The present invention relates generally to multi-processor computer systems. More specifically, the present invention provides techniques for building computer systems having s plurality of multi-processor clusters.
A relatively new approach to the design of multi-processor systems replaces broadcast communication among processors with a point-to-point data transfer mechanism in which the processors communicate similarly to network nodes in a tightly-coupled computing system. That is, the processors are interconnected via a plurality of communication links and requests are transferred among the processors over the links according to routing tables associated with each processor. The intent is to increase the amount of information transmitted within a multi-processor platform per unit time.
One limitation associated with such an architecture is that the node ID address space associated with the point-to-point infrastructure is fixed, therefore allowing only a limited number of nodes to be interconnected. The infrastructure is also flat, therefore allowing only a single level of mapping for address spaces and routing functions. In addition, the processing throughput for transactions in a computer system employing such a point-to-point data transfer mechanism may be limited by the capacity of the protocol engine responsible for processing those transactions.
It is therefore desirable to provide techniques by which computer systems employing such an infrastructure as a basic building block are not so limited.
According to the present invention, a multi-processor system is provided in which a plurality of multi-processor clusters, each employing a point-to-point communication infrastructure, are interconnected. The invention employs multiple protocol engines in each cluster to process transactions thereby improving transaction processing throughput. According to a specific embodiment, transaction packets are mapped to the various protocol engines associated with a cluster according to the target address. According to a more specific embodiment, transaction packets which do not specify a target address are mapped to a protocol engine based on information in the packet which may be used to identify the cluster and cluster resource for which the packet is intended.
Thus, the present invention provides a computer system including a plurality of processor clusters. Each cluster includes a plurality of local nodes and an interconnection controller interconnected by a local point-to-point architecture. The interconnection controller in each cluster comprises a plurality of protocol engines for processing transactions. At least one of the interconnection controller and the local nodes in each cluster is operable to map the transactions to the protocol engines according to destination information associated with the transactions. According to one embodiment, the interconnection controller effects the mapping with reference to target addresses associated with the transactions. According to another embodiment, the local nodes effect the mapping by mapping the target addresses to one of a plurality of nodes associated with the local interconnection controller, each of which corresponds to at least one of the protocol engines.
A further understanding of the nature and advantages of the present invention may be realised by reference to the remaining portions of the specification and the drawings.
Reference will now be made in detail to some specific embodiments of the invention including the best modes contemplated by the inventors for carrying out the invention. Examples of these specific embodiments are illustrated in the accompanying drawings. While the invention is described in conjunction with these specific embodiments, it will be understood that it is not intended to limit the invention to the described embodiments. On the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims. Multi-processor architectures having point-to-point communication among their processors are suitable for implementing specific embodiments of the present invention. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. The present invention may be practiced without some or all of these specific details. Well known process operations have not been described in detail in order not to unnecessarily obscure the present invention. Furthermore, the present application's reference to a particular singular entity includes that possibility that the methods and apparatus of the present invention can be implemented using more than one entity, unless the context clearly dictates otherwise.
According to specific embodiments, the service processor of the present invention has the intelligence to partition system resources according to a previously specified partitioning schema. The partitioning can be achieved through direct manipulation of routing tables associated with the system processors by the service processor which is made possible by the point-to-point communication infrastructure. The routing tables can also be changed by execution of the BIOS code in one or more processors. The routing tables are used to control and isolate various system resources, the connections between which are defined therein.
The processors 202a-d are also coupled to an interconnection controller 230 through point-to-point links 232a-d. According to various embodiments and as will be described below in greater detail interconnection controller 230 performs a variety of functions which enable the number of interconnected processors in the system to exceed the node ID space and mapping table limitations associated with each of a plurality of processor clusters. According to some embodiments, interconnection controller 230 performs a variety of other functions including the maintaining of cache coherency across clusters. Interconnection controller 230 can be coupled to similar controllers associated with other multi-processor clusters. It should be noted that there can be more than one such interconnection controller in one cluster. Interconnection controller 230 communicates with both processors 202a-d as well as remote clusters using a point-to-point protocol.
More generally, it should be understood that the specific architecture shown in
According to one embodiment service processor 212 is a Motorola MPC855T microprocessor which includes integrated chipset functions, and interconnection controller 230 is an Application Specific Integrated Circuit (ASIC) supporting the local point-to-point coherence protocol. Interconnection controller 230 can also be configured to handle a non-coherent protocol to allow communication with I/O devices. In one embodiment, interconnection controller 230 is a specially configured programmable chip such as a programmable logic device or a field programmable gate array. In another embodiment, the interconnect controller 230 is an Application Specific integrated Circuit (ASIC). In yet another embodiment, the interconnect controller 230 is a general purpose processor augmented with an ability to access and process interconnect packet traffic.
The protocol engine 305 has access to a pending buffer 309 that allows the interconnection controller to track transactions such as recent requests and probes and associate the transactions with specific processors. Transaction information maintained in the pending buffer 309 can include transaction destination nodes, the addresses of requests for subsequent collision detection and protocol optimizations, response information, tags, and state information. As will become clear, this functionality is leveraged to enable particular aspects of the present invention.
The interconnection controller has a coherent protocol interface 307 that allows the interconnection controller to communicate with other processors in the cluster as well as external processor clusters. The interconnection controller may also include other interfaces such as a non-coherent protocol interface 311 for communicating with I/O devices (e.g., as represented in
According to various embodiments of the invention, processors 202a-202d are substantially identical.
The infrastructure shown in
The routing tables associated with each of the nodes in the distributed routing mechanism collectively represent the current state of interconnection among the computer system resources. Each of the resources (e.g., a specific memory range or I/O device) owned by any given node (e.g., processor) is represented in the routing table(s) associated with the node as an address. When a request arrives at a node, the requested address is compared to a two level entry in the node's routing table identifying the appropriate node and link, i.e., given a particular address within a range of addresses, go to node x; and for node x use link y.
As shown in
Processor 202 also has a set of JTAG handshake registers 408 which, among other things, facilitate communication between the service processor (e.g., service processor 212 of
As mentioned above, the basic protocol upon which the clusters in specific embodiments of the invention are based provides for a limited node ID space which, according to a particular implementation, is a 3-bit space, therefore allowing for the unique identification of only 8 nodes. That is, if this basic protocol is employed without the innovations represented by the present invention, only 8 nodes may be interconnected in a single cluster via the point-to-point infrastructure. To get around this limitation, the present invention introduces a hierarchical mechanism which preserves the single-layer identification scheme within particular clusters while enabling interconnection with and communication between other similarly situated clusters and processing nodes.
According to a specific embodiment, one of the nodes in each multi-processor cluster is an interconnection controller, e.g., interconnection controller 230 of
In the basic protocol, when a particular processor in a cluster generates a request, a set of address mapping tables are employed to map the request to one of the other nodes in the cluster. That is, each node in a cluster has a portion of a shared memory space with which it is associated. There are different types of address mapping tables for main memory, memory-mapped I/O, different types of I/O space, etc. These address mapping tables map the address identified in the request to a particular node in the cluster.
A set of routing tables are then employed to determine how to get from the requesting node to the node identified from the address mapping table. That is, as discussed above, each processor (i.e., cluster node) has associated routing tables which identify a particular link in the point-to-point infrastructure which may be used to transmit the request from the current node to the node identified from the address mapping tables. Although generally a node may correspond to one or a plurality of resources (including, for example, a processor), it should be noted that the terms node and processor are often used interchangeably herein. According to a particular implementation, a node comprises multiple sub-units, e.g., CPUs, memory controllers, I/O bridges, etc., each of which has a unit ID.
In addition, because individual transactions may be segmented in non-consecutive packets, each packet includes a unique transaction tag to identify the transaction with which the packet is associated with reference to the node which initiated the transaction. According to a specific implementation, a transaction tag identifies the source node (3-bit field), the source node unit (2-bit field), and a transaction ID (5-bit field).
