Multi-shield spinal access system

Information

  • Patent Grant
  • 11883064
  • Patent Number
    11,883,064
  • Date Filed
    Friday, March 26, 2021
    3 years ago
  • Date Issued
    Tuesday, January 30, 2024
    10 months ago
Abstract
An access device for accessing an intervertebral disc having an outer shield comprising an access shield with a larger diameter (˜16-30 mm) that reaches from the skin down to the facet line, with an inner shield having a second smaller diameter (˜5-12 mm) extending past the access shield and reaches down to the disc level. This combines the benefits of the direct visual microsurgical/mini open approaches and the percutaneous, “ultra-MIS” techniques.
Description
BACKGROUND OF THE INVENTION

Today, microsurgical spinal bone resections and spinal decompressions which are performed under microscopic view through mini-open tubes and retractors are becoming the standard of spinal surgical care. These access tools normally have inner diameters between about 16 mm and 30 mm. Where, as here, the approach and decompression technique are familiar to spinal surgeons, and where standard equipment and instruments can be used, these known technologies should be considered as a base from which further innovation can be made.


However, the anatomic window of Kambin's triangle, through which safe disc access is possible, has very limited dimensions. This access window can be enlarged by resecting at least a part of the superior articular process. But either way, the length of a working shield needed to safely introduce the implant to the intervertebral space via this approach must be in the region of about 8-12 mm in diameter, reaching from the facet joint line to the disc entry point.


SUMMARY OF THE INVENTION

The present inventors envision introducing a second, inner shield through the above-mentioned first, outer shield. The second inner shield extends past the first outer shield to arrive next to nervous tissue, thereby shielding the nerves from instruments or devices passing through to the disc space. During this step, the outer shield allows the visual, safe placement of the inner shield.


In one embodiment, there is provided an outer shield (which can be, for example, a tube or a blade) comprising an access shield with a larger diameter (˜12-30 mm) that reaches from the skin down to the bone line, with an inner shield having a second smaller diameter (˜5-12 mm) extending past the access shield and reaches down to the disc level. This combines the benefits of the direct visual from microsurgical/mini open approaches and percutaneous techniques (FIGS. 1a-1b and 2).


The outer shield has a number of features and advantages. First, it enables separation and protection of surrounding of soft tissue and visualization during a standard microsurgical decompression/bone resection work under microscopic view based on a standard procedure that a surgeon who is familiar with MIS techniques is able to perform. Second, it enables separation and protection of surrounding of soft tissue and visualization during detection and removal of the facet joint, or parts of the facet joint based on a standard procedure that a surgeon who is familiar with MIS technique is able to perform. Third, it enables identification, preparation and protection of sensitive (e.g., neural) tissue (exiting nerve root, traversing nerve root, dura) under direct visual control underneath the border between retraction-sensitive and non-retraction sensitive tissues (e.g., the facet line) based on a standard procedure that a surgeon who is familiar with MIS technique is able to perform. Fourth, it enables insertion of the inner shield and potential docking of the inner shield in the disc space or at the vertebrae under direct visual control.


Likewise, the inner shield has a number of features and advantages. First, it enables protection of nervous tissue (exiting nerve root, transverse nerve root, dura) against instruments that are introduced into the intervertebral disc. Second, it enables guidance of intradiscal instrumentation (discectomy instruments, visualization instruments, discectomy verification instruments, implant insertion instruments, bone graft filling instruments). Third, because of its small size, the shield can be inserted with minimal damage or trauma to bone and soft tissue in the area of the posterior column of the spine, comparable to percutaneous access instruments.


Therefore, in accordance with the present invention, there is provided a method of accessing an intervertebral disc in a patient, comprising the steps of:

    • a) making an incision in a skin of the patient,
    • b) percutaneously inserting through the incision an outer shield having a substantially tubular shape (such as a tube or a multi-slotted retractor), the outer shield having a length adapted to extend from the incision to a border between sensitive and insensitive tissue (e.g., a superior articular process (SAP), or a lamina), in the spine of the patient,
    • c) stabilization of this outer shield to a pedicle anchor,
    • d) insertion of an outer shield integrated optical visualization instrument,
    • e) resecting a portion of the superior articular process, and/or performing a microsurgical decompression procedure
    • f) inserting or deploying an inner shield through or from the outer shield so that a distal end portion of the inner shield extends to the disc, the inner shield having an outer surface,
    • g) contacting the outer surface of the shield to a nerve root to shield the nerve root,
    • h) microsurgical decompression of any tissue deemed to be causing nerve impingement,
    • i) extraction of the intervertebral disc material including the removal of the cartilaginous material from the vertebral endplates,
    • j) insertion of the interbody device, and
    • k) deployment of a mechanism of stabilization to stabilize the intervertebral segment.


Also in accordance with the present invention, there is provided a method of accessing an intervertebral disc in a patient, comprising the steps of:

    • a) making an incision in a skin of the patient,
    • b) percutaneously inserting through the incision an outer shield having a substantially tubular shape,
    • c) stabilization of this outer shield to a pedicle anchor,
    • d) inserting an inner shield through the outer shield so that a distal end portion of the inner shield extends to the disc, the inner shield having an outer surface,
    • e) contacting the outer surface of the shield to a nerve root to shield the nerve root
    • f) microsurgical decompression of any tissue deemed to be causing nerve impingement,
    • g) extraction of the intervertebral disc material including the removal of the cartilaginous material from the vertebral endplates,
    • h) insertion of the interbody device, and
    • i) deployment of a mechanism of stabilization to stabilize the intervertebral segment.


Also in accordance with the present invention, there is provided an access device for accessing an intervertebral disc, comprising:

    • a) an outer shield having a substantially tubular portion, a length adapted to extend from an incision to a border between sensitive and insensitive tissue (e.g., an articular process or a lamina), a proximal end portion, a distal end portion, an outer surface, and a longitudinal throughbore defining an inner surface,
    • b) an inner shield having i) a first substantially tubular portion having a proximal end portion, a distal end portion, a longitudinal through-bore defining an inner surface, and an outer surface defining a diameter, and ii) a longitudinal flange extending distally from the distal end portion of the substantially tubular portion,
    • wherein the outer surface of the inner shield substantially nests within the inner surface of the outer shield so that the flange extends distally past the distal end portion of the outer shield.





DESCRIPTION OF THE FIGURES


FIG. 1a shows an interbody device delivered through the access device;



FIG. 1b shows an end view of the access device;



FIGS. 2a and 2b are different views of a tube-in-tube embodiment of the access device;



FIGS. 3a-3d show different axial cross section of the inner shield;



FIG. 4 shows a necked, funnel-shaped embodiment of the inner shield;



FIGS. 5-6 show different longitudinal cross sections of concentric and nonconcentric inner shields;



FIG. 7 shows a jointed access device;



FIG. 8a shows a flanged embodiment of the inner shield;



FIG. 8b shows an inner shield with a proximal stop;



FIG. 9 shows an access device with two ports attached to the outer shield; one port is a connector to hold the outer tube, while the other is an interface for a light source;



FIG. 10 discloses a cross-section of an outer tube wherein the outer tube wall has a first channel adapted for containing a visualization unit (such as a camera) and a second channel adapted for containing a cleaning system (such as a lens cleaning device);



FIG. 11 discloses a cross-section of an outer tube wherein the outer tube wall contains a lens cleaning device and a camera;



FIG. 12 discloses a chip-on-tip embodiment including a cross-section of an outer tube wherein the outer tube wall has a channel containing an endoscope having a video chip near its distal end;



FIG. 13 discloses a distal end of an outer tube featuring a video chip near its distal end;



FIG. 14 discloses a scope holder for an endoscope;



FIGS. 15
a-15b show inner shield having proximal elbows;



FIG. 16 shows an access device with a distal sharpened tip on the inner shield within an outer shield;



FIG. 17 shows an access device with a positioning ring between the inner and outer shields;



FIG. 18 shows an access device with a depth adjustment means formed by the inner and outer shields;



FIG. 19 discloses an integrated retractor having a flat inner face housed within a cutout of an outer tube 245;



FIG. 20 shows the embodiment of FIG. 48;



FIG. 21 discloses a retractor having a flat inner face housed within an outer tube;



FIGS. 22-24
b show a distraction embodiment;



FIGS. 25-30 show an access device with an extending shield;



FIG. 31 shows an access device with an inner and outer shield;



FIGS. 32-34 show in inner shield;



FIG. 35 discloses a radial soft tissue retractor;



FIG. 36 discloses an outer tube/inner retractor assembly wherein the first inner retractor and second inner retractor both tilt inwards to retract soft tissue;



FIGS. 37-46 disclose a preferred method of surgery involving the access device;



FIGS. 47a-47c disclose a Navigation plug comprising a base having an array attached thereto, wherein the plug is adapted to fit within an outer tube;



FIG. 48 discloses the cookie cutter-type distal end of an ultrasonic cutter extending from the end of an outer tube, wherein the distal end has a plurality of cutting teeth;



FIGS. 49
a-49b disclose various cross-sections of the template for guiding a bone cutting device;



FIG. 50 discloses a cookie cutter-type distal end of an ultrasonic cutter having a semicircular cutting piece cutter bone;



FIG. 51 discloses a mini flex arm connecting an outer tube and a screw extension;



FIG. 52 discloses an outer tube/inner retractor assembly wherein the inner retractor is tilted inwards to retractor soft tissue;



FIG. 53 discloses an outer tube/inner retractor assembly wherein the inner retractor runs parallel with the outer tube; and



FIG. 54 discloses an endoscope housed within an outer tube, and an inner tube extending from the outer tube.





DETAILED DESCRIPTION OF THE INVENTION

Fluoroscopic visualization is performed to define the incision site of the initial reference array placement, as well as the incision for access to the intervertebral disc.


Generally, the shields of the present invention can be applied to any of the conventional approaches commonly used in spine surgery. However, given the clinical benefit of the access device and its underlying rationale, it is preferably suitable to use these shields in either interlaminar, extraforaminal or transforaminal approaches to the intervertebral disc.


Now referring to FIGS. 1-7, there is provided an access device for accessing an intervertebral disc, comprising:

    • a) an outer shield 1 having a substantially tubular portion, a length adapted to extend from an incision to a border between sensitive and insensitive tissue (e.g., an articular process), a proximal end portion 3, a distal end portion 5, an outer surface 7, and a longitudinal through-bore 9 defining an inner surface 10,
    • b) an inner shield 11 having i) a first substantially tubular portion 13 having a proximal end portion 15, a distal end portion 17, a longitudinal through-bore 19 defining an inner surface 21, and an outer surface 23 defining a diameter, and ii) a longitudinal flange 25 extending distally from the distal end portion of the substantially tubular portion,
    • wherein the outer surface of the inner shield substantially nests within the inner surface of the outer shield so that the flange extends distally past the distal end portion of the outer shield, and
    • the distal end portion of the substantially tubular portion of the inner shield extends distally past the distal end of the outer shield.


