Multi-layer digital elliptic filter and method

Information

  • Patent Grant
  • 9608303
  • Patent Number
    9,608,303
  • Date Filed
    Wednesday, April 20, 2016
    8 years ago
  • Date Issued
    Tuesday, March 28, 2017
    7 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Pascal; Robert
    • Glenn; Kimberly
    Agents
    • Haun; Niels
    • Dann, Dorfman, Herrell and Skillman, P C.
Abstract
The present invention relates generally to digital elliptic filters, and more particularly, but not exclusively to multi-layer digital elliptic filters and methods for their fabrication.
Description
FIELD OF THE INVENTION

The present invention relates generally to digital elliptic filters, and more particularly, but not exclusively to multi-layer digital elliptic filters and methods for their fabrication.


BACKGROUND OF THE INVENTION

While digital elliptic filters have been designed and fabricated, present manufacturable designs include a number of limitations that can inversely impact performance. For example, current digital elliptic filters may be inherently wideband (greater than 30%) and may not be suited to narrowband design due to physical limitations in the design and manufacture of such filters. In addition, the structure of current digital elliptical filters can present manufacturing challenges, because such filters can require a series of internal stubs that must be machined. Still further, the spacing of ground planes may result in junction effects which are difficult to compensate, especially at X-band (8-12 GHz) frequencies and above. Thus, it would be an advance in the art to provide digital elliptic filters having designs that are more readily manufactured at frequencies at or above X-band, as well as providing methods of their manufacture.


SUMMARY OF THE INVENTION

In one of its aspects the present invention may provide a multi-layer digital elliptic filter comprising a conductive enclosure having conductive walls defining a cavity therein. First and second conductive posts may be disposed within the cavity of the conductive enclosure, with conductive posts each having a respective first end connected to a selected conductive wall of the conductive enclosure. In addition, the second conductive post may have a post cavity disposed therein. A conductive stub may be disposed within the post cavity and electrically connected to the first conductive post such that the first and second conductive posts, the conductive stub, and the conductive enclosure have inductive and capacitive properties to provide a digital elliptic filter. The conductive stub may be either partially or fully contained within the post cavity. Moreover, the post cavity may include a longitudinal wall extending along a longitudinal axis of the second post, with a notch disposed in the longitudinal wall. A portion of the stub may be disposed within the notch to provide the electrical connection between the stub and the first conductive post.


In another of its aspects the present invention may provide a method of forming a multi-layer digital elliptic filter by a sequential build process. The method may include depositing a plurality of layers, where the layers comprise one or more of a conductive material and a sacrificial photoresist material, thereby forming a structure which comprises: a conductive enclosure, the enclosure having conductive walls defining a cavity therein; first and second conductive posts disposed within the cavity of the conductive enclosure, the conductive posts each having a respective first end connected to a selected conductive wall of the conductive enclosure, the second conductive post having a post cavity disposed therein; a conductive stub disposed within the post cavity and electrically connected to the first conductive post, wherein the first and second conductive posts, conductive stub, and conductive enclosure are configured to have inductive and capacitive properties to provide a digital elliptic filter. The method may also include removing the sacrificial photoresist. The method of forming a multi-layer digital elliptic filter may include forming a structure, wherein the conductive stub is partially or fully contained within the post cavity. In addition, the method of forming a multi-layer digital elliptic filter may include forming a structure, wherein the post cavity comprises a longitudinal wall extending along a longitudinal axis of the second post, the wall having a notch disposed therein. A portion of the stub may be disposed within the notch to provide the electrical connection between the stub and the first conductive post.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary and the following detailed description of exemplary embodiments of the present invention may be further understood when read in conjunction with the appended drawings, in which:



FIG. 1A schematically illustrates an isometric view of an exemplary design of a physical realization of a digital elliptic filter in accordance with the present invention having a post structure (solid lines) enclosed within a metal box (dashed lines);



FIG. 1B illustrates a lumped element diagram and high-pass frequency response corresponding to the design of FIG. 1A;



FIG. 1C illustrates a lumped element diagram and frequency response of an alternative design having a band-stop frequency response;



FIG. 1D illustrates the performance of the digital elliptic filter of FIG. 1A, with the solid line showing Insertion Gain in dB (or |S21|) and the dashed line showing return loss in dB (or |S11|);



FIG. 2A schematically illustrates a cross-sectional view of the digital elliptic filter and enclosing metal box of FIG. 1A taken along the sectioning line 2A-2A;



FIG. 2B schematically illustrates a cross-sectional view of the digital elliptic filter and enclosing metal box of FIG. 1A taken along the sectioning line 2B-2B;



FIG. 3A schematically illustrates the post structure of the digital elliptical filter of FIG. 1A;



FIG. 3B schematically illustrates a cross-sectional view of the digital elliptical filter portion of FIG. 3A taken along the sectioning lines 3B-3B;



FIG. 3C schematically illustrates an enlarged fragmentary end view of the post structure illustrated in FIG. 3A;



FIG. 3D schematically illustrates a cross-sectional view of the digital elliptical filter portion of FIG. 3A taken along the sectioning lines 3D-3D;



FIG. 4A schematically illustrates an isometric view of a further exemplary design of a physical realization of a digital elliptic filter in accordance with the present invention having a post structure (solid lines) enclosed within a metal box (dashed lines);



FIG. 4B schematically illustrates a cross-sectional view of the digital elliptic filter of FIG. 4A taken along the sectioning line 4B-4B;



FIG. 5 illustrates a lumped element diagram corresponding to the design of FIGS. 4A-4B;



FIG. 6A schematically illustrates an isometric view of another exemplary design of a physical realization of a digital elliptic filter in accordance with the present invention having a post structure (solid lines) enclosed within a metal box (dashed lines) having connecting arms which project out beyond the ends of the posts of the digital elliptic filter;



FIG. 6B schematically illustrates a cross-sectional view of the digital elliptical filter of FIG. 6A taken along the sectioning lines 6B-6B;



FIG. 6C schematically illustrates an enlarged fragmentary end view of the digital elliptical filter illustrated in FIG. 6A;



FIGS. 7A, 7B schematically illustrate an isometric and end view, respectively, of yet a further exemplary design of a physical realization of a digital elliptic filter in accordance with the present invention having individual resonators of different height; and



FIGS. 8A-8D schematically illustrate exemplary lumped element diagrams of digital elliptic filters of the present invention used in conjunction with low pass filters.





DETAILED DESCRIPTION OF THE INVENTION

Referring now to the figures, wherein like elements are numbered alike throughout, FIG. 1A schematically illustrates an isometric view of an exemplary design of a physical realization of a digital elliptic filter 100 of order n=3 in accordance with the present invention. The filter 100 is a distributed realization of the lumped element circuit having a high pass frequency response as shown in FIG. 1B; the insertion gain performance of the corresponding physical realization of the filter 100 is shown in FIG. 1D. Turning to the specific exemplary physical structure of the filter 100 as illustrated in various views shown in FIGS. 1A, 2A-3D, the filter 100 may include a post structure comprising first and second posts 110, 120 enclosed within and grounded to a hollow (air-filled) metal box 130 having an inner wall 132 and outer wall 131. In addition, idealized 50 ohm ports 142, 144 may be modeled in the design as zero thickness “sheets” to represent where a signal is input/output to/from the filter 100, FIGS. 1A, 2A. In a final physical implementation the idealized ports 142, 144 may be replaced with 50 ohm transmission lines, as illustrated and discussed below in connection with ports 642, 644 of FIGS. 6A-6C, for example.


The first and second posts 110, 120 may have a length (LenRes) that is electrically equivalent to one quarter of a wavelength at which the filter 100 is designed to operate. The first and second posts 110, 120 may be configured to create an electrical response equivalent to an inductor to ground (e.g., L1 and L3, FIG. 1B) as well as an inductive coupling between the posts 110, 120 (e.g., L2, FIG. 1B). The behavior of the first and second posts 110, 120 as inductors, and the values of the inductance of the first and second posts 110, 120, may be determined by the specific configuration of the first and second posts 110, 120 and the metal box 130 relative to one another.


