Embodiments of the invention relate generally to the field of information processing and more specifically, to the field of instruction fusion in computing systems and microprocessors.
Instruction fusion is a process that combines two instructions into a single instruction which results in a one operation (or micro-operation, “uop”) sequence within a processor. Instructions stored in a processor instruction queue (IQ) may be “fused” after being read out of the IQ and before being sent to instruction decoders or after being decoded by the instruction decoders. Typically, instruction fusion occurring before the instruction is decoded is referred to as “macro-fusion”, whereas instruction fusion occurring after the instruction is decoded (into uops, for example) is referred to as “micro-fusion”. An example of macro-fusion is the combining of a compare (“CMP”) instruction or test instruction (“TEST”) (“CMP/TEST”) with a conditional jump (“JCC”) instruction. CMP/TEST and JCC instruction pairs may occur regularly in programs at the end of loops, for example, where a comparison is made and, based on the outcome of a comparison, a branch is taken or not taken. Since macro-fusion may effectively increase instruction throughput, it may be desirable to find as many opportunities to fuse instructions as possible.
For instruction fusion opportunities to be found in some prior art processor microarchitectures, both the CMP/TEST and JCC instructions may need to reside in the IQ concurrently so that they can be fused when the instructions are read from the IQ. However, if there is a fusible CMP/TEST instruction in the IQ and no further instructions have been written to the IQ (i.e. the CMP/TEST instruction is the last instruction in the IQ), the CMP/TEST instruction may be read from the IQ and sent to the decoder without being fused, even if the next instruction in program order is a JCC instruction. An example where a missed fusion opportunity may occur is if the CMP/TEST and the JCC happen to be across a storage boundary (e.g., 16 byte boundary), causing the CMP/TEST to be written in the IQ in one cycle and the JCC to be written the following cycle. In this case, if there are no stalling conditions, the JCC will be written in the IQ at the same time or after the CMP/TEST is being read from the IQ, so a fusion opportunity will be missed, resulting in multiple unnecessary reads of the IQ, reduced instruction throughput, and excessive power consumption.
Embodiments of the invention are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
Embodiments of the invention may be used to improve instruction throughput in a processor and/or reduce power consumption of the processor. In one embodiment, what would otherwise be missed opportunities for instruction fusion are found, and instruction fusion may occur as a result. In one embodiment, would-be missed instruction fusion opportunities are found by delaying reading of a last instruction from an instruction queue (IQ) or the issuance of the last instruction read from the IQ to a decoding phase for a threshold number of cycles, so that any subsequent fusible instructions may be fetched and stored in the IQ (or at least identified without necessarily being stored in the IQ) and subsequently fused with the last fusible instruction. In one embodiment, delaying the reading or issuance of a first fusible instruction by a threshold number of cycles may improve processor performance, since doing so may avoid two, otherwise fusible, instructions being decoded and processed separately rather than as a single instruction.
The choice of the threshold number of wait cycles may depend upon the microarchitecture in which a particular embodiment is used. For example, in one embodiment, the threshold number of cycles may be two, whereas in other embodiments, the threshold number of cycles may be more or less than two. In one embodiment, the threshold number of wait cycles provides the maximum amount of time to wait on a subsequent fusible instruction to be stored to the IQ while maintaining an overall latency/performance advantage in waiting for the subsequent fusible instruction over processing the fusible instructions as separate instructions. In other embodiments, where power is more critical, for example, the threshold number of wait cycles could be higher in order to ensure that extra power is not used to process the two fusible instructions separately, even though the number of wait cycles may cause a decrease (albeit temporarily) in instruction throughput.
In one embodiment, logic 119 may include logic to reduce the likelihood of missing instruction fusion opportunities. In one embodiment, logic 119 delays the reading of a first instruction (e.g., CMP) from the IQ, when there is no subsequent instruction stored in the IQ or other fetched instruction storage structure. In one embodiment, the logic 119 causes a delay for a threshold number of cycles (e.g., two cycles) before reading the IQ or issuing the first fusible instruction to a decoder or other processing logic, such that if there is a second fusible instruction that can be fused with the first instruction not yet stored in the IQ (due, for example, to the two fusible instructions being stored in a memory or cache in different storage boundaries), the opportunity to fuse the two fusible instructions may not be missed. In some embodiments, the threshold may be fixed, whereas in other embodiments, the threshold may be variable, modifiable by a user or according to user-independent algorithm. In one embodiment, the first fusible instruction is a CMP instruction and the second fusible instruction is a JCC instruction. In other embodiments, either or both of the first and second instruction may not be a CMP or JCC instruction, but any fusible instructions. Moreover, embodiments of the invention may be applied to fusing more than two instructions.