Thus, when a transaction is initiated at a particular node, the address mapping tables are employed to identify the destination node (and unit) which are then appended to the packet and used by the routing tables to identity the appropriate link(s) on which to route the packet. The source information is used by the destination node and any other nodes which are probed with the request to respond to the request appropriately.
According to a specific embodiment and as mentioned above, the interconnection controller in each cluster appears to the other processors in its cluster as just another processor in the cluster. However, the portion of the shared memory space associated with the interconnection controller actually encompasses the remainder of the globally shared memory space, i.e., the memory associated with all other clusters in the system. That is, from the perspective of the local processors in a particular cluster, the memory space associated with all of the other multi-processor clusters in the system are represented by the interconnection controller(s) in their own cluster.
According to an even more specific embodiment which will be described with reference to
An illustration of an exemplary address mapping scheme designed according to the invention and assuming such a cluster configuration is shown in
To extend the address mapping function beyond a single cluster, each cluster maps its local memory space, (i.e., the portion of the global memory space associated with the processors in that cluster, into a contiguous region while the remaining portion of the global memory space above and below this region is mapped to the local interconnection controllers). The interconnection controller in each cluster maintains two mapping tables: a global map and local map. The global map maps outgoing requests to remote clusters. The local map maps incoming requests from remote clusters to a particular node within the local cluster.
Referring now to
An exemplary transaction described with reference to
In a particular implementation, each processor or cluster node is limited to eight memory map registers. The scheme described above with reference to
As described above, on the local cluster level, information from address mapping tables is used to identify the appropriate link on which to transmit information to a destination node within the cluster. To effect transmissions between clusters using the global mapping described above, a similar mechanism is needed. Therefore, according to various embodiments, in addition to the local routing tables associated with each node in a cluster, the interconnection controller maintains global routing information which maps the other clusters in the system to the various point-to-point transmission links interconnecting the clusters (e.g., links 111 of
According to a specific embodiment of the invention, two types of local routing tables are employed: one for directed packets and one for broadcast packets. Each table (e.g., tables 406 of
In a particular implementation of the interconnection controller of the present invention, its local tables map a local destination node to one of four links for directed packets and any number of links for broadcast packets. The interconnection controller also maintains a global routing table which maps remote destination clusters to a particular remote link. According to a particular embodiment, the interconnection controller also supports multicast of packets at the global routing level.
A specific embodiment of a routing mechanism designed according to the present invention will now be described with reference to
As part of an exemplary transaction, a CPU 602 at node N0 in Cluster 0 generates a packet directed to a CPU 604 at node N0 in the Cluster 3. This packet could be, for example, a memory request that maps to a memory controller at that node. Because CPU 602 has no knowledge of anything outside of its cluster, it generates the packet targeting node N1 in Cluster 0 (i.e., the local interconnection controller 606) as the destination. As discussed above, this is due to the fact that the local memory map owned by node N0 (see the relevant portion of the table of
When interconnection controller 608 at Cluster 1 receives the packet, it also determines that the packet is destined for Cluster 3 and determines from its global routing table (
Embodiments of the invention also address the issue of transaction identification in a system having a plurality of multi-processor clusters. In general, the importance of the unique identification of transactions in a multi-processor environment is understood. And where the transaction identification or tag space is limited, mechanisms to extend it are needed to enable the interconnection of more than the maximum number of processors supported by the limited tag space. That is, in an environment with a plurality of clusters operating with identical local transaction tag spaces, there is a potential for more than one transaction to be generated in different clusters simultaneously with the identical tag. Where those transactions occur between nodes in different clusters, the potential for conflict is obvious. Therefore, embodiments of the present invention provide mechanisms which extend the local tag spaces such that each transaction in the multi-cluster system is uniquely identified.
More specifically, these embodiments map transactions from the local transaction tag space to a larger global transaction tag space. As described above, the local tag space is specified using the node ID, the unit ID, and a transaction ID. On top of that, the global tag space is specified using a global cluster ID and a global transaction ID. According to one embodiment, the interconnection controllers in the system use their pending buffers to simplify the allocation and management of the mapping and remapping actions. According to an even more specific embodiment and as will be described, additional protocol management is used to maintain the uniqueness of the global transaction tags.
According to a specific embodiment, all transactions within a cluster are tagged with a unique ID generated by the requesting node. The processors in each cluster which are not the interconnection controller support a 3-bit node ID, a 2-bit unit ID and a 5-bit transaction ID. The combination of these fields creates a 10 bit tag which is unique within the cluster. The unit ID represents sub-units within a node. It should be noted that a particular node may or may not include a processor as one of its sub-units, e.g., the node might contain only memory.
According to one embodiment, to extend to the transaction tag space beyond the local cluster, each cluster's interconnection controller maps each its cluster's local tag space into the global tag space using a Q-bit Cluster ID and a T-bit Transaction ID. In the exemplary system in which each cluster has a 5-bit transaction 10 and there are four clusters, T might be 7 and Q might be 2.
According to one embodiment illustrated in
According to a specific embodiment illustrated in
An example of the tag mapping mechanisms of a specific embodiment of the invention will now be described with reference to
According to various embodiments, processor 901-1 in a local cluster 900 sends a data access request such as a read request to an interconnection controller 903-1. The requesting node 901-1 generates the request with a local tag (e.g., tag 902) in the cluster's local tag space. The interconnection controller 903-1 maps the outgoing request into the global tag space (e.g., using global tag 904) and the mapping is saved in the pending buffer (e.g., buffer 309 of
At home cluster 920, incoming requests (e.g., 912) are mapped by interconnection controller 921-1 into the local tag space (e.g., using tag 914) and the mapping is saved in the pending buffer of controller 921-1 (e.g., table insertion: global tag 904/local tag 914). Outgoing responses from home cluster 920 (e.g., 908 and 910) are mapped from the local tag space back to the global tag space using a table lookup in interconnection controller 921′s pending buffer. Incoming responses to the home cluster are mapped from the global tag space back to the local tag space using a table lookup in interconnection controller 921′s pending buffer.
In this exemplary transaction, interconnection controller 921-1 forwards the access request to a memory controller 923-1 also associated with home cluster 920. At this point, memory controller 923-1 locks the memory line associated with the request. In one example, the memory line is a unique address in the memory space shared by the multiple processors in request cluster 900, home cluster 920, and remote cluster 940. Memory controller 923-1 generates a probe associated with the data access request and forwards the probe to local nodes associated with cache blocks 925 and 927 as well as to interconnection controller 921-2.
Interconnection controller 941-1 at remote cluster 940 maps global tags (e.g., tag 922) into its local tag space using local tags (e.g., tag 924). Responses (e.g., 926) are mapped from the local tag space back to the global tag space using a table lookup in interconnection controller 941′s pending buffer. In response to the probe from home cluster 920, interconnection controller 941-1 probes local nodes associated with cache blocks 945, 947, and 949. Similarly, interconnection controller 903-2 associated with request cluster 900 receives a probe and forwards the probe to local nodes associated with cache blocks 905, 907, and 909. Processor 901-2 receives probe responses from the local nodes associated with cache blocks 905, 907, and 909.
According to various embodiments, interconnection controller 921-3 accumulates probe responses and sends the probe responses to interconnection controller 903-3, which in turn forwards the probe responses to the processor 901-3. Interconnection controller 921-4 also sends a memory controller read response 910 to interconnection controller 903-4, which forwards the read response to processor 901-4. After receiving all responses and the fetched data, processor 901-4 sends a source done response to interconnection controller 903-5. Interconnection controller 903-5 forwards the source done message to interconnection controller 921-5. Interconnection controller 921-5 in turn sends a source done message to memory controller 923-2.
According to a specific embodiment, interconnection controller 921-5 also acknowledges the Source Done transaction (918) with a tag release transaction (928) to controller 903-6 at the requesting cluster that allows it to reuse the tag. As described below, this acknowledgment prevents the requesting cluster from reusing a global tag until the global tag is no longer in use in the system.