For example, in the exemplary configuration of FIGS. 1A-3D, the first post 110 may be provided in the form of a rectangular solid, and the second post 120 may be provided in the form of a longitudinal post having a C-shaped cross-section taken perpendicular to the longitudinal axis, FIG. 3D. In this regard, the second post 120 may include an upper portion 125 and a lower portion 123 joined by a vertical portion 124 defining a cavity 129 therebetween to provide the C-shape. (The C-shape is depicted with the opening to the right; however, the “C” could be reversed so that the opening in the C-shape of the second post 120 is to the left in FIG. 3D.) An L-shaped stub 128 may be disposed within the cavity 129, where the L-shape is defined by an arm portion 121 and longitudinal portion 122 of the stub 128, FIGS. 1A, 2B-3D. The length of the longitudinal portion 122 may be foreshortened by an amount delS2 to account for the length of the arm portion 121, FIG. 3B. In addition, an opening 133 in the box 130 may optionally be provided to prevent electrical connection between the stub 128 and the box 130. The vertical portion 124 may be foreshortened or notched by providing a notch 126 to permit the stub 128 to be fully enclosed within the second post 120 to deter electrical interaction between the stub 128 and metal box 130. Specifically, the notch 126 may be configured such that the length of the arm portion 121 is minimized to minimize unwanted parasitic circuit elements, in so doing the range of impedances (and thus capacitances) may be increased. The stub 128 may be electrically connected to the first post 110 at the arm portion 121 of the stub 128, FIG. 3B. In this particular exemplary configuration, the C-shaped second post 120 may create a physical element that provides the electrical equivalent of the series capacitor (C) of the equivalent lumped circuit illustrated in FIG. 1B. Hence, the particular physical realization of the digital elliptical filter 100 of FIGS. 1A, 2A-3D provides the performance illustrated in FIG. 1D. In addition, alternative designs in accordance with the present invention are contemplated which would provide physical realizations of a band-stop filter as illustrated in FIG. 1C, which may be accomplished by modifying the configuration of the filter 100 such that the base of the posts 110, 120 are open circuited instead of short circuited, and connecting both ends of the stub 128 to the posts 110, 120.


The design of the physical realization of the digital elliptical filter 100 may be facilitated through the use of suitable modeling software, such as ANSYS HFSS (ANSYS, Inc., Canonsburg, Pa. USA). In addition, a starting point for use with modeling software may be determined using the methodology disclosed in Horton et.al, The digital elliptic filter—a compact sharp cutoff design for wide bandstop or bandpass requirements, IEEE Transactions On Microwave Theory And Techniques, Vol. MTT-15, No. 5, May 1967, the entire contents of which are incorporated herein by reference.


Design Example


A specific exemplary design of a physical realization of the digital elliptic filter 100 was performed using ANSYS HFSS, which design predicted the performance results illustrated in FIG. 1D. With reference to the dimensioning lines illustrated in FIGS. 1A, 2A-3D, the dimensions of the design are provided in Tables 1 and 2, where Table 1 includes the predefined values and Table 2 the values calculated by the design process. In the design, the thickness of the metal box 130 was not critical from a microwave design point of view, but was set at 0.25 mm on all sidewalls and 0.15 mm on top and bottom surfaces. The length of the posts 110, 120 (LenRes) was calculated to be electrically equal to one quarter of a wavelength at the mid-band frequency of the filter 100. For the design, where the dielectric was essentially air, the mid band length (LenRes) was calculated by the equation







LenRes
=


λ
4

=


v
p


4
·

f
0





,





where νp was the phase velocity of a wave propagating along the transmission line and ƒ0 was the center frequency of the filter's passband. For the present design having posts 110, 120 for a TEM (transverse electromagnetic) mode wave with an air dielectric, νp was equal to the speed of light in a vacuum or 2.998·108 m/s. The center frequency of the filter 100 was 25.0 GHz, making LenRes=2.998 mm. However, the length was then adjusted in simulation to correct for non-ideal effects to provide the value listed in Table 2.












TABLE 1







Parameter
Value (mm)



















b
0.7



t
0.5



Ts
0.1



Gs
0.1



s01
0.5



s23
0.5



W3
0.1



LenGap
0.75




















TABLE 2







Parameter
Value (mm)



















w1
0.47



w2
0.47



s12
0.06



wInS2
0.05



w4
0.09



LenRes
3.20



iA12
0.39



delS2
0.60



w5
0.09



wNotch2
0.215










Leaving the design example and turning to other exemplary configurations of the present invention, FIGS. 4A, 4B schematically illustrate an isometric and cross-sectional views, respectively, of a further exemplary design of a physical realization of a digital elliptic filter 400 where n is extended beyond 3. In particular, the digital elliptic filter 400 represents a specific example where n=7. For odd values of n, extending the digital elliptic filter 400 to include additional elements (of the unit type containing L9/L8 and C4) may be accomplished by adding additional circuit elements as shown in FIG. 5, which physically corresponds to adding additional posts. Thus, the n=7 digital elliptic filter 400 includes four posts 410, 420, 430, 440 with three interposed stubs 418, 428, 438, where the posts 410-440 and stubs 418-438 may be configured and oriented relative to one another in a manner similar to that of the posts 110, 120 and stub 128 of the digital elliptic filter 100. The stubs 418, 428, 438 may be fully or partially enclosed in corresponding posts 420, 430, 440, respectively.


In yet another exemplary design of a physical realization of a digital elliptic filter in accordance with the present invention, FIGS. 6A-6C schematically illustrate isometric and cross-sectional views, respectively, of a digital elliptic filter 600. The digital elliptic filter 600 may be similar to the digital elliptic filter 400 by containing four posts 610, 620, 630, 640 and three stubs 618, 628, 638, which may be oriented relative to one another in a similar manner to the correspondingly named parts of the digital elliptic filter 400. However, the digital elliptic filter 600 may differ from the digital elliptic filter 400 in that the stubs 618, 628, 638 may extend outward beyond the ends of the corresponding posts 620, 630, 640 in which the stubs 618, 628, 638 are otherwise enclosed, FIGS. 6B, 6C. In addition, the digital elliptic filter 600 may include input and output ports 642, 644 electrically connected to posts 610, 640, respectively, and grounded to the metal box 650. The two ports 642, 644 may represent a 50 ohm physical transmission line. The ports 642, 644 may connect to posts 610, 640 in-plane with the posts 610, 640 as shown, or may connect to the posts 610, 640 from above or below, or by other suitable orientations, for example.


As yet a further exemplary design of a physical realization of a digital elliptic filter in accordance with the present invention, FIGS. 7A, 7B schematically illustrate isometric and end views, respectively, of an exemplary digital elliptic filter 700 in accordance with the present invention having individual resonators of different height. The digital elliptic filter 700 may be similar to the digital elliptic filter 600 as containing four posts 710, 720, 730, 740 and three stubs 718, 728, 738, which may be oriented relative to one another in a similar manner to the correspondingly named parts in the digital elliptic filter 600. However, the digital elliptic filter 700 may differ from the digital elliptic filter 600 in that one or more of the posts, e.g., post 740, may have a height that differs from one or more of the remaining posts 710, 720, 730, FIGS. 7B, 7C. In particular, the decreased height of post 740 permits the post 740 to have increased width, allowing the post 740 to more fully enclose the stub 738 associated therewith.


In another of its aspects, digital elliptic filters of the present invention (e.g., filters 100, 400, 600, 700) may be used in conjunction with one or more low pass filters to create a narrow bandwidth bandpass filter, FIGS. 8A-8D. Such a combination can be advantageous in that the size of the digital elliptic filter can be reduced increasing its bandwidth. The low pass filter can then be one of several types, including lumped element, pseudo-lumped element, or stepped impedance. The low pass filter of the stepped impedance type may be particularly useful in that it can be used to route a signal in a manner similar to a transmission line. The digital elliptic filter and low pass filter combination is also well suited to diplexer and multiplexer designs, FIGS. 8B-8D. For instance, the digital elliptic filter may be combined with a low pass filter to create a diplexer, FIG. 8B, and the diplexer can then be cascaded to create a triplexer, quadplexer or higher order n-plexer, FIGS. 8C-8D. In FIGS. 8B-8D the letters signify channels of increasing frequency, such that channel A is the lowest frequency, channel B is higher frequency than A, and so forth.


