The present invention is directed to MEMS (Micro-Electro-Mechanical-Systems). More specifically, embodiments of the invention provide methods and structure for improving integrated MEMS devices, including inertial sensors and the like. Merely by way of example, the MEMS device can include at least an accelerometer, a gyroscope, a magnetic sensor, a pressure sensor, a microphone, a humidity sensor, a temperature sensor, a chemical sensor, a biosensor, an inertial sensor, and others. But it will be recognized that the invention has a much broader range of applicability.
Research and development in integrated microelectronics have continued to produce astounding progress in CMOS and MEMS. CMOS technology has become the predominant fabrication technology for integrated circuits (IC). MEMS, however, continues to rely upon conventional process technologies. In layman's terms, microelectronic ICs are the “brains” of an integrated device which provides decision-making capabilities, whereas MEMS are the “eyes” and “arms” that provide the ability to sense and control the environment. Some examples of the widespread application of these technologies are the switches in radio frequency (RF) antenna systems, such as those in the iPhone™ device by Apple, Inc. of Cupertino, Calif., and the Blackberry™ phone by Research In Motion Limited of Waterloo, Ontario, Canada, and accelerometers in sensor-equipped game devices, such as those in the Wii™ controller manufactured by Nintendo Company Limited of Japan. Though they are not always easily identifiable, these technologies are becoming ever more prevalent in society every day.
Beyond consumer electronics, use of IC and MEMS has limitless applications through modular measurement devices such as accelerometers, gyroscopes, actuators, and sensors. In conventional vehicles, accelerometers and gyroscopes are used to deploy airbags and trigger dynamic stability control functions, respectively. MEMS gyroscopes can also be used for image stabilization systems in video and still cameras, and automatic steering systems in airplanes and torpedoes. Biological MEMS (Bio-MEMS) implement biosensors and chemical sensors for Lab-On-Chip applications, which integrate one or more laboratory functions on a single millimeter-sized chip only. Other applications include Internet and telephone networks, security and financial applications, and health care and medical systems. As described previously, ICs and MEMS can be used to practically engage in various type of environmental interaction.
Although highly successful, ICs and in particular MEMS still have limitations. Similar to IC development, MEMS development, which focuses on increasing performance, reducing size, and decreasing cost, continues to be challenging. Additionally, applications of MEMS often require increasingly complex microsystems that desire greater computational power. Unfortunately, such applications generally do not exist. These and other limitations of conventional MEMS and ICs may be further described throughout the present specification and more particularly below.
From the above, it is seen that techniques for improving operation of integrated circuit devices and MEMS are highly desired.
The present invention is directed to MEMS (Micro-Electro-Mechanical-Systems). More specifically, embodiments of the invention provide methods and structure for improving integrated MEMS devices, including inertial sensors and the like. Merely by way of example, the MEMS device can include at least an accelerometer, a gyroscope, a magnetic sensor, a pressure sensor, a microphone, a humidity sensor, a temperature sensor, a chemical sensor, a biosensor, an inertial sensor, and others. But it will be recognized that the invention has a much broader range of applicability.
In an embodiment, the present invention provides a structure of a multi-axis integrated MEMS inertial sensor device. The device can include an integrated 3-axis gyroscope and 3-axis accelerometer on a single chip, creating a 6-axis inertial sensor device. The structure is spatially configured with efficient use of the design area of the chip by adding the accelerometer device to the center of the gyroscope device. In a specific embodiment, the design architecture can be a rectangular or square shape in geometry, which makes use of the whole chip area and maximizes the sensor size in a defined area. The MEMS is centered in the package, which is beneficial to the sensor's temperature performance. Furthermore, the electrical bonding pads of the integrated multi-axis inertial sensor device can be configured in the four corners of the rectangular chip layout. This configuration guarantees design symmetry and efficient use of the chip area.
In a specific embodiment, all portions of the gyroscope structure can be formed from a single mask layer and configured with a hollow middle portion. This single layer can incorporate each of the sensed gyro motions. X, Y, and Z axis sensors of the integrated gyroscope do not need to be formed separately, which reduces the number of steps in fabrication.
An optional design involves using a Z travel stop structure in a cap wafer to adjust damping performance in the central area of the chip, where the accelerometer device is disposed. This configuration can be used to mitigate a phenomenon called “accelerometer ringing”, which can be undesirable for various applications. Certain closed-loop feedback systems might be needed to control sensor ringing. By using the Z travel stop structure, the present design can alleviate “Accel ringing” during operation and allow a low damping gyroscope and a high damping accelerometer to coexist within a single package.
