The present invention generally relates to a multibeam exposure scanning method and apparatus, and a method of manufacturing a printing plate. More particularly, the present invention relates to a multibeam exposure technique suitable for manufacturing a printing plate such as a flexographic plate, and a printing plate manufacturing technique that utilizes the multibeam exposure technique.
There has been a disclosed technique by which concave portions are engraved on the surface of a plate material with the use of a multibeam head that is capable of simultaneously emitting laser beams (Patent Literature 1). Where a plate is engraved through the multibeam exposure, it is extremely difficult to stably produce minute forms such as tiny dots and thin lines, due to the influence of heat from adjacent beams.
To counter such a problem, Patent Literature 1 suggests a structure that performs so-called interlace exposure to reduce the mutual thermal influence between adjacent beam spots in a beam spot row formed on the surface of a plate material. That is, Patent Literature 1 discloses a method by which laser spots are formed on a surface of a plate material at intervals at least twice as long as the engraving pitch equivalent to the engraving density, the interval between each two scanning lines formed in one exposure scanning operation is made longer, and scanning lines between the respective scanning lines are exposed in the second and later scanning operations.
In flexographic printing, dot diameters on a printing face become remarkably larger due to deformation of small convex points caused by printing pressure, and highlighted images resulting from the increases in dot diameter have become a problem. One of the measures against the problem is to form angular edges for the small convex points. However, it is extremely difficult to stably form angular edges for the small convex points by performing multibeam exposure.
Therefore, a large amount of light power cannot be supplied to the vicinities of edges. This problem also occurs when the interlace exposure disclosed in Patent Document 1 is used.
The present invention has been made in view of the above circumstances, and an object thereof is to provide a multibeam exposure scanning method and apparatus that stably form angular small convex points through multibeam exposure, and provide a printing plate manufacturing method that utilizes the multibeam exposure scanning method and apparatus.
To achieve the above object, a multibeam exposure scanning method for engraving the surface of a recording medium by simultaneously emitting beams to expose and scan the same scanning line two or more times is provided. The multibeam exposure scanning method includes: exposing a first region with a first amount of light and exposing a second region with a second amount of light in a first exposure and scanning operation, the first region being adjacent to a target planar shape to be left on the exposure surface of the recording medium, the second region surrounding the first region; and, in at least one of a second exposure and scanning operation and succeeding exposure and scanning operations, exposing and scanning the second region with a larger amount of light than the amount of light used in the first exposure and scanning operation.
According to the invention claimed herein, the first region adjacent to the target planar shape is exposed with the first amount of light, and the second region surrounding the first region is exposed with the second amount of light. In at least one of the second exposure and scanning operation and the succeeding exposure and scanning operations, the second region is exposed and scanned with a larger amount of light than the amount of light used in the first exposure and scanning operation. Accordingly, angular small convex points can be stably formed.
The multibeam exposure scanning method according to the present invention is characterized in that the first amount of light is smaller than the second amount of light.
With this arrangement, a small convex point can be appropriately shaped.
The multibeam exposure scanning method according to the present invention is characterized in that the first region and the second region are exposed and scanned with the first amount of light in the first exposure and scanning operation.
With this arrangement, a small convex point can be appropriately shaped.
The multibeam exposure scanning method according to the present invention is characterized in that the first region is a one-pixel or two-pixel region adjacent to the target planar shape.
With this arrangement, a small convex point can be appropriately shaped.
To achieve the above object, a multibeam exposure scanning apparatus according to the present invention engraves the surface of a recording medium by simultaneously emitting beams to expose and scan the same scanning line two or more times. The multibeam exposure scanning apparatus includes: an exposure head having emitting outlets from which the beams are emitted; a main scanning unit that causes the exposure head to main-scan the recording medium relatively in a main scanning direction; a light amount control unit that changes the respective light amounts of the beams; and an exposure control unit that exposes a first region with a first amount of light and exposes a second region with a second amount of light in a first main exposure and scanning operation, the first region being adjacent to a target planar shape to be left on the exposure surface of the recording medium, the second region surrounding the first region. In at least one of a second exposure and scanning operation and succeeding exposure and scanning operations, the second region is exposed and scanned with a larger amount of light than the amount of light used in the first exposure and scanning operation.