It should be noted that the above-described tag mapping mechanism works for all transaction types with the exception of the Source Done transaction. In this case, the outgoing SD transaction received by the interconnection controller at the requesting cluster is tagged with the local node's identifier. As a result, the interconnection controller at the requesting cluster must search its pending buffer for an entry with a matching local tag and then use the index as the global tag. The same mechanism is required when the Source Done transaction reaches the home cluster. In this case, the pending buffer at the home quad is searched for a matching global tag and the index is used as the local tag.
According to a specific embodiment, the final tag release transaction (e.g., 928) is provided to inform the requesting cluster when a given tag may be reused. This tag release mechanism is for preventing ambiguity of Source Done (SD) transactions at the home cluster. For example, without such a mechanism, after the requesting cluster completes a transaction and a SD transaction is sent to the home cluster (e.g., 918), a new transaction can be generated at the requesting cluster with the same global tag. A transmission associated with this transaction could potentially be received at the home cluster and inserted into the home cluster pending buffer prior to the receipt of the first SD transaction as they travel on different virtual channels. Under such circumstances, the pending buffer at the home cluster would have multiple entries with the same global tag. Requiring the tag release transaction forecloses this possibility.
As described above, the interconnection controller described herein facilitates the merger of independent cache-coherent clusters into a larger cache coherent system. According to a particular embodiment, these interconnection controllers are embodied as ASIC chips and the following description assumes this. However, it should be understood that neither the interconnection engines nor their included functionalities are so limited.
According to various embodiments of the invention, protocol engines are blocks of hardware on the interconnection controller ASIC chip. The functionality of these engines are governed by associated microcode and relate generally to managing transaction flows. Generally speaking, a protocol engine looks at each packet received by the interconnection controller and makes decisions regarding the appropriate handling of the packet and any actions/response which need to be taken. Having a single protocol engine to manage transactions (e.g., as shown in
Therefore, as mentioned above and according to a specific embodiment, each interconnection controller comprises multiple protocol engines to improve the transaction processing throughput of the system. According to the described embodiment, each of the protocol engines comprises substantially identical hardware blocks, each being programmed by the associated microcode to perform a particular type of transaction processing. More specifically, in the described embodiment there are three different types of protocol engines in each interconnection controller which will be referred to herein as remote memory protocol engines, local memory protocol engines, and special protocol engines, respectively.
Remote memory protocol engines (RMPEs) 1002 are responsible for processing transactions which target remote memory, i.e., memory associated with another cluster, and all subsequent transactions in that particular transaction flow. Local memory protocol engines (LMPEs) 1004 are responsible for processing transactions which target local memory, i.e., memory associated with the local cluster with which the interconnection controller is associated, and all subsequent transactions in the flow. Special protocol engine 1006 is responsible for processing interrupts, I/O accesses, configuration accesses, etc. According to the embodiment shown in
Interconnection controller has a coherent protocol interface 1007 that allows the interconnection controller to communicate with other processors in the cluster as well as external processor clusters. Pending buffer 1009 and noncoherent interface 1011 may have functionalities similar to those for similar processor blocks described above with reference to
Distributing the transaction processing work load among the various protocol engines in an interconnection controller may be done in a variety of ways. According to a specific embodiment, the memory mapping tables of the present invention are employed to assign each protocol engine to a particular address range or set of ranges within the global memory space, i.e., the memory space shared by all of the processor clusters. That is, the initial request or probe packets in a transaction flow include address information which is used to map the transaction to a particular protocol engine according to the address range(s) associated with each engine. In one embodiment, the assignment of the address ranges to the various protocol engines associated with the plurality of clusters occurs when the system is first initialized. According to other embodiments, assignment or reassignment may occur after system initialization.
According to one embodiment, multiple node IDs are used for the interconnection controller in each cluster. This is enabled in a particular implementation by the fact that the capacity of the node ID space associated with each cluster exceeds the number of nodes in a cluster. For example, an embodiment described above with reference to
According to a specific embodiment, the individual protocol engines in the interconnection controller are referenced by node and unit ID pairs. Thus, seven protocol engines are referenced using only four node IDs. According to this embodiment, RMPE's 1002 are referenced with two node IDs and one unit ID, LMPEs 1004 are referenced with the same two node IDs and two unit IDs, and special protocol engine 1006 is referenced using a single node ID. For example, RMPE0 is represented by node and unit ID combination {4, 2}, RMPE1 by {5, 2}, LMPE0 by {4, 0}, LMPE1 by {4, 1}, LMPE2 by {5, 0}, LMPE3 by {5, 1}, and the special engine by {6, x}. In this embodiments, the unit IDs 0, 1, 2, and 3 in the other local nodes correspond to a CPD, a CPU, a memory controller, and an I/O bridge, respectively.
As described above, in a particular cluster the contiguous portion of the global memory space associated with remote clusters, i.e., the remote memory space, is associated with or mapped to the node or set of nodes corresponding to the local interconnection controller. The RMFEs in each interconnection controller are mapped to the same portion of the global memory space. More specifically and according to one embodiment, a set of mapping tables is maintained which maps these engines to the remote memory space. According to various embodiments, any of a variety of mapping schemes may be employed to distribute the transaction processing work load among the engines. According to specific embodiments, alternating and adjacent portions of the remote memory space are alternatively assigned to the multiple RMPEs.
In addition, a set of mapping tables is maintained which maps the nodes and units associated with the local cluster to the multiple LMPEs of the local interconnection controller. As with the mapping of the RMPEs, the mapping of the LMPEs may be accomplished in a variety of ways. An example of such a mapping is shown in
In this example, the protocol engines in Cluster 2, i.e., the local cluster, are mapped to a physical memory space 1100 associated with a four cluster system. Each cluster is assumed to include four local nodes and an interconnection controller which corresponds to two additional local nodes. As described above, each of the four local nodes may comprise multiple units including, for example, a memory controller and a host bridge. Each of the clusters corresponds to a contiguous portion of memory space 1100. Two DRAM mapping tables associated with Cluster 2 map the portions of memory space 1100 corresponding to Clusters 0 and 1 to the remote engines of Cluster 2, i.e., RMPE1 and RMPEO. Another two DRAM mapping tables map the portion of memory space 1100 corresponding to Cluster 3 to RMPE0 and RMPE1 as well. Another four DRAM mapping tables map the portions of memory space corresponding to Cluster 2 to the four local nodes (other than the nodes associated with the interconnection controller) in Cluster 2.
According to various embodiments, these mappings may follow any of a variety of schemes. For example, as mentioned above, alternating and adjacent portions of the memory space associated with a particular cluster may be assigned to RMPE0 and RMPE1. These alternating portions may be a memory line, a memory page, multiple pages, etc., with the mappings striding on the boundaries, e.g., the line or page boundaries.
Certain types of transaction packets, e.g., packets associated with Source Done transaction 918 of
Therefore, according to a specific embodiment of the present invention, the destination node and destination unit fields in transaction packets which target remote memory spaces are set by the responsible remote protocol engine to ensure the packets are properly mapped to the correct local protocol engine in the remote cluster to which they are directed. Similarly, the destination node and destination unit fields in transaction packets which target local memory spaces are set by the responsible local protocol engine to ensure the packets are properly mapped to the correct remote protocol engine in the remote cluster to which they are directed. Alternatively, these fields may be set only in packets which do not have an address specified, e.g., Source Done packets.
According to a specific embodiment, the responsible protocol engine at the cluster from which the packets originate maps the destination node and destination unit values generated by the local nodes to destination node and destination unit values that correspond to a node and a unit (and thus a protocol engine) in the cluster to which the packets are directed. For packets having address values specified, this mapping may be accomplished with reference to the global address to node mapping information available to the interconnection controller. For packets having no address values specified, this mapping may be accomplished with reference to entries in the interconnection controller's pending buffer corresponding to the node, unit, and transaction ID specified in the packets.
