Claims
- 1. A multifunctional infrared spectrometer system comprising:
(a) a source of infrared radiation which provides a beam of infrared; (b) an interferometer which receives the beam from the source and produces a modulated output beam; (c) at least two spatially separated infrared detectors; (d) optical elements transmitting the modulated output beam from the interferometer on a main beam path to a junction position; (e) optical elements defining a first branch beam path from the junction position to a first sample position and then to a first of the detectors, and optical elements defining a second branch beam path from the junction position to a second sample position and then to a second of the detectors; and (f) a multi-position mirror element movable between at least two positions, wherein in a first position of the mirror element the beam on the main beam path is passed on the first branch beam path to the first sample position and thence to the first detector and wherein in the second position of the mirror element the main beam is passed on the second branch beam path to the second sample position and thence to the second detector.
- 2. The spectrometer system of claim 1 further including a third infrared detector spatially separated from the other infrared detectors, and optical elements defining a third branch beam path from the junction position to a third sample position and thence to the third detector, and wherein the multi-position mirror element is movable to a third position in which the mirror element passes the main beam on the third branch beam path to the third sample position and thence to the third detector.
- 3. The spectrometer system of claim 2 wherein the multi-position mirror element comprises a first deflecting mirror having a deflecting mirror surface in a plane oriented at an acute angle with respect to the axis of the main beam path at the junction position and a second deflecting mirror disposed laterally of the first deflecting mirror and having a mirror surface in a plane oriented at an acute angle to the axis of the main beam path, the plane of the surface of the second deflecting mirror non-parallel to the plane of the surface of the first deflecting mirror, wherein the deflecting mirrors are mounted for lateral translation on a carriage between three lateral positions of the mirror element, such that in one of the positions both of the deflecting mirrors are out of the main beam path and the main beam passes the mirrors undeflected onto one of the branch beam paths, wherein in a second laterally moved position the first deflecting mirror intercepts the main beam to deflect it onto another of the branch beam paths, and wherein in the third lateral position the second deflecting mirror intercepts the main beam and deflects the beam onto another branch beam path.
- 4. The spectrometer system of claim 1 wherein the optical elements defining the main beam path include a focussing lens that provides a converging beam to the junction position.
- 5. The spectrometer system of claim 4 wherein the output beam from the interferometer is collimated and wherein the optical elements in the main beam path further include a focussing mirror mounted to intercept the collimated output beam of the interferometer and converge the beam to a focal position, an aperture member at the focal position having an aperture selected to spatially define the beam at the focal position and to block stray light from passing back along the main beam path to the interferometer, wherein the beam passed through the aperture diverges and is intercepted by a collimating lens that provides a collimating beam to the focussing lens that provides a converging beam to the junction position.
- 6. The spectrometer system of claim 5 further including at least one indexable filter wheel mounted to intercept the output beam from the interferometer on the main beam path and having multiple attenuator elements therein, the filter wheel indexable between plural positions to selectively insert attenuators in the main beam path to provide selected attenuation of the beam in the main beam path and including at least one position at which the beam passes unimpeded through the filter wheel.
- 7. The spectrometer system of claim 6 further including a second indexable filter wheel mounted in the main beam path to intercept the converging beam ahead of the aperture, the second filter wheel having a plurality of filter elements therein and indexable between positions at which selected filter elements are interposed in the converging beam path to provide selected attenuation of the converging beam, and including at least one position in which the converging beam passes unimpeded through the filter wheel.
- 8. The spectrometer system of claim 6 wherein at least one of the attenuator elements in the filter wheel comprises a polystyrene wavelength accuracy reference disc.
- 9. The spectrometer system of claim 5 further including a deflecting mirror mounted for lateral movement from a first position in which it is adjacent to but out of the diverging beam passed through the aperture to a second position in which the deflecting mirror intercepts the diverging beam from the aperture and deflects the beam to a lens which provides a collimated output beam that may be directed to other optical components.
- 10. The spectrometer system of claim 1 wherein the optical elements defining the main beam path include a focussing lens that provides a converging beam to the junction position, and including a sample holder mounted in one of the branch beam paths, the sample holder having a sample port therein at which a sample to be tested may be held for transmission of infrared light therethrough, the infrared light passed through the sample at the sample port directed by optical elements to one of the infrared detectors.
