The present invention provides molecular resonant tunneling diode (RTD) devices including a molecular bridge between two semi-conducting leads.
The molecular portion of the RTD 10, the organic material 13, provides distinctions among the semi-conducting leads 11,12 for complex integrated circuit design and acts as the primary source of electrical activity for the molecular RTD device. For example, in one aspect, as shown in
The RTD molecule devices illustrated in
In certain aspects, a molecular RTD is constructed using bottom-up self-assembled techniques to construct complex circuit geometries at the nanometer scale. One distinguishing feature of the present invention over prior devices is the semiconducting source 11 or drain 12, which provide a bandgap energy on one side or the other side of the molecular structure 13. The source/drain characteristic is unique to the devices of the present invention since carrier action is dictated by a band-gap when a voltage potential is applied to the source/drain terminals causing electrons or holes to be injected into the molecule from the semiconducting source. The drain electrode (CNT) can be metallic.
In certain aspects, biological molecular linking structures 13 include materials such as peptides, glutamate, DNA, PNA, which provide the molecular component of the RTD for self-assembly purposes. Other molecular linking structure materials might include conducting organic polymers like disubstituted oligomeric olefines, disubstituted oligomeric alkanes, polyaromatics, 2,5-disubstituted oligothiophenes and dimercaptodiphenylacetylene etc. as shown in Table 1.
In certain aspects, covalent or self-assembled functionalization of the CNT ends with molecular material is done by oxidizing the CNTs, e.g., with nitric acid, to remove the caps and terminate the CNT with a carboxylic group (—COOH). The end functionalization is then completed by EDC coupling reaction which results in linking a CNT with the molecular material via an amide group (—CONH—). Some other linkers that could be used based on the ease of their reactivity to oxidized CNTs as well as their specific electronic properties include the ester group (—COO—), the thioester group (—COS—) and the imino group (—HC═N—) as shown in Table 1. This table also lists the compatibility of these linkers with different molecular groups (R).
The RTD device of
The resonant state at point A was examined with a surface contour plot seen in
The following references, cited above, are each hereby incorporated by reference in their entirety.
[1] E. Katz and I. Willner, “Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications,” Angew. Chem. Int. Ed., vol. 43, pp. 6042-6108, 2004.
[2] E. Katz and I. Willner, “Biomolecule-functionalized carbon nanotubes: Applications in nanobioelectronics,” ChemPhysChem, vol. 5, pp. 1085-1104, 2004.
[3] W. Fritzsche, Ed., DNA-Based Molecular Electronics. New York: AIP, 2004, vol. 725.
[4] C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A dna-based method for rationally assembling nanoparticles into macroscopic materials,” Nature, vol. 382, pp. 607-609, 1996.
[5] A. P. Alivisatos, K. P. Johnsson, X. G. Peng, T. E. Wilson, C. J. Loweth, M. P. Bruchez, and P. G. Schultz, “Organization of nanocrystal molecules using dna,” Nature, vol. 382, pp. 609-611, 1996.
[6] K. Keren, R. S. Berman, E. Buchstab, U. Sivan, and E. Braun, “Dna-templated carbon nanotube field-effect transistor,” Science, vol. 302, pp. 1380-1382, 2003.
[7] S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and P. Avouris, “Carbon nanotubes as Schottky barrier transistors,” Phys. Rev. Lett., vol. 89, no. 10, p. 106801, 2002.
[8] M. Radosavljevic, S. Heinze, J. Tersoff, and P. Avouris, “Drain voltage scaling in carbon nanotube transistors,” Appl. Phys. Lett., vol. 83, no. 12, pp. 2435-2437, 2003.
[9] S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, and P. Avouris, “Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes,” Appl. Phys. Lett., vol. 80, pp. 3817-3819, 2002.
[10] R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K. K. Chan, J. Terso, and P. Avouris, “Ambipolar electrical transport in semiconducting single wall carbon nanotubes,” Phys. Rev. Lett., vol. 87, no. 25, p. 256805, 2001.
