Various embodiments of the inventions described herein relate to the field of proximity sensors, and components, devices, systems and methods associated therewith.
Optical proximity sensors, such as the AVAGO TECHNOLOGIES™ HSDL-9100 surface-mount proximity sensor, the AVAGO TECHNOLOGIES™ APDS-9101 integrated reflective sensor, the AVAGO TECHNOLOGIES™ APDS-9120 integrated optical proximity sensor, and the AVAGO TECHNOLOGIES™ APDS-9800 integrated ambient light and proximity sensor, are known in the art. Such sensors typically comprise an integrated high efficiency infrared emitter or light source and a corresponding photodiode or light detector, and are employed in a large number of hand-held electronic devices such as mobile phones, Personal Data Assistants (“PDAs”), laptop and portable computers, portable and handheld devices, amusement and vending machines, industrial automation machinery and equipment, contactless switches, sanitary automation machinery and equipment, and the like.
Referring to
As further shown in
As will now be seen, at least some optical proximity sensors of the prior art rely upon the use of an externally mounted metal shield 18, which is required to reduce the amount of crosstalk or interference that might otherwise occur between LED 16 and light detector 12, as well as to help increase the detection distance of the device. Metal shields 18 are quite small, however, making them difficult to manufacture in high volumes, and thus expensive to fabricate. Such metal shields 18 also generally require expensive automated equipment to attach same to sensors 10 in a mass production setting. Moreover, the quality of metal shields 18 often varies, and issues can arise with suppliers being unable to meet the tight dimensional tolerances required for such small devices. Metal shields 18 can also detach from sensor 10, thereby adding another failure point for sensor 10.
In addition, the commercial marketplace demands ever smaller portable electronic devices. This of course means there exists a strong motivation to make optical proximity sensors ever smaller. As optical proximity sensors become smaller, it becomes increasingly difficult to manufacture and attach the aforementioned metal shields to the sensors in a mass production setting. The metal shields themselves also add to the bulk and volume of the resulting sensor or package.
What is needed is an optical proximity sensor design that eliminates the need to include a metal shield 18, but which retains high crosstalk and interference rejection characteristics so that an optical proximity sensor can be provided that features improved performance, lower cost, increased manufacturability and improved reliability. What is also needed is a smaller optical proximity sensor.
In some embodiments, there is provided an optical proximity sensor comprising a substrate having a plurality of wire bond pads, an infrared light emitter mounted atop the substrate and electrically connected to at least one of the wire bond pads, a light detector mounted atop the substrate and electrically connected to at least one of the wire bond pads, an integrated circuit mounted atop the substrate, the integrated circuit comprising light emitter driving and light detecting circuits operably connected to the light emitter and the light detector, respectively, the integrated circuit being operably connected to some of the plurality of wire bond pads, at least one spacer comprising an electrically non-conductive dielectric material, the spacer being mounted to a top surface of the integrated circuit, an ambient light sensor mounted to a top surface of the spacer, the ambient light sensor being electrically connected to at least one of the wire bond pads, a light detector mounted to the top surface of the spacer, the light detector being electrically connected to at least one of the wire bond pads, a first molded infrared light pass component disposed over and covering the light emitter, a second molded infrared light pass component disposed over and covering the ambient light sensor and the light detector, and a molded infrared light cut component disposed over and between the first and second molded infrared light pass components and over portions of the substrate, the molded infrared light cut component having first, second and third apertures disposed therethrough above the light emitter, the ambient light sensor, and the light detector, respectively.
In other embodiments, there is provided a method of making an optical proximity sensor comprising mounting an infrared light emitter atop a substrate comprising a plurality of wire bond pads and electrically connecting the light emitter to at least one of the wire bond pads, mounting a light detector atop the substrate and electrically connecting the light detector to at least one of the wire bond pads, mounting an integrated circuit atop the substrate, the integrated circuit comprising light emitter driving and light detecting circuits operably connected to the light emitter and the light detector, respectively, and electrically connecting the integrated circuit to some of the plurality of wire bond pads, mounting at least one spacer comprising an electrically non-conductive dielectric material to a top surface of the integrated circuit, mounting an ambient light sensor to a top surface of the spacer, and electrically connecting the ambient light sensor to at least one of the wire bond pads, mounting a light detector to the top surface of the spacer, and electrically connecting the light detector to at least one of the wire bond pads, molding or casting a first infrared light pass component over the light emitter, molding or casting a second infrared light pass component over the ambient light sensor and the light detector, and molding or casting an infrared light cut component over and between the first and second infrared light pass components and over portions of the substrate, the molded infrared light cut component having first, second and third apertures disposed therethrough above the light emitter, the ambient light sensor, and the light detector, respectively.