- 11. The spectrometer system of claim 10 wherein the sample holder comprises a sample body having in addition to the sample port and spaced laterally therefrom an open pass-through port and a reference port, the sample holder body having a sample receptacle to receive a sample to be tested in position to have infrared light passed therethrough at the sample port and a reference receptacle to hold a reference material to have infrared light passed therethrough at the reference port, and an indexable carriage on which the sample holder may be mounted, and means for driving the carriage with the sample holder mounted thereto between a position in which the sample port is in the branch beam path to a position in which the open port is in the branch beam path to a position in which the reference port is in the branch beam path.
- 12. The spectrometer system of claim 11 wherein the sample holder has an electrical heating element mounted in the sample body which heats the sample body and a sample held therein when electrical power is supplied thereto and an electrical temperature sensing element mounted in the sample body for monitoring the temperature of the sample body, whereby the temperature of the sample body may be sensed and the heating of the sample body controlled to maintain a desired temperature.
- 13. The spectrometer system of claim 11 wherein circular aperture elements are mounted at the sample port, the reference port, and the passthrough port of the sample holder to define spatially limited apertures for the infrared beam passed through the ports.
- 14. The spectrometer system of claim 1 wherein the optical elements in one of the branch beam paths include an optical fiber supply cable leading to a probe, a focussing lens for focussing a beam in the branch beam path into the optical fiber supply cable, the probe having a probe tip at which the supply cable terminates at an outlet end at which infrared is projected, and an optical fiber return cable having an inlet end at the probe tip adjacent to the outlet end of the optical fiber supply cable and which extends to one of the infrared detectors and transmits infrared radiation that has been reflected from a sample and received at the inlet end of the return cable to the infrared detector.
- 15. The spectrometer system of claim 14 wherein the probe includes an elongated tubular portion at one end of which is mounted the probe tip, and a cradle unit having an open socket which is sized and shaped to fit the elongated tube portion such that the tube portion may be inserted into the open socket, the cradle unit including a stop member closing the open socket against which the probe tip is engaged when the tubular portion is inserted fully into the open socket, the stop member including an infrared reflective member which provides diffuse reflection of infrared incident thereon from the optical fiber cable to reflect it to the optical fiber return cable when the probe tip is engaged against the stop member, and a sensor mounted to the cradle unit that provides an output signal when the probe tip is adjacent to the stop member, whereby when the probe is not being used for testing a sample it can be inserted into the receptacle of the cradle wherein calibration tests may be carried out on the probe by providing infrared to the branch beam path leading to the optical fiber supply cable that is reflected off of the reflective member into the optical fiber return cable and thence to the infrared detector.
- 16. The spectrometer system of claim 1 wherein one of the branch beam paths receives a converging infrared beam from the main beam path and wherein the optical elements in that branch beam path include an integrating sphere having a hollow spherical interior, an inlet opening in the integrating sphere which receives the converging beam, an outlet opening in the integrating sphere through which the converging beam passes, a window over the outlet opening on which a sample such as a tablet may be placed in a sample position, and a detector mounted to the integrating sphere to receive infrared radiation reflected from the interior surfaces of the integrating sphere, the interior surfaces of the integrating sphere formed to provide diffuse reflection, whereby infrared reflected from a sample held on the window in a sample position will be diffusely reflected in the integrating sphere to the infrared detector mounted to the integrating sphere.
- 17. The spectrometer system of claim 16 wherein another infrared detector is mounted adjacent to the sample position above the window to receive infrared radiation passed through the outlet opening of the integrating sphere, the window, and a sample held in the sample position, to detect infrared transmitted through the sample.
- 18. The spectrometer system of claim 17 further including a shield mounted at the sample position between the integrating sphere and the detector that detects the infrared transmitted through the outlet opening of the integrated sphere and through the sample, the shield having an inner periphery conforming to the outer periphery of a tablet to be supported on the window above the integrating sphere, the shield blocking infrared radiation, thereby substantially blocking infrared radiation from passing around the lateral periphery of a tablet held at the sample position above the outlet opening of the integrating sphere.
- 19. The spectrometer system of claim 18 wherein the shield comprises an elastomer pad having an interior opening therein with an inner periphery sized to conform to the outer periphery of the tablet to be held to resiliently engage the outer periphery of the tablet to block off infrared radiation from passing around the tablet.