In addition to the FSB computer system illustrated in
In at least one embodiment, a second fusible instruction may not be stored into an IQ before some intermediate operation occurs (occurring between a first and second fusible instruction), such as an IQ clear operation, causing a missed opportunity to fuse the two otherwise fusible instructions. In one embodiment, in which a cache (or a buffer) stores related sequences of decoded instructions (after they were read from the IQ and decoded) or uops (e.g., “decoded stream buffer” or “DSB”, “trace cache”, or “TC”) that are to be scheduled (perhaps multiple times) for execution by the processor, a first fusible uop (e.g., CMP) may be stored in the cache without a fusible second uop (e.g., JCC) within the same addressable range (e.g., same cache way). This may occur, for example, where JCC is crossing a cache line (due to a cache miss) or crossing page boundary (due to a translation look-aside buffer miss), in which case the cache may store the CMP without the JCC. Subsequently, if the processor core pipeline is cleared (due to a “clear” signal being asserted, for example) after the CMP was stored but before the JCC is stored in the cache, the cache stores only the CMP in one of its ways without the JCC.
On subsequent lookups to the cache line storing the CMP, the cache may interpret the missing JCC as a missed access and the JCC may be marked as the append point for the next cache fill operation. This append point, however, may not be found since the CMP+JCC may be read as fused from the IQ. Therefore, the requested JCC may not match any uop to be filled, coming from the IQ, and thus the cache will not be able to fill the missing JCC, but may continually miss on the line in which the fused CMP+JCC is expected. Moreover, in one embodiment in which a pending fill request queue (PFRQ) is used to store uop cache fill requests, an entry that was reserved for a particular fused instruction fill may not deallocate (since the expected fused instruction fill never takes place) and may remain useless until the next clear operation. In one embodiment, a PFRQ entry lock may occur every time the missing fused instruction entry is accessed, and may therefore prevent any subsequent fills to the same location.
In order to prevent an incorrect or undesirable lock of the PFRQ entry, a state machine, in one embodiment, may be used to monitor the uops being read from the IQ to detect cases in which a region that has a corresponding PFRQ entry (e.g., a region marked for a fill) was completely missed, due for example, to the entry's last uop being reached without the fill start point being detected. In one embodiment, the state machine may cause the PFRQ entry to be deallocated when this condition is met. In other embodiments, an undesirable PFRQ entry lock may be avoided by not creating within the cache a fusible instruction that may be read from the IQ without both fusible instructions present. For example, if a CMP is followed by a non-JCC instruction, a fused instruction entry may be created in the cache, but only if the CMP is read out of the IQ alone (after the threshold wait time expires, for example), and a fused instruction entry is not filled to the cache. In other embodiments, the number of times the state machine has detected a fill region that was skipped may be counted, a cache flush or invalidation operation may be performed after some threshold count of times the fill region was skipped. The fill region may then be removed from the cache, and the fused instruction may then be re-filled.
One or more aspects of at least one embodiment may be implemented by representative data stored on a machine-readable medium which represents various logic within the processor, which when read by a machine causes the machine to fabricate logic to perform the techniques described herein. Such representations, known as “IP cores” may be stored on a tangible, machine readable medium (“tape”) and supplied to various customers or manufacturing facilities to load into the fabrication machines that actually make the logic or processor.
