This application is a national stage application of PCT/KR2019/005323 filed on May 3, 2019, which claims priorities of Korean patent application number 10-2018-0051022 filed on May 3, 2018. The disclosure of each of the foregoing applications is incorporated herein by reference in its entirety.
Embodiments relate to a multilayer graphite sheet with excellent electromagnetic shielding capability and thermal conductivity and a process for preparing the same.
Graphite sheets may be prepared by a graphite expansion method using natural graphite. Specifically, in the graphite expansion method, natural graphite is immersed in a mixture of concentrated sulfuric acid and acetic acid, which is rapidly heated, the acids are removed by a series of a washing process, and it is formed into a film shape using a high-pressure press. However, the graphite sheet prepared by this method has disadvantageous in that it is weak in strength and poor in heat dissipation characteristics in terms of thermal conductivity. It also has a disadvantage in that defects may be caused by the residual acid employed in the washing process.
In order to deal with the above problems, a polymer graphitization method has been developed in which a polymer film is thermally treated to be carbonized and graphitized to prepare a graphite sheet. The polymer film used in this method includes, for example, polyoxadiazole, polyimide, polyphenylenevinylene, polybenzoimidazole, polybenzoxazole, polythiazole, and polyamide films.
The polymer graphitization method is very simple as compared with the conventional graphite expansion method. It also has an advantage in that the incorporation of impurities such as acids is not involved in the process. In addition, the graphite sheet prepared by the polymer graphitization method is excellent in thermal conductivity and electric conductivity, which are close to those of single-crystalline graphite (see Japanese Laid-open Patent Publication Nos. Sho 60-181129, Hei 7-109171, and Sho 61-275116).
Meanwhile, in recent years, there is a demand for a sheet that can be mounted on mobile devices such as mobile phones, tablet PCs, and laptop PCs to exhibit not only a heat dissipation function but also an electromagnetic shielding function.
Despite various advantages of the conventional polymer graphitization method, it has problems in that a polymer film such as a polyimide film as a raw material is generally expensive and that it is difficult to prepare a thick graphite sheet of 70 μm or more due to the limitations to materials. However, the electromagnetic shielding capability of a graphite sheet having a thickness of less than 70 μm is not well implemented. Thus, it has been difficult to simultaneously achieve high thermal conductivity and electromagnetic shielding capability with the conventional method.
Accordingly, the embodiments aim to provide a multilayer graphite sheet with excellent electromagnetic shielding capability and thermal conductivity by mixing relatively inexpensive materials to obtain a hybrid-type laminate and carbonizing and graphitizing it, and a process for preparing the same.
According to an embodiment, there is provided a multilayer graphite sheet, which comprises a laminate in which at least one first graphite layer and at least one second graphite layer are alternately laminated in a total of five layers or more, wherein the first graphite layer is denser than the second graphite layer.
In addition, according to an embodiment, there is provided a process for preparing a multilayer graphite sheet, which comprises coating a resin composition on one or both sides of a fibrous substrate to form a coating layer; preparing a laminate in which at least one of the fibrous substrate and at least one of the coating layer are alternately laminated in a total of 5 layers or more; thermally treating the laminate to cure the coating layer as a first thermal treatment; and further thermally treating the laminate subjected to the first thermal treatment to carbonize and graphitize the fibrous substrate and the coating layer as a second thermal treatment.
Since the multilayer graphite sheet of the above embodiment has a multilayer structure in a total of 5 layers or more, it can be prepared to a thickness of 70 μm or more even after rolling, so that the electromagnetic shielding capability can be remarkably enhanced.
In addition, the multilayer graphite sheet can have excellent thermal conductivity by increasing its density through rolling and further strengthening the layered structure.
In particular, the multilayer graphite sheet is prepared by graphitizing a hybrid laminate in which different materials are used. Thus, it is possible to simultaneously achieve thermal conductivity and electromagnetic shielding capability at a lower cost.
Thus, the multilayer graphite sheet is useful as a thick sheet that can be used in various applications such as home appliances and electric vehicles.
Hereinafter, the present embodiments will be described in detail.
According to an embodiment, there is provided a multilayer graphite sheet, which comprises a laminate in which at least one first graphite layer and at least one second graphite layer are alternately laminated in a total of five layers or more, wherein the first graphite layer is denser than the second graphite layer.