- 20. The spectrometer system of claim 18 wherein the shield comprises an adjustable iris, the diameter of the inner periphery of which can be adjusted by an operator to engage the outer periphery of a circular tablet held at the sample position and supported on the window above the outlet opening of the integrating sphere, the adjustable iris when engaged with a tablet blocking infrared radiation from passing around the periphery of the tablet to the infrared detector mounted to receive infrared radiation transmitted through the tablet.
- 21. The spectrometer system of claim 20 including an elevational adjustment ring to which the adjustable iris is mounted, the elevational adjustment ring operable by an operator to adjust the height of the inner periphery of the iris above the window to engage against the outer periphery of a tablet.
- 22. The spectrometer system of claim 18 further including a flip panel mounted between the outlet opening of the integrating sphere and the window on which the sample is supported above the outlet opening, the flip panel movable between a position in which the flip panel allows infrared radiation to pass from the outlet opening through the window to a sample held on the window to a position in which the flip panel blocks the infrared radiation from passing through the window to the sample, the surface of the flip panel facing the outlet opening of the integrating sphere having an infrared reflective surface such that when the flip panel blocks the outlet opening infrared radiation incident thereon will be reflected into the integrating sphere and be detected by the detector mounted in the integrating sphere to allow calibration of the infrared beam provided on the branch beam path to the integrating sphere.
- 23. The spectrometer system of claim 1 wherein the source comprises a source housing having a source enclosure to which an infrared source element is mounted, the source housing having an outwardly extending flange with an inner surface defining a plane which can be engaged against a surface of a spectrometer enclosure to define a position of the housing.
- 24. The spectrometer system of claim 23 wherein the source element is located at a known position in the source enclosure when the source element is secured to the source enclosure, and including electrical contact pads electrically connected to the source element that are mounted on the source housing in a position to be engaged with electrical contacts on a spectrometer enclosure thereby to make electrical contact to provide power to the source element when the source housing is inserted into the enclosure and secured thereto.
- 25. The spectrometer system of claim 1 wherein the main beam path includes a focussing mirror receiving the beam from the interferometer and converging the beam to a focal position from which the beam diverges, and further including an aperture element having an aperture at the focal position to spatially define the beam, the aperture element positioned to block stray light passing back in the beam path to the interferometer.
- 26. A multifunctional infrared spectrometer system comprising:
(a) a source of infrared radiation which provides a beam of infrared; (b) an interferometer which receives the beam from the source and produces a modulated output beam; (c) at least three spatially separated infrared detectors; (d) optical elements transmitting the modulated output beam from the interferometer on a main beam path to a junction position; (e) optical elements defining a first branch beam path from the junction position to a first sample position and then to a first of the detectors, optical elements defining a second branch beam path from the junction position to a second sample position and then to a second of the detectors, and optical elements defining a third branch beam path from the junction position to a third sample position and thence to the third of the detectors; and (f) a multi-position mirror element movable between three positions, wherein in a first position of the mirror element the beam on the main beam path is passed on the first branch beam path to the first sample position and thence to the first detector, and wherein in the second position of the mirror element the main beam is passed on the second branch beam path to the second sample position and thence to the second detector, and wherein in the third position of the mirror element, the main beam is passed on the third branch beam to the third sample position and thence to the third detector, the multi-position mirror element comprising a first deflecting mirror having a deflecting mirror surface in a plane oriented at an acute angle with respect to the axis of the main beam path at the junction position and a second deflecting mirror disposed laterally of the first deflecting mirror and having a mirror surface in a plane oriented at an acute angle to the axis of the main beam path, the plane of the surface of the second deflecting mirror non-parallel to the plane of the surface of the first deflecting mirror, wherein the deflecting mirrors are mounted for lateral translation on a carriage between three lateral positions of the mirror element, such that in one of the positions both of the deflecting mirrors are out of the main beam path and the main beam passes the mirrors undeflected onto one of the branch beam paths, wherein in a second laterally moved position the first deflecting mirror intercepts the main beam to deflect it onto another of the branch beam paths, and wherein in the third lateral position the second deflecting mirror intercepts the main beam and deflects the beam onto another branch beam path.
- 27. The spectrometer system of claim 26 wherein the optical elements defining the main beam path include a focussing lens that provides a converging beam to the junction position.
- 28. The spectrometer system of claim 27 wherein the output beam from the interferometer is collimated and wherein the optical elements in the main beam path further include a focussing mirror mounted to intercept the collimated output beam of the interferometer and converge the beam to a focal position, an aperture member at the focal position having an aperture selected to spatially define the beam at the focal position and to block stray light from passing back along the main beam path to the interferometer, wherein the beam passed through the aperture diverges and is intercepted by a collimating lens that provides a collimating beam to the focussing lens that provides a converging beam to the junction position.
