The present disclosure relates to financial systems and, more particularly, to systems and methods that manage various financial transactions and activities.
Various financial systems are used to transfer assets between different organizations, such as financial institutions. For example, in existing systems, each financial institution maintains a ledger to keep track of accounts at the financial institution and transactions associated with those accounts. Financial institutions generally cannot access the ledger of another financial institution. Thus, a particular financial institution can only see part of a financial transaction (i.e., the part of the transaction associated with that financial institution's accounts). When executing critical asset transfers, it is important that all parties to the transfer can see the details of the transfer. Further, it is important that all data is authenticated and reconciled to maintain the integrity of the financial systems.
Non-limiting and non-exhaustive embodiments of the present disclosure are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various figures unless otherwise specified.
It will be readily understood that the components of the present systems and methods, as generally described and illustrated in the Figures herein, could be arranged and designed in a wide variety of different configurations. The following detailed description of the embodiments of the multiparty reconciliation systems and methods is not intended to limit the scope of the invention, as claimed, but is merely representative of certain examples of presently contemplated embodiments in accordance with the invention.
Existing financial institutions typically maintain account information and asset transfer details in a ledger at the financial institution. The ledgers at different financial institutions do not communicate with one another and often use different data storage formats or protocols. Thus, each financial institution can only access its own ledger and cannot see data in another financial institution's ledger, even if the two financial institutions implemented a common asset transfer.
The systems and methods described herein enable institutions to move assets on demand by enabling authorized users to execute complex workflows. A workflow describes, for example, the sequence of activities associated with a particular transaction, such as an asset transfer. In particular, the systems and methods provide a clearing and settlement gateway between, for example, multiple financial institutions. When a workflow is executed, the system generates and issues clearing and settlement messages to facilitate the movement of assets. A shared permissioned ledger (discussed herein) keeps track of the asset movement and provides visibility to the principals and observers in substantially real time. The integrity of these systems and methods is important because the systems are dealing with core payments that are a critical part of banking operations. Additionally, many asset movements are final and irreversible. Therefore, the authenticity of the request and the accuracy of the instructions are crucial. Further, reconciliation of transactions between multiple parties are important to the management of financial data.
As discussed herein, payments between parties can be performed using multiple asset types, including currencies, treasuries, securities (e.g., notes, bonds, bills, and equities), and the like. Payments can be made for different reasons, such as margin movements, collateral pledging, swaps, delivery, fees, liquidation proceeds, and the like. As discussed herein, each payment may be associated with one or more metadata.
In some embodiments, data communication network 104 includes any type of network, such as a local area network, a wide area network, the Internet, a cellular communication network, or any combination of two or more communication networks. The described systems and methods can use any communication protocol supported by a financial institution's ledger and other systems. For example, the communication protocol may include SWIFT MT (Society for Worldwide Interbank Financial Telecommunication Message Type) messages (such as MT 2XX, 5XX, 9XX), ISO 20022 (a standard for electronic data interchange between financial institutions), and proprietary application interfaces exposed by particular financial institutions. Financial institutions 106, 108 include banks, exchanges, hedge funds, and any other type of financial entity or system. In some embodiments, financial management system 102 interacts with financial institutions 106, 108 using existing APIs and other protocols already being used by financial institutions 106, 108, thereby allowing financial management system 102 to interact with existing financial institutions without significant modification to the financial institution's systems. Authorized system 110 and authorized user device 112 include any type of system, device, or component that is authorized to communicate with financial management system 102. Replicated data store 114 stores any type of data accessible by any number of systems and devices, such as the systems and devices described herein. In some embodiments, replicated data store 114 stores immutable and auditable forms of transaction data between financial institutions. The immutable data cannot be deleted or modified. In particular implementations, replicated data store 114 is an append only data store which keeps track of all intermediate states of the transactions. Additional metadata may be stored along with the transaction data for referencing information available in external systems. In specific embodiments, replicated data store 114 may be contained within a financial institution or other system.
As shown in
In some embodiments, ledger 118 is modeled after double-entry accounting systems where each transaction has two entries (i.e., one entry for each of the principals to the transaction). The entries in ledger 118 include data related to the principal parties to the transaction, a transaction date, a transaction amount, a transaction state, any relevant workflow reference, a transaction ID, and any additional metadata to associate the transactions with one or more external systems. The entries in ledger 118 also include cryptographic hashes to provide tamper resistance and auditability. Users for each of the principals to the transaction only have access to their own entries (i.e., the transactions to which the principal was a party). Access to the entries in ledger 118 can be further restricted or controlled based on a user's role or a party's role, where certain data is only available to certain roles.