According to the present invention, the first region adjacent to the target planar shape is exposed with the first amount of light, and the second region is exposed with the second amount of light. In at least one of the second exposure and scanning operation and the succeeding exposure and scanning operations, the second region is exposed and scanned with a larger amount of light than the amount of light used in the first exposure and scanning operation. Accordingly, angular small convex points can be stably formed.
The multibeam exposure scanning apparatus according to the present invention is characterized in that the light amount control unit controls the first amount of light to be smaller than the second amount of light.
With this arrangement, a small convex point can be appropriately shaped.
The multibeam exposure scanning apparatus according to the present invention is characterized in that the light amount control unit exposes and scans the first region and the second region with the first amount of light in the first exposure and scanning operation.
With this arrangement, a small convex point can be appropriately shaped.
The multibeam exposure scanning apparatus according to the present invention is characterized by further including a sub scanning unit that causes the exposure head to sub-scan the recording medium relatively in a sub scanning direction perpendicular to the main scanning direction. The sub scanning unit causes the exposure head to perform sub scanning by a predetermined amount intermittently with respect to the main scanning by the main scanning unit.
With this structure, engraving can be performed on the entire surface of the recording medium.
The multibeam exposure scanning apparatus according to the present invention is characterized by further including a sub scanning unit that causes the exposure head to sub-scan the recording medium relatively in a sub scanning direction perpendicular to the main scanning direction. Where N represents the number of times the same scanning line is exposed, and T represents the number of emitting outlets, the sub scanning unit causes the exposure head to perform sub scanning at a constant speed so that the exposure head and the recording medium move relatively by the distance equivalent to T/N scanning lines in a relative manner in one main scanning operation by the main scanning unit.
With this structure, engraving can be performed on the entire surface of the recording medium.
The multibeam exposure scanning apparatus according to the present invention is characterized in that the plurality of emitting outlets are arranged along a straight line angled at a predetermined angle with respect to a first direction, the exposure head performs exposure through a first emitting outlet with a predetermined amount of light when not performing exposure through a second emitting outlet located on the upstream side of the main scanning, the second emitting outlet being adjacent to the first emitting outlet, and the exposure head performs exposure through the first emitting outlet with a smaller amount of light than the predetermined amount of light when performing exposure through the second emitting outlet.
With this arrangement, appropriate engraving can be performed, even if there is influence of the heat generated from previously exposed main scanning lines.
To achieve the above object, a method of manufacturing a printing plate according to the present invention includes forming a printing plate by engraving the surface of a plate material by the above multibeam exposure scanning method. The plate material is equivalent to the recording medium.
According to the present invention, a printing plate having angular small convex points stably formed thereon can be obtained.
To achieve the above object, a multibeam exposure scanning method for engraving the surface of a recording medium by simultaneously emitting a plurality of optical beams to expose the same scanning line two or more times is provided. The multibeam exposure scanning method includes: performing four or more scanning operations on a first region, the first region being a region surrounding a target planar shape to be left on the exposure surface of the recording medium, the target planar shape being a rectangular planar shape having four sides; and exposing a region adjacent to at least one of the four sides in each one of the four scanning operations, with the one side being sequentially changed so as to engrave the entire first region.
According to the present invention, four or more scanning operations are performed on the first region that is the region surrounding a rectangular planar shape that is the target planar shape to be left on the exposure surface of the recording medium and has four sides. In each one of the four scanning operations, exposure is performed only on a region adjacent to one of the four sides in the first region, and the one side is sequentially changed. In this manner, engraving is performed on the entire first region. Accordingly, the regions adjacent to the respective sides of the target planar shape can be exposed one by one, and an angular small convex point can be shaped.
The multibeam exposure scanning method according to the present invention is characterized in that, through the four scanning operations, a second region is exposed four times, the second region being a region surrounding the first region.
With this arrangement, a small convex point having an angular shape can be formed.
The multibeam exposure scanning method according to the present invention is characterized in the first region is a one-pixel or two-pixel region surrounding the target planar shape.
With this arrangement, a small convex point can be appropriately shaped.