- 29. The spectrometer system of claim 28 further including at least one indexable wheel mounted to intercept the output beam from the interferometer on the main beam path and having multiple attenuator elements therein, the filter wheel indexable between plural positions to selectively insert attenuators in the main beam path to provide selected attenuation of the beam in the main beam path and including at least one position at which the beam passes unimpeded through the filter wheel.
- 30. The spectrometer system of claim 29 further including a second indexable filter wheel mounted in the main beam path to intercept the converging beam ahead of the aperture, the second filter wheel having a plurality of filter elements therein and indexable between positions at which selected filter elements are interposed in the converging beam path to provide selected attenuation of the converging beam, and including at least one position in which the converging beam passes unimpeded through the filter wheel.
- 31. The spectrometer system of claim 29 wherein at least one of the attenuator elements in the filter wheel comprises a polystyrene wavelength accuracy reference disc.
- 32. The spectrometer system of claim 28 further including a deflecting mirror mounted for lateral movement from a first position in which it is adjacent to but out of the diverging beam passed through the aperture to a second position in which the deflecting mirror intercepts the diverging beam from the aperture and deflects the beam to a lens which provides a collimated output beam that may be directed to other optical components.
- 33. The spectrometer system of claim 26 wherein the optical elements defining the main beam path include a focussing lens that provides a converging beam to the junction position, and including a sample holder mounted in one of the branch beam paths, the sample holder having a sample port therein at which a sample to be tested may be held for transmission of infrared light therethrough, the infrared light passed through the sample at the sample port directed by optical elements to one of the infrared detectors, wherein the sample holder comprises a sample body having in addition to the sample port and spaced laterally therefrom an open pass-through port and a reference port, the sample holder body having a sample receptacle to receive a sample to be tested in position to have infrared light passed therethrough at the sample port and a reference receptacle to hold a reference material to have infrared light passed therethrough at the reference port, and an indexable carriage on which the sample holder may be mounted, and means for driving the carriage with the sample holder mounted thereto between a position in which the sample port is in the branch beam path to a position in which the open port is in the branch beam path to a position in which the reference port is in the branch beam path.
- 34. The spectrometer system of claim 33 wherein the sample holder has an electrical heating element mounted in the sample body which heats the sample body and a sample held therein when electrical power supplied thereto and an electrical temperature sensing element mounted in the sample body for monitoring the temperature of the sample body, whereby the temperature of the sample body may be sensed and the heating of the sample body controlled to maintain a desired temperature.
- 35. The spectrometer system of claim 33 wherein the circular aperture elements are mounted at the sample port, the reference port, and the passthrough port of the sample holder to define a spatially limited aperture for the infrared beam passed through the ports.
- 36. The spectrometer system of claim 26 wherein the optical elements in one of the branch beam paths include an optical fiber supply cable leading to a probe, a focussing lens for focussing a beam in the branch beam path into the optical fiber supply cable, the probe having a probe tip at which the supply cable terminates at an outlet end at which infrared is projected, an optical fiber return cable having an inlet end at the probe tip adjacent to the outlet end of the optical fiber supply cable and extending to one of the infrared detectors and that transmits infrared radiation that has been reflected from a sample and received at the inlet end of the return cable to the infrared detector, wherein the probe includes an elongated tubular portion at one end of which is mounted the probe tip, and a cradle unit having an open socket which is sized and shaped to fit the elongated tube portion such that the tube portion may be inserted into the open socket, the cradle unit including a stop member closing the open socket against which the probe tip is engaged when the tubular portion is inserted fully into the open socket, the stop member including an infrared reflective member which provides diffuse reflection of infrared incident thereon from the optical fiber cable to reflect it to the optical fiber return cable when the probe tip is engaged against the stop member, and a sensor mounted to the cradle unit that provides an output signal when the probe tip is adjacent to the stop member, whereby when the probe is not being used for testing a sample it can be inserted into the receptacle of the cradle wherein calibration tests may be carried out on the probe by providing infrared to the branch beam path leading to the optical fiber supply cable that is reflected off of the reflective member into the optical fiber return cable and thence to the infrared detector.