In some embodiments, ledger 118 is a shared ledger that can be accessed by multiple financial institutions and other systems and devices. In particular implementations, both parties to a specific transaction can access all details related to that transaction stored in ledger 118. All details related to the transaction include, for example, the parties involved in the transaction, the type of transaction, the date and time of the transaction, the amount of the transaction, and other data associated with the transaction. Additionally, ledger 118 restricts permission to access specific transaction details based on relevant trades associated with a particular party. For example, if a specific party (such as a financial institution or other entity) requests access to data in ledger 118, that party can only access (or view) data associated with transactions to which the party was involved. Thus, a specific party cannot see data associated with transactions that are associated with other parties and do not include the specific party.
The shared permission aspects of ledger 118 provides for a subset of the ledger data to be replicated at various client nodes and other systems. The financial management systems and methods discussed herein allow selective replication of data. Thus, principals, financial institutions, and other entities do not have to hold data for transactions to which they were not a party.
It will be appreciated that the embodiment of
In some embodiments, financial management system 102 interacts with authorized systems and authorized users. The authorized set of systems and users often reside outside the jurisdiction of financial management system 102. Typically, interactions with these systems and users are performed via secured channels. To ensure the integrity of financial management system 102, various constructs are used to provide system/platform integrity as well as data integrity.
In some embodiments, system/platform integrity is provided by using authorized (e.g., whitelisted) machines and devices, and verifying the identity of each machine using security certificates, cryptographic keys, and the like. In certain implementations, particular API access points are determined to ensure that a specific communication originates from a known enterprise or system. Additionally, the systems and methods described herein maintain a set of authorized users and roles, which may include actual users, systems, devices, or applications that are authorized to interact with financial management system 102. System/platform integrity is also provided through the use of secure channels to communicate between financial management system 102 and external systems. In some embodiments, communication between financial management system 102 and external systems is performed using highly secure TLS (Transport Layer Security) with well-established handshakes between financial management system 102 and the external systems. Particular implementations may use dedicated virtual private clouds (VPCs) for communication between financial management system 102 and any external systems. Dedicated VPCs offer clients the ability to set up their own security and rules for accessing financial management system 102. In some situations, an external system or user may use the DirectConnect network service for better service-level agreements and security.
In some embodiments financial management system 102 allows each client to configure and leverage their own authentication systems. This allows clients to set their custom policies on user identity verification (including 2FA (two factor authentication)) and account verification. An authentication layer in file management system 102 delegates requests to client systems and allows the financial management system to communicate with multiple client authentication mechanisms.
Financial management system 102 also supports role-based access control of workflows and the actions associated with workflows. Example workflows may include Payment vs Payment (PVP) and Delivery vs Payment (DVP) workflows. In some embodiments, users can customize a workflow to add their own custom steps to integrate with external systems that can trigger a change in transaction state or associate them with manual steps. Additionally, system developers can develop custom workflows to support new business processes. In particular implementations, some of the actions performed by a workflow can be manual approvals, a SWIFT message request/response, scheduled or time-based actions, and the like. In some embodiments, roles can be assigned to particular users and access control lists can be applied to roles. An access control list controls access to actions and operations on entities within a network. This approach provides a hierarchical way of assigning privileges to users. A set of roles also includes roles related to replication of data, which allows financial management system 102 to identify what data can be replicated and who is the authorized user to be receiving the data at an external system.
In some embodiments, financial management system 102 detects and records all client metadata, which creates an audit trail for the client metadata. Additionally, one or more rules identify anomalies which may trigger a manual intervention by a user or principal to resolve the issue. Example anomalies include system request patterns that are not expected, such as a high number of failed login attempts, password resets, invalid certificates, volume of requests, excessive timeouts, http errors, and the like. Anomalies may also include data request patterns that are not expected, such as first time use of an account number, significantly larger than normal amount of payments being requested, attempts to move funds from an account just added, and the like. When an anomaly is triggered, financial management system 102 is capable of taking a set of actions. The set of actions may initially be limited to pausing the action, notifying the principals of the anomaly, and only resuming activity upon approval from a principal.
Financial management system 102 includes secure APIs 202 that are used by partners to securely communicate with financial management system 102. In some embodiments, the APIs are stateless to allow for automatic scaling and load balancing. Role-based access controller 204 provide access to modules, data and activities based on the roles of an individual user or participant interacting with financial management system 102. In some embodiments, users belong to roles that are given permissions to perform certain actions. An API request may be checked against the role to determine whether the user has proper permissions to perform an action. An onboarding module 206 includes all of the metadata associated with a particular financial institution, such as bank account information, user information, roles, permissions, clearing groups, assets, and supported workflows. A clearing module 208 includes, for example, a service that provides the functionality to transfer assets between accounts within a financial institution. A settlement module 210 monitors and manages the settlement of funds or other types of assets associated with one or more transactions handled by financial management system 102.