      Outer Shield Embodiments


In the design of the outer shield, traditional tube or split tube/retractor concepts can be used. Newer concepts such as a “flexible tube” could also be adopted. The outer shield can be a simple cylindrical tube. It may also be a split tube, in the manner that conventional retractors are considered to be split tubes. It can be a flexible tube. It can be a tube with a slot running from the proximal end to the distal end. Various shape embodiments could be:

    • a) a cylindrical tube with an inner diameter D (FIG. 3a);
    • b) an oval tube with a height a different than a length b (FIG. 3b);
    • c) a “half moon” tube having a substantially circular or oval cross section of diameter D, with a section cut (or chord) “a” (FIG. 3c); and
    • d) a rectangular tube with height a and width b (FIG. 3d).


In some embodiments, the shape of the distal end portion 5 includes an unsymmetrical shape for better tissue retraction lateral to the SAP.


The outer shield can be preferably used with a variety of access window sizes (i.e., widths) ranging from 6 mm to 25 mm and lengths ranging from 40 mm to 200 mm. Typically, the outer shield comprises a feature that allows for the attachment of a stabilization mechanism that allows for appropriate flexibility in attachment (e.g. a ball joint). In one embodiment, the outer shield has a customized feature adapted for the introduction of an endoscope or camera that allows the endoscope to be introduced to a predetermined depth where the working window at the distal portion of the outer shield can be visualized.


Inner Shield Embodiments


Now referring to FIGS. 3a-d, the inner shield 11 may encompass various designs as well.


In a first embodiment, the inner shield is a fully surrounding (i.e., extending for 360 degrees) stiff tube. It may possess various cross-sections, such as:

    • e) a cylindrical tube with an inner diameter D (FIG. 3a);
    • f) an oval tube with a height a different than a length b (FIG. 3b);
    • g) a “half moon” tube having a circular cross section of diameter D, with a section cut (or chord) “a” (FIG. 3c); and
    • h) a rectangular tube with height a and width b (FIG. 3d).


The inner shield may possess different longitudinal shapes. For example, in a second embodiment, and now referring to FIGS. 4-7, the inner shield 11 is a funnel-shaped (e.g. necked) tube (as in FIG. 4). In this embodiment, it changes its cross sectional shape/area along the shield, with a bigger diameter/working zone at the proximal portion, and the length of this zone with a bigger diameter is adjusted to be the part of the inner shield that will be nested within the outer shield, and a smaller diameter/working zone where the inner shield is extending the outer shield. This design increases the range of motion of intradiscal tools and enables better visualization. In FIG. 4, the flange is a second substantially tubular portion 25 having a diameter less than the diameter of the first substantially tubular portion 13 of the inner shield. A necked region 27 is disposed between the first and second substantially tubular portions.


In some embodiments, the inner shield may be in the form of one of a plurality of retractor blades.


In tubular embodiments, the smaller tube can be a concentric with the larger tube, or not concentric therewith. In FIG. 5, the first and second substantially tubular portions of the inner shield are concentric (a=b). In FIG. 6, the first and second substantially tubular portions of the inner shield are not concentric (a>b).


In some embodiments, there is provided a spherical joint between the larger and the smaller tubes, allowing the angle to change between the two tubes (FIG. 7). In FIG. 7, the outer surface 23 of the inner shield substantially nests within the inner surface 10 of the outer shield so that the proximal end of the substantially tubular portion of the inner shield terminates within the outer shield. Also, the distal end portion of the inner shield narrows distally to define a first radius R1, and the proximal end portion of the inner shield narrows distally to define a second radius, and the proximal end portion of the inner shield nests within the distal end portion of the outer shield to allow polyaxial pivoting of the inner shield.


In some embodiments, the inner shield is a partially surrounding tube/shield, or “flange,” designed only to protect the nerves. For some applications, the only purpose of the inner tube might be to shield/protect the exiting nerve root. In this case, the inner shield might be simplified to a cylinder with a flange 25 extending distally therefrom, so that the flange is only a shield of about a quarter of a full circle. See FIG. 8a, or FIG. 9 if mounted on the outer shield).


Depth Adjustment of Nerve Protector


The aforementioned outer shield can be positioned and fixed in its depth through a mechanism which relies on interference between the outer shield and the inner shield at any location along either the outer shield or inner shield.


In FIG. 8b, the proximal end portion of the first substantially tubular portion 13 of the inner shield comprises a stop 31 adapted to abut the proximal end portion of the outer shield, the stop being adapted to prevent excessive distal movement of the inner shield. Preferably, the stop extends substantially radially about the proximal end portion of the substantially tubular portion of the inner shield. The stop may also further comprise a textured radial surface 33 adapted for gripping. It acts as both a stop and as a handle to twist the shield.


In FIG. 9, the outer surface of the inner shield substantially nests within the inner surface of the outer shield so that the proximal end portion of the substantially tubular portion of the inner shield extends proximally past the proximal end of the outer shield. Also in FIG. 9, the outer surface of the outer shield further comprises a first port 41 adapted for connecting to a navigation instrument or a stabilization point, and a second port 43 adapted for connecting to a camera/light system.


Navigation of Outer Shield


The first port allows the outer shield to be navigated to determine its position (depth and orientation) in relation to the treatment site. In one embodiment, the outer surface of the outer shield has a feature that allows for the direct or indirect attachment of a navigation instrument. In another embodiment, the inner surface of the outer shield has a feature that allows for the direct or indirect attachment of a navigation instrument.


Endoscope in the Outer Shield


In some embodiments, the outer shield has an integrated endoscope that can be set in a fixed or variable (angle or circumferential) position relative to the anatomy. This endoscopic visualization can be utilized in subsequent surgical steps, including bone removal, inner shield deployment, discectomy, and implant insertion. Preferably, the endoscope has an integrated lens cleaning mechanism for automated lens cleaning in situ.



FIG. 10 discloses a cross-section of an outer tube wherein the outer tube wall 138 has a first channel 238 adapted for containing a camera and a second channel 338 adapted for containing a lens cleaning device.



FIG. 11 discloses a cross-section of an outer tube wherein the outer tube wall contains a lens cleaning device 139 and a camera 239.



FIG. 12 discloses a chip-on-tip embodiment including a cross-section of an outer tube wherein the outer tube wall has a channel 140 containing an endoscope 240 having a video chip 340 near its distal end.



FIG. 13 discloses a distal end of an outer tube featuring a video chip 141 near its distal end.


Fixed Endoscope


The endoscope can be a chip-on-tip type of endoscope having an outer diameter less than 5 mm and having an incremental length substantially matching the length of the outer shield. The benefits of an integrated chip-on-tip endoscope/outer shield embodiment include the relatively free space within the bore of the outer shield, thereby enhancing visualization.


Preferably, the endoscope is angled within the port or has a built-in lens angle such that, at final positioning within the port, the circumference of the distal portion of the outer shield is visible and the area within the circumference is visible as well.


In some embodiments, the endoscope can be removed from the wall of the outer shield and inserted independently into the outer shield bore to inspect the treatment site (e.g. into the disc space for confirmation of adequate discectomy).



FIG. 14 discloses a scope holder 137 for an endoscope 237.


Still referring to FIG. 9, in some embodiments, the flange 25 of the inner shield has an arcuate transverse cross-section. In some embodiments, the arcuate transverse cross-section of the flange defines an outer surface 47 of the flange having a curvature substantially similar to a curvature of the inner surface 10 of the outer shield. Preferably, the flange defines a second substantially tubular portion having a diameter less than or equal to the diameter of the first substantially tubular portion of the inner shield.


Now referring to FIGS. 15a-15b and 16, the inner shield can be a single blade that can be mounted/hooked to the outer tube. In this case, elbow 51 functions as a stop and also as a connector to the outer tube. Also, the proximal end of the inner shield may form an anchoring spike 53.


There are a number of ways to fix or locate the inner shield onto the disc and/or onto the outer shield. In one embodiment, which provides safety of the inner shield against slippage/dislocation, involves mounting it distally (onto or within the vertebral endplates or disc annulus) and/or proximally (onto the outer shield).


Distal fixation of the inner shield with the anatomy may include: a) fixation within disc annulus, b) fixation against vertebrae; c) fixation against other structures; d) K-Wires that are distally extending through the walls of the inner shield and anchored to the anatomy; and e) spikes extending the distal part (FIG. 15) to be anchored to the anatomy.


Proximal fixation of inner shield upon the outer shield may involve a positioning ring or a depth adjustment. Now referring to FIG. 17, proximal fixation of inner shield upon the outer shield may involve a positioning ring 55. Assuming the outer shield would be fixed relative to the anatomy, there would be the option of having positioning rings having the shape of the outer tube at the outside, and of the inner tube on the inside. When placed over the inner shield and into the outer shield, such a ring would stabilize the location or at least the orientation of the proximal inner shield against the outer shield, and—by considering the assumption above—also against the anatomy.


Now referring to FIG. 18, proximal fixation of inner shield upon the outer shield may involve a depth adjustment means 57. This would additionally stabilize or anchor the tip location of inner shield against the anatomy via anchoring or hooking the inner shield into the outer shield via ratchet system. The ratchet system can also be located between the inner surface of the outer shield, and the outer surface of the inner shield or within the wall of the outer shield. It may further include a spring system to increase friction between the inner and outer shields.


Inner Shield Deployment (Circumferential)


Embodiments having separate outer and inner shields allow for the independent positioning of the inner shield relative to the outer shield. Also, the use of a smaller inner shield (relative to the outer shield) allows for maximum visualization at the entrance where no retraction-sensitive tissues reside. This maximum visualization allows for accurate placement of the inner shield. Where retraction-sensitive tissues reside distal the outer shield, a relatively smaller inner shield allows for minimum retraction while providing an access through or past these tissues. Preferably, the inner diameter of the inner shield is no more than 40%-100% of the inner diameter of the outer shield.


In some embodiments, the inner shield-outer shield configuration is replaced by a) a primary shield having a substantially tubular shape having a cutout, and b) a secondary shield having a shape that is substantially insertable into the cutout. Preferably, the primary shield has a substantially annular shape and the secondary shield has an arcuate cross-section that substantially matches the annular shape of the primary shield. This embodiment allows the secondary shield to be tilted with respect to the primary shield.


Inner Shield Deployment (Radial)


In another nerve protection embodiment, the motion of retraction of the shields is radial rather than rotational. In these embodiments, a straight or bayonetted inner shield may be used. The inner shield may be positioned over the area in which the protected tissue is to be located. The flange shield can then be angled into the center of the access window at the distal end of the outer shield e.g. towards the caudal pedicle. It can then be subsequently advanced longitudinally onto the medial side of the nerve root, into the “safe zone” as described by Kambin. It is subsequently angled such that the distal tip of the inner shield is angled laterally, wherein its outer distal surface gently pushes the existing nerve root away and/or shields it against the tools that are further introduced medially to the shield for intradiscal work. This embodiment may be constructed such that the inner shield substantially nests either a) within the wall of the outer shield (FIG. 19), b) inside the inner surface of the outer shield (FIG. 21) or c) outside the outer surface of the outer shield. In some embodiments, the inner shield is built into the wall of the outer shield or even outside the outer shield.



