCTTCCTCTCCCACTCCCACTTC


TTGTGCTTCCTCTCCCCTCTGCCCAGCCCCTGCCTCGGCCTCCCCCGTGGCCTCCCGCCCCACCCCAACC


CCCGTCACACTCACACAAGGTTGACATCGTCTGCCTGTGGCTCCACGAACACACCAAGTTTCAAATCCTT


TGTTGCTGCCACTGCCTCTGTGACACCCCCACAACAGGGCCAGAGGTGGTTGGCACCCCCAGTCCCTTGA


AATCCCCCAGAAGCAGCTTTCAGAGCCTCTCCTTCTCCCTCTTCTACATGGAGGGGGAAGAAAAAAGAAT


CAAAAGGAATTGCCTGAGGAAATGTTGGATGTGGCCATGTTTTTGAATGTTTTTTTTTAAATATTTTATT


ACTAGCCCACCCATCAATTTGGAAAGATGAAATTTGCTCTTACTCCCATCACTGATTTTGAAGTCCCGAG


CCAAAGCCGAGTGACAAAAGCAGGTTAAGTGATTAACCAATTAACCGAACTGCGAGGAGCAGCTGGGGGC


AGAGGGCGGGGGCCGGGTCATTATTCTTTTTTTTTCCACACTCTCTCATTCTCTCCTCTCCACAATTATT


GACCGCCCCAGGGGCCTGATCACAAACCCTGCTTGGCCAGGGAGGCAGACACCTCGTCAGCTAGCGTGGC


GAGCTGGGGCGAGTCTACCATGTCGATGCTGCCGGTGGAGGAGACATTGCTGAGATGCCGTGGAGACGTG


TCCCCAGACACCACTGGCGACTTGTACACGATCTCCGCCCCGTGGTCTGTCTTGGCTTTGGCGTTCTCGC


GGAAGGTCAGCTTGTGGGTTTCAATCTTTTTATTTCCTCCGCCAGGGACGTGGGTGATATTGTCCAGGGA


CCCAATCTTCGACTGGACTCTGTCCTTGAAGTCAAGCTTCTCAGATTTTACTTCCACCTGGCCACCTCCT


GGTTTATGATGGATGTTGCCTAATGAGCCACACTTGGAGGTCACCTTGCTCAGGTCAACTGGTTTGTAGA


CTATTTGCACCTTCCCGCCTCCCGGCTGGTGCTTCAGGTTCTCAGTGGAGCCGATCTTGGACTTGACATT


CTTCAGGTCTGGCATGGGCACGGGGGCTGTCTGCAGGCGGCTCTTGGCGGAAGACGGCGACTTGGGTGGA


GTACGGACCACTGCCACCTTCTTGGGCTCCCGGGTGGGTGGGGTTGGAAGGGACGGGGTGCGGGAGCGGC


TGCCGGGAGTGCCTGGGGAGCCGGGGCTGCTGTAGCCGCTGCGATCCCCTGATTTTGGAGGTTCACCAGA


GCTGGGTGGTGTCTTTGGAGCGGGCGGGGTTTTTGCTGGAATCCTGGTGGCGTTGGCCTGGCCCTTCTGG


CCTGGAGGGGCTGCTCCCCGCGGTGTGGCGATCTTCGTTTTACCATCAGCCCCCTTGGCTTTTTTGTCAT


CGCTTCCAGTCCCGTCTTTGCTTTTACTGACCATGCGAGCTTGGGTCACGTGACCAGCAGCTTCGTCTTC


CAGGCTGGGGGTGTCTCCAATGCCTGCTTCTTCAGCTTTCAGGCCAGCGTCCGTGTCACCCTCTTGGTCT


TGGTGCATGGTGTAGCCCCCCTGATCTTTCCTGTCCCCCAACCCGTACGTCCCAGCGTGATCTTCCATCA


CTTCGAACTCCTGGCGGGGCTCAGCCATCCTGGTTCAAAGTTCACCTGATAGTCGACAGAGGCGAGGACG


GGAGAGGACAGCGGAGGAGGAGAAGGTGGCTGTGGTGGCGGCGGCAGAAGGTGGGCGGTGGCAGCGGCGC


TGCTGTTGGTGCCGGAGCTGGTGGGTGGCGGTGACTGCGAGGGCGCGCGCCGGCGAAGAGGGCGCGTTCC


TGAGGCCGGCGGGCGGCGCAGGCGCGAGCAGCGGGAACGCGAGCCTCCCCAGGGGAGGGGGCGGGCAGCG


CGGCCTCCGCGGGAGCCTTCTCCTCCGGCCACTAGTGGGCGCGCGCGAGCGCCCTGCCGCTCGGCCGTCC





SEQ ID NO: 3


>NM_005910.6 Homo sapiens microtubule associated protein tau (MAPT),


transcript variant 2, mRNA


GGACGGCCGAGCGGCAGGGCGCTCGCGCGCGCCCACTAGTGGCCGGAGGAGAAGGCTCCCGCGGAGGCCG


CGCTGCCCGCCCCCTCCCCTGGGGAGGCTCGCGTTCCCGCTGCTCGCGCCTGCGCCGCCCGCCGGCCTCA


GGAACGCGCCCTCTTCGCCGGCGCGCGCCCTCGCAGTCACCGCCACCCACCAGCTCCGGCACCAACAGCA


GCGCCGCTGCCACCGCCCACCTTCTGCCGCCGCCACCACAGCCACCTTCTCCTCCTCCGCTGTCCTCTCC


CGTCCTCGCCTCTGTCGACTATCAGGTGAACTTTGAACCAGGATGGCTGAGCCCCGCCAGGAGTTCGAAG


TGATGGAAGATCACGCTGGGACGTACGGGTTGGGGGACAGGAAAGATCAGGGGGGCTACACCATGCACCA


AGACCAAGAGGGTGACACGGACGCTGGCCTGAAAGAATCTCCCCTGCAGACCCCCACTGAGGACGGATCT


GAGGAACCGGGCTCTGAAACCTCTGATGCTAAGAGCACTCCAACAGCGGAAGATGTGACAGCACCCTTAG


TGGATGAGGGAGCTCCCGGCAAGCAGGCTGCCGCGCAGCCCCACACGGAGATCCCAGAAGGAACCACAGC


TGAAGAAGCAGGCATTGGAGACACCCCCAGCCTGGAAGACGAAGCTGCTGGTCACGTGACCCAAGCTCGC


ATGGTCAGTAAAAGCAAAGACGGGACTGGAAGCGATGACAAAAAAGCCAAGGGGGCTGATGGTAAAACGA


AGATCGCCACACCGCGGGGAGCAGCCCCTCCAGGCCAGAAGGGCCAGGCCAACGCCACCAGGATTCCAGC


AAAAACCCCGCCCGCTCCAAAGACACCACCCAGCTCTGGTGAACCTCCAAAATCAGGGGATCGCAGCGGC


TACAGCAGCCCCGGCTCCCCAGGCACTCCCGGCAGCCGCTCCCGCACCCCGTCCCTTCCAACCCCACCCA


CCCGGGAGCCCAAGAAGGTGGCAGTGGTCCGTACTCCACCCAAGTCGCCGTCTTCCGCCAAGAGCCGCCT


GCAGACAGCCCCCGTGCCCATGCCAGACCTGAAGAATGTCAAGTCCAAGATCGGCTCCACTGAGAACCTG


AAGCACCAGCCGGGAGGCGGGAAGGTGCAGATAATTAATAAGAAGCTGGATCTTAGCAACGTCCAGTCCA


AGTGTGGCTCAAAGGATAATATCAAACACGTCCCGGGAGGCGGCAGTGTGCAAATAGTCTACAAACCAGT


TGACCTGAGCAAGGTGACCTCCAAGTGTGGCTCATTAGGCAACATCCATCATAAACCAGGAGGTGGCCAG


GTGGAAGTAAAATCTGAGAAGCTTGACTTCAAGGACAGAGTCCAGTCGAAGATTGGGTCCCTGGACAATA


TCACCCACGTCCCTGGCGGAGGAAATAAAAAGATTGAAACCCACAAGCTGACCTTCCGCGAGAACGCCAA


AGCCAAGACAGACCACGGGGCGGAGATCGTGTACAAGTCGCCAGTGGTGTCTGGGGACACGTCTCCACGG


CATCTCAGCAATGTCTCCTCCACCGGCAGCATCGACATGGTAGACTCGCCCCAGCTCGCCACGCTAGCTG


ACGAGGTGTCTGCCTCCCTGGCCAAGCAGGGTTTGTGATCAGGCCCCTGGGGCGGTCAATAATTGTGGAG


AGGAGAGAATGAGAGAGTGTGGAAAAAAAAAGAATAATGACCCGGCCCCCGCCCTCTGCCCCCAGCTGCT


CCTCGCAGTTCGGTTAATTGGTTAATCACTTAACCTGCTTTTGTCACTCGGCTTTGGCTCGGGACTTCAA


AATCAGTGATGGGAGTAAGAGCAAATTTCATCTTTCCAAATTGATGGGTGGGCTAGTAATAAAATATTTA


AAAAAAAACATTCAAAAACATGGCCACATCCAACATTTCCTCAGGCAATTCCTTTTGATTCTTTTTTCTT


CCCCCTCCATGTAGAAGAGGGAGAAGGAGAGGCTCTGAAAGCTGCTTCTGGGGGATTTCAAGGGACTGGG


GGTGCCAACCACCTCTGGCCCTGTTGTGGGGGTGTCACAGAGGCAGTGGCAGCAACAAAGGATTTGAAAC


TTGGTGTGTTCGTGGAGCCACAGGCAGACGATGTCAACCTTGTGTGAGTGTGACGGGGGTTGGGGTGGGG


CGGGAGGCCACGGGGGAGGCCGAGGCAGGGGCTGGGCAGAGGGGAGAGGAAGCACAAGAAGTGGGAGTGG


GAGAGGAAGCCACGTGCTGGAGAGTAGACATCCCCCTCCTTGCCGCTGGGAGAGCCAAGGCCTATGCCAC


CTGCAGCGTCTGAGCGGCCGCCTGTCCTTGGTGGCCGGGGGTGGGGGCCTGCTGTGGGTCAGTGTGCCAC


CCTCTGCAGGGCAGCCTGTGGGAGAAGGGACAGCGGGTAAAAAGAGAAGGCAAGCTGGCAGGAGGGTGGC


ACTTCGTGGATGACCTCCTTAGAAAAGACTGACCTTGATGTCTTGAGAGCGCTGGCCTCTTCCTCCCTCC


CTGCAGGGTAGGGGGCCTGAGTTGAGGGGCTTCCCTCTGCTCCACAGAAACCCTGTTTTATTGAGTTCTG


AAGGTTGGAACTGCTGCCATGATTTTGGCCACTTTGCAGACCTGGGACTTTAGGGCTAACCAGTTCTCTT


TGTAAGGACTTGTGCCTCTTGGGAGACGTCCACCCGTTTCCAAGCCTGGGCCACTGGCATCTCTGGAGTG


TGTGGGGGTCTGGGAGGCAGGTCCCGAGCCCCCTGTCCTTCCCACGGCCACTGCAGTCACCCCGTCTGCG


CCGCTGTGCTGTTGTCTGCCGTGAGAGCCCAATCACTGCCTATACCCCTCATCACACGTCACAATGTCCC


GAATTCCCAGCCTCACCACCCCTTCTCAGTAATGACCCTGGTTGGTTGCAGGAGGTACCTACTCCATACT


GAGGGTGAAATTAAGGGAAGGCAAAGTCCAGGCACAAGAGTGGGACCCCAGCCTCTCACTCTCAGTTCCA


CTCATCCAACTGGGACCCTCACCACGAATCTCATGATCTGATTCGGTTCCCTGTCTCCTCCTCCCGTCAC


AGATGTGAGCCAGGGCACTGCTCAGCTGTGACCCTAGGTGTTTCTGCCTTGTTGACATGGAGAGAGCCCT


TTCCCCTGAGAAGGCCTGGCCCCTTCCTGTGCTGAGCCCACAGCAGCAGGCTGGGTGTCTTGGTTGTCAG


TGGTGGCACCAGGATGGAAGGGCAAGGCACCCAGGGCAGGCCCACAGTCCCGCTGTCCCCCACTTGCACC


CTAGCTTGTAGCTGCCAACCTCCCAGACAGCCCAGCCCGCTGCTCAGCTCCACATGCATAGTATCAGCCC


TCCACACCCGACAAAGGGGAACACACCCCCTTGGAAATGGTTCTTTTCCCCCAGTCCCAGCTGGAAGCCA


TGCTGTCTGTTCTGCTGGAGCAGCTGAACATATACATAGATGTTGCCCTGCCCTCCCCATCTGCACCCTG


TTGAGTTGTAGTTGGATTTGTCTGTTTATGCTTGGATTCACCAGAGTGACTATGATAGTGAAAAGAAAAA


AAAAAAAAAAAAAGGACGCATGTATCTTGAAATGCTTGTAAAGAGGTTTCTAACCCACCCTCACGAGGTG


TCTCTCACCCCCACACTGGGACTCGTGTGGCCTGTGTGGTGCCACCCTGCTGGGGCCTCCCAAGTTTTGA


AAGGCTTTCCTCAGCACCTGGGACCCAACAGAGACCAGCTTCTAGCAGCTAAGGAGGCCGTTCAGCTGTG


ACGAAGGCCTGAAGCACAGGATTAGGACTGAAGCGATGATGTCCCCTTCCCTACTTCCCCTTGGGGCTCC


CTGTGTCAGGGCACAGACTAGGTCTTGTGGCTGGTCTGGCTTGCGGCGCGAGGATGGTTCTCTCTGGTCA


TAGCCCGAAGTCTCATGGCAGTCCCAAAGGAGGCTTACAACTCCTGCATCACAAGAAAAAGGAAGCCACT


GCCAGCTGGGGGGATCTGCAGCTCCCAGAAGCTCCGTGAGCCTCAGCCACCCCTCAGACTGGGTTCCTCT


CCAAGCTCGCCCTCTGGAGGGGCAGCGCAGCCTCCCACCAAGGGCCCTGCGACCACAGCAGGGATTGGGA


TGAATTGCCTGTCCTGGATCTGCTCTAGAGGCCCAAGCTGCCTGCCTGAGGAAGGATGACTTGACAAGTC


AGGAGACACTGTTCCCAAAGCCTTGACCAGAGCACCTCAGCCCGCTGACCTTGCACAAACTCCATCTGCT


GCCATGAGAAAAGGGAAGCCGCCTTTGCAAAACATTGCTGCCTAAAGAAACTCAGCAGCCTCAGGCCCAA


TTCTGCCACTTCTGGTTTGGGTACAGTTAAAGGCAACCCTGAGGGACTTGGCAGTAGAAATCCAGGGCCT


CCCCTGGGGCTGGCAGCTTCGTGTGCAGCTAGAGCTTTACCTGAAAGGAAGTCTCTGGGCCCAGAACTCT


CCACCAAGAGCCTCCCTGCCGTTCGCTGAGTCCCAGCAATTCTCCTAAGTTGAAGGGATCTGAGAAGGAG


AAGGAAATGTGGGGTAGATTTGGTGGTGGTTAGAGATATGCCCCCCTCATTACTGCCAACAGTTTCGGCT


GCATTTCTTCACGCACCTCGGTTCCTCTTCCTGAAGTTCTTGTGCCCTGCTCTTCAGCACCATGGGCCTT


CTTATACGGAAGGCTCTGGGATCTCCCCCTTGTGGGGCAGGCTCTTGGGGCCAGCCTAAGATCATGGTTT


AGGGTGATCAGTGCTGGCAGATAAATTGAAAAGGCACGCTGGCTTGTGATCTTAAATGAGGACAATCCCC


CCAGGGCTGGGCACTCCTCCCCTCCCCTCACTTCTCCCACCTGCAGAGCCAGTGTCCTTGGGTGGGCTAG


ATAGGATATACTGTATGCCGGCTCCTTCAAGCTGCTGACTCACTTTATCAATAGTTCCATTTAAATTGAC


TTCAGTGGTGAGACTGTATCCTGTTTGCTATTGCTTGTTGTGCTATGGGGGGAGGGGGGAGGAATGTGTA


AGATAGTTAACATGGGCAAAGGGAGATCTTGGGGTGCAGCACTTAAACTGCCTCGTAACCCTTTTCATGA


TTTCAACCACATTTGCTAGAGGGAGGGAGCAGCCACGGAGTTAGAGGCCCTTGGGGTTTCTCTTTTCCAC


TGACAGGCTTTCCCAGGCAGCTGGCTAGTTCATTCCCTCCCCAGCCAGGTGCAGGCGTAGGAATATGGAC


ATCTGGTTGCTTTGGCCTGCTGCCCTCTTTCAGGGGTCCTAAGCCCACAATCATGCCTCCCTAAGACCTT


GGCATCCTTCCCTCTAAGCCGTTGGCACCTCTGTGCCACCTCTCACACTGGCTCCAGACACACAGCCTGT


GCTTTTGGAGCTGAGATCACTCGCTTCACCCTCCTCATCTTTGTTCTCCAAGTAAAGCCACGAGGTCGGG


GCGAGGGCAGAGGTGATCACCTGCGTGTCCCATCTACAGACCTGCAGCTTCATAAAACTTCTGATTTCTC


TTCAGCTTTGAAAAGGGTTACCCTGGGCACTGGCCTAGAGCCTCACCTCCTAATAGACTTAGCCCCATGA


GTTTGCCATGTTGAGCAGGACTATTTCTGGCACTTGCAAGTCCCATGATTTCTTCGGTAATTCTGAGGGT


GGGGGGAGGGACATGAAATCATCTTAGCTTAGCTTTCTGTCTGTGAATGTCTATATAGTGTATTGTGTGT


TTTAACAAATGATTTACACTGACTGTTGCTGTAAAAGTGAATTTGGAAATAAAGTTATTACTCTGATTAA


A





SEQ ID NO: 4


>Reverse Complement of SEQ ID NO: 3


TTTAATCAGAGTAATAACTTTATTTCCAAATTCACTTTTACAGCACAGTCAGTGTAAATCATTTGTTAAA


ACACACAATACACTATATAGACATTCACAGACAGAAAGCTAAGCTAAGATGATTTCATGTCCCTCCCCCC


ACCCTCAGAATTACCGAAGAAATCATGGGACTTGCAAGTGCCAGAAATAGTCCTGCTCAACATGGCAAAC


TCATGGGGCTAAGTCTATTAGGAGGTGAGGCTCTAGGCCAGTGCCCAGGGTAACCCTTTTCAAAGCTGAA


GAGAAATCAGAAGTTTTATGAAGCTGCAGGTCTGTAGATGGGACACGCAGGTGATCACCTCTGCCCTCGC


CCCGACCTCGTGGCTTTACTTGGAGAACAAAGATGAGGAGGGTGAAGCGAGTGATCTCAGCTCCAAAAGC


ACAGGCTGTGTGTCTGGAGCCAGTGTGAGAGGTGGCACAGAGGTGCCAACGGCTTAGAGGGAAGGATGCC


AAGGTCTTAGGGAGGCATGATTGTGGGCTTAGGACCCCTGAAAGAGGGCAGCAGGCCAAAGCAACCAGAT


GTCCATATTCCTACGCCTGCACCTGGCTGGGGAGGGAATGAACTAGCCAGCTGCCTGGGAAAGCCTGTCA


GTGGAAAAGAGAAACCCCAAGGGCCTCTAACTCCGTGGCTGCTCCCTCCCTCTAGCAAATGTGGTTGAAA


TCATGAAAAGGGTTACGAGGCAGTTTAAGTGCTGCACCCCAAGATCTCCCTTTGCCCATGTTAACTATCT


TACACATTCCTCCCCCCTCCCCCCATAGCACAACAAGCAATAGCAAACAGGATACAGTCTCACCACTGAA


GTCAATTTAAATGGAACTATTGATAAAGTGAGTCAGCAGCTTGAAGGAGCCGGCATACAGTATATCCTAT


CTAGCCCACCCAAGGACACTGGCTCTGCAGGTGGGAGAAGTGAGGGGAGGGGAGGAGTGCCCAGCCCTGG


GGGGATTGTCCTCATTTAAGATCACAAGCCAGCGTGCCTTTTCAATTTATCTGCCAGCACTGATCACCCT


AAACCATGATCTTAGGCTGGCCCCAAGAGCCTGCCCCACAAGGGGGAGATCCCAGAGCCTTCCGTATAAG


AAGGCCCATGGTGCTGAAGAGCAGGGCACAAGAACTTCAGGAAGAGGAACCGAGGTGCGTGAAGAAATGC


AGCCGAAACTGTTGGCAGTAATGAGGGGGGCATATCTCTAACCACCACCAAATCTACCCCACATTTCCTT


CTCCTTCTCAGATCCCTTCAACTTAGGAGAATTGCTGGGACTCAGCGAACGGCAGGGAGGCTCTTGGTGG


AGAGTTCTGGGCCCAGAGACTTCCTTTCAGGTAAAGCTCTAGCTGCACACGAAGCTGCCAGCCCCAGGGG


AGGCCCTGGATTTCTACTGCCAAGTCCCTCAGGGTTGCCTTTAACTGTACCCAAACCAGAAGTGGCAGAA


TTGGGCCTGAGGCTGCTGAGTTTCTTTAGGCAGCAATGTTTTGCAAAGGCGGCTTCCCTTTTCTCATGGC


AGCAGATGGAGTTTGTGCAAGGTCAGCGGGCTGAGGTGCTCTGGTCAAGGCTTTGGGAACAGTGTCTCCT


GACTTGTCAAGTCATCCTTCCTCAGGCAGGCAGCTTGGGCCTCTAGAGCAGATCCAGGACAGGCAATTCA


TCCCAATCCCTGCTGTGGTCGCAGGGCCCTTGGTGGGAGGCTGCGCTGCCCCTCCAGAGGGCGAGCTTGG


AGAGGAACCCAGTCTGAGGGGTGGCTGAGGCTCACGGAGCTTCTGGGAGCTGCAGATCCCCCCAGCTGGC


AGTGGCTTCCTTTTTCTTGTGATGCAGGAGTTGTAAGCCTCCTTTGGGACTGCCATGAGACTTCGGGCTA


TGACCAGAGAGAACCATCCTCGCGCCGCAAGCCAGACCAGCCACAAGACCTAGTCTGTGCCCTGACACAG


GGAGCCCCAAGGGGAAGTAGGGAAGGGGACATCATCGCTTCAGTCCTAATCCTGTGCTTCAGGCCTTCGT


CACAGCTGAACGGCCTCCTTAGCTGCTAGAAGCTGGTCTCTGTTGGGTCCCAGGTGCTGAGGAAAGCCTT


TCAAAACTTGGGAGGCCCCAGCAGGGTGGCACCACACAGGCCACACGAGTCCCAGTGTGGGGGTGAGAGA


CACCTCGTGAGGGTGGGTTAGAAACCTCTTTACAAGCATTTCAAGATACATGCGTCCTTTTTTTTTTTTT


TTTTTCTTTTCACTATCATAGTCACTCTGGTGAATCCAAGCATAAACAGACAAATCCAACTACAACTCAA


CAGGGTGCAGATGGGGAGGGCAGGGCAACATCTATGTATATGTTCAGCTGCTCCAGCAGAACAGACAGCA


TGGCTTCCAGCTGGGACTGGGGGAAAAGAACCATTTCCAAGGGGGTGTGTTCCCCTTTGTCGGGTGTGGA


GGGCTGATACTATGCATGTGGAGCTGAGCAGCGGGCTGGGCTGTCTGGGAGGTTGGCAGCTACAAGCTAG


GGTGCAAGTGGGGGACAGCGGGACTGTGGGCCTGCCCTGGGTGCCTTGCCCTTCCATCCTGGTGCCACCA


CTGACAACCAAGACACCCAGCCTGCTGCTGTGGGCTCAGCACAGGAAGGGGCCAGGCCTTCTCAGGGGAA


AGGGCTCTCTCCATGTCAACAAGGCAGAAACACCTAGGGTCACAGCTGAGCAGTGCCCTGGCTCACATCT


GTGACGGGAGGAGGAGACAGGGAACCGAATCAGATCATGAGATTCGTGGTGAGGGTCCCAGTTGGATGAG


TGGAACTGAGAGTGAGAGGCTGGGGTCCCACTCTTGTGCCTGGACTTTGCCTTCCCTTAATTTCACCCTC


AGTATGGAGTAGGTACCTCCTGCAACCAACCAGGGTCATTACTGAGAAGGGGTGGTGAGGCTGGGAATTC


GGGACATTGTGACGTGTGATGAGGGGTATAGGCAGTGATTGGGCTCTCACGGCAGACAACAGCACAGCGG


