Modification of polymer stents with radiation

Information

  • Patent Grant
  • 7794776
  • Patent Number
    7,794,776
  • Date Filed
    Thursday, June 29, 2006
    18 years ago
  • Date Issued
    Tuesday, September 14, 2010
    14 years ago
Abstract
Methods of modifying properties such as degradation rate and drug release rate of polymer stents with radiation are disclosed.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates to methods of modifying properties of polymer stents with radiation.


Description of the State of the Art

This invention relates to radially expandable endoprostheses, which are adapted to be implanted in a bodily lumen. An “endoprosthesis” corresponds to an artificial device that is placed inside the body. A “lumen” refers to a cavity of a tubular organ such as a blood vessel.


A stent is an example of such an endoprosthesis. Stents are generally cylindrically shaped devices, which function to hold open and sometimes expand a segment of a blood vessel or other anatomical lumen such as urinary tracts and bile ducts. Stents are often used in the treatment of atherosclerotic stenosis in blood vessels. “Stenosis” refers to a narrowing or constriction of the diameter of a bodily passage or orifice. In such treatments, stents reinforce body vessels and prevent restenosis following angioplasty in the vascular system. “Restenosis” refers to the reoccurrence of stenosis in a blood vessel or heart valve after it has been treated (as by balloon angioplasty, stenting, or valvuloplasty) with apparent success.


The treatment of a diseased site or lesion with a stent involves both delivery and deployment of the stent. “Delivery” refers to introducing and transporting the stent through a bodily lumen to a region, such as a lesion, in a vessel that requires treatment. “Deployment” corresponds to the expanding of the stent within the lumen at the treatment region. Delivery and deployment of a stent are accomplished by positioning the stent about one end of a catheter, inserting the end of the catheter through the skin into a bodily lumen, advancing the catheter in the bodily lumen to a desired treatment location, expanding the stent at the treatment location, and removing the catheter from the lumen.


In the case of a balloon expandable stent, the stent is mounted about a balloon disposed on the catheter. Mounting the stent typically involves compressing or crimping the stent onto the balloon. The stent is then expanded by inflating the balloon. The balloon may then be deflated and the catheter withdrawn. In the case of a self-expanding stent, the stent may be secured to the catheter via a retractable sheath or a sock. When the stent is in a desired bodily location, the sheath may be withdrawn which allows the stent to self-expand.


The stent must be able to satisfy a number of mechanical requirements. First, the stent must be capable of withstanding the structural loads, namely radial compressive forces, imposed on the stent as it supports the walls of a vessel. Therefore, a stent must possess adequate radial strength. Radial strength, which is the ability of a stent to resist radial compressive forces, is due to strength and rigidity around a circumferential direction of the stent. Once expanded, the stent must adequately maintain its size and shape throughout its service life despite the various forces that may come to bear on it, including the cyclic loading induced by the beating heart. For example, a radially directed force may tend to cause a stent to recoil inward. Due to loads applied during crimping, deployment, and after deployment a stent can experience substantial stress of localized portions of the stent's structure.


In addition, the stent must possess sufficient flexibility to allow for crimping, expansion, and cyclic loading. Longitudinal flexibility is important to allow the stent to be maneuvered through a tortuous vascular path and to enable it to conform to a deployment site that may not be linear or may be subject to flexure.


The structure of a stent is typically composed of scaffolding that includes a pattern or network of interconnecting structural elements often referred to in the art as struts or bar arms. The scaffolding can be formed from wires, tubes, or sheets of material rolled into a cylindrical shape. The scaffolding is designed so that the stent can be radially compressed (to allow crimping) and radially expanded (to allow deployment). A conventional stent is allowed to expand and contract through movement of individual structural elements of a pattern with respect to each other.


Additionally, a medicated stent may be fabricated by coating the surface of either a metallic or polymeric scaffolding with a polymeric carrier that includes an active or bioactive agent or drug. Polymeric scaffolding may also serve as a carrier of an active agent or drug.


Furthermore, it may be desirable for a stent to be biodegradable. In many treatment applications, the presence of a stent in a body may be necessary for a limited period of time until its intended function of, for example, maintaining vascular patency and/or drug delivery is accomplished. Therefore, stents fabricated from biodegradable, bioabsorbable, and/or bioerodable materials such as bioabsorbable polymers should be configured to completely erode only after the clinical need for them has ended.


In general, it would be desirable to tailor the properties of a stent and stent coating to a desired treatment. For example, may be desirable to modify the degradation rate and drug release rate of a stent substrate or coating.


SUMMARY OF THE INVENTION

Certain embodiments of the present invention include a method of modifying a stent comprising: selecting a desired drug release rate or a degradation rate for a polymer on a stent surface; and exposing the stent to a dose of radiation capable of modifying the molecular weight of a polymer on a stent, wherein the dose modifies the molecular weight of the polymer to obtain the selected drug release rate or degradation rate.


Further embodiments of the present invention include a method of modifying a stent comprising: selecting a drug release rate or a degradation rate for a polymer of a stent; determining a range of molecular weight of the polymer to obtain the selected drug release rate or degradation rate; determining a dose of radiation exposure on the polymer sufficient so that the polymer is within the determined range of molecular weight; and exposing the coating to the determined dose of radiation.


Other embodiments of the present invention include a method of modifying a stent, comprising: selectively exposing a selected region of a surface of a stent including a polymer to a dose of radiation capable of modifying the molecular weight of the polymer, the dose of radiation modifying a drug release rate and/or a degradation of the polymer in the selected region.


Additional embodiments of the present invention include a method of modifying a stent, comprising: selectively exposing a selected region of a surface of a stent including a polymer to a dose of radiation capable of modifying the molecular weight of the polymer, the dose of radiation modifying a property of the polymer.


Further embodiments of the present invention include a method of modifying a stent, comprising: selectively directing a dose of radiation from a radiation source onto a selected region of a polymer surface of a stent, the radiation capable of modifying molecular weight of the polymer, the dose of radiation modifying properties of the polymer.


Additional embodiments of the present invention include a method of modifying a stent, comprising: disposing a mask over a surface of a stent including a polymer, the mask covering selected regions of the surface of the stent; and exposing the stent to a dose of radiation capable of modifying the molecular weight of the polymer, wherein the mask reduces or prevents exposure of the selected regions to the radiation, the radiation modifying a property of the polymer on at least a portion of the stent surface not covered by the mask.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a stent.



FIG. 2 depicts a cross-sectional view of a stent substrate with a coating.



FIG. 3 depicts a portion of a stent structure having straight regions and a curved region.



