Modular patient support system

Information

  • Patent Grant
  • 7696499
  • Patent Number
    7,696,499
  • Date Filed
    Tuesday, February 6, 2007
    17 years ago
  • Date Issued
    Tuesday, April 13, 2010
    14 years ago
Abstract
A radiation treatment system (100) for accurately delivering radiation to a targeted site within a cancer patient (108) that includes a modular patient support system and a patient positioner (114). The modular patient support system includes a modularly expandable patient pod (200) and at least one immobilization device, such as, for example, a rigid moldable foam cradle (350). The patient pod (200) includes a generally hemi-cylindrical support shell (212) that extends longitudinally between proximal edge (214) and distal edge (216), and transversely between two lateral edges (222, 224). In one embodiment, the lateral edges (222, 224) are tapered to minimize edge effects that result when radiation beams traverse the lateral edges (222, 224).
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to radiation beam therapy systems, and more particularly to a radiation treatment system with a patient positioner. The present invention relates to radiation beam therapy systems, and more particularly to a modular patient support system. The present invention relates to radiation beam therapy systems, and more particularly to a patient pod with tapered edge configurations that reduce edge effects associated with abrupt changes in the water equivalency in the radiation beam path.


2. Description of the Related Art


Radiation therapy systems are known and used to provide treatment to patients suffering a wide variety of conditions. Radiation therapy is typically used to kill or inhibit the growth of undesired tissue, such as cancerous tissue. A determined quantity of high-energy electromagnetic radiation and/or high-energy particles are directed into the undesired tissue with the goal of damaging the undesired tissue while reducing unintentional damage to desired or healthy tissue through which the radiation passes on its path to the undesired tissue.


Proton therapy has emerged as a particularly efficacious treatment for a variety of conditions. In proton therapy, positively charged proton subatomic particles are accelerated, collimated into a tightly focused beam, and directed towards a designated target region within the patient. Protons exhibit less lateral dispersion upon impact with patient tissue than electromagnetic radiation or low mass electron charged particles and can thus be more precisely aimed and delivered along a beam axis. Also, upon impact with patient tissue, protons exhibit a characteristic Bragg peak wherein a significant portion of the kinetic energy of the accelerated mass is deposited within a relatively narrow penetration depth within the patient. This offers the significant advantage of reducing delivery of energy from the accelerated proton particles to healthy tissue interposed between the target region and the delivery nozzle of a proton therapy machine as well as to “downrange” tissue lying beyond the designated target region. Depending on the indications for a particular patient and their condition, delivery of the therapeutic proton beam may preferably take place from a plurality of directions in multiple treatment fractions to maintain a total dose delivered to the target region while reducing collateral exposure of interposed desired/healthy tissue.


U.S. Pat. No. 4,870,287, issued Sep. 26, 1989, assigned to the Loma Linda University Medical Center, titled MULTI-STATION PROTON BEAM THERAPY SYSTEM, describes and illustrates a radiation beam therapy system. The system described therein includes several different treatment stations, each including a gantry for supporting and rotating a radiation beam transport and delivery system on an axis of rotation around a stationary patient to deliver a treatment beam to a predetermined target isocenter within the patient from several different angles.


With many radiation treatment systems and protocols, a unique treatment plan is first developed for each cancer patient. For example, in the development of a treatment plan, such as, for example, proton radiation treatment, the patient is generally positioned on a support table or support structure and the internal anatomy of the patient's body scanned with an imaging technique, such as, for example, computed tomography (CT Scan). Images produced by the imaging device are analyzed to precisely locate the cancer sites defining the targets for the radiation beams. In many cases, physicians develop a radiation treatment plan calling for a number of different patient treatment sessions with radiation beams of different magnitudes, durations and angles of direction.


Given the high number of cancer patients who could benefit from radiation treatment and the relatively few number of sophisticated radiation (e.g., proton) treatment facilities and systems available in the world, there is a need for radiation treatment providers to achieve greater patient throughput at their existing facilities. As such, there is a need for patient support and positioning systems that utilize automated or robotic patient positioning devices, and thereby provide radiation treatment providers with the ability to achieve increased patient throughput.


For each treatment session, it is important that the patient be supported in the exact same position as during the preliminary imaging or scanning session utilized in the development of the treatment plan (i.e., the original position). Accordingly, there is a need for a patient positioning and repositioning support system for fixedly securing a patient in an original position during radiation treatment and for repositioning the patient in the same original position during any subsequent radiation treatment sessions. For certain applications that involve irradiating different portions of a patient's anatomy from several different angles, it is desirable for the patient positioning and repositioning support to fixedly secure the patient.


The radiation treatment protocol for any given patient can depend on a number of factors, including, for example: the size and physical characteristics of the patient; the type, size, and location of the tumor(s) being irradiated; and the aggressiveness of the treatment protocol. As such, there is a need for a modular patient support system that can be easily adjusted to accommodate a large number of treatment protocols.


For certain treatment protocols it is necessary to direct the radiation beam at angles that traverse at least one lateral edge of the patient pod. Accordingly, there is a need for pod edge configuration that reduces discontinuities in the strength or intensity of radiation beams that pass through or near a pod lateral edge.


SUMMARY OF THE INVENTION

In accordance with one embodiment described herein, there is provided a radiation treatment system for delivering prescribed doses of radiation to a targeted site within a cancer patient and for increasing patient throughput levels. The treatment system includes: a patient treatment station; a gantry, a radiation beam source; a nozzle; a modular patient support system; a patient positioner; and a control system.


In one embodiment, the radiation beam source includes a source of protons and an accelerator for accelerating protons as a beam.


In accordance with one embodiment described herein, there is provided a modular patient support system for efficiently securing a cancer patient in a fixed position during radiation treatment. The support system includes a modular patient pod.


In accordance with one embodiment described herein, there is provided a modular patient pod for providing cantilevered support of a cancer patient undergoing radiation treatment. The pod includes: a longitudinally-extending support shell; a proximal extension track; a distal extension track; and a positioner-pod connector.


In one embodiment, the support shell is made from a treat-through material, such as, for example, carbon fiber.


In one embodiment, a distal pod attachment is engaged with the distal extension track. In another embodiment, a proximal pod attachment is engaged with the proximal extension track.


In accordance with one embodiment described herein, there is provided a modular patient pod that is configured to reduce any edge effects. The pod includes a support shell having a first lateral edge and a second lateral edge.


In one embodiment, the first lateral edge includes a first tapered edge and a first rail made from a first low-density material, such as, for example, epoxy with microspheres. In another embodiment, the second lateral edge includes a second tapered edge and a second rail made from a second low-density material.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic diagram of one embodiment of a radiation therapy system with a robotic patient positioning system.



FIG. 2 is a schematic diagram of another embodiment of a radiation therapy system with a robotic patient positioning system.



FIG. 3 is a side isometric view of one embodiment of a robotic patient positioner.



FIG. 4A is an isometric elevated side view of one embodiment of a modular patient pod.



FIG. 4B is a transverse cross-sectional view of the patient pod of FIG. 4A.



FIG. 4C is a close-up cross-sectional view of the pod shell lateral edge of FIG. 4B.



FIG. 5 is a transverse cross-sectional view of one embodiment of a modular patient support system.



FIG. 6 is an isometric elevated side view of one embodiment of a positioner-pod connector.



FIG. 7A is an isometric elevated side view of one embodiment of one embodiment of a short, flat attachment.



FIG. 7B is an isometric elevated side view of one embodiment of a long, flat attachment.



FIG. 7C is an isometric elevated side view of one embodiment of a shell leg or head extension.



FIG. 7D is an isometric elevated side view of one embodiment of a flat extension that accommodates immobilization devices.



FIG. 7E is an isometric elevated side view of one embodiment of a short, head rest extension.



FIG. 7F is an isometric elevated side view of one embodiment of a positioner end extension.



FIG. 7G is an isometric elevated side view of one embodiment of a prone headrest.



FIG. 8 is a schematic partial cross-sectional side view of one embodiment of a modular patient support system and corresponding aimable volumes.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
A. Radiation Treatment System with Robotic Patient Positioner

In accordance with one embodiment described herein, there is provided a radiation treatment system with a patient positioner.


Reference will now be made to the drawings wherein like reference designators refer to like parts throughout. FIG. 1 illustrates schematically one embodiment of a radiation therapy system 100. The radiation therapy system 100 is designed to deliver therapeutic radiation doses to a target region within a cancer patient 108 for treatment of malignant or other conditions from one or more angles or orientations with respect to the patient.