To achieve the above object, a multibeam exposure scanning apparatus engraves the surface of a recording medium by simultaneously emitting a plurality of optical beams to expose the same scanning line two or more times. The multibeam exposure scanning apparatus includes: an exposure head having a plurality of emitting outlets from which the optical beams are emitted; a main scanning unit that causes the exposure head to main-scan the recording medium relatively in a main scanning direction; and an exposure scanning control unit that performs four or more scanning operations on a first region, the first region being a region surrounding a target planar shape to be left on the exposure surface of the recording medium, the target planar shape being a rectangular planar shape having four sides, the exposure scanning control unit exposing a region adjacent to at least one of the four sides in each one of the four scanning operations, with the one side being sequentially changed so as to engrave the entire first region.
According to the present invention, four or more scanning operations are performed on the first region that is the region surrounding a rectangular planar shape that is the target planar shape to be left on the exposure surface of the recording medium and has four sides. In each one of the four or more scanning operations, exposure is performed on a region adjacent to one of the four sides in the first region, and the one side is sequentially changed. In this manner, engraving is performed on the entire first region. Accordingly, the regions adjacent to the respective sides of the target planar shape can be exposed one by one, and an angular small convex point can be shaped.
The multibeam exposure scanning apparatus according to the present invention is characterized in that, through the four or more main scanning operations, the exposure head exposes a second region at least four times, the second region being a region surrounding the first region.
With this arrangement, a small convex point having an angular shape can be formed.
The multibeam exposure scanning apparatus according to the present invention is characterized in that the first region is a one-pixel or two-pixel region surrounding the target planar shape.
With this arrangement, a small convex point can be appropriately shaped.
The multibeam exposure scanning apparatus according to the present invention is characterized by further including a sub scanning unit that causes the exposure head to sub-scan the recording medium relatively in a sub scanning direction perpendicular to the main scanning direction. The sub scanning unit causes the exposure head to perform sub scanning by a predetermined amount after the main scanning unit causes the exposure head to perform main scanning at least four times.
With this arrangement, main scanning can be performed on the first region four times, and the entire surface of the recording medium can be engraved.
The multibeam exposure scanning apparatus according to the present invention is characterized by further including a sub scanning unit that causes the exposure head to sub-scan the recording medium relatively in a sub scanning direction perpendicular to the main scanning direction. Where N (N being an integer equal to or greater than 4) represents the number of times the same scanning line is exposed, and T represents the number of emitting outlets, the sub scanning unit causes the exposure head to perform sub scanning at a constant speed so that the exposure head and the recording medium move relatively by the distance equivalent to T/N scanning lines in a relative manner in one main scanning operation by the main scanning unit.
With this arrangement, main scanning can be performed on the first region four times, and the entire surface of the recording medium can be engraved.
The multibeam exposure scanning apparatus according to the present invention is characterized in that the plurality of emitting outlets are arranged along a straight line angled at a predetermined angle with respect to the first direction, the exposure head performs exposure through a first emitting outlet with a predetermined amount of light when not performing exposure through a second emitting outlet located on the upstream side of the main scanning, the second emitting outlet being adjacent to the first emitting outlet, and the exposure head performs exposure through the first emitting outlet with a smaller amount of light than the predetermined amount of light when performing exposure through the second emitting outlet.
With this arrangement, appropriate engraving can be performed, even if there is influence of the heat generated from previously exposed main scanning lines.
To achieve the above object, a method of manufacturing a printing plate includes forming a printing plate by engraving the surface of a plate material by the above multibeam exposure scanning method. The plate material is equivalent to the recording medium.
According to the present invention, a printing plate having angular small convex points stably formed thereon can be obtained.
According to the present invention, angular small convex points can be stably formed through multibeam exposure.
The following is a detailed description of embodiments of the present invention, with reference to the accompanying drawings.
The laser recording apparatus 10 used for the plate making apparatus 11 in this embodiment includes a light source unit 20 that generates laser beams, the exposure head 30 that emits the laser beams generated from the light source unit 20 onto the plate material F, and an exposure head moving unit 40 that moves the exposure head 30 in the sub scanning direction.
The light source unit 20 includes semiconductor lasers 21 (thirty-two in total). Light emitted from each of the semiconductor lasers 21 is transmitted to an optical fiber array module 300 of the exposure head 30 through optical fibers 22 and 70.
In this embodiment, broad area semiconductor lasers (wavelength: 915 nm) are used as the semiconductor lasers 21, and the semiconductor lasers 21 are arranged on light source substrates 24. Each of the semiconductor lasers 21 is coupled to one end of each corresponding one of optical fibers 22, and the other end of each of the optical fibers 22 is connected to the adapter of each corresponding one of FC optical connectors 25.