Further embodiments are disclosed herein or will become apparent to those skilled in the art after having read and understood the specification and drawings hereof.
Different aspects of the various embodiments of the invention will become apparent from the following specification, drawings and claims in which:
The drawings are not necessarily to scale. Like numbers refer to like parts or steps throughout the drawings, unless otherwise noted.
In the following Detailed Description, reference is made to the accompanying drawings, which form a part hereof, and in which are illustrated specific embodiments according to which the invention may be practiced. In this regard, directional terminology, such as “top,” “bottom,” “atop,” “beneath,” “forward,” “backward,” “side,” “front,” “back,” etc., is used with reference to the orientation of the Figures being described. Because the components of various embodiments of the invention may be positioned in a number of different orientations, the directional terminology is used for purposes of illustration and is in no way limiting. It is to be understood that other embodiments may be utilized, and that structural or logical changes may be made without departing from the scope of the present invention. The following Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of the present invention is is defined by the appended claims.
Referring now to
Referring now to
Continuing to refer to
Infra-red rays emitted by light emitter or LED 16 exit sensor 10 and return to light detector 12 as rays, thereby permitting detection of object to be detected 60. Light rays internally reflected from the top or side surfaces of molded component 31 are blocked from reaching light detector 12 by molded substantially optically non-transmissive infrared light cut component 33. Light rays reflected from a window interposed between optical sensor 10 and object to be detected 60 are also blocked by molded substantially optically non-transmissive infrared light cut component 33. Total Internal Reflection between components 31, 32 and 33 helps improve the performance of proximity sensor 10. As will now be seen, the embodiment of sensor 10 shown in
According to one embodiment, first and second molded optically transmissive infrared light pass components 31 and 32 are formed using an infrared-pass and optically transmissive transfer molding compound such as NITTO DENKO™ NT-8506 clear transfer molding compound 8506 or PENCHEM Technologies™ OP 579 infrared pass optoelectronic epoxy. Other suitable optically transmissive epoxies, plastics, polymers or other materials may also be employed. In some embodiments, and as discussed in further detail below, optically transmissive infrared light pass components 31 and 32 are molded during the same manufacturing step, or may be molded separately. See Technical Data Sheet NT-8506 entitled “Clear Transfer Molding Compound NT-8506” dated 2001 and PENCHEM OP 579 IR Pass Optoelectronic Epoxy Data Sheet, Revision 1, dated April, 2009, both of which documents are hereby incorporated by reference herein, each in its respective entirety.
In one embodiment, molded substantially optically non-transmissive infrared light cut component 33 is formed using an infrared-blocking, filtering or cutting transfer molding compound such as NITTO DENKO™ NT-MB-IRL3801 two-part epoxy resin material, NITTO DENKO™ NT8570 material, or PENCHEM Technologies™ OP 580 infrared filter optoelectronic epoxy, either of which preferably contains an amount of an infrared cutting material that has been selected by the user to achieve acceptable infrared light blocking performance while minimizing the amount of such infrared cutting material employed to keep costs to a minimum. Other suitable optically non-transmissive epoxies, plastics, polymers or other materials may also be employed. See Technical Data Sheet NT-MB-IRL3801 published by DENKO™ dated 2008 and PENCHEM OP 580 IR Filter Optoelectronic Epoxy Data Sheet, Revision 1, dated April, 2009, both of which documents are hereby incorporated by reference herein, each in its respective entirety.
Note that other many methods for making optical proximity sensor 10 are also contemplated, and that the order of the steps shown in
The transfer molding processes described above include methods where thermosetting materials are softened by heat and pressure in a transfer chamber, and then forced at high pressure through suitable sprues, runners, and gates into a closed mold for final curing. Casting, injection molding and other suitable methods and processes may also be employed to form components 31, 32 and 33.
Included within the scope of the present invention are methods of making and having made the various components, devices and systems described herein.
Those skilled in the art will understand that the various embodiments of the proximity sensor disclosed herein may be incorporated into portable electronic devices such as mobile telephones, smart phones, personal data assistants (PDAs), laptop computers, notebook computer, computers and other devices.
Various embodiments of the invention are contemplated in addition to those disclosed hereinabove. The above-described embodiments should be considered as examples of the present invention, rather than as limiting the scope of the invention. In addition to the foregoing embodiments of the invention, review of the detailed description and accompanying drawings will show that there are other embodiments of the invention. Accordingly, many combinations, permutations, variations and modifications of the foregoing embodiments of the invention not set forth explicitly herein will nevertheless fall within the scope of the invention.