Various additional objects, features and advantages of the present invention can be more fully appreciated with reference to the detailed description and accompanying drawings that follow.
In order to more fully understand the present invention, reference is made to the accompanying drawings. Understanding that these drawings are not to be considered limitations in the scope of the invention, the presently described embodiments and the presently understood best mode of the invention are described with additional detail through use of the accompanying drawings in which:
The present invention is directed to MEMS (Micro-Electro-Mechanical-Systems). More specifically, embodiments of the invention provide methods and structures for improving integrated MEMS devices, including inertial sensors and the like. Merely by way of example, the MEMS device can include at least an accelerometer, a gyroscope, a magnetic sensor, a pressure sensor, a microphone, a humidity sensor, a temperature sensor, a chemical sensor, a biosensor, an inertial sensor, and others. But it will be recognized that the invention has a much broader range of applicability.
As shown in
In a specific embodiment, a first MEMS inertial sensor 130 and a second MEMS inertial sensor 120 are configured overlying a fully processed CMOS substrate 110. The first inertial sensor 130 can be configured in an inner portion of the CMOS surface region 113, and the second inertial sensor 120 can be configured in an outer portion of the CMOS surface region 114. Both sensors will be capped in the same vacuum cavity and there is no hermetic sealing in between. In a specific embodiment, there can be hermetic sealing between the inner and output portion. Thus, both inertial sensors can be configured on the same chip and within the same package.
In a specific embodiment, the gyroscope 120 can include anchors 121, which are coupled to the semiconductor substrate 110. Each of the elements 120 can be a proof mass for a designated sensing axis (X, Y, and Z) as denoted in
In an embodiment, bond pads can be configured in one or more of the corners of the die, substrate, or package. In a specific embodiment, all four corners have dedicated area for electrical bonding pads 150. There is no additional top/bottom, or left/right area to be allocated to bonding pads. This architecture can maximize the sensor area, and hence achieve better performance. The sensors are all symmetric in geometry, which is beneficial to sensor temperature performance, due to packaging effect.
In a specific embodiment, all portions of the gyroscope structure can be formed from a single mask layer and configured with a hollow middle portion. This single layer can incorporate each of the sensed gyro motions. X, Y, and Z axis sensors of the integrated gyroscope do not need to be formed separately, which reduces the number of steps in fabrication.
An optional design involves using a Z travel stop structure 241 in cap wafer 240 to adjust damping performance in the central area of the chip 215, where the accelerometer device is disposed. As shown in
It is also understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.
The present application claims priority to and incorporates by reference, for all purposes, the following patent applications: U.S. Provisional App. 61/757,085, filed Jan. 25, 2013, and U.S. Provisional App. 61/757,088, filed Jan. 25, 2013.
Number | Name | Date | Kind |
---|---|---|---|
6134961 | Touge | Oct 2000 | A |
8156806 | Cardarelli | Apr 2012 | B1 |
8164171 | Lin et al. | Apr 2012 | B2 |
8171792 | Sameshima | May 2012 | B2 |
8205498 | Hsu et al. | Jun 2012 | B2 |
8516886 | Acar et al. | Aug 2013 | B2 |
8878312 | Hung et al. | Nov 2014 | B2 |
9249012 | Lee et al. | Feb 2016 | B2 |
20030110858 | Kim | Jun 2003 | A1 |
20030196490 | Cardarelli | Oct 2003 | A1 |
20030216884 | Cardarelli | Nov 2003 | A1 |
20040121564 | Gogoi | Jun 2004 | A1 |