According to a specific embodiment, an interleaved mapping from a protocol engine in one cluster, e.g., a request cluster, to a protocol engine in a cluster to which a packet is directed, e.g., a home cluster, is accomplished with reference to specific bits in the target address. That is, for example, a request packet in the request cluster targeting remote memory is mapped to either RMPE0 or RMPE1 depending upon the state of a particular bit in the address to which the packet is directed. The remote engine to which the packet is mapped remaps the packet's destination node and unit IDs as discussed above. When received by the interconnection controller in the home cluster, the packet is mapped to one of the four local protocol engines in accordance with the destination node and unit IDs.
An exemplary mapping might be represented in terms of address values as follows:
This representation indicates that if address bit 12 of the address corresponding to the destination node identified in the packet is a “0,” the transaction will be managed by RMPE0 in the request cluster and by either LMPE0 or LMPE2 in the home cluster (depending upon the state of address bit 13). Similarly, if address bit 12 is a “1,” the transaction will be managed by RMPE1 and either LMPE1 or LMPE3 (depending upon the state of address bit 13). Bit 12 corresponds to the page boundary to a 40-bit address. According to another embodiment using a 40-bit address, bits 6 and 7 are used to determine the interleaving with bit 6 corresponding to the line boundary.
A specific embodiment of the invention will now be described with reference to the flowchart of
For directed packets, i.e., packets specifying a particular node/unit ID pair, the mapping to a particular protocol engine is automatically done by the local node CPU generating the packet according to its mapping tables. That is, these packets are automatically sent to the correct protocol engine by virtue of the node and unit IDs generated by the requesting node. For broadcast packets, i.e., packets not specifying a particular node/unit ID pair, the mapping to one of the protocol engines is done by the interconnection controller based on the address information in the packet. As mentioned above, whether the mapping is accomplished at the local node based on the node/unit ID pair specified by the local CPU, or at the interconnection controller based on the address information in the packet, many different mapping schemes may be employed.
Packets received from a remote cluster are mapped to a protocol engine in the receiving cluster according to the local node and unit to which the packets are directed. As indicated above, the node and unit values are set by the protocol engine in the cluster from which the packets originated, i.e., the requesting cluster. Notwithstanding the foregoing, it should be understood that variations in the mapping mechanism may be employed without departing from the scope of the invention, for example, packets received from a remote cluster may be mapped to protocol engines in the receiving cluster based on the target address rather than the destination node and unit. Therefore, the following description should be understood to be exemplary and should not be used to limit the scope of the invention.
When a transaction packet (e.g., a memory request or a probe) is generated (1202) by a local node in a particular processor cluster, the packet is routed to the appropriate local node(s) and unit(s) using the address and link mapping techniques described above. Where the packet targets a memory address associated with a remote cluster, the packet is directed to one of the remote protocol engines associated with the local interconnection controller. Where the packet targets a memory address associated with the local cluster, the packet is directed (e.g., in the case of a broadcast packet like a probe) to one of the local protocol engines associated with the local interconnection controller. If the packet is a directed packet (1203), i.e., a packet identifying a specific node and unit (e.g., a memory request), the packet (and subsequent packets corresponding to the associated transaction) is transmitted to the identified one of the plurality of local nodes and units associated with interconnection controller, each of which corresponds to protocol engine (1204). This may be accomplished using the local memory map associated with each local node. As mentioned above, the interleaving of the addresses across the protocol engines may be achieved in a variety of ways.
Also as mentioned above, for packets not specifying an address (e.g., Source Done packets), the address may be determined with reference to any pending buffer entries corresponding to the transaction ID field identified in the packet.
If, on the other hand, the packet is a broadcast packet (1203), i.e., a packet which does not specify a particular node or unit ID (e.g., a probe), the local interconnection controller receives the packet and maps it (and any subsequent packets in the transaction flow) to one of the protocol engines according to a mapping table which maps address ranges to the protocol engines according to any of a variety of mapping schemes. As discussed above, if the target address corresponds to local memory, the packet is mapped to the corresponding one of the local protocol engines. If, on the other hand, the target address corresponds to remote memory, the packet is mapped to the corresponding one of the remote protocol engines.
Regardless of how the mapping is effected, the protocol engine to which the packet is assigned determines how to process the packet (1206), maps the destination node and unit ID fields in the packet to the node and unit IDs in the remote cluster to which the address corresponds (1208), and transmits the packet to the remote cluster (1210). The interconnection controller in the remote cluster receives the packet (1212) and, according to the destination node and unit ID fields set by the interconnection controller in the request cluster, maps the processing of the packet to one of its protocol engines (1214). According to a specific embodiment, each node/unit ID pair corresponds to one of the protocol engines in the remote cluster. The protocol engine in the remote cluster then determines how to process the packet (1216), and transmits the packet to the appropriate local node(s) (1218).
As should be apparent by reference to the preceding discussion, the flowchart of
While the invention has been particularly shown and described with reference to specific embodiments thereof, it will be understood by those skilled in the art that changes in the form and details of the disclosed embodiments may be made without departing from the spirit or scope of the invention. For example, specific embodiments have been described herein with reference to a particular multi-processor architecture having a limited node ID space and flat request mapping functions. It will be understood, however, that the present invention applies more generally to a wide variety of multi-processor architecture which employ a point-to-point communication infrastructure to facilitate communication among the various nodes in the system. In addition, each of the various aspects of the embodiments described herein relating to, for example, address mapping, routing mechanisms, transaction identification, and protocol engine mapping, may be used in combination with various alternatives of other ones of these aspects without departing from the scope of the invention.
It should also be understood that the various embodiments of the invention may be implemented or represented in a wide variety of ways without departing from: the scope of the invention. That is, for example, the interconnection controller described herein may be represented (without limitation) in software (object code or machine code), in varying stages of compilation, as one or more net lists, in a simulation language, in a hardware description language, by a set of semiconductor processing masks, and as partially or completely realised semiconductor devices. The various alternatives for each of the foregoing as understood by those of skill in the art are also within the scope of the invention. For example, the various types of computer-readable media, software languages (e.g., Verilog, VHDL), simulatable representations (e.g., SPICE netlist), semiconductor processes (e.g., CMOS), and device types (e.g., ASICs) suitable for designing and manufacturing the processes and circuits described herein are within the scope of the invention.
Finally, although various advantages, aspects, and objects of the present invention have been discussed herein with reference to various embodiments, it will be understood that the scope of the invention should not be limited by reference to such advantages, aspects, and objects. Rather, the scope of the invention should be determined with reference to the appended claims.