Thus, a method and apparatus for directing micro-architectural memory region accesses has been described. It is to be understood that the above description is intended to be illustrative and not restrictive. Many other embodiments will be apparent to those of skill in the art upon reading and understanding the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
This application is a continuation of U.S. patent application Ser. No. 15/143,418, filed on Apr. 30, 2016, which is a continuation of U.S. patent application Ser. No. 12/290,395, filed Oct. 30, 2008, which issued as U.S. Pat. No. 9,690,591 on Jun. 27, 2017, all of which is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5230050 | Iitsuka et al. | Jul 1993 | A |
5392228 | Burgess et al. | Feb 1995 | A |
5850552 | Odani et al. | Dec 1998 | A |
5860107 | Patel | Jan 1999 | A |
5860154 | Abramson et al. | Jan 1999 | A |
5903761 | Tyma | May 1999 | A |
5957997 | Olson et al. | Sep 1999 | A |
6006324 | Tran et al. | Dec 1999 | A |
6018799 | Wallace et al. | Jan 2000 | A |
6041403 | Parker et al. | Mar 2000 | A |
6151618 | Wahbe et al. | Nov 2000 | A |
6247113 | Jaggar | Jun 2001 | B1 |
6282634 | Hinds et al. | Aug 2001 | B1 |
6301651 | Chang | Oct 2001 | B1 |
6338136 | Col et al. | Jan 2002 | B1 |
6647489 | Col et al. | Nov 2003 | B1 |
6675376 | Ronen et al. | Jan 2004 | B2 |
6718440 | Maiyuran et al. | Apr 2004 | B2 |
6742110 | Djafarian et al. | May 2004 | B2 |
6889318 | Wichman | May 2005 | B1 |
6920546 | Gochman et al. | Jul 2005 | B2 |
7051190 | Samra et al. | May 2006 | B2 |
7937564 | Ashcraft et al. | May 2011 | B1 |
9690591 | Ouziel | Jun 2017 | B2 |
20030023960 | Khan et al. | Jan 2003 | A1 |
20030033491 | Henry | Feb 2003 | A1 |
20030046519 | Richardson | Mar 2003 | A1 |
20030065887 | Maiyuran et al. | Apr 2003 | A1 |
20030236967 | Samra et al. | Dec 2003 | A1 |
20040083478 | Chen | Apr 2004 | A1 |
20040128485 | Nelson | Jul 2004 | A1 |
20040139429 | Ronen et al. | Jul 2004 | A1 |
20060098022 | Andrews et al. | May 2006 | A1 |
20070174314 | McSherry et al. | Jul 2007 | A1 |
20080256162 | Henry et al. | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
1178941 | Apr 1998 | CN |
1561480 | Jan 2005 | CN |
10124391 | May 1998 | JP |
2003091414 | Mar 2003 | JP |
3866918 | Jan 2007 | JP |
20050113499 | Dec 2005 | KR |
200424933 | Nov 2004 | TW |
Entry |
---|
Intel, “Write Combining Memory Implementation Guidelines”, Nov. 1998, pp. 1-17. |
Stokes, “Into the Core: Intel's Next-Generation Microarchitecture”, Apr. 5, 2006, pp. 1-2. |
Notice of Allowance from U.S. Appl. No. 12/290,395, dated Mar. 1, 2017, 5 pages. |
Third Office Action and Search Report from counterpart Chinese Patent Application No. 201410054184.X, dated Mar. 27, 2017, 11 pages. (Translation available only for office action). |
Advisory Action for U.S. Appl. No. 12/290,395 dated Nov. 21, 2014, 3 pages. |
Advisory Action for U.S. Appl. No. 12/290,395 dated Oct. 19, 2012, 3 pages. |
Final Office Action from U.S. Appl. No. 12/290,395 dated Aug. 14, 2012, 18 pages. |
Final Office Action from U.S. Appl. No. 12/290,395 dated Sep. 10, 2014, 28 pages. |
Lee, Ian, Dynamic Instruction Fusion, URL: http://escholarship.org/uc/item/41x2x382, Dec. 2012, pp. 1-59. |
International Preliminary Report on Patentability for International Application No. PCT/US2009/062219, dated May 3, 2011, 5 pages. |
Lipovski et al., “A Fetch-And-Op Implementation for Parallel Computers” ISCA '88 Proceedings of the 15th Annual International Symposium on Computer Architecture (1988), pp. 384-392. |
Non-Final Office Action from U.S. Appl. No. 12/290,395 dated Mar. 13, 2012, 17 pages. |