Financial management system 102 also includes a ledger manager 212 that manages a ledger (e.g., ledger 118 in
In the example of
As mentioned above, system/platform integrity is important to the secure operation of financial management system 102. This integrity is maintained by ensuring that all actions are initiated by authorized users or systems. Additionally, once an action is initiated and the associated data is created, an audit trail of any changes made and other information related to the action is recorded for future reference.
In particular embodiments, financial management system 102 includes (or interacts with) a roles database and an authentication layer. The roles database stores various roles of the type discussed herein.
In the example of
As discussed herein, financial management system 302 facilitates the transfer of funds between bank 304 and 306. Additional details regarding the manner in which the funds are transferred are provided below with respect to
In some embodiments, one or more components discussed herein are contained in a traditional infrastructure of a bank or other financial institution. For example, an HSM (Hardware Security Module) in a bank may execute software or contain hardware components that interact with a financial management system to facilitate the various methods and systems discussed herein. In some embodiments, the HSM provides security signatures and other authentication mechanisms to authenticate participants of a transaction.
Method 400 continues as the financial management system confirms 404 available funds for the transfer. For example, financial management system 302 in
If available funds are confirmed at 404, then account A101 at Bank A is debited 406 by the transfer amount and suspense account A (at Bank A) is credited with the transfer amount. Using the example of
The transferred funds are then settled 408 from suspense account A (at Bank A) to suspense account B (at Bank B). For example, financial management system 302 in
Method 400 continues as suspense account B (at Bank B) is debited 410 by the transfer amount and account B101 at Bank B is credited with the transfer amount. For example, financial management system 302 in
In some embodiments, the financial management system facilitates (or initiates) the debit, credit, and settlement activities (as discussed with respect to
The financial management system further receives 510 a transaction request from the client node, such as a request to transfer assets between two financial institutions or other entities. In response to the received transaction request, the financial management system verifies 512 the client node's identity and validates the requested transaction. In some embodiments, the client node's identity is validated based on an authentication token, and then permissions are checked to determine if the user has permissions to perform a particular action or transaction. Transfers of assets also involve validating approval of an account by multiple roles to avoid compromising the network. If the client node's identity and requested transaction are verified, the financial management system creates 514 one or more ledger entries to store the details of the transaction. The ledger entries may be stored in a ledger such as ledger 118 discussed herein. The financial management system then sends 516 an acknowledgement regarding the transaction to the client node with a server transaction token. In some embodiments, the server transaction token is used at a future time by the client when conducting audits. Finally, the financial management system initiates 518 the transaction using, for example, the systems and methods discussed herein.
In some embodiments, various constructs are used to ensure data integrity. For example, cryptographic safeguards allow a transaction to span 1-n principals. The financial management system ensures that no other users (other than the principals who are parties to the transaction) can view data in transit. Additionally, no other user should have visibility into the data as it traverses the various channels. In some embodiments, there is a confirmation that a transaction was received completely and correctly. The financial management system also handles failure scenarios, such as loss of connectivity in the middle of the transaction. Any data transmitted to a system or device should be explicitly authorized such that each entry (e.g., ledger entry) can only be seen and read by the principals who were a party to the transaction. Additionally, principals can give permission to regulators and other individuals to view the data selectively.
Cryptographic safeguards are used to detect data tampering in the financial management system and any other systems or devices. Data written to the ledger and any replicated data may be protected by:
In some embodiments, the financial management system monitors for data tampering. If the data store (central data store or replicated data store) is compromised in any way and the data is altered, the financial management system should be able to detect exactly what changed. Specifically, the financial management system should guarantee all participants on the network that their data has not been compromised or changed. Information associated with changes are made available via events such that the events can be sent to principals via messaging or available to view on, for example, a user interface. Regarding data forensics, the financial management system is able to determine that the previous value of an attribute was X, it is now Y and it was changed at time T, by a person A. If a system is hacked or compromised, there may be any number of changes to attribute X and all of those changes are captured by the financial management system, which makes the tampering evident.