This Patent Document is a Continuation of and claims priority under 35 U.S.C. § 120 to U.S. application Ser. No. 14/021,984, entitled “Transaction Processing Using Multiple Protocol Engines”, filed on Sep. 9, 2013 which is a Continuation of U.S. application Ser. No. 13/327,483, entitled “Transaction Processing Using Multiple Protocol Engines”, filed on Dec. 15, 2011, now U.S. Pat. No. 8,572,206, which is a Continuation of U.S. application Ser. No. 10/289,492, entitled “Transaction Processing Using Multiple Protocol Engines in Systems Having Multi-Processor Clusters”, filed on Nov. 5, 2002, now U.S. Pat. No. 8,185,602, each of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4141067 | McLagan | Feb 1979 | A |
4396983 | Segarra | Aug 1983 | A |
4399504 | Obermarck | Aug 1983 | A |
4775955 | Liu | Oct 1988 | A |
4907232 | Harper | Mar 1990 | A |
4965719 | Shoens | Oct 1990 | A |
5166674 | Baum | Nov 1992 | A |
5197130 | Chen | Mar 1993 | A |
5228127 | Ikeda | Jul 1993 | A |
5265232 | Gannon | Nov 1993 | A |
5297265 | Frank | Mar 1994 | A |
5297269 | Donaldson | Mar 1994 | A |
5301298 | Kagan | Apr 1994 | A |
5394555 | Hunter | Feb 1995 | A |
5404482 | Stamm | Apr 1995 | A |
5535116 | Gupta | Jul 1996 | A |
5551006 | Kulkarni | Aug 1996 | A |
5551048 | Steely, Jr. | Aug 1996 | A |
5590301 | Guenthner | Dec 1996 | A |
5594886 | Smith | Jan 1997 | A |
5623628 | Brayton | Apr 1997 | A |
5623644 | Self | Apr 1997 | A |
5710907 | Hagersten | Jan 1998 | A |
5715428 | Wang | Feb 1998 | A |
5717897 | McCrory | Feb 1998 | A |
5734922 | Hagersten | Mar 1998 | A |
5749095 | Hagersten | May 1998 | A |
5751995 | Sarangdhar | May 1998 | A |
5752264 | Blake | May 1998 | A |
5754877 | Hagersten | May 1998 | A |
5774700 | Fisch | Jun 1998 | A |
5778427 | Hagersten | Jul 1998 | A |
5778438 | Merchant | Jul 1998 | A |
5781757 | Deshpande | Jul 1998 | A |
5796605 | Hagersten | Aug 1998 | A |
5796977 | Saragdhar | Aug 1998 | A |
5802563 | Hagersten | Sep 1998 | A |
5802566 | Hagersten | Sep 1998 | A |
5802578 | Lovett | Sep 1998 | A |
5829033 | Hagersten | Oct 1998 | A |
5829034 | Hagersten | Oct 1998 | A |
5829052 | Pawlowski | Oct 1998 | A |
5835906 | Hagersten | Nov 1998 | A |
5842026 | Wong-Chan | Nov 1998 | A |
5848254 | Hagersten | Dec 1998 | A |
5852716 | Hagersten | Dec 1998 | A |
5860109 | Hagersten | Jan 1999 | A |
5860159 | Hagersten | Jan 1999 | A |
5862316 | Hagersten | Jan 1999 | A |
5862357 | Hagersten | Jan 1999 | A |
5864671 | Hagersten | Jan 1999 | A |
5873117 | Hagersten | Feb 1999 | A |
5878268 | Hagersten | Mar 1999 | A |
5881303 | Hagersten | Mar 1999 | A |
5887138 | Hagersten | Mar 1999 | A |
5890217 | Kabemoto | Mar 1999 | A |
5892970 | Hagersten | Apr 1999 | A |
5893144 | Wood | Apr 1999 | A |
5893149 | Hagersten | Apr 1999 | A |
5893150 | Hagersten | Apr 1999 | A |
5893160 | Loewenstein | Apr 1999 | A |
5895487 | Boyd | Apr 1999 | A |
5897656 | Vogt | Apr 1999 | A |
5897657 | Hagersten | Apr 1999 | A |
5900015 | Herger | May 1999 | A |
5903907 | Hagersten | May 1999 | A |
5908468 | Hartmann | Jun 1999 | A |
5911052 | Singhal | Jun 1999 | A |
5923847 | Hagersten | Jul 1999 | A |
5923857 | Pawlowski | Jul 1999 | A |
5926829 | Hagersten | Jul 1999 | A |
5940860 | Hagersten | Aug 1999 | A |
5950226 | Hagersten | Sep 1999 | A |
5958019 | Hagersten | Sep 1999 | A |
5960179 | Hagersten | Sep 1999 | A |
5961592 | Hsia | Oct 1999 | A |
5974487 | Hartmann | Oct 1999 | A |
5978874 | Singhal | Nov 1999 | A |
5983326 | Hagersten | Nov 1999 | A |
5987549 | Hagersten | Nov 1999 | A |
6018782 | Hartmann | Jan 2000 | A |
6038642 | Arimilli | Mar 2000 | A |
6041376 | Gilbert | Mar 2000 | A |
6044438 | Olnowich | Mar 2000 | A |
6055610 | Smith | Apr 2000 | A |
6065077 | Fu | May 2000 | A |
6067603 | Carpenter | May 2000 | A |
6067611 | Carpenter | May 2000 | A |
6070231 | Ottinger | May 2000 | A |
6078996 | Hagersten | Jun 2000 | A |
6081874 | Carpenter | Jun 2000 | A |
6085263 | Sharma | Jul 2000 | A |
6085293 | Carpenter | Jul 2000 | A |
6085295 | Ekanadham | Jul 2000 | A |
6088769 | Luick | Jul 2000 | A |
6092155 | Olnowich | Jul 2000 | A |
6101420 | VanDuren | Aug 2000 | A |
6111859 | Godfrey | Aug 2000 | A |
6112283 | Neiger | Aug 2000 | A |
6115804 | Carpenter | Sep 2000 | A |
6122714 | VanDoren | Sep 2000 | A |
6141692 | Loewenstein | Oct 2000 | A |
6148300 | Singhal | Nov 2000 | A |
6148361 | Carpenter | Nov 2000 | A |
6151663 | Pawlowski | Nov 2000 | A |
6167492 | Keller | Dec 2000 | A |
6182195 | Laudon | Jan 2001 | B1 |
6185662 | Beyerlein | Feb 2001 | B1 |
6192452 | Bannister | Feb 2001 | B1 |
6205481 | Heddaya | Mar 2001 | B1 |
6209064 | Weber | Mar 2001 | B1 |
6209065 | Van Doren | Mar 2001 | B1 |
6226671 | Hagersten | May 2001 | B1 |
6236656 | Westerberg | May 2001 | B1 |
6240501 | Hagersten | May 2001 | B1 |
6243742 | Hagersten | Jun 2001 | B1 |
6247091 | Lovett | Jun 2001 | B1 |
6247161 | Lambrecht | Jun 2001 | B1 |
6275905 | Keller | Aug 2001 | B1 |
6279085 | Carpenter | Aug 2001 | B1 |
6289211 | Koorapaty | Sep 2001 | B1 |
6292705 | Wang | Sep 2001 | B1 |
6295583 | Razdan | Sep 2001 | B1 |
6295584 | DeSota | Sep 2001 | B1 |
6295586 | Novak | Sep 2001 | B1 |
6304910 | Roach | Oct 2001 | B1 |
6308246 | Hagersten | Oct 2001 | B1 |
6330643 | Arimilli | Dec 2001 | B1 |
6332165 | Hagersten | Dec 2001 | B1 |
6332169 | Hagersten | Dec 2001 | B1 |
6334177 | Baumgartner | Dec 2001 | B1 |
6336177 | Stevens | Jan 2002 | B1 |
6338122 | Baumgartner | Jan 2002 | B1 |
6345352 | James | Feb 2002 | B1 |
6351795 | Hagersten | Feb 2002 | B1 |
6356983 | Parks | Mar 2002 | B1 |
6370585 | Hagersten | Apr 2002 | B1 |
6374331 | Janakiraman | Apr 2002 | B1 |
6377582 | Neiger | Apr 2002 | B1 |
6377980 | Hagersten | Apr 2002 | B1 |
6378029 | Venkitakrishnan | Apr 2002 | B1 |
6393529 | Keller | May 2002 | B1 |
6397302 | Razdan | May 2002 | B1 |
6401174 | Hagersten | Jun 2002 | B1 |
6405271 | MacWilliams | Jun 2002 | B1 |
6405289 | Arimilli | Jun 2002 | B1 |
6415364 | Bauman | Jul 2002 | B1 |
6430658 | Nunez | Aug 2002 | B1 |
6446185 | Hagersten | Sep 2002 | B2 |
