The present invention relates generally to items used in surgical procedures, and more particularly to a process for molding exterior coatings on those items and the items formed by the molding process.
There are many types of devices that are used in surgical procedures. The devices enable a physician to perform the multitude of tasks required to successfully complete the procedure. Oftentimes, the procedure that the physician needs to perform requires the use of items, implements or other tools that require a certain amount of rigidity in the tool in order for the tool to effective in its particular use in the procedure. As such, many of these items or tools are formed of a generally rigid material, such as a metal, that provides the desired amount of rigidity.
However, with these tools formed at least partially of metal, the nature of the metal creates problems with regard to the re-use of the tool. The reason for this is that the metal, as well as any coating applied to the exterior of the metal, such as an anodized coating which is necessary for implements that are formed of titanium, must be sterilized after each use. With certain metals and coatings, the sterilization process can be problematic, as the metals and/or coating can become brittle or otherwise damaged upon sterilization after an initial use. Any damage done to the metal and/or coating can cause issues with the stability or integrity of the implement during subsequent uses which consequently can endanger the patient.
Thus, it is desirable to develop implements that are formed of metal and a material that enables the implement/tool incorporating the metal to be sterilized and reused in multiple procedures without detrimentally affecting the tool and/or the metal component(s) of the tool.
Briefly described, one aspect of the present disclosure provides an implement or tool formed of a substantially rigid, but optionally somewhat flexible core material that is enclosed within an inert material. The inert material provide a protective barrier around the core material and is capable of being sterilized after use without degrading the protective properties of the inert material to enable the implement to be reused. The inert material is molded over the core material to conform to the shape of the actual implement to provide the appropriate size and shape for the implement or tool when used by a physician in the procedure. Once used, the implement can be removed and subsequently sterilized, such as in an autoclave, for additional uses.
According to another aspect of the present disclosure, the inert material is flexible and stretchable to accommodate any required flexibility of the core material while maintaining the core enclosed within the inert material. Thus, the implement can be bent in order to accurately conform to the proper location and configuration of for the implement when positioned within the body of the patient during the procedure and the inert material will maintain its conformance with the shape of the core.
Numerous other aspects, features, and advantages of the present invention will be made apparent from the following detailed description together with the drawings figures.
The drawings illustrate the best mode currently contemplated of practicing the present invention.
In the drawings:
Referring now in detail to the drawing figures, wherein like reference numerals represent like parts throughout the several views, one exemplary embodiment of an implement constructed according to the present disclosure is illustrated generally at 100 in
Though any suitable shape for the core 12 can be utilized, in the illustrated embodiment the core 12 is formed with a generally flat rectangular or cylindrical cross-sectional shape with a first end 20 and a second end 22 joined by opposed sides 24, though any suitable cross-sectional shape can be utilized to impart the desired amount of flexibility to the core 12. The core 12 is shaped in any suitable machine and/or process to provide the desired shape for the core 12, which may include apertures or other features therein, as desired.
The material forming the core 12 is selected to be a generally rigid, but flexible material that can be altered in shape by applying a physical force to the core 12. Once the force is removed, the core 12 remains in the shape to which it was altered by the applied force. In one exemplary embodiment of the core 12, the core 12 is formed of a shape memory material, such as a shape memory metal alloy, including the materials marketed under the trade name NitinolĀ® by Nitinol Devices & Components, Inc. of Fremont, Calif.
The enclosure 14 is disposed around the core 12 and each portion 16 and 18 joined together to form the enclosure 14 is formed of a biologically inert and flexible material that can conform to the shape of the core 12 in any configuration for the core 12. In one embodiment, the material forming the portions 16 and 18 of the enclosure 14 is a silicone, such as a silicone rubber, including a high consistence rubber (HCR).
The portions 16 and 18 of the enclosure 14 are formed with any features (not shown) desired to enhance the utility of the implement 100 when utilized within the body of the patient. The features can include apertures 110, notches (not shown), raised or depressed tactile portions, or printed indicia, among others. The apertures can extend completely through the respective portions 16 and 18 without intersecting the core 12, thereby preserving the integrity of the enclosure 14 around the core 12. Further, the shape of the portions 16 and 18 forming the enclosure 14 can be shaped as desired. Also, the shape of the portions 16 and 18 can be selected independently of the shape of the core 12 to facilitate the operation or use of the implement 100, or to conform to the shape of the core 12, as desired.