Each of adapter substrates 23 that support the FC optical connectors 25 is perpendicularly attached to one end of each corresponding one of the light source substrates 24. Each of LD driver substrates 27 on which LD driver circuits (not shown in
In this embodiment, multimode optical fibers having relatively large core diameters are used as the optical fibers 70, so that the laser beams become high-power beams. Specifically, optical fibers of 105 μm in core diameter are used in this embodiment. Also, semiconductor lasers of about 10 W in maximum power are used as the semiconductor lasers 21. Specifically, those available from JDS Uniphase Corporation, which are 105 μm in core diameter and 10 W in power (6398-L4), can be used, for example.
Meanwhile, the exposure head 30 has the optical fiber array module 300 that captures the respective laser beams emitted from the semiconductor lasers 21, and collectively emits the laser beams. The light emitting portion (not shown in
In the exposure head 30, a collimator lens 32, an opening member 33, and an imaging lens 34 are arranged in this order from the light emitting side of the optical fiber array module 300. The collimator lens 32 and the imaging lens 34 form an imaging optical system. The opening member 33 is placed so that its opening is located in the position of the far field when viewed from the optical fiber array module 300. With this arrangement, all the laser beams emitted from the optical fiber array module 300 can be subjected equally to optical limitation.
The exposure head moving unit 40 includes a ball screw 41 and two rails 42 that have their longitudinal directions extending in the sub scanning direction. When a sub scanning motor (not shown in
The optical fiber array module 300 includes a base (a V-grooved substrate) 302, and the same number of V-shaped grooves 282 as the number of the semiconductor lasers 21, or thirty-two V-shaped grooves 282, are formed in the base 302 at regular intervals. Optical fiber end portions 71 that are the other ends of the optical fibers 70 are fitted in the respective V-shaped grooves 282 of the base 302. With this arrangement, a set 301 of optical fiber end portions arranged in a straight line is formed. Accordingly, laser beams (thirty-two laser beams) are simultaneously emitted from the light emitting portion 280 of the optical fiber array module 300.
In the exposure head 30 having such an imaging system, the adjacent fiber intervals (L1 in
With the use of the exposure head 30 having the above described structure, a 32-line range (equivalent to one swath) can be simultaneously scanned and exposed.
The focus point changing mechanism 60 includes a motor 61 and a ball screw 62 that move the exposure head 30 toward and away from the surface of the drum 50. By controlling the motor 61, the focus point changing mechanism 60 can move the point of focus about 339 μm in about 0.1 second. The intermittent feeding mechanism 90 forms the exposure head moving unit 40 described with reference to
In
Although the sheet-like plate material F (the recording medium) is used in this embodiment, it is also possible to use a cylindrical recording medium (of a sleeve type).
The image data representing the image to be engraved (recorded) on the plate material F is supplied to the control circuit 80. Based on the image data, the control circuit 80 controls the main scanning motor 51 and the sub scanning motor 43, and also controls the powers of the respective semiconductor lasers 21 (or controls switching on and off of the semiconductor lasers 21, and the powers of laser beams) independently of one another.
In the plate making apparatus 11 having the above structure, engraving can be performed on the plate material F (a recording medium). As shown in
Next, an exposure and scanning process to be performed by the plate making apparatus 11 having the above structure to form small convex points having angular shapes is described. In the first embodiment, main scanning (exposure and scanning) is performed three times in each sub scanning position.
First, a first exposure and scanning operation is performed on the exposure region 212. As a result, the exposure region 212 is engraved, and the non-exposure region 211 forms a small convex point, as shown in
A second exposure and scanning operation is then performed on the exposure region 212. Here, the light powers (the reaching light amounts) of the optical laser beams vary between a first exposure region 212a equivalent to the one-dot periphery (one dot being one pixel at a resolution of 2400 dpi) or the two-dot periphery of the non-exposure region 211 in the exposure region 212, and the other exposure region 212b.
For example, where the power of light emitted onto the exposure region 212 in the first exposure and scanning operation is 1, the power of the light emitted onto the first exposure region 212a in the second exposure and scanning operation is 0.9, and the power of the light emitted onto the second exposure region 212b in the second exposure and scanning operation is 1.2.
