MULTISPECIFIC ANTIBODY MOLECULES COMPRISINGLAMBDA AND KAPPA LIGHT CHAINS

Information

  • Patent Application
  • 20230272119
  • Publication Number
    20230272119
  • Date Filed
    May 12, 2023
    2 years ago
  • Date Published
    August 31, 2023
    2 years ago
Abstract
Multispecific, e.g., bispecific, antibody molecules that include a kappa light chain polypeptide and one lambda light chain polypeptide, and methods of making and using the multispecific antibody molecules, are disclosed.
Description
REFERENCE TO SEQUENCE LISTING

This application contains a Sequence Listing which has been submitted electronically in XML format. The Sequence Listing XML is incorporated herein by reference. Said XML file, created on May 12, 2023, is named 53676-713_402_SL.xml and is 447,435 in size.


BACKGROUND

Multispecific, e.g., bispecific, antibody molecules that include a lambda chain polypeptide and a kappa light chain polypeptide, and methods of making and using the same, are disclosed. Mispairing of the light chains to the incorrect heavy chain, also known as light chain shuffling, is a problem frequently observed when preparing bispecific and other multispecific antibodies. This results in the formation of incorrect antibody pairings, leading to decreased production yield. Thus, the need exists to develop methods and compositions that reduce light chain shuffling.


SUMMARY

In one aspect, provided herein is a method of making a multispecific molecule, the method comprising expressing four non-contiguous polypeptides in a cell, wherein the four non-contiguous polypeptides comprise: (a) a first heavy chain polypeptide (HCP1) comprising a sequence having at least 85% sequence identity to the sequence of amino acids 120-449 of SEQ ID NO: 164; (b) a kappa light chain polypeptide (KLCP) comprising a sequence having at least 85% sequence identity to the sequence of amino acids 111-213 of SEQ ID NO: 165; (c) a second heavy chain polypeptide (HCP2) comprising a sequence having at least 85% sequence identity to the sequence of amino acids 121-450 of SEQ ID NO: 166; and (d) a lambda light chain polypeptide (LLCP) comprising a sequence having at least 85% sequence identity to the sequence of amino acids 111-216 of SEQ ID NO: 167; wherein the HCP1 and the HCP2 are a knob and hole pair; and wherein: (A)(i) the KLCP binds to the HCP1 with a higher affinity than the affinity of the LLCP to the HCP1 and the affinity of the KLCP to the HCP2, (ii) the LLCP binds to the HCP2 with a higher affinity than the affinity of the KLCP to the HCP2 and the affinity of the LLCP to the HCP1; or (B)(i) the LLCP binds to the HCP1 with a higher affinity than the affinity of the KLCP to the HCP1 and the affinity of the LLCP to the HCP2, and (ii) the KLCP binds to the HCP2 with a higher affinity than the affinity of the LLCP to the HCP2 and the affinity of the KLCP to the HCP1.


In some embodiments, the method comprises expressing the four non-contiguous polypeptides simultaneously in the cell, and the cell is a single cell.


In some embodiments, the method (i) does not comprise purifying the multispecific molecule away from a multispecific molecule that contains the HCP1, the HCP2 and two of the LLCPs, and (ii) does not purifying the multispecific molecule away from a multispecific molecule that contains the HCP1, the HCP2 and two of the KLCPs.


In some embodiments, the method comprises producing an amount of the multispecific molecule that is (i) at least 5.25-fold higher than the amount of a multispecific molecule produced that contains the HCP1, the HCP2 and two of the LLCPs, and (ii) at least 5.7-fold higher than the amount of a multispecific molecule produced that contains the HCP1, the HCP2 and two of the KLCPs polypeptides.


In some embodiments, the cell is a mammalian cell or an insect cell.


In some embodiments, the cell is a CHO cell, a Vero cell, a HeLa cell, a COS cell, a HEK293 cell, a BHK cell, a MDCKII cell, an SF9 cell, or an S2 cell.


In some embodiments, the method comprises introducing one or more polynucleic acids into the cell, wherein the one or more polynucleic acid molecules comprise a nucleic acid sequence encoding the HCP1, a nucleic acid sequence encoding the HCP2, a nucleic acid sequence encoding the LLCP, and a nucleic acid sequence encoding the KLCP.


In some embodiments, the one or more polynucleic acids comprise one or more plasmids; and/or the introducing comprises transfecting.


In some embodiments, the ratio of the nucleic acid sequence encoding the LLCP to the nucleic acid sequence encoding the KLCP is from 3:1 to 1:3.


In some embodiments, the method comprises: (i) isolating or purifying the multispecific molecule, and/or (ii) culturing the cell in growth media and the multispecific molecule is secreted by the cell into the growth media.


In some embodiments, the isolating or purifying comprises isolating or purifying the multispecific molecule via affinity chromatography, and/or isolating or purifying the multispecific molecule using protein A, a reagent that binds to a CH1 domain, or a reagent that binds to an affinity tag of the multispecific molecule.


In some embodiments, the multispecific molecule is a bispecific molecule.


In some embodiments, the HCP1 comprises a sequence identical to the sequence of amino acids 120-217 of SEQ ID NO: 164 and/or the HCP2 comprises a sequence identical to the sequence of amino acids 121-218 of SEQ ID NO: 166.


In some embodiments, the HCP1 comprises a sequence identical to the sequence of amino acids 351-409 of SEQ ID NO: 164, and the HCP2 comprises a sequence identical to the sequence of amino acids 352-410 of SEQ ID NO: 166.


In some embodiments, the HCP1 comprises a sequence having at least 95% sequence identity to the sequence of amino acids 120-449 of SEQ ID NO: 164.


In some embodiments, the HCP1 comprises a sequence having at least 99% sequence identity to the sequence of amino acids 120-449 of SEQ ID NO: 164.


In some embodiments, the HCP2 comprises a sequence having at least 95% sequence identity to the sequence of amino acids 121-450 of SEQ ID NO: 166.


In some embodiments, the HCP2 comprises a sequence having at least 99% sequence identity to the sequence of amino acids 121-450 of SEQ ID NO: 166.


In some embodiments, the LLCP comprises a sequence having at least 95% sequence identity to the sequence of amino acids 111-216 of SEQ ID NO: 167.


In some embodiments, the LLCP comprises a sequence having at least 96% sequence identity to the sequence of amino acids 111-216 of SEQ ID NO: 167.


In some embodiments, the LLCP comprises a sequence according to the sequence of amino acids 111-216 of SEQ ID NO: 167.


In some embodiments, the KLCP comprises a having at least 95% sequence identity to the sequence of amino acids 111-213 of SEQ ID NO: 165.


In some embodiments, the KLCP comprises a sequence according to the sequence of amino acids 111-213 of SEQ ID NO: 165.


In some embodiments, (i) the HCP1 comprises a sequence having at least 95% sequence identity to the sequence of amino acids 120-449 of SEQ ID NO: 164; (ii) the HCP2 comprises a sequence having at least 95% sequence identity to the sequence of amino acids 121-450 of SEQ ID NO: 166; (iii) the LLCP comprises a sequence having at least 95% sequence identity to the sequence of amino acids 111-216 of SEQ ID NO: 167; and (iv) the KLCP comprises a sequence having at least 95% sequence identity to the sequence of amino acids 111-213 of SEQ ID NO: 165.


In some embodiments, (i) the HCP1 comprises a sequence having at least 99% sequence identity to the sequence of amino acids 120-449 of SEQ ID NO: 164; (ii) the HCP2 comprises a sequence having at least 99% sequence identity to the sequence of amino acids 121-450 of SEQ ID NO: 166; (iii) the LLCP comprises a sequence having at least 96% sequence identity to the sequence of amino acids 111-216 of SEQ ID NO: 167; and (iv) the KLCP comprises a sequence according to the sequence of amino acids 111-213 of SEQ ID NO: 165.


In some embodiments, (i) the HCP1 comprises a sequence according to the sequence of amino acids 238-449 of SEQ ID NO: 164; (ii) the HCP2 comprises a sequence according to the sequence of amino acids 239-450 of SEQ ID NO: 166; (iii) the LLCP comprises a sequence having at least 96% sequence identity to the sequence of amino acids 111-216 of SEQ ID NO: 167; and (iv) the KLCP comprises a sequence according to the sequence of amino acids 111-213 of SEQ ID NO: 165.


In some embodiments, the HCP1 does not bind to the KLCP and the HCP2 does not bind to the LLCP, or the HCP1 does not bind to the LLCP and the HCP2 does not bind to the KLCP.


In another aspect, provided herein is a composition comprising the multispecific molecule produced according to the method as provided herein.


In another aspect, provided herein is a pharmaceutical composition comprising the multispecific molecule produced according to the method as provided herein, and a pharmaceutically acceptable diluent or excipient.


In another aspect, provided herein is a method of treating a disease or condition in a subject in need thereof, the method comprising administering to the subject a therapeutically effective amount of the pharmaceutical composition as provided herein, thereby treating the disease or condition in the subject.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be limiting.


Other features and advantages of the invention will be apparent from the following detailed description and claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1D depict a schematic representation of light chain shuffling.



FIG. 2 depicts a schematic representation of a papain-cleaved bispecific antibody showing the location of cleavage in the hinge region by a dotted line. In embodiments, the multispecific antibody molecule having a first binding specificity that includes a hybrid VLλ-CLλ heterodimerized to a first heavy chain variable region-CH1 connected to the Fc constant, CH2-CH3 domain (having a hole modification) and a second binding specificity that includes a hybrid VLκ-CLκ heterodimerized to a second heavy chain variable region-CH1 connected to the Fc constant, CH2-CH3 domain (having a knob modification). Two Fab fragments are released after papain treatment.



FIGS. 3A-3C depict the competition of a lambda light chain polypeptide (LLCP) and a kappa light chain polypeptide (KLCP) for a heavy chain polypeptide (HCP2) when mixed at a 1:1:1 molar ratio utilizing the NanoBiT® Protein:Protein Interaction System (ACS Chem Biol. 2016 Feb. 19; 11(2):400-8.). HCP2 has the LgBiT as a C-terminal fusion, KLCP has the SmBiT as a C-terminal fusion, and LLCP is a native light chain. When HCP2 and KLCP form a Fab region, the LgBiT and SmBiT create a fully functional NanoLuc domain (FIG. 3A). When HCP2 and LLCP form a Fab region, the NanoLuc is not complete and is inactive (FIG. 3B). A 1:1:1 competition of LLCP and KLCP for HCP2 purified by CH1 affinity results in the HCP2/KLCP functional NanoLuc and the HCP2/LLCP nonfunctional NanoLuc Fab regions (FIG. 3C).