CGCAGACGGGGTGACTGCAGTGGCCGTGGGAAGGACAGGGGGCTCGGGACCTGCCTCCCAGACCCCCACA


CACTCCAGAGATGCCAGTGGCCCAGGCTTGGAAACGGGTGGACGTCTCCCAAGAGGCACAAGTCCTTACA


AAGAGAACTGGTTAGCCCTAAAGTCCCAGGTCTGCAAAGTGGCCAAAATCATGGCAGCAGTTCCAACCTT


CAGAACTCAATAAAACAGGGTTTCTGTGGAGCAGAGGGAAGCCCCTCAACTCAGGCCCCCTACCCTGCAG


GGAGGGAGGAAGAGGCCAGCGCTCTCAAGACATCAAGGTCAGTCTTTTCTAAGGAGGTCATCCACGAAGT


GCCACCCTCCTGCCAGCTTGCCTTCTCTTTTTACCCGCTGTCCCTTCTCCCACAGGCTGCCCTGCAGAGG


GTGGCACACTGACCCACAGCAGGCCCCCACCCCCGGCCACCAAGGACAGGCGGCCGCTCAGACGCTGCAG


GTGGCATAGGCCTTGGCTCTCCCAGCGGCAAGGAGGGGGATGTCTACTCTCCAGCACGTGGCTTCCTCTC


CCACTCCCACTTCTTGTGCTTCCTCTCCCCTCTGCCCAGCCCCTGCCTCGGCCTCCCCCGTGGCCTCCCG


CCCCACCCCAACCCCCGTCACACTCACACAAGGTTGACATCGTCTGCCTGTGGCTCCACGAACACACCAA


GTTTCAAATCCTTTGTTGCTGCCACTGCCTCTGTGACACCCCCACAACAGGGCCAGAGGTGGTTGGCACC


CCCAGTCCCTTGAAATCCCCCAGAAGCAGCTTTCAGAGCCTCTCCTTCTCCCTCTTCTACATGGAGGGGG


AAGAAAAAAGAATCAAAAGGAATTGCCTGAGGAAATGTTGGATGTGGCCATGTTTTTGAATGTTTTTTTT


TAAATATTTTATTACTAGCCCACCCATCAATTTGGAAAGATGAAATTTGCTCTTACTCCCATCACTGATT


TTGAAGTCCCGAGCCAAAGCCGAGTGACAAAAGCAGGTTAAGTGATTAACCAATTAACCGAACTGCGAGG


AGCAGCTGGGGGCAGAGGGCGGGGGCCGGGTCATTATTCTTTTTTTTTCCACACTCTCTCATTCTCTCCT


CTCCACAATTATTGACCGCCCCAGGGGCCTGATCACAAACCCTGCTTGGCCAGGGAGGCAGACACCTCGT


CAGCTAGCGTGGCGAGCTGGGGCGAGTCTACCATGTCGATGCTGCCGGTGGAGGAGACATTGCTGAGATG


CCGTGGAGACGTGTCCCCAGACACCACTGGCGACTTGTACACGATCTCCGCCCCGTGGTCTGTCTTGGCT


TTGGCGTTCTCGCGGAAGGTCAGCTTGTGGGTTTCAATCTTTTTATTTCCTCCGCCAGGGACGTGGGTGA


TATTGTCCAGGGACCCAATCTTCGACTGGACTCTGTCCTTGAAGTCAAGCTTCTCAGATTTTACTTCCAC


CTGGCCACCTCCTGGTTTATGATGGATGTTGCCTAATGAGCCACACTTGGAGGTCACCTTGCTCAGGTCA


ACTGGTTTGTAGACTATTTGCACACTGCCGCCTCCCGGGACGTGTTTGATATTATCCTTTGAGCCACACT


TGGACTGGACGTTGCTAAGATCCAGCTTCTTATTAATTATCTGCACCTTCCCGCCTCCCGGCTGGTGCTT


CAGGTTCTCAGTGGAGCCGATCTTGGACTTGACATTCTTCAGGTCTGGCATGGGCACGGGGGCTGTCTGC


AGGCGGCTCTTGGCGGAAGACGGCGACTTGGGTGGAGTACGGACCACTGCCACCTTCTTGGGCTCCCGGG


TGGGTGGGGTTGGAAGGGACGGGGTGCGGGAGCGGCTGCCGGGAGTGCCTGGGGAGCCGGGGCTGCTGTA


GCCGCTGCGATCCCCTGATTTTGGAGGTTCACCAGAGCTGGGTGGTGTCTTTGGAGCGGGCGGGGTTTTT


GCTGGAATCCTGGTGGCGTTGGCCTGGCCCTTCTGGCCTGGAGGGGCTGCTCCCCGCGGTGTGGCGATCT


TCGTTTTACCATCAGCCCCCTTGGCTTTTTTGTCATCGCTTCCAGTCCCGTCTTTGCTTTTACTGACCAT


GCGAGCTTGGGTCACGTGACCAGCAGCTTCGTCTTCCAGGCTGGGGGTGTCTCCAATGCCTGCTTCTTCA


GCTGTGGTTCCTTCTGGGATCTCCGTGTGGGGCTGCGCGGCAGCCTGCTTGCCGGGAGCTCCCTCATCCA


CTAAGGGTGCTGTCACATCTTCCGCTGTTGGAGTGCTCTTAGCATCAGAGGTTTCAGAGCCCGGTTCCTC


AGATCCGTCCTCAGTGGGGGTCTGCAGGGGAGATTCTTTCAGGCCAGCGTCCGTGTCACCCTCTTGGTCT


TGGTGCATGGTGTAGCCCCCCTGATCTTTCCTGTCCCCCAACCCGTACGTCCCAGCGTGATCTTCCATCA


CTTCGAACTCCTGGCGGGGCTCAGCCATCCTGGTTCAAAGTTCACCTGATAGTCGACAGAGGCGAGGACG


GGAGAGGACAGCGGAGGAGGAGAAGGTGGCTGTGGTGGCGGCGGCAGAAGGTGGGCGGTGGCAGCGGCGC


TGCTGTTGGTGCCGGAGCTGGTGGGTGGCGGTGACTGCGAGGGCGCGCGCCGGCGAAGAGGGCGCGTTCC


TGAGGCCGGCGGGCGGCGCAGGCGCGAGCAGCGGGAACGCGAGCCTCCCCAGGGGAGGGGGCGGGCAGCG


CGGCCTCCGCGGGAGCCTTCTCCTCCGGCCACTAGTGGGCGCGCGCGAGCGCCCTGCCGCTCGGCCGTCC





SEQ ID NO: 5


>NM_001038609.2 Mus musculus microtubule-associated protein tau (Mapt),


transcript variant 1, mRNA


CCGCCGGCCTCCAGAACGCGCTTTCTCGGCCGCGCGCGCTCTCAGTCTCCGCCACCCACCAGCTCCAGCA


CCAGCAGCAGCGCCGCCGCCACCGCCCACCTTCTGCCGCCGCCGCCACAACCACCTTCTCCTCCGCTGTC


CTCTTCTGTCCTCGCCTTCTGTCGATTATCAGGCTTTGAACCAGTATGGCTGACCCTCGCCAGGAGTTTG


ACACAATGGAAGACCATGCTGGAGATTACACTCTGCTCCAAGACCAAGAAGGAGACATGGACCATGGCTT


AAAAGAGTCTCCCCCACAGCCCCCCGCCGATGATGGAGCGGAGGAACCAGGGTCGGAGACCTCCGATGCT


AAGAGCACTCCAACTGCTGAAGACGTGACTGCGCCCCTAGTGGATGAGAGAGCTCCCGACAAGCAGGCCG


CTGCCCAGCCCCACACGGAGATCCCAGAAGGAATTACAGCCGAAGAAGCAGGCATCGGAGACACCCCGAA


CCAGGAGGACCAAGCCGCTGGGCATGTGACTCAAGCTCGTGTGGCCAGCAAAGACAGGACAGGAAATGAC


GAGAAGAAAGCCAAGGGCGCTGATGGCAAAACCGGGGCGAAGATCGCCACACCTCGGGGAGCAGCCTCTC


CGGCCCAGAAGGGCACGTCCAACGCCACCAGGATCCCGGCCAAGACCACGCCCAGCCCTAAGACTCCTCC


AGGGTCAGGTGAACCACCAAAATCCGGAGAACGAAGCGGCTACAGCAGCCCCGGCTCTCCCGGAACGCCT


GGCAGTCGCTCGCGCACCCCATCCCTACCAACACCGCCCACCCGGGAGCCCAAGAAGGTGGCAGTGGTCC


GCACTCCCCCTAAGTCACCATCAGCTAGTAAGAGCCGCCTGCAGACTGCCCCTGTGCCCATGCCAGACCT


AAAGAATGTCAGGTCGAAGATTGGCTCTACTGAGAACCTGAAGCACCAGCCAGGAGGTGGCAAGGTGCAG


ATAATTAATAAGAAGCTGGATCTTAGCAACGTCCAGTCCAAGTGTGGCTCGAAGGATAATATCAAACACG


TCCCGGGTGGAGGCAGTGTGCAAATAGTCTACAAGCCGGTGGACCTGAGCAAAGTGACCTCCAAGTGTGG


CTCGTTAGGGAACATCCATCACAAGCCAGGAGGTGGCCAGGTGGAAGTAAAATCAGAGAAGCTGGACTTC


AAGGACAGAGTCCAGTCGAAGATTGGCTCCTTGGATAATATCACCCACGTCCCTGGAGGAGGGAATAAGA


AGATTGAAACCCACAAGCTGACCTTCAGGGAGAATGCCAAAGCCAAGACAGACCATGGAGCAGAAATTGT


GTATAAGTCACCCGTGGTGTCTGGGGACACATCTCCACGGCACCTCAGCAATGTGTCTTCCACGGGCAGC


ATCGACATGGTGGACTCACCACAGCTTGCCACACTAGCCGATGAAGTGTCTGCTTCCTTGGCCAAGCAGG


GTTTGTGATCAGGCTCCCAGGGCAGTCAATAATCATGGAGAGAAGAGAGAGTGAGAGTGTGGAAAAAAAA


AAAAAAAAAGAATGATCTGGCCCCTTGCCCTCTGCCCTCCCCGCTGCTCCTCATAGACAGGCTGACCTGC


TTGTCACCTAACCTGCTTTTGTGGCTCGGATTTGGCTCGGGACTTCAAAATCAGTGATGGGAAAAGTACA


TTTCATCTTTCCAAATTGATTTGTGGGCTAAAAATAAAACATATTTAAGGGAAAAAAAAACATGTAAAAA


CATGGCCAAAAAATTTCCTTGGGCAATTGCTAATTGATTTCCCCCCCCTGACCCCGCCCTCCCTCTCTGA


GTATTAGAGGGTGAAGAAGGCTCTGGAGGCTGCTTCTGGGGAGTGGCTGAGGGACTAGGGCAGCTAATTG


CCCATAGCCCCATCCTAGGGGCTTCAGGGACAGTGGCAGCAATGAGAGATTTGAGACTTGGTGTGTTCGT


GGGGCCGTAGGCAGGTGCTGTTAACTTGTGTGGGTGTGAGTGGGGACTGAAACAGCGACAGCGAAGGCTG


AGAGATGGATGGGTGGACTGAGTTAGAGGACAGAGGTGAGGAAGGCAGGTTGGGAGAGGGGACACTGGCT


CCTTGCCAAGTAGCTTGGGGAGGACAGGGTGCTGCAGCTGCCTGCAGCAGTCCTAGCTAGCTCAGATGCC


TGCTTGATAAAGCACTGTGGGGGTAACGTGGGTGTGTGTGCCCCTTCTGCAGGGCAGCCTGTGGGAGAAG


GGGTATTGGGCAGAAGGAAGGTAAGCCAGCAGGTGGTACCTTGTAGATTGGTTCTCTTGAAGGCTGCTCT


TGACATCCCAGGGCACTGGCTTCTTCCTCCCTCCCCGCAAGGTGGGAGGTCCTGAGCGAGGTGTTTCCCT


TCGCTCCCACAGGAAAAGCTGCTTTACTGAGTTCTCAAGTTTGGAACTACAGCCATGATTTGGCCACCAT


TACAGACCTGGGACTTTAGGGCTAACCAGATCTTTGTAAGGACTTGTGCCTCTTGGGGGACCTCTGCCTG


TTCTCATGCTTGGCCCTCTGGCACTTCTGTAGTGGGAGGGATGGGGGGTGGTATTCTGGGATGTGGGTCC


CAGGCCTCCCATCCCTCACACAGCCACTGTATCCCCTCTCTCTGTCCTATCATGCCCACGTCTGCCACGA


GAGCTAGTCACTGCCGTCCGTACATCACGTCTCACTGTCCTGAGTGCCATGCCTCTCCCAGCCCCCATCC


CTGGCCCCTGGGTAGATATGGGCAATATCTGCTCTACACTAGGGGTTGGAGTCCAGGGAAGGCAAAGATT


TGGGCCTCAGTCTCTAGTCCTACGTTCCACGAATCCAACCAGTGTGCCTCCCACAAGGAACCTTACGACC


TTGTTTGGTTCACTCCATTACTTCCTATCCTGGATGGGAACTGGTGTGTGCCTGCCTGGGGATGACCTTG


GACCTCTGCCTTTTCTTTTATCTAAGTGGATGCCTCCTAGGCCTGACTCCTTGTGTTGAGCTGGAGGCAG


CCAAGTCAGGTGCCAATGTCTTGGCATCAGTAAGAACAGTCAAGAGTCCCAGGGCAGGGCCACACTTCTC


CCATCTTTCGCTTCCACCCCAGCTTGTGATCGCTAGCCTCCCAGAGCTCAGCTGCCATTAAGTCCCCATG


CACGTAATCAGTCTCCACACCCCAGTTTGGGGAACATACCCCCTTGATTGAAGTGTTTTTTTCCTCCGGT


CCCATGGAAACCATGCTGCCTGCCCTGCTGGAGCAGACGGCCACCTCCATAGATGCAGCCCTTTCTTTCC


CGTCTTCGCCCTGTTACGTTGTAGTTGGATTTGTCTGTTTGTCTGGGTTCACCAGAGTGACTATGATAGT


GAAAAGAAAAGAAAGAAAAAGAAAAAAAAAAAAAAAAAGAAAAAGAAAAAGGAAAAAAAAAAGGACGCAT


GTATCTTGAAATATTTGTCAAAAGGTTCTAGCCCACCACGTGATGGAGAGTCTGGATATCTCCTTCCTGA


CGTGGCTCCAGGCCAGTGCAGTGCTAACCTGCTGGGACATCCCATGTTTTGAAGGGTTTCTTCTGCATCT


GGGACCTCACAGACACTGGATTGTGACATTGGAGGTCTGTGACATTGGAGGTCAATGGCATTGGCCAAGG


CCTGAAGCACAGGACCAGCTAGAGGCAGCAGGCTCCGAGTGCCAGGGAGAGCTTGTGGCTGGCCTGTTTT


GTATGAAGATGGTCCTTTCTGATCACGACTTCAAATCCCACAGTAGCCCTGAAAGACATCTAAGAACTCC


TGCATCACAAGAGAAAAGGACACCAGTACCAGCAGGGAGAGCTGTGACCCTAGAAATTCCATGACGACCC


AGTAGATATCCTTGGGCCCTCTCCAAGCCTGGGCCTTTTCACCATAGAGTTTGGGATGGACTGTCCCACT


GATGAAGGGGACATCTTAGGAGACTCCCTTGGTTTCCAAGCTGTCAGCCCCCTGAACTTGCACGACCTCC


TACAGCTTCAGGGACTAGGCCTTTGAAGATTAGGAACCTCAGGCCCACATCAGCCACTTCTGATGTACAG


TTAAGGACAATGTGGAGACTAGGAGGAAGCAGCCAGCCTTTCCCATTAAAGAACTCTTGAGTGCCCAGGG


CTACCTATTGTGAGCTTCCCCACTGATAAGACTTTAGCTGTCCATAGAAGTGAGTCCGAGGGAGGAAAAG


TGTGGTTTCTTCATCATGGTTACCTGTCGTGGTTCTCTCTCTTACACCCATTTACCCATCCCGCAGTTCC


TGTCCTTGAATGGGGGGTGGGGTGCTCTGCCTATCTCTTGTGGGGTGATCAGCCCAAAAATCATGATTTG


GAGTGATCTGATCAGTGCTGATAGGCAGTTTACAAAGGGATTCTGGCTTGTGACTTCAGTGAGGACAATC


CCCCAGGGCCCTTTCTTTCCATGCCTCTCCAACTCAGAGCCAATGTCTTTGGGTGGGCTAGATAGATAGG


GCATACAATTGGCCTGGTTCCTCCAAGCTCTTAATTCACTTTATCAATAGTTCCATTTAAATTGACTTCA


ATGATAAGAGTGTATCCCATTTGAGATTGCTTGCGTTGTGGGGGAGGGGGAGGAGGAACACATTAAGATA


ATTCACATGGGCAAAGGGAGGTCTTGGAGTGTAGCCGTTAAGCCATCTTGTAACCCCATTCATGATTTTG


ACCACCTGCTAGAGAGAAGAGGTGCCAAGAGACTAGAACTTGGAGGCTTGGCTGTCCCACTAATAGGCTT


TCGCAAGGCAGAGGTAGCCAGCTAGGTCCCTGCCTTCCCAGCCAGGTACAGCTCTCAGGTTTGTGGAGGT


AATCTGTGAACTTCTCTTCCTGCTGCCTTCTTGTGATGTCCAGAGCCCACAGTCAAATACCTCCTAAGAA


CCCTGGCTTCCTTCCCTCTAATCCACTGGCACATGACTATCACCTCTGGATTGACCTCAGATCCATAGCC


TACACACTGCTAGCAGTGGCCAAGATCACTTCCTTTATCTCCATCTGTTCTGTTCTCCAGGAAAGTAAGT


GGGGATGAGGGTGGAGGTGGTAATCAACTGTAGATCTGTGGCTTTATGAGCCTTCAGACTTCTCTCTGGC


TTCTTCTGGAAGGGTTACTATTGGCAGTATTGCAATCTCACCCTCCTGATGAACTGTAGCCTGTGCCGTT


ACTGTGCTGGGCATGATCTCCAGTGCTTGCAAGTCCCATGATTTCTTTGGTGATTTTGAGGGTGGGGGGA


GGGACACAAATCAGCTTAGCTTAGCTTCCTGTCTGTGAATGTCCATATAGTGTATTGTGTTTTAACAAAT


GATCTACACTGACTGTTGCTGTAAAAGTGAATTTGGAAATAAAGTTATTACTCTGAATAAAAAAAAAAAA


AAAAAA





SEQ ID NO: 6


>Reverse Complement of SEQ ID NO: 5


TTTTTTTTTTTTTTTTTTATTCAGAGTAATAACTTTATTTCCAAATTCACTTTTACAGCAACAGTCAGTGTAGATC


ATTTGTTAAAACACAATACACTATATGGACATTCACAGACAGGAAGCTAAGCTAAGCTGATTTGTGTCCC


TCCCCCCACCCTCAAAATCACCAAAGAAATCATGGGACTTGCAAGCACTGGAGATCATGCCCAGCACAGT


AACGGCACAGGCTACAGTTCATCAGGAGGGTGAGATTGCAATACTGCCAATAGTAACCCTTCCAGAAGAA


GCCAGAGAGAAGTCTGAAGGCTCATAAAGCCACAGATCTACAGTTGATTACCACCTCCACCCTCATCCCC


ACTTACTTTCCTGGAGAACAGAACAGATGGAGATAAAGGAAGTGATCTTGGCCACTGCTAGCAGTGTGTA


GGCTATGGATCTGAGGTCAATCCAGAGGTGATAGTCATGTGCCAGTGGATTAGAGGGAAGGAAGCCAGGG


TTCTTAGGAGGTATTTGACTGTGGGCTCTGGACATCACAAGAAGGCAGCAGGAAGAGAAGTTCACAGATT


ACCTCCACAAACCTGAGAGCTGTACCTGGCTGGGAAGGCAGGGACCTAGCTGGCTACCTCTGCCTTGCGA


AAGCCTATTAGTGGGACAGCCAAGCCTCCAAGTTCTAGTCTCTTGGCACCTCTTCTCTCTAGCAGGTGGT


CAAAATCATGAATGGGGTTACAAGATGGCTTAACGGCTACACTCCAAGACCTCCCTTTGCCCATGTGAAT


TATCTTAATGTGTTCCTCCTCCCCCTCCCCCACAACGCAAGCAATCTCAAATGGGATACACTCTTATCAT


TGAAGTCAATTTAAATGGAACTATTGATAAAGTGAATTAAGAGCTTGGAGGAACCAGGCCAATTGTATGC


CCTATCTATCTAGCCCACCCAAAGACATTGGCTCTGAGTTGGAGAGGCATGGAAAGAAAGGGCCCTGGGG


GATTGTCCTCACTGAAGTCACAAGCCAGAATCCCTTTGTAAACTGCCTATCAGCACTGATCAGATCACTC


CAAATCATGATTTTTGGGCTGATCACCCCACAAGAGATAGGCAGAGCACCCCACCCCCCATTCAAGGACA


GGAACTGCGGGATGGGTAAATGGGTGTAAGAGAGAGAACCACGACAGGTAACCATGATGAAGAAACCACA


CTTTTCCTCCCTCGGACTCACTTCTATGGACAGCTAAAGTCTTATCAGTGGGGAAGCTCACAATAGGTAG


CCCTGGGCACTCAAGAGTTCTTTAATGGGAAAGGCTGGCTGCTTCCTCCTAGTCTCCACATTGTCCTTAA


CTGTACATCAGAAGTGGCTGATGTGGGCCTGAGGTTCCTAATCTTCAAAGGCCTAGTCCCTGAAGCTGTA


GGAGGTCGTGCAAGTTCAGGGGGCTGACAGCTTGGAAACCAAGGGAGTCTCCTAAGATGTCCCCTTCATC


AGTGGGACAGTCCATCCCAAACTCTATGGTGAAAAGGCCCAGGCTTGGAGAGGGCCCAAGGATATCTACT


GGGTCGTCATGGAATTTCTAGGGTCACAGCTCTCCCTGCTGGTACTGGTGTCCTTTTCTCTTGTGATGCA


GGAGTTCTTAGATGTCTTTCAGGGCTACTGTGGGATTTGAAGTCGTGATCAGAAAGGACCATCTTCATAC


AAAACAGGCCAGCCACAAGCTCTCCCTGGCACTCGGAGCCTGCTGCCTCTAGCTGGTCCTGTGCTTCAGG


CCTTGGCCAATGCCATTGACCTCCAATGTCACAGACCTCCAATGTCACAATCCAGTGTCTGTGAGGTCCC


AGATGCAGAAGAAACCCTTCAAAACATGGGATGTCCCAGCAGGTTAGCACTGCACTGGCCTGGAGCCACG


TCAGGAAGGAGATATCCAGACTCTCCATCACGTGGTGGGCTAGAACCTTTTGACAAATATTTCAAGATAC


ATGCGTCCTTTTTTTTTTCCTTTTTCTTTTTCTTTTTTTTTTTTTTTTTCTTTTTCTTTCTTTTCTTTTC


ACTATCATAGTCACTCTGGTGAACCCAGACAAACAGACAAATCCAACTACAACGTAACAGGGCGAAGACG


GGAAAGAAAGGGCTGCATCTATGGAGGTGGCCGTCTGCTCCAGCAGGGCAGGCAGCATGGTTTCCATGGG


ACCGGAGGAAAAAAACACTTCAATCAAGGGGGTATGTTCCCCAAACTGGGGTGTGGAGACTGATTACGTG


CATGGGGACTTAATGGCAGCTGAGCTCTGGGAGGCTAGCGATCACAAGCTGGGGTGGAAGCGAAAGATGG


GAGAAGTGTGGCCCTGCCCTGGGACTCTTGACTGTTCTTACTGATGCCAAGACATTGGCACCTGACTTGG


CTGCCTCCAGCTCAACACAAGGAGTCAGGCCTAGGAGGCATCCACTTAGATAAAAGAAAAGGCAGAGGTC


CAAGGTCATCCCCAGGCAGGCACACACCAGTTCCCATCCAGGATAGGAAGTAATGGAGTGAACCAAACAA


GGTCGTAAGGTTCCTTGTGGGAGGCACACTGGTTGGATTCGTGGAACGTAGGACTAGAGACTGAGGCCCA