The exemplary designs of the present invention may be particularly amenable to fabrication by a sequential build process, such as the PolyStrata® process by Nuvotronics, LLC of Radford Va., USA. For instance the metal structures (e.g., posts 110, 120, 410-440, metal boxes 150, 450, and ports 642, 644) may be built up layer by layer by a sequential build process. (The PolyStrata® process is disclosed in U.S. Pat. Nos. 7,012,489, 7,148,772, 7,405,638, 7,948,335, 7,649,432, 7,656,256, 8,031,037, 7,755,174, and 7,898,356, 2008/0199656, 2011/0123783, 2010/0296252, 2011/0273241, 2011/0181376, 2011/0210807, the contents of which patents are incorporated herein by reference.) Thus, in another of its aspects the present invention provides a method of forming a multi-layer digital elliptic filter by a sequential build process.


These and other advantages of the present invention will be apparent to those skilled in the art from the foregoing specification. Accordingly, it will be recognized by those skilled in the art that changes or modifications may be made to the above-described embodiments without departing from the broad inventive concepts of the invention. It should therefore be understood that this invention is not limited to the particular embodiments described herein, but is intended to include all changes and modifications that are within the scope and spirit of the invention as set forth in the claims.

Claims
  • 1. A digital elliptic filter, comprising: a plurality of conductive walls defining an enclosure disposed therein;a first conductive post disposed within the enclosure and having an end thereof electrically connected to a selected one of the plurality conductive walls, the post having a longitudinally extending stub cavity disposed therein; anda second conductive post disposed within the enclosure with an end thereof electrically connected to the selected conductive wall, the second conductive post having a conductive stub extending along a longitudinal axis of the second conductive post and disposed within the stub cavity,wherein the first and second conductive posts, conductive stub, and the plurality of conductive walls each comprise a plurality of layers of a conductive material, and are configured to have inductive and capacitive properties to provide a digital elliptic filter.
  • 2. The digital elliptic filter according to claim 1, wherein the conductive stub is partially contained within the stub cavity.
  • 3. The digital elliptic filter according to claim 1, wherein the conductive stub is fully contained within the stub cavity.
  • 4. The digital elliptic filter according to claim 1, wherein the conductive stub is L-shaped.
  • 5. The digital elliptic filter according to claim 1, wherein first conductive post has a C-shaped cross-section taken perpendicular to the longitudinal axis thereof.
  • 6. The digital elliptic filter according to claim 1, wherein the stub cavity comprises a longitudinal wall extending along a longitudinal axis of the first post, the longitudinal wall having a notch disposed therein.
  • 7. The digital elliptic filter according to claim 6, wherein a portion of the stub is disposed within the notch to provide the electrical connection between the stub and the first conductive post.
  • 8. The digital elliptic filter according to claim 1, comprising a low pass filter disposed in series therewith.
  • 9. The digital elliptic filter according to claim 1, comprising a third conductive post disposed within the enclosure, the third conductive post having a stub cavity disposed therein, and wherein the first conductive post has a conductive stub extending along a longitudinal axis thereof and the conductive stub of the first conductive post is disposed within the stub cavity of the third conductive post.
  • 10. A method of forming a digital elliptic filter by a sequential build process, comprising: depositing a plurality of layers, wherein the layers comprise one or more of a conductive material and a sacrificial photoresist material, thereby forming a structure comprising: a plurality of conductive walls defining an enclosure disposed therein;a first conductive post disposed within the enclosure and having an end thereof electrically connected to a selected one of the plurality conductive walls, the post having a longitudinally extending stub cavity disposed therein; anda second conductive post disposed within the enclosure with an end thereof electrically connected to the selected conductive wall, the second conductive post having a conductive stub extending along a longitudinal axis of the second conductive post and disposed within the stub cavity,wherein the first and second conductive posts, conductive stub, and the plurality of conductive walls each comprise a plurality of layers of a conductive material, and are configured to have inductive and capacitive properties to provide a digital elliptic filter; andremoving the sacrificial photoresist.
  • 11. The method of forming a digital elliptic filter by a sequential build process according to claim 10, wherein the conductive stub is partially contained within the stub cavity.
  • 12. The method of forming a digital elliptic filter by a sequential build process according to claim 10, wherein the conductive stub is fully contained within the stub cavity.
  • 13. The method of forming a digital elliptic filter by a sequential build process according to claim 10, wherein the conductive stub is L-shaped.
  • 14. The method of forming a digital elliptic filter by a sequential build process according to claim 10, wherein first conductive post has a C-shaped cross-section taken perpendicular to the longitudinal axis thereof.
  • 15. The method of forming a digital elliptic filter by a sequential build process according to claim 10, wherein the stub cavity comprises a longitudinal wall extending along a longitudinal axis of the first post, the longitudinal wall having a notch disposed therein.
  • 16. The method of forming a digital elliptic filter by a sequential build process according to claim 15, wherein a portion of the stub is disposed within the notch to provide the electrical connection between the stub and the first conductive post.
  • 17. The method of forming a digital elliptic filter by a sequential build process according to claim 10, wherein the structure comprises a third conductive post disposed within the enclosure, the third conductive post having a stub cavity disposed therein, and wherein the first conductive post has a conductive stub extending along a longitudinal axis thereof and the conductive stub of the first conductive post is disposed within the stub cavity of the third conductive post.
RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 14/161,987, filed on Jan. 23, 2014, which claims the benefit of priority of U.S. Provisional Application No. 61/757,102, filed on Jan. 26, 2013, the entire contents of which applications are incorporated herein by reference.