The multilayer graphite sheet comprises a laminate in which the first graphite layer and the second graphite layer are alternately laminated.
The first graphite layer is relatively denser than the second graphite layer.
That is, the components in the first graphite layer may exist in closer contact with each other than the components in the second graphite layer.
Thus, the first graphite layer may have a density higher than that of the second graphite layer. For example, the density of the first graphite layer may be 1.1 times or more, 1.5 times or more, or 2 times or more of the density of the second graphite layer. Specifically, the density of the first graphite layer may be 1.1 to 10 times, 1.1 to 5 times, 1.1 to 3 times, or 1.1 to 2 times, the density of the second graphite layer.
The total number of layers of the laminate may be 5 or more, for example, 8 or more, or 10 or more. Specifically, the total number of layers of the laminate may be 5 to 30, 5 to 20, 5 to 15, 5 to 11, or 10 to 20.
In one embodiment, the multilayer graphite sheet may be a rolled sheet.
That is, the multilayer graphite sheet may be obtained through rolling in the preparation process. Accordingly, the multilayer graphite sheet may have a higher density, and the thermal conductivity in the horizontal direction may be enhanced by virtue of such a high density and layered structure.
In addition, referring to
For example, the multilayer graphite sheet may have a total thickness of 70 μm or more. Further, the total thickness of the multilayer graphite sheet may be 100 μm or more, 120 μm or more, or 150 μm or more. Specifically, the total thickness of the multilayer graphite sheet may be 70 μm to 1,000 μm, for example, 100 μm to 1,000 μm, for example, 100 μm to 600 μm, for example, 100 μm to 400 μm, for example, 100 μm to 250 μm, for example, 100 μm to 200 μm.
Meanwhile, it has been difficult that a synthetic graphite sheet prepared by carbonizing and graphitizing a conventional polyimide-based film or the like has a thickness of 70 μm or more due to the characteristics of the material. On the other hand, since the multilayer graphite sheet may have a larger thickness than the conventional one, it may have advantages in that the electromagnetic shielding capability is remarkably enhanced and that the heat capacity is increased.
In another embodiment, the multilayer graphite sheet may be an unrolled sheet. In such case, the multilayer graphite sheet may have a larger thickness.
For example, the total thickness of the multilayer graphite sheet may be 200 μm or more or 300 μm or more. Specifically, the total thickness of the multilayer graphite sheet may be 200 μm to 1,000 μm, for example, 250 μm to 600 μm, for example, 300 μm to 450 μm.
The multilayer graphite sheet may have an electromagnetic shielding capability of 100 dB or more, for example, 110 dB or more, for example, 130 dB or more, in the range of 30 MHz to 1,500 MHz.
Specifically, the multilayer graphite sheet may have an electromagnetic shielding capability of 100 dB to 200 dB, for example, 110 dB to 200 dB, for example, 130 dB to 200 dB, for example, 100 dB to 150 dB, for example, 110 dB to 150 dB, for example, 130 dB to 150 dB, in the range of 30 MHz to 1,500 MHz.
The multilayer graphite sheet may have a thermal conductivity of 600 W/m·K or more, for example, 700 W/m·K or more, for example, 700 W/m·K to 1,300 W/m·K, for example, 850 W/m·K to 1,100 W/m·K, in the horizontal direction.
In addition, the multilayer graphite sheet may have a thermal conductivity of 1 W/m·K or more, for example, 5 W/m·K or more, for example, 5 W/m·K to 10 W/m·K, in the vertical direction.
In one embodiment, the multilayer graphite sheet may simultaneously have an electromagnetic shielding capability of 110 dB or more in the range of 30 MHz to 1,500 MHz and a thermal conductivity of 700 W/m·K to 1,300 W/m·K in the horizontal direction.
In addition, the multilayer graphite sheet may have a density of 1.3 g/cm3 to 1.8 g/cm3, for example, 1.5 g/cm3 to 1.8 g/cm3. The above density may be an apparent density. Here, the apparent density may be calculated as a value obtained by dividing the weight of the multilayer graphite sheet by the volume thereof. That is, the multilayer graphite sheet comprises a first graphite layer and a second graphite layer, which have different densities from each other, and has an apparent density within the above range by virtue of the entire multilayer structure comprising them. Since it has an apparent density within the above range by virtue of the entire multilayer structure comprising the first graphite layer and the second graphite layer, the multilayer graphite sheet can produce excellent effects in terms of thermal conductivity and heat capacity.