In one embodiment, the implement 100 is formed by initially forming the core 12 of the desired material in any suitable manner, such as by extruding or molding the material into the desired shape for the core 12, as shown in
Subsequently, the core 12 and the first portion 16 that has been molded onto or over the core 12 are removed or transferred from the first mold and placed within a separate or second mold (not shown) used to form the other of the second portion 18 on or over the core 12 in connection with the first portion 16 and with the desired features. The material selected to form the second portion 18 can be selected to be the same or different in one or more respects or attributes than the material used to form the first portion 16, in order to provide the desired attributes to the enclosure 14 and the implement 100, so long as the materials forming the first portion 16 and second portion 18 are capable of mating, co-mingling or otherwise joining to one another in the molding process used to form the enclosure 14 around the core 12, which can be the same or different that the process used to form the first section 16. Additionally, suitable materials can be applied to one or both of the portions 16 and/or 18 to properly affix the portions 16 and 18 to one another, either during molding of the portions 16 and 18 to one another, or when affixing pre-molded portions 16 and 18 to one another around the core 12.
In alternative exemplary embodiments, the portions 16 and 18 can be formed subsequently or simultaneously within a single mold in any suitable molding process. In the illustrated embodiment, the second portion 18 includes a number of spaced sections 104 disposed along the length of the core 12 and joining the sections 102 to form the enclosure 14. In this embodiment, as shown in
In a second embodiment of the implement 200 shown in
Subsequently, the core 212 can be removed from the first mold for positioning in a second mold (not shown), or simply rotated within the first mold to expose the uncovered portion 226 of the central section 224 within the second mold. Once properly positioned, the second portion 218 can be formed over the uncovered section 226 to form the enclosure 214 over the central section 224 with the first portion 216 and without end caps, leaving the ends 220,222 exposed.
In alternative exemplary embodiments for either embodiment of the implement 100, 200, the process for molding the first portion 16,216 and/or second portion 18,218 can be performed in any number of separate molding steps in order to form the enclosure 14, 214 on the core 12,212 with the desired appearance, attributes or other characteristics with any desired number and/or types of different materials forming the portions 16,216 and/or 18,218.
Various other embodiments of the present disclosure are contemplated as being within the scope of the filed claims particularly pointing out and distinctly claiming the subject matter regarded as the invention.
This application claims priority from U.S. Provisional Patent Application Ser. No. 61/993,383, filed on May 15, 2014, the entirety of which is expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1813797 | Foley | Jul 1931 | A |
1831752 | Reinold | Nov 1931 | A |
2062880 | Hansen | Dec 1936 | A |
2125783 | Heeman | Aug 1938 | A |
2207269 | Schiff | Jul 1940 | A |
2256769 | Amrine | Sep 1941 | A |
2358259 | Siedschlag | Sep 1944 | A |
3259680 | Schelke | Jul 1966 | A |
3913586 | Baumgarten | Oct 1975 | A |
4117791 | Current | Oct 1978 | A |
4147443 | Skobel | Apr 1979 | A |
4170990 | Baumgart | Oct 1979 | A |
4318879 | Gartner | Mar 1982 | A |