US Referenced Citations (212)
Number Name Date Kind
2743505 George May 1956 A
2812501 Sommers Nov 1957 A
2914766 Butler Nov 1959 A
2997519 Hines Aug 1961 A
3309632 Trudeau Mar 1967 A
3311966 Henry Apr 1967 A
3335489 Grant Aug 1967 A
3352730 Murch Nov 1967 A
3464855 Quintana Sep 1969 A
3517847 Guala Jun 1970 A
3537043 Smith Oct 1970 A
3560896 Essinger Feb 1971 A
3577105 Jones, Jr. May 1971 A
3598107 Ishikawa Aug 1971 A
3760306 Spinner Sep 1973 A
3775844 Parks Dec 1973 A
3789129 Ditscheid Jan 1974 A
3791858 McPherson Feb 1974 A
3884549 Wang May 1975 A
3925883 Cavalear Dec 1975 A
3963999 Nakajima Jun 1976 A
4021789 Furman May 1977 A
4033656 Freehauf Jul 1977 A
4075757 Malm Feb 1978 A
4275944 Sochor Jun 1981 A
4348253 Subbarao Sep 1982 A
4365222 Lampert Dec 1982 A
4414424 Mizoguchi Nov 1983 A
4417393 Becker Nov 1983 A
4437074 Cohen Mar 1984 A
4460878 Fouillet Jul 1984 A
4521755 Carlson Jun 1985 A
4581301 Michaelson Apr 1986 A
4591411 Reimann May 1986 A
4641140 Heckaman Feb 1987 A
4663497 Reimann May 1987 A
4673904 Landis Jun 1987 A
4700159 Jones Oct 1987 A
4717064 Popielarski Jan 1988 A
4729510 Landis Mar 1988 A
4771294 Wasilousky Sep 1988 A
4808273 Hua Feb 1989 A
4832461 Yamagishi May 1989 A
4853656 Guillou Aug 1989 A
4856184 Doeling Aug 1989 A
4857418 Schuetz Aug 1989 A
4876322 Budde Oct 1989 A
4880684 Boss Nov 1989 A
4969979 Appelt Nov 1990 A
4975142 Iannacone Dec 1990 A
5069749 Gutierrez Dec 1991 A
5072201 Devaux Dec 1991 A
5100501 Blumenthal Mar 1992 A
5119049 Heller Jun 1992 A
5191699 Ganslmeier Mar 1993 A
5227013 Kumar Jul 1993 A
5235208 Katoh Aug 1993 A
5274484 Mochizuki Dec 1993 A
5334956 Leding Aug 1994 A
5381157 Shiga Jan 1995 A
5406235 Hayashi Apr 1995 A
5406423 Sato Apr 1995 A
5430257 Lau Jul 1995 A
5454161 Beilin Oct 1995 A
5622895 Frank Apr 1997 A
5633615 Quan May 1997 A
5682062 Gaul Oct 1997 A
5682124 Suski Oct 1997 A
5712607 Dittmer Jan 1998 A
5724012 Teunisse Mar 1998 A
5746868 Abe May 1998 A
5793272 Burghartz Aug 1998 A
5814889 Gaul Sep 1998 A
5860812 Gugliotti Jan 1999 A
5872399 Lee Feb 1999 A
5925206 Boyko Jul 1999 A
5940674 Sachs Aug 1999 A
5961347 Hsu Oct 1999 A
5977842 Brown Nov 1999 A
5990768 Takahashi Nov 1999 A
6008102 Alford Dec 1999 A
6027630 Cohen Feb 2000 A
6054252 Lundy Apr 2000 A
6180261 Inoue Jan 2001 B1
6207901 Smith Mar 2001 B1
6210221 Maury Apr 2001 B1
6228466 Tsukada May 2001 B1
6232669 Khoury May 2001 B1
6294965 Merrill Sep 2001 B1
6329605 Beroz Dec 2001 B1
6350633 Lin Feb 2002 B1
6388198 Bertin May 2002 B1
6457979 Dove Oct 2002 B1
6465747 DiStefano Oct 2002 B2
6466112 Kwon Oct 2002 B1
6514845 Eng Feb 2003 B1
6518165 Han Feb 2003 B1
6535088 Sherman Mar 2003 B1
6589594 Hembree Jul 2003 B1
6600395 Handforth Jul 2003 B1
6603376 Handforth Aug 2003 B1
6648653 Huang Nov 2003 B2
6662443 Chou Dec 2003 B2
6677248 Kwon Jan 2004 B2
6735009 Li May 2004 B2
6746891 Cunningham Jun 2004 B2
6749737 Cheng Jun 2004 B2
6800360 Miyanaga Oct 2004 B2
6800555 Test Oct 2004 B2
6827608 Hall Dec 2004 B2
6850084 Hembree Feb 2005 B2
6888427 Sinsheimer May 2005 B2
6914513 Wahlers Jul 2005 B1
6917086 Cunningham Jul 2005 B2
6943452 Bertin Sep 2005 B2
6971913 Chu Dec 2005 B1
6975267 Stenger Dec 2005 B2
6981414 Knowles Jan 2006 B2
7005750 Liu Feb 2006 B2
7012489 Sherrer Mar 2006 B2
7030712 Brunette Apr 2006 B2
7064449 Lin Jun 2006 B2
7077697 Kooiman Jul 2006 B2
7084722 Goyette Aug 2006 B2
D530674 Ko Oct 2006 S
7129163 Sherrer Oct 2006 B2
7148141 Shim Dec 2006 B2
7148722 Cliff Dec 2006 B1
7148772 Sherrer Dec 2006 B2
7165974 Kooiman Jan 2007 B2
7217156 Wang May 2007 B2
7222420 Moriizumi May 2007 B2
7239219 Brown Jul 2007 B2
7252861 Smalley Aug 2007 B2
7259640 Brown Aug 2007 B2
7388388 Dong Jun 2008 B2
7400222 Kwon Jul 2008 B2
7405638 Sherrer Jul 2008 B2
7449784 Sherrer Nov 2008 B2
7478475 Hall Jan 2009 B2
7508065 Sherrer Mar 2009 B2
7532163 Chang May 2009 B2
7555309 Baldor Jun 2009 B2
7575474 Dodson Aug 2009 B1
7579553 Moriizumi Aug 2009 B2
7602059 Nobutaka Oct 2009 B2
7619441 Rahman Nov 2009 B1
7645940 Shepherd Jan 2010 B2
7649432 Sherrer Jan 2010 B2
7656256 Houck Feb 2010 B2
7658831 Mathieu Feb 2010 B2
7683842 Engel Mar 2010 B1
7705456 Hu Apr 2010 B2
7755174 Rollin Jul 2010 B2
7898356 Sherrer Mar 2011 B2
7948335 Sherrer May 2011 B2
8011959 Tsai Sep 2011 B1
8031037 Sherrer Oct 2011 B2
8188932 Worl May 2012 B2
8264297 Thompson Sep 2012 B2
8304666 Ko Nov 2012 B2
8339232 Lotfi Dec 2012 B2
8441118 Hua May 2013 B2
8522430 Kacker Sep 2013 B2
8542079 Sherrer Sep 2013 B2
8674872 Billaud Mar 2014 B2
8742874 Sherrer Jun 2014 B2
8814601 Sherrer Aug 2014 B1
9000863 Sherrer Apr 2015 B2
9325044 Reid Apr 2016 B2
20020075104 Kwon Jun 2002 A1
20030029729 Cheng Feb 2003 A1
20030052755 Barnes Mar 2003 A1
20030117237 Niu Jun 2003 A1
20030221968 Cohen Dec 2003 A1
20030222738 Brown Dec 2003 A1
20040000701 White Jan 2004 A1
20040004061 Merdan Jan 2004 A1
20040007468 Cohen Jan 2004 A1
20040007470 Smalley Jan 2004 A1
20040038586 Hall Feb 2004 A1
20040076806 Miyanaga Apr 2004 A1
20040124961 Aoyagi Jul 2004 A1
20040196112 Welbon Oct 2004 A1
20040263290 Sherrer Dec 2004 A1
20050030124 Okamoto Feb 2005 A1
20050042932 Mok Feb 2005 A1
20050045484 Smalley Mar 2005 A1
20050156693 Dove Jul 2005 A1
20050230145 Ishii Oct 2005 A1
20050250253 Cheung Nov 2005 A1
20080191817 Sherrer Aug 2008 A1
20080197946 Houck Aug 2008 A1
20080199656 Nichols Aug 2008 A1
20080240656 Rollin Oct 2008 A1
20090051476 Tada Feb 2009 A1
20090154972 Tanaka Jun 2009 A1
20100007016 Oppermann Jan 2010 A1
20100015850 Stein Jan 2010 A1
20100109819 Houck May 2010 A1
20100225435 Li Sep 2010 A1
20100296252 Rollin Nov 2010 A1
20100323551 Eldridge Dec 2010 A1
20110123783 Sherrer May 2011 A1
20110123794 Hiller May 2011 A1
20110181376 Vanhille Jul 2011 A1
20110181377 Vanhille Jul 2011 A1
20110210807 Sherrer Sep 2011 A1
20110273241 Sherrer Nov 2011 A1
20120233849 Smeys Sep 2012 A1
20130050055 Paradiso Feb 2013 A1
20130127577 Lotfi May 2013 A1
Foreign Referenced Citations (31)
Number Date Country
2055116 May 1992 CA
3623093 Jan 1988 DE
0398019 Nov 1990 EP
0485831 May 1992 EP
0845831 Jun 1998 EP
0911903 Apr 1999 EP
2086327 Dec 1971 FR
2265754 Oct 1993 GB
H027587 Jan 1990 JP
3027587 Feb 1991 JP
H041710 Jan 1992 JP
H0685510 Mar 1994 JP
H06302964 Oct 1994 JP
H07060844 Mar 1995 JP
H07235803 Sep 1995 JP
H10041710 Feb 1998 JP
1998163711 Jun 1998 JP
2002533954 Oct 2002 JP
2003249731 Sep 2003 JP
200667621 Mar 2006 JP
2007253354 Oct 2007 JP
2008211159 Sep 2008 JP
2008306701 Dec 2008 JP
I244799 Dec 2005 TW
0007218 Feb 2000 WO
0039854 Jul 2000 WO
0206152 Jan 2002 WO
02080279 Oct 2002 WO
2004000406 Dec 2003 WO
2004004061 Jan 2004 WO
2010111455 Sep 2010 WO
Non-Patent Literature Citations (160)
Entry
International Search Report and Written Opinion for PCT/US2015/063192 dated May 20, 2016.
International Search Report and Written Opinion for PCT/US2015/011789 dated Apr. 10, 2015.