AATCTTTGCCTTCCCTGGACTCCAACCCCTAGTGTAGAGCAGATATTGCCCATATCTACCCAGGGGCCAG


GGATGGGGGCTGGGAGAGGCATGGCACTCAGGACAGTGAGACGTGATGTACGGACGGCAGTGACTAGCTC


TCGTGGCAGACGTGGGCATGATAGGACAGAGAGAGGGGATACAGTGGCTGTGTGAGGGATGGGAGGCCTG


GGACCCACATCCCAGAATACCACCCCCCATCCCTCCCACTACAGAAGTGCCAGAGGGCCAAGCATGAGAA


CAGGCAGAGGTCCCCCAAGAGGCACAAGTCCTTACAAAGATCTGGTTAGCCCTAAAGTCCCAGGTCTGTA


ATGGTGGCCAAATCATGGCTGTAGTTCCAAACTTGAGAACTCAGTAAAGCAGCTTTTCCTGTGGGAGCGA


AGGGAAACACCTCGCTCAGGACCTCCCACCTTGCGGGGAGGGAGGAAGAAGCCAGTGCCCTGGGATGTCA


AGAGCAGCCTTCAAGAGAACCAATCTACAAGGTACCACCTGCTGGCTTACCTTCCTTCTGCCCAATACCC


CTTCTCCCACAGGCTGCCCTGCAGAAGGGGCACACACACCCACGTTACCCCCACAGTGCTTTATCAAGCA


GGCATCTGAGCTAGCTAGGACTGCTGCAGGCAGCTGCAGCACCCTGTCCTCCCCAAGCTACTTGGCAAGG


AGCCAGTGTCCCCTCTCCCAACCTGCCTTCCTCACCTCTGTCCTCTAACTCAGTCCACCCATCCATCTCT


CAGCCTTCGCTGTCGCTGTTTCAGTCCCCACTCACACCCACACAAGTTAACAGCACCTGCCTACGGCCCC


ACGAACACACCAAGTCTCAAATCTCTCATTGCTGCCACTGTCCCTGAAGCCCCTAGGATGGGGCTATGGG


CAATTAGCTGCCCTAGTCCCTCAGCCACTCCCCAGAAGCAGCCTCCAGAGCCTTCTTCACCCTCTAATAC


TCAGAGAGGGAGGGCGGGGTCAGGGGGGGGAAATCAATTAGCAATTGCCCAAGGAAATTTTTTGGCCATG


TTTTTACATGTTTTTTTTTCCCTTAAATATGTTTTATTTTTAGCCCACAAATCAATTTGGAAAGATGAAA


TGTACTTTTCCCATCACTGATTTTGAAGTCCCGAGCCAAATCCGAGCCACAAAAGCAGGTTAGGTGACAA


GCAGGTCAGCCTGTCTATGAGGAGCAGCGGGGAGGGCAGAGGGCAAGGGGCCAGATCATTCTTTTTTTTT


TTTTTTTTCCACACTCTCACTCTCTCTTCTCTCCATGATTATTGACTGCCCTGGGAGCCTGATCACAAAC


CCTGCTTGGCCAAGGAAGCAGACACTTCATCGGCTAGTGTGGCAAGCTGTGGTGAGTCCACCATGTCGAT


GCTGCCCGTGGAAGACACATTGCTGAGGTGCCGTGGAGATGTGTCCCCAGACACCACGGGTGACTTATAC


ACAATTTCTGCTCCATGGTCTGTCTTGGCTTTGGCATTCTCCCTGAAGGTCAGCTTGTGGGTTTCAATCT


TCTTATTCCCTCCTCCAGGGACGTGGGTGATATTATCCAAGGAGCCAATCTTCGACTGGACTCTGTCCTT


GAAGTCCAGCTTCTCTGATTTTACTTCCACCTGGCCACCTCCTGGCTTGTGATGGATGTTCCCTAACGAG


CCACACTTGGAGGTCACTTTGCTCAGGTCCACCGGCTTGTAGACTATTTGCACACTGCCTCCACCCGGGA


CGTGTTTGATATTATCCTTCGAGCCACACTTGGACTGGACGTTGCTAAGATCCAGCTTCTTATTAATTAT


CTGCACCTTGCCACCTCCTGGCTGGTGCTTCAGGTTCTCAGTAGAGCCAATCTTCGACCTGACATTCTTT


AGGTCTGGCATGGGCACAGGGGCAGTCTGCAGGCGGCTCTTACTAGCTGATGGTGACTTAGGGGGAGTGC


GGACCACTGCCACCTTCTTGGGCTCCCGGGTGGGCGGTGTTGGTAGGGATGGGGTGCGCGAGCGACTGCC


AGGCGTTCCGGGAGAGCCGGGGCTGCTGTAGCCGCTTCGTTCTCCGGATTTTGGTGGTTCACCTGACCCT


GGAGGAGTCTTAGGGCTGGGCGTGGTCTTGGCCGGGATCCTGGTGGCGTTGGACGTGCCCTTCTGGGCCG


GAGAGGCTGCTCCCCGAGGTGTGGCGATCTTCGCCCCGGTTTTGCCATCAGCGCCCTTGGCTTTCTTCTC


GTCATTTCCTGTCCTGTCTTTGCTGGCCACACGAGCTTGAGTCACATGCCCAGCGGCTTGGTCCTCCTGG


TTCGGGGTGTCTCCGATGCCTGCTTCTTCGGCTGTAATTCCTTCTGGGATCTCCGTGTGGGGCTGGGCAG


CGGCCTGCTTGTCGGGAGCTCTCTCATCCACTAGGGGCGCAGTCACGTCTTCAGCAGTTGGAGTGCTCTT


AGCATCGGAGGTCTCCGACCCTGGTTCCTCCGCTCCATCATCGGCGGGGGGCTGTGGGGGAGACTCTTTT


AAGCCATGGTCCATGTCTCCTTCTTGGTCTTGGAGCAGAGTGTAATCTCCAGCATGGTCTTCCATTGTGT


CAAACTCCTGGCGAGGGTCAGCCATACTGGTTCAAAGCCTGATAATCGACAGAAGGCGAGGACAGAAGAG


GACAGCGGAGGAGAAGGTGGTTGTGGCGGCGGCGGCAGAAGGTGGGCGGTGGCGGCGGCGCTGCTGCTGG


TGCTGGAGCTGGTGGGTGGCGGAGACTGAGAGCGCGCGCGGCCGAGAAAGCGCGTTCTGGAGGCCGGCGG





SEQ ID NO: 7


>XM_005584540.1 PREDICTED: Macaca fascicularis microtubule associated


protein tau (MAPT), transcript variant X13, mRNA


GCCGAGCGGCAGGGCGCTCGCGCGCGCCCACTGGTGGCCGGAGGAGAAGGCTCCCGCGGAGGCCGGGCTG


CCCGCCCCCTCCCCTGGGGAGGCTCGCGCTCCCGCTGCTCGCGCCTGCGCCGCCTGCCGGCCTCGGGAAC


GCGCCCTCTTCCCCGGCGCGCGCCCTCGCAGTCACCGCCACCCACCAGCTCCGGCACCAACAGCAGCGCC


GCTGCCACCGCCCACCTTCTGCCGCCGCCACCACAGCCACCTTCTCCTCCTCCGCTGTCCTCTCCCGTCC


TCGCCTCTGTCGACTATCAGGCGAGCCTTGAACCAGGATGGCTGAGCCCCGCCAGGAGTTCGATGTGATG


GAAGATCACGCTGGGACGTACGGGTTGGGGGACAGGAAAGATCAAGAGGGCTACACCATGCTCCAAGACC


AAGAGGGTGACACGGACGCTGGCCTGAAAGAATCTCCCCTGCAGACCCCCGCTGAGGATGGATCTGAGGA


ACTGGGCTCTGAAACCTCTGATGCTAAGAGCACTCCAACGGCGGAAGATGTGACAGCGCCCTTAGTGGAT


GAGAGAGCTCCCGGCGAGCAGGCTGCCGCCCAGCCCCACATGGAGATCCCAGAAGGAACCACAGCTGAGG


AAGCAGGCATCGGAGACACCCCCAGCCTGGAAGACGAAGCTGCTGGTCACGTGACCCAAGCTCGCATGGT


CAGTAAAAGCAAAGACGGGACTGGAAGCGATGACAAAAAAGCCAAGGGGGCTGATGGGAAAACGAAGATC


GCCACACCCCGGGGAGCGGCCCCTCCAGGCCAGAAGGGCCAAGCCAACGCCACCAGGATTCCAGCAAAAA


CCCCGCCCGCCCCAAAGACACCACCCAGCTCTGGTGAACCTCCAAAATCAGGGGATCGCAGTGGCTACAG


CAGCCCCGGCTCCCCGGGCACTCCCGGCAGCCGCTCCCGCACCCCGTCCCTTCCAACCCCTCCAGCCCGG


GAGCCCAAGAAGGTGGCGGTGGTCCGTACTCCACCTAAGTCGCCGTCTTCCGCCAAGAGCCGCCTGCAGA


CAGCCCCCGTGCCCATGCCAGACCTGAAGAACGTCAAGTCCAAGATCGGCTCCACCGAGAACCTGAAGCA


CCAGCCGGGAGGCGGGAAGGTGCAGATAATTAATAAGAAGCTGGATCTTAGCAACGTCCAGTCCAAGTGT


GGCTCAAAGGATAATATCAAACACGTCCCGGGAGGCGGCAGTGTGCAAATAGTCTACAAACCAGTTGACC


TGAGCAAGGTGACCTCCAAGTGTGGCTCATTAGGCAACATCCATCATAAACCAGGAGGTGGCCAGGTGGA


AGTAAAATCTGAGAAGCTGGACTTCAAGGACAGAGTGCAGTCGAAGATCGGGTCCCTGGACAATATCACC


CATGTCCCTGGCGGAGGAAATAAAAAGATTGAAACCCACAAGCTGACCTTCCGCGAGAACGCCAAAGCCA


AGACAGACCACGGGGCGGAAATCGTGTACAAGTCGCCGGTGGTGTCTGGGGACACGTCTCCACGGCACCT


CAGCAATGTCTCCTCCACCGGCAGCATCGACATGGTAGACTCGCCCCAGCTCGCCACGCTAGCCGACGAG


GTGTCTGCCTCCCTGGCCAAGCAGGGTTTGTGATCAGGCCCCCGGGGCGGTCAATAATCGTGGAGAGAAG


AGAGAGTGAGAGTGTGGAAAAAAAAAGAATAATGACCCGGCCCCGCCCTCTGCCCCCAGCTGCTCCTCGC


AGTTCGGTTAATCGGTTCATCACTTAACCGGCTTTTATCGCTCGGCTTTGGCTCGGGACTTCAAAATCAG


TGATGGGAATAAGAGCAAATTGCATCTTTCCAAATTGATCGGTGGGCTAATAATAAAATATTTTTTAAAA


AACATTCAAAAACATGGCCACACCCAACATTTCCTCGGGCAATTCCTTTTGATTCTTTTTTTTTCCCCCT


CCATGTAGAAGAGGGAGAAGGAGAGGCTGTGAAAGCTGCTTCGGGGGGATTTCAAGAGACTGGGGGTGCC


CACCGCCTCTGGCCCTGTCGTGGGGGTGTCACAGAGGCAGCGGCAGCAACAAAGGATTTGAAACTTGGTG


TGTTCGTGGAGCCACAGGCAGACGATGTCAACCTTGTGTGAGTGTGACGGGTGGGGGTGGGGCGGGAGGC


CATGGGGGAGGCCAAGGCAGGGGCTGGGCAGAGGGGAGAGGAAGGACGAGAAGGGGGAGTGGGAGAGGAA


GCCACATGCTGGAGAGGAGATGCCCTCCTCCGCGCCACTGGGAGGGCCAAGGCCTCCGCCACCTGCAGTG


TCTCAGACTGAGCGGCTGCCTGTCCTTGGTGGCCAGGGTCTGCTGCGAGTTGATGTGCCACCCTCTGCAG


GGCAGCCTGTGGGAGAAGGGGCGGCGGGTAAGAAGAGAAGGCAAGCTGGCGGGAGGGTGGCACCCCGTGG


ATGACCTCCTTGGAAAAGACTGACCTTGATGTCGGAGGGCGCTGGCCTCTTCCTCCCTCCCTGCAGGGTA


GGGGGCCTGAGCCGAGGGGCTTCCCTCTGCTCCACAGAAACCCTGTTTTATTGAGTTCTGAAGGTTGGAA


CTGCAGCCATGATTTTGGCCACTTTGCAGACCTGGGACTTTAGGGCTAACCAGTTCTCTTTGTAAGGACT


TGTGCCTCTTGGGAGACGTCCACCCGTTTCCAAGCCTGGGCCACCGGCATCTCTGGAGTGTGCAGGGGTC


TGGGAGGCGGGTCCCGAGCCCCCTGTCCTTCCCACGGCCACTGCAGTCACCCCTGTCTGCCCCACTGTGC


TGTCGTCTGCCATGAGAACCCAGTCACTGCCTATACCCCTCATCACGTCACAATGTCCAAATTCCCAGCC


TCACCACCCCCCTTCTCAGTAAGGACCCTGGTTGGCTGTGGGAGGCACCTACTCCATACTGAGGGTGAAA


TTAAGGGAAGGTAAAGTCCAGGCACAAGAGTGGGACCCCAGCCTCTCACTCTCAGTTCCACTCATCCAAC


TGGGTCCCTCACCACGAATCTCACGACCTGATTCGGTTCCCTGCCTCCTCCTCCCATCACAGATGTGAGC


CAGGGCACTGCTCAGCTGTGACCCTCGGTGTTTCTGCCTTGTTGACATAGAGAGAGCCCTTTCCCCCCGA


GAAGGCCTGGCCCCTTCCTGTGCTGAGCCCGCAGCAGGAGGCTGGGTGTCCTGGTTGTCGGTGACGGCAC


CAGGATGGGCGGGCAAGGCACCCAGGGCAGGCCCACAGTCCCGCTGTCCCCCACTTGCACCCCAGCTTGT


GGCTGCCAGCCTCCCAGACAGCCCAGCCCGCTGCTCAGCTCCACATGCATAGAATCAGCCCTCCACATCC


CAAAAAGGGGAACACACCCCCTTCGAAATGGTTTTCTCCCCGGTCCCAGCTGGAAGCCATGCTGTCTGTT


CTGCTGGAGCAGCTGAACATATACATAGATGTTGCCCTGCCCTCCCCATCTGCACCCTGTTGCGTTGTAG


TTGGATTTGTCTGTTTATGCTTGGATTCACCAGAGTGACTATGATAGTGAAAAGAAAAAAAAAAAAAAAA


AAAGGACGCATGTATCTTGAAATGCTTGTAAAGAGGTTTCTAACCCACCCTCACAAGGTGTCTCTCACCC


CCACGCTGGGACGCGTGTGGCCTGTGTGGCGCCGCCCTGCTGGGGCCTCCCAAGGTTTGAAAGGCTTTCC


TCAGCATCCGGGACCCAACAGAGACCAGATTCTAGCATCTAAGGAGGCCGTTCAGCTGTGAAGAAGGCCT


GAAGCACAGGATTAGGACTGAAGCGATGACATCTCCTTCCCTACTTCCCCTTGGGGCTCTCTGTGTCAGG


GCAGAGAGTAGGTCTTGTGGCTGGTCTGGCTTGCGGCACGAGGATGGTTCTCTCTGGTCACAGCCCGAAG


TCCCACAGCAGTCCTAAAGGAGGCTTACAACTCCTGCATCACAAGAAGAAGGAAGCCAGTGCCAGCTGGG


GGGATCTGCAGCTCCCAGAAGCTCCATGAGCCTCAGCCACCCCGCAGACTGGGTTCCTCGCCAAGCTCGC


CCTCTGGAGGGGCAGCCAGCCTCCCACCAAGGGCCCTGCGACCACAGCAGGGATTGGGATGAATGGCCTA


TCCTGGATCTGCTCCAGAGGCCCGAGCCACCTGCCTGAGGAAGGATAAGTCAGGAGACACCGTTCCCAAA


GCCTTGACCAGAGCACCTCAGCCCACTGACCTTGCACAAACTCCATCTGCTGCCATGAGAAAAGGGAAGC


CGCCTTTGCAAAAAATTGCTGCCTAAAGAAACTCAGCAGCCTCAGGCTCAATTCTGCCGCTTCTGGTTTG


GGTACAGTTAAAGGCAACCCTGAGGGACTTGGCAGTAGAAATCCAGGGCATCCCCTAGGGCTGGCAACTT


CGTGTGCAGCTAGAGCTTTCCCTGCAAGAAGTTTCTGGGCCCAGAACTCTCCACCAGGAAGCTCCCTGCT


GTTCGCTAAGTCCCAGCAATTCTCTAAGTGAAGGGATCTGAGAATGAGGAGGAAATGTGGGGTAGAGATT


TGGTGGTGGTTAGAGACATGCCCCCCTCATTACTGCCAACAGTTTCGGCTGCATTTTTCACGTACCTCGG


TTCCTCTTCCTGAAGTTCTTGTGCCCTGCTCTTCAGCACCGTGGGCCTTATCCGGTAGGCTCTGGGATCT


CCCCCTTGTGGGGCAGGCTCTTGGGGCCAGCCTAAGATCATGGTTTAGGGTGATCAGTGCTGGCAGATAA


ATTGCAAAGGCACGCTGGCTTGTGACCTCAAATGACAATCCCCCCAGGGCTGGGCACTCCTCCCCTCCCC


TCACTTCTCCCACCTGCAGAGCCAGTGTCCGTGGGTGGGCTAGATAGGATATACTGTATGCCGGCTCCTT


CAAGCTGTTGACTCACTTTATCAATAGTTCCATTTAAATTGACTTCAATGGTGAGACTGTATCCTGTTTG


CTATTGCTTATTGTGCTATGGGGGGAGGGGGGAGGAATGTGTAACATAGTTAACATGGGTAAAGGGAGAT


CTTGGGGTGCAGCACTTCAATTGCCTCGTAACCCTTTTCATCATTTCAACCACATTTGCTAAAGGGAGGG


AGCAGCCACGCGGTTAGAGGCCCTTGGGGTTTCTCTTTTCCACTGACAGCCTTTCCCAGGCAGCTGGCCA


GTTCCCCATTCCCTCCCCAGCCAGGTGCAGGCGTAGCAATATGGACATCTGGTTGCTTTGGCCTGCTGCC


CTCTTTCAGGGGTCCTAAGCCCACAATCATGCCTCCCTAAGACCCTGGCATCCTTCCTTTTAAGCCGTTG


GCACCTCTGTGCCACCTCTCACACTGGCTCCAGACACAGCCTGTGCTTCTGGCAGCTGAGATCACTCACT


TCCCCCTCCTCATCTTTGTTGGAGCTCCAAGTCAAGCCACGAGGTCAGGGCGAGGGCAGAGGTGGTCACC


AGCGTGTCCCATCTACAGACCTGTGGCTTCGTAAGACTTCTGATTTCTCTTCAGCTTTGAAAAGGGTTAC


CCTGGGCACTGGCCTAGAGTCTCACCTCCTAATAGACTTACCCCCATGAGTTTGCCATGTTGAGCAGGAC


AATTTCTGGCACTTGCAAGTCCCATGATTTCTTCGGTAATTGTGAGGGTGGGGGGAGGGACATGAAATCA


TCTTAGCTTAGCTTCCTGTCTGTGAATGTCTATATAGTGTATTGTGTGTTTTAACAAATGATTTACACTG


ACTGTTGCCGTAAAAGTGAATTTGGAAATAAAGTTATTACTCTGATTAAA





SEQ ID NO: 8


>Reverse Complement of SEQ ID NO: 7


TTTAATCAGAGTAATAACTTTATTTCCAAATTCACTTTTACGGCAACAGT


CAGTGTAAATCATTTGTTAAAACACACAATACACTATATAGACATTCACAGACAGGAAGCTAAGCTAAGA


TGATTTCATGTCCCTCCCCCCACCCTCACAATTACCGAAGAAATCATGGGACTTGCAAGTGCCAGAAATT


GTCCTGCTCAACATGGCAAACTCATGGGGGTAAGTCTATTAGGAGGTGAGACTCTAGGCCAGTGCCCAGG


GTAACCCTTTTCAAAGCTGAAGAGAAATCAGAAGTCTTACGAAGCCACAGGTCTGTAGATGGGACACGCT


GGTGACCACCTCTGCCCTCGCCCTGACCTCGTGGCTTGACTTGGAGCTCCAACAAAGATGAGGAGGGGGA


AGTGAGTGATCTCAGCTGCCAGAAGCACAGGCTGTGTCTGGAGCCAGTGTGAGAGGTGGCACAGAGGTGC


CAACGGCTTAAAAGGAAGGATGCCAGGGTCTTAGGGAGGCATGATTGTGGGCTTAGGACCCCTGAAAGAG


GGCAGCAGGCCAAAGCAACCAGATGTCCATATTGCTACGCCTGCACCTGGCTGGGGAGGGAATGGGGAAC


TGGCCAGCTGCCTGGGAAAGGCTGTCAGTGGAAAAGAGAAACCCCAAGGGCCTCTAACCGCGTGGCTGCT


CCCTCCCTTTAGCAAATGTGGTTGAAATGATGAAAAGGGTTACGAGGCAATTGAAGTGCTGCACCCCAAG


ATCTCCCTTTACCCATGTTAACTATGTTACACATTCCTCCCCCCTCCCCCCATAGCACAATAAGCAATAG


CAAACAGGATACAGTCTCACCATTGAAGTCAATTTAAATGGAACTATTGATAAAGTGAGTCAACAGCTTG


AAGGAGCCGGCATACAGTATATCCTATCTAGCCCACCCACGGACACTGGCTCTGCAGGTGGGAGAAGTGA


GGGGAGGGGAGGAGTGCCCAGCCCTGGGGGGATTGTCATTTGAGGTCACAAGCCAGCGTGCCTTTGCAAT


TTATCTGCCAGCACTGATCACCCTAAACCATGATCTTAGGCTGGCCCCAAGAGCCTGCCCCACAAGGGGG


AGATCCCAGAGCCTACCGGATAAGGCCCACGGTGCTGAAGAGCAGGGCACAAGAACTTCAGGAAGAGGAA


CCGAGGTACGTGAAAAATGCAGCCGAAACTGTTGGCAGTAATGAGGGGGGCATGTCTCTAACCACCACCA


AATCTCTACCCCACATTTCCTCCTCATTCTCAGATCCCTTCACTTAGAGAATTGCTGGGACTTAGCGAAC


AGCAGGGAGCTTCCTGGTGGAGAGTTCTGGGCCCAGAAACTTCTTGCAGGGAAAGCTCTAGCTGCACACG


AAGTTGCCAGCCCTAGGGGATGCCCTGGATTTCTACTGCCAAGTCCCTCAGGGTTGCCTTTAACTGTACC


CAAACCAGAAGCGGCAGAATTGAGCCTGAGGCTGCTGAGTTTCTTTAGGCAGCAATTTTTTGCAAAGGCG


GCTTCCCTTTTCTCATGGCAGCAGATGGAGTTTGTGCAAGGTCAGTGGGCTGAGGTGCTCTGGTCAAGGC


TTTGGGAACGGTGTCTCCTGACTTATCCTTCCTCAGGCAGGTGGCTCGGGCCTCTGGAGCAGATCCAGGA


TAGGCCATTCATCCCAATCCCTGCTGTGGTCGCAGGGCCCTTGGTGGGAGGCTGGCTGCCCCTCCAGAGG


GCGAGCTTGGCGAGGAACCCAGTCTGCGGGGTGGCTGAGGCTCATGGAGCTTCTGGGAGCTGCAGATCCC


CCCAGCTGGCACTGGCTTCCTTCTTCTTGTGATGCAGGAGTTGTAAGCCTCCTTTAGGACTGCTGTGGGA


CTTCGGGCTGTGACCAGAGAGAACCATCCTCGTGCCGCAAGCCAGACCAGCCACAAGACCTACTCTCTGC


CCTGACACAGAGAGCCCCAAGGGGAAGTAGGGAAGGAGATGTCATCGCTTCAGTCCTAATCCTGTGCTTC


AGGCCTTCTTCACAGCTGAACGGCCTCCTTAGATGCTAGAATCTGGTCTCTGTTGGGTCCCGGATGCTGA


GGAAAGCCTTTCAAACCTTGGGAGGCCCCAGCAGGGCGGCGCCACACAGGCCACACGCGTCCCAGCGTGG