FIG. 19 discloses an integrated retractor having a flat inner face 145 housed within a cutout of an outer tube 245.



FIG. 21 discloses a retractor having a flat inner face 144 housed within an outer tube.


In other embodiments, an outer tube can have a retractor nesting with the outer face of the outer tube.


Depth Control of Nerve Protector


The aforementioned outer shield can be controlled in its depth through a mechanism that relies on interference between the outer shield and the inner shield at any location along either the outer shield or inner shield.


There are a number of avenues by which the present device can be used to distract the disc space and/or provide nerve protection upon mounting.


In one distraction embodiment, a revolution spreader is used. This is a conventional concept involves an ovoid or rectangular cross-sectional shaped rod that is inserted into the disc with its smaller dimension directed towards the vertebral endplates. After turning the spreader by 90° under force, the larger dimension is directed towards the vertebral endplates, which distracts the disc by the difference of the two cross sectional dimensions.


In a second distraction embodiment, as now referring to FIGS. 22-24b, the inner shield may comprise a spreader, which includes a frame 60, a cranial blade 61 and a caudal blade 63.


The spreader with respective cranial 61 and caudal 63 distraction blades in cranial and caudal locations is introduced into the disc in a collapsed/tapered configuration (FIG. 22). The spreader blades are then distracted with an inner core 65 (the core matching a counter geometry on the blade to not slip away sideways), elevating the intervertebral height from d1 to d2 (FIGS. 22-23). The side walls 67 matching to the inner core height are then introduced medially/laterally (FIG. 24a), to circumferentially close the four-wall shield. Once the inner core is removed, the stacked shield keeps the vertebral bodies separated in distracted condition (FIG. 24b).


Now referring to FIGS. 25-26, the inner shield may further comprise a rotating flange 71 that moves laterally/medially upon rotation to shield the nerve root.


In a nerve protection embodiment, and now referring to FIGS. 27-30, a rotation funnel 70 is used. Preferably, the flange shield 71 can be smartly introduced to protect the exiting nerve root while being inserted. This shield can be directed towards the caudal pedicle if introduced through the outer shield. This location is a “safe zone.” Once the distal tip reaches the disc level, the inner shield can be turned clockwise by about 90° (i.e., rotated), so that the flange gently pushes the exiting nerve root away, and/or shields it against the tools that are further introduced medially to the shield, for intradiscal work.


In a second nerve protection embodiment, and now referring to FIGS. 31-34, a concentrically-arrayed multi-shield is used to gently move and/or shield nerves. The rotation funnel principle can also be applied for more than one rotating shield. A single shield may be suitable if the protection only has to be provided against a structure that lies on one single side. In other situations, however, the shield entry towards the disc would be bounded both medially and laterally by the traversing and the exiting nerves, so the inner shield needs to shield against two opposing structures. In this case, the two concentrically-arranged outer 81 and inner 83 rotating flanges are turned by 90° in respective clockwise and counterclockwise directions to reach an end configuration wherein the opposed shields protect the nerves from the tools that are further introduced for intradiscal work.


In another nerve protection embodiment, a radially-retracting multi-shield is used to gently move and/or shield nerves. The radially-retracting principle can also be applied to more than one radially retracting shield.



FIG. 35 discloses a radial soft tissue retractor 136.



FIG. 36 discloses an outer tube/inner retractor assembly wherein the first inner retractor 153 and second inner retractor 253 both tilt inwards to retract soft tissue.


A single shield may be suitable if the protection only has to be provided against a structure that lies on one single side. In other situations, however, the shield entry into the disc would be bounded both medially and laterally by the traversing and the exiting nerves, so that the inner shield needs to shield against two opposing structures. In this case, the two opposing inner flanges are initially positioned towards the center of the outer tube access window and subsequently retracted outwards to shield the opposing nerves from the tools that are further introduced for intradiscal work.



FIGS. 37-46 disclose a preferred method of surgery involving the tube-in-tube access device.


In one embodiment, and now referring to FIG. 37, the surgeon places a pedicle screw-based anchor, adds a navigation reference frame 101 to the anchor, and uses a commercial navigation system for navigation. In some embodiments, a navigation array is placed onto the anatomy with reference to an anatomical feature that is symmetrically substantially adjacent the treatment site (e.g. contralateral cranial or caudal pedicle).


In some embodiments, there is navigation of the probe to a facet capsule or disc space through Kambin's triangle. Preferably, subsequent to fascia and muscle dissection, a probe enabled with navigation visualization is introduced to achieve an initial anchoring point. In one embodiment, the probe is inserted into the disc space by being indexed off the lateral border of the superior articulating process and may be optionally enabled with/supported by a nerve detection and/or visualization function. In another embodiment, the probe is introduced into the facet capsule.


In some embodiments, there is dilation over a navigated probe. Subsequent to the initial anchoring point, dilation is performed to prepare the surgical site for the size of port required to perform the treatment. Sequential dilation up to the preferred size port window is then performed. The port is then introduced over the associated dilator. In one embodiment, the initial anchoring is in the disc space and concentric sequential dilation device(s) would be used in order to retract tissue concentrically around the initial anchoring point (exposing the lateral portion of the SAP on the lateral aspect and Kambin's triangle on the medial aspect). In another embodiment, the initial anchoring is in the facet capsule and eccentric sequential dilation device(s) could be used to focus tissue retraction laterally over the lateral portion of the SAP and Kambin's triangle.


In some embodiments, the outer shield is stabilized onto an anatomical reference. The outer sleeve has a substantially tubular portion having a point or feature designed for attachment to a stabilization mechanism, which in turn is fixed to an anatomical feature on the vertebral body either cranial or caudal to the treatment site.



FIG. 38 discloses an outer tube into which a plug containing a template for guiding a bone cutting device.


In some embodiments, the outer sleeve is attached to a stabilization mechanism. In one embodiment, this stabilization device would be a device of sufficient length to reach an anatomical fixation point (e.g. pedicle screw) on the contralateral side of the treatment site. The mechanism (including its connection feature connecting to both the outer shield and the anatomical anchor) allows for sufficient flexibility of placement of the outer shield and sufficient stabilization to hold the outer shield in place until it is released by the user. The method of stabilization would be such that the user can dictate the degree of stiffness.


In another embodiment, this device has sufficient length to reach an anatomical fixation point (e.g. pedicle screw) on the ipsilateral side of the treatment site. Likewise, the mechanism (including its connection feature to both outer shield and anatomical anchor) would allow for sufficient flexibility of placement of the outer shield and sufficient stabilization to hold the outer shield in place until released by the user. The method of stabilization would be such that the user can dictate the degree of stiffness.


In another embodiment, this device would be a device of sufficient length to reach an anatomical fixation point (e.g. pedicle screw) on midline of the patient. Likewise, the mechanism (including its connection feature to both outer shield and anatomical anchor) would allow for sufficient flexibility of placement of the outer shield and sufficient stabilization to hold the outer shield in place unless released by the user. The method of stabilization would be such that the user can dictate the degree of stiffness.


Now referring to FIGS. 39a-39b, the surgeon then dilates the tissue superior to the pedicle-based anchor, and inserts an outer shield 1, connected to the anchor, with its proximal end directed to the superior articular process. Blunt dissection up to the bone is carried out over the affected intervertebral disc, and muscle retraction over the affected intervertebral disc is then carried out. This retraction involves blunt dissection of the muscle and fascia to bone level under direct visualization.


Now referring to FIG. 40, the surgeon then turns the outer shield 1 to the interlaminar space, preforms a central, bilateral decompression as required by the pathology, and then turns the shield back to its original position.


In some embodiments, an alternative to angling the access channel medially from the incision site could be the use of an alternative access site that would be more medial. In some embodiments, the initial anchoring point in the disc space will be medial to the inferior articulating process. For the embodiment having an initial anchoring point in the facet capsule, the dilation of the eccentric dilators will be medial from the capsule. Also, portions of the lamina and the inferior articulating process will be removed through the bone removal segment.


Now referring to FIG. 41, the surgeon then inserts a bone removal tool (not shown) into the outer shield tube and resects the lateral portion of the superior articular process to medially extend the traditional Kambin's triangle.


Under either direct or endoscopic visualization, a bone removal device is introduced to the outer shield and utilized to remove at least the lateral portion of the SAP. Such a device is available in lengths and sizes allowing for its safe introduction and use through an access window from 40 mm to 200 mm and a window size from 10-25 mm.


In one embodiment, this bone removal device is an ultrasonic cutting device. In another embodiment, this bone removal device is a reciprocating cutting surface. In yet another embodiment, this bone removal device is a revolving cutting tool. In another embodiment, this bone removal device is a mechanical punch with a stroke length between 10-30 mm. Removal of the bone can be performed in such a manner that sizes smaller than the access size will be excised and removed. The bone removal can be performed with the use of a template independently inserted into the outer shield and used to guide the direction of bone cutting and removal.


A Negative Template is a plug-like device that is inserted in the outer Access Tube. It contains a longitudinal cut-out in different shapes, depending on the cross-sectional shape of the tissue that needs to be removed respective of the cross-sectional shape of the tissue that needs to be covered and therefore protected from any surgical interactions. By inserting a cutting device like, e.g. a Milling Bit, into the longitudinal cut-out the surgeon is able to remove the tissue without the risk of endangering the covered tissue/structures. In combination with a proximal stop-system (on proximal end of outer Access Tube and/or shaft of milling system) the surgeon can remove the tissue layer by layer. The layer thickness and therefore the progression of the cutting procedure can be controlled via the stop system supported by a scale. This system allows the surgeon to perform safe tissue removal with a controlled serial work flow: check anatomical situation→adjust stop system to define cross-sectional thickness of tissue that needs to be removed→insert milling system until the stop system is engaged→mill/cut tissue (also blindly) in plane (2D)→remove milling system→check anatomical situation→adjust stop system.


A serial workflow can be considered to be safer than a parallel workflow, since the surgeon only needs to take care of one parameter at a time (here: planar position of milling bit followed by its depth followed by planar position of milling bit . . . ) whereas a parallel workflow requires the control of two or more parameters at a time (here: planar position of milling bit in parallel to its depth).


Navigation of SAP Removal can be carried out with the aforementioned bone removal device adapted to be navigated through its mechanical or visual connection with a navigation system.


Now referring to FIGS. 42-43, the surgeon then inserts the inner shield tube into the outer shield tube, which acts to extend the outer tube anteriorly from the facet line until the tip of the inner shield reaches the level of the disc. The nerve root is protected by the inner shield.


Now referring to FIG. 44, the surgeon then identifies the disc, spreads the disc with a wedged osteotome; checks the mobilization, and removes the posterior rim, osteophytes and annulus until a minimum annular window is opened. The surgeon then inserts a disc removal tool 201 into the access device, removes the disc and prepares the endplates.


An alternative embodiment to the prescribed disc clearing step in FIG. 44, would be to have the disc removal tool navigated through its mechanical or visual connection with a navigation system.