In particular embodiments, the financial management system leverages the best security practices for SaaS (Software as a Service) platforms to provide cryptographic safeguards for ensuring integrity of the data. For ensuring data integrity, the handshake between the client and an API server (discussed with respect to
In some embodiments, all interactions with financial management system 602 or the API server are secured with TLS. API server 608 and audit server 610 may communicate with financial management system 602 using any type of data communication link or data communication network, such as a local area network or the Internet. Although API server 608 and audit server 610 are shown in
In some embodiments, at startup, a client sends a few checksums it has sent and transaction IDs to API server 608, which can verify the checksums and transaction IDs, and take additional traffic from the client upon verification. In the case of a new client, mutually agreed upon seed data is used at startup. A client request may be accompanied by a client signature and, in some cases, a previous signature sent by the server. The server verifies the client request and the previous server signature to acknowledge the client request. The client persists the last server signature and a random set of server hashes for auditing. Both client and server signatures are saved with requests to help quickly audit correctness of the financial management system ledger. The block size of transactions contained in the request may be determined by the client. A client SDK (Software Development Kit) assists with the client server handshake and embedding on server side signatures. The SDK also persists a configurable amount of server signatures to help with restart and for random audits. Clients can also set appropriate block size for requests depending on their transaction rates. The embedding of previous server signatures in the current client block provides a way to chain requests and provide an easy mechanism to detect tampering. In addition to a client-side signature, the requests are encrypted using standard public key cryptography to provide additional defense against client impersonation. API server 608 logs all encrypted requests from the client. The encrypted requests are used, for example, during data forensics to resolve any disputes.
In particular implementations, a client may communicate a combination of a previous checksum, a current transaction, and a hash of the current transaction to the financial management system. Upon receipt of the information, the financial management system checks the previous checksum and computes a new checksum, and stores the client hash, the current transaction, and the current checksum in a storage device, such as data store 604. The checksum history and hash (discussed herein) protect the integrity of the data. Any modification to an existing row in the ledger cannot be made easily because it would be detected by mismatched checksums in the historical data, thereby making it difficult to alter the data.
The integrity of financial management system 602 is ensured by having server audits at regular intervals. Since financial management system 602 uses chained signatures per client at the financial management system, it ensures that an administrator of financial management system 602 cannot delete or update any entries without making the ledger tamper evident. In some embodiments, the auditing is done at two levels: a minimal level which the SDK enforces using a randomly selected set of server signatures to perform an audit check; and a more thorough audit check run at less frequent intervals to ensure that the data is correct.
In some implementations, financial management system 602 allows for the selective replication of data. This approach allows principals or banks to only hold data for transactions they were a party to, while avoiding storage of other data related to transactions in which they were not involved. Additionally, financial management system 602 does not require clients to maintain a copy of the data associated with their transactions. Clients can request the data to be replicated to them at any time. Clients can verify the authenticity of the data by using the replicated data and comparing the signature the client sent to the financial management system with the request.
In some embodiments, a notarial system is used to maintain auditability and forensics for the core systems. Rather than relying on a single notary hosted by the financial management system, particular embodiments allow the notarial system to be installed and executed on any system that interacts with the financial management system (e.g., financial institutions or clients that facilitate transactions initiated by the financial management system).
The systems and methods discussed herein support different asset classes. Each asset class may have a supporting set of metadata characteristics that are distinct. Additionally, the requests and data may be communicated through multiple “hops” between the originating system and the financial management system. During these hops, data may be augmented (e.g., adding trade positions, account details, and the like) or changed.
In certain types of transactions, such as cash transactions, the financial management system streamlines the workflow by supporting rich metadata accompanying each cash transfer. This rich metadata helps banks tie back cash movements to trades, accounts, and clients.
Payments for all money movement (and other asset movements) need to be reconciled between all principals and observers of a transaction. In many situations, reconciliation is also required for internal bookkeeping of an enterprise. Additionally, certain regulations require regular filing of certain types of events. The description below relates to examples where the different parties need to reconcile the payments (and related items) across the principals.
In some embodiments, payments flow between participants in a cleared market, such as between an end customer and a clearing house. The following example describes some of the problems with the reconciliation process in the cleared market space. For example, the clearing members may act as both brokers and dealers to execute trades on behalf of their clients or for themselves. A clearing member typically has several customers. There are different types of trade positions that a customer may initiate, such as equities, futures, currency hedging, derivatives, and the like. The clearing member will most likely execute a customer's trading activity at more than one exchange. A customer may clear through several clearing members.
In some embodiments, the exchange, through a clearing house, will initiate settlements for all trades that are executed on the exchange via the clearing members. The clearing house computes the net amounts that need to be either debited or credited from the accounts of the clearing members. These can be for “mark to market” variations on the trade positions. The market price is at a point in time as determined by the clearing house based on the data from several third party sources. The net amounts are then debited or credited from the accounts.