GGGTGAGAGACACCTTGTGAGGGTGGGTTAGAAACCTCTTTACAAGCATTTCAAGATACATGCGTCCTTT


TTTTTTTTTTTTTTTTCTTTTCACTATCATAGTCACTCTGGTGAATCCAAGCATAAACAGACAAATCCAA


CTACAACGCAACAGGGTGCAGATGGGGAGGGCAGGGCAACATCTATGTATATGTTCAGCTGCTCCAGCAG


AACAGACAGCATGGCTTCCAGCTGGGACCGGGGAGAAAACCATTTCGAAGGGGGTGTGTTCCCCTTTTTG


GGATGTGGAGGGCTGATTCTATGCATGTGGAGCTGAGCAGCGGGCTGGGCTGTCTGGGAGGCTGGCAGCC


ACAAGCTGGGGTGCAAGTGGGGGACAGCGGGACTGTGGGCCTGCCCTGGGTGCCTTGCCCGCCCATCCTG


GTGCCGTCACCGACAACCAGGACACCCAGCCTCCTGCTGCGGGCTCAGCACAGGAAGGGGCCAGGCCTTC


TCGGGGGGAAAGGGCTCTCTCTATGTCAACAAGGCAGAAACACCGAGGGTCACAGCTGAGCAGTGCCCTG


GCTCACATCTGTGATGGGAGGAGGAGGCAGGGAACCGAATCAGGTCGTGAGATTCGTGGTGAGGGACCCA


GTTGGATGAGTGGAACTGAGAGTGAGAGGCTGGGGTCCCACTCTTGTGCCTGGACTTTACCTTCCCTTAA


TTTCACCCTCAGTATGGAGTAGGTGCCTCCCACAGCCAACCAGGGTCCTTACTGAGAAGGGGGGTGGTGA


GGCTGGGAATTTGGACATTGTGACGTGATGAGGGGTATAGGCAGTGACTGGGTTCTCATGGCAGACGACA


GCACAGTGGGGCAGACAGGGGTGACTGCAGTGGCCGTGGGAAGGACAGGGGGCTCGGGACCCGCCTCCCA


GACCCCTGCACACTCCAGAGATGCCGGTGGCCCAGGCTTGGAAACGGGTGGACGTCTCCCAAGAGGCACA


AGTCCTTACAAAGAGAACTGGTTAGCCCTAAAGTCCCAGGTCTGCAAAGTGGCCAAAATCATGGCTGCAG


TTCCAACCTTCAGAACTCAATAAAACAGGGTTTCTGTGGAGCAGAGGGAAGCCCCTCGGCTCAGGCCCCC


TACCCTGCAGGGAGGGAGGAAGAGGCCAGCGCCCTCCGACATCAAGGTCAGTCTTTTCCAAGGAGGTCAT


CCACGGGGTGCCACCCTCCCGCCAGCTTGCCTTCTCTTCTTACCCGCCGCCCCTTCTCCCACAGGCTGCC


CTGCAGAGGGTGGCACATCAACTCGCAGCAGACCCTGGCCACCAAGGACAGGCAGCCGCTCAGTCTGAGA


CACTGCAGGTGGCGGAGGCCTTGGCCCTCCCAGTGGCGCGGAGGAGGGCATCTCCTCTCCAGCATGTGGC


TTCCTCTCCCACTCCCCCTTCTCGTCCTTCCTCTCCCCTCTGCCCAGCCCCTGCCTTGGCCTCCCCCATG


GCCTCCCGCCCCACCCCCACCCGTCACACTCACACAAGGTTGACATCGTCTGCCTGTGGCTCCACGAACA


CACCAAGTTTCAAATCCTTTGTTGCTGCCGCTGCCTCTGTGACACCCCCACGACAGGGCCAGAGGCGGTG


GGCACCCCCAGTCTCTTGAAATCCCCCCGAAGCAGCTTTCACAGCCTCTCCTTCTCCCTCTTCTACATGG


AGGGGGAAAAAAAAAGAATCAAAAGGAATTGCCCGAGGAAATGTTGGGTGTGGCCATGTTTTTGAATGTT


TTTTAAAAAATATTTTATTATTAGCCCACCGATCAATTTGGAAAGATGCAATTTGCTCTTATTCCCATCA


CTGATTTTGAAGTCCCGAGCCAAAGCCGAGCGATAAAAGCCGGTTAAGTGATGAACCGATTAACCGAACT


GCGAGGAGCAGCTGGGGGCAGAGGGCGGGGCCGGGTCATTATTCTTTTTTTTTCCACACTCTCACTCTCT


CTTCTCTCCACGATTATTGACCGCCCCGGGGGCCTGATCACAAACCCTGCTTGGCCAGGGAGGCAGACAC


CTCGTCGGCTAGCGTGGCGAGCTGGGGCGAGTCTACCATGTCGATGCTGCCGGTGGAGGAGACATTGCTG


AGGTGCCGTGGAGACGTGTCCCCAGACACCACCGGCGACTTGTACACGATTTCCGCCCCGTGGTCTGTCT


TGGCTTTGGCGTTCTCGCGGAAGGTCAGCTTGTGGGTTTCAATCTTTTTATTTCCTCCGCCAGGGACATG


GGTGATATTGTCCAGGGACCCGATCTTCGACTGCACTCTGTCCTTGAAGTCCAGCTTCTCAGATTTTACT


TCCACCTGGCCACCTCCTGGTTTATGATGGATGTTGCCTAATGAGCCACACTTGGAGGTCACCTTGCTCA


GGTCAACTGGTTTGTAGACTATTTGCACACTGCCGCCTCCCGGGACGTGTTTGATATTATCCTTTGAGCC


ACACTTGGACTGGACGTTGCTAAGATCCAGCTTCTTATTAATTATCTGCACCTTCCCGCCTCCCGGCTGG


TGCTTCAGGTTCTCGGTGGAGCCGATCTTGGACTTGACGTTCTTCAGGTCTGGCATGGGCACGGGGGCTG


TCTGCAGGCGGCTCTTGGCGGAAGACGGCGACTTAGGTGGAGTACGGACCACCGCCACCTTCTTGGGCTC


CCGGGCTGGAGGGGTTGGAAGGGACGGGGTGCGGGAGCGGCTGCCGGGAGTGCCCGGGGAGCCGGGGCTG


CTGTAGCCACTGCGATCCCCTGATTTTGGAGGTTCACCAGAGCTGGGTGGTGTCTTTGGGGCGGGCGGGG


TTTTTGCTGGAATCCTGGTGGCGTTGGCTTGGCCCTTCTGGCCTGGAGGGGCCGCTCCCCGGGGTGTGGC


GATCTTCGTTTTCCCATCAGCCCCCTTGGCTTTTTTGTCATCGCTTCCAGTCCCGTCTTTGCTTTTACTG


ACCATGCGAGCTTGGGTCACGTGACCAGCAGCTTCGTCTTCCAGGCTGGGGGTGTCTCCGATGCCTGCTT


CCTCAGCTGTGGTTCCTTCTGGGATCTCCATGTGGGGCTGGGCGGCAGCCTGCTCGCCGGGAGCTCTCTC


ATCCACTAAGGGCGCTGTCACATCTTCCGCCGTTGGAGTGCTCTTAGCATCAGAGGTTTCAGAGCCCAGT


TCCTCAGATCCATCCTCAGCGGGGGTCTGCAGGGGAGATTCTTTCAGGCCAGCGTCCGTGTCACCCTCTT


GGTCTTGGAGCATGGTGTAGCCCTCTTGATCTTTCCTGTCCCCCAACCCGTACGTCCCAGCGTGATCTTC


CATCACATCGAACTCCTGGCGGGGCTCAGCCATCCTGGTTCAAGGCTCGCCTGATAGTCGACAGAGGCGA


GGACGGGAGAGGACAGCGGAGGAGGAGAAGGTGGCTGTGGTGGCGGCGGCAGAAGGTGGGCGGTGGCAGC


GGCGCTGCTGTTGGTGCCGGAGCTGGTGGGTGGCGGTGACTGCGAGGGCGCGCGCCGGGGAAGAGGGCGC


GTTCCCGAGGCCGGCAGGCGGCGCAGGCGCGAGCAGCGGGAGCGCGAGCCTCCCCAGGGGAGGGGGCGGG


CAGCCCGGCCTCCGCGGGAGCCTTCTCCTCCGGCCACCAGTGGGCGCGCGCGAGCGCCCTGCCGCTCGGC





SEQ ID NO: 9


>XM_008768277.2 PREDICTED: Rattus norvegicus microtubule-associated protein


tau (Mapt), transcript variant X7, mRNA


ACCGCCCACCTTCTGCTGTCGCCGCCGCCACAACCACCTTCCCCTCCGCTGTCCTCTTCTGTCCTCGCCT


CCTGTCGATTATCAGGCTTTGAAGCAGCATGGCTGAACCCCGCCAGGAGTTTGACACAATGGAAGACCAG


GCCGGAGATTACACTATGCTCCAAGACCAAGAAGGAGACATGGACCATGGCTTAAAAGAGTCTCCCCCAC


AGCCCCCAGCCGATGATGGATCAGAAGAACCAGGGTCGGAGACCTCTGATGCTAAGAGCACTCCAACTGC


TGAAGACGTGACTGCGCCCCTAGTGGAAGAGAGAGCTCCCGACAAGCAGGCGACTGCCCAGTCCCACACG


GAGATCCCAGAAGGCACCACAGCTGAAGAAGCAGGCATCGGAGACACCCCGAACATGGAGGACCAAGCTG


CTGGGCATGTGACTCAAGCTCGAGTGGCCGGCGTAAGCAAAGACAGGACAGGAAATGACGAGAAGAAAGC


CAAGGGCGCCGATGGCAAAACGGGGGCGAAGATCGCCACACCTCGGGGAGCAGCCACTCCGGGCCAGAAA


GGCACATCCAATGCCACCAGGATCCCAGCCAAGACCACACCCAGCCCAAAGACTCCTCCAGGATCAGGTG


AACCACCAAAATCCGGAGAACGAAGCGGCTACAGCAGCCCCGGCTCGCCCGGAACCCCTGGCAGTCGCTC


CCGTACCCCATCCCTACCAACGCCGCCCACCCGAGAGCCCAAAAAGGTGGCAGTGGTTCGCACTCCCCCT


AAGTCACCGTCTGCCAGTAAGAGCCGCCTACAGACTGCCCCTGTGCCCATGCCAGACCTAAAGAACGTCA


GGTCCAAGATTGGCTCCACTGAGAACCTGAAGCACCAGCCGGGAGGCGGCAAGGTGCAGATAATTAATAA


GAAGCTGGATCTTAGCAACGTCCAGTCCAAGTGTGGCTCAAAGGACAATATCAAACACGTCCCGGGCGGA


GGCAGTGTGCAAATAGTCTACAAGCCAGTGGACCTGAGCAAGGTGACCTCCAAGTGTGGTTCCTTAGGGA


ACATCCATCACAAGCCAGGAGGTGGCCAGGTAGAAGTAAAATCAGAGAAGCTGGACTTCAAGGATAGAGT


CCAGTCGAAGATTGGCTCCTTGGATAACATCACCCATGTCCCTGGAGGAGGGAATAAGAAGATTGAAACC


CACAAGCTGACCTTCAGGGAGAATGCCAAAGCCAAGACAGACCATGGAGCAGAAATCGTGTACAAGTCAC


CTGTGGTGTCTGGGGACACATCTCCACGGCACCTCAGCAACGTCTCCTCCACGGGCAGCATCGACATGGT


GGACTCTCCACAGCTTGCCACGTTAGCCGATGAAGTGTCCGCCTCTTTGGCCAAGCAGGGTTTGTGATCA


GGCCCCTGGGGCCGTCACTGATCATGGAGAGAAGAGAGAGTGAGAGTGTGGAAAAAAAAAAAAAAAAAAG


AATGACCTGGCCCCTCACCCTCTGCCCTCCCCGCTGCTCCTCATAGACAGGCTGACCAGCTTGTCACCTA


ACCTGCTTTTGTGGCTCGGGTTTGGCTCGGGACTTCAAAATCAGTGATGGGAAAAAGTAAATTTCATCTT


TCCAAATTGATTTGTGGGCTAGTAATAAAATATTTTTAAGGAAGGAAAAAAAAAAAAACACGTAAAACCA


TGGCCAAACAAAACCCAACATTTCCTTGGCAATTGTTATTGACCCCGCCCCCCCCCTCTGAGTTTTAGAG


GGTGAAGGAGGCTTTGGATGGAGGCTGCTTCTGGGGATTGGCTGAGGGACTAGGGCAACTAATTGCCCAC


AGCCCCATCTTAGGGGCATCAGGGACAGCGGCAGCAATGAAAGACTTGGGACTTGGTGTGTTTGTGGAGC


CGTAGGCAGGTGATGTTAACTTTGTGTGGGTTTGAGGGAGGACTGTGATAGTGAAGGCTGAGAGATGGGT


GGGCTGGGAGTCAGAGGAGAGAGGTGAGGAAGACAGGTTGGGAGAGGGGACATTGGCTCCTTGCCAAGGA


GCTTGGGAAGCACAGGTAGCCCTGGCTGCCTGCAGCAGTCTTAGCTAGCACAGATGCCTGCCTGAGAAAG


CACAGTGGGGTACAGTGGGTGTGTGTGCCCCTTCTGAAGGGCAGCCCATGGGAGAAGGGGTATTGGGCAG


AAGGAAGGTAGGCCAGAAGGTGGCACCTTGTAGATTGGTTCTCTGAAGGCTGACCTTGCCATCCCAGGGC


ACTGGCTCCCACCCTCCAGGGAGGGAGGTCCTGAGCTGAGGAGCTTCCCTTTGCTCTCACAGGAAAACCT


GTGTTACTGAGTTCTGAAGTTTGGAACTACAGCCATGATTTTGGCCACCATACAGACCTGGGACTTTAGG


GCTAACCAGTTCTTTGTAAGGACTTGTGCCTCTTGCGGGAACATCTGCCTGTTCTCAAGCCTGGTCCTCT


GGCACTTCTGCAGTGTGAGGGATGGGGGTGGTAATTCTGGGATGTGGGTCCCAGGCCTCCCATCCTCGCA


CAGCCACTGTATCCCCTCTACCTGTCCTATCATGCCCACGTCTGCCATGAGAGCCAGTCACTGCCGTCCG


TACATCACGTCTCACCGTCCTGAGTGCCCAGCCTCCCCAAGCCCCATCCCTGGCCCCTGGGTAGTTATGG


CCAATATCTGCTCTACACTAGGGGTTGGAGTCCAGGGAAGGCAAAGATTTGGGCCTTGGTCTCTAGTCCT


ACGTTGCACGAATCCAACCAGTGTGCCTCCCACAAGGAACCTTACAACCTTGTTTGGTTTGCTCCATCAT


TTCCCATCGTGGATGGGAGTCCGTGTGTGCCTGGAGATTACCCTGGACACCTCTGCTTTTTTTTTTTTAC


TTTAGCGGTTGCCTCCTAGGCCTGACTCCTTCCCATGTTGAACTGGAGGCAGCCACGTTAGGTGTCAATG


TCCTGGCATCAGTATGAACAGTCAGTAGTCCCAGGGCAGGGCCACACTTCTCCCATCTTCTGCTTCCACC


CCAGCTTGTGATTGCTAGCCTCCCAGAGCTCAGCCGCCATTAAGTCCCCATGCACGTAATCAGCCCTTCA


TACCCCAATTTGGGGAACATACCCCTTGATTGAAATGTTTTCCCTCCAGTCCTATGGAAGCGGTGCTGCC


TGCCCTGCTGGAGCAGCCAGCCATCTCCAGAGACGCAGCCCTTTCTCTCCTGTCCGCACCCTGTTGCGCT


GTAGTCGGATTCGTCTGTTTGTCTGGGTTCACCAGAGTGACTATGATAGTGAAAAGAAAAAGAAAAAGAA


AAAAGAAAAAAGAAAAAAAAAAAAGGACGCATGTTATCTTGAAATATTTGTCAAAAGGTTGTAGCCCACC


GCAGGGATTGGAGGGCCTGGATATTCCTTGTCTTCTTCGTGACTTAGGTCCAGGCCGGTGCAGTGCTACC


CTGCTGGGACATCCCATGTTTTGAAGGGTTTCTTCTTCATCTGGGACCCTGCAGACACTGGATTGTGACA


TTGGAGGTCTATGACATTGGCCAAGGCCTGAAGCACAGGACCCGTTAGAGGCAGCAGGCTCCGACTGTCA


GGGAGAGCTTGTGGCTGGCCTGTTTCTCTGAGTGAAGATGGTCCTCTCTAATCACAACTTCAAGTCCCAC


AGCAGCCCTGGCAGACATCTAAGAACTCCTGCATCACAAGAGAAAAGGACACTAGTACCAGCAGGGAGAG


CTGTGGCCCTAGAAATTCCATGACTCTCCACTACATATCCGTGGGTCCTTTCCAAGCCTTGGCCTCGTCA


CCAAGGGCTTGGGATGGACTGCCCCACTGATGAAAGGGACATCTTTGGAGACCCCCTTGGTTTCCAAGGC


GTCAGCCCCCTGACCTTGCATGACCTCCTACAGCTGTAAGGATGAGGCCTTTAAAGATTAGGAACCTCAG


GCCCAGGTCGGCCACTTTGGGCTTGGGTACAGTTAGGGACGATGCGGTAGAAGGAGGTGGCCAACCTTTC


CCATATAAGAGTTCTGTGTGCCCAGAGCTACCCTATTGTGAGCTCCCCACTGCTGATGGACTTTAGCTGT


CCTTAGAAGTGAAGAGTCCAACGGAGGAAAAGGAAGTGTGGTTTGATGGTCTGTGGTCCCTTCATCATGG


TTACCTGTTGTGGTTTTCTCTCGTATACCCATTTACCCATCCTGCAGTTCCTGTCCTTGAATAGGGGTGG


GGGTACTCTGCCATATCTCTTGTAGGGCAGTCAGCCCCCAAGTCATAGTTTGGAGTGATCTGGTCAGTGC


TAATAGGCAGTTTACAAAGGAATTCTGGCTTGTTACTTCAGTGAGGACAATCCCCCAAGGGCCCTGGCAC


CTGTCCTGTCTTTCCATGGCTCTCCACTGCAGAGCCAATGTCTTTGGGTGGGCTAGATAGGGTGTACAAT


TTGCCTGGTTCCTCCAAGCTCTTAATCCACTTTATCAATAGTTCCATTTAAATTGACTTCAATGATAAGA


GTGTATCCCATTTGAGATTGCTTGTGTTGTGGGGTAAAGGGGGGAGGAGGAACATGTTAAGATAATTGAC


ATGGGCAAGGGGAAGTCTTGAAGTGTAGCAGTTAAACCATCTTGTAGCCCCATTCATGATGTTGACCACT


TGCTAGAGAGAAGAGGTGCCATAAGGCTAGAACCTAGAGGCTTGGCTGTCCCACCAACAGGCAGGCTTTT


GCAAGGCAGAGGCAGCCAGCTAGGTCCCTGACTTCCCAGCCAGGTGCAGCTCTAAGAACTGCTCTTGCCT


GCTGCCTTCTTGTGGTGTCCAGAGCCCACAGCCAATGCCTCCTCAAAACCCTGGCTTCCTTCCTTCTAAT


CCACTGGCACATCAGCATCACCTCCGGATTGACTTCAGATCCACAGCCTACACTACTAGCAGTGGGTAAG


ACCACTTCCTTTGTCCTTGTCTGTTCTCCAGAAAAGTGGGCATGGAGGCGGTGTTAATAACTATAGGTCT


GTGGCTTTATGAGCCTTCAAACTTCTCTCTAGCTTCTGAAAGGGTTACTTTTGGGCAGTATTGCAGTCTC


ACCCTCCCGATGGGCTGTAGCCTGTGCAGTTGCTGTACTGGGCATGATCTCCAGTGCTTGCAAGTCCCAT


GATTTCTTTGGTGATTTTGAGGGTGGGGGGAGGGACATGAATCATCTTAGCTTAGCTTCCTGTCTGTGAA


TGTCCATATAGTGTACTGTGTTTTAACAAACGATTTACACTGACTGTTGCTGTACAAGTGAATTTGGAAA


TAAAGTTATTACTCTGATTAAA





SEQ ID NO: 10


>Reverse Complement of SEQ ID NO: 9


TTTAATCAGAGTAATAACTTTA


TTTCCAAATTCACTTGTACAGCAACAGTCAGTGTAAATCGTTTGTTAAAACACAGTACACTATATGGACA


TTCACAGACAGGAAGCTAAGCTAAGATGATTCATGTCCCTCCCCCCACCCTCAAAATCACCAAAGAAATC


ATGGGACTTGCAAGCACTGGAGATCATGCCCAGTACAGCAACTGCACAGGCTACAGCCCATCGGGAGGGT


GAGACTGCAATACTGCCCAAAAGTAACCCTTTCAGAAGCTAGAGAGAAGTTTGAAGGCTCATAAAGCCAC


AGACCTATAGTTATTAACACCGCCTCCATGCCCACTTTTCTGGAGAACAGACAAGGACAAAGGAAGTGGT


CTTACCCACTGCTAGTAGTGTAGGCTGTGGATCTGAAGTCAATCCGGAGGTGATGCTGATGTGCCAGTGG


ATTAGAAGGAAGGAAGCCAGGGTTTTGAGGAGGCATTGGCTGTGGGCTCTGGACACCACAAGAAGGCAGC


AGGCAAGAGCAGTTCTTAGAGCTGCACCTGGCTGGGAAGTCAGGGACCTAGCTGGCTGCCTCTGCCTTGC


AAAAGCCTGCCTGTTGGTGGGACAGCCAAGCCTCTAGGTTCTAGCCTTATGGCACCTCTTCTCTCTAGCA


AGTGGTCAACATCATGAATGGGGCTACAAGATGGTTTAACTGCTACACTTCAAGACTTCCCCTTGCCCAT


GTCAATTATCTTAACATGTTCCTCCTCCCCCCTTTACCCCACAACACAAGCAATCTCAAATGGGATACAC


TCTTATCATTGAAGTCAATTTAAATGGAACTATTGATAAAGTGGATTAAGAGCTTGGAGGAACCAGGCAA


ATTGTACACCCTATCTAGCCCACCCAAAGACATTGGCTCTGCAGTGGAGAGCCATGGAAAGACAGGACAG


GTGCCAGGGCCCTTGGGGGATTGTCCTCACTGAAGTAACAAGCCAGAATTCCTTTGTAAACTGCCTATTA


GCACTGACCAGATCACTCCAAACTATGACTTGGGGGCTGACTGCCCTACAAGAGATATGGCAGAGTACCC


CCACCCCTATTCAAGGACAGGAACTGCAGGATGGGTAAATGGGTATACGAGAGAAAACCACAACAGGTAA


CCATGATGAAGGGACCACAGACCATCAAACCACACTTCCTTTTCCTCCGTTGGACTCTTCACTTCTAAGG


ACAGCTAAAGTCCATCAGCAGTGGGGAGCTCACAATAGGGTAGCTCTGGGCACACAGAACTCTTATATGG


GAAAGGTTGGCCACCTCCTTCTACCGCATCGTCCCTAACTGTACCCAAGCCCAAAGTGGCCGACCTGGGC


CTGAGGTTCCTAATCTTTAAAGGCCTCATCCTTACAGCTGTAGGAGGTCATGCAAGGTCAGGGGGCTGAC


GCCTTGGAAACCAAGGGGGTCTCCAAAGATGTCCCTTTCATCAGTGGGGCAGTCCATCCCAAGCCCTTGG


TGACGAGGCCAAGGCTTGGAAAGGACCCACGGATATGTAGTGGAGAGTCATGGAATTTCTAGGGCCACAG


CTCTCCCTGCTGGTACTAGTGTCCTTTTCTCTTGTGATGCAGGAGTTCTTAGATGTCTGCCAGGGCTGCT


GTGGGACTTGAAGTTGTGATTAGAGAGGACCATCTTCACTCAGAGAAACAGGCCAGCCACAAGCTCTCCC


TGACAGTCGGAGCCTGCTGCCTCTAACGGGTCCTGTGCTTCAGGCCTTGGCCAATGTCATAGACCTCCAA


TGTCACAATCCAGTGTCTGCAGGGTCCCAGATGAAGAAGAAACCCTTCAAAACATGGGATGTCCCAGCAG


GGTAGCACTGCACCGGCCTGGACCTAAGTCACGAAGAAGACAAGGAATATCCAGGCCCTCCAATCCCTGC