4340990 | Seynhaeve | Jul 1982 | A |
4448741 | Schad | May 1984 | A |
4469483 | Becker | Sep 1984 | A |
4535014 | Wright | Aug 1985 | A |
4662404 | LeVeen | May 1987 | A |
4690175 | Ouchi | Sep 1987 | A |
4706659 | Matthews | Nov 1987 | A |
4739536 | Bandera | Apr 1988 | A |
4750877 | McFarlane | Jun 1988 | A |
4751922 | DiPietropolo | Jun 1988 | A |
4799474 | Ueda | Jan 1989 | A |
4867174 | Skribiski | Sep 1989 | A |
4882867 | Linden | Nov 1989 | A |
4919133 | Chiang | Apr 1990 | A |
4934024 | Sexton, I | Jun 1990 | A |
4955889 | Van Gent | Sep 1990 | A |
4959067 | Muller | Sep 1990 | A |
4983168 | Moorehead | Jan 1991 | A |
5027511 | Miller | Jul 1991 | A |
5069226 | Yamauchi | Dec 1991 | A |
5089201 | Takahashi | Feb 1992 | A |
5095915 | Engelson | Mar 1992 | A |
5163431 | Griep | Nov 1992 | A |
5222949 | Kaldany | Jun 1993 | A |
5230348 | Ishibe | Jul 1993 | A |
5334168 | Hemmer | Aug 1994 | A |
5385152 | Abele | Jan 1995 | A |
5433200 | Fleischhacker, Jr. | Jul 1995 | A |
5498158 | Wong | Mar 1996 | A |
5499984 | Steiner | Mar 1996 | A |
5533985 | Wang | Jul 1996 | A |
5538512 | Zenzon | Jul 1996 | A |
5569218 | Berg | Oct 1996 | A |
5573529 | Haak | Nov 1996 | A |
5601003 | Amtenbrink | Feb 1997 | A |
5662621 | Lafontaine | Sep 1997 | A |
5769506 | Boucherie | Jun 1998 | A |
5772609 | Nguyen | Jun 1998 | A |
5799369 | Schulein | Sep 1998 | A |
5816806 | Herbst | Oct 1998 | A |
5816923 | Milo | Oct 1998 | A |
5911715 | Berg | Jun 1999 | A |
5921978 | Thompson | Jul 1999 | A |
5956799 | Panaccione | Sep 1999 | A |
5964770 | Flomenblit | Oct 1999 | A |
6036682 | Lange | Mar 2000 | A |
6094781 | Jansson | Aug 2000 | A |
6199460 | Lo | Mar 2001 | B1 |
6221077 | Rinner | Apr 2001 | B1 |
6340441 | Meyer | Jan 2002 | B1 |
6367125 | Lin | Apr 2002 | B1 |
6402706 | Richardson | Jun 2002 | B2 |
6405619 | Lamond | Jun 2002 | B1 |
6494847 | Richardson | Dec 2002 | B1 |
6494894 | Mirarchi | Dec 2002 | B2 |
6524301 | Wilson | Feb 2003 | B1 |
6556873 | Smits | Apr 2003 | B1 |
6591472 | Noone | Jul 2003 | B1 |
6648024 | Wang | Nov 2003 | B2 |
6749790 | Lieser | Jun 2004 | B1 |
6779937 | Lombardi | Aug 2004 | B1 |
6887417 | Gawreluk | May 2005 | B1 |
6915570 | Ohgoshi | Jul 2005 | B1 |
7097624 | Campion | Aug 2006 | B2 |
7651578 | Sharrow | Jan 2010 | B2 |
7780611 | Griego | Aug 2010 | B2 |
9050062 | Gauthier | Jun 2015 | B1 |
9943988 | Gauthier | Apr 2018 | B1 |
20010041881 | Sarge | Nov 2001 | A1 |
20020013511 | Ailinger | Jan 2002 | A1 |
20020058928 | Antonio, II | May 2002 | A1 |
20020107088 | Lamkin | Aug 2002 | A1 |
20020128658 | White | Sep 2002 | A1 |
20020165549 | Owusu-Akyaw | Nov 2002 | A1 |
20020171208 | Lechot | Nov 2002 | A1 |
20020190430 | Fujiwara | Dec 2002 | A1 |
20030097133 | Green | May 2003 | A1 |
20030126750 | Spinelli | Jul 2003 | A1 |
20030176868 | Pepper | Sep 2003 | A1 |
20030229298 | Iwami | Dec 2003 | A1 |
20040097831 | Bourne | May 2004 | A1 |
20040098006 | Nakanishi | May 2004 | A1 |
20040105069 | Fecteau | Jun 2004 | A1 |
20040134028 | Chen | Jul 2004 | A1 |
20040167437 | Sharrow | Aug 2004 | A1 |
20040193104 | Jervis | Sep 2004 | A1 |
20040243102 | Berg | Dec 2004 | A1 |
20050004556 | Pursley | Jan 2005 | A1 |
20050049623 | Moore | Mar 2005 | A1 |
20050054953 | Ryan | Mar 2005 | A1 |
20050113686 | Peckham | May 2005 | A1 |
20050124991 | Jahng | Jun 2005 | A1 |
20050137600 | Jacobs | Jun 2005 | A1 |
20050253301 | Kraenzle | Nov 2005 | A1 |
20060004371 | Williams | Jan 2006 | A1 |
20060009140 | Sommers | Jan 2006 | A1 |
20060063130 | Hayman | Mar 2006 | A1 |
20060084032 | Tipton | Apr 2006 | A1 |
20060100687 | Fahey | May 2006 | A1 |
20060110704 | Bills | May 2006 | A1 |
