Miniature mass spectrometers frequently exhibit reduced performance compared to laboratory instruments, and are difficult and expensive to maintain and repair. The miniature time of flight mass spectrometer (TOF-MS) disclosed herein addresses this and other problems.
The present disclosure is directed to miniature TOF-MS and its separate components. The instrument includes a source region, detector block containing linear and reflectron detectors and an pulse pin ion gate, and a wire ring reflectron.
The detector block is designed of unitary construction for rigidity and efficiency. The two detectors allow simultaneous detection of linear and reflectron molecular species. The pulse pin ion gate allows very narrow mass selection in a small dimension instrument.
Separately, the wire ring reflectron provides a low weight reflectron capable of advanced analysis of precursor ions. In embodiments in which the reflectron is a non-linear reflectron created by differently spaced ring elements, the size required is reduced and the required electric components are easily fabricated.
The mass spectrometer is adapted to any laser based ion source, including laser ablation mass spectrometer for detection of non-volatile compounds.
A miniature time-of-flight mass spectrometer (TOF-MS) is described herein. An embodiment of the device is depicted in
In the linear detector 112, ions travel for a shorter time between leaving the source region 104 and reaching the detector 112, which results in lower resolution of mass peaks. Longer flight times, and increased mass resolution, can be achieved if the ions are allowed to enter the ion reflector 116 (sometimes called a “reflectron” or “ion mirror”). Here, the flight path is effectively doubled, and the flight times are increased (e.g. by a factor of 4) due to the gradual slowing and reversing of the ion path through the reflectron 116. If a particular mass is to be isolated for advanced analysis (e.g. characterization of molecular ion fragmentation), the ion gate (not shown, inside detector block 122) is pulsed, allowing only selected mass ions to pass through the gate and continue towards the linear detector 112 or reflectron detector 114.
In various embodiments, the miniature TOF-MS is capable of detecting any analyte, particularly non-volatile (refractory) and biological materials. The present miniature TOF-MS can be configured to act as a laser ablation mass spectrometer for detection of non-volatile compounds in planetary exploration and field-portable terrestrial applications.
The instrument can be any length, and can be as small as 1 inch, 2 inches, 3 inches, 4 inches, 5 inches, 6 inches, 7 inches, 8 inches, 9 inches, 10 inches, 11 inches, or 12 inches in length.
Aspects of the presently miniature TOF-MS are described in more detail herein. It is contemplated that each component can be used as a unit with the components disclosed in
The source region can be any source designed to accelerate ions in a time of flight mass spectrometry.
In some embodiments, the source can be any surface desorption method, including matrix assisted laser desorption/ionization (MALDI), AP-MALDI, plasma desorption/ionization, chemical ionization, and/or other types of surface ionization. The laser can be any laser known for use in MALDI or desorption methods, including pulsed UV or IR lasers. The device can also be adapted to laser ablation methods.
The focusing optics can include any focusing optics suitable for an ion beam, including ion focusing elements (e.g. einzel lens).
The detector block 122 depicted in
A pulsed pin ion gate 300 is embedded into the center of the detector block. The ion gate allows for removal (i.e. gating) of ions having particular ion mass or range of ion masses for further analysis.
Ion gates allow the passage of ions in a selected mass range. As depicted in
When the pin 302 is at the same potential as the ion flight path 306 and grids 308 and 310, ions do not deviate from their trajectory in the ion flight path 306. When the pin 302 is at a different potential from the ion flight path 306, ions deviate from their trajectory, and do not reach the reflectron detector 314. By timing the pin 302 to have the same potential as the ion flight path 306 when specific ions pass through the ion gate 300 and a different potential when unwanted ions pass through the ion gate 300, specific ions or groups of ions can be selected for further analysis.
In various embodiments, the grids 308 and 310 are high transmission grids. In various embodiments, the transmission efficiency can be 80%, 85%, 88%, or 90%. The grids 308 ad 310 can be constructed of any suitable material known in the art, for example nickel mesh material.