In one embodiment, the radiation therapy system 100 is designed to deliver therapeutic doses of proton beams to a target area within the patient. Additional details on the structure and operation of the such a system 100 can be found in U.S. Pat. No. 4,870,287, titled MULTI-STATION PROTON BEAM THERAPY SYSTEM, which is incorporated herein in its entirety by reference. In another embodiment, the system 100 is designed to deliver any other clinically suitable form of radiation known in the art, such as, for example, x-rays, gamma rays, hadrons, neutrons, etc.


The radiation therapy system 100 typically includes a patient treatment station and a gantry 102 which includes a generally hemispherical or frustoconical support frame for attachment and support of other components of the radiation therapy system 100. Additional details on the structure and operation of the gantry 102 can be found in U.S. Pat. No. 4,917,344 and U.S. Pat. No. 5,039,057, both titled ROLLER-SUPPORTED, MODULAR, ISOCENTRIC GENTRY AND METHOD OF ASSEMBLY, both of which are incorporated herein in their entirety by reference.


With continued reference to FIG. 1, in one embodiment, the system 100 also comprises a nozzle 110 which is attached and supported by the gantry 102 such that the nozzle 110 may revolve relatively precisely about a gantry isocenter 120. The system 100 also comprises a radiation source 106 delivering a therapeutic beam, such as a beam of accelerated protons which pass through and are shaped by an aperture 110 positioned on the distal end of the nozzle 110. The beam path is represented by numeral 146. The aperture is preferably configured for the patient's particular prescription of therapeutic radiation therapy.


With continued reference to FIG. 1, the system 100 also comprises one or more imagers 112 which, in this embodiment, is retractable with respect to the gantry 102 between an extended position and a retracted position. Here, the imager 112 is shown in the extended position. In one embodiment, the imager 112 comprises a solid-state amorphous silicon x-ray imager which can develop image information such as from incident x-ray radiation that has past through a patient's body. The system 100 also comprises an x-ray source 130 which selectively emits appropriate x-ray radiation which passes through interposed patient tissue so as to generate a radiographic image of the interposed materials via the imager 112. The retractable aspect of the imager 112 provides the advantage of withdrawing the imager screen from the beam path of the radiation source 106 when the imager 112 is not needed thereby providing additional clearance within the gantry 102 enclosure as well as placing the imager 112 out of the path of potentially harmful emissions from the radiation source 102 thereby reducing the need for shielding to be provided to the imager 112. In this embodiment, the imagers and radiation sources 130 are arranged orthogonally to provide a radiographic images of the patient from two directions.


The system 100 also comprises a patient positioner 114 and a patient pod 200 which is attached to positioner-pod connector 234 at the distal, working end 116 of the patient positioner 114. The patient positioner 114 is adapted to, upon receipt of appropriate movement commands, position the patient pod 200 in multiple translational and rotational axes and preferably is capable of positioning the patient pod 200 in three orthogonal translational (i.e., the longitudinal, vertical, and lateral) axes as well as three orthogonal rotational (i.e., pitch, roll, and yaw) axes so as to provide a full six degrees freedom of motion to placement of the patient pod 200.


It will be understood that the patient can be positioned in any number of ways, including, but not limited to, automatic, semi-automatic (e.g., with a hand pendent), manual controlled with direct interface to the positioner controller, or full manual (e.g., releasing a brake and moving each device axis with a hand crank).


With reference to FIGS. 2 and 3, in one embodiment, the patient positioner 114 comprises a robotic arm 150, such as, for example, a KUKA KR500-L420 robot. In one embodiment, the KUKA KR500-L420 robot is safely mounted on a pedestal located in a pit beneath a rotating platform 132, and extends up through a cut-out 134 in the platform 132. The platform 132 is generally flush with the treatment area floor 130. The robotic arm 150 can typically move in six degrees of freedom and has the reach necessary to achieve all possible treatment positions in the gantry 102. The robotic arm 150 extends between a base 118 and a distal, working end 116.


A swivel joint 152 at the distal end 116 of the robotic arm 150 is capable of rotating any devices connected to its distal end in a clockwise or counterclockwise manner. The swivel joint 152 is typically interfaces with a positioner-pod connector 234, which in turn connects with the a patient pod 200. Robotic arm segment 162 and any distally located arm components are capable of being rotated about swivel joint 154. Robotic arm segment 164 and any distally located arm components are capable of being rotated about swivel joint 156. Robotic arm segment 166 and any distally located arm components are capable of being rotated about swivel joint 158. Robotic arm segment 168 and any distally located arm components are capable of being rotated about swivel joint 159. Robotic arm segment 170 and any distally located arm components are capable of being rotated about swivel joint 160.


With reference to FIG. 2, in one embodiment, the radiation therapy system 100 comprises an imager 112 that is in a retracted position or configuration, and thus hidden from view. The patient positioner 114 is mounted on a pedestal located in a pit beneath a rotating platform 132. The platform 132 is generally flush with the treatment area floor 130 and generally follows the rotational motion of the positioner 114 at the base 118 of the positioner 114. The robotic arm 150 of the positioner 114 extends up through a cut-out 134 in the platform 132. In one embodiment, shown in FIGS. 2 and 3, the platform 132 rotates in the clockwise or counterclockwise direction and follows the rotational motion about swivel joint 160.


With reference to FIGS. 2 and 5, in one embodiment, the radiation treatment system 100 comprises a modular patient support system 199 which interfaces with the patient positioner 114. More specifically, the distal end 116 of the robotic arm 150 interfaces with a patient pod 200, described in further detail below.


The system 100 is under regulation and operator control through a control system that is generally patterned after the system used for the Loma Linda University Medical Center 200 MeV synchrotron facility. The control system provides an operator controllable system for controlling the rotational position of the gantry 102, as well as the translational and rotational position of the patient positioner 114. The control system provides timing pulses to the entire system 100.


In one embodiment, the control system comprises multiple distributed microprocessor-based systems networked together and to a workstation computer using a Local Area Network (LAN) Standard. The LAN is an Ethernet based protocol. The workstation performs the centralized coordination of beam requests from the treatment stations in the therapy system as well as programmed beam-energy control.


Additional details on the structure and operation of the radiation therapy systems can be found in commonly assigned applications—namely, U.S. Pat. No. 7,280,633, issued on Oct. 9, 2007, concurrently filed herewith, titled PATH PLANNING AND COLLISION AVOIDANCE FOR MOVEMENT OF INSTRUMENTS IN A RADIATION THERAPY ENVIRONMENT, and U.S. Pat. No. 7,199,382, issued on Apr. 3, 2007, concurrently filed herewith, titled PATIENT ALIGNMENT SYSTEM WITH EXTERNAL MEASUREMENT AND OBJECT COORDINATION FOR RADIATION THERAPY SYSTEM, the contents of each of which are hereby incorporated in their entirety into this disclosure by reference.


B. Modular Patient Support System

In accordance with the one embodiment described herein, there is provided a modular patient support system that generally comprises a modular patient pod and an immobilization device.



FIGS. 4A and 4B illustrate one embodiment of a modular patient pod 200 for radiation therapy. The pod 200 comprises a longitudinally extending shell structure 212. In the present embodiment, the positioner-pod connector 234 is offset from the middle of the shell structure 212, thereby resulting in a pod 200 that is cantilevered with respect to the working end 116 of the patient positioner 114. A pod 200 that is cantilevered with respect to the positioner 114 advantageously allows more ways to position the patient within the radiation therapy system 100. A cantilevered pod 200 advantageously reduces the chances of collisions with other components of the system 100 as the pod 200 and/or positioner 114 or adjusted within the system 100. A pod 200 that is cantilevered can also facilitate the entry or placement of the patient into the pod 200. In another embodiment (not illustrated), the connector 234 is located, along the longitudinal axis of the pod 200, at or near the middle of the shell structure 212.


The pod 200, any components thereof, and any extensions or attachments thereto, are described herein with reference to the section of the pod 200 which interfaces with the patient positioner 114 via a positioner-pod connector 234. Any components, extensions, and attachments that are closer, along a visualized longitudinal axis of the pod 200, to the connector 234 are referred to herein as being proximal, while any components, extensions, and attachments located toward the opposite end of the pod are referred to herein as being distal.


The longitudinally extending shell structure 212 extends between a shell proximal edge 214 and a shell distal edge 216. The shell 212 has a transverse concave top surface 218 and a transverse concave bottom surface 220. The shell 212 transversely extends between a first upwardly-extending lateral edge 222 and a second upwardly-extending lateral edge 224.


