Cancer is significant, not only in terms of mortality and morbidity, but also in terms of the cost of treating advanced cancers and the reduced productivity and quality of life achieved by advanced cancer patients. Despite the common conception of cancers as incurable diseases, many cancers can be alleviated, slowed, or even cured if timely medical intervention can be administered. A widely recognized need exists for tools and methods for early detection of cancer.
Cancers arise by a variety of mechanisms, not all of which are well understood. Cancers, called tumors when they arise in the form of a solid mass, characteristically exhibit decontrolled growth and/or proliferation of cells. Cancer cells often exhibit other characteristic differences relative to the cell type from which they arise, including altered expression of cell surface, secreted, nuclear, and/or cytoplasmic proteins, altered antigenicity, altered lipid envelope (i.e., cell membrane) composition, altered production of nucleic acids, altered morphology, and other differences. Typically, cancers are diagnosed either by observation of tumor formation or by observation of one or more of these characteristic differences. Because cancers arise from cells of normal tissues, cancer cells usually initially closely resemble the cells of the original normal tissue, often making detection of cancer cells difficult until the cancer has progressed to a stage at which the differences between cancer cells and the corresponding original normal cells are more pronounced. Depending on the type of cancer, the cancer can have advanced to a relatively difficult-to-treat stage before it is easily detectable.
Early definitive detection and classification of cancer is often crucial to successful treatment. Diagnosis of cancer must precede cancer treatment. Included in the diagnosis of many cancers is determination of the type and grade of the cancer and the stage of its progression. This information can inform treatment selection, allowing use of milder treatments (i.e., having fewer undesirable side effects) for relatively early-stage, non- or slowly-spreading cancers and more aggressive treatment (i.e., having more undesirable side effects and/or a lower therapeutic index) of cancers that pose a greater risk to the patient's health.
When cancer is suspected, a physician will often have the tumor or a section of tissue having one or more abnormal characteristics removed or biopsied and sent for histopathological analyses. Typically, the time taken to prepare the specimen is on the order of one day or more. Communication of results from the pathologist to the physician and to the patient can further slow the diagnosis of the cancer and the onset of any indicated treatment. Patient anxiety can soar during the period between sample collection and diagnosis.
A recognized need exists to shorten the time required to analyze biological sample in order so determine whether or not the sample is cancerous. Furthermore, it would be beneficial to reduce the number and/or volume of cells required for such determination, or to use bodily fluids instead of traditional tissue/cellular samples, in order to minimize patient discomfort and improve patient acceptance of testing.
Although certain immunohistology techniques can be performed without the need for microscopic visualization of cells, almost all histopathological analysis of suspected cancer cells and tissues involves microscopic examination of the suspect cells or tissue. Optical microscopy techniques are most common, owing to their relate simplicity and the wealth of information that can be obtained by visual examination of samples.
Raman spectroscopy provides information about the vibrational state of molecules. Many molecules have atomic bonds capable of existing in a number of vibrational states. Such molecules are able to absorb incident radiation that matches a transition between two of its allowed vibrational states and to subsequently emit the radiation. Most often, absorbed radiation is re-radiated at the same wavelength, a process designated Rayleigh or elastic scattering. In some instances, the re-radiated radiation can contain slightly more or slightly less energy than the absorbed radiation (depending on the allowable vibrational states and the initial and final vibrational states of the molecule). The result of the energy difference between the incident and re-radiated radiation is manifested as a shift in the wavelength between the incident and re-radiated radiation, and the degree of difference is designated the Raman shift (RS), measured in units of wavenumber (inverse length). If the incident light is substantially monochromatic (single wavelength) as it is when using a laser source, the scattered light which differs in wavelength can be more easily distinguished from the Rayleigh scattered light.
Because Raman spectroscopy is based on irradiation of a sample and detection of scattered radiation, it can be employed non-invasively and non-destructively, such that it is suitable for analysis of biological samples. Thus, little or no sample preparation is required. In addition, water exhibits very little Raman scattering, and Raman spectroscopy techniques can be readily performed in aqueous environments.