Now referring to FIG. 45, the surgeon then performs temporary disc space distraction, fills parts of the disc space with bone graft and inserts a fusion cage 203 into the remaining disc space.


Now referring to FIG. 46, the surgeon then adds posterior fixation 103.


Viewing Element


In some embodiments, a visualization element based on the chip-on-tip technology and integrated into the wall of the port is used. This embodiment has a number of advantages over a standard rod-lens endoscope that is mounted at the tube wall:

    • Manufacturing costs. The chip-on-tip technology allows a very cost efficient manufacturing, therefore can be marketed as a ‘single use’ instrument.
    • Rigid portion only at distal tip. Whereas a standard rod-lens endoscope system has a stiff, cylindrical shape throughout the whole tube, the chip-on-top endoscope may have a non-cylindric configuration at the proximal outer tube end. Preferably, this shape is a flat cable shape. In some novel embodiments, in relation to a standard rod-lens-endoscope, the chip-on-tip endoscope has a relatively short “stiff” section (about 20 mm), where the proximal portion consists of a cable that can be flexible. In other embodiments, the stiff portion is shorter (producing a smaller chip-assembly) and actively articulating concepts are used to change the lens angle. Due to the cable's integration in the tube wall, the shape of the port window is maintained throughout the procedure. For example, a 5 mm chip on tip endoscope turns a 15 mm circular access window into a kidney shaped access window.
    • Size/weight of camera unit. A standard rod-lens endoscope has a standard eyepiece that is a universal interface with a certain size. The camera that is connected to such a system has to be built in a certain dimension to be compatible with the eyepiece. This requirement produces a relatively bulky camera attachment (approx. 3-6 cm in diameter, approx. 5-10 cm in length) having a number of drawbacks. First, this large camera construct can be a physical obstacle to work, especially if the trajectory of the working port changes or interferes with the camera. Secondly, the dimension and weight of this conventional construct becomes significant enough to produce certain undesirable forces upon the rod-lens-endoscope, especially in bending. Thirdly, the relatively fragile conventional rod-lens-endoscope has to be embedded in stabilizing structures such as metal tubes, thereby further reducing the active working window.
    • With the chip-on-tip embodiments disclosed herein having its chip cable embedded in the wall of the outer tube, the cable that exits at the proximal outer tube wall does not produce similar forces upon the working port. Also, respecting the attachment mechanisms that mount the chip-on-tip endoscope in the tube-wall, the lack of bending forces produced thereby raise the possibility of adopting relatively thin attachment options that mechanically do not need to be very stable.
    • Working Environment. Conventionally, a constant fluid environment (permanent flow of saline solution) is used in spine endoscopy applications. However, in a mini-open and microsurgical environment, the fluid environment is not helpful, as the anatomical conditions are very different. Accordingly, in the preferred novel procedures described herein, the chip-on-tip endoscope works in a dry, open air environment. However, the open, dry air environment in which the chip-on-tip endoscope is used may produce an undesired condensation effect upon the lens component of the endoscope. For example, a colder lens in a humid body temperature environment may fog up. Moreover, drill debris, burr debris or smoke from monopolar scalpels or hemostatic tools can likewise affect the lens of the endoscope so as to reduce visibility. Accordingly, it may be desirable to periodically clean the lens of the chip-on-tip endoscope.


      Nerve Deflection (Tube in Tube)


In minimally invasive spine surgery conducted through portals, a set of dilators is often used to prepare the site for reception of the portal. One such technology is shown in US Patent Publication US 2012-0232552 (Morgenstern). In this conventional technology (which has eccentric dilators), the outer diameter of any one of the dilators is identical to the inner diameter of the next successive (outer) dilator. This identity of diameters is necessary for fluoroscopy assisted, percutaneous muscle dilation.


Since some embodiments of the present application describe a procedure between the level of the facet joint and the disc, the surgical site is dissected under direct visualization. Accordingly, the diameters of successive dilators used in these novel procedures do not have to match. Relaxation of the “exact diameter” requirement in these novel procedures allows the surgeon freedom in many tube design areas. For example, it allows the use of tubes that are tapered. It also allows the surgeon the freedom to use outer and inner ports that are not coaxial. It further allows the trajectories of the inner port relative to the outer port to vary in angulation within certain treatment steps. Lastly, it allows the trajectories of the inner port relative to the outer port to vary in distance within certain treatment steps.


Because fluoroscopy-assisted, percutaneous muscle dilation is carried out without direct visualization, it is a blind procedure whose use has limitations. These limitations include the inability to carry out surgical steps that require direct visualization out of safety considerations. One such treatment step requiring direct visualization is direct decompression of bony and ligamentous tissue that is directly adjacent to nerve structures. Since this decompression is a common step performed on degenerated spinal motion segments during a spinal fusion, the Morgenstern procedure severely limits the pathologies/indications that can be treated.


Because some embodiments described herein allow for direct visualization of delicate anatomical structures, those embodiments further specifically allow direct decompression of bony and ligamentous tissue that is directly adjacent to nerve structures and more generally allow manipulation or removal of tissue adjacent the tubes through a very tissue-preserving “tube-in-tube” access port.


Morgenstern further describes a method in which a guide wire is directly introduced through the disc space to Kambin's triangle, under fluoroscopy guidance (i.e., no direct visualization). This is a well-known approach, but still requires inserting a guidewire past nerve structures without direct visualization. Morgenstern further describes the possibility of using electrically-based nerve monitoring probes. Moreover Morgenstern describes a method of enlarging the spinous process by subsequently rasping away bone from the SAP and the pedicle. Such a procedure might weaken the base of the pedicle, which makes it risky to combine this method with pedicle screw constructs.


The novel procedures described herein only perform non-visualized procedures (e.g., dilation) in a safe zone above the facet line. In the anatomically more critical zone between the level of the facet joint and the disc, the novel procedures dissect the surgical site under direct visualization, thereby allowing the surgeon to spare as much of the bone as is possible and as is meaningful.


Navigation


Navigation enhances static x-ray, CT or MRI data by intra-operatively showing in real-time, where the instruments used actually are in relation to the anatomy of the patient. Therefore it increases the safety of those instruments by showing their shape, trajectory and positioning and even more importantly it supports the surgeon to keep instrument orientation during the performed manipulations.


Without wishing to be tied to a theory, it is believed that one reason why minimally invasive techniques are not often used is the significantly higher x-ray exposure needed to keep orientation in comparison to mini-open techniques, where the surgeon still has direct visualization and so can actually see the active site with a microscope or loupe. The x-ray exposure is an even greater for the surgeon who is exposed to the radiation on a frequent basis. This challenge is addressed by the implementation of navigation technology in the novel procedures described herein because they allow the reduction of x-ray exposure to an ideal minimal total of two x-rays for registration purposes. Once a single lateral shot and a single anterior-posterior shot have been registered, all used instruments (e.g. Jamshidi-Needle, Pointer, Dilators, Access Tube, Osteotome, Expandable Cage itself, Disc Removal Device . . . ) can be projected in these static fluoro-images in real time. Another positive effect is a significant savings of time. Having the navigation system in place also helps the surgeon to understand the orientation (trajectory and depth) of the endoscope and therefore to understand what he or she actually sees with the camera. This can either be achieved by navigating the camera directly or indirectly by setting the camera in a fixed position integrated into a navigated Access Tube.


The Jamshidi-Needle, Pointer, Dilators, and Access Tube Instruments can all be navigated with only one Instrument, the FOX-Navigation-Multi-Tool.



FIGS. 47a-47c disclose a Navigation plug comprising a base 147 having an array 247 attached thereto, wherein the plug is adapted to fit within an outer tube 347.


Bone Cutter


In some embodiments, the novel procedures use an Ultrasonic Bone Cutting device for SAP removal, which specifically cuts bone only and will not cut soft tissue. Embodiments based on a conventional Expandable Cage Device for interbody fusion may require an access window at least as large as 12 mm. Such a large window can only be achieved by (partly) removing the Superior Articulation Process (SAP) to extend the Kambin's Triangle. The Ultrasonic Bone Cutting Device adds significantly to the safety of this procedure since it does not cut nerves if accidently hit. If the cutting device blade is designed to be in the shape and diameter of the Inner Tube/Blade (i.e., a Cookie Cutter design) that approaches distally down to the level of the disc space, the SAP removal can be minimized (less trauma, less stress for patient, quicker recovery) and performed in a single step (faster than multiple step procedure).



FIG. 48 discloses the cookie cutter-type distal end 143 of an ultrasonic cutter extending from the end of an outer tube 243, wherein the distal end 143 has a plurality of cutting teeth 343.


Another option to increase the safety of bone cutting is a depth-controlled manual milling of the bone with a negative guide. The negative guide covers those areas that will not be removed (negative template). The depth control allows the milling of the bone layer by level, under serial control of the surgeon. The reference for the depth control as well as the trajectory can be the outer Access Tube (also see paragraph navigation).



FIGS. 49a-49b disclose various cross-sections of the template for guiding a bone cutting device.


Bone Cutter


In some embodiments, the bone removal device is a harmonic scalpel having a cookie cutter design. The scalpel has a crescent-shaped cutting surface that interfaces with the outer tube. The scalpel is used as a single pass instrument, removing a predetermined amount of bone in a single pass. In some embodiments, the scalpel also has a tube that sprays water for irrigation, while the outer tube has a suction line for clearing the slurry of removed bone.


In some embodiments, the scalpel can be navigated and ride down a slot provided in the inside wall of the outer tube. The slot depth can be predetermined to provide depth-controlled milling, and to control where cutter goes. This is advantageous because it is believed that freehand cutting hits the nerves too easily. The shape and size of the cutting surface can define the specific area of bone to be removed. The specificity of cut is advantageous because it minimizes the amount of bone removal, which is beneficial in the highly enervated facet. Thus, a quicker procedure, less trauma (less pain), and more stable construct is realized.


Viewing Element (Olive)


In some embodiments, the chip viewing element can be angulated so it can see around a corner of the tube.


In a conventional endoscope, visualization is 2D (i.e., no depth perception), and so two nerves may look close together when they are actually 2 cm apart. Thus, in some embodiments, the endoscope is modified so that the chip acts like a range finder. In particular, the chip identifies and assesses a reference feature that is a known distance from chip, and then measures how far away a nerve is from chip (which is the tube end) based on that assessment.


Nerve Deflection (Tube in Tube)


In some embodiments, the outer shield has a pressure sensor thereon to measure the stress on the nerve. Using ultrasound techniques that can measure distance, the system can measure the elongation of nerve under retraction and define a maximum elongation limit (e.g., 20%), and then warn the surgeon if the elongation limit is exceeded. In some embodiments, the system integrates ultrasound into the port and thereby navigates the port.


In some embodiments, the surgeon navigates the camera. This allows the surgeon to understand orientation of the camera.


In some embodiments, visualization provides an axial view of the disc, so the surgeon can understand the location of the disc removal tool.