FIGS. 4A-B depict portions a stent with intersections of struts.



FIG. 5 depicts a schematic illustration of a stent deployed in a lumen.



FIG. 6 depicts a stent showing axial segments.



FIGS. 7A-B depict an exemplary selective irradiation systems.



FIGS. 8A-C depict radiation masks.



FIG. 9 depicts a radiation mask.



FIG. 10 depicts a radiation mask.





DETAILED DESCRIPTION OF THE INVENTION

The various embodiments of the present invention relate to modifying properties of a polymer stent by modifying the molecular weight or molecular weight distribution of the polymer of a stent. Embodiments of methods disclosed include modifying the molecular weight of a polymer of a stent by exposing a surface of a stent to a dose of radiation that is capable of modifying the molecular weight of the polymer. The polymer may be in a polymer substrate, scaffolding, or body of a stent. Additionally, the polymer may be in a coating disposed over a substrate, scaffolding, or body composed of metal, polymer, ceramic, or other suitable material. The polymer coating can be medicated with a drug dispersed with the polymer.


The molecular weight can be measured or characterized by molecular weight distribution(s). “Molecular weight distribution” is defined as the relative amounts of polymer chains of different molecular weights that make up a specific polymer. The number average molecular weight (Mn) is the common, mean, average of the molecular weights of the individual polymers. It is determined by measuring the molecular weight of N polymer molecules, summing the weights, and dividing by N:








M
_

n

=




i




N
i



M
i






i



N
i








where Ni is the number of polymer molecules with molecular weight Mi. The weight average molecular weight is given by








M
_

w

=




i




N
i



M
i
2






i




N
i



M
i









where Ni is the number of molecules of molecular weight Mi.


The present invention can be applied to devices including, but is not limited to, self-expandable stents, balloon-expandable stents, stent-grafts, and grafts (e.g., aortic grafts). In particular, a stent can have a scaffolding or a substrate that includes a pattern of a plurality of interconnecting structural elements or struts. FIG. 1 depicts an example of a view of a stent 100. Stent 100 has a cylindrical shape that includes a pattern with a number of interconnecting structural elements or struts 110. Struts 110 of stent 100 include luminal faces or surfaces 120, abluminal faces or surfaces 130, and side-wall faces or surfaces 140. The present invention is not limited to the stent pattern depicted in FIG. 1. The variation in stent patterns is virtually unlimited.


A pattern may include portions of struts that are straight or relatively straight, an example being a portion 150. In addition, patterns may include curved portions 155, 160, and 165. Curved portions are a part of bending elements that bend inward when a stent is crimped to allow for radial compression and bend outward when a stent is expanded to allow for radial expansion. After deployment, a stent is under static and cyclic compressive loads from the vessel walls. Thus, curved portions of bending elements are subjected to stress and deformation during use. In particular, the curved portions of the bending elements are subjected to highly localized stress and deformation during use. “Use” includes, but is not limited to, manufacturing, assembling (e.g., crimping stent on a catheter), delivery of stent into and through a bodily lumen to a treatment site, and deployment of a stent at a treatment site, and treatment after deployment.


A stent such as stent 100 may be fabricated from a polymeric tube or a sheet by rolling and bonding the sheet to form a tube. A stent pattern may be formed on a polymeric tube by laser cutting a pattern on the tube. Representative examples of lasers that may be used include, but are not limited to, excimer, carbon dioxide, and YAG. In other embodiments, chemical etching may be used to form a pattern on a tube.


The underlying structure or substrate of a stent can be completely or at least in part made from a biodegradable polymer or combination of biodegradable polymers, a biostable polymer or combination of biostable polymers, or a combination of biodegradable and biostable polymers. Additionally, a polymer-based coating for a surface of a device can be a biodegradable polymer or combination of biodegradable polymers, a biostable polymer or combination of biostable polymers, or a combination of biodegradable and biostable polymers. The polymer-based coating can be a medicated layer with a drug mixed or dispersed within the polymer. Drug can be released from the coating by diffusion of the drug through and out of the coating into an implanted vessel. Alternatively or additionally, drug can be released from biodegradable coating polymer as the polymer degrades and erodes.


Several mechanisms may be relied upon for erosion and disintegration of implantable devices including, but are not limited to, mechanical, chemical breakdown and dissolution. In particular, degradation of polymers involves chemical breakdown involving enzymatic and/or hydrolytic cleavage of a device material due to exposure to bodily fluids such as blood. Hydrolysis is a chemical process in which a molecule is cleaved into two parts by the addition of a molecule of water. For example, in the degradation of polylactides, ester linkages can be broken through addition of water to form a degradation product having an acid group. Consequently, the degree of degradation in the bulk of a polymer is strongly dependent on the concentration of water in a polymer and the diffusion rate of water into the polymer.


The degradation rate may be characterized by the half-life of a polymer. The “half-life” of a degrading polymer refers to the length of time for the molecular weight of the polymer to fall to one half of its original value. See e.g., J. C. Middleton and A. J. Tipton, Biomaterials, Vol. 21 (23) (2000) pp. 2335-2346.


Degradation time refers to the time for a biodegradable coating on an implantable medical device or the time for an implantable medical device to substantially or completely erode away from an implant site. It is generally desirable for a biodegradable stent or stent coating to disintegrate and disappear once treatment is completed. For stents made from a biodegradable polymer, the stent or coating is intended to remain in the body for a duration of time until its intended function of, for example, maintaining vascular patency and/or drug delivery is accomplished. The duration of a treatment period depends on the bodily disorder that is being treated. For illustrative purposes only, the duration can be up to a month, three months, six months, twelve months, eighteen months, or two years.


It is understood that after the process of degradation, erosion, absorption, and/or resorption has been completed, no part of the stent will remain or in the case of coating applications on a biostable scaffolding, no polymer will remain on the device. In some embodiments, very negligible traces or residue may be left behind.



FIG. 2 depicts a cross-sectional view of a stent substrate 200 with a coating that includes a polymer coating layer 205 which is a drug reservoir or medicated layer. Coating layer 205 includes a drug 210 mixed or dispersed within a polymer 215. The coating can also include a primer layer disposed between layer 205 and substrate 200. A primer layer serves as an intermediary layer for increasing the adhesion between a drug reservoir layer and surface the substrate. A coating can include any number of primer and reservoir layers. In addition, a coating can include a biobeneficial coating or topcoat layer over the reservoir layer. A biobeneficial coating can increase the biocompatibility of the coating. A topcoat layer can control the rate of drug release from a coating.