The Raman spectrum of a material can reveal the molecular composition of the material, including the specific functional groups present in organic and inorganic molecules. Raman spectroscopy is useful for detection of biological materials because most, if not all, of these agents exhibit characteristic ‘fingerprint’ Raman spectra, subject to various selection rules, by which the agent can be identified. Raman peak position, peak shape, and adherence to selection rules can be used to determine molecular identity and to determine conformational information (e.g., crystalline phase, degree of order, strain, grain size) for solid materials.
In the past several years, a number of key technologies have been introduced into wide use that have enabled scientists to largely overcome the problems inherent to Raman spectroscopy. These technologies include high efficiency solid-state lasers, efficient laser rejection filters, and silicon (Si) CCD detectors. In general, the wavelength of light used to illuminate the sample is not critical, so long as the other optical elements of the system operate in the same spectral range as the light source.
In order to detect Raman scattered light and to accurately determine the Raman shift of that light, the sample should be irradiated with substantially monochromatic light, such as light having a bandwidth not greater than about 1.3 nanometers, and preferably not greater than 1.0, 0.50, or 0.25 nanometer. Suitable sources include various lasers and polychromatic light source-monochromator combinations. It is recognized that the bandwidth of the irradiating light, the resolution of the wavelength resolving element(s), and the spectral range of the detector determine how well a spectral feature can be observed, detected, or distinguished from other spectral features. The combined properties of these elements (i.e., the light source, the filter, grating, or other mechanism used to distinguish Raman scattered light by wavelength) define the spectral resolution of the Raman signal detection system. The known relationships of these elements enable the skilled artisan to select appropriate components in readily calculable ways. Limitations in spectral resolution of the system (e.g., limitations relating to the bandwidth of irradiating light) can limit the ability to resolve, detect, or distinguish spectral features. The skilled artisan understands that and how the separation and shape of Raman scattering signals can determine the acceptable limits of spectral resolution for the system for any of the Raman spectral features described herein.
Raman spectroscopic analysis of samples can be performed to identify the chemical composition of each of the components, but such analysis can be slow, particularly where large or numerous samples are to be screened. In situations in which rapid assessment of components in a sample, or when numerous samples need to be analyzed, the capacity of traditional Raman spectroscopic techniques analytical methods can be overwhelmed, requiring bulky and expensive amounts of equipment to complete the analysis in a timely manner. There exists a need for a rapid method for assessment that can be used to analyze different components in a sample.
The present disclosure provides for a system and multipoint method of assessing a component in a biological sample. The method may comprise irradiating a biological sample, or multiple biological samples, to generate a plurality of interacted photons. The present disclosure contemplates that interacted photons could be assessed from any number of points of the sample, including three, six, ten, fifty, or any other number. The multiple points may have a defined geometric relationship or a random arrangement. Alternatively, a spectroscopic property of the sample (e.g., absorbance or reflectance of light, fluorescence, dispersive Raman spectrum, or a visible optical feature, such as the size or shape of objects in the field of view of a microscope) can be examined in order to define the relationship among points to be assessed (e.g., greater point density in areas of apparent interest). These interacted photons may be detected and assessed to evaluate a component of the sample.
Spectra generated using Raman spectroscopic methods can potentially reveal a wealth of information about molecular properties of various biological materials. Raman scattering analysis allows variations in the composition of the materials at analyzed points to be probed downed to arbitrarily small levels if desired.
The present disclosure also contemplates the use of Raman Chemical Imaging to further assess components of a sample, and provide spatial information. In many respects, Raman chemical imaging is an extension of Raman spectroscopy. Raman chemical imaging combines Raman spectroscopy and digital imaging for the molecular-specific analysis of materials. Much of the imaging performed since the development of the first Raman microprobes has involved spatial scanning of samples beneath Raman microprobes in order to construct Raman “maps” of surfaces. Historically, Raman imaging systems have been built using this so called flying spot (“point-scanning”) approach, where a laser beam is focused to a spot and is scanned over the object field, or likewise a line scanning approach, where the laser spot is broadened in one direction by, for example, a cylindrical lens, and the two dimensional image formed on a CCD array has one spatial dimension and one wavelength dimension. Raman chemical imaging techniques have only recently achieved a degree of technological maturity that allows the collection of high-resolution (spectral and spatial) data. Advancements in imaging spectrometer technology and their incorporation into microscopes that employ CCDs, holographic optics, lasers, and fiber optics have allowed Raman chemical imaging to become a practical technique for material analysis.