FIGS. 4A-4C depict the competition of a lambda light chain polypeptide (LLCP) and a kappa light chain polypeptide (KLCP) for a heavy chain polypeptide (HCP1) when mixed at a 1:1:1 molar ratio utilizing the NanoBiT® Protein:Protein Interaction System. HCP1 has the LgBiT as a C-terminal fusion, LLCP has the SmBiT as a C-terminal fusion, and KLCP is a native light chain. When HCP1 and LLCP form a Fab region, the LgBiT and SmBiT create a fully functional NanoLuc domain (FIG. 4A). When HCP1 and KLCP form a Fab region, the NanoLuc is not complete and is inactive (FIG. 4B). A 1:1:1 competition of LLCP and KLCP for HCP1 purified by CH1 affinity results in the HCP1/LLCP functional NanoLuc and the HCP1/KLCP nonfunctional NanoLuc Fab regions (FIG. 4C).



FIG. 5 depicts a schematic representation of an exemplary multispecific antibody molecule of the present invention. The multispecific antibody molecule comprises a first Fab comprising a kappa light chain polypeptide; a second Fab comprising a lambda light chain polypeptide; and an Fc domain, wherein the Fc domain contains a paired protuberance/cavity, e.g., knob and hole pair. In one embodiment, the first Fab binds to IGF1R and the second Fab binds to HER3 (e.g., multispecific molecule 1 described in Example 2). In one embodiment, the first Fab binds to mesothelin and the second Fab binds to PD-L1 (e.g., multispecific molecule 2 described in Example 3). In one embodiment, the first Fab binds to CTLA-4 and the second Fab binds to IL12β (e.g., multispecific molecule 3 described in Example 4). In one embodiment, the first Fab binds to CTLA-4 and the second Fab binds to TRAILR2 (e.g., multispecific molecule 4 described in Example 5). In one embodiment, the first Fab binds to CTLA-4 and the second Fab binds to CD221 (e.g., multispecific molecule 5 described in Example 6). In one embodiment, the first Fab binds to PD-1 and the second Fab binds to TRAILR2 (e.g., multispecific molecule 6 described in Example 7). In one embodiment, the first Fab binds to PD-1 and the second Fab binds to PDL1 (e.g., multispecific molecule 7 described in Example 8).



FIG. 6 depicts a schematic representation of an exemplary multispecific antibody molecule of the present invention. The multispecific antibody molecule comprises a first Fab comprising a kappa light chain polypeptide; a second Fab comprising a lambda light chain polypeptide; a polypeptide attached to the C terminus of the lambda light chain polypeptide; and an Fc domain, wherein the Fc domain contains a paired protuberance/cavity, e.g., knob and hole pair. In one embodiment, the first Fab binds to CTLA4, the second Fab binds to IL12β, and the polypeptide that is attached to the C terminus of the lambda light chain polypeptide comprises interleukin 2, or fragment or variant thereof (e.g., multispecific molecule 9 described in Example 10).



FIG. 7 depicts a schematic representation of an exemplary multispecific antibody molecule of the present invention. The multispecific antibody molecule comprises a first Fab comprising a kappa light chain polypeptide; a second Fab comprising a lambda light chain polypeptide; a polypeptide attached to the C terminus of the lambda light chain polypeptide; and an Fc domain, wherein the Fc domain does not contain a paired protuberance/cavity, e.g., knob and hole pair (e.g., the Fc domain is a naturally existing Fc domain). In one embodiment, the first Fab binds to CTLA4, the second Fab binds to IL12β, and the polypeptide that is attached to the C terminus of the lambda light chain polypeptide comprises interleukin 2, or fragment or variant thereof (e.g., multispecific molecule 8 described in Example 9).



FIG. 8 depicts a schematic representation of an exemplary multispecific antibody molecule of the present invention. The multispecific antibody molecule comprises a first Fab comprising a kappa light chain polypeptide; a second Fab comprising a lambda light chain polypeptide; a first polypeptide attached to the C terminus of the lambda light chain polypeptide; a second polypeptide attached to the C terminus of the heavy chain polypeptide that associates with the lambda light chain polypeptide; and an Fc domain, wherein the Fc domain contains a paired protuberance/cavity, e.g., knob and hole pair. In one embodiment, the first Fab binds to CTLA4, the second Fab binds to IL12β, the first polypeptide comprises interleukin 2, or fragment or variant thereof, and the second polypeptide comprises interleukin 2, or fragment or variant thereof (e.g., multispecific molecule 11 described in Example 12).



FIG. 9 depicts a schematic representation of an exemplary multispecific antibody molecule of the present invention. The multispecific antibody molecule comprises a first Fab comprising a kappa light chain polypeptide; a second Fab comprising a lambda light chain polypeptide; a first polypeptide attached to the C terminus of the lambda light chain polypeptide; a second polypeptide attached to the C terminus of the heavy chain polypeptide that associates with the lambda light chain polypeptide; and an Fc domain, wherein the Fc domain does not contain a paired protuberance/cavity, e.g., knob and hole pair (e.g., the Fc domain is a naturally existing Fc domain). In one embodiment, the first Fab binds to CTLA4, the second Fab binds to IL12β, the first polypeptide comprises interleukin 2, or fragment or variant thereof, and the second polypeptide comprises interleukin 2, or fragment or variant thereof (e.g., multispecific molecule 10 described in Example 11).



FIG. 10 depicts a schematic representation of an exemplary multispecific antibody molecule of the present invention. The multispecific antibody molecule comprises a first Fab comprising a kappa light chain polypeptide; a second Fab comprising a lambda light chain polypeptide; a first polypeptide attached to the C terminus of the kappa light chain polypeptide; a second polypeptide attached to the C terminus of the heavy chain polypeptide that associates with the kappa light chain polypeptide; and an Fc domain, wherein the Fc domain contains a paired protuberance/cavity, e.g., knob and hole pair. In one embodiment, the first Fab binds to CTLA4, the second Fab binds to TRAILR2, the first polypeptide comprises interleukin 2, or fragment or variant thereof, and the second polypeptide comprises an scFv (e.g., multispecific molecule 12 described in Example 13).



FIG. 11. Gel of multispecific molecule 1.



FIG. 12. Gel of multispecific molecule 3.



FIG. 13. Gel of multispecific molecule 4.



FIG. 14. Gel of multispecific molecule 5.



FIG. 15. Gel of multispecific molecule 6.



FIG. 16. Gel of multispecific molecule 7.



FIG. 17. Gel of multispecific molecule 8.



FIG. 18. Gel of multispecific molecule 9.



FIG. 19. Size exclusion chromatogram of multispecific molecule 1.



FIG. 20. Size exclusion chromatogram of multispecific molecule 3.



FIG. 21. Size exclusion chromatogram of multispecific molecule 8.



FIG. 22. Size exclusion chromatogram of multispecific molecule 9.



FIG. 23. Gel of reduced samples of multispecific molecule 2 following kappa/lambda select analysis. Lane 1 is the load, lane 2 is the flow-through from the KappaSelect column, lane 3 is the elution from the KappaSelect column, lane 4 is the flow-through from the LambdaFabSelect column, and lane 5 is the elution from the LambdaFabSelect column.



FIG. 24. Gel of reduced samples of multispecific molecule 1 following kappa/lambda select analysis. Lane 1 is the load, lane 2 is the flow-through from the KappaSelect column, lane 3 is the elution from the KappaSelect column, lane 4 is the flow-through from the LambdaFabSelect column, and lane 5 is the elution from the LambdaFabSelect column.



FIG. 25. Gel of reduced samples of multispecific molecule 3 following kappa/lambda select analysis. Lane 1 is the load, lane 2 is the flow-through from the KappaSelect column, lane 3 is the elution from the KappaSelect column, lane 4 is the flow-through from the LambdaFabSelect column, and lane 5 is the elution from the LambdaFabSelect column.



FIG. 26. Gel of reduced samples of multispecific molecule 8 following kappa/lambda select analysis. Lane 1 is the load, lane 2 is the flow-through from the KappaSelect column, lane 3 is the elution from the KappaSelect column, lane 4 is the flow-through from the LambdaFabSelect column, and lane 5 is the elution from the LambdaFabSelect column.



FIG. 27. Gel of reduced samples of multispecific molecule 9 following kappa/lambda select analysis. Lane 1 is the load, lane 2 is the flow-through from the KappaSelect column, lane 3 is the elution from the KappaSelect column, lane 4 is the flow-through from the LambdaFabSelect column, and lane 5 is the elution from the LambdaFabSelect column.



FIG. 28. Gel of reduced samples of multispecific molecule 11 following kappa/lambda select analysis. Lane 1 is the load, lane 2 is the flow-through from the KappaSelect column, lane 3 is the elution from the KappaSelect column, lane 4 is the flow-through from the LambdaFabSelect column, and lane 5 is the elution from the LambdaFabSelect column.



FIG. 29. Gel of reduced samples of multispecific molecule 10 following kappa/lambda select analysis. Lane 1 is the load, lane 2 is the flow-through from the KappaSelect column, lane 3 is the elution from the KappaSelect column, lane 4 is the flow-through from the LambdaFabSelect column, and lane 5 is the elution from the LambdaFabSelect column.



FIG. 30. Gel of reduced samples of multispecific molecule 12 following kappa/lambda select analysis. Lane 1 is the load, lane 2 is the flow-through from the KappaSelect column, lane 3 is the elution from the KappaSelect column, lane 4 is the flow-through from the LambdaFabSelect column, and lane 5 is the elution from the LambdaFabSelect column. The ratios indicate the DNA ratio used in the transfection from 3:1 to 1:3 of knob to hole.



FIG. 31. Intact mass spectrometry analysis of papain-cleaved multispecific molecule 3.



FIG. 32. Intact mass spectrometry analysis of papain-cleaved multispecific molecule 4.



FIG. 33. Intact mass spectrometry analysis of papain-cleaved multispecific molecule 5.



FIG. 34. Intact mass spectrometry analysis of papain-cleaved multispecific molecule 6.



FIG. 35. Intact mass spectrometry analysis of papain-cleaved multispecific molecule 7.





DETAILED DESCRIPTION OF THE INVENTION

Disclosed herein are multispecific antibody molecules (also referred to herein as “multifunctional antibody molecules”) that comprise a lambda light chain polypeptide and a kappa light chain polypeptide. In embodiments, the multispecific antibody molecules include a plurality (e.g., two or more) binding specificities (or functionalities). In some embodiments, a first binding specificity selectively localizes to a cancer cell, e.g., it includes a tumor-targeting moiety; and the second (or third, or fourth) binding specificity includes one or both of: an immune cell engager (e.g., chosen from one, two, three, or all of an NK cell engager, a B cell engager, a dendritic cell engager, or a macrophage cell engager); and/or a cytokine molecule. In an embodiment, the multispecific molecule is a bispecific (or bifunctional) molecule, a trispecific (or trifunctional) molecule, or a tetraspecific (or tetrafunctional) molecule. Accordingly, provided herein are, inter alia, multispecific molecules (e.g., multispecific antibody molecules) that include the lambda light chain polypeptide and a kappa light chain polypeptide, nucleic acids encoding the same, methods of producing the aforesaid molecules, and methods of treating a disorder, e.g., cancer, using the aforesaid molecules.