A pulse potential can be applied to the pin 302 of the ion gate 300 by any means known in the art. In various embodiments, the pin 302 is connected to a pulse generator that generates a pulse potential. In various embodiments, the pulse can be a square wave. The pulse time can be any time induced by control electronics. In some aspects the pulse width can be 25 ns, 50 ns, 75 ns, 100 ns, 130 ns, 150 ns, 170 ns, 200 ns, 250 ns, 300 ns, 350 ns, 400 ns, 450 ns, 500 ns, 550 ns, 600 ns, 650 ns, 700 ns, 750 ns, 800 ns, 850 ns, 900 ns, 950 ns, or 1000 ns.
The ion gate 300 can be used to gate out all masses below a specific mass. Alternatively, masses above a certain mass can be gated out. In some instances, more than one mass range can be selected, by for example, using a quick-recovery pulse generator.
The pin 302 in a pulse pin gate can be any type of conductive material inserted close to the ion flight path 306. The pulse pin can be any shape (e.g., having a circular or square cross-section) provided that it causes ions to diverge from the ion beam when the pin is pulsed at a different potential from the drift region and grids. As long as the pin is configured to affect the ion beam when the pin is pulsed, the pin can be disposed at any position relative to the drift region. In various non-limiting embodiments, the pulsed pin can protrude into the drift channel of the detector assembly, be held on flush with the edge of the drift tube, be withdrawn from the drift tube, extend directly into the ion beam.
In various embodiments, grids A 306 and grid B 308 are spaced apart by a defined distance. More narrowly spaced grids allow a narrower packet of ion masses to be selected by the gate. In some instances, the space separating the grid is 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm, 3.5 mm, 4.0 mm, 5.0 mm, 6.0 mm. 7.0 mm, 8.0 mm, 9.0 mm, or 10.0 mm. Since the tubes (and grids) are held at the drift potential, application of high voltage to the pin promotes wide deflection to that portion of the ion beam within the grid spacing. Unlike other gates (e.g. the Bradbury-Nielsen gate), the pulse pin ion gate 300 is simple to fabricate, requires only a single high voltage pulse, and has an adjustable “window” by variation in the surrounding grid spacing.
The pulsed pin ion gate 300 may be made of any conductive material, such as copper. Grid A 306 and grid B 308 can be made of any material that can be used to make high transmission gates, e.g. a nickel mesh.
As depicted in
In various additional embodiments, one or more channel plates can be configured in detectors. Two, three, or more channel plates can be held together.
As depicted in
The wire ring reflectron 116 includes an electrically non-conductive cylindrical frame 124, with a plurality of conductive wire elements 126 each surrounding the cross section of the cylindrical frame to create a cylindrical wire ring reflectron 116 having a proximal end 128 and a distal end 130. Each adjacent wire element is electrically connected by a resistors (not shown), such as a variable resistor or a constant resistor.
It is noted that cylindrical reflectron requires only that the rings, optionally wire rings, surround the center axis of the reflectron. Thus, each wire ring can be a series of straight sections surrounding the reflectron and still be considered cylindrical. The cylindrical shape can be, e.g., pentagonal, hexagonal, heptagonal, octagonal, etc. and still be considered cylindrical.
In a linear reflectron, the potential at the center of the reflectron increases linearly from the proximal end of the reflectron as a function of distance into the reflectron. In certain embodiments, both the resistance and distance between elements is constant. In non-linear reflectrons, the potential at the center of the reflectron increases non-linearly with an increasing slope from the proximal end to the distal end of the reflectron. In one embodiment, this can be accomplished when each successive resistor between elements from the proximal end to the distal end of the reflectron has a decreased resistance. In another embodiment, this can be accomplished when the distance between each wire elements decreases from the proximal end of the reflectron to the distal end of the reflectron.
An embodiment of the wire ring reflectron is depicted in
The reflection rails can be made of any non-conductive material, such as polycarbonate. The ring elements can be made of any conductive material, including wire (e.g. copper wire).