Neuromonitoring Analytics


Currently, neuromonitoring devices can be used to obtain an indication of potential nerve health or nerve damage, which may be induced in a surgical setting. This indication of nerve health is achieved by measuring electrical impulses between a nerve near a surgical site and a far end of the nerve. For example, impulses may be measured between a nerve root at the spine and some point found on the legs.


Nerve damage can be caused through direct manual contact with a nerve. Apart from gross damage such as severing or crushing the nerve, other lesser forces imparted on the nerve can also cause damage. For example, displacing the nerve, stretching it, or compressing it can cause significant damage. In some cases, extended application of such forces to the nerve can reduce blood flow through the nerve, again causing nerve damage. Often times, this exposure time is dependent on the amount of force applied. Accordingly, there appears to be no known steadfast rule as to how long the surgeon may be able to load a nerve.


Alternate forms of evaluating potential nerve damage besides neuromonitoring may bring new insights into nerve protection during a procedure. In this regard, nerve manipulation measurement could yield an indication of risk to the nerve. If a nerve is displaced for the procedure, it may be elongated or it may be displaced laterally. These alterations in the nerve's physical features could be measured and used to predict potential nerve damage. Accordingly, other potential features could be measured and used to predict potential nerve damage include arc length and the diameter of the nerve itself etc. These features may be measured in quantifiable terms via techniques such as ultrasound. The resulting measurements are and then analyzed (via software or manually) in terms of absolute value, percent change or some other metric indicative of potential nerve risk/damage that can be obtained from a database or library. In some embodiments, these metrics can be used as predictors of the safe length of time that a nerve can have a given displacement or deformation without causing long term damage. Calculation or algorithms can also be used to determine a maximum safe deformation, or a maximum allowable time during which a nerve can have a given deformed feature.


This measurement could be obtained in many ways. It can be measured manually, optically or through some other form of imaging. This could occur in an open procedure, subcutaneously in an MIS or other type of procedure. Direct visualization could be completed with the use of a camera. Before and after images could be interpreted to calculate the amount of absolute deformation or percent change. The measurements can be obtained through modalities such as ultrasound, or other forms of imaging that can “see” soft tissue or identify nerve tissue relative to the surrounding tissue (X-ray, CAT/PET scan, MRI, etc.).


Other measurement methods that can be used in accordance with this embodiment may include a) measurement of density change within the nerve due to loading, or b) change in blood flow. Such measurements can be obtained through radar, ultrasound and other imaging methods.


In some neuromonitoring embodiments, it may be possible to measure impedance within the nerve or impulses, wherein this may be done locally relative to the specific deformation area of the nerve. In particular, in some embodiments discussed herein, the nerve shield could have a sensor on opposite edges of the shield that would contact the same nerve in two different nerve locations. These sensors would allow the surgeon to read electrical values such as impulses or resistance, before nerve distention and then measure it again as distention occurs or is achieved. The difference in these measured values could be an indicator as to the level of deformation.



FIG. 50 discloses a cookie cutter-type distal end 142 of an ultrasonic cutter having a semicircular cutting piece cutter bone.



FIG. 51 discloses a mini flex arm 146 connecting an outer tube 246 and a screw extension 346.



FIG. 52 discloses an outer tube/inner retractor assembly wherein the inner retractor 151 is tilted inwards to retractor soft tissue.



FIG. 53 discloses an outer tube/inner retractor assembly wherein the inner retractor 152 runs parallel with the outer tube 252.



FIG. 54 discloses an endoscope 154 housed within an outer tube, and an inner tube 254 extending from the outer tube.


In many embodiments disclosed above, an inner shield nests within an outer shield. In an alternative embodiment to all such embodiments, however, the inner shield is replaced with a removable blade that is integrated into a cutout formed within the wall of the outer shield. In such cases, the outer surface of the inner shield substantially nests within the outer surface of the outer shield so that the flange extends distally past the distal end portion of the outer shield.


In many embodiments disclosed above, the proximal end portion of the substantially tubular portion of the inner shield comprises a stop adapted to abut the proximal end portion of the outer shield, the stop being adapted to prevent excessive distal movement of the inner shield. In other embodiments, the abutment occurs anywhere along the outer shield.

Claims
  • 1. A method of accessing an intervertebral disc in a patient, comprising: a) making an incision in a skin of the patient,b) percutaneously inserting through the incision an outer shield having a substantially tubular shape, the outer shield having a length adapted to extend from the incision to a superior articular process in the spine of the patient,c) resecting at least a lateral portion of the superior articular process,d) inserting an inner shield through the outer shield so that a distal end portion of the inner shield extends to the disc, the inner shield having an outer surface,e) disposing a video chip in a distal end portion of a channel of the outer shield, wherein the channel opens into the inner surface of the outer shield at least at the distal end portion of the outer shield.
  • 2. The method of claim 1, wherein inserting an inner shield comprises the outer surface of the inner shield substantially nesting within the inner surface of the outer shield and extending the inner shield distally past the distal end portion of the outer shield.
  • 3. A method of accessing an intervertebral disc in a patient, comprising: a) making an incision in a skin of the patient,b) percutaneously inserting through the incision an outer shield having a substantially tubular shape,c) inserting an inner shield through the outer shield so that a distal end portion of the inner shield extends to the disc, the inner shield having an outer surface,d) disposing a video chip in a distal end portion of a channel of the outer shield, wherein the channel opens into the inner surface of the outer shield at least at the distal end portion of the outer shield.
  • 4. The method of claim 1, wherein the distal end portion of the inner shield has an arcuate transverse cross-section.
  • 5. The method of claim 1, further comprising contacting the outer surface of the shield to a nerve root to shield the nerve root.
  • 6. The method of claim 1, further comprising coupling a navigation instrument to the outer shield.
  • 7. The method of claim 1, further comprising coupling a light source to the outer shield.
  • 8. The method of claim 1, wherein the channel opens into the inner surface of the outer shield along the distal end portion of the outer shield proximal to a distal end of the outer shield.
  • 9. The method of claim 3, wherein inserting an inner shield comprises the outer surface of the inner shield substantially nesting within the inner surface of the outer shield and extending the inner shield distally past the distal end portion of the outer shield.
  • 10. The method of claim 3 wherein the inner shield is angled into a center of an access window at a distal end of the outer shield, and then is subsequently advanced longitudinally onto a medial side of a nerve root.
  • 11. The method of claim 9, wherein the distal end portion of the inner shield has an arcuate transverse cross-section.
  • 12. The method of claim 9, further comprising contacting the outer surface of the shield to a nerve root to shield the nerve root.
  • 13. The method of claim 9, further comprising coupling a navigation instrument to the outer shield.
  • 14. The method of claim 9, further comprising coupling a light source to the outer shield.
  • 15. The method of claim 9, wherein the channel opens into the inner surface of the outer shield along the distal end portion of the outer shield proximal to a distal end of the outer shield.
  • 16. A method of accessing an intervertebral disc in a patient, comprising the steps of: a) making an incision in a skin of the patient,b) percutaneously inserting through the incision an outer shield having a substantially tubular shape, the outer shield having a length adapted to extend from the incision to a superior articular process (SAP) in the spine of the patient,c) stabilizing the outer shield to a pedicle anchord) inserting an outer shield integrated optical visualization instrument,e) resecting a portion of the superior articular process, and/or performing a microsurgical decompression procedure,f) inserting an inner shield through the outer shield so that a distal end portion of the inner shield extends to the disc, the inner shield having an outer surface,g) contacting the outer surface of the shield to a nerve root to shield the nerve root,h) microsurgically decompressing any tissue deemed to be causing nerve impingement,i) extracting the intervertebral disc material including the removal of the cartilaginous material from the vertebral endplates,j) inserting an interbody device into a disc space,k) deploying a mechanism of stabilization to stabilize the intervertebral segment.
  • 17. The method of claim 16, wherein inserting an inner shield comprises the outer surface of the inner shield substantially nesting within the inner surface of the outer shield and extending the inner shield distally past the distal end portion of the outer shield.
  • 18. The method of claim 16, wherein the distal end portion of the inner shield has an arcuate transverse cross-section.
  • 19. The method of claim 16, wherein inserting the outer shield integrated optical visualization instrument comprises disposing a video chip in a distal end portion of a channel of the outer shield, wherein the channel opens into the inner surface of the outer shield at least at the distal end portion of the outer shield.
  • 20. The method of claim 19, wherein the channel opens into the inner surface of the outer shield along the distal end portion of the outer shield proximal to a distal end of the outer shield.
  • 21. The method of claim 16, further comprising coupling a navigation instrument to the outer shield.
  • 22. The method of claim 16, further comprising coupling a light source to the outer shield.
CONTINUING DATA

This application is a continuation of U.S. patent application Ser. No. 15/254,877, filed Sep. 1, 2016, and now issued as U.S. Pat. No. 10,987,129. U.S. application Ser. No. 15/254,877 claims priority to U.S. Provisional Application No. 62/214,297, entitled “Multi-Shield Spinal Access System,” by Thommen et al., filed Sep. 4, 2015, the specification of which is hereby incorporated by reference in its entirety.