In one embodiment, the multispecific antibody molecule comprises:

    • (i) a first heavy chain polypeptide (e.g., a heavy chain polypeptide comprising one, two, three or all of a first heavy chain variable region (first VH having a first binding specificity), a first CH1, a first heavy chain constant region (e.g., a first CH2, a first CH3, or both));
    • (ii) a second heavy chain polypeptide (e.g., a heavy chain polypeptide comprising one, two, three or all of a second heavy chain variable region (second VH), a second CH1, a second heavy chain constant region (e.g., a second CH2, a second CH3, or both));
    • (iii) a lambda light chain polypeptide (e.g., a lambda light variable region (VU), a lambda light constant chain (VU), or both) that preferentially associates with the first heavy chain polypeptide (e.g., the first VH); and
    • (iv) a kappa light chain polypeptide (e.g., a kappa light variable region (VLλ), a kappa light constant chain (VLλ), or both) that preferentially associates with the second heavy chain polypeptide (e.g., the second VH).


In embodiments, the first and second heavy chain polypeptides form an Fc interface that enhances heterodimerization. An exemplary representation is depicted in FIG. 1A, which shows a multispecific antibody molecule having a first binding specificity that includes a hybrid VLκ-CLκ heterodimerized to a first heavy chain variable region connected to the Fc constant, CH2-CH3 domain (having a knob modification) and a second binding specificity that includes a hybrid VLλ-CLλ heterodimerized to a second heavy chain variable region connected to the Fc constant, CH2-CH3 domain (having a hole modification).


In some embodiments, disclosed herein is a novel method for generating a multispecific, e.g., a bispecific, antibody molecule. The method for generating bispecific molecules disclosed herein produces stable antibodies, while avoiding the light-chain swapping commonly described in the literature. Light chain swapping or shuffling is a common problem encountered when producing antibodies with a single kappa and a single lambda light chain. A schematic of light chain shuffling is depicted in FIGS. 1A-1D. As shown in in FIGS. 1A-1D, only 25% of the product is of the desired configuration (FIG. 1A) and the other 75% of product has the light chains mispaired (FIG. 1B-1D). The method for generating a multispecific, e.g., bispecific, antibody molecule disclosed herein uses antibodies, e.g., human antibodies, with kappa and lambda light chains to produce stable, multispecific, e.g., bispecific, antibody molecules.


Definition

Certain terms are defined below.


As used herein, the articles “a” and “an” refer to one or more than one, e.g., to at least one, of the grammatical object of the article. The use of the words “a” or “an” when used in conjunction with the term “comprising” herein may mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.”


As used herein, “about” and “approximately” generally mean an acceptable degree of error for the quantity measured given the nature or precision of the measurements. Exemplary degrees of error are within 20 percent (%), typically, within 10%, and more typically, within 5% of a given range of values.


“Antibody molecule” as used herein refers to a protein, e.g., an immunoglobulin chain or fragment thereof, comprising at least one immunoglobulin variable domain sequence. An antibody molecule encompasses antibodies (e.g., full-length antibodies) and antibody fragments. In an embodiment, an antibody molecule comprises an antigen binding or functional fragment of a full length antibody, or a full length immunoglobulin chain. For example, a full-length antibody is an immunoglobulin (Ig) molecule (e.g., an IgG antibody) that is naturally occurring or formed by normal immunoglobulin gene fragment recombinatorial processes). In embodiments, an antibody molecule refers to an immunologically active, antigen-binding portion of an immunoglobulin molecule, such as an antibody fragment. An antibody fragment, e.g., functional fragment, is a portion of an antibody, e.g., Fab, Fab′, F(ab′)2, F(ab)2, variable fragment (Fv), domain antibody (dAb), or single chain variable fragment (scFv). A functional antibody fragment binds to the same antigen as that recognized by the intact (e.g., full-length) antibody. The terms “antibody fragment” or “functional fragment” also include isolated fragments consisting of the variable regions, such as the “Fv” fragments consisting of the variable regions of the heavy and light chains or recombinant single chain polypeptide molecules in which light and heavy variable regions are connected by a peptide linker (“scFv proteins”). In some embodiments, an antibody fragment does not include portions of antibodies without antigen binding activity, such as Fc fragments or single amino acid residues. Exemplary antibody molecules include full length antibodies and antibody fragments, e.g., dAb (domain antibody), single chain, Fab, Fab′, and F(ab′)2 fragments, and single chain variable fragments (scFvs).


As used herein, the term “molecule” as used in, e.g., antibody molecule, cytokine molecule, receptor molecule, includes full-length, naturally-occurring molecules, as well as variants, e.g., functional variants (e.g., truncations, fragments, mutated (e.g., substantially similar sequences) or derivatized form thereof), so long as at least one function and/or activity of the unmodified (e.g., naturally-occurring) molecule remains.


The term “functional variant” refers to polypeptides that have a substantially identical amino acid sequence to the naturally-occurring sequence, or are encoded by a substantially identical nucleotide sequence, and are capable of having one or more activities of the naturally-occurring sequence.


“Derived from” as used herein in reference the relationship of a first sequence, to a second sequence (e.g., in the context of nucleic acid sequence or protein sequences) imposes no process limitations and refers only to structural similarity. In embodiments a derived sequence will differ from the reference sequence by levels of homology or sequence identity described elsewhere herein.


As used herein, an “immunoglobulin variable domain sequence” refers to an amino acid sequence which can form the structure of an immunoglobulin variable domain. For example, the sequence may include all or part of the amino acid sequence of a naturally-occurring variable domain. For example, the sequence may or may not include one, two, or more N- or C-terminal amino acids, or may include other alterations that are compatible with formation of the protein structure.


“Lambda light chain polypeptide (LLCP)”, as that term is used herein, refers to a polypeptide comprising sufficient light chain (LC) sequence, such that when combined with a cognate heavy chain variable region, can mediate specific binding to its epitope and complex with an HCP1. In an embodiment it comprises all or a fragment of a CH1 region. In an embodiment, an LLCP comprises LC-CDR1, LC-CDR2, LC-CDR3, FR1, FR2, FR3, FR4, and CH1, or sufficient sequence therefrom to mediate specific binding of its epitope and complex with an HCP1. LLCP, together with its HCP1, provide specificity for a first epitope (while KLCP, together with its HCP2, provide specificity for a second epitope). As described elsewhere herein, LLCP has a higher affinity for HCP1 than for HCP2.


“Kappa light chain polypeptide (KLCP)”, as that term is used herein, refers to a polypeptide comprising sufficient light chain (LC) sequence, such that when combined with a cognate heavy chain variable region, can mediate specific binding to its epitope and complex with an HCP2. In an embodiment, it comprises all or a fragment of a CH1 region. In an embodiment, a KLCP comprises LC-CDR1, LC-CDR2, LC-CDR3, FR1, FR2, FR3, FR4, and CH1, or sufficient sequence therefrom to mediate specific binding of its epitope and complex with an HCP2. KLCP, together with its HCP2, provide specificity for a second epitope (while LLCP, together with its HCP1, provide specificity for a first epitope).


“Heavy chain polypeptide 1 (HCP1)”, as that term is used herein, refers to a polypeptide comprising sufficient heavy chain (HC) sequence, e.g., HC variable region sequence, such that when combined with a cognate LLCP, can mediate specific binding to its epitope and complex with an HCP1. In an embodiment, it comprises all or a fragment of a CH1 region. In an embodiment, it comprises all or a fragment of a CH2 and/or CH3 region. In an embodiment an HCP1 comprises HC-CDR1, HC-CDR2, HC-CDR3, FR1, FR2, FR3, FR4, CH1, CH2, and CH3, or sufficient sequence therefrom to: (i) mediate specific binding of its epitope and complex with an LLCP, (ii) to complex preferentially, as described herein to LLCP as opposed to KLCP; and (iii) to complex preferentially, as described herein, to an HCP2, as opposed to another molecule of HCP1. HCP1, together with its LLCP, provide specificity for a first epitope (while KLCP, together with its HCP2, provide specificity for a second epitope).


“Heavy chain polypeptide 2 (HCP2)”, as that term is used herein, refers to a polypeptide comprising sufficient heavy chain (HC) sequence, e.g., HC variable region sequence, such that when combined with a cognate LLCP, can mediate specific binding to its epitope and complex with an HCP1. In an embodiment, it comprises all or a fragment of a CH1 region. In an embodiment, it comprises all or a fragment of a CH2 and/or CH3 region. In an embodiment an HCP1 comprises HC-CDR1, HC-CDR2, HC-CDR3, FR1, FR2, FR3, FR4, CH1, CH2, and CH3, or sufficient sequence therefrom to: (i) mediate specific binding of its epitope and complex with an KLCP, (ii) to complex preferentially, as described herein to KLCP as opposed to LLCP; and (iii) to complex preferentially, as described herein, to an HCP1, as opposed to another molecule of HCP2. HCP2, together with its KLCP, provide specificity for a second epitope (while LLCP, together with its HCP1, provide specificity for a first epitope).


In embodiments, an antibody molecule is monospecific, e.g., it comprises binding specificity for a single epitope. In some embodiments, an antibody molecule is multispecific, e.g., it comprises a plurality of immunoglobulin variable domain sequences, where a first immunoglobulin variable domain sequence has binding specificity for a first epitope and a second immunoglobulin variable domain sequence has binding specificity for a second epitope. In some embodiments, an antibody molecule is a bispecific antibody molecule. “Bispecific antibody molecule” as used herein refers to an antibody molecule that has specificity for more than one (e.g., two, three, four, or more) epitope and/or antigen.


“Multispecific antibody molecule” as that term is used herein, refers to an antibody molecule having specificity for two non-identical epitopes, e.g., having a first variable region specific for a first epitope and a second variable region specific for a second epitope, wherein the first and second epitopes are non-identical. Multispecific antibody molecules include bispecific antibody molecules.