Following the debits and credits to the accounts, the clearing member needs to reconcile the single net payments to or from their accounts to the total positions across all clients. Some clients will be net positive and some net negative. They then proceed to send requests for payments to each of the clients. In this step, they may add some additional fees and other charges to the payment request. The client now needs to reconcile these to the actual positions. Since these are calls and may be delayed, the market positions may change and the market value of the trade position may also change. In effect, the following reconciliations need to happen between the participants.
Clearing House:
1—The net debits and credits from each account at the settlement bank. Sometimes in the case of a shortfall of funds, they need to request these payments from the settlement bank to authorize. In this situation, they send the request to the settlement bank and, when approved, the funds are debited. In these cases, regarding the request to withdraw, the subsequent approvals also need to be tied into the debit pulls and credit pushes to the accounts.
2—For each pull and push, the metadata associated with the gross positions of each entity are tied to the payments. This includes data tying to market data that is time bound (that is mark and market prices). Additionally, the fees and charges also need to be tied into the payments.
3—The collateral pledges and recall data also need to be tied to the payments. These payments have additional data attributes such as haircut amounts. The settlement of these assets outside of the same bank need to go through other settlement services such as DTC (Depository Trust Company).
Clearing Members:
1—The net debits from their account needs to be tied to each of its client's gross positions. Additionally, any other data such as charges and fees needs to be tied in to request a payment from the client or to tie in a credit push to their accounts.
2—The payments from the clients need to be tied to specific requests from the clearing members requesting payments. In some situations, the payments are not paid out in full when there is a discrepancy between the books and data.
3—Some trade positions may not fully match and thus require manual adjustments at either the clearing member or the client. Partial payments are made to fulfil obligations by each party further adding complexity to reconciliations.
Clients: Net payments to and from multiple clients need to be reconciled.
Regulators:
1—Regulators such as the CFTC (Commodity Futures Trading Commission), SEC (Securities and Exchange Commission), ESMA (European Securities and Markets Authority), CESR (Committee of European Securities Regulators), Federal Reserve, and the like require different regulatory reporting filings that tie in the payments to the different positions of the parties.
2—Regulators request the filings from multiple parties and then run checks to make sure that the records match.
In other examples, payments flow as part of a Forex (FX) workflow. Forex is a market for trading currencies. In an example Forex workflow where customer A enters into a Forex trade with customer B, the following reconciliations need to happen between the participants:
1—Customers A and B may choose to trade directly with the market maker or through their correspondent banks that have a relationship with a market maker.
2—The market maker creates the market and facilitates the trade by connecting the two parties: one that is buying currency “A” in return for one that is selling currency “B”. The market maker earns the spread between the buying price and selling price which may be higher than market price. Additionally, they may charge fees for the services.
3—If correspondent banks are involved, the market maker will need to wire the funds to the end accounts for customer A and customer B. This involves wiring funds through the central bank in the respective countries.
4—The market maker often has different ledger technologies in the two countries and they may also operate as different legal entities. Additionally, they may also have nostro accounts to reconcile the fund payments of obligations between the legal entities. A nostro account refers to an account at a bank that holds a foreign currency from another bank.
5—Additionally, there may be multiple reconciliations needed: between a customer and correspondent banks on both sides of a transaction; and between a correspondent bank and market makers on both sides of a transaction.
As discussed herein, the described systems and methods use a shared ledger (e.g., ledger 118 in
In some embodiments, transactions are initiated by the members for one-off money transfer requests or when a workflow is executed by the members of a clearing group. Execution of a workflow will trigger one or more transactions that reflect the movement of assets between the participants. Each transaction can include metadata that the principals can use for internal business processes. Metadata examples include reconciliation instructions or specific messages or accounting code that participants can agree upon. A transaction may have various states that it passes through from an initial state to a terminal state. It is easier to think of this as a state diagram.
Each transaction and the associated transaction states may have additional metadata. The shared ledger (e.g., ledger 118 in
The transactions and the metadata recorded in the shared ledger contain information that is very sensitive and confidential to the businesses initiating the instructions. The systems and methods described herein ensure security with a permissioned viewed ledger. Data for each participant is encrypted with a symmetric key that is unique for the participant. The keys also have a key rotation policy where the data for that node is rekeyed. The keys for each node are bifurcated and saved in a secure storage location with role-based access controls. In some embodiments, only a special service (referred to herein as a cryptographic service) can access these keys at runtime to encrypt and decrypt the data.