The laminate may have the first graphite layer as the surface layers on both sides.
That is, the surface layers on both sides of the laminate may be the first graphite layer, and the second graphite layer and the first graphite layer may be alternately laminated as the inner layers. Thus, the number of the first graphite layers in the laminate may be one more than the number of the second graphite layers.
For example, the laminate may comprise 3 to 6 layers of the first graphite layer and 2 to 5 layers of the second graphite layer.
Specifically, the laminate may have a five-layer structure of the first graphite layer/second graphite layer/first graphite layer/second graphite layer/first graphite layer. Alternatively, it may have a laminated structure of more than five layers of the first graphite layer/second graphite layer/ . . . /second graphite layer/first graphite layer.
The first graphite layer may have a thickness of 10 μm to 50 μm, and the second graphite layer may have a thickness of 5 μm to 60 μm. Specifically, the first graphite layer may have a thickness of 15 μm to 45 μm, and the second graphite layer may have a thickness of 20 μm to 50 μm.
The second graphite layer may have a thickness variation greater than that of the first graphite layer. Here, the thickness variation may refer to a difference between the maximum thickness and the minimum thickness when the thicknesses at multiple points of a layer are measured. For example, referring to
As an example, the first graphite layer may have a thickness variation of less than 40 μm, and the second graphite layer may have a thickness variation of 40 μm or more. Specifically, the first graphite layer may have a thickness variation of 5 μm to 20 μm, and the second graphite layer may have a thickness variation of 40 μm to 60 μm.
In addition, the interface between the first graphite layer and the second graphite layer in a cross-section in the thickness direction of the multilayer graphite sheet may have a curved shape. For example, the interface between the first graphite layer and the second graphite layer may have a curved shape such as a wavy pattern.
Specifically, the multilayer graphite sheet shown in
The first graphite layer and the second graphite layer may comprise different graphitized materials.
As an example, the first graphite layer may comprise a graphitized material of a cured resin, and the second graphite layer may comprise a graphitized material of a fibrous substrate.
The cured resin is not particularly limited as long as it is a cured material of a curable polymer resin. For example, the cured resin is a cured material of a resin selected from the group consisting of polyamic acid, polyvinyl chloride, polyester, polyurethane, polyethylene, polyfluoroethylene, polyvinyl alcohol, acrylic, and polypropylene, or a cured material of a composition comprising the resin.
As a preferred example, the cured resin may comprise a cured material of a composition comprising polyamic acid. In such event, the cured material of the composition comprising polyamic acid may be a polyimide composition.
The fibrous substrate is not particularly limited as long as it is a substrate comprising fibers or fibrous materials. For example, the fibrous substrate may comprise a woven fabric, a non-woven fabric, or paper.
In addition, the fibrous substrate may comprise natural fibers or synthetic fibers. Specifically, the fibrous substrate may be a woven fabric, a non-woven fabric, or paper that comprises at least one fiber selected from the group consisting of natural fibers including cotton, hemp, wool, and silk; cellulose-based fibers including rayon, acetate, and triacetate; and synthetic fibers including nylon, polyester, polyurethane, polyethylene, polyvinyl chloride, polyfluoroethylene, polyvinyl alcohol, acrylic, and polypropylene.
As a specific example, the multilayer graphite sheet may be obtained by subjecting a laminate, in which a total of five or more layers of the fibrous substrate and the coating layer made of polyamic acid (i.e., polyimide precursor) are alternately laminated, to curing, carbonization, and graphitization through thermal treatment.
According to an embodiment, referring to
First, a resin composition is coated on one or both sides of a fibrous substrate.
The specific type of the fibrous substrate used here is as exemplified above.
In addition, the resin composition may be a liquid resin composition. For example, it may contain a polymer resin, a solvent, a catalyst, and a dehydrating agent. In such event, the content of the polymer resin in the resin composition may be 1% by weight to 85% by weight, for example, 5% by weight to 50% by weight, for example, 10% by weight to 30% by weight. In addition, the content of the catalyst in the resin composition may be 1% by weight to 5% by weight, and the content of the dehydrating agent may be 10% by weight to 20% by weight.