“Antigen” (Ag) as used herein refers to a molecule that can provoke an immune response, e.g., involving activation of certain immune cells and/or antibody generation. Any macromolecule, including almost all proteins or peptides, can be an antigen. Antigens can also be derived from genomic recombinant or DNA. For example, any DNA comprising a nucleotide sequence or a partial nucleotide sequence that encodes a protein capable of eliciting an immune response encodes an “antigen.” In embodiments, an antigen does not need to be encoded solely by a full length nucleotide sequence of a gene, nor does an antigen need to be encoded by a gene at all. In embodiments, an antigen can be synthesized or can be derived from a biological sample, e.g., a tissue sample, a tumor sample, a cell, or a fluid with other biological components. As used, herein a “tumor antigen” or interchangeably, a “cancer antigen” includes any molecule present on, or associated with, a cancer, e.g., a cancer cell or a tumor microenvironment that can provoke an immune response. As used, herein an “immune cell antigen” includes any molecule present on, or associated with, an immune cell that can provoke an immune response.


The “antigen-binding site,” or “binding portion” of an antibody molecule refers to the part of an antibody molecule, e.g., an immunoglobulin (Ig) molecule, that participates in antigen binding. In embodiments, the antigen binding site is formed by amino acid residues of the variable (V) regions of the heavy (H) and light (L) chains. Three highly divergent stretches within the variable regions of the heavy and light chains, referred to as hypervariable regions, are disposed between more conserved flanking stretches called “framework regions,” (FRs). FRs are amino acid sequences that are naturally found between, and adjacent to, hypervariable regions in immunoglobulins. In embodiments, in an antibody molecule, the three hypervariable regions of a light chain and the three hypervariable regions of a heavy chain are disposed relative to each other in three dimensional space to form an antigen-binding surface, which is complementary to the three-dimensional surface of a bound antigen. The three hypervariable regions of each of the heavy and light chains are referred to as “complementarity-determining regions,” or “CDRs.” The framework region and CDRs have been defined and described, e.g., in Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242, and Chothia, C. et al. (1987) J. Mol. Biol. 196:901-917. Each variable chain (e.g., variable heavy chain and variable light chain) is typically made up of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the amino acid order: FR1, CDR1, FR2, CDR2, FR3, CDR3, and FR4.


As used herein, preferential pairing of a heavy chain polypeptide and a light chain polypeptide refers to the condition, where the heavy chain polypeptide and the light chain polypeptide preferentially bind to each other, over an unrelated heavy chain polypeptide, or an unrelated light chain polypeptide. In one embodiment, the heavy chain polypeptide binds to the light chain polypeptide with a higher affinity than when the heavy chain polypeptide binds to an unrelated light chain polypeptide. In one embodiment, the light chain polypeptide binds to the heavy chain polypeptide with a higher affinity than when the light chain polypeptide binds to an unrelated heavy chain polypeptide.


As used here, a percent binding between a first heavy chain polypeptide and a first light chain polypeptide in the presence of a competing polypeptide (e.g., a second heavy chain polypeptide or a second light chain polypeptide) refers to the amount of binding between the first heavy chain polypeptide and the first light chain polypeptide in the presence of the competing polypeptide, relative to the amount of binding between the first heavy chain polypeptide and the first light chain polypeptide in the absence of any competing polypeptide (the latter was set to 100%). In one embodiment, the percent binding was measured when the first heavy chain polypeptide, the first light chain polypeptide, and the competing polypeptide are present at 1:1:1. In one embodiment, the percent binding was measured when the first heavy chain polypeptide, the first light chain polypeptide, and the competing polypeptide are present at 1:1:1, wherein the competing polypeptide is a second light chain polypeptide. In one embodiment, the percent binding was measured by an assay described herein, e.g., the NanoBiT assay.


“Cancer” as used herein can encompass all types of oncogenic processes and/or cancerous growths. In embodiments, cancer includes primary tumors as well as metastatic tissues or malignantly transformed cells, tissues, or organs. In embodiments, cancer encompasses all histopathologies and stages, e.g., stages of invasiveness/severity, of a cancer. In embodiments, cancer includes relapsed and/or resistant cancer. The terms “cancer” and “tumor” can be used interchangeably. For example, both terms encompass solid and liquid tumors. As used herein, the term “cancer” or “tumor” includes premalignant, as well as malignant cancers and tumors.


As used herein, an “immune cell” refers to any of various cells that function in the immune system, e.g., to protect against agents of infection and foreign matter. In embodiments, this term includes leukocytes, e.g., neutrophils, eosinophils, basophils, lymphocytes, and monocytes. Innate leukocytes include phagocytes (e.g., macrophages, neutrophils, and dendritic cells), mast cells, eosinophils, basophils, and natural killer cells. Innate leukocytes identify and eliminate pathogens, either by attacking larger pathogens through contact or by engulfing and then killing microorganisms, and are mediators in the activation of an adaptive immune response. The cells of the adaptive immune system are special types of leukocytes, called lymphocytes. B cells and T cells are important types of lymphocytes and are derived from hematopoietic stem cells in the bone marrow. B cells are involved in the humoral immune response, whereas T cells are involved in cell-mediated immune response. The term “immune cell” includes immune effector cells.


“Immune effector cell,” as that term is used herein, refers to a cell that is involved in an immune response, e.g., in the promotion of an immune effector response. Examples of immune effector cells include, but are not limited to, T cells, e.g., alpha/beta T cells and gamma/delta T cells, B cells, natural killer (NK) cells, natural killer T (NK T) cells, and mast cells.


The term “effector function” or “effector response” refers to a specialized function of a cell. Effector function of a T cell, for example, may be cytolytic activity or helper activity including the secretion of cytokines.


In some embodiments, the multispecific antibody molecule includes a tumor-targeting moiety. A “tumor-targeting moiety,” as used herein, refers to a binding agent that recognizes or associates with, e.g., binds to, a target in a cancer cell. The tumor-targeting moiety can be an antibody molecule, a receptor molecule (e.g., a full length receptor, receptor fragment, or fusion thereof (e.g., a receptor-Fc fusion)), or a ligand molecule (e.g., a full length ligand, ligand fragment, or fusion thereof (e.g., a ligand-Fc fusion)) that binds to the cancer antigen (e.g., the tumor and/or the stromal antigen). In embodiments, the tumor-targeting moiety specifically binds to the target tumor, e.g., binds preferentially to the target tumor. For example, when the tumor-targeting moiety is an antibody molecule, it binds to the cancer antigen (e.g., the tumor antigen and/or the stromal antigen) with a dissociation constant of less than about 10 nM.


In some embodiments, the multispecific antibody molecule includes an immune cell engager. “An immune cell engager” refers to one or more binding specificities that bind and/or activate an immune cell, e.g., a cell involved in an immune response. In embodiments, the immune cell is chosen from an NK cell, a B cell, a dendritic cell, and/or the macrophage cell. The immune cell engager can be an antibody molecule, a receptor molecule (e.g., a full length receptor, receptor fragment, or fusion thereof (e.g., a receptor-Fc fusion)), or a ligand molecule (e.g., a full length ligand, ligand fragment, or fusion thereof (e.g., a ligand-Fc fusion)) that binds to the immune cell antigen (e.g., the NK cell antigen, the B cell antigen, the dendritic cell antigen, and/or the macrophage cell antigen). In embodiments, the immune cell engager specifically binds to the target immune cell, e.g., binds preferentially to the target immune cell. For example, when the immune cell engager is an antibody molecule, it binds to the immune cell antigen (e.g., the NK cell antigen, the B cell antigen, the dendritic cell antigen, and/or the macrophage cell antigen) with a dissociation constant of less than about 10 nM.


In some embodiments, the multispecific antibody molecule includes a cytokine molecule. As used herein, a “cytokine molecule” refers to full length, a fragment or a variant of a cytokine; a cytokine further comprising a receptor domain, e.g., a cytokine receptor dimerizing domain; or an agonist of a cytokine receptor, e.g., an antibody molecule (e.g., an agonistic antibody) to a cytokine receptor, that elicits at least one activity of a naturally-occurring cytokine. In some embodiments the cytokine molecule is chosen from interleukin-2 (IL-2), interleukin-12 (IL-12), interleukin-15 (IL-15), interleukin-18 (IL-18), interleukin-21 (IL-21), or interferon gamma, or a fragment or variant thereof, or a combination of any of the aforesaid cytokines. The cytokine molecule can be a monomer or a dimer. In embodiments, the cytokine molecule can further include a cytokine receptor dimerizing domain. In other embodiments, the cytokine molecule is an agonist of a cytokine receptor, e.g., an antibody molecule (e.g., an agonistic antibody) to a cytokine receptor chosen from an IL-2, IL-15Ra or IL-21R.


The compositions and methods of the present invention encompass polypeptides and nucleic acids having the sequences specified, or sequences substantially identical or similar thereto, e.g., sequences at least 85%, 90%, 95% identical or higher to the sequence specified. In the context of an amino acid sequence, the term “substantially identical” is used herein to refer to a first amino acid that contains a sufficient or minimum number of amino acid residues that are i) identical to, or ii) conservative substitutions of aligned amino acid residues in a second amino acid sequence such that the first and second amino acid sequences can have a common structural domain and/or common functional activity. For example, amino acid sequences that contain a common structural domain having at least about 85%, 90%. 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity to a reference sequence, e.g., a sequence provided herein.


In the context of nucleotide sequence, the term “substantially identical” is used herein to refer to a first nucleic acid sequence that contains a sufficient or minimum number of nucleotides that are identical to aligned nucleotides in a second nucleic acid sequence such that the first and second nucleotide sequences encode a polypeptide having common functional activity, or encode a common structural polypeptide domain or a common functional polypeptide activity. For example, nucleotide sequences having at least about 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity to a reference sequence, e.g., a sequence provided herein.


Calculations of homology or sequence identity between sequences (the terms are used interchangeably herein) are performed as follows.


To determine the percent identity of two amino acid sequences, or of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). In a preferred embodiment, the length of a reference sequence aligned for comparison purposes is at least 30%, preferably at least 40%, more preferably at least 50%, 60%, and even more preferably at least 70%, 80%, 90%, 100% of the length of the reference sequence. The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein amino acid or nucleic acid “identity” is equivalent to amino acid or nucleic acid “homology”).


The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.


The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch ((1970) J. Mol. Biol. 48:444-453) algorithm which has been incorporated into the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (available at http://www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. A particularly preferred set of parameters (and the one that should be used unless otherwise specified) are a Blossum 62 scoring matrix with a gap penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.


The percent identity between two amino acid or nucleotide sequences can be determined using the algorithm of E. Meyers and W. Miller ((1989) CABIOS, 4:11-17) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.


The nucleic acid and protein sequences described herein can be used as a “query sequence” to perform a search against public databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (1990) J. Mol. Biol. 215:403-10. BLAST nucleotide searches can be performed with the NBLAST program, score=100, wordlength=12 to obtain nucleotide sequences homologous to a nucleic acid (e.g., SEQ ID NO: 1) molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score=50, wordlength=3 to obtain amino acid sequences homologous to protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., (1997) Nucleic Acids Res. 25:3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. See http://www.ncbi.nlm.nih.gov.