GGTGGGCTACAACCTTTTGACAAATATTTCAAGATAACATGCGTCCTTTTTTTTTTTTCTTTTTTCTTTT


TTCTTTTTCTTTTTCTTTTCACTATCATAGTCACTCTGGTGAACCCAGACAAACAGACGAATCCGACTAC


AGCGCAACAGGGTGCGGACAGGAGAGAAAGGGCTGCGTCTCTGGAGATGGCTGGCTGCTCCAGCAGGGCA


GGCAGCACCGCTTCCATAGGACTGGAGGGAAAACATTTCAATCAAGGGGTATGTTCCCCAAATTGGGGTA


TGAAGGGCTGATTACGTGCATGGGGACTTAATGGCGGCTGAGCTCTGGGAGGCTAGCAATCACAAGCTGG


GGTGGAAGCAGAAGATGGGAGAAGTGTGGCCCTGCCCTGGGACTACTGACTGTTCATACTGATGCCAGGA


CATTGACACCTAACGTGGCTGCCTCCAGTTCAACATGGGAAGGAGTCAGGCCTAGGAGGCAACCGCTAAA


GTAAAAAAAAAAAAGCAGAGGTGTCCAGGGTAATCTCCAGGCACACACGGACTCCCATCCACGATGGGAA


ATGATGGAGCAAACCAAACAAGGTTGTAAGGTTCCTTGTGGGAGGCACACTGGTTGGATTCGTGCAACGT


AGGACTAGAGACCAAGGCCCAAATCTTTGCCTTCCCTGGACTCCAACCCCTAGTGTAGAGCAGATATTGG


CCATAACTACCCAGGGGCCAGGGATGGGGCTTGGGGAGGCTGGGCACTCAGGACGGTGAGACGTGATGTA


CGGACGGCAGTGACTGGCTCTCATGGCAGACGTGGGCATGATAGGACAGGTAGAGGGGATACAGTGGCTG


TGCGAGGATGGGAGGCCTGGGACCCACATCCCAGAATTACCACCCCCATCCCTCACACTGCAGAAGTGCC


AGAGGACCAGGCTTGAGAACAGGCAGATGTTCCCGCAAGAGGCACAAGTCCTTACAAAGAACTGGTTAGC


CCTAAAGTCCCAGGTCTGTATGGTGGCCAAAATCATGGCTGTAGTTCCAAACTTCAGAACTCAGTAACAC


AGGTTTTCCTGTGAGAGCAAAGGGAAGCTCCTCAGCTCAGGACCTCCCTCCCTGGAGGGTGGGAGCCAGT


GCCCTGGGATGGCAAGGTCAGCCTTCAGAGAACCAATCTACAAGGTGCCACCTTCTGGCCTACCTTCCTT


CTGCCCAATACCCCTTCTCCCATGGGCTGCCCTTCAGAAGGGGCACACACACCCACTGTACCCCACTGTG


CTTTCTCAGGCAGGCATCTGTGCTAGCTAAGACTGCTGCAGGCAGCCAGGGCTACCTGTGCTTCCCAAGC


TCCTTGGCAAGGAGCCAATGTCCCCTCTCCCAACCTGTCTTCCTCACCTCTCTCCTCTGACTCCCAGCCC


ACCCATCTCTCAGCCTTCACTATCACAGTCCTCCCTCAAACCCACACAAAGTTAACATCACCTGCCTACG


GCTCCACAAACACACCAAGTCCCAAGTCTTTCATTGCTGCCGCTGTCCCTGATGCCCCTAAGATGGGGCT


GTGGGCAATTAGTTGCCCTAGTCCCTCAGCCAATCCCCAGAAGCAGCCTCCATCCAAAGCCTCCTTCACC


CTCTAAAACTCAGAGGGGGGGGGCGGGGTCAATAACAATTGCCAAGGAAATGTTGGGTTTTGTTTGGCCA


TGGTTTTACGTGTTTTTTTTTTTTTCCTTCCTTAAAAATATTTTATTACTAGCCCACAAATCAATTTGGA


AAGATGAAATTTACTTTTTCCCATCACTGATTTTGAAGTCCCGAGCCAAACCCGAGCCACAAAAGCAGGT


TAGGTGACAAGCTGGTCAGCCTGTCTATGAGGAGCAGCGGGGAGGGCAGAGGGTGAGGGGCCAGGTCATT


CTTTTTTTTTTTTTTTTTTCCACACTCTCACTCTCTCTTCTCTCCATGATCAGTGACGGCCCCAGGGGCC


TGATCACAAACCCTGCTTGGCCAAAGAGGCGGACACTTCATCGGCTAACGTGGCAAGCTGTGGAGAGTCC


ACCATGTCGATGCTGCCCGTGGAGGAGACGTTGCTGAGGTGCCGTGGAGATGTGTCCCCAGACACCACAG


GTGACTTGTACACGATTTCTGCTCCATGGTCTGTCTTGGCTTTGGCATTCTCCCTGAAGGTCAGCTTGTG


GGTTTCAATCTTCTTATTCCCTCCTCCAGGGACATGGGTGATGTTATCCAAGGAGCCAATCTTCGACTGG


ACTCTATCCTTGAAGTCCAGCTTCTCTGATTTTACTTCTACCTGGCCACCTCCTGGCTTGTGATGGATGT


TCCCTAAGGAACCACACTTGGAGGTCACCTTGCTCAGGTCCACTGGCTTGTAGACTATTTGCACACTGCC


TCCGCCCGGGACGTGTTTGATATTGTCCTTTGAGCCACACTTGGACTGGACGTTGCTAAGATCCAGCTTC


TTATTAATTATCTGCACCTTGCCGCCTCCCGGCTGGTGCTTCAGGTTCTCAGTGGAGCCAATCTTGGACC


TGACGTTCTTTAGGTCTGGCATGGGCACAGGGGCAGTCTGTAGGCGGCTCTTACTGGCAGACGGTGACTT


AGGGGGAGTGCGAACCACTGCCACCTTTTTGGGCTCTCGGGTGGGCGGCGTTGGTAGGGATGGGGTACGG


GAGCGACTGCCAGGGGTTCCGGGCGAGCCGGGGCTGCTGTAGCCGCTTCGTTCTCCGGATTTTGGTGGTT


CACCTGATCCTGGAGGAGTCTTTGGGCTGGGTGTGGTCTTGGCTGGGATCCTGGTGGCATTGGATGTGCC


TTTCTGGCCCGGAGTGGCTGCTCCCCGAGGTGTGGCGATCTTCGCCCCCGTTTTGCCATCGGCGCCCTTG


GCTTTCTTCTCGTCATTTCCTGTCCTGTCTTTGCTTACGCCGGCCACTCGAGCTTGAGTCACATGCCCAG


CAGCTTGGTCCTCCATGTTCGGGGTGTCTCCGATGCCTGCTTCTTCAGCTGTGGTGCCTTCTGGGATCTC


CGTGTGGGACTGGGCAGTCGCCTGCTTGTCGGGAGCTCTCTCTTCCACTAGGGGCGCAGTCACGTCTTCA


GCAGTTGGAGTGCTCTTAGCATCAGAGGTCTCCGACCCTGGTTCTTCTGATCCATCATCGGCTGGGGGCT


GTGGGGGAGACTCTTTTAAGCCATGGTCCATGTCTCCTTCTTGGTCTTGGAGCATAGTGTAATCTCCGGC


CTGGTCTTCCATTGTGTCAAACTCCTGGCGGGGTTCAGCCATGCTGCTTCAAAGCCTGATAATCGACAGG


AGGCGAGGACAGAAGAGGACAGCGGAGGGGAAGGTGGTTGTGGCGGCGGCGACAGCAGAAGGTGGGCGGT





SEQ ID NO: 11


>XM_005624183.3 PREDICTED: Ganis lupus familiaris microtubule associated


protein tau (MAPT), transcript variant X23, mRNA


CGCGCTCGCGCTCTCAGCCACCCACCAGCTCCCGCACCAGCAGCAGCAGCGCCGCCGCCGCCGCCGCCGC


CGCCGCCGCCCACCTTCTGCTGCCGCCACCACAGCCACTTTCTCCTCTTTCCTCTCCTGTCCTCGCCCTC


TGTCGACTATCAGGTGGGCCTTGACCTAGGATGGCTGAGCCCCGCCAGGAGTTCACTGTGATGGAAGATC


ATGCTGGGACATACGGGAAAGATCTCCCCTCTCAGGGGGGCTACACCCTGCTGCAAGACCATGAGGGGGA


CGTGGATCACGGCCTGAAAGCTGAAGAAGCAGGCATTGGAGACACCCCCAACCTGGAAGACCAAGCTGCT


GGACATGTGACTCAAGCTCGCATGGTCAGTAAAGGCAAAGATGGGACTGGAACCGATGACAAAAAAGCCA


AGGGGGCTGATGGTAAAACTGGAACGAAGATCGCCACACCCCGGGGAGCGACCCCTTCAGGCCAGAAAGG


CCAGGCCAATGCCACCAGGATTCCAGCGAAAACCACGCCCTCCCCCAAGACCCCACCGGGCGGTGAATCT


GGAAAATCTGGGGATCGCAGTGGCTACAGCAGCCCCGGCTCCCCAGGCACTCCTGGCAGCCGCTCCCGCA


CCCCGTCCCTGCCAACCCCACCCACCCGGGAGCCCAAGAAGGTGGCGGTGGTCCGCACCCCACCCAAGTC


GCCGTCTGCAGCCAAGAGTCGCCTGCAGACCGCCCCTGTGCCCATGCCAGACCTAAAGAACGTCAGATCC


AAGATCGGCTCCACTGAAAACCTGAAGCACCAGCCAGGAGGTGGGAAGGTGCAAATAGTGTACAAACCAG


TGGATCTGAGCAAGGTGACCTCCAAGTGCGGCTCATTAGGCAACATCCATCATAAGCCAGGAGGCGGTCA


GGTGGAAGTCAAATCTGAGAAGCTGGACTTCAAGGACAGAGTCCAGTCGAAGATCGGGTCCCTGGACAAC


ATCACCCACGTCCCTGGCGGAGGGAATAAAAAGATCGAAACCCACAAGCTGACCTTCCGTGAGAACGCCA


AAGCCAAGACCGACCACGGGGCGGAGATCGTGTACAAGTCGCCCGTGGTGTCCGGGGACACGTCTCCGCG


GCACCTGAGCAACGTGTCCTCCACGGGCAGCATCGACATGGTCGACTCGCCCCAGCTCGCCACGCTAGCC


GACGAAGTGTCCGCCTCCCTGGCCAAGCAGGGTTTGTGATCAGGCCCCCGGGGCGGTCAATGATCGTGGA


GAGAAGAGAGTGTGGAAAAAAAAAGAATAATGATCTGGCCCTTCTCGCCCTCTGCCCTCCCCCAGCTGCT


CCTCACAGACCGGTTAATCGGTTAATCACTTAACCTGCTTTTGTCGCTCGGCTCTGGCTCGGGACTTCAA


AATCAGTGACGGGAAAAAGCAAATTTCATCTTTCCAAATTGATGGGTGGGCTAATAATAATAAAATATTT


TTAAAACCATTTAAAAA





SEQ ID NO: 12


>Reverse Complement of SEQ ID NO: 11


TTTTTAAATGGTTTTAA


AAATATTTTATTATTATTAGCCCACCCATCAATTTGGAAAGATGAAATTTGCTTTTTCCCGTCACTGATT


TTGAAGTCCCGAGCCAGAGCCGAGCGACAAAAGCAGGTTAAGTGATTAACCGATTAACCGGTCTGTGAGG


AGCAGCTGGGGGAGGGCAGAGGGCGAGAAGGGCCAGATCATTATTCTTTTTTTTTCCACACTCTCTTCTC


TCCACGATCATTGACCGCCCCGGGGGCCTGATCACAAACCCTGCTTGGCCAGGGAGGCGGACACTTCGTC


GGCTAGCGTGGCGAGCTGGGGCGAGTCGACCATGTCGATGCTGCCCGTGGAGGACACGTTGCTCAGGTGC


CGCGGAGACGTGTCCCCGGACACCACGGGCGACTTGTACACGATCTCCGCCCCGTGGTCGGTCTTGGCTT


TGGCGTTCTCACGGAAGGTCAGCTTGTGGGTTTCGATCTTTTTATTCCCTCCGCCAGGGACGTGGGTGAT


GTTGTCCAGGGACCCGATCTTCGACTGGACTCTGTCCTTGAAGTCCAGCTTCTCAGATTTGACTTCCACC


TGACCGCCTCCTGGCTTATGATGGATGTTGCCTAATGAGCCGCACTTGGAGGTCACCTTGCTCAGATCCA


CTGGTTTGTACACTATTTGCACCTTCCCACCTCCTGGCTGGTGCTTCAGGTTTTCAGTGGAGCCGATCTT


GGATCTGACGTTCTTTAGGTCTGGCATGGGCACAGGGGCGGTCTGCAGGCGACTCTTGGCTGCAGACGGC


GACTTGGGTGGGGTGCGGACCACCGCCACCTTCTTGGGCTCCCGGGTGGGTGGGGTTGGCAGGGACGGGG


TGCGGGAGCGGCTGCCAGGAGTGCCTGGGGAGCCGGGGCTGCTGTAGCCACTGCGATCCCCAGATTTTCC


AGATTCACCGCCCGGTGGGGTCTTGGGGGAGGGCGTGGTTTTCGCTGGAATCCTGGTGGCATTGGCCTGG


CCTTTCTGGCCTGAAGGGGTCGCTCCCCGGGGTGTGGCGATCTTCGTTCCAGTTTTACCATCAGCCCCCT


TGGCTTTTTTGTCATCGGTTCCAGTCCCATCTTTGCCTTTACTGACCATGCGAGCTTGAGTCACATGTCC


AGCAGCTTGGTCTTCCAGGTTGGGGGTGTCTCCAATGCCTGCTTCTTCAGCTTTCAGGCCGTGATCCACG


TCCCCCTCATGGTCTTGCAGCAGGGTGTAGCCCCCCTGAGAGGGGAGATCTTTCCCGTATGTCCCAGCAT


GATCTTCCATCACAGTGAACTCCTGGCGGGGCTCAGCCATCCTAGGTCAAGGCCCACCTGATAGTCGACA


GAGGGCGAGGACAGGAGAGGAAAGAGGAGAAAGTGGCTGTGGTGGCGGCAGCAGAAGGTGGGCGGCGGCG


GCGGCGGCGGCGGCGGCGGCGCTGCTGCTGCTGGTGCGGGAGCTGGTGGGTGGCTGAGAGCGCGAGCGCG





SEQ ID NO: 1533


> MAPT (NM_005910) exon 10


GTGCAAATAGTCTACAAACCAGTTGACCTGAGCAAGGTGACCTCCAAGTGTGGCTCATTA


GGCAACATCCATCATAAACCAG








Claims
  • 1. A double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of MAPT, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the sense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from the nucleotide sequence selected from a group consisting of SEQ ID NO: 1 and SEQ ID NO: 3, and the antisense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from the nucleotide sequence selected from a group consisting of SEQ ID NO: 2 and SEQ ID NO: 4.
  • 2. A double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of MAPT, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the antisense strand comprises a region of complementarity to an mRNA encoding Tau, and wherein the region of complementarity comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from the nucleotide sequence selected from a group consisting of SEQ ID NO:2 and SEQ ID NO: 4.
  • 3. A double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of MAPT, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the antisense strand comprises a region of complementarity to an mRNA encoding Tau, and wherein the region of complementarity comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from any one of the antisense nucleotide sequences in any one of Tables 3-8 and 16-28.
  • 4. The dsRNA agent of any one of claims 1-3, wherein the sense strand comprises at least 15 contiguous nucleotides differing by no more than three nucleotides from any one of the nucleotide sequence of nucleotides 512-532, 513-533, 514-534, 515-535, 516-536, 517-537, 518-538, 519-539, 520-540, 1063-1083, 1067-1087, 1072-1092, 1074-1094, 1075-1095, 1125-1145, 1126-1146, 1127-1147, 1129-1149, 1170-1190, 1395-1415, 1905-1925, 1906-1926, 1909-1929, 1911-1931, 1912-1932, 1913-1933, 1914-1934, 1915-1935, 1916-1936, 1919-1939, 1951-1971, 1954-1974, 1958-1978, 2387-2407, 2409-2429, 2410-2430, 2469-2489, 2471-2491, 2472-2492, 2476-2496, 2477-2497, 2478-2498, 2480-2500, 2481-2501, 2482-2502, 2484-2504, 2762-2782, 2764-2784, 2766-2786, 2767-2787, 2768-2788, 2769-2789, 2819-2839, 2821-2841, 2828-2848, 2943-2963, 2944-2964, 2946-2966, 2947-2967, 3252-3272, 3277-3297, 3280-3300, 3281-3301, 3282-3302, 3284-3304, 3285-3305, 3286-3306, 3331-3351, 3332-3352, 3333-3353, 3334-3354, 3335-3355, 3336-3356, 3338-3358, 3340-3360, 3342-3362, 3343-3363, 3344-3364, 3345-3365, 3346-3366, 3347-3367, 3349-3369, 3350-3370, 3353-3373, 3364-3384, 3366-3386, 3367-3387, 3368-3388, 3369-3389, 3370-3390, 3412-3432, 3414-3434, 3415-3435, 3416-3436, 3417-3437, 3419-3439, 3420-3440, 3424-3444, 3425-3445, 3426-3446, 3427-3447, 3428-3448, 3429-3449, 3430-3450, 3431-3451, 3434-3454, 4132-4152, 4134-4154, 4179-4199, 4182-4202, 4184-4204, 4395-4415, 4425-4445, 4426-4446, 4429-4449, 4469-4489, 4470-4490, 4471-4491, 4472-4492, 4473-4493, 4474-4494, 4569-4589, 4571-4591, 4572-4592, 4596-4616, 4623-4643, 4721-4741, 4722-4742, 4725-4745, 4726-4746, 4766-4786, 4767-4787, 4768-4788, 4769-4789, 4770-4790, 4779-4799, 4805-4825, 4806-4826, 4807-4827, 4808-4828, 4809-4829, 4812-4832, 4813-4833, 4814-4834, 4936-4956, 5072-5092, 5073-5093, 5345-5365, 5346-5366, 5349-5369, 5350-5370, 5351-5371, 5460-5480, 5461-5481, 5463-5483, 5465-5485, 5467-5487, 5468-5488, 5469-5489, 5470-5490, 5471-5491, 5505-5525, 5506-5526, 5507-5527, 5508-5528, 5509-5529, 5511-5531, 5513-5533, 5514-5534, 5541-5561, 5544-5564, 5546-5566, 5547-5567, 5548-5568, 5550-5570, 5551-5571, 5574-5594, 5576-5596, 5614-5634, 521-541, 522-542, 523-543, 524-544, 525-545, 526-546, 527-547, 528-548, 529-549, 530-550, 531-551, 532-552, 533-553, 534-554, 535-555, 536-556, 1034-1054, 1035-1055, 1036-1056, 1037-1057, 1038-1058, 1039-1059, 1040-1060, 1041-1061, 1042-1062, 1043-1063, 1044-1064, 1045-1065, 1046-1066, 1047-1067, 1048-1068, 1049-1069, 1050-1070, 1051-1071, 1052-1072, 1053-1073, 1054-1074, 1062-1082, 1064-1084, 1065-1085, 1066-1086, 1068-1088, 1069-1089, 1070-1090, 1071-1091, 1073-1093, 1076-1096, 1077-1097, 1078-1098, 1079-1099, 1080-1100, 1081-1101, 1082-1102, 1128-1148, 1129-1149, 1130-1150, 1131-1151, 1132-1152, 1133-1153, 1134-1154, 1135-1155, 1136-1156, 1137-1157, 1138-1158, 1139-1159, 1140-1160, 1141-1161, 1142-1162, 1143-1163, 1144-1164, 1145-1165, 1146-1166, 1147-1167, 1148-1168, 975-995, 976-996, 977-997, 978-998, 979-999, 980-1000, 981-1001, 982-1002, 983-1003, 984-1004, 985-1005, 986-1006, 987-1007, 988-1008, 989-1009, 990-1010, 991-1011, 992-1012, 993-1013, 994-1014, 995-1015, 996-1016, 997-1017, 998-1018, 999-1019, 1000-1020, 1001-1021, 1002-1022, 1003-1023, 1004-1024, 1005-1025, 1006-1026, 1007-1027, 1008-1028, 1009-1029, 1010-1030, 1011-1031, 1012-1032, 1013-1033, 1014-1034, 1015-1035, 1016-1036, 1017-1037, 1018-1038, 1019-1039, 1020-1040, 1021-1041, 1022-1042, 1023-1043, 1024-1044, 1025-1045, 1026-1046, 1027-1047, 1028-1048, 1029-1049, 1030-1050, 1031-1051, 1032-1052, 1033-1053, 1034-1054, 1035-1055, 1036-1056, 1037-1057, 1038-1058, 1039-1059, 1040-1060, 1041-1061, 1042-1062, 1043-1063 and 1045-1065 of SEQ ID NO: 3, and the antisense strand comprises at least 15 contiguous nucleotides from the corresponding nucleotide sequence of SEQ ID NO: 4.