Raman chemical imaging is a versatile technique that is well suited to the analysis of complex heterogeneous materials, such as biological samples. In a typical Raman chemical imaging experiment, a sample is illuminated with monochromatic light, and the Raman scattered light is filtered by an imaging spectrometer which passes only a single wavelength range. The Raman scattered light may then be used to form an image of the sample. A spectrum is generated corresponding to millions of spatial locations at the sample surface by tuning an imaging spectrometer over a range of wavelengths and collecting images intermittently. Changing the selected passband (wavelength) of the imaging spectrometer to another appropriate wavelength causes a different material to become visible. A series of such images, which may be referred to as a datacube, can then uniquely identify constituent materials, and computer analysis of the image is used to produce a composite image highlighting the information desired. Although Raman chemical imaging is predominately a surface technique, depth-related information can also be obtained by using different excitation wavelengths or by capturing chemical images at incremental planes of focus. Contrast is generated in the images based on the relative amounts of Raman scatter or other optical phenomena such as luminescence that is generated by the different species located throughout the sample.
Since a spectrum is generated for each pixel location, chemometric analysis tools can be applied to the image data to extract pertinent information otherwise missed by ordinary univariate measures. A spatial resolving power of approximately 250 nm has been demonstrated for Raman chemical imaging using visible laser wavelengths. This is almost two orders of magnitude better than infrared imaging which is typically limited to 20 microns due to diffraction. In addition, image definition (based on the total number of imaging pixels) can be very high for Raman chemical imaging because of the use of high pixel density detectors (often 1 million plus detector elements
The method described herein overcomes the limitations of the prior art and holds potential for significantly increasing the speed of sample analysis. This is because the points at which interacted photons are assessed need not represent more than 25% of the area of the field of view, and can represent 5%, 1%, or less of the field.
The preset disclosure provides for a system and method for multipoint assessment of a biological sample. In one embodiment, the biological sample may comprise a bodily fluid such as urine, saliva, sputum, feces, blood, serum, mucus, pus, semen, fluid expressed from a wound, vaginal fluid, and combinations thereof. Examples of biological materials that can be analyzed using the system and method disclosed herein may include whole cells (e.g., normal, cancerous, or other diseased cells), extracellular matrix materials (e.g., collagens, atherosclerotic and other plaques, calcifications, bone matrix, materials of exogenous origin such as plastic or metal fragments), normal cellular components (e.g., glucose, dissolved oxygen, dissolved carbon dioxide, urea, lactic acid, creatine, bicarbonate, electrolytes, proteins, nucleic acids, cholesterol, triglycerides, and hemoglobin), serum, tissues, organs, and other biological materials.
To perform multipoint analysis, the sample and field to be evaluated is illuminated in whole or in part, depending on the nature of the sample and the type of multipoint sampling desired. A field of illumination can be divided into multiple adjacent, non-adjacent, or overlapping points, and Raman scattering analysis can be assessed at each of the points. By way of example, the entire sample can be illuminated and multipoint analysis performed by assessing Raman scattered radiation at selected points. Alternatively, multiple points of the sample can be illuminated, and Raman scattered radiation emanating from those points can be assessed. The points can be assessed serially (i.e., sequentially). To implement this strategy, there is an inherent trade off between acquisition time and the spatial resolution of the spectroscopic map. Each full spectrum takes a certain time to collect. The more spectra collected per unit area of a sample, the higher the apparent resolution of the spectroscopic map, but the longer the data acquisition takes. Performing single point measurements on a grid over a field of view can introduce sampling errors which makes a high definition image difficult to construct. Instead of serial analysis of sample points, Raman scattering can be assessed in parallel (i.e., simultaneously) for all selected points in an image field. This parallel processing of all points is designated Raman chemical imaging (RCI), and can require significant data acquisition time, computing time and capacity when very large numbers of spatial points and spectral channels are selected, but require less data acquisition time, computing time and capacity when relatively small number of spectral channels are assessed. Specifically, data acquisition time for RCI using tunable filter technology, a widely used configuration, requires more time as the number of spectral channels increases.