Brown et al., ‘A Low-Loss Ka-Band Filter in Rectangular Coax Made by Electrochemical Fabrication’, submitted to Microwave and Wireless Components Letters, date unknown {downloaded from www.memgen.com, 2004). NPL—1.
Chwomnawang et al., ‘On-chip 3D Air Core Micro-Inductor for High-Frequency Applications Using Deformation of Sacrificial Polymer’, Proc. SPIE, vol. 4334, pp. 54-62, Mar. 2001. NPL—2.
Elliott Brown/MEMGen Corporation, ‘RF Applications of EFAB Technology’, MTT-S IMS 2003, pp. 1-15. NPL—6.
Engelmann et al., ‘Fabrication of High Depth-to-Width Aspect Ratio Microstructures’, IEEE Micro Electro Mechanical Systems (Feb. 1992), pp. 93-98.
European Search Report of Corresponding European Application No. 07 15 0467 mailed Apr. 28, 2008.
Frazier et al., ‘M Et ALlic Microstructures Fabricated Using Photosensitive Polyimide Electroplating Molds’, Journal of Microelectromechanical Systems, vol. 2, No. 2, Jun. 1993, pp. 87-94. NPL—8.
H. Guckel, ‘High-Aspect-Ratio Micromachining Via Deep X-Ray Lithography’, Proc. of IEEE, vol. 86, No. 8 (Aug. 1998), pp. 1586-1593. NPL—10.
Katehi et al., ‘MEMS and Si Micromachined Circuits for High-Frequency Applications’, IEEE Transactions on Microwave Theory and Techniques, vol. 50, No. 3, Mar. 2002, pp. 858-866. NPL—13.
Lee et al., ‘Micromachining Applications of a High Resolution Ultrathick Photoresist’, J. Vac. Sci. Technol. B 13 (6), Nov./Dec. 1995, pp. 3012-3016. NPL—15.
Loechel et al., ‘Application of Ultraviolet Depth Lithography for Surface Micromachining’, J. Vac. Sci. Technol. B 13 (6), Nov./Dec. 1995, pp. 2934-2939. NPL—16.
Park et al., ‘Electroplated Micro-Inductors and Micro-Transformers for Wireless application’, IMAPS 2002, Denver, CO, Sep. 2002. NPL—18.
Tummala et al.; ‘Microelectronics Packaging Handbook’; Jan. 1, 1989; XP002477031; pp. 710-714. NPL—31.
Yoon et al., ‘3-D Lithography and M et al Surface Micromachining for RF and Microwave MEMs’ IEEE MEMS 2002 Conference, Las Vegas, NV, Jan. 2002, pp. 673-676. NPL—21.
Yoon et al., ‘CMOS-Compatible Surface Micromachined Suspended-Spiral Inductors for Multi-GHz Sillicon RF lcs’, IEEE Electron Device Letters, vol. 23, No. 10, Oct. 2002, pp. 591-593. NPL—22.
Yoon et al., ‘High-Performance Electroplated Solenoid-Type Integrated Inductor (SI2) for RF Applications Using Simple 3D Surface Micromachining Technology’, Int'l Election Devices Meeting, 1998, San Francisco, CA, Dec. 6-9, 1998, pp. 544-547. NPL—23.
Yoon et al., ‘High-Performance Three-Dimensional On-Chip Inductors Fabricated by Novel Micromachining Technology for RF MMIC’, 1999 IEEE MTT-S Int'l Microwave Symposium Digest, vol. 4, Jun. 13-19, 1999, Anaheim, California, pp. 1523-1526. NPL—24.
Yoon et al., ‘Monolithic High-Q Overhang Inductors Fabricated on Silicon and Glass Substrates’, International Electron Devices Meeting, Washington D.C. (Dec. 1999), pp. 753-756. NPL—25.
Yoon et al., ‘Monolithic Integration of 3-D Electroplated Microstructures with Unlimited Number of Levels Using Planarization with a Sacrificial M ET ALlic Mole (PSMm)’, Twelfth IEEE Int'l Conf. on Micro Electro mechanical systems, Orlando Florida, Jan. 1999, pp. 624-629. NPL—26.
Yoon et al., ‘Multilevel Microstructure Fabrication Using Single-Step 3D Photolithography and Single-Step Electroplating’, Proc. of SPIE, vol. 3512, (Sep. 1998), pp. 358-366. NPL—27.
Filipovic et al.; ‘Modeling, Design, Fabrication, and Performance of Rectangular .mu.-Coaxial Lines and Components’; Microwave Symposium Digest, 2006, IEEE; Jun. 1, 2006; pp. 1393-1396.
European Search Report of corresponding European Application No. 08 15 3138 mailed Jul. 15, 2008.
Ali Darwish et al.; Vertical Balun and Wilkinson Divider; 2002 IEEE MTT-S Digest; pp. 109-112. NPL—30.
Cole, B.E., et al., Micromachined Pixel Arrays Integrated with CMOS for Infrared Applications, pp. 64-64 (2000). NPL—3.
De Los Santos, H.J., Introduction to Microelectromechanical (MEM) Microwave Systems {pp. 4, 7-8, 13) (1999). NPL—4.
Deyong, C, et al., A Microstructure Semiconductor Thermocouple for Microwave Power Sensors, 1997 Asia Pacific Microwave Conference, pp. 917-919. NPL—5.
Franssila, S., Introduction to Microfabrication, (pp. 8) (2004). NPL—7.
Ghodisian, B., et al., Fabrication of Affordable M ET ALlic Microstructures by Electroplating and Photoresist Molds, 1996, pp. 68-71. NPL—9.
Hawkins, C.F., The Microelectronics Failure Analysis, Desk Reference Edition (2004). NPL—11.
Jeong, Inho et al., ‘High-Performance Air-Gap Transmission Lines and Inductors for Millimeter-Wave Applications’, IEEE Transactions on Microwave Theory and Techniques, Dec. 2002, pp. 2850-2855, vol. 50, No. 12. NPL—12.
Kenneth J. Vanhille et al.; Micro-Coaxial Imedance Transformers; Journal of Latex Class Files; vol. 6; No. 1; Jan. 2007. NPL—29.
Kwok, P.Y., et al., Fluid Effects in Vibrating Micromachined Structures, Journal of Microelectromechanical Systems, vol. 14, No. 4, Aug. 2005, pp. 770-781. NPL—14.
Madou, M.J., Fundamentals of Microfabrication: The Science of Miniaturization, 2d Ed., 2002 (Roadmap; pp. 615-668). NPL—17.
Sedky, S., Post-Processing Techniques for Integrated MEMS (pp. 9, 11, 164) (2006). NPL—19.
Yeh, J.L., et al., Copper-Encapsulated Silicon Micromachined Structures, Journal of Microelectromechanical Systems, vol. 9, No. 3, Sep. 2000, pp. 281-287. NPL—20.
Yoon et al., “High-Performance Electroplated Solenoid-Type Integrated Inductor (S12) for RF Applications Using Simple 3D Surface Micromachining Technology”, Int'l Election Devices Meeting, 1998, San Francisco, CA, Dec. 6-9, 1998, pp. 544-547.
Chance, G.I. et al., “A suspended-membrane balanced frequency doubler at 200GHz,” 29th International Conference on Infrared and Millimeter Waves and Terahertz Electronics, pp. 321-322, Karlsrube, 2004.
Colantonio, P., et al., “High Efficiency RF and Microwave Solid State Power Amplifiers,” pp. 380-395, 2009.
Ehsan, N., “Broadband Microwave Litographic 3D Components,” Dissertation 2009.
Ehsan, N. et al., “Microcoaxial lines for active hybrid-monolithic circuits,” 2009 IEEE MTT-S Int. Microwave.Symp. Boston, MA, Jun. 2009.
European Examination Report dated Mar. 21, 2013 for EP Application No. 07150463.3.
European Examination Report of corresponding European Patent Application No. 08 15 3144 dated Apr. 6, 2010.
European Examination Report of corresponding European Patent Application No. 08 15 3144 dated Feb. 22, 2012.
European Examination Report of corresponding European Patent Application No. 08 15 3144 dated Nov. 10, 2008.
European Search Report for corresponding EP Application No. 07150463.3 dated Apr. 23, 2012.
European Search Report of corresponding European Patent Application No. 08 15 3144 dated Jul. 2, 2008.