An exemplary polymer-drug coating on a polymer substrate includes a poly(DL-lactide) coating on a poly(L-lactide) substrate. An exemplary polymer-coating on a metallic substrate includes a polyester amide coating over a nitinol substrate.


As indicated above, it is desirable to tailor the properties of a substrate and stent coating. For example, the degradation rate of a polymer substrate or coating can be modified by including materials within a coating or substrate such as pore-forming agents or substances with degradation products that increase the degradation rate of the substrate or coating. Additionally, the mechanical properties of a substrate or coating can be modified by incorporating plasticizers in the coating or substrate. However, it would be desirable to modify the properties of a substrate or coating without the addition of additives.


In certain embodiments, the properties of a polymer coating or polymer substrate can be modified by exposing the polymer surface of the stent to radiation capable of modifying the molecular weight or molecular weight distribution of the polymer. In general, the properties of a polymer depend upon the molecular weight and molecular weight distribution. Properties that can be modified by modifying the molecular weight or molecular weight distribution of a polymer include, but are not limited to, degradation rate, permeability, diffusion rate of substances through the polymer, and mechanical properties such as modulus and strength. Since the degradation rate of a polymer, diffusion rate, and permeability are modified, the drug release rate from a polymer-drug coating is also modified.


Various kinds of radiation may be used to modify the molecular weight of a polymer of a stent, including, but not limited to, electron beam (e-beam), ion beam, x-ray, laser, and ultraviolet. Each of these types of radiation can cause chain scission in polymers which decreases the molecular weight. E-beam can cause chain scission with exposures at least between 5 kGy and 10 kGy. Ion beams can cause chain scission in the range of 4×10−14 to 1.2×10−14 ions/cm2. An IR-laser is expected to cause chain scission with a pulse power of 1 W/cm2 for 0.1 seconds.


For example, e-beam has been shown to cause chain scission in poly(DL-lactide) (PDLA). Specifically, e-beam radiation can cleave the labile ester bond in PDLA. A poly(L-lactide) (PLLA) tube with a PDLA coating was exposed to doses of e-beam radiation up 50 kGy. The Mn of the PDLA coating was determined at each level of exposure. A plot of e-beam radiation dose versus 1/Mn shows that the molecular weight of the PDLA coating is inversely proportional to radiation dose. Additionally, UV and x-ray radiation can also cleave the labile ester bond in PDLA. Furthermore, a laser may be used to modify the molecular weight of a polymer. The power of the laser should be high enough to cause chain scission without vaporizing the polymer. For example, an infra-read laser may be used.


The decrease in the molecular weight or Mn tends to cause an increase in the degradation rate for several reasons. Chain scission results in a larger number of smaller chain segments, many of which have acid end groups that can accelerate a hydrolysis degradation reaction. In addition, lower molecular weight polymers are closer to the final degradation products. Also, lower the molecular weight species tend to be more soluble. In addition, permeability of a polymer also increases as molecular weight decreases. As a result, there is an increase in uptake in water which increases the degradation rate through increased hydrolysis.


A decrease in molecular weight can cause an increase in drug release rate due to the increase in degradation rate and the increased permeability and diffusion of the drug through the polymer. Drug release from a stent structure can be controlled by degradation when degradation or absorption rate of the coating or substrate polymer is greater than the diffusion rate of the drug through the polymer. As a biodegradable polymer degrades or is absorbed into the body, a drug incorporated into the stent may be simultaneously released from the stent. Thus, drug release in tends to follow degradation kinetics of the polymer. It follows that drug release kinetics can be tuned or controlled by degradation rate of a coating or substrate.


Furthermore, it is well known to those of skill in the art that mechanical properties of a polymer depend on molecular weight. For example, as a polymer degrades by hydrolysis, the molecular weight decreases which is accompanied by a decrease in modulus and strength of the polymer.


Thus, radiation capable of modifying molecular weight of a polymer of a stent can be used to tailor the degradation, drug release, and mechanical properties of a polymer substrate or coating. In certain embodiments, a method of modifying a stent can include selecting a desired degradation rate, drug release rate, or value of a mechanical property for a polymer of a stent substrate or stent coating. The stent may then be exposed to a dose which can modify the molecular weight of the polymer to obtain the selected drug release rate, degradation rate, or value of mechanical property.


In some embodiments, determining the radiation dose to obtain the selected property can include determining a relationship between the molecular weight and the property. For example, the degradation rate or half-life of a polymer can be determined for various values of Mn. From the relationship of Mn and the property, an Mn range or Mn can be identified that results in the selected property, for example, a selected half-life. A radiation dose sufficient to obtain the selected property can be identified from the Mn identified and a relationship between the radiation dose and Mn.


It may be desirable to expose a polymer substrate to a different degree of radiation than a polymer coating over the substrate, since it may be desirable to modify properties of a polymer substrate to a different degree than a polymer coating. For example, it may be desirable to increase the degradation rate of the substrate to a greater degree than the coating. In some embodiments, a polymer substrate can be modified through exposure to radiation prior to applying a polymer coating. The polymer coating can then be applied and modified, if desired, through exposure to radiation, providing additional exposure and modification to the substrate.


The depth of penetration, and thus modification of the material, depends on the energy of the radiation and on the material. For example, the depth of penetration of a given material depends on the density or atomic structure. The more dense a material, the less the depth of radiation penetration will be. In general, the depth of penetration depends on the absorption of the material which can be determined from Beer's Law.


Additionally, since energy is absorbed as it passes through a material, the radiation intensity tends to decrease with penetration depth. Thus the degree of modification of the material varies with penetration depth. The radiation intensity at a given penetration depth can be increased by increasing the incident energy. Thus, one of skill in the art can modify the radiation energy to control the depth and degree of modification of a polymer material at a given depth.


Furthermore, it can be desirable to selectively modify the molecular weight, and thus, properties, of a stent with radiation. In particular, it can be useful to selectively modify the degradation rate of regions of a stent. Selective modification of degradation rate can enable control over the manner in which mechanical properties of stent degrade. Thus, the manner of failure of a stent can be controlled. In some embodiments, regions may be selectively modified to have a selected degradation rate or degradation time.


A biodegradable stent having different absorption rates on some regions may degrade and fail in a more desirable manner. As discussed above, a bioabsorbable stent is intended to remain in the body for a limited duration of time until its intended purpose has ended. Relatively small particles and/or molecules of stent material are eroded, absorbed, or resorbed due to degradation by bodily fluids and then are carried away by the bodily fluid. Degradation, erosion, absorption, and resorption of stent material result in degradation of the mechanical properties of the stent. The degradation of stent material may cause mechanical failure which may result in structural-sized portions of the stent separating from one another. The presence of such structural-sized portions may cause problems in a bodily lumen such as thrombosis and blockage. The smaller the size of such portions and the more uniform the mechanical failure of the stent, the lower the risk of such complications.