An important aspect of the invention is that Raman spectra are assessed at multiple points in a viewing field (e.g., the field of magnification for a microscope) that together represent only a portion of the area of the viewing field. It has been discovered that sampling the viewing field at points representing a minority of the total area of the field (e.g., at two, three, four, six, ten, fifty, one hundred, or more) points representing, in sum, 25%, 5%, 1%, or less of the field). The points can be single pixels of an image of the viewing field or areas of the field represented in an image by multiple adjacent or grouped pixels. The shape of areas or pixels assessed as individual points is not critical. For example, circular, annular, square, or rectangular areas or pixels can be assessed as individual points.
The area corresponding to each point of a multipoint analysis can be selected or generated in a variety of known ways. By way of example, a confocal mask or diffracting optical element placed in the illumination or collection optical path can limit illumination or collection to certain portions of the sample having a defined geometric relationship.
In addition to Raman spectra, other spectroscopic measurements (e.g., absorbance, fluorescence, and/or refraction) can be performed to assess one or more of the points sampled by Raman spectroscopy. This information can be used alone or as a supplement to the Raman spectral information to further characterize the portions of the sample corresponding to the individually analyzed points. This information can also be used in place of Raman spectral information. Raman spectroscopy often provides more information regarding the identity of imaged materials than many other forms of spectroscopic analysis. Additional spectroscopic information (including absorbance spectral information or image-based optical information such as the shapes of objects in the field of view) can help select a field of interest for Raman analysis, confirm the Raman spectroscopic analysis for a point, or both.
Spectroscopic analysis of multiple points in a field of view (multipoint analysis) allows high quality spectral sensing and analysis without the need to perform spectral imaging at every picture element (pixel) of an image. Optical imaging can be performed on the sample (e.g., simultaneously or separately) and the optical image can be combined with selected Raman spectrum information to define and locate regions of interest. Rapidly obtaining spectra from sufficient different locations of this region of interest at one time allows highly efficient and accurate spectral analysis and the identification of components in samples. Furthermore, identification of a region of interest in a sample or in a viewing field can be used as a signal that more detailed Raman scattering (or other) analysis of that portion of the sample or viewing field should be performed.
One embodiment of a method of the present disclosure is illustrated in
In one embodiment, the component may comprise: a chemical agent, a biological toxin, a microorganism, a bacterium, a protozoan, a virus, and combinations thereof. In another embodiment, the component may comprise at least one of: a protein, a flavonoid, a keratinoid, a metabolite, an enzyme, an electrolyte, and combinations thereof.
In one embodiment, the component may comprise a pathogenic microorganism. The pathogenic microorganism may comprise at least one of: protozoa, cryptosporidia microorganisms, Escherichia coli, Escherichia coli 157 microorganisms, Plague (Yersinia pestis), Smallpox (variola major), Tularemia (Francisella tularensis), Brucellosis (Brucella species), Clostridium perfringens, Salmonella, Shigella, Glanders (Burkholderia mallei), Melioidosis (Burkholderia pseudomallei), Psittacosis (Chlamydia psittaci), Q fever (Coxiella burnetil), Typhus fever (Rickettsia prowazekii), Vibrio cholerae, and combinations thereof.
In another embodiment, the component may comprise a bacteria comprising at least one of: Giardia, Candida albicans, Enterococcus faecalis, Staphylococcus epidermidis, Enterobacter aerogenes, Corynebacterium diphtheriae, Pseudomonas aeruginosa, Acinetobacter calcoaceticus, Klebsiella pneumoniae, and Serratia marcescens, and combinations thereof. In another embodiment, the component may comprise a fungus comprising at least one of: Microsporum audouini, Microspotum canis, Microsporum gypseum, Trichophyton mentagrophytes var. mentagrophytes, Trichophyton mentagrophytes var. interdigitale, Trichophyton rubrum, Trichophyton tonsurans, Trichophyton verrucosum, and Epidermophytum floccosum, and combinations thereof.
In yet another embodiment, the component may comprise at least one of: influenza A, influenza B, Epstein Barr virus. Group A streptococcus, Group B streptococcus, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and combinations thereof.