As shown in
Each transaction can have two or more participants. In addition to the multiple parties involved in the transaction, there can be one or more “observers” to the transaction. The observer status is important from a compliance and governance standpoint. For example, the Federal Reserve or the CFTC is not a participant of the transaction, but may have observer rights on certain type of transactions in the system. In some embodiments the participants can subscribe to certain types of events. The transaction state in the state diagram above changes trigger events in the described systems.
In some embodiments, participant 908 and/or observer 910 can subscribe to any number of event types. Example event types include workflow initiated events, clearing and settlement instruction initiated events, balance checks failed events, overdraft requested events, overdraft approved events, and settlement completed events. When subscribing to an event type, the client nodes (e.g., participant 908 or observer 910) specify the notification protocol. Example notification protocols include smtp/email, sms or text protocol, or webhooks or standard push APIs as part of the w3c standard.
When an event type is triggered for which there is a subscription, the appropriate notification protocol is initiated between the financial management system and the subscriber. Thus, the subscriber is notified using the notification protocol in substantially real-time to the subscribed event type.
In addition to providing push-based notification from the financial management system to the transaction participants or observers, the financial management system also includes a query interface and a reporting interface to view the transaction events and the associated metadata. The financial management system further includes a search API that provides the ability to search for the part of the ledger that the particular node/participant is authorized to view. Only the participants and authorized observers to a particular transaction are granted access to view the details of the particular transaction. The search API and the reports (e.g., transaction reports) can further be filtered by any or all of the following categories: asset types, date range, amount (of asset type), participant ID, workflow type, clearing type, and the like.
The systems and methods discussed herein orchestrate, for example, a payment sequence in a workflow. The workflow is initiated by authorized users. When a payment is initiated, the appropriate metadata is passed. When possible, the financial management system uses the ISO 20022 format for passing additional metadata. This is a structured metadata that ties in the payments with the following: the amounts to be debited and credited to each principal, and the type of payments. The type of payments may include, for example, net vs. gross. If the payment is net, the metadata may include the makeup of each unique group of like fees, margins, etc. If some of these types have a sub-type, the metadata may include the appropriate subtype (initial margin vs variation margin, and the like). For each group of items, the metadata may include the gross position by each trade position. For each trade position, additional metadata can be passed. For example the CUSIP (Committee on Uniform Security Identification Procedures) number, the number of units, the market price, fees, and the like.
Each principal can utilize multiple accounts using the systems and methods described herein. This is where the monies get debited from or credited to. The financial management system described herein sends the bank that holds each account the appropriate messages to initiate the debits and credits. Additionally, if any of the payments require a settlement message to be sent, the financial management system can initiate the appropriate settlement message with the central bank. The shared ledger, as described herein, records all of the transactions and the state changes associated with each transaction.
Method 1000 continues as the principals initiate 1004 a transaction (e.g., a workflow) through the financial management system. When initiated, the financial management system communicates with the core ledgers of the banks and orchestrates a series of debit and credit instructions. Depending on the transaction, the financial management system may perform different sequences of activities for different principals. The principals initiating the transaction also send 1006 (to the financial management system) metadata that ties in the payment debits and credits with the underlying trade or payment metadata. For example, the principals may send the metadata to the financial management system or any other system or device. In some embodiments, this metadata is for a net payment. In other embodiments, if the metadata is associated with a set of trade positions, the metadata may include the trade metadata and the CUSIPs.
The financial management system updates 1008 the ledger (e.g., ledger 118 in
In some embodiments, the systems and methods described herein are distributed and the request and responses from the various systems are likely to be asynchronous. The financial management system generates a transaction id and a uuid (universal unique identifier) as a reference with each request to track the responses. In particular embodiments, the systems are heterogeneous and sometimes do not return the reference numbers back. In that situation, the amounts, the positions and the account number are used to smartly match the payments to the reference.
For payments that involve one-to-many or many-to-one payments, the principals may send the metadata about the net amounts. For example, the clearing houses may send all the net metadata positions and CUSIPs. In many situations, there are likely several million CUSIPs held across the multiple clearing members. The payment initiation from each clearing member's account is now associated with a different uuid. Each clearing member further sends the trade positions of each of the clients that is associated with (or in communication with) the financial management system. In some embodiments, the financial management system initiates debits and credits from the accounts of the clients to and from the accounts of the clearing members. The financial management system then matches these trade positions for the end clients and then ties in the net payments of the trade position, fees, charges, and the like.