  • 5. The dsRNA agent of any one of claims 1-3, wherein the sense strand comprises at least 15 contiguous nucleotides differing by no more than three nucleotides from any one of the nucleotide sequence of nucleotides 520-541, 520-556, 510-534, 512-536, 516-541, 516-540, 520-544, 524-547, 526-551, 529-556, 532-556, 1065-1089, 1068-1095, 1068-1094, 1075-1100, 1076-1100, 1079-1103, 1123-1147, 1127-1151, 1130-1155, 1903-1934, 1903-1930, 1914-1940, 1949-1975, 2470-2497, 2941-2965, 3275-3302, 3278-3302, 3329-3353, 3333-3357, 3338-3367, 3338-3366, 3348-3390, 3348-3388, 3351-3385, 5507-5562 and 5549-5597 of SEQ ID NO: 3, and the antisense strand comprises at least 15 contiguous nucleotides from the corresponding nucleotide sequence of SEQ ID NO: 4.
  • 6. The dsRNA agent of any one of claims 1-3, wherein the sense strand comprises at least 15 contiguous nucleotides differing by no more than three nucleotides from any one of the nucleotide sequence of nucleotides 977-997, 980-1000, 973-993, 988-1008, 987-1007, 972-992, 979-999, 1001-1021, 976-996, 994-1014, 1002-1022, 978-998, 974-994, 520-540, 521-541, 5464-5484, 1813-1833, 2378-2398, 3242-3262, 5442-5462, 1665-1685, 524-544, 5207-5227, 4670-4690, 3420-3440, 3328-3348, 5409-5429, 5439-5459, 4527-4547, 5441-5461, 5410-5430 and 5446-5466 of SEQ ID NO: 1, and the antisense strand comprises at least 15 contiguous nucleotides from the corresponding nucleotide sequence of SEQ ID NO: 2.
  • 7. The dsRNA agent of any one of claims 1-6, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by no more than three nucleotides from any one of the antisense strand nucleotide sequences of a duplex selected from the group consisting of AD-523799.1, AD-523802.1, AD-523795.1, AD-523810.1, AD-523809.1, AD-1019331.1, AD-523801.1, AD-523823.1, AD-523798.1, AD-523816.1, AD-523824.1, AD-523800.1, AD-523796.1, AD-535094.1, AD-535094.1, AD-535095.1, AD-538647.1, AD-535922.1, AD-536317.1, AD-536911.1, AD-538626.1, AD-535864.1, AD-523561.1, AD-523565.1, AD-523562.1, AD-526914.1, AD-526394.1, AD-395452.1, AD-525343.1, AD-524274.1, AD-526956.1, AD-526986.1, AD-526296.1, AD-526988.1, AD-526957.1, AD-526993.1, AD-1397070.1, AD-1397070.2, AD-1397071.1, AD-1397071.2, AD-1397072.1, AD-1397072.2, AD-1397073.1, AD-1397073.2, AD-1397074.1, AD-1397074.2, AD-1397075.1, AD-1397075.2, AD-1397076.1, AD-1397076.2, AD-1397077.1, AD-1397077.2, AD-1397078.1, AD-1397078.2, AD-1397250.1, AD-1397251.1, AD-1397252.1, AD-1397253.1, AD-1397254.1, AD-1397255.1, AD-1397256.1, AD-1397257.1, AD-1397258.1, AD-1397259.1, AD-1397260.1, AD-1397261.1, AD-1397262.1, AD-1397263.1, AD-1397264.1, AD-1397265.1, AD-1423242.1, AD-1423243.1, AD-1423244.1, AD-1423245.1, AD-1423246.1, AD-1423247.1, AD-1423248.1, AD-1423249.1, AD-1423250.1, AD-1423251.1, AD-1423252.1, AD-1423253.1, AD-1423254.1, AD-1423255.1, AD-1423256.1, AD-1423257.1, AD-1423258.1, AD-1423259.1, AD-1423260.1, AD-1423261.1, AD-1423262.1, AD-1423263.1, AD-1423264.1, AD-1423265.1, AD-1423266.1, AD-1423267.1, AD-1423268.1, AD-1423269.1, AD-1423270.1, AD-1423271.1, AD-1423272.1, AD-1423273.1, AD-1423274.1, AD-1423275.1, AD-1423276.1, AD-1423277.1, AD-1423278.1, AD-1423279.1, AD-1423280.1, AD-1423281.1, AD-1423282.1, AD-1423283.1, AD-1423284.1, AD-1423285.1, AD-1423286.1, AD-1423287.1, AD-1423288.1, AD-1423289.1, AD-1423290.1, AD-1423291.1, AD-1423292.1, AD-1423293.1, AD-1423294.1, AD-1423295.1, AD-1423296.1, AD-1423297.1, AD-1423298.1, AD-1423299.1, AD-1423300.1, AD-1397266.1, AD-1397266.2, AD-1397267.1, AD-1423301.1, AD-1397268.1, AD-1397268.2, AD-1397269.1, AD-1423302.1, AD-1397270.1, AD-1397270.2, AD-1397271.1, AD-1397271.2, AD-1397272.1, AD-1423303.1, AD-1397273.1, AD-1423304.1, AD-1397274.1, AD-1423305.1, AD-1397275.1, AD-1423306.1, AD-1397276.1, AD-1397277.1, AD-1397277.2, AD-1397278.1, AD-1397279.1, AD-1397280.1, AD-1397281.1, AD-1397282.1, AD-1397283.1, AD-1397284.1, AD-1397285.1, AD-1397286.1, AD-1397287.1, AD-1397079.1, AD-1397079.2, AD-1397288.1, AD-1397289.1, AD-1397290.1, AD-1397080.1, AD-1397080.2, AD-1397291.1, AD-1397292.1, AD-1397293.1, AD-1397294.1, AD-1397081.1, AD-1397081.2, AD-1397295.1, AD-1397082.1, AD-1397082.2, AD-1397083.1, AD-1397083.2, AD-1397296.1, AD-1397297.1, AD-1397298.1, AD-1397299.1, AD-1397300.1, AD-1397301.1, AD-1397302.1, AD-1397084.1, AD-1397085.1, AD-1397086.1, AD-1397303.1, AD-1397087.1, AD-1397087.2, AD-1397304.1, AD-1397305.1, AD-1397306.1, AD-1397307.1, AD-1397308.1, AD-1397309.1, AD-1397310.1, AD-1397311.1, AD-1397312.1, AD-1397313.1, AD-1397314.1, AD-1397315.1, AD-1397316.1, AD-1397317.1, AD-1397318.1, AD-1397319.1, AD-1397320.1, AD-1397321.1, AD-1397322.1, AD-1397088.1, AD-1397089.1, AD-1397090.1, AD-1397091.1, AD-1397092.1, AD-1397093.1, AD-1397094.1, AD-1397095.1, AD-1397096.1, AD-1397097.1, AD-1397098.1, AD-1397099.1, AD-1397101.1, AD-1397102.1, AD-1397103.1, AD-1397104.1, AD-1397105.1, AD-1397106.1, AD-1397107.1, AD-1397108.1, AD-1397109.1, AD-1397110.1, AD-1397111.1, AD-1397112.1, AD-1397113.1, AD-1397114.1, AD-1397115.1, AD-1397116.1, AD-1397117.1, AD-1397118.1, AD-1397119.1, AD-1397120.1, AD-1397121.1, AD-1397122.1, AD-1397123.1, AD-1397124.1, AD-1397125.1, AD-1397126.1, AD-1397127.1, AD-1397128.1, AD-1397129.1, AD-1397130.1, AD-1397131.1, AD-1397132.1, AD-1397133.1, AD-1397134.1, AD-1397135.1, AD-1397136.1, AD-1397137.1, AD-1397138.1, AD-1397139.1, AD-1397140.1, AD-1397141.1, AD-1397142.1, AD-1397143.1, AD-1397144.1, AD-1397145.1, AD-1397146.1, AD-1397147.1, AD-1397148.1, AD-1397149.1, AD-1397150.1, AD-1397151.1, AD-1397152.1, AD-1397153.1, AD-1397154.1, AD-1397155.1, AD-1397156.1, AD-1397157.1, AD-1397158.1, AD-1397159.1, AD-1397160.1, AD-1397161.1, AD-1397162.1, AD-1397163.1, AD-1397164.1, AD-1397165.1, AD-1397166.1, AD-1397167.1, AD-1397168.1, AD-1397169.1, AD-1397170.1, AD-1397171.1, AD-1397172.1, AD-1397173.1, AD-1397174.1, AD-1397175.1, AD-1397176.1, AD-1397177.1, AD-1397178.1, AD-1397179.1, AD-1397180.1, AD-1397181.1, AD-1397182.1, AD-1397183.1, AD-1397184.1, AD-1397185.1, AD-1397186.1, AD-1397187.1, AD-1397188.1, AD-1397189.1, AD-1397190.1, AD-1397191.1, AD-1397192.1, AD-1397193.1, AD-1397194.1, AD-1397195.1, AD-1397196.1, AD-1397197.1, AD-1397198.1, AD-1397199.1, AD-1397200.1, AD-1397201.1, AD-1397202.1, AD-1397203.1, AD-1397204.1, AD-1397205.1, AD-1397206.1, AD-1397207.1, AD-1397208.1, AD-1397209.1, AD-1397210.1, AD-1397211.1, AD-1397212.1, AD-1397213.1, AD-1397214.1, AD-1397215.1, AD-1397216.1, AD-1397217.1, AD-1397218.1, AD-1397219.1, AD-1397220.1, AD-1397221.1, AD-1397222.1, AD-1397223.1, AD-1397224.1, AD-1397225.1, AD-1397226.1, AD-1397227.1, AD-1397228.1, AD-1397229.1, AD-1397230.1, AD-1397231.1, AD-1397232.1, AD-1397233.1, AD-1397234.1, AD-1397235.1, AD-1397236.1, AD-1397237.1, AD-1397238.1, AD-1397239.1, AD-1397240.1, AD-1397241.1, AD-1397242.1, AD-1397243.1, AD-1397244.1, AD-1397245.1, AD-1397246.1, AD-1397247.1, AD-1397248.1, AD-1397249.1, AD-523565.1, AD-1397072.3, AD-1397073.3, AD-1397076.3, AD-1397077.3, AD-1397078.3, AD-1397252.2, AD-1397257.2, AD-1397258.2, AD-1397259.2, AD-1397263.2, AD-1397264.2, AD-1397309.2, AD-64958.114, AD-393758.4, AD-1397080.3, AD-1397293.2, AD-1397294.2, AD-1397081.3, AD-1397083.3, AD-1397298.2, AD-1397299.2, AD-1397084.2, AD-1397085.2, AD-1397087.3, AD-1397306.2, AD-1397307.2, AD-1397308.2, AD-1397088.2, AD-1566238, AD-1566239, AD-1566240, AD-1566241, AD-1566242, AD-1566243, AD-1566244, AD-1566245, AD-1566246, AD-1091965, AD-1566248, AD-1566249, AD-1566250, AD-1091966, AD-1566251, AD-1566252, AD-1566253, AD-1566254, AD-1566255, AD-1566256, AD-1566257, AD-1566258, AD-1566259, AD-692906, AD-1566575, AD-1566576, AD-1566577, AD-1566580, AD-1566581, AD-1566582, AD-1566583, AD-1566584, AD-1566586, AD-1566587, AD-1566588, AD-1566590, AD-1566591, AD-1566634, AD-1566635, AD-1566638, AD-1566639, AD-1566641, AD-1566642, AD-1566643, AD-1566679, AD-1566861, AD-1567153, AD-1567154, AD-1567157, AD-1567159, AD-1567160, AD-1567161, AD-1567164, AD-1567167, AD-1567199, AD-1567202, AD-1567550, AD-1567554, AD-1567784, AD-1567896, AD-1567897, AD-1568105, AD-1568108, AD-1568109, AD-1568139, AD-1568140, AD-1568143, AD-1568144, AD-1568148, AD-1568150, AD-1568151, AD-1568152, AD-1568153, AD-1568154, AD-1568158, AD-1568161, AD-1568172, AD-1568174, AD-1568175, AD-692908, AD-1568176, AD-1569830, AD-1569832, AD-1569834, AD-1569835, AD-1569862, AD-1569872, AD-1569890 and AD-1569892.
  • 8. The dsRNA agent of claim 1 or 2, wherein the nucleotide sequence of the sense and antisense strand comprise any one of the sense and antisense strand nucleotide sequences in any one of Tables 3-8 and 16-28.
  • 9. The dsRNA agent of claim 1 or 2, wherein the nucleotide sequence of the sense strand comprises at least 15 contiguous nucleotides corresponding to the MAPT gene exon 10 sense strand sequence set forth in SEQ ID No.: 1533 and an antisense strand comprising a sequence complementary thereto.
  • 10. A double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of MAPT, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the sense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from the nucleotide sequence of SEQ ID NO: 5 and the antisense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from the nucleotide sequence of SEQ ID NO: 6.
  • 11. A double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of MAPT, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the antisense strand comprises a region of complementarity to an mRNA encoding Tau, and wherein the region of complementarity comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from the nucleotide sequence of SEQ ID NO:6.
  • 12. A double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of MAPT, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the antisense strand comprises a region of complementarity to an mRNA encoding Tau, and wherein the region of complementarity comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from any one of the antisense nucleotide sequences in any one of Tables 12-13.
  • 13. The dsRNA agent of any one of claims 10-12, wherein the sense strand comprises at least 15 contiguous nucleotides differing by no more than three nucleotides from any one of the nucleotide sequence of nucleotides 1065-1085, 1195-1215, 1066-1086, 1068-1088, 705-725, 1067-1087, 4520-4540, 3341-3361, 4515-4535, 5284-5304, 5285-5305, 344-364, 5283-5303, 5354-5374, 2459-2479, 1061-1081, 706-726, 972-992, 4564-4584, 995-1015, 4546-4566, 968-988, 1127-1147, 4534-4554, 158-178, 4494-4514, 1691-1711, 3544-3564, 198-218, 979-999, 4548-4568, 4551-4571, 543-563, 715-735, 542-562, 352-372, 362-382, 4556-4576, 4547-4567, 4542-4562, 4558-4578, 4549-4569, 5074-5094, 4552-4572, 5073-5093, 5076-5096, 4550-4570 and 2753-2773 of SEQ ID NO: 5, and the antisense strand comprises at least 15 contiguous nucleotides from the corresponding nucleotide sequence of SEQ ID NO: 6.