With reference to FIGS. 4A and 4B, in one embodiment, the support shell 212 is a hemi-cylindrical structure acting as a cantilevered support for patients during radiation treatment. Here, the hemi-cylindrical shape of the shell 212 facilitates providing enhanced physical support and consistent indexing when used with immobilization devices, such as, for example, foam inserts or vacuum bags, described in further detail below. The curved shape of the pod 200 also permits beam shaping devices to be located near the patient.


The patient can be positioned in the patient pod 200 in any number of positions. In one approach, where the patient is positioned in the pod 200 in a supine position with his head near the shell distal edge 216 and his feet near the shell proximal edge 214, the lateral edge 222 is on the patient's right-hand side while the lateral edge 224 is on the patient's left-hand side. In another approach, where the patient is positioned in the pod 200 in a prone position with his head near the shell distal edge 216 and his feet near the shell proximal edge 214, the lateral edge 222 is on the patient's left-hand side while the lateral edge 224 is on the patient's right-hand side. In yet another approach, where the patient is positioned in the pod 200 in a supine position with his feet near the shell distal edge 216 and his head near the shell proximal edge 214, the lateral edge 222 is on the patient's left-hand side while the lateral edge 224 is on the patient's right-hand side.


With reference to FIGS. 4A and 4B, in one embodiment the pod 200 comprises attachment or extension tracks 226 and 228 that are located on shell edges 214 and 216, respectively. Extension tracks 226 and 228 can comprise a known universal attachment mechanism, such as, for example, a plurality of linearly arranged apertures 230, 232 that facilitate communication between the top and bottom surfaces 218, 220 of the shell 212. In one embodiment, one or more modular extensions are adjustably fastened to the attachment tracks 226, 228 by means of removable pins or bolts slotted or screwed through the apertures 230, 232.


In one method of use, involving treatment near the patient's head region, the patient is positioned with his head beyond shell edge 216 on a head rest extension 310 attached to track 228. In another method of use, involving treatment in the patient's lung region, the patient is positioned head-first (i.e., head near shell edge 216) with his shoulders inline with track 228 so that the radiation beam passes through the shell 212 and into the lung region. In yet another method of use, involving treatment in the patient's lung region, the patient is positioned head-first with his shoulders beyond the track 228 so that treatment occurs outside the shell 212.


As used herein, negative pitch refers generally to the lowering or dipping of the pod 200 distal end, while positive pitch refers generally to the raising of the pod 200 distal end. Negative roll refers generally to the counterclockwise rotation of the pod 200, while positive roll refers generally to the clockwise rotation of the pod 200. Negative yaw refers generally to the rotation of the pod 200 about Axis-6 to the left, while positive yaw refers generally to the rotation of the pod 200 about Axis-6 to the right.


The shell 212 is preferably sufficiently long and wide to receive most or all of the body of a human patient lying on it in any position, such as, for example, the supine or prone positions. The structural shell 212 length from Axis-6 to the distal edge 216 without attachments is typically in the range of about 75 cm to about 175 cm, often about 80 cm to about 125 cm, depending on the intended patient application specific size (e.g., pediatric) and/or gantry size. In one embodiment, the length of the shell 212 from Axis-6 to the distal edge 216 is on the order of 90 cm. As used herein, Axis-6 refers to the axis of the positioner 114 that extends vertically through the attachment at the final yaw axis (e.g., wrist) of the positioner 114 (e.g., in the embodiment shown in FIGS. 2 and 3, the wrist comprises the swivel joint 152 at the distal end 116 of the robotic arm 150), thereby allowing yaw rotation of the patient pod 200.


The overall longitudinal length of the shell 212 (i.e., between shell proximal edge 214 and shell distal edge 216) is typically in the range of about 90 cm to about 235 cm, often about 95 cm to about 175 cm. In one embodiment, the overall longitudinal length of the shell 212 is about 106 cm. The outer diameter of the shell 212 is typically in the range of about 35 cm to about 65 cm, often about 35 to about 55 cm depending on the intended patient application specific size (e.g., pediatric, large patient, etc.) and/or available treatment energy. In one embodiment, the outer diameter of the shell 212 is about 46 cm.


In one embodiment, the shell 212 has a non-metallic (e.g., carbon fiber) composite construction that facilitates radiation beam treatments through the shell 212. Any number of imaging simulators known in the art (e.g., computed tomography imaging (CT), positron emission tomography (PET), magnetic resonance imaging (MRI), cone beam imaging. etc.) can be used to account for the treat-through material of the shell 212. As used herein, the term “treat-through” refers generally to physical property of a material or surface that allows radiation beams to be irradiated through a surface, and thereby deliver prescribed radiation doses from a radiation source, through a surface, and into a targeted area within the patient on the other side of the surface. Treat-through properties are generally measured or quantified in terms of molecular equivalence of water. As used herein, the term “non-treat through” refers generally to the physical property of a material or surface that does not allow radiation beams to be irradiated through a surface. Areas of the shell 212 made of non-metallic materials are generally referred to as treat-through surfaces or zones.


As used herein, water equivalency refers generally to the effect of an absorbing material on proton beam range relative to water. With respect to the treat-through sections, zones, or surfaces described herein, water equivalency is measured with respect to radiation beams that are perpendicular to the penetrable surface.


In one embodiment, illustrated in FIG. 4C, the shell 212 comprises a core material 240 encapsulated in a structural skin 242. The core material 240 can comprise any suitable low density materials known in the art, such as, for example, structural foam or the like. The structural skin 242 can comprise any suitable firm, lightweight material known in the art, such as, for example, carbon fiber, spectra fiber, etc.


U.S. Provisional Application No. 60/583,063, filed Jun. 25, 2004, titled METHOD AND DEVICE FOR REGISTRATION AND IMMOBILIZATION, the disclosure of which is hereby incorporated in its entirety herein by reference, discloses some suitable materials from which the shell 212 can be constructed.


In one embodiment, the shell 212 is made from polyvinylchloride (PVC) or the like. In another embodiment, the shell 212 is made from fiberglass or the like. In still another embodiment, the shell 212 comprises any known suitable low density foam or the like.


In one embodiment, the shell 212 is constructed of composite skins comprising polyethylene fibers embedded in an epoxy resin and a low-density polystyrene foam (Styrofoam®) core. A list of some of the materials that can be used in manufacturing the shell 212 appears in Table I below.















#
Matrix
Fiber Type
Fiber Structure


















1
high impact polystyrene
none
n.a.



(HIPS)


2
polymethylmethacrylate
none
n.a.



(PMMA)


3
polycarbonate (PC)
none
n.a.


4
polyvinylchloride
none
n.a.



(PVC)


5
polyethylene (PE)
none
n.a.


6
epoxy resin
none
n.a.


7
epoxy resin
fiberglass
random


8
epoxy resin
fiberglass
woven


9
epoxy resin
aramid
woven


10
epoxy resin
UHMW PE
unidirectional tape


11
epoxy resin
carbon
twill woven


12
epoxy resin
carbon
unidirectional tape


13
epoxy resin
ultrahigh modulus
unidirectional tape




carbon









In one embodiment, the carbon fiber composites, each woven ply of a lay-up is approximately 0.25 mm thick. In one embodiment, the composite lay-up is approximately 50% fiber and 50% resin by weight. In one embodiment, the fiber content of the composite is maximized while the resin content is minimized. In one embodiment, the shelf 212 of the pod 200 is made from the composite material Spectra, which is available from Honeywell Performance Fibers in Colonial Heights, Va.


In one embodiment, at least one of the extension tracks 226, 228 is made from any suitable metal known in the art, such as, for example, aluminum. The use of metal, however, results in non-treat through zones or areas. As such, the use of metal structures is generally limited in order to minimize non-treat through surfaces. In another embodiment, at least one of the tracks 226, 228 is made from a suitable non-metal material known in the art, such as, for example, a carbon composite.


The extension tracks 226, 228 are advantageously positioned at the shell edges 214 and 216 of the pod 200, thereby facilitating radiation treatment through the support shell 212 of the pod 200. The positioning of the extension tracks 226, 228 at the shell edges 214, 216 also facilitates the attachment of one or more pod extensions to the pod 200 as explained in further detail below.


In one embodiment, the extension tracks 226, 228 are rounded such that for certain treatment positions, the patient shall not experience pain or discomfort as the result of his contact with the track 226 or 228. The extension tracks 226, 228 preferably comprise interface extensions that are approximately flush with the inside surface 218 of the shell 212. In one embodiment, the maximum step or vertical distance between the inner surface 218 and the track interface extension is about 1 cm.