20060189897 | Poncet | Aug 2006 | A1 |
20060199994 | Inman | Sep 2006 | A1 |
20060247638 | Trieu | Nov 2006 | A1 |
20060264935 | White | Nov 2006 | A1 |
20070003903 | Meuchel | Jan 2007 | A1 |
20070049937 | Matthis | Mar 2007 | A1 |
20070073312 | Mykleby | Mar 2007 | A1 |
20070123826 | Opie | May 2007 | A1 |
20070153229 | Yasuhara | Jul 2007 | A1 |
20070161427 | White | Jul 2007 | A1 |
20070191841 | Justis | Aug 2007 | A1 |
20070299366 | Sharrow | Dec 2007 | A1 |
20080125238 | Chen | May 2008 | A1 |
20080125777 | Veldman | May 2008 | A1 |
20080140022 | Pond | Jun 2008 | A1 |
20080146967 | Richardson | Jun 2008 | A1 |
20080177388 | Patterson | Jul 2008 | A1 |
20080234711 | Houser | Sep 2008 | A1 |
20080243126 | Gutierrez | Oct 2008 | A1 |
20080255664 | Hogendijk | Oct 2008 | A1 |
20080287952 | Mcminn | Nov 2008 | A1 |
20080290104 | Ng | Nov 2008 | A1 |
20080312597 | Uihlein | Dec 2008 | A1 |
20080312654 | Weatherdon | Dec 2008 | A1 |
20080319486 | Hestad | Dec 2008 | A1 |
20090054932 | Butler | Feb 2009 | A1 |
20090088750 | Hushka | Apr 2009 | A1 |
20090088782 | Moumene | Apr 2009 | A1 |
20090112066 | Yago | Apr 2009 | A1 |
20090112127 | Keating | Apr 2009 | A1 |
20090161063 | Parent | Jun 2009 | A1 |
20090221935 | Murayama | Sep 2009 | A1 |
20090248080 | Wilcox | Oct 2009 | A1 |
20090259257 | Prevost | Oct 2009 | A1 |
20090270922 | Biedermann | Oct 2009 | A1 |
20100005630 | Gitman | Jan 2010 | A1 |
20100030256 | Dubrul | Feb 2010 | A1 |
20100063544 | Butler | Mar 2010 | A1 |
20100063548 | Wang | Mar 2010 | A1 |
20100102479 | Walls | Apr 2010 | A1 |
20100256601 | Lippert | Oct 2010 | A1 |
20100256603 | Lippert | Oct 2010 | A1 |
20100256605 | Lippert | Oct 2010 | A1 |
20100324577 | Dunn | Dec 2010 | A1 |
20110071570 | Trieu | Mar 2011 | A1 |
20110138975 | Holm | Jun 2011 | A1 |
20110152937 | Trieu | Jun 2011 | A1 |
20110168419 | Reynolds | Jul 2011 | A1 |
20110218538 | Sherman | Sep 2011 | A1 |
20110257685 | Hay | Oct 2011 | A1 |
20120041425 | Tsunematsu | Feb 2012 | A1 |
20120253348 | Arlettaz | Oct 2012 | A1 |
20120290013 | Simonson | Nov 2012 | A1 |
20130066164 | Nakamura | Mar 2013 | A1 |
20130233863 | Lapine | Sep 2013 | A1 |
20130253481 | Dewaele | Sep 2013 | A1 |
20150121708 | Holm | May 2015 | A1 |
20150257800 | Harshman | Sep 2015 | A1 |
20150313755 | Schaller | Nov 2015 | A1 |
20160023504 | Shapiro | Jan 2016 | A1 |
20160184555 | Ishikawa | Jun 2016 | A1 |
20180177532 | Gauthier | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
2494172 | Jun 2002 | CN |
1357444 | Jul 2002 | CN |
200995040 | Dec 2007 | CN |
101954810 | Jan 2011 | CN |
102188280 | Sep 2011 | CN |
102717478 | Oct 2012 | CN |
7914109 | May 1979 | DE |
102006054477 | May 2008 | DE |
0904921 | Mar 1999 | EP |
1561548 | Aug 2005 | EP |
2509986 | Jan 1983 | FR |
2612305 | Sep 1988 | FR |
501019 | Feb 1939 | GB |
2359268 | Aug 2001 | GB |
2464751 | May 2010 | GB |
2493147 | Jan 2013 | GB |
01086908 | Mar 1989 | JP |
01115510 | Aug 1989 | JP |
2003191681 | Jul 2003 | JP |
2007037777 | Feb 2007 | JP |
20100071574 | Jun 2010 | KR |
20100071575 | Jun 2010 | KR |
WO-2008022524 | Feb 2008 | WO |
WO-2011066231 | Jun 2011 | WO |
Entry |
---|
Gauthier Medical, Silicone Rod Templates, Mar. 2012. |
Machine Translation of CN2494172Y, Jun. 2002 (Year: 2002). |
Silicone Handles, Gauthier Medical, Feb. 2012 (Year: 2012). |
Hoxha et al., Field-improvised war surgery in Kosovo: use of kitchen utensils as surgical instruments., Jun. 2008, Military Medicine, vol. 173, pp. 529-533 (Year: 2008). |
Number | Date | Country | |
---|---|---|---|
20160007976 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
61993383 | May 2014 | US |