It is understood that the molecules of the present invention may have additional conservative or non-essential amino acid substitutions, which do not have a substantial effect on their functions.


The term “amino acid” is intended to embrace all molecules, whether natural or synthetic, which include both an amino functionality and an acid functionality and capable of being included in a polymer of naturally-occurring amino acids. Exemplary amino acids include naturally-occurring amino acids; analogs, derivatives and congeners thereof; amino acid analogs having variant side chains; and all stereoisomers of any of any of the foregoing. As used herein the term “amino acid” includes both the D- or L-optical isomers and peptidomimetics.


A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).


The terms “polypeptide”, “peptide” and “protein” (if single chain) are used interchangeably herein to refer to polymers of amino acids of any length. The polymer may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non-amino acids. The terms also encompass an amino acid polymer that has been modified; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation, such as conjugation with a labeling component. The polypeptide can be isolated from natural sources, can be a produced by recombinant techniques from a eukaryotic or prokaryotic host, or can be a product of synthetic procedures.


The terms “nucleic acid,” “nucleic acid sequence,” “nucleotide sequence,” or “polynucleotide sequence,” and “polynucleotide” are used interchangeably. They refer to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof. The polynucleotide may be either single-stranded or double-stranded, and if single-stranded may be the coding strand or non-coding (antisense) strand. A polynucleotide may comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs. The sequence of nucleotides may be interrupted by non-nucleotide components. A polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component. The nucleic acid may be a recombinant polynucleotide, or a polynucleotide of genomic, cDNA, semisynthetic, or synthetic origin which either does not occur in nature or is linked to another polynucleotide in a non-natural arrangement.


The term “isolated,” as used herein, refers to material that is removed from its original or native environment (e.g., the natural environment if it is naturally occurring). For example, a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated by human intervention from some or all of the co-existing materials in the natural system, is isolated. Such polynucleotides could be part of a vector and/or such polynucleotides or polypeptides could be part of a composition, and still be isolated in that such vector or composition is not part of the environment in which it is found in nature.


Various aspects of the invention are described in further detail below. Additional definitions are set out throughout the specification.


Antibody Molecules

In one embodiment, the antibody molecule binds to an antigen, e.g., an immune effector cell, a tumor antigen or a stromal antigen. In some embodiments, the antigen is, e.g., a mammalian, e.g., a human, antigen. In other embodiments, the antibody molecule binds to an immune cell antigen, e.g., a mammalian, e.g., a human, immune cell antigen. For example, the antibody molecule binds specifically to an epitope, e.g., linear or conformational epitope, on the cancer antigen or the immune cell antigen.


In an embodiment, an antibody molecule is a monospecific antibody molecule and binds a single epitope. E.g., a monospecific antibody molecule having a plurality of immunoglobulin variable domain sequences, each of which binds the same epitope.


In an embodiment an antibody molecule is a multispecific antibody molecule, e.g., it comprises a plurality of immunoglobulin variable domains sequences, wherein a first immunoglobulin variable domain sequence of the plurality has binding specificity for a first epitope and a second immunoglobulin variable domain sequence of the plurality has binding specificity for a second epitope. In an embodiment the first and second epitopes are on the same antigen, e.g., the same protein (or subunit of a multimeric protein). In an embodiment the first and second epitopes overlap. In an embodiment the first and second epitopes do not overlap. In an embodiment the first and second epitopes are on different antigens, e.g., the different proteins (or different subunits of a multimeric protein). In an embodiment a multispecific antibody molecule comprises a third, fourth or fifth immunoglobulin variable domain. In an embodiment, a multispecific antibody molecule is a bispecific antibody molecule, a trispecific antibody molecule, or a tetraspecific antibody molecule.


In an embodiment a multispecific antibody molecule is a bispecific antibody molecule. A bispecific antibody has specificity for no more than two antigens. A bispecific antibody molecule is characterized by a first immunoglobulin variable domain sequence which has binding specificity for a first epitope and a second immunoglobulin variable domain sequence that has binding specificity for a second epitope. In an embodiment the first and second epitopes are on the same antigen, e.g., the same protein (or subunit of a multimeric protein). In an embodiment the first and second epitopes overlap. In an embodiment the first and second epitopes do not overlap. In an embodiment the first and second epitopes are on different antigens, e.g., the different proteins (or different subunits of a multimeric protein). In an embodiment a bispecific antibody molecule comprises a heavy chain variable domain sequence and a light chain variable domain sequence which have binding specificity for a first epitope and a heavy chain variable domain sequence and a light chain variable domain sequence which have binding specificity for a second epitope. In an embodiment a bispecific antibody molecule comprises a half antibody having binding specificity for a first epitope and a half antibody having binding specificity for a second epitope. In an embodiment a bispecific antibody molecule comprises a half antibody, or fragment thereof, having binding specificity for a first epitope and a half antibody, or fragment thereof, having binding specificity for a second epitope. In an embodiment a bispecific antibody molecule comprises a scFv or a Fab, or fragment thereof, have binding specificity for a first epitope and a scFv or a Fab, or fragment thereof, have binding specificity for a second epitope.


In an embodiment, an antibody molecule comprises a diabody, and a single-chain molecule, as well as an antigen-binding fragment of an antibody (e.g., Fab, F(ab′)2, and Fv). For example, an antibody molecule can include a heavy (H) chain variable domain sequence (abbreviated herein as VH), and a light (L) chain variable domain sequence (abbreviated herein as VL). In an embodiment an antibody molecule comprises or consists of a heavy chain and a light chain (referred to herein as a half antibody. In another example, an antibody molecule includes two heavy (H) chain variable domain sequences and two light (L) chain variable domain sequence, thereby forming two antigen binding sites, such as Fab, Fab′, F(ab′)2, Fc, Fd, Fd′, Fv, single chain antibodies (scFv for example), single variable domain antibodies, diabodies (Dab) (bivalent and bispecific), and chimeric (e.g., humanized) antibodies, which may be produced by the modification of whole antibodies or those synthesized de novo using recombinant DNA technologies. These functional antibody fragments retain the ability to selectively bind with their respective antigen or receptor. Antibodies and antibody fragments can be from any class of antibodies including, but not limited to, IgG, IgA, IgM, IgD, and IgE, and from any subclass (e.g., IgG1, IgG2, IgG3, and IgG4) of antibodies. The preparation of antibody molecules can be monoclonal or polyclonal. An antibody molecule can also be a human, humanized, CDR-grafted, or in vitro generated antibody. The antibody can have a heavy chain constant region chosen from, e.g., IgG1, IgG2, IgG3, or IgG4. The antibody can also have a light chain chosen from, e.g., kappa or lambda. The term “immunoglobulin” (Ig) is used interchangeably with the term “antibody” herein.


Examples of antigen-binding fragments of an antibody molecule include: (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; (ii) a F(ab′)2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a diabody (dAb) fragment, which consists of a VH domain; (vi) a camelid or camelized variable domain; (vii) a single chain Fv (scFv), see e.g., Bird et al. (1988) Science 242:423-426; and Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883); (viii) a single domain antibody. These antibody fragments are obtained using conventional techniques known to those with skill in the art, and the fragments are screened for utility in the same manner as are intact antibodies.


Antibody molecules include intact molecules as well as functional fragments thereof. Constant regions of the antibody molecules can be altered, e.g., mutated, to modify the properties of the antibody (e.g., to increase or decrease one or more of: Fc receptor binding, antibody glycosylation, the number of cysteine residues, effector cell function, or complement function).


Antibody molecules can also be single domain antibodies. Single domain antibodies can include antibodies whose complementary determining regions are part of a single domain polypeptide. Examples include, but are not limited to, heavy chain antibodies, antibodies naturally devoid of light chains, single domain antibodies derived from conventional 4-chain antibodies, engineered antibodies and single domain scaffolds other than those derived from antibodies. Single domain antibodies may be any of the art, or any future single domain antibodies. Single domain antibodies may be derived from any species including, but not limited to mouse, human, camel, llama, fish, shark, goat, rabbit, and bovine. According to another aspect of the invention, a single domain antibody is a naturally occurring single domain antibody known as heavy chain antibody devoid of light chains. Such single domain antibodies are disclosed in WO 9404678, for example. For clarity reasons, this variable domain derived from a heavy chain antibody naturally devoid of light chain is known herein as a VHH or nanobody to distinguish it from the conventional VH of four chain immunoglobulins. Such a VHH molecule can be derived from antibodies raised in Camelidae species, for example in camel, llama, dromedary, alpaca and guanaco. Other species besides Camelidae may produce heavy chain antibodies naturally devoid of light chain; such VHHs are within the scope of the invention.


The VH and VL regions can be subdivided into regions of hypervariability, termed “complementarity determining regions” (CDR), interspersed with regions that are more conserved, termed “framework regions” (FR or FW).


The extent of the framework region and CDRs has been precisely defined by a number of methods (see, Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242; Chothia, C. et al. (1987) J. Mol. Biol. 196:901-917; and the AbM definition used by Oxford Molecular's AbM antibody modeling software. See, generally, e.g., Protein Sequence and Structure Analysis of Antibody Variable Domains. In: Antibody Engineering Lab Manual (Ed.: Duebel, S. and Kontermann, R., Springer-Verlag, Heidelberg).


The terms “complementarity determining region,” and “CDR,” as used herein refer to the sequences of amino acids within antibody variable regions which confer antigen specificity and binding affinity. In general, there are three CDRs in each heavy chain variable region (HCDR1, HCDR2, HCDR3) and three CDRs in each light chain variable region (LCDR1, LCDR2, LCDR3).


The precise amino acid sequence boundaries of a given CDR can be determined using any of a number of known schemes, including those described by Kabat et al. (1991), “Sequences of Proteins of Immunological Interest,” 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (“Kabat” numbering scheme), A1-Lazikani et al., (1997) JMB 273, 927-948 (“Chothia” numbering scheme). As used herein, the CDRs defined according the “Chothia” number scheme are also sometimes referred to as “hypervariable loops.”


For example, under Kabat, the CDR amino acid residues in the heavy chain variable domain (VH) are numbered 31-35 (HCDR1), 50-65 (HCDR2), and 95-102 (HCDR3); and the CDR amino acid residues in the light chain variable domain (VL) are numbered 24-34 (LCDR1), 50-56 (LCDR2), and 89-97 (LCDR3). Under Chothia, the CDR amino acids in the VH are numbered 26-32 (HCDR1), 52-56 (HCDR2), and 95-102 (HCDR3); and the amino acid residues in VL are numbered 26-32 (LCDR1), 50-52 (LCDR2), and 91-96 (LCDR3).