Filipovic, D. et al., “Monolithic rectangular coaxial lines. Components and systems for commercial and defense applications,” Presented at 2008 IASTED Antennas, Radar, and Wave Propagation Conferences, Baltimore, MD, USA, Apr. 2008.
Filipovic, D.S., “Design of microfabricated rectangular coaxial lines and components for mm-wave applications,” Microwave Review, vol. 12, No. 2, Nov. 2006, pp. 11-16.
Immorlica, Jr., T. et al., “Miniature 3D micro-machined solid state power amplifiers,” COMCAS 2008.
Ingram, D.L. et al., “A 427 mW 20% compact W-band InP HEMT MMIC power amplifier,” IEEE RFIC Symp. Digest 1999, pp. 95-98.
International Preliminary Report on Patentability dated Jul. 24, 2012 for corresponding PCT/US2011/022173.
International Preliminary Report on Patentability dated May 19, 2006 on corresponding PCT/US04/06665.
International Search Report dated Aug. 29, 2005 on corresponding PCT/US04/06665.
Jeong, I., et al., “High Performance Air-Gap Transmission Lines and Inductors for Milimeter-Wave Applications”, Transactions on Microwave Theory and Techniques, vol. 50, No. 12, Dec. 2002.
Lukic, M. et al., “Surface-micromachined dual Ka-band cavity backed patch antennas,” IEEE Trans. AtennasPropag., vol. 55, pp. 2107-2110, Jul. 2007.
Oliver, J.M. et al., “A 3-D micromachined W-band cavity backed patch antenna array with integrated rectacoax transition to wave guide,” 2009 Proc. IEEE International Microwave Symposium, Boston, MA 2009.
PwrSoC Update 2012: Technology, Challenges, and Opportunities for Power Supply on Chip, Presentation (Mar. 18, 2013).
Rollin, J.M. et al., “A membrane planar diode for 200GHz mixing applications,” 29th International Conference on Infrared and Millimeter Waves and Terahertz Electronics, pp. 205-206, Karlsrube, 2004.
Rollin, J.M. et al., “Integrated Schottky diode for a sub-harmonic mixer at millimetre wavelengths,” 31st International Conference on Infrared and Millimeter Waves and Terahertz Electronics, Paris, 2006.
Saito, Y., Fontaine, D., Rollin, J-M., Filipovic, D., ‘Micro-Coaxial Ka-Band Gysel Power Dividers,’ Microwave Opt Technol Lett 52: 474-478, 2010, Feb. 2010.
Saito et al., “Analysis and design of monolithic rectangular coaxial lines for minimum coupling,” IEEE Trans. Microwave Theory Tech., vol. 55, pp. 2521-2530, Dec. 2007.
Sherrer, D, Vanhille, K, Rollin, J.M., ‘PolyStrata Technology: A Disruptive Approach for 3D Microwave Components and Modules,’ Presentation (Apr. 23, 2010).
Vanhille, K. ‘Design and Characterization of Microfabricated Three-Dimensional Millimeter-Wave Components,’ Dissertation, 2007.
Vanhille, K. et al., ‘Balanced low-loss Ka-band -coaxial hybrids,’ IEEE MTT-S Dig., Honolulu, Hawaii, Jun. 2007.
Vanhille, K. et al., “Ka-Band surface mount directional coupler fabricated using micro-rectangular coaxial transmission lines,” 2008 Proc. IEEE International Microwave Symposium, 2008.
Vanhille, K.J. et al., “Ka-band miniaturized quasi-planar high-Q resonators,” IEEE Trans. Microwave Theory Tech., vol. 55, No. 6, pp. 1272-1279, Jun. 2007.
Vyas R. et al., “Liquid Crystal Polymer (LCP): The ultimate solution for low-cost RF flexible electronics and antennas,” Antennas and Propagation Society, International Symposium, p. 1729-1732 (2007).
Wang, H. et al., “Design of a low integrated sub-harmonic mixer at 183GHz using European Schottky diode technology,” From Proceedings of the 4th ESA workshop on Millimetre-Wave Technology and Applications, pp. 249-252, Espoo, Finland, Feb. 2006.
Wang, H. et al., “Power-amplifier modules covering 70-113 GHz using MMICs,” IEEE Trans Microwave Theory and Tech., vol. 39, pp. 9-16, Jan. 2001.
Written Opinion of the International Searching Authority dated Aug. 29, 2005 on corresponding PCT/US04/06665.
“Multiplexer/LNA Module using PolyStrata®,” GOMACTech-15, Mar. 26, 2015.
A. Boryssenko, J. Arroyo, R. Reid, M.S. Heimbeck, “Substrate free G-band Vivaldi antenna array design, fabrication and testing” 2014 IEEE International Conference on Infrared, Millimeter, and Terahertz Waves, Tucson, Sep. 2014.
A. Boryssenko, K. Vanhille, “300-GHz microfabricated waveguide slotted arrays” 2014 IEEE International Conference on Infrared, Millimeter, and Terahertz Waves, Tucson, Sep. 2014.
A.A. Immorlica Jr., R. Actis, D. Nair, K. Vanhille, C. Nichols, J.-M. Rollin, D. Fleming, R. Varghese, D. Sherrer, D. Filipovic, E. Cullens, N. Ehsan, and Popovic, “Miniature 3D micromachined solid state amplifiers,” in 2008 IEEE International Conference on Microwaves, Communications, Antennas, and Electronic Systems, Tel-Aviv, Israel, May 2008, pp. 1-7.
B. Cannon, K. Vanhille, “Microfabricated Dual-Polarized, W-band Antenna Architecture for Scalable Line Array Feed,” 2015 IEEE Antenna and Propagation Symposium, Vancouver, Canada, Jul. 2015.
D. Filipovic, G. Potvin, D. Fontaine, C. Nichols, Z. Popovic, S. Rondineau, M. Lukic, K. Vanhille, Y. Saito, D. Sherrer, W. Wilkins, E. Daniels, E. Adler, and J. Evans, “Integrated micro-coaxial Ka-band antenna and array,” GomacTech 2007 Conference, Mar. 2007.
D. Filipovic, G. Potvin, D. Fontaine, Y. Saito, J.-M. Rollin, Z. Popovic, M. Lukic, K. Vanhille, C. Nichols, “μ-coaxial phased arrays for Ka-Band Communications,” Antenna Applications Symposium, Monticello, IL, Sep. 2008, pp. 104-115.
D. Filipovic, Z. Popovic, K. Vanhille, M. Lukic, S. Rondineau, M. Buck, G. Potvin, D. Fontaine, C. Nichols, D. Sherrer, S. Zhou, W. Houck, D. Fleming, E. Daniel, W. Wilkins, V. Sokolov, E. Adler, and J. Evans, “Quasi-planar rectangular ¼-coaxial structures for mm-wave applications,” Proc. GomacTech., pp. 28-31, San Diego, Mar. 2006.
D. Sherrer, “Improving electronics\ functional density,” MICROmanufacturing, May/Jun. 2015, pp. 16-18.
D.S. Filipovic, M. Lukic, Y. Lee and D. Fontaine, “Monolithic rectangular coaxial lines and resonators with embedded dielectric support,” IEEE Microwave and Wireless Components Letters, vol. 18, No. 11, pp. 740-742, 2008.
E. Cullens, “Microfabricated Broadband Components for Microwave Front Ends,” Thesis, 2011.
E. Cullens, K. Vanhille, Z. Popovic, “Miniature bias-tee networks integrated in microcoaxial lines,” in Proc. 40th European Microwave Conf., Paris, France, Sep. 2010, pp. 413-416.
E. Cullens, L. Ranzani, E. Grossman, Z. Popovic, “G-Band Frequency Steering Antenna Array Design and Measurements,” Proceedings of the XXXth URSI General Assembly, Istanbul, Turkey, Aug. 2011.
E. Cullens, L. Ranzani, K. Vanhille, E. Grossman, N. Ehsan, Z. Popovic, “Micro-Fabricated 130-180 GHz frequency scanning waveguide arrays,” IEEE Trans. Antennas Propag., Aug. 2012, vol. 60, No. 8, pp. 3647-3653.
European Examination Report of EP App. No. 07150463.3 dated Feb. 16, 2015.
H. Kazemi, “350mW G-band Medium Power Amplifier Fabricated Through a New Method of 3D-Copper Additive Manufacturing,” IEEE 2015.