In one embodiment, assessing the interacted photons may further comprise generating at least one spectroscopic data set representive of the sample. In one embodiment, the spectroscopic data set may comprise a Raman spectroscopic data set. Various determinations may be made my comparing the spectroscopic data set to at least one reference spectroscopic data set. The reference data set may be associated with at least one of a known disease state, a known disease stage, a known metabolic state, a known inflammatory state, a hydration state, and combinations thereof. The comparison may be achieved my applying at least one chemometric technique. These techniques include, but are not limited to, correlation analysis, principle component analysis, multivariate curve resolution, Mahalanobis distance, Euclidian distance, band target entropy, band target energy minimization, partial least squares discriminant analysis, adaptive subspace detection, and combinations thereof.
In one embodiment, a determination may be made as to the presence or absence of a component of interest in the sample. The component of interest may be one that is characteristic of a particular disease or disease state. In another embodiment, a determination as to a disease state, a disease stage, a metabolic state, a hydration state, an inflammatory state, and combinations thereof, may be made. It is contemplated herein that the disease state may refer to a determination of cancer vs. non-cancer.
The present disclosure also contemplates that a concentration of a component in the sample or a change in a concentration may also be determined. Changes in the amount and types of enzymes in a sample and the amount of nucleic acid content may also be assessed as part of the evaluation. In one embodiment, a conformation change in the sample may be evaluated. These characteristics may be assessed using Raman spectroscopy, Raman Chemical Imaging, and combinations thereof.
In one embodiment, the method 100 may further comprise generating a microscopic image of the sample. This microscopic image may be assessed for morphologic features such as size of a nucleus and changes in the size of a nucleus.
The present disclosure also provides for a system for assessing at least one component of a biological sample. One embodiment is represented in
Referring again to
In the spectroscopy module 110 in the embodiment of
In the embodiment of
In one embodiment, a microscope objective (including the collection optics 203) may be automatically or manually zoomed in or out to obtain proper focusing of the sample.
The entrance slit (not shown) of the spectrometer 214 may be optically coupled to the output end of the fiber array spectral translator device (FAST) 212 to disperse the Raman scattered photons received from the FAST device 212 and to generate a plurality of spatially resolved Raman spectra from the wavelength-dispersed photons. The FAST device 212 may receive Raman scattered photons from the beam splitter 219, which may split and appropriately polarize the Raman scattered photons received from the sample 201 and transmit corresponding portions to the input end of the FAST device 212 and the input end of the Raman tunable filter 218.
Referring again to
In one embodiment, a multi-conjugate filter (MCF) may be used instead of a simple LCTF (e.g., the LCTF 218 or 222) to provide more precise wavelength tuning of photons received from the sample 201.
In the embodiment of
In one embodiment, a display unit (not shown) may be provided to display spectral data collected by various detectors 216, 220, 224 in a predefined or user-selected format. The display unit may be a computer display screen, a display monitor, an LCD (liquid crystal display) screen, or any other type of electronic display device.
Multipoint analysis is diagrammed conceptually in
In contrast, diagrams depicting how Raman spectral information is gathered in chemical imaging (
The multipoint method can be performed much more rapidly than chemical imaging methods, because far less raw data collection is involved. By selecting multipoint areas that are on a scale corresponding to an anticipated analyte, averaging of spectral data across the relatively limited area of each point can capture the unique spectra of the analyte. Because the multipoint area can correspond to many pixels in a full chemical image, the spectral sensing points can also improve the signal-to-noise ratio of the spectrum of each area. If the non-homogeneity of a sample can be anticipated, then the area of suitable points for Raman scattering analysis can be selected or determined based on the Raman spectra of the anticipated components and their relative amounts. Point size (i.e., the size of the area sampled in each of multiple points) can thereby be selected such that Raman characteristics of the component of interest will be distinguishable from other components and anticipated background Raman scattering. The multipoint method thus can be performed with greater speed and less noise or with a greater spatial resolution and lower detection limit than the wide-field chemical imaging method.
The area of points sampled can be as small as the resolution limits of the equipment used (i.e., one pixel). Preferably, multiple pixels are included in the point, so that spectral averaging methods can be used to reduce noise in the detected signal. The size of the area of each point should preferably not be greater than a small multiple of the anticipated size of the particle size of the agent to be detected. For example, in one embodiment, if the presence or absence of bacterial spores are to be analyzed, then the point size should be not greater than 2, 3, 5, 10, or 25 times the cross-sectional area of a single spore. By way of examples, bacteria and their spores have characteristic dimensions that are typically on the order of one to several micrometers, viruses have characteristic dimensions that are on the order of tens of nanometers, and eukaryotic cells have characteristic dimensions that are on the order of ten to hundreds of micrometers. The characteristic dimensions of chemical agents, including biological toxins, depend on their agglomeration, crystallization, or other associative characteristics. The characteristic size of analytes can also depend on sample components other than the analyte itself (e.g., binding or agglomerating agents).