  • 14. The dsRNA agent of any one of claims 10-13, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by no more than three nucleotides from any one of the antisense strand nucleotide sequences of a duplex selected from the group consisting of AD-393758.1, AD-393888.1, AD-393759.1, AD-393761.1, AD-393495.1, AD-393760.1, AD-396425.1, AD-395441.1, AD-396420.1, AD-397103.1, AD-397104.1, AD-393239.1, AD-397102.1, AD-397167.1, AD-394791.1, AD-393754.1, AD-393496.1, AD-393667.1, AD-396467.1, AD-393690.1, AD-396449.1, AD-393663.1, AD-393820.1, AD-396437.1, AD-393084.1, AD-396401.1, AD-394296.1, AD-395574.1, AD-393124.1, AD-393674.1, AD-396451.1, AD-396454.1, AD-393376.1, AD-393505.1, AD-393375.1, AD-393247.1, AD-393257.1, AD-396459.1, AD-396450.1, AD-396445.1, AD-396461.1, AD-396452.1, AD-396913.1, AD-396455.1, AD-396912.1, AD-396915.1, AD-396453.1 and AD-394991.1.
  • 15. The dsRNA agent of any one of claims 1-14, wherein the sense strand, the antisense strand, or both the sense strand and the antisense strand is conjugated to one or more lipophilic moieties.
  • 16. The dsRNA agent of claim 15, wherein the lipophilic moiety is conjugated to one or more internal positions in the double stranded region of the dsRNA agent.
  • 17. The dsRNA agent of claim 15 or 16, wherein the lipophilic moiety is conjugated via a linker or carrier.
  • 18. The dsRNA agent of any one of claims 15-17, wherein lipophilicity of the lipophilic moiety, measured by logKow, exceeds 0.
  • 19. The dsRNA agent of any one of claims 1-18, wherein the hydrophobicity of the double-stranded RNA agent, measured by the unbound fraction in a plasma protein binding assay of the double-stranded RNA agent, exceeds 0.2.
  • 20. The dsRNA agent of claim 19, wherein the plasma protein binding assay is an electrophoretic mobility shift assay using human serum albumin protein.
  • 21. The dsRNA agent of any one of claims 1-20, wherein the dsRNA agent comprises at least one modified nucleotide.
  • 22. The dsRNA agent of claim 21, wherein no more than five of the sense strand nucleotides and no more than five of the nucleotides of the antisense strand are unmodified nucleotides.
  • 23. The dsRNA agent of claim 21, wherein all of the nucleotides of the sense strand and all of the nucleotides of the antisense strand are modified nucleotides.
  • 24. The dsRNA agent of any one of claims 21-23, wherein at least one of the modified nucleotides is selected from the group consisting of a deoxy-nucleotide, a 3′-terminal deoxythymidine (dT) nucleotide, a 2′-O-methyl modified nucleotide, a 2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, a locked nucleotide, an unlocked nucleotide, a conformationally restricted nucleotide, a constrained ethyl nucleotide, an abasic nucleotide, a 2′-amino-modified nucleotide, a 2′-O-allyl-modified nucleotide, 2′-C-alkyl-modified nucleotide, 2′-hydroxly-modified nucleotide, a 2′-methoxyethyl modified nucleotide, a 2′-O-alkyl-modified nucleotide, a morpholino nucleotide, a phosphoramidate, a non-natural base comprising nucleotide, a tetrahydropyran modified nucleotide, a 1,5-anhydrohexitol modified nucleotide, a cyclohexenyl modified nucleotide, a nucleotide comprising a 5′-phosphorothioate group, a nucleotide comprising a 5′-methylphosphonate group, a nucleotide comprising a 5′ phosphate or 5′ phosphate mimic, a nucleotide comprising vinyl phosphonate, a nucleotide comprising adenosine-glycol nucleic acid (GNA), a nucleotide comprising thymidine-glycol nucleic acid (GNA)S-Isomer, a nucleotide comprising 2-hydroxymethyl-tetrahydrofurane-5-phosphate, a nucleotide comprising 2′-deoxythymidine-3′phosphate, a nucleotide comprising 2′-deoxyguanosine-3′-phosphate, and a terminal nucleotide linked to a cholesteryl derivative and a dodecanoic acid bisdecylamide group; and combinations thereof.
  • 25. The dsRNA agent of claim 24, wherein the modified nucleotide is selected from the group consisting of a 2′-deoxy-2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, 3′-terminal deoxythymidine nucleotides (dT), a locked nucleotide, an abasic nucleotide, a 2′-amino-modified nucleotide, a 2′-alkyl-modified nucleotide, a morpholino nucleotide, a phosphoramidate, and a non-natural base comprising nucleotide.
  • 26. The dsRNA agent of claim 24, wherein the modified nucleotide comprises a short sequence of 3′-terminal deoxythymidine nucleotides (dT).
  • 27. The dsRNA agent of claim 24, wherein the modifications on the nucleotides are 2′-O-methyl, GNA and 2′fluoro modifications.
  • 28. The dsRNA agent of any one of claims 1-27, further comprising at least one phosphorothioate internucleotide linkage.
  • 29. The dsRNA agent of claim 28, wherein the dsRNA agent comprises 6-8 phosphorothioate internucleotide linkages.
  • 30. The dsRNA agent of any one of claims 1-29, wherein each strand is no more than 30 nucleotides in length.
  • 31. The dsRNA agent of any one of claims 1-30, wherein at least one strand comprises a 3′ overhang of at least 1 nucleotide.
  • 32. The dsRNA agent of any one of claims 1-31, wherein at least one strand comprises a 3′ overhang of at least 2 nucleotides.
  • 33. The dsRNA agent of any one of claims 1-32, wherein the double stranded region is 15-30 nucleotide pairs in length.
  • 34. The dsRNA agent of claim 33, wherein the double stranded region is 17-23 nucleotide pairs in length.
  • 35. The dsRNA agent of claim 33, wherein the double stranded region is 17-25 nucleotide pairs in length.
  • 36. The dsRNA agent of claim 33, wherein the double stranded region is 23-27 nucleotide pairs in length.
  • 37. The dsRNA agent of claim 33, wherein the double stranded region is 19-21 nucleotide pairs in length.
  • 38. The dsRNA agent of claim 33, wherein the double stranded region is 21-23 nucleotide pairs in length.
  • 39. The dsRNA agent of any one of claims 1-38, wherein each strand has 19-30 nucleotides.
  • 40. The dsRNA agent of any one of claims 1-37, wherein each strand has 19-23 nucleotides.
  • 41. The dsRNA agent of any one of claims 1-38, wherein each strand has 21-23 nucleotides.
  • 42. The dsRNA agent of any one of claims 16-41, wherein one or more lipophilic moieties are conjugated to one or more internal positions on at least one strand.
  • 43. The dsRNA agent of claim 42, wherein the one or more lipophilic moieties are conjugated to one or more internal positions on at least one strand via a linker or carrier.
  • 44. The dsRNA agent of claim 43, wherein the internal positions include all positions except the terminal two positions from each end of the at least one strand.
  • 45. The dsRNA agent of claim 43, wherein the internal positions include all positions except the terminal three positions from each end of the at least one strand.
  • 46. The dsRNA agent of claim 43-45, wherein the internal positions exclude a cleavage site region of the sense strand.
  • 47. The dsRNA agent of claim 46, wherein the internal positions include all positions except positions 9-12, counting from the 5′-end of the sense strand.
  • 48. The dsRNA agent of claim 46, wherein the internal positions include all positions except positions 11-13, counting from the 3′-end of the sense strand.
  • 49. The dsRNA agent of claim 43-45, wherein the internal positions exclude a cleavage site region of the antisense strand.
  • 50. The dsRNA agent of claim 49, wherein the internal positions include all positions except positions 12-14, counting from the 5′-end of the antisense strand.
  • 51. The dsRNA agent of claim 43-45, wherein the internal positions include all positions except positions 11-13 on the sense strand, counting from the 3′-end, and positions 12-14 on the antisense strand, counting from the 5′-end.
  • 52. The dsRNA agent of any one of claims 16-51, wherein the one or more lipophilic moieties are conjugated to one or more of the internal positions selected from the group consisting of positions 4-8 and 13-18 on the sense strand, and positions 6-10 and 15-18 on the antisense strand, counting from the 5′end of each strand.
  • 53. The dsRNA agent of claim 52, wherein the one or more lipophilic moieties are conjugated to one or more of the internal positions selected from the group consisting of positions 5, 6, 7, 15, and 17 on the sense strand, and positions 15 and 17 on the antisense strand, counting from the 5′-end of each strand.
  • 54. The dsRNA agent of claim 16, wherein the internal positions in the double stranded region exclude a cleavage site region of the sense strand.
  • 55. The dsRNA agent of any one of claims 15-54, wherein the sense strand is 21 nucleotides in length, the antisense strand is 23 nucleotides in length, and the lipophilic moiety is conjugated to position 21, position 20, position 15, position 1, position 7, position 6, or position 2 of the sense strand or position 16 of the antisense strand.
  • 56. The dsRNA agent of claim 55, wherein the lipophilic moiety is conjugated to position 21, position 20, position 15, position 1, or position 7 of the sense strand.
  • 57. The dsRNA agent of claim 55, wherein the lipophilic moiety is conjugated to position 21, position 20, or position 15 of the sense strand.
  • 58. The dsRNA agent of claim 55, wherein the lipophilic moiety is conjugated to position 20 or position 15 of the sense strand.
  • 59. The dsRNA agent of claim 55, wherein the lipophilic moiety is conjugated to position 16 of the antisense strand.
  • 60. The dsRNA agent of any one of claims 15-59, wherein the lipophilic moiety is an aliphatic, alicyclic, or polyalicyclic compound.
  • 61. The dsRNA agent of claim 60, wherein the lipophilic moiety is selected from the group consisting of lipid, cholesterol, retinoic acid, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-bis-O(hexadecyl)glycerol, geranyloxyhexyanol, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3-(oleoyl) lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine.
  • 62. The dsRNA agent of claim 60, wherein the lipophilic moiety contains a saturated or unsaturated C4-C30 hydrocarbon chain, and an optional functional group selected from the group consisting of hydroxyl, amine, carboxylic acid, sulfonate, phosphate, thiol, azide, and alkyne.
  • 63. The dsRNA agent of claim 62, wherein the lipophilic moiety contains a saturated or unsaturated C6-C18 hydrocarbon chain.
  • 64. The dsRNA agent of claim 62, wherein the lipophilic moiety contains a saturated or unsaturated C16 hydrocarbon chain.
  • 65. The dsRNA agent of claim 64, wherein the saturated or unsaturated C16 hydrocarbon chain is conjugated to position 6, counting from the 5′-end of the strand.
  • 66. The dsRNA agent of any one of claims 15-65, wherein the lipophilic moiety is conjugated via a carrier that replaces one or more nucleotide(s) in the internal position(s) or the double stranded region.
  • 67. The dsRNA agent of claim 66, wherein the carrier is a cyclic group selected from the group consisting of pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3] dioxolanyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuranyl, and decalinyl; or is an acyclic moiety based on a serinol backbone or a diethanolamine backbone.
  • 68. The dsRNA agent of any one of claims 15-65, wherein the lipophilic moiety is conjugated to the double-stranded iRNA agent via a linker containing an ether, thioether, urea, carbonate, amine, amide, maleimide-thioether, disulfide, phosphodiester, sulfonamide linkage, a product of a click reaction, or carbamate.