This patent application is a continuation-in-part of U.S. patent application Ser. No. 12/557,516 filed Sep. 10, 2009 entitled “Package-on-Package (POP) Optical Proximity Sensor” to Yufeng Yao et al. (hereafter “the '516 patent application”), issued as U.S. Pat. No. 8,143,608, and claims priority and other benefits therefrom. The '516 patent application is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5155777 | Angelopoulos et al. | Oct 1992 | A |
5367393 | Ohara et al. | Nov 1994 | A |
5675143 | Heimlicher | Oct 1997 | A |
6064062 | Bohn | May 2000 | A |
6135816 | Mashiyama | Oct 2000 | A |
6364706 | Ando et al. | Apr 2002 | B1 |
6572410 | Volstorf et al. | Jun 2003 | B1 |
6635955 | Scheidle | Oct 2003 | B2 |
6674653 | Valentine | Jan 2004 | B1 |
6885300 | Johnston et al. | Apr 2005 | B1 |
7026710 | Coyle et al. | Apr 2006 | B2 |
7172126 | Schmidt et al. | Feb 2007 | B2 |
7229295 | Ice et al. | Jun 2007 | B2 |
7256483 | Eppler et al. | Aug 2007 | B2 |
7258264 | Ice et al. | Aug 2007 | B2 |
7277012 | Johnston et al. | Oct 2007 | B2 |
7289142 | Silverbrook | Oct 2007 | B2 |
7387033 | Qing et al. | Jun 2008 | B2 |
7387907 | Hsu et al. | Jun 2008 | B2 |
7427806 | Arndt et al. | Sep 2008 | B2 |
7510888 | Guenther et al. | Mar 2009 | B2 |
7514666 | Yee et al. | Apr 2009 | B2 |
7582513 | Kroeninger et al. | Sep 2009 | B2 |
7675132 | Waitl et al. | Mar 2010 | B2 |
7767485 | Ogawa et al. | Aug 2010 | B2 |
7851246 | Camacho et al. | Dec 2010 | B2 |
20020172472 | Nelson et al. | Nov 2002 | A1 |
20040065894 | Hashimoto et al. | Apr 2004 | A1 |
20050088900 | Chan et al. | Apr 2005 | A1 |
20050110157 | Sherrer et al. | May 2005 | A1 |
20060016994 | Basoor et al. | Jan 2006 | A1 |
20060022212 | Waitl et al. | Feb 2006 | A1 |
20070045524 | Rains et al. | Mar 2007 | A1 |
20070072321 | Sherrer et al. | Mar 2007 | A1 |
20080006762 | Fadell et al. | Jan 2008 | A1 |
20080011939 | Yee et al. | Jan 2008 | A1 |
20080011940 | Zhang et al. | Jan 2008 | A1 |
20080012033 | Arndt | Jan 2008 | A1 |
20080049210 | Takaoka | Feb 2008 | A1 |
20080116379 | Teder | May 2008 | A1 |
20080118241 | TeKolste et al. | May 2008 | A1 |
20080165115 | Herz et al. | Jul 2008 | A1 |
20080173963 | Hsu et al. | Jul 2008 | A1 |
20080197376 | Bert et al. | Aug 2008 | A1 |
20080265266 | Bogner et al. | Oct 2008 | A1 |
20080296478 | Hernoult | Dec 2008 | A1 |
20080308738 | Li et al. | Dec 2008 | A1 |
20080308917 | Pressel et al. | Dec 2008 | A1 |
20090027652 | Chang et al. | Jan 2009 | A1 |
20090129783 | Ori et al. | May 2009 | A1 |
20090159900 | Basoor et al. | Jun 2009 | A1 |
20090168088 | Rosenblatt | Jul 2009 | A1 |
20090267173 | Takahashi et al. | Oct 2009 | A1 |
20100030039 | Lamego et al. | Feb 2010 | A1 |
20100246771 | Hawver et al. | Sep 2010 | A1 |
20100282951 | Costello et al. | Nov 2010 | A1 |
20100327164 | Costello et al. | Dec 2010 | A1 |
20110057102 | Yao | Mar 2011 | A1 |
20110057104 | Yao et al. | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
1455564 | Sep 2004 | EP |
WO2009072786 | Jun 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20110057104 A1 | Mar 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12557516 | Sep 2009 | US |
Child | 12631804 | US |