As the exposure region 212 is engraved through the first exposure and scanning operation, a step is formed between the surface of the non-exposure region 211 and the surface of the exposure region 212, as shown in
However, the small convex point to be formed is already shaped to a certain extent in the non-exposure region 211 after the first exposure and scanning operation. Therefore, the power of the light to be emitted onto the first exposure region 212a does not need to be higher than the power of the light used in the first exposure and scanning operation.
Therefore, to reduce the influence of the above described heat accumulation on the non-exposure region 211 while making the power of the light to be emitted onto the second exposure region 212b higher than that in the first exposure and scanning operation, the power of the light to be emitted onto the first exposure region 212a is made lower than that used in the first exposure and scanning operation. As a result, deeper engraving is performed on the exposure region 212, and the non-exposure region 211 is formed as an angular small convex point, as shown in
The size of the first exposure region 212a may be determined in accordance with the shape of the small convex point to be formed, and may be equivalent to the one-dot periphery or the two-dot periphery of the small convex point (the one-pixel region or two-pixel region surrounding the small convex point).
Further, in a third exposure and scanning operation, exposure and scanning are performed on the first exposure region 212a and the second exposure region 212b.
In the third exposure and scanning operation, the powers of the optical laser beams vary between the first exposure region 212a and the second exposure region 212b. For example, where the power of light emitted onto the exposure region 212 in the first exposure and scanning operation is 1, the power of the light emitted onto the first exposure region 212a in the third exposure and scanning operation is 0.9, and the power of the light emitted onto the second exposure region 212b in the third exposure and scanning operation is 1.5.
Since the step formed between the surface of the exposure region 212 and the surface of the non-exposure region 211 has become even larger through the second exposure and scanning operation, even less heat is transmitted from the surface of the exposure region 212 to the non-exposure region 211. Accordingly, the power of the light to be emitted onto the exposure region 212 can be made higher than that in the second exposure and scanning operation.
Also, the influence of the heat accumulation on the non-exposure region 211 is reduced as in the second exposure and scanning operation. Accordingly, the power of the light to be emitted onto the first exposure region 212a is made lower than that in the first exposure and scanning operation.
Therefore, in the third exposure and scanning operation, the power of the light to be emitted onto the second exposure region 212b is made higher than that in the second exposure and scanning operation, and the power of the light to be emitted onto the first exposure region 212a is made lower than that in the first exposure and scanning operation. As a result, even deeper engraving is performed on the exposure region 212, and the non-exposure region 211 is formed as a more angular small convex point, as shown in
As described above, exposure and scanning are performed three times in each sub scanning position, and the powers of the optical laser beams are controlled, so that the small convex point having an angular shape as shown in
In this embodiment, the power of the light emitted onto the first exposure region 212a in the second and third exposure operations is made lower than that in the first exposure operation, and the power of the light emitted onto the second exposure region 212b in the second and third exposure operations is made higher than that in the first exposure operation. However, one of the powers of light emitted onto the first exposure region 212a and the second exposure region 212b may be the same as the light power used in the first exposure operation. Furthermore, exposure and scanning may be performed four or more times in each sub scanning position. In such a case, the power of the light to be emitted onto the exposure region 212b should preferably be gradually made higher in the fourth and later exposure operations.
Also, in this embodiment, exposure is performed with the same light power within each one exposure region among the exposure region 212 shown in
Next, an exposure and scanning process according to a second embodiment is described. In the second embodiment, main scanning (exposure and scanning) is performed four times in each sub scanning position, so as to eliminate the influence of heat accumulation and shape an angular form.
The non-exposure region 221 is formed by a first non-exposure region 221a to be formed as a small convex point, and a second non-exposure region 221b that is a peripheral region surrounding the first non-exposure region 221a. The second non-exposure region 221b is a one-dot or two-dot periphery of a four-sided first non-exposure region minus one side, and is varied among the four kinds of regions 221b1 through 221b4, depending on which side is omitted.