H. Kazemi, “Ultra-compact G-band 16way Power Splitter/Combiner Module Fabricated Through a New Method of 3D-Copper Additive Manufacturing,” IEEE 2015.
H. Zhou, N. A. Sutton, D. S. Filipovic, “Surface micromachined millimeter-wave log-periodic dipole array antennas,” IEEE Trans. Antennas Propag., Oct. 2012, vol. 60, No. 10, pp. 4573-4581.
H. Zhou, N. A. Sutton, D. S. Filipovic, “Wideband W-band patch antenna,” 5th European Conference on Antennas and Propagation , Rome, Italy, Apr. 2011, pp. 1518-1521.
H. Zhou, N. A. Sutton, D. S. Filipovic, “W-band endfire log periodic dipole array,” Proc. IEEE-APS/URSI Symposium, Spokane, WA, Jul. 2011, pp. 1233-1236.
Horton, M.C., et al., “The Digital Elliptic Filter-A Compact Sharp-Cutoff Design for Wide Bandstop or Bandpass Requirements,” IEEE Transactions on Microwave Theory and Techniques, (1967) MTT-15:307-314.
International Search Report corresponding to PCT/US12/46734 dated Nov. 20, 2012.
J. M. Oliver, J.-M. Rollin, K. Vanhille, S. Raman, “A W-band micromachined 3-D cavity-backed patch antenna array with integrated diode detector,” IEEE Trans. Microwave Theory Tech., Feb. 2012, vol. 60, No. 2, pp. 284-292.
J. M. Oliver, P. E. Ralston, E. Cullens, L. M. Ranzani, S. Raman, K. Vanhille, “A W-band Micro-coaxial Passive Monopulse Comparator Network with Integrated Cavity-Backed Patch Antenna Array,” 2011 IEEE MTT-S Int. Microwave, Symp., Baltimore, MD, Jun. 2011.
J. Mruk, “Wideband Monolithically Integrated Front-End Subsystems and Components,” Thesis, 2011.
J. Mruk, Z. Hongyu, M. Uhm, Y. Saito, D. Filipovic, “Wideband mm-Wave Log-Periodic Antennas,” 3rd European Conference on Antennas and Propagation, pp. 2284-2287, Mar. 2009.
J. Oliver, “3D Micromachined Passive Components and Active Circuit Integration for Millimeter-Wave Radar Applications,” Thesis, Feb. 10, 2011.
J. R. Mruk, H. Zhou, H. Levitt, D. Filipovic, “Dual wideband monolithically integrated millimeter-wave passive front-end sub-systems,” in 2010 Int. Conf. on Infrared, Millimeter and Terahertz Waves , Sep. 2010, pp. 1-2.
J. R. Mruk, N. Sutton, D. S. Filipovic, “Micro-coaxial fed 18 to 110 GHz planar log-periodic antennas with RF transitions,” IEEE Trans. Antennas Propag., vol. 62, No. 2, Feb. 2014, pp. 968-972.
J. Reid, “PolyStrata Millimeter-wave Tunable Filters,” GOMACTech-12, Mar. 22, 2012.
J.M. Oliver, H. Kazemi, J.-M. Rollin, D. Sherrer, S. Huettner, S. Raman, “Compact, low-loss, micromachined rectangular coaxial millimeter-wave power combining networks,” 2013 IEEE MTT-S Int. Microwave, Symp., Seattle, WA, Jun. 2013.
J.R. Mruk, Y. Saito, K. Kim, M. Radway, D. Filipovic, “A directly fed Ku—to W-band 2-arm Archimedean spiral antenna,” Proc. 41st European Microwave Conf., Oct. 2011, pp. 539-542.
J.R. Reid, D. Hanna, R.T. Webster, “A 40/50 GHz diplexer realized with three dimensional copper micromachining,” in 2008 IEEE MTT-S Int. Microwave Symp., Atlanta, GA, Jun. 2008, pp. 1271-1274.
J.R. Reid, J.M. Oliver, K. Vanhille, D. Sherrer, “Three dimensional metal micromachining: A disruptive technology for millimeter-wave filters,” 2012 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Jan. 2012.
K. J. Vanhille, D. L. Fontaine, C. Nichols, D. S. Filipovic, and Z. Popovic, “Quasi-planar high-Q millimeter-wave resonators,” IEEE Trans. Microwave Theory Tech., vol. 54, No. 6, pp. 2439-2446, Jun. 2006.
K. M. Lambert, F. A. Miranda, R. R. Romanofsky, T. E. Durham, K. J. Vanhille, “Antenna characterization for the Wideband Instrument for Snow Measurements (WISM),” 2015 IEEE Antenna and Propagation Symposium, Vancouver, Canada, Jul. 2015.
K. Vanhille, “Design and Characterization of Microfabricated Three-Dimensional Millimeter-Wave Components,” Thesis, 2007.
K. Vanhille, M. Buck, Z. Popovic, and D.S. Filipovic, “Miniature Ka-band recta-coax components: analysis and design,” presented at 2005 AP-S/URSI Symposium, Washington, DC, Jul. 2005.
K. Vanhille, M. Lukic, S. Rondineau, D. Filipovic, and Z. Popovic, “Integrated micro-coaxial passive components for millimeter-wave antenna front ends,” 2007 Antennas, Radar, and Wave Propagation Conference, May 2007.
K. Vanhille, T. Durham, W. Stacy, D. Karasiewicz, A. Caba, C. Trent, K. Lambert, F. Miranda, “A microfabricated 8-40 GHz dual-polarized reflector feed,” 2014 Antenna Applications Symposium, Monticello, IL, Sep. 2014. pp. 241-257.
L. Ranzani, D. Kuester, K. J. Vanhille, A Boryssenko, E. Grossman, Z. Popovic, “G-Band micro-fabricated frequency-steered arrays with 2° /GHz beam steering,” IEEE Trans. on Terahertz Science and Technology, vol. 3, No. 5, Sep. 2013.
L. Ranzani, E. D. Cullens, D. Kuester, K. J. Vanhille, E. Grossman, Z. Popovic, “W-band micro-fabricated coaxially-fed frequency scanned slot arrays,” IEEE Trans. Antennas Propag., vol. 61, No. 4, Apr. 2013.
L. Ranzani, I. Ramos, Z. Popovic, D. Maksimovic, “Microfabricated transmission-line transformers with DC isolation,” URSI National Radio Science Meeting, Boulder, CO, Jan. 2014.
L. Ranzani, N. Ehsan, Z. Popovi, “G-band frequency-scanned antenna arrays,” 2010 IEEE APS-URSI International Symposium, Toronto, Canada, Jul. 2010.
M. Lukic, D. Filipovic, “Modeling of surface roughness effects on the performance of rectanμularpcoaxial lines,” Proc. 22nd Ann. Rev. Prog. Applied Comp. Electromag. (ACES), pp. 620-625, Miami, Mar. 2006.
M. Lukic, D. Fontaine, C. Nichols, D. Filipovic, “Surface micromachined Ka-band phased array antenna,” Presented at Antenna Applic. Symposium, Monticello, IL, Sep. 2006.
M. Lukic, K. Kim, Y. Lee, Y. Saito, and D. S. Filipovic, “Multi-physics design and performance of a surface micromachined Ka-band cavity backed patch antenna,” 2007 SBMO/IEEE Int. Microwave and Optoelectronics Conf., Oct. 2007, pp. 321-324.
M. Lukic, S. Rondineau, Z. Popovic, D. Filipovic, “Modeling of realistic rectangular μ-coaxial lines,” IEEE Trans. Microwave Theory Tech., vol. 54, No. 5, pp. 2068-2076, May 2006.
M. V. Lukic, and D. S. Filipovic, “Integrated cavity-backed ka-band phased array antenna,” Proc. IEEE-APS/URSI Symposium, Jun. 2007, pp. 133-135.
M. V. Lukic, and D. S. Filipovic, “Modeling of 3-D Surface Roughness Effects With Application to μ-Coaxial Lines,” IEEE Trans. Microwave Theory Tech., Mar. 2007, pp. 518-525.
M. V. Lukic, and D. S. Filipovic, “Surface-micromachined dual Ka-and cavity backed patch antenna,” IEEE Trans. Antennas Propag., vol. 55, No. 7, pp. 2107-2110, Jul. 2007.
Mruk, J.R., Filipovic, D.S, “Micro-coaxial V-/W-band filters and contiguous diplexers,” Microwaves, Antennas & Propagation, IET, Jul. 17, 2012, vol. 6, issue 10, pp. 1142-1148.
Mruk, J.R., Saito, Y., Kim, K., Radway, M., Filipovic, D.S., “Directly fed millimetre-wave two-arm spiral antenna,” Electronics Letters, Nov. 25, 2010, vol. 46 , issue 24, pp. 1585-1587.