When the area of a sample corresponding to a point at which a Raman spectrum is assessed is much larger than a characteristic dimension of an analyte or an analyte-containing particle, the methods described herein can still be employed. In that instance, the results obtained using the method will be indicative of the presence of the analyte in a region of the sample, rather than pinpointing the location of a discrete particle of the analyte. Such regions of the sample can be subjected to further analysis (e.g., finer multipoint Raman analysis or Raman chemical imaging analysis) if desired. A skilled artisan will understand how to select appropriate point sizes based on the desired analyte in view of this disclosure.
The areas corresponding to individual points in a sample need not be equal for all points in the same field of view. For example, smaller point sizes can be used in an area of the field in which finer spatial resolution is desired. Likewise, a field of view can be analyzed separately using multiple equal point sizes. By way of example, a field of view can be first analyzed at several relatively large points and, if the analyte is recognized at one of the points, a portion of the sample corresponding to that point (e.g., the quadrant of the sample that includes the point, all areas within a certain distance of the point, or the entire sample, if desired) can be re-analyzed using smaller point sizes. Multiple rounds of such analysis and point size reduction can result in images having very finely-resolved portions of interest and more crudely-resolved areas of lesser or no interest, while minimizing information processing requirements. Variable magnification or an optical zoom can be used to vary the area of the points sampled. In this way, the area corresponding to a sampled point can be matched with the size of pixels of the detector. The area of illuminated points can be controlled in the same ways (i.e., in conjunction with a grid aperture or other beam-shaping device).
Some considerations that can affect the size and shape selected for areas corresponding to individual points include the following. The size and shape can be selected to correspond to the geometry of the device used for illuminating the sample or the geometry of detector elements in the detector. The size of the component in the sample to be detected can influence the size, shape, and spacing of the points. For instance, the area of the points can be selected so that a desired amount of the component (e.g., a single microorganism) in the point area will yield a detectable signal even if the remainder of the area is free of the component. The minimum limit of detection desired for the component can be determined by the proportion of the field of view that would be covered by the component at that level, so the pattern or number of points sampled can be selected with that component density in mind.
As illustrated in
Multipoint spectral sensing can be applied separately or combined with methods of Raman, fluorescence, UV/visible absorption/reflectance, and NIR absorption/reflectance spectroscopies. Contrast can be generated in images by superimposing, adding, or otherwise combining spectral information obtained by these spectroscopic methods. Because a spectrum is generated for each point assessed in a multipoint analysis, chemometric analysis tools can be applied to the image data to extract pertinent information that might be less obvious by analyzing only ordinary univariate measures.
Furthermore, regions of a sample suitable for multipoint Raman scattering analysis can be identified by first using other optical or spectroscopic methods. By way of example, in a method for assessing the presence of a pathogenic bacterium, optical microscopy can be used to identify regions of a sample that contain entities having the size and/or shape of bacteria. Fluorescence analysis can be used to assess whether the entities identified by optical microscopy appear to be of biological origin (i.e., by exhibiting fluorescence characteristic of bacteria). For portions of the sample containing entities which appear to have the size and/or shape of bacteria and exhibit apparently biotic fluorescence, Raman scattering analysis can be performed at multiple points within that portion, as described herein. Further by way of example, near infrared (NIR) imaging can be used to identify suspicious portions of a sample, and to perform multipoint Raman scattering analysis on those suspicious portions.
By way of example, the intensity of radiation assessed at one Raman shift value can be superimposed on a black-and-white optical image of the sample using intensity of red color corresponding to intensity of the Raman-shifted radiation at a particular Raman shift value, the intensity of radiation assessed at a second Raman shift value can be superimposed on the image using intensity of blue color corresponding to intensity of the second Raman-shifted radiation, and the intensity of fluorescent radiation assessed at one fluorescent wavelength can be superimposed on the image using intensity of green color corresponding to intensity of the fluorescent radiation. Further by way of example, if the characteristics of a portion of the image are within the limits of predetermined criteria for detecting the presence of a component of interest, the portion of the image for which the characteristics meet those criteria can be made to switch on-and-off or to otherwise indicate the presence of the detected component.