- 37. The spectrometer system of claim 26 wherein one of the branch beam paths receives a converging infrared beam from the main beam path and wherein the optical elements in that branch beam path include an integrating sphere having a hollow spherical interior, an inlet opening in the integrating sphere which receives the converging beam, an outlet opening in the integrating sphere through which the converging beam passes, a window over the outlet opening on which a sample such as a tablet may be placed in a sample position, and a detector mounted to the integrating sphere to receive infrared radiation reflected from the interior surfaces of the integrating sphere, the interior surfaces of the integrating sphere formed to provide diffuse reflection, whereby infrared reflected from a sample held on the window in a sample position will be diffusely reflected in the integrating sphere to the infrared detector mounted to the integrating sphere.
- 38. The spectrometer system of claim 37 wherein another infrared detector is mounted adjacent to the sample position above the window to receive infrared radiation passed through the outlet opening of the integrating sphere, the window, and a sample held in the sample position, to detect infrared transmitted through the sample.
- 39. The spectrometer system of claim 38 further including a shield mounted at the sample position between the integrating sphere and the detector that detects the infrared transmitted through the outlet opening of the integrated sphere and through the sample, the shield having an inner periphery conforming to the outer periphery of a tablet to be supported on the window above the integrating sphere, the shield blocking infrared radiation, thereby substantially blocking infrared radiation from passing around the lateral periphery of a tablet held at the sample position above the outlet opening of the integrating sphere.
- 40. The spectrometer system of claim 39 wherein the shield comprises an elastomer pad having an interior opening therein with an inner periphery sized to conform to the outer periphery of the tablet to be held to resiliently engage the outer periphery of the tablet to block off infrared radiation from passing around the tablet.
- 41. The spectrometer system of claim 40 wherein the shield comprises an adjustable iris, the diameter of the inner periphery of which can be adjusted to engage the outer periphery of a circular tablet held at the sample position and supported on the window above the outlet opening of the integrating sphere, the adjustable iris when engaged with a tablet blocking infrared radiation from passing around the periphery of the tablet to the infrared detector mounted to receive infrared radiation transmitted through the tablet, and an elevational adjustment ring to which the adjustable iris is mounted, the elevational adjustment ring operable by an operator to adjust the height of the inner periphery of the iris above the window to engage against the outer periphery of a tablet.
- 42. The spectrometer system of claim 38 further including a flip panel mounted between the outlet opening of the integrating sphere and the window on which the sample is supported above the outlet opening, the flip panel movable between a position in which the flip panel allows infrared radiation to pass from the outlet opening through the window to a sample held on the window to a position in which the flip panel blocks the infrared radiation from passing through the window to the sample, the surface of the flip panel facing the outlet opening of the integrating sphere having an infrared reflective surface such that when the flip panel blocks the outlet opening infrared radiation incident thereon will be reflected into the integrating sphere and be detected by the detector mounted in the integrating sphere to allow calibration of the infrared beam provided on the branch beam path to the integrating sphere.
- 43. The spectrometer system of claim 26 wherein the source comprises a source housing having a source enclosure to which an infrared source element is mounted, the source housing having an outwardly extending flange with an inner surface defining a plane which can be engaged against a surface of a spectrometer enclosure to define a position of the housing.
- 44. The spectrometer system of claim 43 wherein the source element is located at a known position in the source enclosure when the source element is secured to the source enclosure, and including electrical contact pads electrically connected to the source element that are mounted on the source housing in a position to be engaged with electrical contacts on a spectrometer enclosure thereby to make electrical contact to provide power to the source element when the source housing is inserted into the enclosure and secured thereto.
- 45. The spectrometer system of claim 26 wherein the main beam path includes a focussing mirror receiving the beam from the interferometer and converging the beam to a focal position from which the beam diverges, and further including an aperture element having an aperture at the focal position to spatially define the beam, the aperture element positioned to block stray light passing back in the beam path to the interferometer.
- 46. An infrared spectrometer system comprising:
(a) a spectrometer enclosure; (b) a source of infrared radiation which provides a beam of infrared, the source comprising a source housing having a source enclosure to which an infrared source element is mounted, the source housing having an outwardly extending flange with an inner surface defining a plane which can be engaged against a surface of the spectrometer enclosure to define a position of the housing; (c) an interferometer which receives the beam from the source and produces a modulated output beam; (d) an infrared detector; and (e) optical elements transmitting the modulated output beam from the interferometer on a beam path to a sample position and then to the detectors.