Thus, the selective modification of degradation rate can depend on the mechanical requirements of different portions. In one embodiment, regions of a stent having no or relatively no stress or strain can be selectively exposed to radiation to increase the degradation rate. As indicated above, mechanical requirements of a stent vary through the scaffolding. The curved regions of bending elements such as portions 155, 160, 165 are subjected to substantial stress ands strain during and after deployment. Straight portions, such as portion 150, experience no or relatively no stress or strain.



FIG. 3 depicts portion 300 of a stent structure having straight regions 305 and a curved region 310. In one embodiment, straight regions 305 can be selectively exposed to a dose of radiation to increase the degradation rate, or equivalently, decrease the degradation time of straight regions 305. All or part of the straight regions may be exposed. For example, the shading depicts a region of radiation exposure. Since the mechanical requirements of straight regions 305 are lower than the curved regions 310, it can be useful to decrease their degradation time. When curved regions fail, the straight regions may be much smaller with reduced likelihood of causing problems in the lumen. The degradation rate of the straight regions can be tuned to have a selected size when the curved regions fail.


Additionally, curved regions 310 can be exposed to radiation to tune the degradation time corresponding to a selected treatment situation. In some situations, the curved regions can be modified to have a degradation rate that is faster or slower than the straight regions. In some embodiments, different regions of the stent, such as the curved regions and straight regions, can be exposed to different amounts of radiation to obtain a desired result for both the types of regions.


In some embodiments, to facilitate uniform disintegration during a selected time frame, intersections of struts can be targeted for selective exposure to radiation. For example, portions 155 and 160 include intersections of struts. FIG. 4A depicts a portion 400 of a stent with an intersection of struts 405, 410, and 415. For example, a shaded region 420 can be selectively exposed to radiation. Similarly, FIG. 4B depicts a portion 430 of a stent with an intersection of struts 435, 440, and 445. A shaded region 450 can be selectively exposed to radiation.


In additional embodiments, a stent can selectively exposed to radiation so that the degradation rate varies axially or longitudinally along a stent. For example, a stent can be exposed to radiation so that a proximal and distal end of the stent can have a different degradation rate than a middle section. In long lesions, the center portion of the lesion may be more pronounced than the ends of the lesion.



FIG. 5 depicts a schematic illustration of a stent 500 deployed in a lumen 505. Stent 500 is deployed in lumen 505 at the site of a lesion 510. A thickness 515 of lesion 510 varies along an axis 520 of lumen 505. FIG. 5 shows that lesion 510 is thickest at a center portion of the lesion and thinner at the end segments of the lesion. Therefore, the mechanical load on center portion 535 of stent 500 is greater than end segments 525 and 530. Thus, end segments 525 and 530 have a lower mechanical requirement, and thus, can be modified by radiation to have a higher degradation rate.


In other embodiments, multiple axial sections can be exposed to radiation to make the modulus and degradation rate different in the adjacent axial sections. In one embodiment, the properties of the axial section can alternate, increase or decrease along the length of the stent, or be random. FIG. 6 depicts a stent 600 having axial segments 610 and 620. Axial sections 610 have been exposed to radiation to increase the degradation rate and axial sections 620 have not been exposed or have been exposed to a different dose of radiation.


A stent having axial segments with different degradation rates and modulus can exhibit more flexibility. The increase in flexibility may be more significant when the degradation rates and moduli of the axial segments alternate. The increase in flexibility facilitates delivery of the stent through tortuous bodily lumen or implantation in an implant site that is nonlinear or that exhibits curvature. In some embodiments, as a stent degrades, the difference in mechanical properties can become more pronounced.


Various methods may be used to selectively expose regions of a stent to radiation capable of modifying molecular weight. In some embodiments, a dose of radiation can be selectively directed from a radiation source onto a selected region of a polymer surface of a stent. A system for selectively directing radiation from a radiation source onto a selected region of a stent can be adapted from a controlled deposition system that applies various substances only to certain targeted portions of an implantable medical device, such as a stent. A representative example of such a system, and a method of using the same, is described in U.S. Pat. No. 6,395,326 to Castro et al. A laser machining system for cutting stent patterns can also be adapted to selective radiation exposure of a stent. Systems for laser machining stents have been described in numerous patents including U.S. Pat. Nos. 6,521,865 and 6,131,266.


Various kinds of radiation can be selectively directed onto a stent surface including ultraviolet, ion-beam, and laser. A selective radiation system can be capable of directing radiation onto a stent surface having a complex geometry, and otherwise directing the radiation so that the treatment is limited to particular portions of the stent.



FIG. 7A depicts an exemplary selective irradiation system 700 with a stent 705 supported by a holder assembly 710 that may be coupled to a holder motion control system and a radiation source 715. FIG. 7B illustrates another view of the selective irradiation system in which radiation source 715 remains stationary during irradiation of stent 705. In this embodiment, radiation source 715 is positioned over a strut 720 of stent 705 as shown in FIG. 7B. As radiation is directed at stent 705, radiation source 715 remains stationary while stent 705 is moved via the holder motion control system along a predetermined path beneath the stationary radiation source 715, thereby causing exposure of radiation in a preselected geometrical pattern on stent 705. The predetermined path, for example, can cause exposure on stent 705 as depicted in any of the embodiments described in FIGS. 3-6. In another set of embodiments, radiation source 715 moves along a predetermined path while holder assembly 710 remains stationary during irradiation. In still another set of embodiments, both radiation source 715 and holder assembly 705 move along respective predetermined paths during irradiation.


Additional embodiments of selectively exposing regions of a stent to radiation can include masking selected regions of a stent to radiation. In some embodiments, a mask may be disposed over a polymer surface of a stent such that the mask covers selected regions of the polymer surface. The stent may then be exposed to a dose of radiation capable of modifying the molecular weight of polymer of the stent. The mask can reduce or prevent exposure of the selected regions to the radiation. The radiation can modify properties of the polymer on and beneath at least a portion of the stent surface not covered by the mask.


In some embodiments, a mask can be disposed within a stent to cover a luminal polymer surface of a stent. The inner mask can reduce or prevent exposure of regions of the inner surface due to radiation passing through gaps between stent struts. In an embodiment, an outer and inner mask can be cylindrical and be configured to fit over an abluminal surface and over an luminal surface, respectively, of a stent.