Non-Final Office Action from U.S. Appl. No. 12/290,395 dated Nov. 19, 2015, 12 pages. |
Second Office Action from counterpart Chinese Patent Application No. 201410054184.X dated Sep. 8, 2016, 17 pages. |
“The P6 Architecture: Background Information for Developers,” Copyright 1995, Intel Corporation, 20 pages. |
Decision to Grant a Patent from counterpart Japanese Patent Application No. 2014-241108 dated Feb. 9, 2016, 3 pages, with concise explanation of relevance. |
Hiroshige Goto, CPU in 2006, third, “Intel brings an approach of CISC into an architecture,” ASCII, May 1, 2006, vol. 30, No. 5, pp. 114-119, with concise explanation of relevance. |
First Office Action and Search Report from counterpart Chinese Patent Application No. 201410054184.X dated Dec. 30, 2015, 35 pages. |
Second Office Action from counterpart Chinese Patent Application No. 200910253081.5 dated Apr. 7, 2013, 11 pages. |
Third Office Action from counterpart Chinese Patent Application No. 200910253081.5 dated Apr. 16, 2015, 4 pages. |
First Office Action from counterpart German Patent Application No. 10 2009 051 388.4-53 dated Jun. 25, 2012, 29 pages. |
Primary Office Action and Search Report from counterpart Taiwan Patent Application No. 098136712 dated Sep. 6, 2013, 18 pages. |
Second Office Action from counterpart Taiwan Patent Application No. 098136712 dated Nov. 18, 2013, 10 pages. |
First Office Action from counterpart Korean Patent Application No. 2011-7007623 dated Jul. 19, 2012, 4 pages. |
Office Action from counterpart Japanese Patent Application No. 2014-241108 dated Sep. 29, 2015, 15 pages. |
Ma et al., “Design of a Machine-Independent Optimizing System for Emulator Development,” TRW Systems Group and T.G. Lewis, Oregon State University, ACM Transactions on Programming Languages and Systems, vol. 2, No. 2, Apr. 1980, pp. 239-262. |
Keshava et al., “Pentium RTM III Processor Implementation Tradeoffs,” Microprocessor Products Group, Intel Technology Journal 02, 1999, Intel Corporation, 11 pages. |
Kaanellos, “Intel's P6 Chip Architecture Not Dead Yet,” CNET News.com, Oct. 15, 2001, 1:00 PM PT, 3 pages. |
International Search Report and Written Opinion; International Application No. PCT/US2009/062219, Korean Intellectual Property Office, Government Complex-Daejeon, 139 Seonsa-ro, Seogu, Daejeon 302-701, Republic of Korea; May 17, 2010; 7 pages. |
Intel, “The Intel Pentium M Processor: Microarchitecture and Performance”, Intel Technology Journal, vol. 7, Issue 2, May 21, 2003, pp. 21-36. |
Milo M., “CIS 501 Introduction to Computer Architecture, Unit 7: Multiple Issue and Static Scheduling,” 2005, URL: https://www.cis.upenn.edu/˜milom/cis501-Fall05/lectures/07_wideissue.pdf, 19 pages. |
Decision on Rejection from counterpart Chinese Patent Application No. 200910253081.5, dated Oct. 10, 2013, 17 pages. |
Non-Final Office Action from U.S. Appl. No. 15/143,518, dated Nov. 16, 2017, 38 pages. |
Non-Final Office Action from U.S. Appl. No. 15/143,522, dated Nov. 16, 2017, 35 pages. |
Final Office Action from U.S. Appl. No. 15/143,518, dated Apr. 20, 2018, 22 pages. |
Final Office Action from U.S. Appl. No. 15/143,522, dated Apr. 20, 2018, 23 pages. |
Final Office Action, U.S. Appl. No. 15/143,522, dated Sep. 6, 2019, 17 pages. |
Non-Final Office Action, U.S. Appl. No. 15/143,518, dated Jul. 10, 2019, 20 pages. |
Number | Date | Country | |
---|---|---|---|
20170003965 A1 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15143518 | Apr 2016 | US |
Child | 15143520 | US | |
Parent | 12290395 | Oct 2008 | US |
Child | 15143518 | US |