- 47. The spectrometer system of claim 46 wherein the source element is located at a known position in the source enclosure when the source element is secured to the source enclosure, and including electrical contact pads electrically connected to the source element that are mounted on the source housing in a position to be engaged with electrical contacts on a spectrometer enclosure thereby to make electrical contact to provide power to the source element when the source housing is inserted into the enclosure and secured thereto.
- 48. An infrared spectrometer system comprising:
(a) a source of infrared radiation which provides a beam of infrared; (b) an interferometer which receives the beam from the source and produces a modulated output beam; (c) an infrared detector; (d) optical elements transmitting the modulated output beam from the interferometer on a beam path to a sample position and then to the detector, and wherein the optical elements include a focussing lens that provides a converging beam to the sample position; and (e) a sample holder having a sample port therein at which a sample to be tested may be held in the sample position for transmission of infrared light therethrough, the infrared light passed through the sample at the sample port directed by optical elements to the infrared detector, wherein the sample holder comprises a sample body having in addition to the sample port and spaced laterally therefrom an open pass-through port and a reference port, the sample holder body having a sample receptacle to receive a sample to be tested in position to have infrared light passed therethrough at the sample port and a reference receptacle to hold a reference material to have infrared light passed therethrough at the reference port, and an indexable carriage on which the sample holder may be mounted, and means for driving the carriage with the sample holder mounted thereto between a position in which the sample port is in the beam path at the sample position to a position in which the open port is in the beam path to a position in which the reference port is in the beam path.
- 49. The spectrometer system of claim 48 wherein the sample holder has an electrical heating element mounted in the sample body which heats the sample body and a sample held therein when electrical power is supplied thereto and an electrical temperature sensing element mounted in the sample body for monitoring the temperature of the sample body, whereby the temperature of the sample body may be sensed and the heating of the sample body electronically controlled to maintain a desired temperature.
- 50. The spectrometer system of claim 48 wherein circular aperture elements are mounted at the sample port, the reference port, and the passthrough port of the sample holder to define spatially limited apertures for the infrared beam passed through the ports.
- 51. An infrared spectrometer system comprising:
(a) a source of infrared radiation which provides a beam of infrared; (b) an interferometer which receives the beam from the source and produces a modulated output beam; (c) an infrared detector; (d) optical elements transmitting the modulated output beam from the interferometer on a beam path including an optical fiber supply cable leading to a probe, a focussing lens for focussing a beam in the beam path into the optical fiber supply cable, the probe having a probe tip at which the supply cable terminates at an outlet end at which infrared is projected, an optical fiber return cable having an inlet end at the probe tip adjacent to the outlet end of the optical fiber supply cable and extending to the infrared detector and that transmits infrared radiation that has been reflected from a sample and received at the inlet end of the return cable to the infrared detector, wherein the probe includes an elongated tubular portion at one end of which is mounted the probe tip; and (e) a cradle unit having an open socket which is sized and shaped to fit the elongated tube portion such that the tube portion may be inserted into the open socket, the cradle unit including a stop member closing the open socket against which the probe tip is engaged when the tubular portion is inserted fully into the open socket, the stop member including an infrared reflective member which provides diffuse reflection of infrared incident thereon from the optical fiber cable to reflect it to the optical fiber return cable when the probe tip is engaged against the stop member, and a sensor that provides an output signal when the probe tip is adjacent to the stop member, whereby when the probe is not being used for testing a sample it can be inserted into the receptacle of the cradle wherein calibration tests may be carried out on the probe by providing infrared to the beam path leading to the optical fiber supply cable that is reflected off of the reflective member into the optical fiber return cable and thence to the infrared detector.
- 52. An infrared spectrometer system comprising:
(a) a source of infrared radiation which provides a beam of infrared; (b) an interferometer which receives the beam from the source and produces a modulated output beam; (c) optical elements transmitting the modulated output beam from the interferometer on a beam path and providing a converging infrared beam; (d) an integrating sphere that receives the converging infrared beam from the beam path , the integrating sphere having a hollow spherical interior, an inlet opening in the integrating sphere which receives the converging beam, an outlet opening in the integrating sphere through which the converging beam passes, a window over the outlet opening on which a sample such as a tablet may be placed in a sample position, and a detector mounted to the integrating sphere to receive infrared radiation reflected from the interior surfaces of the integrating sphere, the interior surfaces of the integrating sphere formed to provide diffuse reflection, whereby infrared reflected from a sample held on the window in a sample position will be diffusely reflected in the integrating sphere to the infrared detector mounted to the integrating sphere, and another infrared detector mounted adjacent to the sample position above the window to receive infrared radiation passed through the outlet opening of the integrating sphere, the window, and a sample held in the sample position, to detect infrared transmitted through the sample.