In one embodiment, the inner or luminal mask can be the same or similar to the outer mask, but having a different diameter. In other embodiments, the inner mask can be configured to cover all or a majority of an inner surface of a stent. Additional embodiments can include directing a radiation source to expose an inner surface of the stent. For example, the radiation source can directed through one or both ends of the stent. In some embodiments, the abluminal surface can be exposed to radiation and the luminal surface not exposed. Alternatively, the inner surface can be exposed and the inner surface exposed. Additionally, the abluminal surface can be exposed to a different degree of radiation than the luminal surface. Thus, the abluminal surface can have a greater or lesser degradation rate (and greater or lesser drug release rate) than the luminal surface.


The mask can be composed of any material that can shield the covered portions of the stent surface from the radiation. The mask can be composed of a polymer, metal, ceramic, or a combination thereof. Metals are generally more effective at shielding radiation such as e-beam, UV, x-ray, and ion beam. A shield that is a combination of metal and polymer and/or ceramics should have sufficient metallic content to shield the radiation.


In general, the structure of a mask can take any form that allows exposure to selected regions of a stent surface where exposure is desired to radiation directed at the stent, while reducing or preventing exposure to regions where exposure is not desired. In one embodiment, the mask can be cylindrical with at least two ring elements connected by linking or connecting elements. The structure of the mask can be configured to allow selective exposure to regions described in FIGS. 3-6.



FIG. 8A depicts an exemplary mask 800 that allows selective exposure of radiation to a stent surface. Mask 800 has cylindrical rings 805 connected by linking elements 810. Mask 800 can be sized to fit over or within a stent, such as stent 100 in FIG. 1. Rings 805 can be configured to cover selected regions of stent 100, such as curved regions or straight regions, when disposed over stent 100 to allow selective exposure of radiation to curved or straight regions of the stent. Cylindrical rings can have a thickness T to allow coverage of selected regions.



FIG. 8B depicts a portion of mask 800 disposed over an outer or abluminal surface of a stent. Rings 805 of mask 800 cover curved regions 815 and leave straight regions 820 exposed to receive a dose of radiation directed at the stent. FIG. 8C depicts a ring 805 of mask 800 also disposed over an outer or abluminal surface which covers straight regions 820 and leaves curved portions 815 exposed to receive a dose of radiation directed at the stent.



FIG. 9A depicts a mask 900 for a stent including a proximal ring 905 and a distal ring 910 for covering a proximal and a distal end of a stent, respectively. Proximal end 905 and distal end 910 are connected by linking elements 915. Alternatively, linking elements 915 can be absent and proximal ring 905 and distal ring 910 are disconnected. FIG. 9B depicts an axial cross-section of mask 900 showing rings 905 and 910 covering proximal and distal segments of a stent 920.



FIG. 10 depicts an axial cross-section of a mask 1000 that covers a central axial segment 1010 of stent 1005 to reduce or prevent exposure of radiation on segment 1010. A proximal segment 1015 and distal segment 1020 can be exposed to radiation directed at stent 1005.


Polymers can be biostable, bioabsorbable, biodegradable or bioerodable. Biostable refers to polymers that are not biodegradable. The terms biodegradable, bioabsorbable, and bioerodable are used interchangeably and refer to polymers that are capable of being completely degraded and/or eroded when exposed to bodily fluids such as blood and can be gradually resorbed, absorbed, and/or eliminated by the body. The processes of breaking down and eventual absorption and elimination of the polymer can be caused by, for example, hydrolysis, metabolic processes, bulk or surface erosion, and the like.


It is understood that after the process of degradation, erosion, absorption, and/or resorption has been completed, no part of the stent will remain or in the case of coating applications on a biostable scaffolding, no polymer will remain on the device. In some embodiments, very negligible traces or residue may be left behind. For stents made from a biodegradable polymer, the stent is intended to remain in the body for a duration of time until its intended function of, for example, maintaining vascular patency and/or drug delivery is accomplished.


Representative examples of polymers that may be used to fabricate or coat an implantable medical device include, but are not limited to, poly(N-acetylglucosamine) (Chitin), Chitosan, poly(hydroxyvalerate), poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polyorthoester, polyanhydride, poly(glycolic acid), poly(glycolide), poly(L-lactic acid), poly(L-lactide), poly(D,L-lactic acid), poly(D,L-lactide), poly(caprolactone), poly(trimethylene carbonate), polyester amide, poly(glycolic acid-co-trimethylene carbonate), co-poly(ether-esters) (e.g. PEO/PLA), polyphosphazenes, biomolecules (such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid), polyurethanes, silicones, polyesters, polyolefins, polyisobutylene and ethylene-alphaolefin copolymers, acrylic polymers and copolymers other than polyacrylates, vinyl halide polymers and copolymers (such as polyvinyl chloride), polyvinyl ethers (such as polyvinyl methyl ether), polyvinylidene halides (such as polyvinylidene chloride), polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics (such as polystyrene), polyvinyl esters (such as polyvinyl acetate), acrylonitrile-styrene copolymers, ABS resins, polyamides (such as Nylon 66 and polycaprolactam), polycarbonates, polyoxymethylenes, polyimides, polyethers, polyurethanes, rayon, rayon-triacetate, cellulose, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, and carboxymethyl cellulose. Another type of polymer based on poly(lactic acid) that can be used includes graft copolymers, and block copolymers, such as AB block-copolymers (“diblock-copolymers”) or ABA block-copolymers (“triblock-copolymers”), or mixtures thereof.


Additional representative examples of polymers that may be especially well suited for use in fabricating or coating an implantable medical device include ethylene vinyl alcohol copolymer (commonly known by the generic name EVOH or by the trade name EVAL), poly(butyl methacrylate), poly(vinylidene'fluoride-co-hexafluororpropene) (e.g., SOLEF 21508, available from Solvay Solexis PVDF, Thorofare, N.J.), polyvinylidene fluoride (otherwise known as KYNAR, available from ATOFINA Chemicals, Philadelphia, Pa.), ethylene-vinyl acetate copolymers, and polyethylene glycol.


A non-polymer substrate of the stent may be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum.