  • 69. The double-stranded iRNA agent of any one of claims 15-68, wherein the lipophilic moiety is conjugated to a nucleobase, sugar moiety, or internucleosidic linkage.
  • 70. The dsRNA agent of any one of claims 15-69, wherein the lipophilic moiety or targeting ligand is conjugated via a bio-cleavable linker selected from the group consisting of DNA, RNA, disulfide, amide, funtionalized monosaccharides or oligosaccharides of galactosamine, glucosamine, glucose, galactose, mannose, and combinations thereof.
  • 71. The dsRNA agent of any one of claims 15-70, wherein the 3′ end of the sense strand is protected via an end cap which is a cyclic group having an amine, said cyclic group being selected from the group consisting of pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3] dioxolanyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuranyl, and decalinyl.
  • 72. The dsRNA agent of any one of claims 15-69, further comprising a targeting ligand that targets a neuronal cell.
  • 73. The dsRNA agent of any one of claims 15-69, further comprising a targeting ligand that targets a liver cell.
  • 74. The dsRNA agent of claim 73, wherein the targeting ligand is a GalNAc conjugate.
  • 75. The dsRNA agent of any one of claims 1-74 further comprising a terminal, chiral modification occurring at the first internucleotide linkage at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration,a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, anda terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp configuration or Sp configuration.
  • 76. The dsRNA agent of any one of claims 1-74 further comprising a terminal, chiral modification occurring at the first and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration,a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, anda terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.
  • 77. The dsRNA agent of any one of claims 1-74 further comprising a terminal, chiral modification occurring at the first, second and third internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration,a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, anda terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.
  • 78. The dsRNA agent of any one of claims 1-74 further comprising a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration,a terminal, chiral modification occurring at the third internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration,a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, anda terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.
  • 79. The dsRNA agent of any one of claims 1-74 further comprising a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration,a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, anda terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.
  • 80. The dsRNA agent of any one of claims 1-79, further comprising a phosphate or phosphate mimic at the 5′-end of the antisense strand.
  • 81. The dsRNA agent of claim 80, wherein the phosphate mimic is a 5′-vinyl phosphonate (VP).
  • 82. The dsRNA agent of any one of claims 1-79, wherein the base pair at the 1 position of the 5′-end of the antisense strand of the duplex is an AU base pair.
  • 83. The dsRNA agent of any one of claims 1-79, wherein the sense strand has a total of 21 nucleotides and the antisense strand has a total of 23 nucleotides.
  • 84. A cell containing the dsRNA agent of any one of claims 1-83.
  • 85. A pharmaceutical composition for inhibiting expression of a gene encoding MAPT, comprising the dsRNA agent of any one of claims 1-83.
  • 86. A pharmaceutical composition comprising the dsRNA agent of any one of claims 1-83 and a lipid formulation.
  • 87. A pharmaceutical composition for selective inhibition of exon 10-containing MAPT transcripts, comprising the dsRNA agent of any one of claims 1-83.
  • 88. The pharmaceutical composition of any one of claims 85-87, wherein dsRNA agent is in an unbuffered solution.
  • 89. The pharmaceutical composition of claim 88, wherein the unbuffered solution is saline or water.
  • 90. The pharmaceutical composition of any one of claims 85-87, wherein said dsRNA agent is in a buffer solution.
  • 91. The pharmaceutical composition of claim 90, wherein the buffer solution comprises acetate, citrate, prolamine, carbonate, or phosphate or any combination thereof.
  • 92. The pharmaceutical composition of claim 90, wherein the buffer solution is phosphate buffered saline (PBS).
  • 93. A method of inhibiting expression of a MAPT gene in a cell, the method comprising contacting the cell with the dsRNA agent of any one of claims 1-83, or the pharmaceutical composition of any one of claims 85-92, thereby inhibiting expression of the MAPT gene in the cell.
  • 94. A method of selective inhibition of exon 10-containing MAPT transcripts in a cell, the method comprising contacting the cell with the dsRNA agent of any one of claims 1-83, or the pharmaceutical composition of any one of claims 85-92, thereby selectively degrading exon 10-containing MAPT transcripts in the cell.
  • 95. The method of claim 94, wherein the cell is within a subject.
  • 96. The method of claim 95, wherein the subject is a human.
  • 97. The method of claim 96, wherein the subject has a MAPT-associated disorder.
  • 98. The method of claim 97, wherein the MAPT-associated disorder is a neurodegenerative disorder.
  • 99. The method of claim 98, wherein the neurodegenerative disorder is associated with an abnormality of MAPT gene encoded protein Tau.
  • 100. The method of claim 99, wherein the abnormality of MAPT gene encoded protein Tau results in aggregation of Tau in subject's brain.
  • 101. The method of claim 99, wherein the neurodegenerative disorder is a familial disorder.
  • 102. The method of claim 99, wherein the neurodegenerative disorder is a sporadic disorder.
  • 103. The method of claim 97 wherein the disorder is selected from the group consisting of tauopathy, Alzheimer disease, frontotemporal dementia (FTD), behavioral variant frontotemporal dementia (bvFTD), nonfluent variant primary progressive aphasia (nfvPPA), primary progressive aphasia-semantic (PPA-S), primary progressive aphasia-logopenic (PPA-L), frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), Pick's disease (PiD), argyrophilic grain disease (AGD), multiple system tauopathy with presenile dementia (MSTD), white matter tauopathy with globular glial inclusions (FTLD with GGIs), FTLD with MAPT mutations, neurofibrillary tangle (NFT) dementia, FTD with motor neuron disease, amyotrophic lateral sclerosis (ALS), corticobasal syndrome (CBS), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), Parkinson's disease, postencephalitic Parkinsonism, Niemann-Pick disease, Huntington disease, type 1 myotonic dystrophy, and Down syndrome (DS).
  • 104. The method of any one of claims 93-103, wherein contacting the cell with the dsRNA agent inhibits the expression of MAPT by at least 25%.
  • 105. The method of any one of claims 93-103, wherein inhibiting expression of MAPT decreases Tau protein level in serum of the subject by at least 25%.
  • 106. A method of treating a subject having a disorder that would benefit from reduction in MAPT gene expression, comprising administering to the subject a therapeutically effective amount of the dsRNA agent of any one of claims 1-83, or the pharmaceutical composition of any one of claims 85-92, thereby treating the subject having the disorder that would benefit from reduction in MAPT expression.
  • 107. A method of preventing at least one symptom in a subject having a disorder that would benefit from reduction in MAPT expression, comprising administering to the subject a prophylactically effective amount of the dsRNA agent of any one of claims 1-83, or the pharmaceutical composition of any one of claims 85-92, thereby preventing at least one symptom in the subject having the disorder that would benefit from reduction in MAPT expression.
  • 108. The method of claim 106 or 107, wherein the disorder is associated with an abnormality of MAPT gene encoded protein Tau.
  • 109. The method of claim 108, wherein the abnormality of MAPT gene encoded protein Tau results in aggregation of Tau in subject's brain.
  • 110. The method of claim 108, wherein the disorder is selected from the group consisting of tauopathy, Alzheimer disease, frontotemporal dementia (FTD), behavioral variant frontotemporal dementia (bvFTD), nonfluent variant primary progressive aphasia (nfvPPA), primary progressive aphasia-semantic (PPA-S), primary progressive aphasia-logopenic (PPA-L), frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), Pick's disease (PiD), argyrophilic grain disease (AGD), multiple system tauopathy with presenile dementia (MSTD), white matter tauopathy with globular glial inclusions (FTLD with GGIs), FTLD with MAPT mutations, neurofibrillary tangle (NFT) dementia, FTD with motor neuron disease, amyotrophic lateral sclerosis (ALS), corticobasal syndrome (CBS), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), Parkinson's disease, postencephalitic Parkinsonism, Niemann-Pick disease, Huntington disease, type 1 myotonic dystrophy, and Down syndrome (DS).
  • 111. The method of any one of claims 107-110, wherein the subject is human.
  • 112. The method of claim 111, wherein the administration of the dsRNA agent, or the pharmaceutical composition, causes a decrease in Tau aggregation in the subject's brain.
  • 113. The method of any one of claims 106-112, wherein the dsRNA agent is administered to the subject at a dose of about 0.01 mg/kg to about 50 mg/kg.
  • 114. The method of any one of claims 106-113, wherein the dsRNA agent is administered to the subject intrathecally.
  • 115. The method of any one of claims 106-113, wherein the dsRNA agent is administered to the subject intracisternally.
  • 116. The method of any one of claims 106-115, further comprising determining the level of MAPT in a sample(s) from the subject.
  • 117. The method of claim 116, wherein the level of MAPT in the subject sample(s) is a Tau protein level in a cerebrospinal fluid sample(s).
  • 118. The method of any one of claims 98-117, further comprising administering to the subject an additional therapeutic agent.
  • 119. A kit comprising the dsRNA agent of any one of claims 1-83, or the pharmaceutical composition of any one of claims 85-92.
  • 120. A vial comprising the dsRNA agent of any one of claims 1-83, or the pharmaceutical composition of any one of claims 85-92.
  • 121. A syringe comprising the dsRNA agent of any one of claims 1-83, or the pharmaceutical composition of any one of claims 85-92.
  • 122. An intrathecal pump comprising the dsRNA agent of any one of claims 1-83, or the pharmaceutical composition of any one of claims 85-92.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Provisional Application No. 63/002,030, filed on Mar. 30, 2020, and claims the benefit of U.S. Provisional Application No. 63/164,467, filed on Mar. 22, 2021. The entire contents of the foregoing applications are hereby incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2021/024858 3/30/2021 WO
Provisional Applications (2)
Number Date Country
63164467 Mar 2021 US
63002030 Mar 2020 US