[11] R. M. Stoltenberg and A. T. Woolley, “Dna-templated nanowire fabrication,” Biomedical Microdevices, vol. 6, no. 2, pp. 105-111, 2004.
[12] A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, “Ballistic carbon nanotube field-effect transistors,” Nature, vol. 424, pp. 654-657, 2003.
[13] A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, and H. Dai, “High-field quasiballistic transport in short carbon nanotubes,” Phys. Rev. Lett., vol. 92, no. 10, p. 106804, 2004.
[14] A. Javey, J. Guo, D. B. Farmer, Q. Wang, D. Wang, R. G. Gordon, M. Lundstrom, and H. Dai, “Carbon nanotube field-effect transistors with integrated ohmic contacts and high-K gate dielectrics,” Nano Lett., vol. 4, no. 3, pp. 447-450, 2004.
[15] A. Javey, J. Guo, D. B. Farmer, Q. Wang, E. Yenilmez, R. G. Gordon, M. Lundstrom, and H. Dai, “Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays,” Nano Lett., vol. 4, no. 7, pp. 1319-1322, 2004.
[16] T. Rakshit, G. Liang, A. Ghosh, and S. Datta, “Silicon-based molecular electronics,” Nano Lett., vol. 4, p. 1083, 2004.
[17] P. Damle, A. Ghosh, and S. Datta, “Unified description of molecular conduction: From molecules to metallic wires,” Phys. Rev. B, vol. 64, p. 201403, 2001.
[18] P. Damle, A. Ghosh, and S. Datta, “First-principles analysis of molecular conduction using quantum chemistry software,” Chem. Phys., vol. 281, no. 2-3, pp. 171-188, 2002.
[19] Y. Xue, S. Datta, and M. A. Ratner, “First-principles based matrix green's function approach to molecular electronic devices: general formalism,” Chem. Phys., vol. 281, no. 2-3, pp. 151-170, 2002.
[20] Y. Xue, S. Datta, and M. A. Ratner, Charge transfer and band lineup in molecular electronic devices: A chemical and numerical interpretation,” J. Chem. Phys., vol. 115, no. 9, pp. 4292-4299, 2001.
[21] S. N. Yaliraki and M. A. Ratner, “Molecule-interface coupling effects on electronic transport in molecular wires,” J. Chem. Phys., vol. 109, no. 12, pp. 5036-5043, 1998.
[22] M. A. Reed, J. Chen, A. M. Rawlett, D. W. Price, and J. M. Tour, “Molecular random access memory cell,” Appl. Phys. Lett., vol. 78, no. 23, pp. 3735-3737, 2001.
[23] J. Chen and M. A. Reed, “Electronic transport of molecular systems,” Chem. Phys., vol. 281, no. 2-3, pp. 127-145, 2002.
[24] R. Lake, “Full quantum simulation, design, and analysis of si tunnel diodes, mos leakage and capacitance, hemts, and rtds,” in 2001 IEDM Technical Digest. New York: IEEE, 2001, pp. 5.5.1-5.5.4.
[25] J. P. A. van der Wagt, A. C. Seabaugh, and E. Beam III, “RTD/HFET low standby power sram gain cell,” IEEE EDL, vol. 19, p. 7, 1998.
[26] R. R. Pandey, N. Bruque, K. A. Alam, and R. K. Lake, ‘Carbon nanotube—molecular resonant tunneling diode,’ Phys. Stat. Sol. (a), vol. 203, p. R5, 2006.
[27] N. Bruque, R. R. Pandey, and R. K. Lake, ‘Electronic Transport Through a CNT-Pseudopeptide-CNT Hybrid Material,’ Molecular Simulation, vol. 31, p. 859, 2005.
While the invention has been described by way of example and in terms of the specific embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements as would be apparent to those skilled in the art. Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
This invention was made with Government support under Grant No. DMR-0103248 awarded by the NSF and grants DMEA90-02-2-0216 & H94003-04-2-0404 awarded by the Department of Defense. The Government has certain rights in this invention.