US Referenced Citations (471)
Number Name Date Kind
4132227 Ibe Jan 1979 A
4318401 Zimmerman Mar 1982 A
4573448 Kambin Mar 1986 A
4646738 Trott Mar 1987 A
4678459 Onik et al. Jul 1987 A
4807593 Ito Feb 1989 A
4863430 Klyce et al. Sep 1989 A
4874375 Ellison Oct 1989 A
4888146 Dandeneau Dec 1989 A
5080662 Paul Jan 1992 A
5195541 Obenchain Mar 1993 A
5207213 Auhll et al. May 1993 A
5285795 Ryan et al. Feb 1994 A
5395317 Kambin Mar 1995 A
5439464 Shapiro Aug 1995 A
5529580 Kusunoki et al. Jun 1996 A
5540706 Aust et al. Jul 1996 A
5569290 McAfee Oct 1996 A
5591187 Dekel Jan 1997 A
5601569 Pisharodi Feb 1997 A
5615690 Giurtino et al. Apr 1997 A
5618293 Sample et al. Apr 1997 A
5662300 Michelson Sep 1997 A
5688222 Hluchy et al. Nov 1997 A
5697888 Kobayashi et al. Dec 1997 A
5730754 Obenchain Mar 1998 A
5733242 Rayburn et al. Mar 1998 A
5735792 Vanden Hoek et al. Apr 1998 A
5749602 Delaney et al. May 1998 A
5792044 Foley et al. Aug 1998 A
5820623 Ng Oct 1998 A
5885300 Tokuhashi et al. Mar 1999 A
5894369 Akiba et al. Apr 1999 A
5899425 Corey, Jr. et al. May 1999 A
5928137 Green Jul 1999 A
5954635 Foley et al. Sep 1999 A
5976075 Beane et al. Nov 1999 A
5989183 Reisdorf et al. Nov 1999 A
6017333 Bailey Jan 2000 A
6033105 Barker et al. Mar 2000 A
6053907 Zirps Apr 2000 A
6063021 Hossain et al. May 2000 A
6110182 Mowlai-Ashtiani Aug 2000 A
6126592 Proch et al. Oct 2000 A
6139563 Cosgrove et al. Oct 2000 A
6200322 Branch et al. Mar 2001 B1
6217509 Foley et al. Apr 2001 B1
6234961 Gray May 2001 B1
6283966 Houfburg Sep 2001 B1
6286179 Byrne Sep 2001 B1
6296644 Saurat et al. Oct 2001 B1
6322498 Gravenstein et al. Nov 2001 B1
6354992 Kato Mar 2002 B1
6357710 Fielden et al. Mar 2002 B1
6371968 Kogasaka et al. Apr 2002 B1
6383191 Zdeblick et al. May 2002 B1
6447446 Smith et al. Sep 2002 B1
6468289 Bonutti Oct 2002 B1
6520495 La Mendola Feb 2003 B1
6558407 Ivanko et al. May 2003 B1
6575899 Foley et al. Jun 2003 B1
6579281 Palmer et al. Jun 2003 B2
6596008 Kambin Jul 2003 B1
6626830 Califiore et al. Sep 2003 B1
6648915 Sazy Nov 2003 B2
6663563 Sharratt Dec 2003 B1
6676597 Guenst et al. Jan 2004 B2
6679833 Smith et al. Jan 2004 B2
6685724 Haluck Feb 2004 B1
6688564 Salvermoser et al. Feb 2004 B2
6758809 Briscoe et al. Jul 2004 B2
6808505 Kadan Oct 2004 B2
6887198 Phillips et al. May 2005 B2
6983930 La Mendola et al. Jan 2006 B1
7001342 Faciszewski Feb 2006 B2
7087058 Cragg Aug 2006 B2
7104986 Hovda et al. Sep 2006 B2
7137949 Scirica et al. Nov 2006 B2
7179261 Sicvol et al. Feb 2007 B2
7182731 Nguyen et al. Feb 2007 B2
7226413 McKinley Jun 2007 B2
7341556 Shalman Mar 2008 B2
7434325 Foley et al. Oct 2008 B2
7491168 Raymond et al. Feb 2009 B2
7591790 Pflueger Sep 2009 B2
7594888 Raymond et al. Sep 2009 B2
7618431 Roehm, III et al. Nov 2009 B2
7636596 Solar Dec 2009 B2
7637905 Saadat et al. Dec 2009 B2
7641659 Emstad et al. Jan 2010 B2
7766313 Panosian Aug 2010 B2
7771384 Ravo Aug 2010 B2
7794456 Sharps et al. Sep 2010 B2
7794469 Kao et al. Sep 2010 B2
7811303 Fallin et al. Oct 2010 B2
7931579 Bertolero et al. Apr 2011 B2
7946981 Cubb May 2011 B1
7951141 Sharps et al. May 2011 B2
7959564 Ritland Jun 2011 B2
7988623 Pagliuca et al. Aug 2011 B2
8007492 DiPoto et al. Aug 2011 B2
8038606 Otawara Oct 2011 B2
8043381 Hestad et al. Oct 2011 B2
8062218 Sebastian et al. Nov 2011 B2
8079952 Fujimoto Dec 2011 B2
8092464 McKay Jan 2012 B2
8096944 Harrel Jan 2012 B2
8202216 Melkent et al. Jun 2012 B2
8206357 Bettuchi Jun 2012 B2
8230863 Ravikumar et al. Jul 2012 B2
8236006 Hamada Aug 2012 B2
8267896 Hartoumbekis et al. Sep 2012 B2
8303492 Ito Nov 2012 B2
8333690 Ikeda Dec 2012 B2
8360970 Mangiardi Jan 2013 B2
8372131 Hestad et al. Feb 2013 B2
8382048 Nesper et al. Feb 2013 B2
8397335 Gordin et al. Mar 2013 B2
8419625 Ito Apr 2013 B2
8435174 Cropper et al. May 2013 B2
8460180 Zarate et al. Jun 2013 B1
8460186 Ortiz et al. Jun 2013 B2
8460310 Stern Jun 2013 B2
8518087 Lopez et al. Aug 2013 B2
8535220 Mondschein Sep 2013 B2
8556809 Vijayanagar Oct 2013 B2
8585726 Yoon et al. Nov 2013 B2
8602979 Kitano Dec 2013 B2
8622894 Banik et al. Jan 2014 B2
8636655 Childs Jan 2014 B1
8648932 Talbert et al. Feb 2014 B2
8688186 Mao et al. Apr 2014 B1
8690764 Clark et al. Apr 2014 B2
8721536 Marino et al. May 2014 B2
8740779 Yoshida Jun 2014 B2
8784421 Carrison et al. Jul 2014 B2
8821378 Morgenstern Lopez et al. Sep 2014 B2
8834507 Mire et al. Sep 2014 B2
8845734 Weiman Sep 2014 B2
8852242 Morgenstern Lopez et al. Oct 2014 B2
8870753 Boulais et al. Oct 2014 B2
8870756 Maurice Oct 2014 B2
8876712 Yee et al. Nov 2014 B2
8888689 Poll et al. Nov 2014 B2
8888813 To Nov 2014 B2
8894573 Loftus et al. Nov 2014 B2
8894653 Solsberg et al. Nov 2014 B2
8926502 Levy et al. Jan 2015 B2
8932207 Greenburg et al. Jan 2015 B2
8932360 Womble et al. Jan 2015 B2
8936545 To Jan 2015 B2
8936605 Greenberg Jan 2015 B2
8952312 Blanquart et al. Feb 2015 B2
8961404 Ito Feb 2015 B2
8972714 Talbert et al. Mar 2015 B2
8974381 Lovell et al. Mar 2015 B1
8986199 Weisenburgh, II et al. Mar 2015 B2
8992580 Bar et al. Mar 2015 B2
9028522 Prado May 2015 B1
9050036 Poll et al. Jun 2015 B2
9050037 Poll et al. Jun 2015 B2
9050146 Woolley et al. Jun 2015 B2
9055936 Mire et al. Jun 2015 B2
9072431 Adams et al. Jul 2015 B2
9078562 Poll et al. Jul 2015 B2
9123602 Blanquart Sep 2015 B2
9131948 Fang et al. Sep 2015 B2
9144374 Maurice, Jr. Sep 2015 B2
9153609 Blanquart Oct 2015 B2
9198674 Benson et al. Dec 2015 B2
9211059 Drach et al. Dec 2015 B2
9216016 Fiechter et al. Dec 2015 B2
9216125 Sklar Dec 2015 B2
9226647 Sugawara Jan 2016 B2
9232935 Brand et al. Jan 2016 B2
9247997 Stefanchik et al. Feb 2016 B2
9265491 Lins et al. Feb 2016 B2
9277928 Morgenstern Lopez Mar 2016 B2
9307972 Lovell et al. Apr 2016 B2
9320419 Kirma et al. Apr 2016 B2
9386971 Casey et al. Jul 2016 B1
9387313 Culbert et al. Jul 2016 B2
9414828 Abidin et al. Aug 2016 B2
9462234 Blanquart et al. Oct 2016 B2
9486296 Mire et al. Nov 2016 B2
9492194 Morgenstern Lopez et al. Nov 2016 B2
9509917 Blanquart et al. Nov 2016 B2
9510853 Aljuri et al. Dec 2016 B2
9516239 Blanquart et al. Dec 2016 B2
9522017 Poll et al. Dec 2016 B2
9526401 Saadat et al. Dec 2016 B2
9579012 Vazales et al. Feb 2017 B2
9603510 Ammirati Mar 2017 B2
9603610 Richter et al. Mar 2017 B2
9610007 Kienzle et al. Apr 2017 B2
9610095 To Apr 2017 B2
9622650 Blanquart Apr 2017 B2
9629521 Ratnakar Apr 2017 B2
9641815 Richardson et al. May 2017 B2
9655605 Serowski et al. May 2017 B2
9655639 Mark May 2017 B2
9668643 Kennedy, II et al. Jun 2017 B2
9675235 Lieponis Jun 2017 B2
9700378 Mowlai-Ashtiani Jul 2017 B2
9706905 Levy Jul 2017 B2
10111712 Chegini et al. Oct 2018 B2
10561427 Weitzman et al. Feb 2020 B2
10576231 Gunday et al. Mar 2020 B2
10682130 White et al. Jun 2020 B2
10758220 White et al. Sep 2020 B2
10869659 Thommen et al. Dec 2020 B2
10874425 Thommen et al. Dec 2020 B2
10987129 Thommen et al. Apr 2021 B2
11000312 Thommen et al. May 2021 B2
11331090 Thommen et al. May 2022 B2
11439380 Thommen et al. Sep 2022 B2
11559328 Richter et al. Jan 2023 B2
20020022762 Beane et al. Feb 2002 A1
20020035313 Scirica et al. Mar 2002 A1
20020091390 Michelson Jul 2002 A1
20020138020 Pflueger Sep 2002 A1
20020165560 Danitz et al. Nov 2002 A1
20030083555 Hunt et al. May 2003 A1
20030083688 Simonson May 2003 A1
20030171744 Leung et al. Sep 2003 A1
20030191474 Cragg et al. Oct 2003 A1
20040092940 Zwirnmann May 2004 A1
20040122446 Solar Jun 2004 A1
20040127992 Serhan et al. Jul 2004 A1
20040143165 Alleyne Jul 2004 A1
20040158260 Blau et al. Aug 2004 A1
20040158286 Roux et al. Aug 2004 A1
20040249246 Campos Dec 2004 A1
20050021040 Bertagnoli Jan 2005 A1
20050075540 Shluzas et al. Apr 2005 A1
20050075644 DiPoto et al. Apr 2005 A1
20050080435 Smith et al. Apr 2005 A1
20050085692 Kiehn et al. Apr 2005 A1
20050090848 Adams Apr 2005 A1
20050107671 McKinley May 2005 A1
20050137461 Marchek et al. Jun 2005 A1
20050187570 Nguyen et al. Aug 2005 A1
20050192589 Raymond et al. Sep 2005 A1
20050256525 Culbert et al. Nov 2005 A1
20060020165 Adams Jan 2006 A1
20060041270 Lenker et al. Feb 2006 A1
20060052671 McCarthy Mar 2006 A1
20060074445 Gerber et al. Apr 2006 A1
20060142643 Parker Jun 2006 A1
20060161189 Harp Jul 2006 A1
20060173521 Pond et al. Aug 2006 A1
20060200186 Marchek et al. Sep 2006 A1
20060206118 Kim et al. Sep 2006 A1
20060264895 Flanders Nov 2006 A1
20070049794 Glassenberg et al. Mar 2007 A1
20070055259 Norton et al. Mar 2007 A1
20070129634 Hickey et al. Jun 2007 A1