N. Chamberlain, M. Sanchez Barbetty, G. Sadowy, E. Long, K. Vanhille, “A dual-polarized metal patch antenna element for phased array applications,” 2014 IEEE Antenna and Propagation Symposium, Memphis, Jul. 2014. pp. 1640-1641.
N. Ehsan, “Broadband Microwave Lithographic 3D Components,” Thesis, 2009.
N. Ehsan, K. Vanhille, S. Rondineau, E. Cullens, Z. Popovic, “Broadband Wilkinson Dividers,” IEEE Trans. Microwave Theory Tech., Nov. 2009, pp. 2783-2789.
N. Ehsan, K.J. Vanhille, S. Rondineau, Z. Popovic, “Micro-coaxial impedance transformers,” IEEE Trans. Microwave Theory Tech., Nov. 2010, pp. 2908-2914.
N. Jastram, “Design of a Wideband Millimeter Wave Micromachined Rotman Lens,” IEEE Transactions on Antennas and Propagation, vol. 63, No. 6, Jun. 2015.
N. Jastram, “Wideband Millimeter-Wave Surface Micromachined Tapered Slot Antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 13, 2014.
N. Jastram, “Wideband Multibeam Millimeter Wave Arrays,” IEEE 2014.
N. Jastram, D. Filipovic, “Monolithically integrated K/Ka array-based direction finding subsystem,” Proc. IEEE-APS/URSI Symposium, Chicago, IL, Jul. 2012, pp. 1-2.
N. Jastram, D. S. Filipovic, “Parameter study and design of W-band micromachined tapered slot antenna,” Proc. IEEE-APS/URSI Symposium, Orlando, FL, Jul. 2013, pp. 434-435.
N. Jastram, D. S. Filipovic, “PCB-based prototyping of 3-D micromachined RF subsystems,” IEEE Trans. Antennas Propag., vol. 62, No. 1, Jan. 2014. pp. 420-429.
N. Sutton, D.S. Filipovic, “Design of a K—thru Ka-band modified Butler matrix feed for a 4-arm spiral antenna,” 2010 Loughborough Antennas and Propagation Conference, Loughborough, UK, Nov. 2010, pp. 521-524.
N. A. Sutton, D. S. Filipovic, “V-band monolithically integrated four-arm spiral antenna and beamforming network,” Proc. IEEE-APS/URSI Symposium, Chicago, IL, Jul. 2012, pp. 1-2.
N.A. Sutton, J. M. Oliver, D. S. Filipovic, “Wideband 15-50 GHz symmetric multi-section coupled line quadrature hybrid based on surface micromachining technology,” 2012 IEEE MTT-S Int. Microwave, Symp., Montreal, Canada, Jun. 2012.
N.A. Sutton, J.M. Oliver, D.S. Filipovic, “Wideband 18-40 GHz surface micromachined branchline quadrature hybrid,” IEEE Microwave and Wireless Components Letters, Sep. 2012, vol. 22, No. 9, pp. 462-464.
P. Ralston, K. Vanhille, A. Caba, M. Oliver, S. Raman, “Test and verification of micro coaxial line power performance,” 2012 IEEE MTT-S Int. Microwave, Symp., Montreal, Canada, Jun. 2012.
P. Ralston, M. Oliver, K. Vummidi, S. Raman, “Liquid-metal vertical interconnects for flip chip assembly of GaAs C-band power amplifiers onto micro-rectangular coaxial transmission lines,” IEEE Compound Semiconductor Integrated Circuit Symposium, Oct. 2011.
P. Ralston, M. Oliver, K. Vummidi, S. Raman, “Liquid-metal vertical interconnects for flip chip assembly of GaAs C-band power amplifiers onto micro-rectangular coaxial transmission lines,” IEEE Journal of Solid-State Circuits, Oct. 2012, vol. 47, No. 10, pp. 2327-2334.
S. Huettner, “High Performance 3D Micro-Coax Technology,” Microwave Journal, Nov. 2013. [online: http://www.microwavejournal.com/articles/21004-high-performance-3d-micro-coax-technology].
S. Huettner, “Transmission lines withstand vibration,” Microwaves and RF, Mar. 2011. [online: http://mwrf.com/passive-components/transmission-lines-withstand-vibration].
S. Scholl, C. Gorle, F. Houshmand, T. Liu, H. Lee, Y. Won, H. Kazemi, M. Asheghi, K. Goodson, “Numerical Simulation of Advanced Monolithic Microcooler Designs for High Heat Flux Microelectronics,” InterPACK, San Francisco, CA, Jul. 2015.
S. Scholl, C. Gorle, F. Houshmand, T. Verstraete, M. Asheghi, K. Goodson, “Optimization of a microchannel geometry for cooling high heat flux microelectronics using numerical methods,” InterPACK, San Francisco, CA, Jul. 2015.
T. Durham, H.P. Marshall, L. Tsang, P. Racette, Q. Bonds, F. Miranda, K. Vanhille, “Wideband sensor technologies for measuring surface snow,” Earthzine, Dec. 2013, [online: http://www.earthzine.org/2013/12/02/wideband-sensor-technologies-for-measuring-surface-snow/].
T. E. Durham, C. Trent, K. Vanhille, K. M. Lambert, F. A. Miranda, “Design of an 8-40 GHz Antenna for the Wideband Instrument for Snow Measurements (WISM),” 2015 IEEE Antenna and Propagation Symposium, Vancouver, Canada, Jul. 2015.
T. Liu, F. Houshmand, C. Gorle, S. Scholl, H. Lee, Y. Won, H. Kazemi, K. Vanhille, M. Asheghi, K. Goodson, “Full-Scale Simulation of an Integrated Monolithic Heat Sink for Thermal Management of a High Power Density GaN—SiC Chip,” InterPACK/ICNMM, San Francisco, CA, Jul. 2015.
T.E. Durham, “An 8-40GHz Wideband Instrument for Snow Measurements,” Earth Science Technology Forum, Pasadena, CA, Jun. 2011.
Written Opinion corresponding to PCT/US12/46734 dated Nov. 20, 2012.
Y. Saito, D. Fontaine, J.-M. Rollin, D.S. Filipovic, “Monolithic micro-coaxial power dividers,” Electronic Letts., Apr. 2009, pp. 469-470.
Y. Saito, J.R. Mruk, J.-M. Rollin, D.S. Filipovic, “X—through Q—band log-periodic antenna with monolithically integrated u-coaxial impedance transformer/feeder,” Electronic Letts. Jul. 2009, pp. 775-776.
Y. Saito, M.V. Lukic, D. Fontaine, J.-M. Rollin, D.S. Filipovic, “Monolithically Integrated Corporate-Fed Cavity-Backed Antennas,” IEEE Trans. Antennas Propag., vol. 57, No. 9, Sep. 2009, pp. 2583-2590.
Z. Popovic, K. Vanhille, N. Ehsan, E. Cullens, Y. Saito, J.-M. Rollin, C. Nichols, D. Sherrer, D. Fontaine, D. Filipovic, “Micro-fabricated micro-coaxial millimeter-wave components,” in 2008 Int. Conf. on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, Sep. 2008, pp. 1-3.
Z. Popovic, S. Rondineau, D. Filipovic, D. Sherrer, C. Nichols, J.-M. Rollin, and K. Vanhille, “An enabling new 3D architecture for microwave components and systems,” Microwave Journal, Feb. 2008, pp. 66-86.
Z. Popovic, “Micro-coaxial micro-fabricated feeds for phased array antennas,” in IEEE Int. Symp. on Phased Array Systems and Technology, Waltham, MA, Oct. 2010, pp. 1-10. (Invited).
“Shiffman phase shifters designed to work over a 15-45GHz range,” phys.org, Mar. 2014. [online: http://phys.org/wire-news/156496085/schiffman-phase-shifters-designed-to-work-over-a-15-45ghz-range.html].
Extended EP Search Report for EP Application No. 12811132.5 dated Feb. 5, 2016.
Cedric Quendo et al., Integration of Optimized Low-Pass Filters in a Bandpass Filter for Out-of-Band Improvement, IEEE Transactions on Microwave Theory and Techniques, vol. 49, No. 12, Dec. 2001, 8 pgs.
Derwent Abstract Translation of WO-2010-011911 A2 (published 2010).
Related Publications (1)
Number Date Country
20160233566 A1 Aug 2016 US
Provisional Applications (1)
Number Date Country
61757102 Jan 2013 US
Continuations (1)
Number Date Country
Parent 14161987 Jan 2014 US
Child 15133422 US