Extension tracks 226, 228 allow one or more pod extensions to be connected to the pod 200, and provide modularity to the overall design. For example, track 228 can accommodate multiple head extensions and allows for 2-pi head and neck treatments. The modularity of the pod components and optional pod extensions accommodate multiple patient positions within the pod 220, such as, for example, both head-first and feet-first treatment positions. The pod 200 also accommodates treatment positions where the patient lies on his back, side, stomach, or any variations thereof. It will be noted that actual position of the patient within the pod 200 will depend on various factors, such as, for example, the radiation treatment protocol, as determined by the physician and/or radiation physicist, and the physical characteristics of the patient.


With reference to FIGS. 4A, 4B, and 6, in one embodiment, positioner-pod connector 234 is a rigid base member that allows connection to any patient positioner 114, such as, for example, via the distal, working end 116 of the positioner 114. The connector 234 comprises a positioner interface clamping plate 236 for interfacing and attaching the pod 200 to the patient positioner 114. The clamping plate 236 comprises a plurality of female ends 238 arranged in a circular pattern for receiving bolts or other suitable fastening devices, thereby fixedly securing the pod 200 to the positioner 114. This particular embodiment of the clamping plate 236 is well suited for accommodating the bolt pattern available on the KUKA KR500-L420 robotic positioner.


In one embodiment, the connector 236 (e.g., clamping plate) protrudes into the shell 212 with a height H of approximately 1.75 inches, extends longitudinally L along the shell 212 approximately 12 inches over the robot connection, and has a width W of approximately 11 inches. In another embodiment (not shown), the connector is integrated into the shell 212 and is flush to the contour of the inside surface of the shell 212.


It will be noted that the pod 200 and any mechanical device mounted thereto should be positioned to avoid collision with the positioner 114 during yaw treatment angles. The distance between the inside surface 218 of the shell 212 and the connector 234 is typically in the range of about 5 mm to about 35 mm, often about 12 mm to about 25 mm. In one embodiment, the distance between the inside surface 218 of the shell 212 and the connector 234 is about 19 mm.


The patient pod 200 can comprise one or more attachments, extensions, adapter plates, or the like, or combinations thereof (collectively, “pod attachments”). In one embodiment, shown in FIG. 4A, the pod 200 comprises a cantilevered head rest extension 310 and a robot end, foot rest extension 320. In another embodiment, shown in FIG. 2, the pod 200 comprises a supine head extension 258 and a robot end extension 320.


With reference to FIGS. 7A-7G, one or more pod attachments can be removably attached to one or both of the pod extension tracks 226, 228. In one embodiment, no tool is required to attach or remove the pod attachments to the extension tracks 226, 228 of the pod 200. The pod attachments preferably comprise treat-through materials and surfaces.


While these pod attachments can have treat-through surfaces that vary in water equivalent thickness, it is preferred that the treat-thought surfaces not vary in water equivalent thickness with a gradient greater than about 0.5 mm water equivalent thickness/mm along any transverse distance. The gradient limits will define design edge effects, thickness changes, and material transitions, as well as general manufacturing tolerances such as voids and material surface imperfections. In one embodiment, the attachments have water equivalencies of no more than about 2 cm. In one embodiment, the shell 212 has about a 25 mm wide non-treat through region due to the mounted attachment track 226 or 228. It will be noted that the certain embodiments where the tracks 226, 228 are made of metal, the tracks are non-treat through, whereas in certain other embodiments where the tracks 226, 228 are made of non-metal materials, such as, for example, carbon fiber, the tracks 226, 228 provide treat-through zones. As with the shell 212, certain pod attachments can comprise up to about a 25 mm wide non-treat through region due to the tracks 226, 228.


With reference to the embodiments shown in FIGS. 7A-7G, each of the pod attachments 270, 280, 290, 300, 310, 320, 330 comprise an extension track engaging end 262 which interfaces and connects with extension tracks 226 and/or 228. The track engaging end 262 comprises an upper lip 264 and a lower lip 266, where the space between lips 264 and 266 is approximately equal to the distance between the inner and outer diameters of extension tracks 226 and 228. The upper and lower lips 264 and 266 each comprise a plurality of apertures 268, where each upper lip aperture is aligned with a corresponding lower lip aperture along a visualized radius extending outward from the center of the hemi-cylindrical shell 212. In one embodiment, the apertures 268 are drilled or molded into locations within the track engaging end 262 to align with the extension track apertures 230 or 232 along a visualized radius extending outward from the center of the hemi-cylindrical shell 212 when the track engaging end 262 engages with tracks 226 or 228. In one embodiment, the attachment 270 is adjustably fastened to attachment track(s) 226 or 228 by means of removable pins, bolts, or equivalents thereof, slotted or screwed through the radially aligned apertures 230, 232, 268.


With reference to FIG. 7A, in one embodiment, the pod attachment comprises a short, flat attachment 270 with a length of about 30 cm and a width of about 23 cm. Attachment 270 facilitates positioning the patient at isocenter for head treatment including vertex with minimal shoot through material and permits 5-degree pitch and roll corrections. Attachment 270 comprises treat-through section 271 and treat-through edges 272, 273.


With reference to FIG. 7B, in one embodiment, the pod attachment comprises a long, flat attachment 280 with a length of about 48 cm and a width of about 23 cm. Attachment 280 facilitates positioning the ENT/shoulder region away from the any non-treat through pod attachment tracks 226, 228. Attachment 280 comprises treat-through section 281 and treat-through edges 282, 283.


With reference to FIG. 7C, in one embodiment, the pod attachment comprises a shell leg or head extension attachment 290 that has a diameter approximately the same as the pod shell 212 and that is approximately 67 cm long, thereby allowing the pod 200 to accommodate patients who are 75 inches tall. Attachment 290 comprises an end-stop or cap 294 against which the patient's feet can be placed. Attachment 290 comprises treat-through section 291, treat-through edges 292, 293, non-treat through section 295 and non-treat through edges 296, 297.


With reference to FIG. 7D, in one embodiment, the pod attachment comprises a flat extension 300 that is about 40 cm long and about 36 cm wide. Extension 300 comprises treat-through section 301, non-treat through sections 302, 303, 304, and non-treat through edges 305, 306. Here, section 301 is a head-rest region, while sections 302, 303, 304 makeup the immobilization device attachment region. In one embodiment, extension 300 accommodates any number of immobilization devices and techniques, described in further detail below. For example, in one embodiment, extension 300 can be dimensioned to facilitate optional cranial ring immobilization mountings.


With reference to FIG. 7E, in one embodiment, the pod attachment comprises a short, head rest extension 310. Extension 310 comprises treat-through section 311 and treat-through edges 312, 313, 314.


With reference to FIG. 7F, in one embodiment, the pod attachment comprises a robot end extension 320 that is chamfered at an angle of approximately 45-degrees relative to a visualized, longitudinal axis extending between the proximal and distal extension tracks 226 and 228, beginning at about 19 cm from Axis-6 up to distance of about 43 cm from Axis-6, thereby preventing collision with the patient positioner 114. Extension 320 does not have any treat-through sections or edges; rather, sections 321, 322, 323 and edges 324, 325, 326 are all non-treat through.


With reference to FIG. 7G, in one embodiment, the pod attachment comprises a prone headrest 330 to accommodate prone treatments. The prone headrest defines an face-through hole 331 through which the patient can place his face. The prone headrest 330 comprises non-treat through sections 332, 333.


Any number of immobilization devices can be used with the patient pod 200. With reference to FIG. 5, in one embodiment, the modular patient support system 199 comprises the patient pod 200 and an immobilization device, further comprising a rigid moldable foam cradle 350 bonded to the pod shell top surface 218. Cradle 350 conforms to a selected region (e.g., back, front, or side) and comprises a mold 352 conforming exactly to the patient's body for securely holding the patient in position during radiation treatments. The rigid foam cradle 350 can be formed in a manner similar to that employed in U.S. Pat. No. 4,905,267, titled METHOD OF ASSEMBLY AND WHOLE BODY, PATIENT POSITIONING AND REPOSITIONING SUPPORT FOR USE IN RADIATION BEAM THERAPY SYSTEMS, the disclosure of which is hereby incorporated in its entirety herein by reference.