20070149975 Oliver et al. Jun 2007 A1
20070162223 Clark Jul 2007 A1
20070203396 McCutcheon et al. Aug 2007 A1
20070213716 Lenke et al. Sep 2007 A1
20070225556 Ortiz et al. Sep 2007 A1
20070249899 Seifert Oct 2007 A1
20070255100 Barlow et al. Nov 2007 A1
20070260113 Otawara Nov 2007 A1
20070260120 Otawara Nov 2007 A1
20070260184 Justis et al. Nov 2007 A1
20070270866 von Jako Nov 2007 A1
20080015621 Emanuel Jan 2008 A1
20080033251 Araghi Feb 2008 A1
20080064921 Larkin et al. Mar 2008 A1
20080064928 Otawara Mar 2008 A1
20080081951 Frasier et al. Apr 2008 A1
20080139879 Olson et al. Jun 2008 A1
20080147109 Kambin et al. Jun 2008 A1
20080183189 Teichman et al. Jul 2008 A1
20080188714 McCaffrey Aug 2008 A1
20080242930 Hanypsiak et al. Oct 2008 A1
20080260342 Kuroiwa Oct 2008 A1
20090018566 Escudero et al. Jan 2009 A1
20090024158 Viker Jan 2009 A1
20090062871 Chin et al. Mar 2009 A1
20090105543 Miller et al. Apr 2009 A1
20090125032 Gutierrez et al. May 2009 A1
20090149857 Culbert et al. Jun 2009 A1
20090156898 Ichimura Jun 2009 A1
20090187080 Seex Jul 2009 A1
20090240111 Kessler et al. Sep 2009 A1
20090253964 Miyamoto Oct 2009 A1
20090253965 Miyamoto Oct 2009 A1
20090259184 Okoniewski Oct 2009 A1
20090264895 Gasperut et al. Oct 2009 A1
20090287061 Feigenbaum et al. Nov 2009 A1
20090318765 Torii Dec 2009 A1
20100004651 Biyani Jan 2010 A1
20100022841 Takahashi et al. Jan 2010 A1
20100076476 To et al. Mar 2010 A1
20100081875 Fowler et al. Apr 2010 A1
20100114147 Biyani May 2010 A1
20100151161 Da Rolo Jun 2010 A1
20100161060 Schaller et al. Jun 2010 A1
20100256446 Raju Oct 2010 A1
20100268241 Flom et al. Oct 2010 A1
20100280325 Ibrahim et al. Nov 2010 A1
20100284580 OuYang et al. Nov 2010 A1
20100286477 OuYang et al. Nov 2010 A1
20100312053 Larsen Dec 2010 A1
20100317928 Subramaniam Dec 2010 A1
20100324506 Pellegrino et al. Dec 2010 A1
20110009905 Shluzas Jan 2011 A1
20110028791 Marino et al. Feb 2011 A1
20110040333 Simonson et al. Feb 2011 A1
20110054507 Batten et al. Mar 2011 A1
20110056500 Shin et al. Mar 2011 A1
20110073594 Bonn Mar 2011 A1
20110098628 Yeung et al. Apr 2011 A1
20110106261 Chin et al. May 2011 A1
20110112588 Linderman et al. May 2011 A1
20110125158 Diwan et al. May 2011 A1
20110130634 Solitario, Jr. et al. Jun 2011 A1
20110201888 Verner Aug 2011 A1
20110230965 Schell et al. Sep 2011 A1
20110251597 Bharadwaj et al. Oct 2011 A1
20110257478 Kleiner et al. Oct 2011 A1
20110295070 Yasunaga Dec 2011 A1
20110319941 Bar et al. Dec 2011 A1
20120016192 Jansen et al. Jan 2012 A1
20120029412 Yeung et al. Feb 2012 A1
20120095296 Trieu et al. Apr 2012 A1
20120101338 Cormac Apr 2012 A1
20120111682 Andre May 2012 A1
20120116170 Vayser et al. May 2012 A1
20120157788 Serowski et al. Jun 2012 A1
20120172664 Hayman et al. Jul 2012 A1
20120209273 Zaretzka et al. Aug 2012 A1
20120221007 Batten et al. Aug 2012 A1
20120232350 Seex Sep 2012 A1
20120232552 Morgenstern Lopez et al. Sep 2012 A1
20120259173 Waldron et al. Oct 2012 A1
20120265022 Menn Oct 2012 A1
20120296171 Lovell et al. Nov 2012 A1
20120298820 Manolidis Nov 2012 A1
20120316400 Vijayanagar Dec 2012 A1
20120323080 DeRidder et al. Dec 2012 A1
20130030535 Foley et al. Jan 2013 A1
20130103067 Fabro et al. Apr 2013 A1
20130103103 Mire et al. Apr 2013 A1
20130150670 Cormac Jun 2013 A1
20130150674 Haig et al. Jun 2013 A1
20130172674 Kennedy, II et al. Jul 2013 A1
20130172676 Levy et al. Jul 2013 A1
20130211202 Perez-Cruet et al. Aug 2013 A1
20130282022 Yousef Oct 2013 A1
20130289399 Choi et al. Oct 2013 A1
20130303846 Cybulski et al. Nov 2013 A1
20130304106 Breznock Nov 2013 A1
20140025121 Foley et al. Jan 2014 A1
20140066940 Fang et al. Mar 2014 A1
20140074170 Mertens et al. Mar 2014 A1
20140088367 DiMauro et al. Mar 2014 A1
20140128979 Womble et al. May 2014 A1
20140142584 Sweeney May 2014 A1
20140148647 Okazaki May 2014 A1
20140163319 Blanquart et al. Jun 2014 A1
20140180321 Dias et al. Jun 2014 A1
20140194697 Seex Jul 2014 A1
20140215736 Gomez et al. Aug 2014 A1
20140221749 Grant et al. Aug 2014 A1
20140222092 Anderson et al. Aug 2014 A1
20140257296 Morgenstern Lopez Sep 2014 A1
20140257332 Zastrozna Sep 2014 A1
20140257489 Warren et al. Sep 2014 A1
20140261545 Jenkins et al. Sep 2014 A1
20140275793 Song Sep 2014 A1
20140275799 Schuele Sep 2014 A1
20140276840 Richter et al. Sep 2014 A1
20140276916 Ahluwalia et al. Sep 2014 A1
20140277204 Sandhu Sep 2014 A1
20140285644 Richardson et al. Sep 2014 A1
20140318582 Mowlai-Ashtiani Oct 2014 A1
20140336764 Masson et al. Nov 2014 A1
20140357945 Duckworth Dec 2014 A1
20140371763 Poll et al. Dec 2014 A1
20140378985 Mafi Dec 2014 A1
20150018623 Friedrich et al. Jan 2015 A1
20150065795 Titus Mar 2015 A1
20150073218 Ito Mar 2015 A1
20150087913 Dang et al. Mar 2015 A1
20150112398 Morgenstern Lopez et al. Apr 2015 A1
20150133727 Bacich et al. May 2015 A1
20150164496 Karpowicz et al. Jun 2015 A1
20150216593 Biyani Aug 2015 A1
20150223671 Sung et al. Aug 2015 A1
20150223676 Bayer et al. Aug 2015 A1
20150230697 Phee et al. Aug 2015 A1
20150238073 Charles et al. Aug 2015 A1
20150250377 Iizuka Sep 2015 A1
20150257746 Seifert Sep 2015 A1
20150272694 Charles Oct 2015 A1
20150313585 Abidin et al. Nov 2015 A1
20150313633 Gross et al. Nov 2015 A1
20150327757 Rozenfeld et al. Nov 2015 A1
20150335389 Greenberg Nov 2015 A1
20150342619 Weitzman Dec 2015 A1
20150342621 Jackson, III Dec 2015 A1
20150366552 Sasaki et al. Dec 2015 A1
20150374213 Maurice, Jr. Dec 2015 A1
20150374354 Boyd et al. Dec 2015 A1
20160015467 Vayser et al. Jan 2016 A1
20160030061 Thommen et al. Feb 2016 A1
20160066965 Chegini et al. Mar 2016 A1
20160067003 Chegini et al. Mar 2016 A1
20160074029 O'Connell et al. Mar 2016 A1
20160095505 Johnson et al. Apr 2016 A1
20160106408 Ponmudi et al. Apr 2016 A1
20160166135 Fiset Jun 2016 A1
20160174814 Igov Jun 2016 A1
20160192921 Pimenta et al. Jul 2016 A1
20160213500 Beger et al. Jul 2016 A1
20160228280 Schuele et al. Aug 2016 A1
20160235284 Yoshida et al. Aug 2016 A1
20160256036 Gomez et al. Sep 2016 A1
20160287264 Chegini et al. Oct 2016 A1
20160296220 Mast et al. Oct 2016 A1
20160324541 Pellegrino et al. Nov 2016 A1
20160345952 Kucharzyk et al. Dec 2016 A1
20160353978 Miller et al. Dec 2016 A1
20160367294 Boyd et al. Dec 2016 A1
20170003493 Zhao Jan 2017 A1
20170007226 Fehling Jan 2017 A1
20170007294 Iwasaka et al. Jan 2017 A1
20170027606 Cappelleri et al. Feb 2017 A1
20170042408 Washbum et al. Feb 2017 A1
20170042411 Kang et al. Feb 2017 A1
20170065269 Thommen et al. Mar 2017 A1
20170065287 Silva et al. Mar 2017 A1
20170086939 Vayser et al. Mar 2017 A1
20170105770 Woolley et al. Apr 2017 A1
20170135699 Wolf May 2017 A1
20170156755 Poll et al. Jun 2017 A1
20170156814 Thommen et al. Jun 2017 A1
20170196549 Piskun et al. Jul 2017 A1
20170224391 Biester et al. Aug 2017 A1
20170245930 Brannan et al. Aug 2017 A1
20170280969 Levy et al. Oct 2017 A1
20170296038 Gordon et al. Oct 2017 A1
20170311789 Mulcahey et al. Nov 2017 A1
20180008138 Thommen et al. Jan 2018 A1
20180008253 Thommen et al. Jan 2018 A1
20180014858 Biester et al. Jan 2018 A1
20180098788 White et al. Apr 2018 A1
20180098789 White et al. Apr 2018 A1
20180110503 Flock et al. Apr 2018 A1
20180110506 Thommen et al. Apr 2018 A1
20180153592 Larson Jun 2018 A1
20180214016 Thommen et al. Aug 2018 A1
20180249992 Truckey Sep 2018 A1
20180333061 Pracyk et al. Nov 2018 A1
20190209154 Richter et al. Jul 2019 A1
20190216454 Thommen et al. Jul 2019 A1
20190216486 Weitzman Jul 2019 A1
20190374236 Weitzman et al. Dec 2019 A1
20200268368 White et al. Aug 2020 A1
20200360048 White et al. Nov 2020 A1
20200367737 Matsumoto et al. Nov 2020 A1
20210052298 Thommen et al. Feb 2021 A1
20210186316 Thommen et al. Jun 2021 A1
20210204973 Thommen et al. Jul 2021 A1
20220192700 Thommen et al. Jun 2022 A1
20220249125 Thommen et al. Aug 2022 A1
20220265134 Thommen et al. Aug 2022 A1
Foreign Referenced Citations (84)
Number Date Country
2659368 Dec 2004 CN
1735380 Feb 2006 CN
1742685 Mar 2006 CN
101426437 May 2009 CN
201290744 Aug 2009 CN
101815476 Aug 2010 CN
102448380 May 2012 CN
202211669 May 2012 CN
102497828 Jun 2012 CN
102821673 Dec 2012 CN
102843984 Dec 2012 CN
202740102 Feb 2013 CN
102727309 Nov 2014 CN
105286776 Feb 2016 CN
103976779 Sep 2016 CN
106794032 May 2017 CN
107126254 Sep 2017 CN
9415039 Dec 1994 DE
29916026 Dec 1999 DE
20309079 Aug 2003 DE
0 537 116 Apr 1993 EP
0 807 415 Nov 1997 EP
0 891 156 Jan 1999 EP
0890341 Jan 1999 EP