The polymer resin is a curable polymer resin, and its specific type is as exemplified above. For example, the polymer resin may be polyamic acid. Thus, the resin composition may comprise polyamic acid, a solvent, a catalyst, and a dehydrating agent.
The polyamic acid may have a weight average molecular weight of 100,000 to 400,000 g/mole or 200,000 to 300,000 g/mole.
The coating method is not particularly limited as long as it is a conventional method for forming a coating layer.
For example, it may be coated by a method such as die coating, gravure coating, micro gravure coating, comma coating, roll coating, dip coating, spray coating, bar coating, and dip coating to form a layered structure.
The coating may be carried out once or repeated a plurality of times to form a coating layer having an appropriate thickness. For example, it may be formed to a thickness of 5 μm to 60 μm, or 20 μm to 50 μm, based on one layer of the polyamic acid coating layer.
Next, a laminate in which at least one of the fibrous substrate and at least one of the coating layer are alternately laminated in a total of 5 layers or more is prepared.
For example, two or more of the fibrous substrates coated in the previous step may be laminated to prepare a laminate. Specifically, in the case where two coated fibrous substrates are laminated, a five-layer laminate can be prepared in the order of coating layer/substrate/coating layer/substrate/coating layer.
In such event, the number of laminated layers may be adjusted more or less as necessary, and multilayer sheets having various thicknesses may be prepared depending on the number of laminated layers.
Meanwhile, the alternate lamination is to be carried out such that the coating layer is at the outermost. Accordingly, both surface layers of the laminate may be formed of the coating layer.
The total thickness of the laminate may be 200 μm or more or 300 μm or more. Specifically, the total thickness of the laminate may be 200 μm to 1,000 μm, for example, 250 μm to 600 μm, for example, 300 μm to 450 μm. Within the above range, a multilayer graphite sheet having an appropriate thickness can be obtained upon the subsequent thermal treatment step and other processing steps such as rolling.
Thereafter, the laminate is thermally treated to cure the coating layer in the first thermal treatment. The thermal treatment conditions in this step are not particularly limited as long as they are process conditions that can be adopted to cure a conventional curable polymer. Specifically, the thermal treatment may be carried out under process conditions for imidizing polyamic acid.
For example, the first thermal treatment may comprise a first-first thermal treatment carried out at 100° C. to 150° C. for 10 minutes to 15 minutes; a first-second thermal treatment carried out at 230° C. to 250° C. for 5 minutes to 7 minutes; and a first-third thermal treatment carried out at 400° C. to 420° C. for 5 minutes to 7 minutes.
Next, the laminate is further thermally treated to carbonize and graphitize the fibrous substrate and the coating layer in the second thermal treatment.
The thermal treatment conditions in this step are not particularly limited as long as they are process conditions that can be adopted to conventionally carbonize and graphitize a polymer and/or a fiber.
For example, the second thermal treatment may comprise a second-first thermal treatment carried out at 700° C. to 1,800° C. for 1 hour to 20 hours; and a second-second thermal treatment carried out at 2,000° C. to 3,200° C. for 1 hour to 20 hours.
Specifically, the second thermal treatment may comprise a second-first thermal treatment carried out at 1,000° C. to 1,500° C. for 1 hour to 3 hours; and a second-second thermal treatment carried out at 2,000° C. to 3,000° C. for 5 hours to 10 hours.
The process for preparing a multilayer graphite sheet may further comprise rolling the laminate that has been subjected to the second thermal treatment. The rolling may increase the density of the multilayer graphite sheet and align the layered structure and carbon arrangement thereof to further enhance the thermal conductivity.
In addition, the rolling may adjust the thickness of the multilayer graphite sheet. In order to increase the electromagnetic shielding capability, it is preferable to roll the multilayer graphite sheet to a final thickness of 70 μm or more.
The rolling may be carried out through a roll press or the like. Specifically, the rolling may be carried out using ceramic rollers, metal rollers such as copper or stainless steel, polyurethane rollers, and rubber rollers. But it is not particularly limited as long as it is a conventional method that can be carried out to adjust the thickness of the sheet.