6449699 | Franke | Sep 2002 | B2 |
6449700 | Hagersten | Sep 2002 | B2 |
6457087 | Fu | Sep 2002 | B1 |
6457101 | Bauman | Sep 2002 | B1 |
6460119 | Bachand | Oct 2002 | B1 |
6466825 | Wang | Oct 2002 | B1 |
6484220 | Alvarez, II | Nov 2002 | B1 |
6490661 | Keller | Dec 2002 | B1 |
6490671 | Frank | Dec 2002 | B1 |
6496854 | Hagersten | Dec 2002 | B1 |
6516391 | Tsushima | Feb 2003 | B1 |
6516393 | Fee | Feb 2003 | B1 |
6529999 | Keller | Mar 2003 | B1 |
6536000 | Jackson | Mar 2003 | B1 |
6546429 | Baumgartner | Apr 2003 | B1 |
6560681 | Wilson | May 2003 | B1 |
6571349 | Mann | May 2003 | B1 |
6574219 | Neiger | Jun 2003 | B1 |
6574659 | Hagersten | Jun 2003 | B1 |
6578033 | Singhal | Jun 2003 | B1 |
6578071 | Hagersten | Jun 2003 | B2 |
6581115 | Arimilli | Jun 2003 | B1 |
6591348 | Deshpande | Jul 2003 | B1 |
6598120 | Berg | Jul 2003 | B1 |
6598123 | Anderson | Jul 2003 | B1 |
6606676 | Deshpande | Aug 2003 | B1 |
6615319 | Khare | Sep 2003 | B2 |
6615322 | Arimilli | Sep 2003 | B2 |
6618799 | Hagersten | Sep 2003 | B2 |
6625698 | Vartti | Sep 2003 | B2 |
6631401 | Keller | Oct 2003 | B1 |
6631447 | Morioka | Oct 2003 | B1 |
6631448 | Weber | Oct 2003 | B2 |
6633945 | Fu | Oct 2003 | B1 |
6636949 | Barroso | Oct 2003 | B2 |
6640287 | Gharachorloo | Oct 2003 | B2 |
6647464 | Reidlinger | Nov 2003 | B2 |
6654866 | Hagersten | Nov 2003 | B2 |
6662277 | Gaither | Dec 2003 | B2 |
6668309 | Bachand | Dec 2003 | B2 |
6684297 | Chaudhry | Jan 2004 | B2 |
6684305 | Deneau | Jan 2004 | B1 |
6711662 | Peir | Mar 2004 | B2 |
6721858 | Joseph | Apr 2004 | B1 |
6725337 | Sander | Apr 2004 | B1 |
6751698 | Tan | Jun 2004 | B1 |
6751721 | Webb | Jun 2004 | B1 |
6760786 | Hagersten | Jul 2004 | B2 |
6760819 | Dhong | Jul 2004 | B2 |
6763435 | Arimilli | Jul 2004 | B2 |
6772244 | Nguyen | Aug 2004 | B2 |
6772298 | Khare | Aug 2004 | B2 |
6775749 | Mudgett | Aug 2004 | B1 |
6799217 | Wilson | Sep 2004 | B2 |
6799252 | Bauman | Sep 2004 | B1 |
6810467 | Khare | Oct 2004 | B1 |
6820158 | Lee | Nov 2004 | B1 |
6823429 | Olnowich | Nov 2004 | B1 |
6826645 | Kosaraju | Nov 2004 | B2 |
6826660 | Hagersten | Nov 2004 | B2 |
6839808 | Gruner | Jan 2005 | B2 |
6842830 | Khare | Jan 2005 | B2 |
6850748 | Song | Feb 2005 | B2 |
6857048 | Rankin | Feb 2005 | B2 |
6859864 | Khare | Feb 2005 | B2 |
6865595 | Glasco | Mar 2005 | B2 |
6877077 | McGee | Apr 2005 | B2 |
6880031 | Singh | Apr 2005 | B2 |
6880049 | Gruner | Apr 2005 | B2 |
6883070 | Martin | Apr 2005 | B2 |
6907487 | Singh | Jun 2005 | B2 |
6907490 | Kosaraju | Jun 2005 | B2 |
6915370 | Rankin | Jul 2005 | B2 |
6922756 | Hum | Jul 2005 | B2 |
6954829 | Beers | Oct 2005 | B2 |
6959364 | Safranek | Oct 2005 | B2 |
6971098 | Khare | Nov 2005 | B2 |
6973543 | Hughes | Dec 2005 | B1 |
6973544 | Berg | Dec 2005 | B2 |
6976129 | Creta | Dec 2005 | B2 |
6985984 | Radovic | Jan 2006 | B2 |
6986005 | Vo | Jan 2006 | B2 |
6996681 | Autechaud | Feb 2006 | B1 |
7003633 | Glasco | Feb 2006 | B2 |
7017011 | Lesmanne | Mar 2006 | B2 |
7032078 | Cypher | Apr 2006 | B2 |
7047374 | Sah | May 2006 | B2 |
7058750 | Rankin | Jun 2006 | B1 |
7080213 | Grenholm | Jul 2006 | B2 |
7085897 | Blake | Aug 2006 | B2 |
7093079 | Quach | Aug 2006 | B2 |
7100001 | Edirisooriya | Aug 2006 | B2 |
7103636 | Glasco | Sep 2006 | B2 |
7107408 | Glasco | Sep 2006 | B2 |
7107409 | Glasco | Sep 2006 | B2 |
7120755 | Jamil | Oct 2006 | B2 |
7120756 | Cypher | Oct 2006 | B2 |
7124252 | Khare | Oct 2006 | B1 |
7152128 | Wehage | Dec 2006 | B2 |
7155525 | Glasco | Dec 2006 | B2 |
7165146 | Wallin | Jan 2007 | B2 |
7213106 | Koster | May 2007 | B1 |
7234029 | Khare | Jun 2007 | B2 |
7237068 | Wallin | Jun 2007 | B2 |
7251698 | Glasco | Jul 2007 | B2 |
7281055 | Glasco | Oct 2007 | B2 |
7296121 | Morton | Nov 2007 | B2 |
7315919 | O'Kkrafka | Jan 2008 | B1 |
7360056 | Cypher | Apr 2008 | B2 |
7363462 | Landin | Apr 2008 | B2 |
7373466 | Conway | May 2008 | B1 |
7395379 | Glasco | Jul 2008 | B2 |
7406519 | Goldick | Jul 2008 | B2 |
7434008 | Shaw | Oct 2008 | B2 |
7529844 | Radovic | May 2009 | B2 |
7529893 | Landin | May 2009 | B2 |
7546422 | George | Jun 2009 | B2 |
7555603 | Prudvi | Jun 2009 | B1 |
7606978 | Landin | Oct 2009 | B2 |
7617329 | Quach | Nov 2009 | B2 |
7653790 | Glasco | Jan 2010 | B2 |
7673090 | Kaushik | Mar 2010 | B2 |
7698509 | Koster | Apr 2010 | B1 |
7719964 | Morton | May 2010 | B2 |
7765381 | Landin | Jul 2010 | B2 |
7917646 | Hum | Mar 2011 | B2 |
7945738 | Landin | May 2011 | B2 |
8010749 | Landin | Aug 2011 | B2 |
8024526 | Landin | Sep 2011 | B2 |
8209490 | Mattina | Jun 2012 | B2 |
8533401 | Edirisooriya | Sep 2013 | B2 |
8898254 | Watson, Jr. | Nov 2014 | B2 |
20010013089 | Weber | Aug 2001 | A1 |
20010027512 | Hagersten | Oct 2001 | A1 |
20010034816 | Michael | Oct 2001 | A1 |
20010037419 | Hagersten | Nov 2001 | A1 |
20010042176 | Hagersten | Nov 2001 | A1 |
20010051977 | Hagersten | Dec 2001 | A1 |
20010054079 | Hagersten | Dec 2001 | A1 |
20020004886 | Hagersten | Jan 2002 | A1 |
20020007439 | Gharachorioo | Jan 2002 | A1 |
20020007442 | Farrall | Jan 2002 | A1 |
20020007443 | Gharachorioo | Jan 2002 | A1 |
20020019921 | Hagersten | Feb 2002 | A1 |
20020046324 | Barroso | Apr 2002 | A1 |
20020046327 | Gharachorioo | Apr 2002 | A1 |
20020053004 | Pong | May 2002 | A1 |
20020073164 | Hagersten | Jun 2002 | A1 |
20020073261 | Kosaraju | Jun 2002 | A1 |
20020083149 | Van Huben | Jun 2002 | A1 |
20020083243 | Van Huben | Jun 2002 | A1 |
20020083299 | Van Huben | Jun 2002 | A1 |
20020087766 | Kumar | Jul 2002 | A1 |
20020087804 | Khare | Jul 2002 | A1 |
20020087807 | Gharachorioo | Jul 2002 | A1 |
20020112132 | Lesmanne | Aug 2002 | A1 |
20020147869 | Owen | Oct 2002 | A1 |
20030009640 | Arimilli | Jan 2003 | A1 |
20030041215 | George | Feb 2003 | A1 |
20030097539 | Hagersten | May 2003 | A1 |
20030131202 | Khare | Jul 2003 | A1 |
20030145136 | Tierney | Jul 2003 | A1 |
20030191875 | Nguyen | Oct 2003 | A1 |
20030236817 | Radovic | Dec 2003 | A1 |
20040098723 | Radovic | May 2004 | A1 |
20040117564 | Grenholm | Jun 2004 | A1 |
20040123049 | Cypher | Jun 2004 | A1 |