2 491 848 Aug 2012 EP
2481727 Jan 2012 GB
05-207962 Aug 1993 JP
H0681501 Mar 1994 JP
08-278456 Oct 1996 JP
2000126190 May 2000 JP
2000-511788 Sep 2000 JP
2001520906 Nov 2001 JP
2007-007438 Jan 2007 JP
2008-508943 Mar 2008 JP
2009543612 Dec 2009 JP
2011-512943 Apr 2011 JP
2012045325 Mar 2012 JP
2012527327 Nov 2012 JP
2012527930 Nov 2012 JP
2013059688 Apr 2013 JP
2013-538624 Oct 2013 JP
2014054561 Mar 2014 JP
2014-517710 Jul 2014 JP
2015-500680 Jan 2015 JP
2015-521913 Aug 2015 JP
9629014 Sep 1996 WO
9734536 Sep 1997 WO
2001056490 Aug 2001 WO
2001089371 Nov 2001 WO
2002002016 Jan 2002 WO
2004039235 May 2004 WO
2004103430 Dec 2004 WO
2006017507 Feb 2006 WO
2007059068 May 2007 WO
2008121162 Oct 2008 WO
2009033207 Mar 2009 WO
2009108318 Sep 2009 WO
2010111629 Sep 2010 WO
2010138083 Dec 2010 WO
2012004766 Jan 2012 WO
2012040239 Mar 2012 WO
2012122294 Sep 2012 WO
2013033426 Mar 2013 WO
2013059640 Apr 2013 WO
2013074396 May 2013 WO
2014041540 Mar 2014 WO
2014050236 Apr 2014 WO
2014100761 Jun 2014 WO
2014185334 Nov 2014 WO
2014188796 Nov 2014 WO
2015026793 Feb 2015 WO
2015175635 Nov 2015 WO
2016111373 Jul 2016 WO
2016131077 Aug 2016 WO
2016168673 Oct 2016 WO
2016201292 Dec 2016 WO
2017006684 Jan 2017 WO
2017015480 Jan 2017 WO
2017040873 Mar 2017 WO
2017083648 May 2017 WO
2018131039 Jul 2018 WO
2018147225 Aug 2018 WO
2018165365 Sep 2018 WO
2021209987 Oct 2021 WO
Non-Patent Literature Citations (64)
Entry
Chinese Office Action for Application No. 201880013056.7, dated Mar. 25, 2021 (15 pages).
Hott, J. S., et al., “A new table-fixed retractor for anterior odontoid screw fixation: technical note,” J Neurosurg (Spine B), 2003, v. 98, pp. 118-120.
Extended European Search Report for Application No. 16843037.9; dated Mar. 14, 2019.
Extended European Search Report for Application No. 18758290.3, dated Nov. 27, 2020.
Extended European Search Report for Application No. 20212396.4, dated Sep. 23, 2021 (9 pages).
Extended European Search Report for Application No. 18854503, dated Apr. 15, 2021 (10 pages).
Extended European Search Report for Application No. 19758283.6, dated Sep. 28, 2021 (8 pages).
International Search Report and Written Opinion for Application No. PCT/US2015/043554, dated Nov. 19, 2015 (8 pages).
International Search Report and Written Opinion for Application No. PCT/US2015/048485, dated Feb. 9, 2016. (16 pages).
International Search Report and Written Opinion for Application No. PCT/US2015/060978, dated Feb. 15, 2016 (8 pages).
Invitation to Pay Additional Fees for Application No. PCT/US2016/050022, dated Nov. 3, 2016 (2 pages).
International Search Report and Written Opinion for Application No. PCT/US2016/050022, dated Feb. 1, 2017 (19 pages).
International Preliminary Report on Patentability issued for Application No. PCT/US2016/050022, dated Mar. 15, 2018.
International Search Report and Written Opinion for Application No. PCT/US2018/018905, dated May 7, 2018 (10 pages).
International Search Report for Application No. PCT/IB2018/057367, dated Jan. 29, 2019, (4 pages).
International Search Report and Written Opinion for Application No. PCT/US2018/021449, dated Aug. 27, 2018 (13 pages).
International Search Report and Written Opinion for Application No. PCT/US2018/021454, dated Jul. 3, 2018 (16 pages).
International Search Report and Written Opinion for Application No. PCT/US2018/021466 dated Jul. 3, 2018 (8 pages).
International Search Report and Written Opinion for Application No. PCT/US2018/047136, dated Jan. 23, 2019 (9 pages).
International Search Report and Written Opinion for Application No. PCT/EP2020/056706, dated Jun. 9, 2020 (17 pages).
International Search Report and Written Opinion issued for Application No. PCT/US2018/021472, dated Jul. 19, 2018.
International Search Report and Written Opinion for Application No. PCT/US19/18700, dated May 3, 2019 (7 Pages).
Iprenburg, M, “Percutaneous Transforaminal Endoscopic Discectomy: The Thessys Method,” in Lewandrowski, K., et al, Minimally Invasive Spinal Fusion Techniques, Summit Communications, 2008 pp. 65-81.
Japanese Office Action issued in Appln. No. JP 2018-511695, dated May 26, 2020 (21 pages).
Jung, K., et al., “A hands-free region-of-interest selection interface for solo surgery with a wide-angle endoscope: preclinical proof of concept,” Surg Endosc, 2017, v. 31, pp. 974-980.
Regan, J. M. et al., “Burr Hole Washout versus Craniotomy for Chronic Subdural Hematoma: Patient Outcome and Cost Analysis,” Plos One, Jan. 22, 2015, DOI:10.1371/journal.pone.0115085.
Shalayev, S. G. et al, “Retrospective analysis and modifications of retractor systems for anterior odontoid screw fixation,” Neurosurg Focus 16 (1):Article 14, 2004, pp. 1-4.
Japanese Office Action for Application No. 2019-545263, dated Jan. 4, 2022 (11 pages).
Australian Examination Report for Application No. 2018225113, dated Jul. 15, 2022 (4 pages).
Chinese Office Action for Application No. 201880016688.9, dated Mar. 8, 2022, with Translation (21 pages).
Chinese Decision of Reexamination issued for 201680051245.4, dated Aug. 23, 2022, (23 pages).
Chinese Office Action and Search Report issued for Application No. 201880058099, dated Nov. 2, 2022 (14 pages).
“Clinical Workbook of Neurosurgery in Xijing [M], edited by Fei Zhou, Xi'an: Fourth Military Medical University Press, Aug. 2012, pp. 431-432: an endoscope with a diameter of 3.7 mm is used for intramedullary examination).”
Extended European Search Report for Application No. 18764249.1, dated Mar. 11, 2022 (8 pages).
Extended European Search Report for Application No. 18764504.9, dated Mar. 18, 2022 (7 pages).
Extended European Search Report for Application No. 18764370.5, dated Mar. 25, 2022 (8 pages).
Japanese Office Action for Application No. 2019-548591, dated Oct. 5, 2021, (14 pages).
Japanese Office Action for Application No. 2020-513791, dated May 17, 2022 (8 pages).
Japanese Office Action for Application No. 2020-177880, dated May 31, 2022 (3 pages).
Japanese Office Action for Application No. 2019545263, dated Aug. 9, 2022 (8 pages).
U.S. Appl. No. 15/254,877, filed Sep. 1, 2016, Multi-Shield Spinal Access System.
U.S. Appl. No. 15/437,792, filed Feb. 21, 2017, Multi-Shield Spinal Access System.
U.S. Appl. No. 15/692,845, filed Aug. 31 2017, Surgical Visualization Systems and Related Methods.
U.S. Appl. No. 15/697,494, filed Sep. 7, 2017, Multi-Shield Spinal Access System.
U.S. Appl. No. 15/786,846, filed Oct. 18, 2017, Devices and Methods for Surgical Retraction.
U.S. Appl. No. 15/786,858, filed Oct. 18, 2017, Devices and Methods for Providing Surgical Access.
U.S. Appl. No. 15/786,891, filed Oct. 18, 2017, Surgical Access Port Stabilization.
U.S. Appl. No. 15/786,923, filed Oct. 18 2017, Surgical Instrument Connectors and Related Methods.
U.S. Appl. No. 15/901,435, filed Feb. 21 2018, Surgical Visualization Systems and Related Methods.
U.S. Appl. No. 15/931,839, filed May 14, 2020, Surgical Access Port Stabilization.
U.S. Appl. No. 15/966,293, filed Apr. 30 2018, Neural Monitoring Devices and Methods.
U.S. Appl. No. 16/352,654, filed Mar. 13, 2019, Multi-Shield Spinal Access System.
U.S. Appl. No. 16/362,497, filed Mar. 22, 2019, Surgical Instrument Connectors and Related Methods.
U.S. Appl. No. 16/985,200, filed Aug. 4, 2020, Devices and Methods for Providing Surgical Access.
U.S. Appl. No. 17/089,695, filed Nov. 4, 2020, Multi-Shield Spinal Access System.
U.S. Appl. No. 17/159,129, filed Jan. 26, 2021, Multi-Shield Spinal Access System.
U.S. Appl. No. 17/192,889, filed Mar. 5 2021, Surgical Visualization Systems and Related Methods.
Japanese Decision to Grant a Patent for Application No. JP 2020-177880, dated Dec. 6, 2022 (2 pages).
Japanese Decision to Grant Patent for Application No. JP 2020-544278, dated Mar. 14, 2023.
Chinese Office Action for Application No. 201880013056.7, dated Oct. 26, 2021 (6 Pages).
U.S. Appl. No. 17/692,942, filed Mar. 11, 2022, Multi-Shield Spinal Access System.
U.S. Appl. No. 17/728,967, filed Apr. 25, 2022, Surgical Visualization Systems and Related Methods.
U.S. Appl. No. 17/740,305, filed May 9, 2022, Surgical Visualization Systems and Related Methods.
U.S. Appl. No. 18/091,255, filed Dec. 29, 2022, Multi-Shield Spinal Access System.
Related Publications (1)
Number Date Country
20210282806 A1 Sep 2021 US
Provisional Applications (1)
Number Date Country
62214297 Sep 2015 US
Continuations (1)
Number Date Country
Parent 15254877 Sep 2016 US
Child 17214759 US