The pressure for the rolling may be 20 N/cm2 to 80 N/cm2, for example, 30 N/cm2 to 50 N/cm2.
Since the multilayer graphite sheet of the embodiment as described above has a multilayer structure in a total of 5 layers or more, it can be prepared to a thickness of 70 μm or more even after rolling, so that the electromagnetic shielding capability can be remarkably enhanced.
In addition, the multilayer graphite sheet can have excellent thermal conductivity by increasing its density through rolling and further strengthening the layered structure.
In particular, the multilayer graphite sheet is prepared by graphitizing a hybrid laminate in which different materials are used. Thus, it is possible to simultaneously achieve thermal conductivity and electromagnetic shielding capability at a lower cost.
Thus, the multilayer graphite sheet is useful as a thick sheet that can be used in various applications such as home appliances and electric vehicles.
The present invention will be described in more detail by the following examples, but it is not limited to the scope of these examples.
A plain weaved cotton fabric (100 m/g) made in China was used as a substrate. Both sides of the substrate were coated with a liquid resin composition (polyamic acid solids content of 18% by weight) using a roll coater. Two of the coated substrates were laminated to obtain a laminate in a total of 5 layers (coating layer/substrate layer/coating layer/substrate layer/coating layer). The laminate was imidized by drying with hot air in three steps at 150° C. for 10 minutes, 250° C. for 5 minutes, and 420° C. for 5 minutes. The imidized sheet was carbonized by thermal treatment at 1,200° C. for 2 hours and then graphitized by thermal treatment at 2,700° C. for 7 hours. The graphitized sheet was rolled at a pressure of 50 N/m2 to prepare a graphite sheet having a total thickness of about 100 μm.
The procedures of Example 1 were repeated, except that five of the substrate coated with polyamic acid were laminated to obtain a laminate in a total of 11 layers (coating layer/substrate layer/ . . . /substrate layer/coating layer) and then subjected to imidization, carbonization, graphitization, and rolling to prepare a graphite sheet having a total thickness of 200 μm.
Both sides of a commercially available polyimide film having a thickness of 40 μm were coated with an acrylic adhesive. Two of the film were laminated to prepare a laminate in a total of five layers (adhesive layer/film layer/adhesive layer/film layer/adhesive layer). It was subjected to the same carbonization, graphitization, and rolling as in Example 1 to prepare a graphite sheet having a total thickness of 100 μm.
The procedures of Example 1 were repeated, except that one of the substrate coated with polyamic acid (coating layer/substrate layer/coating layer) was subjected to imidization, carbonization, graphitization, and rolling to prepare a graphite sheet having a total thickness of 40 μm.
The procedures of Comparative Example 2 were repeated, except that the rolling pressure was adjusted to prepare a graphite sheet having a total thickness of about 25 μm.
The specific heat of the graphite sheets prepared in the Examples and the Comparative Examples was measured using an LFA device (LFA 447 Model, NETZSCH).
The density of the graphite sheets prepared in the Examples and the Comparative Examples was measured using an Archimedes density meter (SD-200L, Alfa Mirage).
The thermal diffusivity of the graphite sheets prepared in the Examples and the Comparative Examples was measured using an LFA device (LFA 447 Model, NETZSCH).
The thermal conductivity of the graphite sheets prepared in the Examples and the Comparative Examples was calculated from the specific heat, density, and thermal diffusivity measured in Test Examples 1 to 3.
The electromagnetic shielding capability was evaluated by measuring the electromagnetic attenuation (dB) of the graphite sheets prepared in the Examples and the Comparative Examples in the range of 30 MHz to 1,500 MHz.
As shown in Table 1 above, it was confirmed that the multilayer graphite sheets of Examples 1 and 2 having a thickness of 100 μm and 200 μm had excellent thermal conductivity as compared with that of Comparative Example 1 having the same thickness. In addition, the multilayer graphite sheets of Examples 1 and 2 were remarkably superior in electromagnetic shielding capability to the graphite sheets of Comparative Examples 1 to 3.
Meanwhile, the attempt to prepare a graphite sheet having a thickness of 70 μm or more by carbonizing and graphitizing a single-layer polyimide film failed due to the characteristics of the material.