Each VH and VL typically includes three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.


The antibody molecule can be a polyclonal or a monoclonal antibody.


The terms “monoclonal antibody” or “monoclonal antibody composition” as used herein refer to a preparation of antibody molecules of single molecular composition. A monoclonal antibody composition displays a single binding specificity and affinity for a particular epitope. A monoclonal antibody can be made by hybridoma technology or by methods that do not use hybridoma technology (e.g., recombinant methods).


The antibody can be recombinantly produced, e.g., produced by phage display or by combinatorial methods.


Phage display and combinatorial methods for generating antibodies are known in the art (as described in, e.g., Ladner et al. U.S. Pat. No. 5,223,409; Kang et al. International Publication No. WO 92/18619; Dower et al. International Publication No. WO 91/17271; Winter et al. International Publication WO 92/20791; Markland et al. International Publication No. WO 92/15679; Breitling et al. International Publication WO 93/01288; McCafferty et al. International Publication No. WO 92/01047; Garrard et al. International Publication No. WO 92/09690; Ladner et al. International Publication No. WO 90/02809; Fuchs et al. (1991) Bio/Technology 9:1370-1372; Hay et al. (1992) Hum Antibod Hybridomas 3:81-85; Huse et al. (1989) Science 246:1275-1281; Griffths et al. (1993) EMBO J 12:725-734; Hawkins et al. (1992) J Mol Biol 226:889-896; Clackson et al. (1991) Nature 352:624-628; Gram et al. (1992) PNAS 89:3576-3580; Garrad et al. (1991) Bio/Technology 9:1373-1377; Hoogenboom et al. (1991) Nuc Acid Res 19:4133-4137; and Barbas et al. (1991) PNAS 88:7978-7982, the contents of all of which are incorporated by reference herein).


In one embodiment, the antibody is a fully human antibody (e.g., an antibody made in a mouse which has been genetically engineered to produce an antibody from a human immunoglobulin sequence), or a non-human antibody, e.g., a rodent (mouse or rat), goat, primate (e.g., monkey), camel antibody. Preferably, the non-human antibody is a rodent (mouse or rat antibody). Methods of producing rodent antibodies are known in the art.


Human monoclonal antibodies can be generated using transgenic mice carrying the human immunoglobulin genes rather than the mouse system. Splenocytes from these transgenic mice immunized with the antigen of interest are used to produce hybridomas that secrete human mAbs with specific affinities for epitopes from a human protein (see, e.g., Wood et al. International Application WO 91/00906, Kucherlapati et al. PCT publication WO 91/10741; Lonberg et al. International Application WO 92/03918; Kay et al. International Application 92/03917; Lonberg, N. et al. 1994 Nature 368:856-859; Green, L. L. et al. 1994 Nature Genet. 7:13-21; Morrison, S. L. et al. 1994 Proc. Natl. Acad. Sci. USA 81:6851-6855; Bruggeman et al. 1993 Year Immunol 7:33-40; Tuaillon et al. 1993 PNAS 90:3720-3724; Bruggeman et al. 1991 Eur J Immunol 21:1323-1326).


An antibody molecule can be one in which the variable region, or a portion thereof, e.g., the CDRs, are generated in a non-human organism, e.g., a rat or mouse. Chimeric, CDR-grafted, and humanized antibodies are within the invention. Antibody molecules generated in a non-human organism, e.g., a rat or mouse, and then modified, e.g., in the variable framework or constant region, to decrease antigenicity in a human are within the invention.


An “effectively human” protein is a protein that does substantially not evoke a neutralizing antibody response, e.g., the human anti-murine antibody (HAMA) response. HAMA can be problematic in a number of circumstances, e.g., if the antibody molecule is administered repeatedly, e.g., in treatment of a chronic or recurrent disease condition. A HAMA response can make repeated antibody administration potentially ineffective because of an increased antibody clearance from the serum (see, e.g., Saleh et al., Cancer Immunol. Immunother., 32:180-190 (1990)) and also because of potential allergic reactions (see, e.g., LoBuglio et al., Hybridoma, 5:5117-5123 (1986)).


Chimeric antibodies can be produced by recombinant DNA techniques known in the art (see Robinson et al., International Patent Publication PCT/US86/02269; Akira, et al., European Patent Application 184,187; Taniguchi, M., European Patent Application 171,496; Morrison et al., European Patent Application 173,494; Neuberger et al., International Application WO 86/01533; Cabilly et al. U.S. Pat. No. 4,816,567; Cabilly et al., European Patent Application 125,023; Better et al. (1988 Science 240:1041-1043); Liu et al. (1987) PNAS 84:3439-3443; Liu et al., 1987, J. Immunol. 139:3521-3526; Sun et al. (1987) PNAS 84:214-218; Nishimura et al., 1987, Canc. Res. 47:999-1005; Wood et al. (1985) Nature 314:446-449; and Shaw et al., 1988, J. Natl Cancer Inst. 80:1553-1559).


A humanized or CDR-grafted antibody will have at least one or two but generally all three recipient CDRs (of heavy and or light immuoglobulin chains) replaced with a donor CDR. The antibody may be replaced with at least a portion of a non-human CDR or only some of the CDRs may be replaced with non-human CDRs. It is only necessary to replace the number of CDRs required for binding to the antigen. Preferably, the donor will be a rodent antibody, e.g., a rat or mouse antibody, and the recipient will be a human framework or a human consensus framework. Typically, the immunoglobulin providing the CDRs is called the “donor” and the immunoglobulin providing the framework is called the “acceptor.” In one embodiment, the donor immunoglobulin is a non-human (e.g., rodent). The acceptor framework is a naturally-occurring (e.g., a human) framework or a consensus framework, or a sequence about 85% or higher, preferably 90%, 95%, 99% or higher identical thereto.


As used herein, the term “consensus sequence” refers to the sequence formed from the most frequently occurring amino acids (or nucleotides) in a family of related sequences (See e.g., Winnaker, From Genes to Clones (Verlagsgesellschaft, Weinheim, Germany 1987). In a family of proteins, each position in the consensus sequence is occupied by the amino acid occurring most frequently at that position in the family. If two amino acids occur equally frequently, either can be included in the consensus sequence. A “consensus framework” refers to the framework region in the consensus immunoglobulin sequence.


An antibody molecule can be humanized by methods known in the art (see e.g., Morrison, S. L., 1985, Science 229:1202-1207, by Oi et al., 1986, BioTechniques 4:214, and by Queen et al. U.S. Pat. Nos. 5,585,089, 5,693,761 and 5,693,762, the contents of all of which are hereby incorporated by reference).


Humanized or CDR-grafted antibody molecules can be produced by CDR-grafting or CDR substitution, wherein one, two, or all CDRs of an immunoglobulin chain can be replaced. See, e.g., U.S. Pat. No. 5,225,539; Jones et al. 1986 Nature 321:552-525; Verhoeyan et al. 1988 Science 239:1534; Beidler et al. 1988 J. Immunol. 141:4053-4060; Winter U.S. Pat. No. 5,225,539, the contents of all of which are hereby expressly incorporated by reference. Winter describes a CDR-grafting method which may be used to prepare the humanized antibodies of the present invention (UK Patent Application GB 2188638A, filed on Mar. 26, 1987; Winter U.S. Pat. No. 5,225,539), the contents of which is expressly incorporated by reference.


Also within the scope of the invention are humanized antibody molecules in which specific amino acids have been substituted, deleted or added. Criteria for selecting amino acids from the donor are described in U.S. Pat. No. 5,585,089, e.g., columns 12-16 of U.S. Pat. No. 5,585,089, e.g., columns 12-16 of U.S. Pat. No. 5,585,089, the contents of which are hereby incorporated by reference. Other techniques for humanizing antibodies are described in Padlan et al. EP 519596 A1, published on Dec. 23, 1992.


The antibody molecule can be a single chain antibody. A single-chain antibody (scFv) may be engineered (see, for example, Colcher, D. et al. (1999) Ann N Y Acad Sci 880:263-80; and Reiter, Y. (1996) Clin Cancer Res 2:245-52). The single chain antibody can be dimerized or multimerized to generate multivalent antibodies having specificities for different epitopes of the same target protein.


In yet other embodiments, the antibody molecule has a heavy chain constant region chosen from, e.g., the heavy chain constant regions of IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, IgD, and IgE; particularly, chosen from, e.g., the (e.g., human) heavy chain constant regions of IgG1, IgG2, IgG3, and IgG4. In another embodiment, the antibody molecule has a light chain constant region chosen from, e.g., the (e.g., human) light chain constant regions of kappa or lambda. The constant region can be altered, e.g., mutated, to modify the properties of the antibody (e.g., to increase or decrease one or more of: Fc receptor binding, antibody glycosylation, the number of cysteine residues, effector cell function, and/or complement function). In one embodiment the antibody has: effector function; and can fix complement. In other embodiments the antibody does not; recruit effector cells; or fix complement. In another embodiment, the antibody has reduced or no ability to bind an Fc receptor. For example, it is an isotype or subtype, fragment or other mutant, which does not support binding to an Fc receptor, e.g., it has a mutagenized or deleted Fc receptor binding region.


Methods for altering an antibody constant region are known in the art. Antibodies with altered function, e.g., altered affinity for an effector ligand, such as FcR on a cell, or the Cl component of complement can be produced by replacing at least one amino acid residue in the constant portion of the antibody with a different residue (see e.g., EP 388,151 A1, U.S. Pat. Nos. 5,624,821 and 5,648,260, the contents of all of which are hereby incorporated by reference). Similar type of alterations could be described which if applied to the murine, or other species immunoglobulin would reduce or eliminate these functions.


An antibody molecule can be derivatized or linked to another functional molecule (e.g., another peptide or protein). As used herein, a “derivatized” antibody molecule is one that has been modified. Methods of derivatization include but are not limited to the addition of a fluorescent moiety, a radionucleotide, a toxin, an enzyme or an affinity ligand such as biotin. Accordingly, the antibody molecules of the invention are intended to include derivatized and otherwise modified forms of the antibodies described herein, including immunoadhesion molecules. For example, an antibody molecule can be functionally linked (by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other molecular entities, such as another antibody (e.g., a bispecific antibody or a diabody), a detectable agent, a cytotoxic agent, a pharmaceutical agent, and/or a protein or peptide that can mediate association of the antibody or antibody portion with another molecule (such as a streptavidin core region or a polyhistidine tag).