Examples of drugs or active agents include antiproliferative substances such as actinomycin D, or derivatives and analogs thereof (manufactured by Sigma-Aldrich 1001 West Saint Paul Avenue, Milwaukee, Wis. 53233; or COSMEGEN available from Merck). Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin I1, actinomycin X1, and actinomycin C1. The bioactive agent can also fall under the genus of antineoplastic, anti-inflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antiallergic and antioxidant substances. Examples of such antineoplastics and/or antimitotics include paclitaxel, (e.g., TAXOL® by Bristol-Myers Squibb Co., Stamford, Conn.), docetaxel (e.g., Taxotere®, from Aventis S.A., Frankfurt, Germany), methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g., Adriamycin® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g., Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include aspirin, sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, and thrombin inhibitors such as Angiomax ä (Biogen, Inc., Cambridge, Mass.). Examples of such cytostatic or antiproliferative agents include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g., Capoten® Capoten and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g., Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.), calcium channel blockers (such as nifedipine), colchicine, proteins, peptides, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate agents include cisplatin, insulin sensitizers, receptor tyrosine kinase inhibitors, carboplatin, alpha-interferon, genetically engineered epithelial cells, steroidal anti-inflammatory agents, non-steroidal anti-inflammatory agents, antivirals, anticancer drugs, anticoagulant agents, free radical scavengers, estradiol, antibiotics, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, ABT-578, clobetasol, cytostatic agents, prodrugs thereof, co-drugs thereof, and a combination thereof. Other therapeutic substances or agents may include rapamycin and structural derivatives or functional analogs thereof, such as 40-O-(2-hydroxy)ethyl-rapamycin (known by the trade name of EVEROLIMUS), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, methyl rapamycin, and 40-O-tetrazole-rapamycin.


While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.