Number | Date | Country | Kind |
---|---|---|---|
10-2018-0051022 | May 2018 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2019/005323 | 5/3/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/212284 | 11/7/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3174895 | Gibson | Mar 1965 | A |
4654242 | Schieber | Mar 1987 | A |
4777083 | Ono | Oct 1988 | A |
5103504 | Dordevic | Apr 1992 | A |
20040076810 | Blain | Apr 2004 | A1 |
20060220320 | Potier | Oct 2006 | A1 |
20070110661 | Hirose | May 2007 | A1 |
20110045300 | Tamaoki | Feb 2011 | A1 |
20120219778 | Kapaun | Aug 2012 | A1 |
20130213630 | Southard, II | Aug 2013 | A1 |
20140332993 | Ooshiro | Nov 2014 | A1 |
20150266739 | Zhamu | Sep 2015 | A1 |
20160016378 | Oikawa | Jan 2016 | A1 |
20170089650 | Wu | Mar 2017 | A1 |
20170355603 | Tachibana | Dec 2017 | A1 |
20180362823 | Liu | Dec 2018 | A1 |
20180371608 | Moriguchi | Dec 2018 | A1 |
20190039908 | Tachibana | Feb 2019 | A1 |
20190270645 | Seo et al. | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
102795617 | Nov 2012 | CN |
103450857 | Dec 2013 | CN |
103922324 | Jul 2014 | CN |
104310379 | Jan 2015 | CN |
104445174 | Mar 2015 | CN |
104883858 | Sep 2015 | CN |
105113088 | Dec 2015 | CN |
3307090 | Sep 1984 | DE |
102016219214 | Apr 2018 | DE |
175878 | Apr 1986 | EP |
231787 | Aug 1987 | EP |
237031 | Sep 1987 | EP |
433478 | Jun 1991 | EP |
449312 | Oct 1991 | EP |
2263904 | Aug 1993 | GB |
56157478 | Dec 1981 | JP |
60-181129 | Sep 1985 | JP |
61-275116 | Dec 1986 | JP |
02065299 | Mar 1990 | JP |
05301781 | Nov 1993 | JP |
06100367 | Apr 1994 | JP |
7-109171 | Apr 1995 | JP |
10045474 | Feb 1998 | JP |
11017387 | Jan 1999 | JP |
2000178016 | Jun 2000 | JP |
2003-092384 | Mar 2003 | JP |
2003092384 | Mar 2003 | JP |
2008069061 | Mar 2008 | JP |
2008120680 | May 2008 | JP |
2009190962 | Aug 2009 | JP |
2010001191 | Jan 2010 | JP |
2010064391 | Mar 2010 | JP |
2010064949 | Mar 2010 | JP |
2010070412 | Apr 2010 | JP |
2010070413 | Apr 2010 | JP |
2012076958 | Apr 2012 | JP |
2014-083786 | May 2014 | JP |
2015174807 | Oct 2015 | JP |
2016-028880 | Mar 2016 | JP |
2016153356 | Aug 2016 | JP |
2017071079 | Apr 2017 | JP |
6303046 | Mar 2018 | JP |
2017010604 | Feb 2017 | KR |
2017011501 | Feb 2017 | KR |
2017072740 | Jun 2017 | KR |
2234176-02 | Aug 2004 | RU |
95592 | Jul 2010 | RU |
2427530 | Aug 2011 | RU |
WO-9910598 | Mar 1999 | WO |
WO-0106169 | Jan 2001 | WO |
WO-0142338 | Jun 2001 | WO |
WO-2009060818 | May 2009 | WO |
2015-155940 | Oct 2015 | WO |
WO-2016175453 | Nov 2016 | WO |
WO-2017207068 | Dec 2017 | WO |
2018074889 | Apr 2018 | WO |
Entry |
---|
Machine Translation of JP-2003092384-A, Mar. 2003 (Year: 2003). |
Machine Translation of CN-105113088-A, Dec. 2015 (Year: 2015). |
Office Action for application 201980044044.5 issued by the Chinese intellectual Property Office dated May 20, 2022. |
Number | Date | Country | |
---|---|---|---|
20210086474 A1 | Mar 2021 | US |