Depending on the materials and the spectroscopic method(s) used, depth-related information can also be obtained by using different excitation wavelengths or by capturing spectroscopic images at incremental planes of focus.
A spatial resolving power of approximately 250 nanometers has been demonstrated for Raman spectroscopic imaging using visible laser wavelengths and commercially available devices. This is almost two orders of magnitude better than infrared imaging, which is typically limited to a resolution not better than 20 micrometers, owing to diffraction for example. Thus, multipoint size definition performed using Raman spectroscopy can be higher than other spectroscopic methods and Raman methods can be used to differentiate spectral features of small objects. Simplified designs of detectors (i.e., relative to chemical imaging devices) are possible since spectroscopic imaging and the assembly of a spectral image is not necessary in this approach.
The present disclosure contemplates that a variety of data processing procedures can be used for analyzing biological samples. For example, a weighted multi-point spectral data subtraction routine can be used to suppress contribution from the sample background or sample support (e.g., Raman light scattered by a microscope slide). Alternatively, multivariate spectral analysis involving principal factor analysis and subsequent factor rotation can be used for differentiation of pure molecular features in biological materials and other entities (e.g., non-threatening ‘masking’ compounds).
The following is an example of an algorithm that can be used to perform this multi-point analysis of fluorescence spectra collected for a mixture of Bacillus subtilis and B. pumilus spores as a sample:
1. Divide the raw multipoint data set (mp-data set) by a background mp-data set (taken without the sample).
2. Apply cosmic event filtering on the resultant mp-data set (median filtering for points whose value differs significantly from the mean of a local neighborhood).
3. Use an alignment procedure to correct for any slight movements of the sample during data collection.
4. Apply a spatial average filter.
5. Perform a spectral normalization (helps correct for varying illumination across the sample).
6. Perform a spectral running average over each set of three spectral values.
7. Extract a set of frames corresponding to 550 to 620 nanometers. The spectra for both bacterial spores (B. subtilis var niger and B. pumilus) can be essentially linear over this range. For example, B. subtilis var niger can have a positive slope and B. pumilus can have a negative slope.
8. Create a single frame mp-data set in which each intensity value is the slope of the spectral sub-region (from the last image). The slope is determined via a least-squares fit.
9. Scale the resulting mp-data set between 0 and 4095. Keep track of the point from 0 to 4095 that corresponds to 0 in the prior image (the “Zero point”).
10. Create a mask mp-data set image from a series of steps:
10a. From the aligned image (step 3), calculate a single frame “brightest” mp-data set in which the intensity of each point is the maximum intensity value for each spectrum.
10b. Scale this brightest mp image set between 0 and 4095.
10c. Create a binarized mp data set from the scaled mp data set, in which every point whose intensity is greater than 900 is set to 1 in the new mp data set and every point whose intensity is less than 900 is set to 0 in the new mp-data set. The value of 900 was chosen by an examination of the histogram associated with the scaled mp data set. (An improvement to this algorithm is to automatically select the threshold by numerically analyzing the histogram for a given mp data set.)
11. Multiply the scaled mp-data set from step 9 by the mask mp data set from step 10. The result is a gray scale mp data set in which intensity values below the zero value defined in step 9 correspond to B. pumilus and the intensity values above the zero point correspond to B. subtilis var niger.
The final RGB mp data set is then created by setting all the “negative” values to red and all the “positive” values to green.
While this invention has been disclosed with reference to specific embodiments, it is apparent that other embodiments and variations of this invention can be devised by others skilled in the art without departing from the true spirit and scope of the invention. The appended claims include all such embodiments and equivalent variations.
This Application is a continuation-in-part to pending U.S. patent application Ser. No. 13/374,703, filed on Jan. 9, 2012, entitled “Multipoint Method for Identifying Hazardous Agents.” This Application is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60591132 | Jul 2004 | US | |
60584718 | Jun 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12422360 | Apr 2009 | US |
Child | 13374703 | US | |
Parent | 11000683 | Nov 2004 | US |
Child | 12422360 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13374703 | Jan 2012 | US |
Child | 13626474 | US |