20040148471 | Wallin | Jul 2004 | A1 |
20040260883 | Wallin | Dec 2004 | A1 |
20040260886 | Landin | Dec 2004 | A1 |
20040260905 | Cypher | Dec 2004 | A1 |
20040260906 | Landin | Dec 2004 | A1 |
20040268055 | Landin | Dec 2004 | A1 |
20040268056 | Landin | Dec 2004 | A1 |
20040268057 | Landin | Dec 2004 | A1 |
20040268058 | Landin | Dec 2004 | A1 |
20040268059 | Landin | Dec 2004 | A1 |
20050005074 | Landin | Jan 2005 | A1 |
20050005075 | Landin | Jan 2005 | A1 |
20050027945 | Desai | Feb 2005 | A1 |
20050044174 | Landin | Feb 2005 | A1 |
20050228952 | Mayhew | Oct 2005 | A1 |
20050262391 | Sethi | Nov 2005 | A1 |
20050273602 | Wilson | Dec 2005 | A1 |
20120079032 | Vash | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
049 387 | Apr 1982 | EP |
049 387 | Apr 1982 | EP |
0 049 387 | Nov 1987 | EP |
0 426 599 | May 1991 | EP |
0 426 599 | May 1991 | EP |
0 489 583 | Jun 1992 | EP |
0 489 583 | Jun 1992 | EP |
683 453 | Nov 1995 | EP |
0 751 466 | Jan 1997 | EP |
0 751 466 | Jan 1997 | EP |
95 94 4751 | Jan 1998 | EP |
0 751 466 | Mar 1998 | EP |
856 796 | Aug 1998 | EP |
0 889 403 | Jan 1999 | EP |
0 905 627 | Mar 1999 | EP |
0 936 557 | Jun 1999 | EP |
0 936 557 | Jan 2000 | EP |
0 681 240 | Jan 2001 | EP |
0 856 796 | Sep 2001 | EP |
0 683 453 | Dec 2001 | EP |
0 889 403 | May 2002 | EP |
0 936 557 | May 2003 | EP |
0 799 444 | Dec 2003 | EP |
0 856 796 | Mar 2004 | EP |
1 814 039 | Aug 2007 | EP |
1 814 039 | Mar 2009 | EP |
0 889 403 | Sep 2009 | EP |
WO 9401815 | Jan 1994 | WO |
WO 9632671 | Oct 1996 | WO |
WO 9730399 | Aug 1997 | WO |
WO 9822874 | May 1998 | WO |
WO 9822876 | May 1998 | WO |
WO 9926144 | May 1999 | WO |
WO 9946681 | Sep 1999 | WO |
WO 0000891 | Jan 2000 | WO |
WO 0036514 | Jun 2000 | WO |
WO 0038069 | Jun 2000 | WO |
WO 0038070 | Jun 2000 | WO |
WO 0129674 | Apr 2001 | WO |
WO 0167273 | Sep 2001 | WO |
WO 0167273 | Sep 2001 | WO |
Entry |
---|
Inter Partes Review of 7,296,121 by Sony Corporation (IPR2015-00158); Nov. 2014. |
Inter Partes Review of 7,296,121 by Apple, HTC, Samsung and Amazon (IPR2015-00159); Oct. 2014. |
Inter Partes Review of 7,296,121 by Apple, HTC, Samsung and Amazon (IPR2015-00161); Oct. 2014. |
Inter Partes Review of 7,296,121 by Apple, HTC, Samsung and Amazon (IPR2015-00163); Oct. 2014. |
Inter Partes Review of 7,296,121 by Apple, HTC, Samsung and Amazon (IPR2015-00172); Oct. 2014. |
The Authoritative Dictionary of IEEE Standards Terms (Seventh Ed., IEEE Press); 2000. |
Specification Comparison, IPR2015-00158; Nov. 2014. |
Declaration, Daniel J. Sorin; Nov. 2014. |
File History, U.S. Appl. No. 10/996,161; beginning Oct. 2004. |
The Stanford FLASH Multiprocessor; Kuskin, et al. (IEEE); 1994. |
The Directory-Based Cache Coherence Protocol for the DASH Multiprocessor, Lenoski et al. (Stanford, IEEE); 1990. |
Correspondence of Jennifer Towle; Mar. 2014. |
Embedded Systems Design with Platform FPGAs, Sass et al.; 2010. |
Verification of Cache Coherence Protocols by Aggegation of Distributed Transactions, Theory of Computing Systems, Park et al.; 1998. |
Application-Specific Integrated Circuits, 8th printing; Smith; May 2000. |
Multiprocessors, ECEN 6253 Advanced Digital Computer Design, Johnson, Apr. 2003. |
Merriam-Webster's Collegiate Dictionary, Tenth Ed.; 2001. |
U.S. Appl. No. 10/288,347 Specification as Filed; Nov. 2002. |
U.S. Appl. No. 10/966,161 Specification as Filed; Oct. 2004. |
An Evaluation of Directory Schemes for Cache Coherence, Agarwal et al. (IEEE Standford); 1988. |
Networks on Chips: A New SoC Paradigm, Benini et al. (SoC Designs); Jan. 2002. |
Directory-Based Cache Coherence in Large-Scale Multiprocessors, Chaiken et al. (MIT); Jun. 1990. |
Daniel J. Sorin Resume; 2014. |
Declaration, Robert Horst; 2014. |
Interconnection Networks, an Engineering Approach, Duato et al.; (Part 1) 1997. |
Interconnection Networks, an Engineering Approach, Duato et al.; (Part 2) 1997. |
File History, U.S. Pat. No. 7,296,121; beginning Oct. 2004. |
HyperTransport Technology I/O Link, Advanced Micro Devices: Jul. 2001. |
Application Specific Integrated Circuit (ASIC) Technology, Einspruch et al.; 1991. |
Intel, Corp. v. Memory Integrity, LLC; Inter Partes Review Trial No. IPR2015-01812; Petition; 2015. |
Intel, Cor. v. Memory Integrity, LLC; Inter Partes Review Trial No. IPR2015-01811; Petition; 2015. |
Apple Inc., et al. v. Memory Integrity, LLC; Inter Partes Review Trial No. IPR2015-00163; Petition; 2015. |
Apple Inc., et al. v. Memory Integrity, LLC; Inter Partes Review Trial No. IPR2015-00163; Patent Owner Response; 2015. |
Apple Inc., et al. v. Memory Integrity, LLC; Inter Partes Review Trial No. IPR2015-00163; Petitioner Reply; 2015. |
Apple Inc., et al. v. Memory Integrity, LLC; Inter Partes Review Trial No. IPR2015-00159; Petition; 2015. |
Apple Inc., et al. v. Memory Integrity, LLC; Inter Partes Review Trial No. IPR2015-00159; Patent Owner Response; 2015. |
Apple Inc., et al. v. Memory Integrity, LLC; Inter Partes Review Trial No. IPR2015-00159; Petitioner Reply; 2015. |
David Culler and Jaswinder Pal Singh, Parallel Computer Architecture, Morgan Kaufmann (1999). |
pp. 1021, Merriam-Webster's Collegiate Dictionary, Tenth Edition 1999. |
David Patterson and John Hennessy, Organization and Design, The Hardware/Software Interface, Chapter 7, Morgan Kaufmann, Third Edition, 2005. |
Jose Duato, Sudhakar Yalamanchili and Lionel Ni, Interconnection Networks, an Engineerring Approach, Chapter 1, IEEE Computer Society, 1997. |
Jose Duato, Sudhakar Yalamanchili and Lionel Ni, Interconnection Networks, an Engineerring Approach, Chapter 2, IEEE Computer Society, 1997. |
Advanced Digital Computer Design, Multiprocessors, ECEN 6253, 2003. |
pp. 918-919, 1144, 1145, Merriam-Webster's Collegiate Dictionary, Tenth Edition 1999. |
Luca Benini, Networks on Chips: A New SoC Paradigm, SOC Designs, Jan. 2002. |
AMD White Paper; Hyper Transport Technology I/O Link, A High-Bandwidth I/O Architecture, Advanced Micro Devices, Jul. 2001. |
InfiniBand Architecture Specification vol. 1, Release 1.0.a, InfiniBand Trade Association, 2001. |