In one approach, an expandable, liquid foaming agent known as ACMM foaming agent 325, available from the Soule Co., Inc., Lutz, Fla. or Smithers Medical Products, Inc., Akron, Ohio, is used to form the rigid foam cradle 350. In one approach, the foaming agent is painted onto the shell top surface 218. After the foaming agent is introduced within the shell, the patient is positioned within the shell where he lays motionless for approximately 15 minutes until the foaming agent has cooled to room temperature and the patient body mold 352 is formed.


The foam between the patient and the pod can be mechanically stabilized to prevent the foam from moving and displacing the patient between or during treatments. In one approach, the foam is placed inside a very thin plastic bag. In another approach, the pod is lined with a low-density foam sheet. In still another approach, a very thin, disposable, plastic shell is inserted into the pod before applying the foam chemicals. In yet another approach, there is no lining between the foam and pod; rather, the inner pod surface is made very smooth by the composite layers on a high quality aluminum mold. In still another approach, the inner surface of the pod is coated with Teflon or another nonreacting substance.


Other suitable immobilization devices that can be used with the patient pod 200, with or without any flat extensions, include, but are not limited to, bite blocks, face masks, vacuum bags, halos or cranial rings, localizer Z-frame boxes, triangular leg pillows, foam inserts, or the like, or combinations thereof. Bite block mouthpieces are preferably compatible with any existing MRI “Head Coils.” In one embodiment, the bite block frame preferably limits translational movement of any point in the treatable volume to no more than about 1.0 mm given the force of 30 pounds in any direction. In another embodiment, the bite block frame limits head rotations to less than or equal to about one-degree in any direction under a force of about 30 pounds in any direction. In one embodiment, the bite block frame mounts to the shell 212 and/or any pod attachments via an existing vacuum system providing approximately 9 psi.


With respect to the various pod attachments described above, the weight of any of the pod attachments preferably does not exceed about 30 pounds in weight, thereby making it easier for an individual to carry and install the pod attachment to the pod shell 212. Pod attachments mounted on the side near Axis-6 are preferably angled along the robotic arm or positioner to eliminate injury or collision.


In one embodiment, the pod 200 is capable of supporting a 400 pound distributed patient load (not including any immobilization devices) with the patient center of gravity not to exceed 37 inches from Axis-6. The pod 200 is preferably capable of supporting a 300 pound end load (with or without extensions) to accommodate an individual seated on the cantilevered end 216. In one embodiment, the pod 200 is capable of supporting a patient load of 300 lbf, an immobilization load of 50 lbf, and a 200 lbf longitudinal load located on the extensions.


In one embodiment, the pod 200 is preferably capable of supporting a water phantom load of 275 pounds (125 kg) at the proximal extension track 226.


In one embodiment, the pod 200 is capable of supporting an immobilization and patient load of up to approximately 150 pounds located on the attachments with a deflection of no more than 2 mm. Extensions are preferably capable of supporting a 300 pound load at the end in the event a person were to sit on the extension, thereby resulting in a pod with extension that is not overly flexible.


With continued reference to FIGS. 4A and 4B, in one embodiment, the deflection of the shell 212 at the cantilevered end 216 due to patient load is preferably less than or equal to about 5 mm. In one embodiment, such deflection can be compensated for during treatment using an external measurement system that will correct inherent mechanical errors. In one embodiment, the pod 200 is accompanied by or includes an inclinometer as safety feature to prevent the positioner 114 from producing angular deflections great than about +−0.5.5 degrees from the horizontal. An inclinometer or tilt sensor comprises any device, typically electro-mechanical, that senses the angle of an object with respect to gravity.


The vertical deflection of the patient pod 200 at the distal, cantilevered end (with or without extensions) due to a 300 pound patient distributed load and 50 pound immobilization load is preferably less than about 4 mm. The lateral deflection of the pod 200 (with or without extensions) due to a patient lateral load of 100 pounds is preferably less than about 0.5 mm. It will be noted that these types of vertical and lateral deflections can be compensated for during treatment by using an external measurement system that corrects inherent mechanical errors.


All table constituent materials and components preferably withstand an average daily radiation dose of approximately 9,000 rads, 5 days per week, 52 weeks per year, over a 20 year lifetime. All hardware and components preferably operate normally in the temperature environment of 40-95 degrees F. with a relative humidity of 25-78%.


The treat-through surfaces of the pod 200 preferably do not vary in thickness with a gradient greater than about 0.5 mm water equivalent thickness per mm along any transverse distance. The edges of treat-through areas of the pod 200 are preferably less than about 0.5 mm water equivalent thickness. In one embodiment, the treat-through thickness of the pod 200 preferably has a water equivalency of less than approximately 2 cm.


Components of the pod 200 positioned between the patient and the radiographic image receptor preferably have an aluminum equivalence less than or equal to about 5 mm per FDA CFR part 1020.


With continued reference to FIGS. 4A and 4B, in one embodiment, the geometry and size of the pod 200 accommodates a CT scanner with a physical aperture of 68 cm and an image reconstruction diameter of 48 cm. The treat-through surfaces in the shell 212 preferably do not vary in thickness. Here, the edges of treat-through areas are preferably less than about 0.5 mm water equivalent thickness. In one preferred embodiment, the thickness of the shell 212 has a water equivalency of no more than about 2 cm.


The pod attachments preferably have an aluminum equivalence of about 5 mm per FDA CFR Part 1020 (Compliance determined by x-ray measurements made at a potential of 100 kilovolts peak and with an x-ray beam that has a HVL of 2.7 mm of aluminum). As used herein, aluminum equivalency refers to the thickness of aluminum (type 1100 alloy) affording the same radiographic attenuation, under same specified conditions, as the material in question. It will be noted that the modular patient support system 199 is preferably capable of accommodating a 65 cm×60 cm×60 cm water phantom at the robot end.


In one embodiment, the radiation treatment system 100 comprises an external measurement or vision system, which further comprises vision system markers. The vision system markers are preferably mounted to the non-treat through areas, such as, for example, tracks 226, 228 made of metal.


C. Patient Pod with Tapered Edge Configuration

In accordance with one embodiment described herein, there is provided a patient pod with a tapered edge configuration that reduces edge effects associated with abrupt changes in the water equivalency in the radiation beam path.


For certain radiation treatment protocols, radiation beams of a prescribed intensity are delivered from lateral positions. In certain instances, for example, where the radiation beam is delivered from a lateral position that is well above patient pod, the radiation beam does not have to be delivered through the patient pod. In another scenario, where the radiation beam is delivered from a lateral position that is well below the patient pod, the radiation beam can pass through a pod shell surface of uniform density or water equivalency. There are situations, however, where the radiation beam traverses one or both of the lateral edges (e.g., lateral edge 222 or 224 of the pod shell 212 depicted in FIG. 4A). An abrupt transition or change in the water equivalency between the pod shell and the space above the pod shell lateral edge can result in radiation beams having intensities that are non-uniform or difficult to predict. The effects of any abrupt transitions in the water equivalency in the beam path referred to herein as edge effects.


Sections of the lateral edges of the patient pod can be tapered to reduce or minimize the edge effects. With reference to FIG. 4C, in one embodiment, the lateral edge 222 comprises a gradually tapered edge 243 and a longitudinally-extending rail 299. The tapered edge 243 comprises an inner surface 245 that tapers outward beginning at lower edge 244 and ends at upper edge 248. Tapered edge 243 also comprises an outer surface 247 that tapers inward beginning at lower edge 246 and ends at upper edge 248. Surfaces 245 and 247 ultimately converge at upper edge 248. The location and degree of tapering of edges 244, 246 can be varied as needed to reduce any edge effects.


With reference to FIGS. 4A-4C, the tapered edge 243 is typically tapered with a gradient from about 0.1 mm water equivalency/mm to about 5 mm water equivalency/mm, depending on accuracy requirements and repeatability of immobilization devices. In one embodiment, the tapered portion 243 is tapered with a gradient of about 0.5 mm water equivalency/mm.


The lateral edges of the pod are relatively thin, thereby minimally perturbing any therapeutic proton beams passing through or near any of the lateral edges.


The low-density rail 299 covers tapered edge 243, and thereby protects the patient and radiation treatment providers from the upper edge 248 which tends to be a sharp edge. With reference to exemplary shell lateral edge 222 illustrated in FIG. 4C, the lateral edge 222 generally comprises an inferior portion that is complementary to the shape of the tapered edge 243 and a superior portion that is generally rounded or blunt.