Claims
  • 1. A method of modifying a stent comprising: selecting a desired drug release rate or a degradation rate for a polymer on a stent surface; andexposing the stent to a dose of radiation capable of modifying the molecular weight of the polymer on the stent, wherein the dose modifies the molecular weight of the polymer to obtain the selected drug release rate or degradation rate,wherein the polymer comprises a polyester amide coating having a drug mixed or dispersed within the coating.
  • 2. The method of claim 1, wherein the radiation is selected from the group consisting of e-beam, ion beam, x-ray, laser, and ultraviolet.
  • 3. A method of modifying a stent, comprising: selectively exposing a selected region of a surface of a stent including a polymer to a dose of radiation capable of modifying the molecular weight of the polymer, the dose of radiation modifying a property of the polymer, wherein the polymer is contained in a coating over a stent substrate, wherein the polymer is polyester amide with a drug mixed or dispersed within the coating.
  • 4. The method of claim 3, wherein the selected region comprise curved portions or straight portions of a scaffolding of the stent.
  • 5. The method of claim 3, wherein radiation is selected from the group consisting of e-beam, ion beam, x-ray, laser, and ultraviolet.
US Referenced Citations (322)
Number Name Date Kind
3687135 Stroganov et al. Aug 1972 A
3839743 Schwarcz Oct 1974 A
3900632 Robinson Aug 1975 A
4104410 Malecki Aug 1978 A
4110497 Hoel Aug 1978 A
4321711 Mano Mar 1982 A
4346028 Griffith Aug 1982 A
4596574 Urist Jun 1986 A
4599085 Riess et al. Jul 1986 A
4612009 Drobnik et al. Sep 1986 A
4633873 Dumican et al. Jan 1987 A
4656083 Hoffman et al. Apr 1987 A
4718907 Karwoski et al. Jan 1988 A
4722335 Vilasi Feb 1988 A
4723549 Wholey et al. Feb 1988 A
4732152 Wallstén et al. Mar 1988 A
4733665 Palmaz Mar 1988 A
4739762 Palmaz Apr 1988 A
4740207 Kreamer Apr 1988 A
4743252 Martin, Jr. et al. May 1988 A
4768507 Fischell et al. Sep 1988 A
4776337 Palmaz Oct 1988 A
4800882 Gianturco Jan 1989 A
4816339 Tu et al. Mar 1989 A
4818559 Hama et al. Apr 1989 A
4850999 Planck Jul 1989 A
4877030 Beck et al. Oct 1989 A
4878906 Lindemann et al. Nov 1989 A
4879135 Greco et al. Nov 1989 A
4886062 Wiktor Dec 1989 A
4902289 Yannas Feb 1990 A
4977901 Ofstead Dec 1990 A
4994298 Yasuda Feb 1991 A
5019090 Pinchuk May 1991 A
5028597 Kodama et al. Jul 1991 A
5059211 Stack et al. Oct 1991 A
5062829 Pryor et al. Nov 1991 A
5084065 Weldon et al. Jan 1992 A
5085629 Goldberg et al. Feb 1992 A
5100429 Sinofsky et al. Mar 1992 A
5104410 Chowdhary Apr 1992 A
5108417 Sawyer Apr 1992 A
5108755 Daniels et al. Apr 1992 A
5112457 Marchant May 1992 A
5123917 Lee Jun 1992 A
5156623 Hakamatsuka et al. Oct 1992 A
5163951 Pinchuk et al. Nov 1992 A
5163952 Froix Nov 1992 A
5163958 Pinchuk Nov 1992 A
5167614 Tessmann et al. Dec 1992 A
5192311 King et al. Mar 1993 A
5197977 Hoffman, Jr. et al. Mar 1993 A
5234456 Silvestrini Aug 1993 A
5234457 Andersen Aug 1993 A
5236447 Kubo et al. Aug 1993 A
5279594 Jackson Jan 1994 A
5282860 Matsuno et al. Feb 1994 A
5289831 Bosley Mar 1994 A
5290271 Jernberg Mar 1994 A
5306286 Stack et al. Apr 1994 A
5306294 Winston et al. Apr 1994 A
5328471 Slepian Jul 1994 A
5330500 Song Jul 1994 A
5342348 Kaplan Aug 1994 A
5342395 Jarrett et al. Aug 1994 A
5342621 Eury Aug 1994 A
5356433 Rowland et al. Oct 1994 A
5383925 Schmitt Jan 1995 A
5385580 Schmitt Jan 1995 A
5389106 Tower Feb 1995 A
5399666 Ford Mar 1995 A
5423885 Williams Jun 1995 A
5441515 Khosravi et al. Aug 1995 A
5443458 Eury et al. Aug 1995 A
5443500 Sigwart Aug 1995 A
5455040 Marchant Oct 1995 A
5464650 Berg et al. Nov 1995 A
5502158 Sinclair et al. Mar 1996 A
5514379 Weissleder et al. May 1996 A
5527337 Stack et al. Jun 1996 A
5545408 Trigg et al. Aug 1996 A
5554120 Chen et al. Sep 1996 A
5556413 Lam Sep 1996 A
5578046 Liu et al. Nov 1996 A
5578073 Haimovich et al. Nov 1996 A
5591199 Porter et al. Jan 1997 A
5591607 Gryaznov et al. Jan 1997 A
5593403 Buscemi Jan 1997 A
5593434 Williams Jan 1997 A
5599301 Jacobs et al. Feb 1997 A
5599922 Gryaznov et al. Feb 1997 A
5605696 Eury et al. Feb 1997 A
5607442 Fischell et al. Mar 1997 A
5607467 Froix Mar 1997 A
5618299 Khosravi et al. Apr 1997 A
5629077 Turnlund et al. May 1997 A
5631135 Gryaznov et al. May 1997 A
5632771 Boatman et al. May 1997 A
5632840 Campbell May 1997 A
5637113 Tartaglia et al. Jun 1997 A
5649977 Campbell Jul 1997 A
5667767 Greff et al. Sep 1997 A
5667796 Otten Sep 1997 A
5670558 Onishi et al. Sep 1997 A
5693085 Buirge et al. Dec 1997 A
5700286 Tartaglia et al. Dec 1997 A
5707385 Williams Jan 1998 A
5711763 Nonami et al. Jan 1998 A
5716981 Hunter et al. Feb 1998 A
5725549 Lam Mar 1998 A
5726297 Gryaznov et al. Mar 1998 A
5728751 Patnaik Mar 1998 A
5733326 Tomonto et al. Mar 1998 A
5733330 Cox Mar 1998 A
5733564 Lehtinen Mar 1998 A
5733925 Kunz et al. Mar 1998 A
5741881 Patnaik Apr 1998 A
5756457 Wang et al. May 1998 A
5756476 Epstein et al. May 1998 A
5765682 Bley et al. Jun 1998 A
5766204 Porter et al. Jun 1998 A
5766239 Cox Jun 1998 A
5766710 Turnlund et al. Jun 1998 A
5769883 Buscemi et al. Jun 1998 A
5780807 Saunders Jul 1998 A
5800516 Fine et al. Sep 1998 A
5811447 Kunz et al. Sep 1998 A
5824049 Ragheb et al. Oct 1998 A
5830178 Jones et al. Nov 1998 A
5830461 Billiar Nov 1998 A
5830879 Isner Nov 1998 A
5833651 Donovan et al. Nov 1998 A
5834582 Sinclair et al. Nov 1998 A
5836962 Gianotti Nov 1998 A
5837313 Ding et al. Nov 1998 A
5837835 Gryaznov et al. Nov 1998 A
5840083 Braach-Maksvytis Nov 1998 A
5851508 Greff et al. Dec 1998 A
5853408 Muni Dec 1998 A
5854207 Lee et al. Dec 1998 A
5855612 Ohthuki et al. Jan 1999 A
5855618 Patnaik et al. Jan 1999 A
5858746 Hubbell et al. Jan 1999 A
5865814 Tuch Feb 1999 A
5868781 Killion Feb 1999 A
5873904 Ragheb et al. Feb 1999 A
5874101 Zhong et al. Feb 1999 A
5874109 Ducheyne et al. Feb 1999 A
5874165 Drumheller Feb 1999 A
5876743 Ibsen et al. Mar 1999 A
5877263 Patnaik et al. Mar 1999 A
5879713 Roth et al. Mar 1999 A
5888533 Dunn Mar 1999 A
5891192 Murayama et al. Apr 1999 A
5897955 Drumheller Apr 1999 A
5906759 Richter May 1999 A
5914182 Drumheller Jun 1999 A