- 53. The spectrometer system of claim 52 further including a shield mounted at the sample position between the integrating sphere and the detector that detects the infrared transmitted through the outlet opening of the integrated sphere and through the sample, the shield having an inner periphery conforming to the outer periphery of a tablet to be supported on the window above the integrating sphere, the shield blocking infrared radiation, thereby substantially blocking infrared radiation from passing around the lateral periphery of a tablet held at the sample position above the outlet opening of the integrating sphere.
- 54. The spectrometer system of claim 53 wherein the shield comprises an elastomer pad having an interior opening therein with an inner periphery sized to conform to the outer periphery of the tablet to be held to resiliently engage the outer periphery of the tablet to block off infrared radiation from passing around the pill.
- 55. The spectrometer system of claim 53 wherein the shield comprises an adjustable iris, the diameter of the inner periphery of which can be adjusted to engage the outer periphery of a circular tablet held at the sample position and supported on the window above the outlet opening of the integrating sphere, the adjustable iris when engaged with a tablet blocking infrared radiation from passing around the periphery of the tablet to the infrared detector mounted to receive infrared radiation transmitted through the tablet.
- 56. The spectrometer system of claim 58 including an elevational adjustment ring to which the adjustable iris is mounted, the elevational adjustment ring operable by an operator to adjust the height of the inner periphery of the iris above the window to engage against the outer periphery of a tablet.
- 57. The spectrometer system of claim 52 further including a flip panel mounted between the outlet opening of the integrating sphere and the window on which the sample is supported above the outlet opening, the flip panel movable between a position in which the flip panel allows infrared radiation to pass from the outlet opening through the window to a sample held on the window to a position in which the flip panel blocks the infrared radiation from passing through the window to the sample, the surface of the flip panel facing the outlet opening of the integrating sphere having an infrared reflective surface such that when the flip panel blocks the outlet opening infrared radiation incident thereon will be reflected into the integrating sphere and be detected by the detector mounted in the integrating sphere to allow calibration of the infrared beam provided on the branch beam path to the integrating sphere.
- 58. An infrared spectrometer system comprising:
(a) a source of infrared radiation which provides a beam of infrared; (b) an interferometer which receives the beam from the source and produces a modulated output beam; (c) an infrared detector; (d) optical elements transmitting the modulated output beam from the interferometer on a beam path to a sample position and thence to the detector, including a focussing element in the beam path for converging the beam to a focal position from which the beam diverges, and further including an aperture element having an aperture at the focal position to spatially define the beam, the aperture element positioned to block stray light passing back on the beam path to the interferometer.
- 59. The infrared spectrometer system of claim 58 wherein the focussing element is a focussing mirror.
- 60. The infrared spectrometer system of claim 58 wherein the aperture element provides an adjustable aperture.
- 61. An infrared spectrometer system comprising:
(a) a source of infrared radiation which provides a beam of infrared; (b) an interferometer which receives the beam from the source and produces a modulated output beam; (c) an infrared detector; (d) optical elements transmitting the modulated output beam from the interferometer on a beam path including an optical fiber supply cable leading to a probe, a focussing lens for focussing a beam in the beam path into the optical fiber supply cable, the probe having a probe tip at which the supply cable terminates at an outlet end at which infrared is projected, an optical fiber return cable having an inlet end at the probe tip adjacent to the outlet end of the optical fiber supply cable and extending to the infrared detector and that transmits infrared radiation that has been reflected from a sample and received at the inlet end of the return cable to the infrared detector, wherein the probe includes an elongated tubular portion at one end of which is mounted the probe tip; and (e) a plastic sheath fitted over the elongated tube portion of the probe to protect the probe tube and probe tip from contamination and having an end panel at the tip which is formed to be essentially transparent to infrared.
REFERENCE TO RELATED APPLICATION
[0001] This application claims the benefit of provisional patent application No. 60/187,678, filed Mar. 8, 2000, the disclosure of which is incorporated by reference.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60187678 |
Mar 2000 |
US |