In the design of
In the embodiment depicted in
The support structure 404 can be made out of any material known in the art suitable for a non-conductive support structure. The support structure 404 can be selected from materials that have lower amounts of outgassing to allow lower vacuums in the mass spectrometer. The support structure 404 can further be selected from lightweight components to allow for improved portability. The support structure 404 can also be designed for rigid materials for rugged use associated with various applications.
The materials for the reflectron provide a lightweight design suitable for instrument portability. The open architecture allows rapid pumping, and the variable spacing in the hole pattern to fabricate non-linear ion reflectrons.
Curvature is same the curve that was originally published. It's the arc of a circle.
In various embodiments, any number of ring elements can be included.
The integrated design of the detector block allows for simple assembly and repair, low fabrication cost, and a highly ruggedized package made primarily from lightweight components, such as plastic. The pulsed pin ion gate requires only a single HV pulse for operation, and the single copper pin is easily fitted into the detector block assembly. Wire frame reflectron features a lightweight design, open architecture for rapid pumping, and simple accommodation of variable spacing in the hole pattern to fabricate non-linear ion reflectors.
In various applications, the channel plates in the detector have the same potential as the drift region. Examples of such potentials are 1 kV, 2 kV, 2.7 kV, 3 kV, or 4 kV. If the flight tube is at the same potential as the channel plate and the reflectron potentials are designed relative to the channel plates, no grid is required in front of the channel plate in order to keep the potential of the channel plate from affecting the time of flight of the ions. The design therefore provides less potential for arcing between the detector and grid in operation. The design also allows increased transmission of ions due to the absence of any grid that would inhibit transmission. The pin anode used in the detector can be at ground. That way, when the electrons hit the surface, the pin is at ground potential allowing for easier coupling to the detection electronics. Gating potentials for the pulsed pin ion gate can be any potential that varies from the potential of the drift region.
In various additional embodiments, grids can be placed in front of each channel plate detector. The grids are kept at the same potential as the rest of the instrument. The potential difference between the grid and the channel plate allows for increased potential applied to the channel plate, and therefore a larger detection signal and increased sensitivity for post-source detection of product ions. Such embodiments allow the drift region to have a zero potential. In various additional applications, the drift region of the instrument can be at a non-zero potential. When grids are used at the detectors, post acceleration of the ions before they hit the detector, provides higher sensitivity.
The miniature TOF-MS described herein, and its components, provide a highly efficient field portable instrument. The completed Miniature TOF-MS features simple operation, rapid analysis time, relatively inexpensive purchase price (compared to Lab Scale instruments of comparable capabilities).
The field portability of the miniature TOF-MS disclosed herein can be used for a variety of applications. The mass spectrometer, and/or components thereof, can be used to detect volatile and non-volatile analytes.
In some aspects, the miniature TOF-MS can be used to detect non-volatile (refractory) and biological materials on landed planetary missions. Both atmospheric and airless bodies are potential candidate destinations for the purpose of characterizing mineralogy, and searching for evidence of existing or extant biological activity. Applications include detection of weapons of mass destruction, as well as chemical and bioterrorism components. Components of nuclear forensics can be detected at high efficiency. The device can be used in forensic analysis, agricultural analysis (e.g. detection of plant pathogens, soil contamination, fertilizer management), and oceanographic Analysis (e.g. detection of harmful algal bloom detection and verification).
The following non-limiting examples are for illustration purposes only, and do not limit the scope of the disclosure herein.
The present patent application is a continuation of U.S. patent application Ser. No. 14/407,531, filed Dec. 12, 2014, which application is a 371 of International Patent Application No. PCT/US2013/045450, which was filed with the U.S. Receiving Office on Jun. 12, 2013, entitled “MINIATURE TIME-OF-FLIGHT MASS SPECTROMETER,” which claims priority to U.S. Provisional Patent Application No. 61/658,576, filed Jun. 12, 2012, and entitled Miniature Time-of-flight Mass Spectrometer, the contents of each of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61658576 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14407531 | Dec 2014 | US |
Child | 15443825 | US |