One type of derivatized antibody molecule is produced by crosslinking two or more antibodies (of the same type or of different types, e.g., to create bispecific antibodies). Suitable crosslinkers include those that are heterobifunctional, having two distinctly reactive groups separated by an appropriate spacer (e.g., m-maleimidobenzoyl-N-hydroxysuccinimide ester) or homobifunctional (e.g., disuccinimidyl suberate). Such linkers are available from Pierce Chemical Company, Rockford, Ill.


Multispecific Antibody Molecules

In embodiments, multispecific antibody molecules can comprise more than one antigen-binding site, where different sites are specific for different antigens. In embodiments, multispecific antibody molecules can bind more than one (e.g., two or more) epitopes on the same antigen. In embodiments, multispecific antibody molecules comprise an antigen-binding site specific for a target cell (e.g., cancer cell) and a different antigen-binding site specific for an immune effector cell. In one embodiment, the multispecific antibody molecule is a bispecific antibody molecule. Bispecific antibody molecules can be classified into five different structural groups: (i) bispecific immunoglobulin G (BsIgG); (ii) IgG appended with an additional antigen-binding moiety; (iii) bispecific antibody fragments; (iv) bispecific fusion proteins; and (v) bispecific antibody conjugates.


BsIgG is a format that is monovalent for each antigen. Exemplary BsIgG formats include but are not limited to crossMab, DAF (two-in-one), DAF (four-in-one), DutaMab, DT-IgG, knobs-in-holes common LC, knobs-in-holes assembly, charge pair, Fab-arm exchange, SEEDbody, triomab, LUZ-Y, Fcab, κλ-body, orthogonal Fab. See Spiess et al. Mol. Immunol. 67(2015):95-106. Exemplary BsIgGs include catumaxomab (Fresenius Biotech, Trion Pharma, Neopharm), which contains an anti-CD3 arm and an anti-EpCAM arm; and ertumaxomab (Neovii Biotech, Fresenius Biotech), which targets CD3 and HER2. In some embodiments, BsIgG comprises heavy chains that are engineered for heterodimerization. For example, heavy chains can be engineered for heterodimerization using a “knobs-into-holes” strategy, a SEED platform, a common heavy chain (e.g., in κλ-bodies), and use of heterodimeric Fc regions. See Spiess et al. Mol. Immunol. 67(2015):95-106. Strategies that have been used to avoid heavy chain pairing of homodimers in BsIgG include knobs-in-holes, duobody, azymetric, charge pair, HA-TF, SEEDbody, and differential protein A affinity. See Id.


BsIgG can be produced by separate expression of the component antibodies in different host cells and subsequent purification/assembly into a BsIgG. BsIgG can also be produced by expression of the component antibodies in a single host cell. BsIgG can be purified using affinity chromatography, e.g., using protein A and sequential pH elution.


IgG appended with an additional antigen-binding moiety is another format of bispecific antibody molecules. For example, monospecific IgG can be engineered to have bispecificity by appending an additional antigen-binding unit onto the monospecific IgG, e.g., at the N- or C-terminus of either the heavy or light chain. Exemplary additional antigen-binding units include single domain antibodies (e.g., variable heavy chain or variable light chain), engineered protein scaffolds, and paired antibody variable domains (e.g., single chain variable fragments or variable fragments). See Id. Examples of appended IgG formats include dual variable domain IgG (DVD-Ig), IgG(H)-scFv, scFv-(H)IgG, IgG(L)-scFv, scFv-(L)IgG, IgG(L,H)-Fv, IgG(H)-V, V(H)-IgG, IgG(L)-V, V(L)-IgG, KIH IgG-scFab, 2scFv-IgG, IgG-2scFv, scFv4-Ig, zybody, and DVI-IgG (four-in-one). See Spiess et al. Mol. Immunol. 67(2015):95-106. An example of an IgG-scFv is MM-141 (Merrimack Pharmaceuticals), which binds IGF-1R and HER3. Examples of DVD-Ig include ABT-981 (AbbVie), which binds IL-1α and IL-1β; and ABT-122 (AbbVie), which binds TNF and IL-17A.


Bispecific antibody fragments (BsAb) are a format of bispecific antibody molecules that lack some or all of the antibody constant domains. For example, some BsAb lack an Fc region. In embodiments, bispecific antibody fragments include heavy and light chain regions that are connected by a peptide linker that permits efficient expression of the BsAb in a single host cell. Exemplary bispecific antibody fragments include but are not limited to nanobody, nanobody-HAS, BiTE, Diabody, DART, TandAb, scDiabody, scDiabody-CH3, Diabody-CH3, triple body, miniantibody, minibody, TriBi minibody, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab′)2, F(ab′)2-scFv2, scFv-KIH, Fab-scFv-Fc, tetravalent HCAb, scDiabody-Fc, Diabody-Fc, tandem scFv-Fc, and intrabody. See Id. For example, the BiTE format comprises tandem scFvs, where the component scFvs bind to CD3 on T cells and a surface antigen on cancer cells


Bispecific fusion proteins include antibody fragments linked to other proteins, e.g., to add additional specificity and/or functionality. An example of a bispecific fusion protein is an immTAC, which comprises an anti-CD3 scFv linked to an affinity-matured T-cell receptor that recognizes HLA-presented peptides. In embodiments, the dock-and-lock (DNL) method can be used to generate bispecific antibody molecules with higher valency. Also, fusions to albumin binding proteins or human serum albumin can be extend the serum half-life of antibody fragments. See Id.


CDR-Grafted Scaffolds

In embodiments, the antibody molecule is a CDR-grafted scaffold domain. In embodiments, the scaffold domain is based on a fibronectin domain, e.g., fibronectin type III domain. The overall fold of the fibronectin type III (Fn3) domain is closely related to that of the smallest functional antibody fragment, the variable domain of the antibody heavy chain. There are three loops at the end of Fn3; the positions of BC, DE and FG loops approximately correspond to those of CDR1, 2 and 3 of the VH domain of an antibody. Fn3 does not have disulfide bonds; and therefore Fn3 is stable under reducing conditions, unlike antibodies and their fragments (see, e.g., WO 98/56915; WO 01/64942; WO 00/34784). An Fn3 domain can be modified (e.g., using CDRs or hypervariable loops described herein) or varied, e.g., to select domains that bind to an antigen/marker/cell described herein.


In embodiments, a scaffold domain, e.g., a folded domain, is based on an antibody, e.g., a “minibody” scaffold created by deleting three beta strands from a heavy chain variable domain of a monoclonal antibody (see, e.g., Tramontano et al., 1994, J Mol. Recognit. 7:9; and Martin et al., 1994, EMBO J. 13:5303-5309). The “minibody” can be used to present two hypervariable loops. In embodiments, the scaffold domain is a V-like domain (see, e.g., Coia et al. WO 99/45110) or a domain derived from tendamistatin, which is a 74 residue, six-strand beta sheet sandwich held together by two disulfide bonds (see, e.g., McConnell and Hoess, 1995, J Mol. Biol. 250:460). For example, the loops of tendamistatin can be modified (e.g., using CDRs or hypervariable loops) or varied, e.g., to select domains that bind to a marker/antigen/cell described herein. Another exemplary scaffold domain is a beta-sandwich structure derived from the extracellular domain of CTLA-4 (see, e.g., WO 00/60070).


Other exemplary scaffold domains include but are not limited to T-cell receptors; MHC proteins; extracellular domains (e.g., fibronectin Type III repeats, EGF repeats); protease inhibitors (e.g., Kunitz domains, ecotin, BPTI, and so forth); TPR repeats; trifoil structures; zinc finger domains; DNA-binding proteins; particularly monomeric DNA binding proteins; RNA binding proteins; enzymes, e.g., proteases (particularly inactivated proteases), RNase; chaperones, e.g., thioredoxin, and heat shock proteins; and intracellular signaling domains (such as SH2 and SH3 domains). See, e.g., US 20040009530 and U.S. Pat. No. 7,501,121, incorporated herein by reference.


In embodiments, a scaffold domain is evaluated and chosen, e.g., by one or more of the following criteria: (1) amino acid sequence, (2) sequences of several homologous domains, (3) 3-dimensional structure, and/or (4) stability data over a range of pH, temperature, salinity, organic solvent, oxidant concentration. In embodiments, the scaffold domain is a small, stable protein domain, e.g., a protein of less than 100, 70, 50, 40 or 30 amino acids. The domain may include one or more disulfide bonds or may chelate a metal, e.g., zinc.


Exemplary structures of the multifunctional molecules defined herein are described below. Exemplary structures are further described in: Weidle U et al. (2013) The Intriguing Options of Multispecific Antibody Formats for Treatment of Cancer. Cancer Genomics & Proteomics 10: 1-18 (2013); and Spiess C et al. (2015) Alternative molecular formats and therapeutic applications for bispecific antibodies. Molecular Immunology 67: 95-106; the full contents of each of which is incorporated by reference herein).


Heterodimerized Antibody Molecules

Heterodimerized bispecific antibodies are based on the natural IgG structure, wherein the two binding arms recognize different antigens. IgG derived formats that enable defined monovalent (and simultaneous) antigen binding are generated by forced heavy chain heterodimerization, combined with technologies that minimize light chain mispairing (e.g., common light chain). Forced heavy chain heterodimerization can be obtained using, e.g., knob-in-hole OR strand exchange engineered domains (SEED).


Knob-in-Hole

Knob-in-Hole as described in U.S. Pat. Nos. 5,731,116, 7,476,724 and Ridgway, J. et al. (1996) Prot. Engineering 9(7): 617-621, broadly involves: (1) mutating the CH3 domain of one or both antibodies to promote heterodimerization; and (2) combining the mutated antibodies under conditions that promote heterodimerization. “Knobs” or “protuberances” are typically created by replacing a small amino acid in a parental antibody with a larger amino acid (e.g., T366Y or T366W); “Holes” or “cavities” are created by replacing a larger residue in a parental antibody with a smaller amino acid (e.g., Y407T, T366S, L368A and/or Y407V). In one embodiment, a heavy chain polypeptide containing a knob comprises T366W and S354C substitutions, numbered according to the Eu numbering system. In one embodiment, a heavy chain polypeptide containing a hole comprises T366S, L368A, Y407V and Y349C substitutions, numbered according to the Eu numbering system. In one embodiment, the multispecific antibody molecule disclosed herein comprises a first heavy chain polypeptide and a second heavy chain polypeptide, wherein the first heavy chain polypeptide comprises T366W and S354C substitutions, numbered according to the Eu numbering system, and the second heavy chain polypeptide comprises T366S, L368A, Y407V and Y349C substitutions, numbered according to the Eu numbering system.


Strand Exchange Engineered Domains (SEED)

SEED is based on sequence exchanges between IgG1 and IgA to create non-identical chains which heterodimerize preferentially. Alternating sequences from human IgA and IgG in the SEED CH3 domains generate two asymmetric but complementary domains, designated AG and GA. The SEED design allows efficient generation of AG/GA heterodimers, while disfavoring homodimerization of AG and GA SEED CH3 domains.