First, a first exposure and scanning operation is performed on the exposure region 222. In the first exposure and scanning operation, the second non-exposure region 221b is a peripheral region minus the side corresponding to the upper side (the downstream side in the main scanning direction in the drawing) of the first non-exposure region 221a, as shown in
That is, in the first exposure and scanning operation, engraving is performed only on the upper side of the boundary area of the first non-exposure region 221a, and engraving is not performed on the lower side and the left and right sides of the boundary area serving as the second non-exposure region 221b. Accordingly, engraving can be performed on the upper side of the boundary area of the first non-exposure region 221a, without influence from heat accumulation.
A second exposure and scanning operation is then performed on the exposure region 222. In the second exposure and scanning operation, the second non-exposure region 221b is a peripheral region of the first non-exposure region 221a minus the lower side (the upstream side in the main scanning direction), as shown in
Further, a third exposure and scanning operation is performed on the exposure region 222. The second non-exposure region 221b in the third exposure and scanning operation is a peripheral region of the first non-exposure region 221a minus the right side (the downstream side in the sub scanning direction), as shown in
Lastly, a fourth exposure and scanning operation is performed on the exposure region 222. The second non-exposure region 221b in the fourth exposure and scanning operation is a peripheral region of the first non-exposure region 221a minus the left side (the upstream side in the sub scanning direction), as shown in
As described above, main scanning is performed four times in the same sub scanning position, and the four sides of a rectangular small convex point are engraved one by one in the respective main scanning operations. In this manner, heat accumulation in the vicinities of the surface of the small convex point is prevented, and rounding of the edges of the respective sides of the small convex point can be restrained. Deeper engraving is performed on the exposure region through four exposure operations, and an angular small convex point can be formed.
In this embodiment, engraving is performed on the boundary area of the region to be formed as a small convex point, starting from the upper side (the downstream side in the main scanning direction) to the lower side (the upstream side in the main scanning direction) to the right side (the downstream side in the sub scanning direction) to the left side (the upstream side in the sub scanning direction). However, the engraving order is not limited to that.
In this embodiment, exposure is performed on the exposure region 222 shown in
In
The phenomenon of excessive engraving constantly occurs in the exposure region 202, and turns into a problem especially at the boundary between the non-exposure region 201 and the exposure region 202.
For example, the left-side outer periphery of the non-exposure region 201 shown in
It should be noted that such a problem does not occur at the left-side outer periphery of the non-exposure region 201 shown in
To avoid the above described phenomenon, the plate making apparatus 11 according to this embodiment controls the light powers of the channels of the respective beams, based on the information indicating which channel exposes which position.
As described with reference to
In
Likewise, as for the channel ch3, the heat accumulation due to the precedent beams of the channels ch1 and ch2 is taken into consideration, and the light power of the channel ch3 is made even lower than the light power of the channel ch2 (set at 0.5 in
However, the heat conditions are satisfied, and the conditions become almost the same after the channel ch3. Therefore, the light powers in the intermediate area of the lines are set at a constant value. Through this control operation, appropriate engraving can be performed, regardless of the positional relationship between the small convex point and the channel of each beam.
It should be noted that
Performing the light power control in the range of the number of write start pixels (about two to four pixels) is effective. Particularly, controlling the light powers of the beams for at least two adjacent pixels (the channels ch1 and ch2) is effective.
The last channel (the channel ch32 in this case) differs from the channels ch4 through ch31 of the intermediate area, in not providing heat to the next adjacent beam. Therefore, the light power of the last channel may be made higher, or may be the same as the light power of the previous channel ch31, depending on the conditions.
As described in the above example, in a case where laser engraving is performed by a multibeam exposure system in the vicinities of the surface of a recording medium (the plate material F), the amount of light to be emitted is controlled based on the state of beam emission around the pixel to emit a laser beam. In the light amount control operation, an amount a of light is the amount of light of a beam emitted where no other precedent beams have been emitted over a few pixels arranged around the subject beam in the sub scanning direction. A pixel A is exposed by a beam having the amount a of light (a first beam), and, after a certain period of time passes, a pixel B adjacent to the pixel A is exposed by an adjacent beam (a second beam) having an amount b of light. In this operation, the light amounts a and b are set to satisfy the relationship: a>b.