The document structures described herein may be used to create reconciliation reports. The reconciliations can be created for each debit and credit pull of data. Once the documents are created in the structures described herein, creation of the reconciliation reports is a process of aggregation of the documents for each matching party. The aggregations can be done for each payment cycle when money was debited or credited to their accounts. This is a point-in-time reconciliation. Additionally, reconciliation reports can be created over a period of time (e.g., statements) or the reconciliation reports can be broken down by asset types or by certain type of trade positions. This described systems and methods for saving documents with the use of fast lookup data structures, such as bloom filters, significantly speeds up generation of reconciliation reports.
In some embodiments, a reconciliation report has a certain payload when generated. The payload, along with the public keys of the requester, is used to create a unique hash. In some embodiments, the hash is created by hashing transaction data such as principals to the transaction, amount of the transaction, account IDs, trade (or transaction) data, value data, settlement data, and the like. The hash is generated by applying public keys of the principals to the transaction and at least one public key associated with the financial management system. In particular implementations, a Merkle Tree based hash is generated for the trade bag set to allow for quick audits of the transactions. The hash is saved for auditing purpose in the financial management system. In some embodiments, the financial management system then digitally signs the reconciliation report with its private key and makes it available to the participants. The principals and observers can then verify the authenticity of the reconciliation reports with an audit server, such as audit server 610 discussed above with respect to
The systems and methods discussed herein provide the ability to identify conflicts in reconciliation data between two parties. When two documents are presented, the hashes of these documents are first checked against the ones previously saved (as discussed above). In some embodiments, the following steps are executed to identify conflicts. Initially, the process determines whether the hash of each party matches. If the hashes do not match, the data is not what was sent to the party by the financial management system. If the hashes do not match, the system attempts to identify the common set of document subsets between the parties. The process walks down the level 3, level 2, and level 1 hash keys to see which ones do not match for the common set of documents. For the ones that do not match, the process walks down the list to the attribute level to identify the differences between the documents. Using this approach, multiple parties can identify and reach a consensus on the correct set of attributes. In some embodiments, the described systems and methods hashes rows in two mismatched tables (such as a ledger) and identifies the specific rows that do not match. Then, the particular columns in the mismatched rows are analyzed to determine which specific columns do not match. This approach quickly finds the specific data values that do not match between the two tables.
Computing device 1300 includes one or more processor(s) 1302, one or more memory device(s) 1304, one or more interface(s) 1306, one or more mass storage device(s) 1308, and one or more Input/Output (I/O) device(s) 1310, all of which are coupled to a bus 1312. Processor(s) 1302 include one or more processors or controllers that execute instructions stored in memory device(s) 1304 and/or mass storage device(s) 1308. Processor(s) 1302 may also include various types of computer-readable media, such as cache memory.
Memory device(s) 1304 include various computer-readable media, such as volatile memory (e.g., random access memory (RAM)) and/or nonvolatile memory (e.g., read-only memory (ROM)). Memory device(s) 1304 may also include rewritable ROM, such as Flash memory.
Mass storage device(s) 1308 include various computer readable media, such as magnetic tapes, magnetic disks, optical disks, solid state memory (e.g., Flash memory), and so forth. Various drives may also be included in mass storage device(s) 1308 to enable reading from and/or writing to the various computer readable media. Mass storage device(s) 1308 include removable media and/or non-removable media.
I/O device(s) 1310 include various devices that allow data and/or other information to be input to or retrieved from computing device 1300. Example I/O device(s) 1310 include cursor control devices, keyboards, keypads, microphones, monitors or other display devices, speakers, printers, network interface cards, modems, lenses, CCDs or other image capture devices, and the like.
Interface(s) 1306 include various interfaces that allow computing device 1300 to interact with other systems, devices, or computing environments. Example interface(s) 1306 include any number of different network interfaces, such as interfaces to local area networks (LANs), wide area networks (WANs), wireless networks, and the Internet.
Bus 1312 allows processor(s) 1302, memory device(s) 1304, interface(s) 1306, mass storage device(s) 1308, and I/O device(s) 1310 to communicate with one another, as well as other devices or components coupled to bus 1312. Bus 1312 represents one or more of several types of bus structures, such as a system bus, PCI bus, IEEE 1394 bus, USB bus, and so forth.
For purposes of illustration, programs and other executable program components are shown herein as discrete blocks, although it is understood that such programs and components may reside at various times in different storage components of computing device 1300, and are executed by processor(s) 1302. Alternatively, the systems and procedures described herein can be implemented in hardware, or a combination of hardware, software, and/or firmware. For example, one or more application specific integrated circuits (ASICs) can be programmed to carry out one or more of the systems and procedures described herein.