The rail 299 preferably comprises a low-density material, such as, for example, epoxy with microspheres, extruded or molded plastics (nylon, urethane, etc.), rubber, or the like, or combinations thereof. In one embodiment, the rail 299 maintains the 0.5 mm/mm water equivalent gradient of the shell 212.


In one embodiment, the rail 299 is removably secured to the shell tapered edge 243 via any attachment mechanism known in the art, such as, for example, an interlocking receiver molded into the shell 212 for positive locating and holding of the rail 299. In another embodiment, the rail 299 simply sits the tapered edge 243 without the aid of any attachment mechanisms. In yet another embodiment, the rail 299 is permanently secured to the tapered edge 243 using any known suitable attachment mechanism, such as, for example, epoxy with micro-spheres. Patient safety and comfort are preferably integrated with each embodiment. Several transitions, methods, and materials can be used to achieve specified gradient, level of safety and patient comfort, such as, for example, replaceable handrails or pliable edges.


D. Aimable Volume of Modular Patient Support System

The aimable volume will generally depend on the orientation of the patient pod 200 and the patient positioner 114 that interfaces with the patient pod 200 along the orthogonal translational and rotational axes.



FIG. 8 provides a schematic partial cross-sectional side view of the shape of the aimable volumes 352, 354 (hashed) for the pod shell 212. Here, the pod 200 has a thickness of about 1.9 cm above the positioner-pod connector 234. For any yaw angle up to 93 degrees, with or without pitch and roll corrections, the aimable volume (made up of volumes 352 and 354) is approximately a 40 cm tall by 50 cm wide trapezoidal volume extending about 120 cm along the table from Axis-6 to a distal height of about 31.9 cm. One half of the aimable volume is accessible in 93-degree vertex positions when the bottom of the aimable volume is at isocenter. For example, in one embodiment, in a left vertex position at a 93-degree yaw, the left half of a patient's head (positioned face up with head at end of pod 200) is inaccessible because of maximum robot reach. Positioning the pod 200 to a right vertex allows accessibility to this left half. The patient himself may be positioned with a lateral shift to eliminate this. Here, the aimable volumes 352, 354 for vertex treatments typically begin about 3 cm off of shell surface 218.


It will be understood that the invention described herein, and the component parts thereof, can be sued in any number of combination of treatment systems, including, but not limited to, proton treatment, conventional radiation treatment, and imaging systems (e.g., CT, PET, MRI, cone beam, etc.).


While the present invention has been illustrated and described with particularity in terms of preferred embodiments, it should be understood that no limitation of the scope of the invention is intended thereby. Features of any of the foregoing devices and methods may be substituted or added into the others, as will be apparent to those of skill in the art. The scope of the invention is defined only by the claims appended hereto. It should also be understood that variations of the particular embodiments described herein incorporating the principles of the present invention will occur to those of ordinary skill in the art and yet be within the scope of the appended claims.

Claims
  • 1. An apparatus for attachment to a hemi-cylindrical patient support shell configured to support a patient undergoing radiation therapy, the apparatus comprising: a hemi cylindrical support shell attachment configured for attachment to a proximal end of the support shell so as to be aligned with the support shell and extend longitudinally therefrom, wherein the support shell attachment comprises an extension track engaging end having an upper lip and a lower lip, wherein a space between the upper lip and the lower lip is approximately equal to a distance between an inner diameter and an outer diameter of an extension track.
  • 2. The apparatus of claim 1, wherein the attachment comprises an end stop having a substantially planar wall extending substantially normal to a top transverse concave surface.
  • 3. The apparatus of claim 1, wherein the attachment comprises a chamfered surface at a distal end of the attachment.
  • 4. The apparatus of claim 1, further comprising: a foam cradle supported by the support shell, for securely holding a patient in position during treatment.
  • 5. An apparatus for attachment to a patient support bed used by a patient undergoing radiation therapy, comprising: a support element for supporting at least a portion of a patient; andextension track engagement means positioned at a proximal end of the support element, the engagement means configured for engaging a patient support bed, wherein the extension track engagement means comprises an upper lip and a lower lip, wherein a distance between the upper lip and the lower lip of the extension track engagement means is approximately equal to a distance between an inner diameter and an outer diameter of an extension track of a hemi cylindrical patient support bed.
  • 6. The apparatus of claim 5, further comprising an end stop attached to a distal end of the support element, the end stop comprising a substantially planar wall that extends upwards at an angle substantially normal to the support element.
  • 7. The apparatus of claim 5, further comprising a substantially planar chamfered end stop.
  • 8. A modular patient support system for efficiently securing a patient in a fixed position during radiation treatment and for repositioning the patient to the fixed position, the support system comprising: a modular patient pod, comprising: a longitudinally-extending support shell extending from a shell proximal edge through a shell longitudinal center section to a shell distal edge,a first upwardly-extending lateral edge, anda second upwardly-extending lateral edge, wherein at least one of the first and the second lateral edges further comprises a first tapered edge and a first longitudinally-extending rail, the first longitudinally-extending rail comprising a first rail inferior portion that is complementary to the shape of the first tapered edge and a first rail superior portion that is rounded, the first longitudinally-extending rail comprising a first low-density material,a proximal extension track connected to the shell proximal edge, anda distal extension track connected to the shell distal edge.
  • 9. The support system of claim 8, wherein the first lateral edge further comprises a means for reducing edge effects associated with radiation beams that traverse the first lateral edge during radiation treatment.
  • 10. The support system of claim 8, wherein the modular patient pod further comprises a positioner-pod connector attached to the shell bottom surface, and a first immobilization device.
  • 11. A modular patient pod for providing cantilevered support of a patient undergoing radiation treatment pursuant to a treatment protocol, the pod comprising: a support shell extending from a shell proximal edge through a shell longitudinal center section to a shell distal edge, the support shell having a first upwardly-extending lateral edge, and a second upwardly-extending lateral edge, wherein at least one of the first and the second laterally extending lateral edges further comprises a first tapered edge and a first longitudinally-extending rail, the first longitudinally-extending rail comprising a first rail inferior portion that is complementary to the shape of the first tapered edge and a first rail superior portion that is rounded, the first longitudinally-extending rail comprising a first low-density material;a proximal extension track connected to the shell proximal edge;a distal extension track connected to the shell distal edge.
  • 12. The modular patient pod of claim 11, wherein the first lateral edge further comprises a means for reducing edge effects associated with radiation beams that traverse the first lateral edge during radiation treatment.
  • 13. The modular patient pod of claim 11, wherein the modular patient pod further comprises a positioner-pod connector attached to the shell bottom surface, and a first immobilization device.
  • 14. A modular patient support system for securing a patient in a fixed position during radiation treatment and for repositioning the patient to the fixed position, the support system comprising: a modular patient pod, comprising: a longitudinally-extending support shell extending from a shell proximal edge through a shell longitudinal center section to a shell distal edge,a first upwardly-extending lateral edge, wherein the first upwardly-extending lateral edge further comprises a means for reducing edge effects associated with radiation beams that traverse the first upwardly-extending lateral edge during radiation treatment, anda second upwardly-extending lateral edge,a proximal extension track connected to the shell proximal edge, anda distal extension track connected to the shell distal edge.
  • 15. The support system of claim 14, wherein the first lateral edge further comprises a first tapered edge and a first longitudinally-extending rail, the first rail comprising a first rail inferior portion that is complementary to the shape of the first tapered edge and a first rail superior portion that is rounded, the first rail comprising a first low-density material.
  • 16. The support system of claim 14, wherein the modular patient pod further comprises a positioner-pod connector attached to the shell bottom surface and a first immobilization device.
  • 17. An apparatus for attachment to a hemi-cylindrical patient support shell configured to support a patient undergoing radiation therapy, the apparatus comprising a hemi cylindrical support shell attachment configured for attachment to a proximal end of the support shell wherein the support shell comprises an extension track engaging end having an upper lip and a lower lip, wherein a space between the upper lip and the lower lip is approximately equal to the distance between an inner diameter and an outer diameter of the extension track.
RELATED APPLICATIONS

This application is a continuation application of U.S. application Ser. No. 10/917,022, filed Aug. 12, 2004 which claims priority to U.S. Provisional Application No. 60/494,699, filed Aug. 12, 2003, titled PRECISION PATIENT ALIGNMENT AND BEAM THERAPY SYSTEM, and to U.S. Provisional Application No. 60/579,095, filed Jun. 10, 2004, titled PRECISION PATIENT ALIGNMENT AND BEAM THERAPY SYSTEM, the contents of each of which are hereby incorporated in their entirety into this disclosure by reference.