20040231420 | Xie | Nov 2004 | A1 |
20070029629 | Yazdi | Feb 2007 | A1 |
20070164378 | MacGugan | Jul 2007 | A1 |
20080028855 | Kano et al. | Feb 2008 | A1 |
20080115579 | Seeger | May 2008 | A1 |
20080163687 | Kranz | Jul 2008 | A1 |
20080314147 | Nasiri | Dec 2008 | A1 |
20090064781 | Ayazi et al. | Mar 2009 | A1 |
20090114016 | Nasiri | May 2009 | A1 |
20090126490 | Sameshima | May 2009 | A1 |
20090280594 | Mehregany | Nov 2009 | A1 |
20090309203 | Seppala et al. | Dec 2009 | A1 |
20100071467 | Nasiri et al. | Mar 2010 | A1 |
20100089153 | Zhang | Apr 2010 | A1 |
20100281977 | Coronato | Nov 2010 | A1 |
20110030473 | Acar | Feb 2011 | A1 |
20110031565 | Marx et al. | Feb 2011 | A1 |
20110121416 | Quevy et al. | May 2011 | A1 |
20110265565 | Acar | Nov 2011 | A1 |
20110265574 | Yang | Nov 2011 | A1 |
20120012970 | Xu et al. | Jan 2012 | A1 |
20120061172 | Yacine | Mar 2012 | A1 |
20120223726 | Zhang et al. | Sep 2012 | A1 |
20120326248 | Daneman et al. | Dec 2012 | A1 |
20130042686 | Lin et al. | Feb 2013 | A1 |
20130247662 | Jin et al. | Sep 2013 | A1 |
20130247666 | Acar | Sep 2013 | A1 |
20130328139 | Acar | Dec 2013 | A1 |
20140311247 | Zhang et al. | Oct 2014 | A1 |
20150000400 | Cazzaniga | Jan 2015 | A1 |
20150111332 | Lee | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
102854998 | Jan 2013 | CN |
2135840 | Dec 2009 | EP |
2339293 | Nov 2013 | EP |
201020548 | Jun 2010 | TW |
201110274 | Mar 2011 | TW |
201117349 | May 2011 | TW |
201213764 | Apr 2012 | TW |
201229516 | Jul 2012 | TW |
201238032 | Sep 2012 | TW |
WO2010092399 | Aug 2010 | WO |
2012037539 | Mar 2012 | WO |
Entry |
---|
Search Report for European patent application EP14171673.8 (dated Nov. 10, 2014), 8 pages. |
Sun Sensing and control electronics design for capacitive CMOS-MEMS inertial sensors, PhD. Dissertation University of Florida (copyright 2002), sections 2.2.4, 7.3, chapters 3 and 6. |
Xie “Gyroscope and Micromirror Design Using Vertical Axis CMOS-MEMS Actuation and Sensing,” PhD. Dissertation Carnegie Institute of Technology (copyright 2002), sections 3.2, 5.3.2.2, 6.2.8, chapter 6. |
Search Report and Written Opinion for European patent application EP14152747 (dated Sep. 3, 2014), 11 pages. |
Office Action issued by the Taiwan Patent Office for patent application TW102108387 (dated Feb. 17, 2015). |
European Patent Application No. 14152747.3, “Office Action” dated Mar. 4, 2016, 6 pages. |
U.S. Appl. No. 14/163,789, Non-final Office Action dated Mar. 31, 2016, 19 pages. |
European Patent Application No. 14152747.3, “Office Action” dated Dec. 22, 2016, 5 pages. |
Communication Pursuant to Article 94(3) EPC received in European Patent Application No. 14 157 747.3, dated Mar. 4, 2016. 6 pages. |
Communication Pursuant to Article 94(3) EPC received in European Patent Application No. 14 157 747.3, dated Jan. 26, 2018. 6 pages. |
Final Office Action received in U.S. Appl. No. 14/163,789, dated Aug. 11, 2016. 22 pages. |
Final Office Action received in U.S. Appl. No. 14/163,789, dated Jun. 7, 2017. 21 pages. |
Non-Final Office Action received in U.S. Appl. No. 14/521,441, dated Apr. 28, 2015. 9 pages. |
Non-Final Office Action received in U.S. Appl. No. 14/163,789, dated Dec. 27, 2016. 17 pages. |
Notice of Allowance received in U.S. Appl. No. 14/521,441, dated Sep. 21, 2015. 7 pages. |
Notice of Allowance received in U.S. Appl. No. 14/163,789, dated Dec. 20, 2017. 9 pages. |
Restriction Requirement received in U.S. Appl. No. 14/521,441, dated Jan. 28, 2015. 5 pages. |
Tatar, E. et al. Quadrature-Error Compensation and Corresponding Effects on the Performance of Fully Decoupled MEMO Gyroscopes. Journal of Microelectromechanical Systems, vol. 21, No. 3. Published Jun. 2012. pp. 656-667. |
Number | Date | Country | |
---|---|---|---|
20140311242 A1 | Oct 2014 | US |
Number | Date | Country | |
---|---|---|---|
61757088 | Jan 2013 | US | |
61757085 | Jan 2013 | US |