In the above disclosure, reference has been made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific implementations in which the disclosure may be practiced. It is understood that other implementations may be utilized and structural changes may be made without departing from the scope of the present disclosure. References in the specification to “one embodiment,” “an embodiment,” “an example embodiment,” “selected embodiments,” “certain embodiments,” etc., indicate that the embodiment or embodiments described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Additionally, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
Implementations of the systems, devices, and methods disclosed herein may comprise or utilize a special purpose or general-purpose computer including computer hardware, such as, for example, one or more processors and system memory, as discussed herein. Implementations within the scope of the present disclosure may also include physical and other computer-readable media for carrying or storing computer-executable instructions and/or data structures. Such computer-readable media can be any available media that may be accessed by a general purpose or special purpose computer system. Computer-readable media that store computer-executable instructions are computer storage media (devices). Computer-readable media that carry computer-executable instructions are transmission media. Thus, by way of example, and not limitation, implementations of the disclosure can include at least two distinctly different kinds of computer-readable media: computer storage media (devices) and transmission media.
Computer storage media (devices) includes RAM, ROM, EEPROM, CD-ROM, solid state drives (“SSDs”) (e.g., based on RAM), Flash memory, phase-change memory (“PCM”), other types of memory, other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store desired program code means in the form of computer-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer.
An implementation of the devices, systems, and methods disclosed herein may communicate over a computer network. A “network” is defined as one or more data links that enable the transport of electronic data between computer systems and/or modules and/or other electronic devices. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or a combination of hardwired and wireless) to a computer, the computer properly views the connection as a transmission medium. Transmissions media can include a network and/or data links, which can be used to carry desired program code means in the form of computer-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer. Combinations of the above should also be included within the scope of computer-readable media.
Computer-executable instructions include, for example, instructions and data which, when executed at a processor, cause a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. The computer-executable instructions may be, for example, binaries, intermediate format instructions such as assembly language, or even source code. Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the described features or acts described above. Rather, the described features and acts are disclosed as example forms of implementing the claims.
Those skilled in the art will appreciate that the disclosure may be practiced in network computing environments with many types of computer system configurations, including, personal computers, desktop computers, laptop computers, message processors, hand-held devices, multi-processor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, mobile telephones, PDAs, tablets, pagers, routers, switches, various storage devices, and the like. The disclosure may also be practiced in distributed system environments where local and remote computer systems, which are linked (either by hardwired data links, wireless data links, or by a combination of hardwired and wireless data links) through a network, both perform tasks. In a distributed system environment, program modules may be located in both local and remote memory storage devices.
Further, where appropriate, functions described herein can be performed in one or more of: hardware, software, firmware, digital components, or analog components. For example, one or more application specific integrated circuits (ASICs) can be programmed to carry out one or more of the systems and procedures described herein. Certain terms are used throughout the description and claims to refer to particular system components. As one skilled in the art will appreciate, components may be referred to by different names. This document does not intend to distinguish between components that differ in name, but not function.
It should be noted that the sensor embodiments discussed above may comprise computer hardware, software, firmware, or any combination thereof to perform at least a portion of their functions. For example, a module may include computer code configured to be executed in one or more processors, and may include hardware logic/electrical circuitry controlled by the computer code. These example devices are provided herein purposes of illustration, and are not intended to be limiting. Embodiments of the present disclosure may be implemented in further types of devices, as would be known to persons skilled in the relevant art(s).
At least some embodiments of the disclosure have been directed to computer program products comprising such logic (e.g., in the form of software) stored on any computer useable medium. Such software, when executed in one or more data processing devices, causes a device to operate as described herein.
While various embodiments of the present disclosure are described herein, it should be understood that they are presented by way of example only, and not limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the disclosure. Thus, the breadth and scope of the present disclosure should not be limited by any of the described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents. The description herein is presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure to the precise form disclosed. Many modifications and variations are possible in light of the disclosed teaching. Further, it should be noted that any or all of the alternate implementations discussed herein may be used in any combination desired to form additional hybrid implementations of the disclosure.
This application claims the priority benefit of U.S. Provisional Application Ser. No. 62/393,399, entitled “Constructs of Multiparty Reconciliation,” filed on Sep. 12, 2016, the disclosure of which is hereby incorporated by reference herein in its entirety. This application also claims the priority benefit of U.S. Provisional Application Ser. No. 62/393,395, entitled “Tamper Resistance,” filed on Sep. 12, 2016, the disclosure of which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
62393399 | Sep 2016 | US | |
62393395 | Sep 2016 | US |