GOVERNMENT SUPPORT

This invention was made with United States Government support under grants DAMD17-99-1-9477 and DAMD17-02-1-0205 awarded by the Department of Defense. The Government has certain rights in the invention.

US Referenced Citations (290)
Number Name Date Kind
2469084 Schenker May 1949 A
2675564 Hughes Apr 1954 A
3397411 Rossi Aug 1968 A
3449570 Kok Jun 1969 A
3545739 D'Avignon Dec 1970 A
3556455 Storm Jan 1971 A
3604931 Kastner et al. Sep 1971 A
3640787 Heller Feb 1972 A
3689949 Weinstein et al. Sep 1972 A
3745998 Rose Jul 1973 A
3762404 Sakita Oct 1973 A
3778049 Viamonte, Jr. Dec 1973 A
3783251 Pavkovich Jan 1974 A
3848132 Foderaro Nov 1974 A
3851644 Slagle Dec 1974 A
3852610 McIntyre Dec 1974 A
3885258 Regan May 1975 A
3893198 Blair Jul 1975 A
3897345 Foster Jul 1975 A
3897777 Morrison Aug 1975 A
3901588 Longhenry Aug 1975 A
3905054 Windsor et al. Sep 1975 A
3942012 Boux Mar 1976 A
3947686 Cooper et al. Mar 1976 A
3986697 Amor, Jr. et al. Oct 1976 A
4034224 Heavens et al. Jul 1977 A
4064401 Marden Dec 1977 A
4069457 Martin et al. Jan 1978 A
4095114 Taumann Jun 1978 A
4112306 Nunan Sep 1978 A
4146793 Bergstrom et al. Mar 1979 A
4190772 Dinwiddie et al. Feb 1980 A
4206355 Boux Jun 1980 A
4230129 LeVeen Oct 1980 A
4252594 Cooper Feb 1981 A
4256112 Kopf et al. Mar 1981 A
4262204 Mirabella Apr 1981 A
4269512 Nosler May 1981 A
4287425 Elliott, Jr. Sep 1981 A
4327046 Davis et al. Apr 1982 A
4347213 Rogers, Jr. Aug 1982 A
4378813 Lovelace et al. Apr 1983 A
4392239 Wilkens Jul 1983 A
4400820 O'Dell et al. Aug 1983 A
4442352 Brahme Apr 1984 A
4450122 Gallina May 1984 A
4484571 Velasquez Nov 1984 A
4504050 Osborne Mar 1985 A
4552508 Reid Nov 1985 A
4578757 Stark Mar 1986 A
4591341 Andrews May 1986 A
4616814 Harwood-Nash et al. Oct 1986 A
4666304 Davies May 1987 A
4671284 Wilson et al. Jun 1987 A
4672212 Brahme Jun 1987 A
4682818 Morell Jul 1987 A
4688780 Hanz Aug 1987 A
4705955 Mileikowsky Nov 1987 A
4752064 Voss Jun 1988 A
4779858 Saussereau Oct 1988 A
4789930 Sones et al. Dec 1988 A
4796613 Heumann et al. Jan 1989 A
4812658 Koehler Mar 1989 A
4815448 Mills Mar 1989 A
4819257 Grasser et al. Apr 1989 A
4841965 Jacobs Jun 1989 A
4848340 Bille et al. Jul 1989 A
4870287 Cole et al. Sep 1989 A
4905267 Miller et al. Feb 1990 A
4917344 Prechter et al. Apr 1990 A
4926457 Poehner et al. May 1990 A
4979519 Chavarria et al. Dec 1990 A
5014290 Moore et al. May 1991 A
5017789 Young et al. May 1991 A
5037374 Carol Aug 1991 A
5039057 Prechter et al. Aug 1991 A
5039867 Nishihara et al. Aug 1991 A
5046708 Schaefer Sep 1991 A
5048071 Van Steenburg Sep 1991 A
5049147 Danon Sep 1991 A
5054049 Manabe Oct 1991 A
5079426 Antonuk et al. Jan 1992 A
5081665 Kostich Jan 1992 A
5090047 Angotti et al. Feb 1992 A
5094241 Allen Mar 1992 A
5107839 Houdek et al. Apr 1992 A
5117829 Miller et al. Jun 1992 A
5156166 Sebring Oct 1992 A
5168514 Horton, Jr. et al. Dec 1992 A
5207688 Carol May 1993 A
5240218 Dye Aug 1993 A
5242455 Skeens et al. Sep 1993 A
5269305 Corol Dec 1993 A
5274864 Morgan Jan 1994 A
5276927 Day Jan 1994 A
5278886 Ohgushi et al. Jan 1994 A
5281232 Hamilton et al. Jan 1994 A
5287576 Fraser Feb 1994 A
5343048 Pastyr Aug 1994 A
5361765 Herlihy et al. Nov 1994 A
5370117 McLaurin, Jr. Dec 1994 A
5370118 Vij et al. Dec 1994 A
5380336 Misko et al. Jan 1995 A
5382914 Hamm et al. Jan 1995 A
5388580 Sullivan et al. Feb 1995 A
5402463 Umetani et al. Mar 1995 A
5427097 Depp Jun 1995 A
5446548 Gerig et al. Aug 1995 A
5454993 Kostich Oct 1995 A
5464411 Schulte et al. Nov 1995 A
5485833 Dietz Jan 1996 A
5511549 Legg et al. Apr 1996 A
5531229 Dean et al. Jul 1996 A
5538494 Matsuda Jul 1996 A
5549616 Schulte Aug 1996 A
5566681 Manwaring et al. Oct 1996 A
5570409 Yamaguchi et al. Oct 1996 A
5577707 Brida Nov 1996 A
5588430 Bova et al. Dec 1996 A
5595191 Kirk Jan 1997 A
5596619 Carol Jan 1997 A
5602892 Llacer Feb 1997 A
5622187 Carol Apr 1997 A
5675851 Feathers Oct 1997 A
5676673 Ferre et al. Oct 1997 A
5727554 Kalend et al. Mar 1998 A
5745545 Hughes Apr 1998 A
5751781 Brown et al. May 1998 A
5771512 Kurakake et al. Jun 1998 A
5775337 Hauger et al. Jul 1998 A
5778047 Mansfield et al. Jul 1998 A
5792147 Evans et al. Aug 1998 A
5797924 Schulte et al. Aug 1998 A
5800352 Ferre et al. Sep 1998 A
5806116 Oliver et al. Sep 1998 A
5820444 McGaughey Oct 1998 A
5820553 Hughes Oct 1998 A
5823192 Kalend et al. Oct 1998 A
5825845 Blair et al. Oct 1998 A
5832550 Hauger et al. Nov 1998 A
5847403 Hughes et al. Dec 1998 A
5848449 Hauger et al. Dec 1998 A
5851182 Sahadevan Dec 1998 A
5865832 Knopp et al. Feb 1999 A
5895926 Britton et al. Apr 1999 A
5911655 Brenneisen Jun 1999 A
5947981 Cosman Sep 1999 A
5983424 Näslund Nov 1999 A
6003174 Kantrowitz et al. Dec 1999 A
6023694 Kouchi et al. Feb 2000 A
6026392 Kouchi et al. Feb 2000 A
6085227 Edlund et al. Jul 2000 A
6094760 Nonaka et al. Aug 2000 A
6104779 Shepherd et al. Aug 2000 A
6118848 Reiffel Sep 2000 A
6161237 Tang et al. Dec 2000 A
6178430 Cohen et al. Jan 2001 B1
6195578 Distler et al. Feb 2001 B1
6240161 Siochi May 2001 B1
6275564 Ein-Gal Aug 2001 B1
6279579 Riaziat et al. Aug 2001 B1
6282739 Livingston Sep 2001 B1
6308353 Van Steenburg Oct 2001 B1
6316776 Hiramoto et al. Nov 2001 B1
6325758 Carol et al. Dec 2001 B1
6345114 Mackie et al. Feb 2002 B1
6375355 Fortin Apr 2002 B1
6376846 Livingston Apr 2002 B2
6385286 Fitchard et al. May 2002 B1
6405072 Cosman Jun 2002 B1
6437513 Selzer et al. Aug 2002 B1
6445766 Whitham Sep 2002 B1
6446286 Karmalawy Sep 2002 B1
6452999 Maida Sep 2002 B1
6462490 Matsuda et al. Oct 2002 B1
6462553 Badura Oct 2002 B1
6466813 Shukla et al. Oct 2002 B1