To form a small convex point, exposure might not be actually performed on an area larger than the small convex point, because, if such exposure is actually performed, the peripheral region of a non-exposure region is engraved by the residual heat generated from the engraving performed on the boundary area of the non-exposure region. For example, in a case where a 2×2 dot small convex point is to be formed under the condition that the spot diameter is φ35 μm and the scanning line pitch is 10.6 μm, the non-exposure region 211 may be the one-dot region around the small convex point, as shown in
Therefore, where this embodiment is applied under such conditions, the 4×4 dot area needs to be set as the non-exposure region 211 in
As described above, the relationship between a non-exposure region and a small convex point to be actually formed varies with various conditions related to beams and the plate material. Still, this embodiment should be applied to cases where a region not to be actually exposed is set as a non-exposure region.
Since there is the influence of heat from adjacent beams in the case of interlace exposure, the light powers of the channel ch2 and the succeeding channels are made lower than the light power of the channel ch1 (set at 1 by normalization). Although the light power of the channel ch2 is set at 0.7 in
In the case of interlace exposure, the beam density in the sub scanning direction is lower than that in the case of non-interlace exposure. Therefore, the influence of the heat from adjacent beams is smaller than that in the case of non-interlace exposure. Accordingly, the light powers of the channel ch2 and the succeeding channels in the case of interlace exposure (
In the above described embodiment, an example of beam arrangement in which thirty-two beams (one swath) are obliquely arranged in a straight line has been described through the exposure head having the one-line optical fiber array illustrated in
The channel numbers of the channels belonging to the upper most optical fiber array unit 501 (the first stage) are represented by 4M+1 (M=0, 1, 2, . . . ) from the left end, the channel numbers of the channels belonging to the second stage (designated by reference numeral 502) are represented by 4M+2 from the left end, the channel numbers of the channels belonging to the third stage (designated by reference numeral 503) are represented by 4M+3 from the left end, and the channel numbers of the channels belonging to the lowermost fourth stage (designated by reference numeral 504) are represented by 4M+4 from the left end. In that case, sixteen blocks each consisting of four channels with the same value for M are aligned, as shown in
The adjacent fiber intervals (L1 in
In a case where thin lines extending in the sub scanning direction are to be engraved by the above beam arrangement, the light powers of the channels of the respective beams are controlled as shown in
In
With the above described structure, engraving can be performed on the plate material F as shown in
The form of the optical fiber array unit light source is not limited to the example illustrated in
Instead of the scanning exposure technique involving intermittent feeding in the sub scanning direction as described with reference to
For example, one swath of the exposure head 30 is thirty-two channels. If it is necessary to perform scanning four times on one main scanning line, a control operation should be performed so that the exposure head 30 moves in the sub scanning direction by the distance equivalent to 32/4=8 channels while the drum 50 rotates 360 degrees. By performing sub scanning in such a manner, exposure and scanning can be performed on each main scanning line a desired number of times (four times in this case), and the entire surface of the plate material F can be exposed and scanned.
The intermittent feeding technique is effective where the rotation speed of the drum is relatively low. On the other hand, the spiral exposure technique is effective where the rotation speed of the drum is relatively high.
Next, an exposure and scanning process to be performed when a printing plate is manufactured by a multibeam exposure system is described.
After the engraving process is completed, water cleaning with a cleaning device 710 is performed (a cleaning process), as shown in
A plate making method by which laser engraving is performed directly on a plate as above is called a direct engraving method. A plate making apparatus that uses the multibeam exposure scanning apparatus according to this embodiment can be realized at a lower price than a laser engraving machine that uses a CO2 laser. Also, with the use of multi beams, the processing speed can be made higher, and the printing plate productivity can be improved.
The present invention can be applied not only to the manufacture of flexographic plates, but also to the manufacture of other convex printing plates or concave printing plates. Further, the present invention can be applied not only to the manufacture of printing plates, but also to other graphic recording apparatuses and engraving apparatuses for various kinds of usage.
10 . . . laser recording apparatus, 11 . . . plate making apparatus, 20 . . . light source unit, 21 . . . semiconductor lasers, 22, 70 . . . optical fibers, 30 . . . exposure head, 40 . . . exposure head moving unit, 50 . . . drum, 80 . . . control circuit, 201, 211, 221 . . . non-exposure regions, 202, 212, 222 . . . exposure regions, F . . . plate material, K . . . scanning lines
Number | Date | Country | Kind |
---|---|---|---|
2010-081889 | Mar 2010 | JP | national |
2010-081890 | Mar 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/058655 | 3/30/2011 | WO | 00 | 8/29/2012 |