5916870 Lee et al. Jun 1999 A
5919893 Roby et al. Jul 1999 A
5922005 Richter et al. Jul 1999 A
5942209 Leavitt et al. Aug 1999 A
5948428 Lee et al. Sep 1999 A
5954744 Phan et al. Sep 1999 A
5957975 Lafont et al. Sep 1999 A
5965720 Gryaznov et al. Oct 1999 A
5971954 Conway et al. Oct 1999 A
5976182 Cox Nov 1999 A
5980564 Stinson Nov 1999 A
5980928 Terry Nov 1999 A
5980972 Ding Nov 1999 A
5981568 Kunz et al. Nov 1999 A
5986169 Gjunter Nov 1999 A
5997468 Wolff et al. Dec 1999 A
6010445 Armini et al. Jan 2000 A
6015541 Greff et al. Jan 2000 A
6042875 Ding et al. Mar 2000 A
6048964 Lee et al. Apr 2000 A
6051648 Rhee et al. Apr 2000 A
6056993 Leidner et al. May 2000 A
6060451 DiMaio et al. May 2000 A
6066156 Yan May 2000 A
6071266 Kelley Jun 2000 A
6074659 Kunz et al. Jun 2000 A
6080177 Igaki et al. Jun 2000 A
6080488 Hostettler et al. Jun 2000 A
6083258 Yadav Jul 2000 A
6093463 Thakrar Jul 2000 A
6096070 Ragheb et al. Aug 2000 A
6096525 Patnaik Aug 2000 A
6099562 Ding et al. Aug 2000 A
6103230 Billiar et al. Aug 2000 A
6107416 Patnaik et al. Aug 2000 A
6110188 Narciso, Jr. Aug 2000 A
6113629 Ken Sep 2000 A
6117979 Hendriks et al. Sep 2000 A
6120536 Ding et al. Sep 2000 A
6120904 Hostettler et al. Sep 2000 A
6121027 Clapper et al. Sep 2000 A
6125523 Brown et al. Oct 2000 A
6127173 Eckstein et al. Oct 2000 A
6129761 Hubbell Oct 2000 A
6129928 Sarangapani et al. Oct 2000 A
6131266 Saunders Oct 2000 A
6150630 Perry et al. Nov 2000 A
6153252 Hossainy et al. Nov 2000 A
4776337 Palmaz Dec 2000 A
6159951 Karpeisky et al. Dec 2000 A
6160084 Langer et al. Dec 2000 A
6165212 Dereume et al. Dec 2000 A
6166130 Rhee et al. Dec 2000 A
6169170 Gryaznov et al. Jan 2001 B1
6171609 Kunz Jan 2001 B1
6174330 Stinson Jan 2001 B1
6177523 Reich et al. Jan 2001 B1
6183505 Mohn, Jr. et al. Feb 2001 B1
6187045 Fehring et al. Feb 2001 B1
6210715 Starling et al. Apr 2001 B1
6224626 Steinke May 2001 B1
6228845 Donovan et al. May 2001 B1
6240616 Yan Jun 2001 B1
6245076 Yan Jun 2001 B1
6245103 Stinson Jun 2001 B1
6248344 Ylanen et al. Jun 2001 B1
6251135 Stinson et al. Jun 2001 B1
6251142 Bernacca et al. Jun 2001 B1
6273913 Wright et al. Aug 2001 B1
6281262 Shikinami Aug 2001 B1
6284333 Wang et al. Sep 2001 B1
6287332 Bolz et al. Sep 2001 B1
6290721 Heath Sep 2001 B1
6293966 Frantzen Sep 2001 B1
6303901 Perry et al. Oct 2001 B1
6312459 Huang et al. Nov 2001 B1
6327772 Zadno-Azizi et al. Dec 2001 B1
4733665 Palmaz Jan 2002 C2
6375826 Wang et al. Apr 2002 B1
6379381 Hossainy et al. Apr 2002 B1
6387121 Alt May 2002 B1
6388043 Langer et al. May 2002 B1
6395326 Castro et al. May 2002 B1
6409761 Jang Jun 2002 B1
6423092 Datta et al. Jul 2002 B2
6461632 Gogolewski Oct 2002 B1
6464720 Boatman et al. Oct 2002 B2
6479565 Stanley Nov 2002 B1
6485512 Cheng Nov 2002 B1
6492615 Flanagan Dec 2002 B1
6494908 Huxel et al. Dec 2002 B1
6495156 Wenz et al. Dec 2002 B2
6511748 Barrows Jan 2003 B1
6517888 Weber Feb 2003 B1
6521865 Jones et al. Feb 2003 B1
6527801 Dutta Mar 2003 B1
6537589 Chae et al. Mar 2003 B1
6539607 Fehring et al. Apr 2003 B1
6540777 Stenzel Apr 2003 B2
6554854 Flanagan Apr 2003 B1
6565599 Hong et al. May 2003 B1
6569191 Hogan May 2003 B1
6569193 Cox et al. May 2003 B1
6572672 Yadav et al. Jun 2003 B2
6574851 Mirizzi Jun 2003 B1
6585755 Jackson et al. Jul 2003 B2
6592614 Lenker et al. Jul 2003 B2
6592617 Thompson Jul 2003 B2
6613072 Lau et al. Sep 2003 B2
6626939 Burnside et al. Sep 2003 B1
6635269 Jennissen Oct 2003 B1
6645243 Vallana et al. Nov 2003 B2
6656162 Santini, Jr. et al. Dec 2003 B2
6664335 Krishnan Dec 2003 B2
6666214 Canham Dec 2003 B2
6667049 Janas et al. Dec 2003 B2
6669723 Killion et al. Dec 2003 B2
6676697 Richter Jan 2004 B1
6679980 Andreacchi Jan 2004 B1
6689375 Wahlig et al. Feb 2004 B1
6695920 Pacetti et al. Feb 2004 B1
6706273 Roessler Mar 2004 B1
6709379 Brandau et al. Mar 2004 B1
6719934 Stinson Apr 2004 B2
6719989 Matsushima et al. Apr 2004 B1
6720402 Langer et al. Apr 2004 B2
6746773 Llanos et al. Jun 2004 B2
6752826 Holloway et al. Jun 2004 B2
6753007 Haggard et al. Jun 2004 B2
6764505 Hossainy et al. Jul 2004 B1
6818063 Kerrigan Nov 2004 B1
6846323 Yip et al. Jan 2005 B2
7169178 Santos et al. Jan 2007 B1
7175873 Roorda et al. Feb 2007 B1
20010044652 Moore Nov 2001 A1
20020002399 Huxel et al. Jan 2002 A1
20020004060 Heublein et al. Jan 2002 A1
20020004101 Ding et al. Jan 2002 A1
20020062148 Hart May 2002 A1
20020065553 Weber May 2002 A1
20020111590 Davila et al. Aug 2002 A1
20020116050 Kocur Aug 2002 A1
20020138133 Lenz et al. Sep 2002 A1
20020161114 Gunatillake et al. Oct 2002 A1
20030033001 Igaki Feb 2003 A1
20030093107 Parsonage et al. May 2003 A1
20030100865 Santini, Jr. et al. May 2003 A1
20030105518 Dutta Jun 2003 A1
20030105530 Pirhonen Jun 2003 A1
20030171053 Sanders Sep 2003 A1
20030187495 Cully et al. Oct 2003 A1
20030208259 Penhasi Nov 2003 A1
20030209835 Chun et al. Nov 2003 A1
20030226833 Shapovalov et al. Dec 2003 A1
20030236565 Fifer Dec 2003 A1
20040034409 Heublein et al. Feb 2004 A1
20040093077 White et al. May 2004 A1
20040098095 Burnside et al. May 2004 A1
20040111149 Stinson Jun 2004 A1
20040127970 Webber Jul 2004 A1
20040143317 Stinson et al. Jul 2004 A1
20040167610 Fleming, III Aug 2004 A1
20060034888 Pacetti et al. Feb 2006 A1
20070254012 Ludwig et al. Nov 2007 A1
20070299510 Venkatraman et al. Dec 2007 A1
Foreign Referenced Citations (36)
Number Date Country
44 07 079 Sep 1994 DE
197 31 021 Jan 1999 DE
198 56 983 Dec 1999 DE
0 108 171 May 1984 EP
0 144 534 Jun 1985 EP
0 364 787 Apr 1990 EP
0 397 500 Nov 1990 EP
0 464 755 Jan 1992 EP
0 493 788 Jul 1992 EP
0 554 082 Aug 1993 EP
0 578 998 Jan 1994 EP
0 604 022 Jun 1994 EP
0 621 017 Oct 1994 EP
0 623 354 Nov 1994 EP
0 665 023 Aug 1995 EP
0 709 068 May 1996 EP
0 970 711 Jan 2000 EP
2 247 696 Mar 1992 GB
WO 8903232 Apr 1989 WO
WO 9001969 Mar 1990 WO
WO 9004982 May 1990 WO
WO 9006094 Jun 1990 WO
WO 9117744 Nov 1991 WO
WO 9117789 Nov 1991 WO
WO 9210218 Jun 1992 WO
WO 9306792 Apr 1993 WO
WO 9421196 Sep 1994 WO
WO 9529647 Nov 1995 WO
WO 9804415 Feb 1998 WO
WO 9903515 Jan 1999 WO
WO 9916386 Apr 1999 WO
WO 9942147 Aug 1999 WO
WO 0012147 Mar 2000 WO
WO 0064506 Nov 2000 WO
WO 0101890 Jan 2001 WO
WO 2004023985 Mar 2004 WO