6473490 Siochi Oct 2002 B1
6476403 Dolinskii et al. Nov 2002 B1
6509573 Badura et al. Jan 2003 B1
6565577 Cosman May 2003 B2
6597005 Badura et al. Jul 2003 B1
6598275 Kolody et al. Jul 2003 B1
6600164 Badura et al. Jul 2003 B1
6614038 Brand et al. Sep 2003 B1
6621889 Mostafavi Sep 2003 B1
6639234 Badura et al. Oct 2003 B1
6650930 Ding Nov 2003 B2
6662036 Cosman Dec 2003 B2
6670618 Hartmann et al. Dec 2003 B1
6677597 Haberer et al. Jan 2004 B1
6683318 Haberer et al. Jan 2004 B1
6690965 Riaziat et al. Feb 2004 B1
6693283 Eickhoff et al. Feb 2004 B2
6698045 Coppens et al. Mar 2004 B1
6704957 Rhodes Mar 2004 B2
6710362 Kraft et al. Mar 2004 B2
6725078 Bucholz et al. Apr 2004 B2
6730921 Kraft May 2004 B2
6731970 Schlossbauer et al. May 2004 B2
6736831 Hartmann et al. May 2004 B1
6745072 Badura et al. Jun 2004 B1
6754299 Patch Jun 2004 B2
6757355 Siochi Jun 2004 B1
6769806 Moyers Aug 2004 B2
6774383 Norimine et al. Aug 2004 B2
6777700 Yanagisawa et al. Aug 2004 B2
6780149 Schulte Aug 2004 B1
6792078 Kato et al. Sep 2004 B2
6795523 Steinberg Sep 2004 B2
6799068 Hartmann et al. Sep 2004 B1
6803591 Muramatsu et al. Oct 2004 B2
6804548 Takahashi et al. Oct 2004 B2
6809325 Dahl et al. Oct 2004 B2
6813788 Dinkler et al. Nov 2004 B2
6814694 Pedroni Nov 2004 B1
6839404 Clark et al. Jan 2005 B2
6855942 Bechthold et al. Feb 2005 B2
6859741 Haberer et al. Feb 2005 B2
6891177 Kraft et al. May 2005 B1
6977987 Yamashita et al. Dec 2005 B2
7011447 Moyers Mar 2006 B2
7076821 de Mooy Jul 2006 B2
7120223 Nafstadius Oct 2006 B2
7142634 Engler et al. Nov 2006 B2
7154108 Tadokoro et al. Dec 2006 B2
7154991 Earnst et al. Dec 2006 B2
7173265 Miller et al. Feb 2007 B2
7199382 Rigney et al. Apr 2007 B2
7280633 Cheng et al. Oct 2007 B2
7301162 Matsuda et al. Nov 2007 B2
7331713 Moyers Feb 2008 B2
7348579 Pedroni Mar 2008 B2
7372053 Yamashita et al. May 2008 B2
7398309 Baumann et al. Jul 2008 B2
7446328 Rigney et al. Nov 2008 B2
20020027969 Maida Mar 2002 A1
20020032378 Henderson et al. Mar 2002 A1
20020051513 Pugachev et al. May 2002 A1
20020065461 Cosman May 2002 A1
20020077545 Takahashi et al. Jun 2002 A1
20020095730 Al-Kassim et al. Jul 2002 A1
20020120986 Erbel et al. Sep 2002 A1
20020188194 Cosman Dec 2002 A1
20020193685 Mate et al. Dec 2002 A1
20030007601 Jaffray et al. Jan 2003 A1
20030031301 Longton et al. Feb 2003 A1
20030086527 Speiser et al. May 2003 A1
20030095625 Steinberg May 2003 A1
20030164459 Schardt et al. Sep 2003 A1
20030183779 Norimine et al. Oct 2003 A1
20040013414 Karger et al. Jan 2004 A1
20040028188 Amann et al. Feb 2004 A1
20040034438 Uematsu Feb 2004 A1
20040034932 Zacharopoulos et al. Feb 2004 A1
20040042583 Wackerle et al. Mar 2004 A1
20040082856 Marmarelis Apr 2004 A1
20040098445 Baumann et al. May 2004 A1
20040123388 Coppens et al. Jul 2004 A1
20040136495 Carlsson et al. Jul 2004 A1
20040155206 Marchand et al. Aug 2004 A1
20040158145 Ghelmansarai et al. Aug 2004 A1
20040174958 Moriyama et al. Sep 2004 A1
20040184579 Mihara et al. Sep 2004 A1
20040184583 Nagamine et al. Sep 2004 A1
20050116175 Haberer Jun 2005 A1
20050161618 Pedroni Jul 2005 A1
20050281374 Cheng et al. Dec 2005 A1
20060002511 Miller et al. Jan 2006 A1
20060017022 Rigney et al. Jan 2006 A1
20060183960 Sioshansi et al. Aug 2006 A1
20070039621 Moyers Feb 2007 A1
20070093100 Sommer Apr 2007 A1
20070158592 Hiramoto et al. Jul 2007 A1
20070164230 Rigney et al. Jul 2007 A1
20070262269 Trbojevic Nov 2007 A1
20080005643 Park et al. Jan 2008 A1
20080031414 Coppens Feb 2008 A1
20080042076 Miller et al. Feb 2008 A1
20080056434 Grozinger et al. Mar 2008 A1
20080187097 Cheng et al. Aug 2008 A1
20080189859 Sloan et al. Aug 2008 A1
20080191142 Pedroni Aug 2008 A1
20080192892 Dilmanian et al. Aug 2008 A1
20080292053 Marash et al. Nov 2008 A1
20080317216 Lifshitz et al. Dec 2008 A1
20090067577 Rigney et al. Mar 2009 A1
20090154645 Lifshitz et al. Jun 2009 A1
20090202045 Guertin et al. Aug 2009 A1
20090217456 Lempen et al. Sep 2009 A1
Foreign Referenced Citations (58)
Number Date Country
2513896 Oct 1975 DE
2833800 Dec 1979 DE
4418216 Nov 1995 DE
19612091 Mar 1997 DE
247449 Dec 1987 EP
283082 Sep 1988 EP
480035 Apr 1992 EP
809525 Dec 1997 EP
986070 Mar 2000 EP
986071 Mar 2000 EP
1064881 Jan 2001 EP
1 454 653 Sep 2004 EP
1454653 Sep 2004 EP
1584353 Oct 2005 EP
1709994 Oct 2006 EP
1792595 Jun 2007 EP
1795229 Jun 2007 EP
1900392 Mar 2008 EP
1935453 Jun 2008 EP
2701391 Aug 1994 FR
0870225 Jun 1961 GB
1362678 Aug 1974 GB
2213066 Aug 1989 GB
2254691 Oct 1992 GB
61194400 Aug 1986 JP
2003527763 Sep 2003 JP
7309246 Oct 1974 NL
WO 8801848 Mar 1988 WO
WO 9011721 Oct 1990 WO
WO 9011723 Oct 1990 WO
WO 9910137 Mar 1999 WO
WO 0016175 Mar 2000 WO
WO 0059575 Oct 2000 WO
WO 0100276 Jan 2001 WO
WO 0189625 Nov 2001 WO
WO 0263638 Feb 2002 WO
WO 03039212 May 2003 WO
WO 03053520 Jul 2003 WO
WO 03076016 Sep 2003 WO
WO 2004026401 Apr 2004 WO
WO 2004032781 Apr 2004 WO
WO 2005018734 Mar 2005 WO
WO 2005018735 Mar 2005 WO
WO 2005037167 Apr 2005 WO
WO 2005037167 Apr 2005 WO
WO 2005102453 Nov 2005 WO
WO 2006060886 Jun 2006 WO
WO 2006076545 Jul 2006 WO
WO 2006094533 Sep 2006 WO
WO 2007054140 May 2007 WO
WO 2007061426 May 2007 WO
WO 2007062788 Jun 2007 WO
WO 2007068066 Jun 2007 WO
WO2007127970 Nov 2007 WO
WO 2008051358 May 2008 WO
WO 2008064271 May 2008 WO
WO 2008081480 Jul 2008 WO
WO2008142695 Nov 2008 WO
Related Publications (1)
Number Date Country
20080042076 A1 Feb 2008 US
Provisional Applications (2)
Number Date Country
60494699 Aug 2003 US
60579095 Jun 2004 US
Continuations (1)
Number Date Country
Parent 10917022 Aug 2004 US
Child 11671922 US