pp. 214, 359, Microsoft Computer Dictionary, Fourth Edition, 1999. |
pp. 590-591, Rudolf Graf, Modern Dictionary of Electronics, Seventh Ed., 1999. |
pp. 931, Merriam-Webster's Collegiate Dictionary, Tenth Ed., 1999. |
pp. 15.1, Electrical Engineering Reference Book, Sixteenth Ed., Elsevier Science 2003. |
Lecture Notes in Computer Science, vol. 1734, SCI: Scalable Coherent Interface, Architecture and Software for High-Performance Compute Clusters, Springer 1999. |
S Park and D Dill, Verification of Cache Coherence Protocols by Aggregation of Distributed Transactions, Theory of Computing Systems, Springer-Veriag 1996. |
pp. 731, The Authoritative Dictionary of IEEE Standards Terms, Seventh Ed., Standards Information Network IEEE Press, 2000. |
pp. 1-2, Jeffrey L. Hilbert, Chapter 1, Introduction to ASIC Technology, Application Specific Integrated Circuit (ASIC) Technology, Academic Press, Inc., 1991. |
sec. 2.4.1 VHDL, Ron Sass and Andrew Schmidt, Embedded Sysstems Design with Platform FPGAs, Principles and Practices, Morgan Kaufmann, 2010. |
Sony Corporation et al. v. Memory Integrity, LLC; Inter Partes Review Trial No. IPR 2015-0158; Declaration of Daniel Sorin; 2015. |
Sony Corporation et al. v. Memory Integrity, LLC; Inter Partes Review Trial No. IPR 2015-0158; Petition; 2015. |
Sony Corporation et al. v. Memory Integrity, LLC; Inter Partes Review Trial No. IPR 2015-0158; Patent Owner Response; 2015. |
Steven Scott, A Cache Coherence Mechanism for Scalable, Shared-memory Multiprocessors, Computer Sciences Technical Report 1002, 1991. |
Hitoshi Oi and N. Ranganathan, A Cache Coherence Protocol for the Bidirectional Ring Based Multiprocessor, Parallel and Distributed Computing and Systems, 1999. |
Per Stenstrom, A Cache Consistency Protocol for Multiprocessors with Multistage Networks, Lund University, 1989. |
Mark Papamarcos and Janak Patel, A Low-Overhead Coherence Solution for Multiprocessors with Private Memories, IEEE University of Illinois, 1984. |
Lucien Censier and Paul Feautrier, A New Solution to Coherence Problems in Multicache Systems, IEEE Transactions on Computers, 1978. |
Daniel Sorin, Mark Hill and David Wood, A Primer on Memory Consistency and Cache Coherence, Morgan and Claypool, 2011. |
Roberto Hexsel, A Quantitative Performance Evaluation of SCI Memory Hierarchies, University of Edinburgh, 1994. |
Ramon Lawrence, A Survey of Cache Coherence Mechanisms in Shared Memory Multiprocessors, University of Manitoba, 1998. |
Per Stenstrom, A survey of Cache Coherence Schemes for Multiprocessors, Lund University, 1990. |
Alexander Veidenbaum et al., Adapting Cache Line Size to Application Behavior, Dept. of Information and Computer Science, UC Irvine, 1999. |
Ilanthiraiyan Pragaspathy and Babak Falsafi, Address Partitioning in DSM Clusters with Parallel Coherence Controllers, PACT, 2000. |
pp. 130-141, Advances in Computers, vol. 34, Academic Press, 1992. |
Liqun Cheng, John Carter and Donglai Dai, An Adaptive Cache Coherence Protocol Optimized for Producer-Consumer Sharing, University of Utah, 2007. |
James Archibald and Jean-Loup Baer, An Economic Solution to the Cache Coherence Problem, University of Washington, IEEE 1984. |
Jaswinder Pal Singh, et al., An Emperical Comparison of the Kendall Square Research KSR-1 and Standford Dash Multiprocessors, Stanford University, 1993. |
Anant Agarwal, et al. An Evaluation of Directory Schemes for Cache Coherence, ISCA Stanford, 1988. |
Qing Yang, et al., Analysis and Comparison of Cache Coherence Protocols for a Packet-Switched Multiprocessor, Transactions on Computers, vol. 38, 1989. |
Christopher Thomas, Application of Enhanced Jetty Snoop Filters to Reducing Bus Traffic and Snoop Power in SMP and CMP Systems, National Library of Canada, 2003. |
Michael John Sebastian Smith, Application-Specific Integrated Circuits, Addison Wesley, VLSI System Series, 1997. |
Kourosh Gharachorloo et al., Architecture and Design of Alpha Server GS320, 9th Int. Conference on Architectural Support for Programming Languages and Operating Systems 2000. |
Alexander Grbic, Assessment of Cache Coherence Protocols in Shared-Memory Multiprocessors, University of Toronto 2003. |
D. Basak and D. K. Panda, Benefits of Processor Clustering in Designing Large Parallel Systems: When and How?, Ohio State University, 1996. |
Hung-Chang Hsiao and Chung-Ta King, Boosting the Performance of NOW-based Shared Memory Multiprocessors Through Directory Hints, National Tsing Hua University, 2000. |
Richard Simoni, Cache Coherence Directories for Scalable Multiprocessors, Departments of Electrical Engineering and Computer Science, Stanford University 1992. |
Luiz Barroso and Michel Dubois, Cache Coherence on a Slotted Ring, International Conference on Parallel Processing, 1991. |
James Archibald and Jean-Loup Baer, Cache Coherence Protocols: Evaluation Using a Multiprocessor Simulation Model; ACM Transactions on Computer Systems, 1986. |
Keith Farkas, et al., Cache Consistency in Hierarchical-Ring-Based Multiprocessors, Supercomputing '92, 1992. |
C.K. Tang, Cache System Design in the Tightly Coupled Multiprocessor System, AFIPS '76 Proceedings of the Jun. 7-10, 1976, national computer conference and exposition. |
John Hennessy et al., Cache-Coherent Distributed Shared Memory: Perspectives on Its Development and Future Challenges, Proceedings of the IEEE. |
Apple et al. v. Memory Integrity, LLC; Inter Partes Review Trial No. IPR2015-00163; Patent Owner Response; 2015. |
Apple et al. v. Memory Integrity, LLC; Inter Partes Review Trial No. IPR2015-00163; Petitioner's Reply; 2015. |
Apple et al. v. Memory Integrity, LLC; Inter Partes Review Trial No. IPR2015-00163; Patent Owner's Response; 2015. |
David A Sorin, et al., Specifying and Verifying a Broadcast and a Multicast Snooping Cache Coherence Protocol, IEEE Transactions on Parallel & Distributed Systems vol. 13 2002. |
Number | Date | Country | |
---|---|---|---|
20150074325 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14021984 | Sep 2013 | US |
Child | 14531993 | US |