Common Light Chain & CrossMab

Light chain mispairing must be avoided to generate homogenous preparations of bispecific IgGs. One way to achieve this is through the use of the common light chain principle, i.e., combining two binders that share one light chain but still have separate specificities. Another option is the CrossMab technology which avoids non-specific L chain mispairing by exchanging CH1 and CL domains in the Fab of one half of the bispecific antibody. Such crossover variants retain binding specificity and affinity, but make the two arms so different that L chain mispairing is prevented.


Antibody Based Fusions

A variety of formats can be generated which contain additional binding entities attached to the N or C terminus of antibodies. These fusions with single chain or disulfide stabilized Fvs or Fabs result in the generation of tetravalent molecules with bivalent binding specificity for each antigen. Combinations of scFvs and scFabs with IgGs enable the production of molecules which can recognize three or more different antigens.


Antibody-Fab Fusion

Antibody-Fab fusions are bispecific antibodies comprising a traditional antibody to a first target and a Fab to a second target fused to the C terminus of the antibody heavy chain. Commonly the antibody and the Fab will have a common light chain. Antibody fusions can be produced by (1) engineering the DNA sequence of the target fusion, and (2) transfecting the target DNA into a suitable host cell to express the fusion protein. It seems like the antibody-scFv fusion may be linked by a (Gly)-Ser linker between the C-terminus of the CH3 domain and the N-terminus of the scFv, as described by Coloma, J. et al. (1997) Nature Biotech 15:159.


Antibody-scFv Fusion

Antibody-scFv Fusions are bispecific antibodies comprising a traditional antibody and a scFv of unique specificity fused to the C terminus of the antibody heavy chain. The scFv can be fused to the C terminus through the Heavy Chain of the scFv either directly or through a linker peptide. Antibody fusions can be produced by (1) engineering the DNA sequence of the target fusion, and (2) transfecting the target DNA into a suitable host cell to express the fusion protein. It seems like the antibody-scFv fusion may be linked by a (Gly)-Ser linker between the C-terminus of the CH3 domain and the N-terminus of the scFv, as described by Coloma, J. et al. (1997) Nature Biotech 15:159.


Variable Domain Immunoglobulin DVD

A related format is the dual variable domain immunoglobulin (DVD), which are composed of VH and VL domains of a second specificity place upon the N termini of the V domains by shorter linker sequences.


Fc-Containing Entities (Mini-Antibodies)

Fc-containing entities, also known as mini-antibodies, can be generated by fusing scFv to the C-termini of constant heavy region domain 3 (CH3-scFv) and/or to the hinge region (scFv-hinge-Fc) of an antibody with a different specificity. Trivalent entities can also be made which have disulfide stabilized variable domains (without peptide linker) fused to the C-terminus of CH3 domains of IgGs.


Fc-Containing Multispecific Molecules

In some embodiments, the multispecific molecules disclosed herein includes an immunoglobulin constant region (e.g., an Fc region). Exemplary Fc regions can be chosen from the heavy chain constant regions of IgG1, IgG2, IgG3 or IgG4; more particularly, the heavy chain constant region of human IgG1, IgG2, IgG3, or IgG4.


In some embodiments, the immunoglobulin chain constant region (e.g., the Fc region) is altered, e.g., mutated, to increase or decrease one or more of: Fc receptor binding, antibody glycosylation, the number of cysteine residues, effector cell function, or complement function.


In other embodiments, an interface of a first and second immunoglobulin chain constant regions (e.g., a first and a second Fc region) is altered, e.g., mutated, to increase or decrease dimerization, e.g., relative to a non-engineered interface, e.g., a naturally-occurring interface. For example, dimerization of the immunoglobulin chain constant region (e.g., the Fc region) can be enhanced by providing an Fc interface of a first and a second Fc region with one or more of: a paired protuberance-cavity (“knob-in-a hole”), an electrostatic interaction, or a strand-exchange, such that a greater ratio of heteromultimer to homomultimer forms, e.g., relative to a non-engineered interface.


In some embodiments, the multispecific molecules include a paired amino acid substitution at a position chosen from one or more of 347, 349, 350, 351, 366, 368, 370, 392, 394, 395, 397, 398, 399, 405, 407, or 409, e.g., of the Fc region of human IgG1 For example, the immunoglobulin chain constant region (e.g., Fc region) can include a paired an amino acid substitution chosen from: T366S, L368A, or Y407V (e.g., corresponding to a cavity or hole), and T366W (e.g., corresponding to a protuberance or knob).


In some embodiments, the immunoglobulin chain constant region (e.g., the Fc region) is not altered, e.g., not mutated, to increase or decrease one or more of: Fc receptor binding, antibody glycosylation, the number of cysteine residues, effector cell function, or complement function. In some embodiments, the multispecific molecules does not include a paired amino acid substitution at a position chosen from one or more of 347, 349, 350, 351, 366, 368, 370, 392, 394, 395, 397, 398, 399, 405, 407, or 409, e.g., of the Fc region of human IgG1 For example, the immunoglobulin chain constant region (e.g., Fc region) does not include a paired amino acid substitution chosen from: T366S, L368A, or Y407V (e.g., corresponding to a cavity or hole), and T366W (e.g., corresponding to a protuberance or knob).


In other embodiments, the multispecific molecule includes a half-life extender, e.g., a human serum albumin or an antibody molecule to human serum albumin.


Multispecific Molecules Comprising Non-Contiguous Polypeptides

In one embodiment, the multispecific molecule is not a single polypeptide chain.


In one embodiment, the antibody molecule includes two, complete heavy chains and two, complete light chains. In one embodiment, the multispecific molecules having at least two or at least three non-contiguous polypeptide chains include a first and second immunoglobulin chain constant regions (e.g., a first and second Fc region) in at least two non-contiguous polypeptide chains, e.g., as described herein.


In embodiments, the multispecific molecule is a bispecific or bifunctional molecule, wherein the first and second polypeptides (i) and (ii) are non-contiguous, e.g., are two separate polypeptide chains. In some embodiments, the first and second polypeptides (i) and (ii) include a paired amino acid substitution at a position chosen from one or more of 347, 349, 350, 351, 366, 368, 370, 392, 394, 395, 397, 398, 399, 405, 407, or 409, e.g., of the Fc region of human IgG1. For example, the first immunoglobulin chain constant region (e.g., the first Fc region) can include an amino acid substitution chosen from: T366S, L368A, or Y407V (e.g., corresponding to a cavity or hole), and the second immunoglobulin chain constant region (e.g., the second Fc region) includes a T366W (e.g., corresponding to a protuberance or knob). In some embodiments, the first and second polypeptides are a first and second member of a heterodimeric first and second Fc region.


In embodiments, the multispecific molecule is a bispecific or bifunctional molecule, wherein the first and second polypeptides (i) and (ii) are non-contiguous, e.g., are two separate polypeptide chains. In some embodiments, the first and second polypeptides (i) and (ii) do not include a paired amino acid substitution at a position chosen from one or more of 347, 349, 350, 351, 366, 368, 370, 392, 394, 395, 397, 398, 399, 405, 407, or 409, e.g., of the Fc region of human IgG1.


In some embodiments, the first polypeptide has the following configuration from N-to-C:

    • (a) a first portion of a first antigen domain, e.g., a first VH-CH1 of a Fab molecule, that binds to a first antigen, e.g., a cancer antigen, e.g., a solid tumor, stromal or hematological antigen, connected, optionally via a linker to, the first immunoglobulin constant region (e.g., the CH2 connected to the CH3 region) (e.g., a first Fc region);
    • (b) a first portion of a second antigen domain, e.g., a first VH-CH1 of a Fab molecule, that binds to a second antigen, e.g., a cancer antigen, e.g., a solid tumor, stromal or hematological antigen, connected, optionally via a linker to, the first immunoglobulin constant region (e.g., the CH2 connected to the CH3 region) (e.g., a first Fc region);
    • (c) the third polypeptide has the following configuration from N-to-C: a second portion of the first antigen domain, e.g., a first VL-CL of the Fab, where the VL is of kappa subtype and binds to a first antigen, e.g., a cancer antigen, e.g., a solid tumor, stromal or hematological antigen (e.g., the same cancer antigen bound by the first VH-CH1);
    • (d) the fourth polypeptide has the following configuration from N-to-C: a second portion of the second antigen domain, e.g. a second VL-CL of the Fab, where the VL is of lambda subtype and binds to a second antigen, e.g., a cancer antigen, e.g., a solid tumor, stromal, or hematological antigen (e.g., the same cancer antigen bound by the second VH-CH1) (e.g. an example of this configuration is depicted in FIG. 1A).


In embodiments, the first immunoglobulin constant region (e.g., the first CH2-CH3 region) includes a protuberance or knob, e.g., as described herein. In embodiments, the first immunoglobulin constant region (e.g., the first CH2-CH3 region) does not include a protuberance or knob, e.g., as described herein.


In embodiments, the second immunoglobulin constant region (e.g., the second CH2-CH3 region) includes a cavity or hole. In embodiments, the first and second immunoglobulin constant region promote heterodimerization of the bispecific molecule. In embodiments, the second immunoglobulin constant region (e.g., the second CH2-CH3 region) does not include a cavity or hole. In embodiments, the first and second immunoglobulin constant region does not promote heterodimerization of the bispecific molecule.


Tumor Specific Targeting Moieties


In certain embodiments, the multispecific antibody molecules disclosed herein include a tumor-targeting moiety. The tumor targeting moiety can be chosen from an antibody molecule (e.g., an antigen binding domain as described herein), a receptor or a receptor fragment, or a ligand or a ligand fragment, or a combination thereof. In some embodiments, the tumor targeting moiety associates with, e.g., binds to, a tumor cell (e.g., a molecule, e.g., antigen, present on the surface of the tumor cell). In certain embodiments, the tumor targeting moiety targets, e.g., directs the multispecific molecules disclosed herein to a cancer (e.g., a cancer or tumor cells). In some embodiments, the cancer is chosen from a hematological cancer, a solid cancer, a metastatic cancer, or a combination thereof.


In some embodiments, the multispecific molecule, e.g., the tumor-targeting moiety, binds to a solid tumor antigen or a stromal antigen. The solid tumor antigen or stromal antigen can be present on a solid tumor, or a metastatic lesion thereof. In some embodiments, the solid tumor is chosen from one or more of pancreatic (e.g., pancreatic adenocarcinoma), breast, colorectal, lung (e.g., small or non-small cell lung cancer), skin, ovarian, or liver cancer. In one embodiment, the solid tumor is a fibrotic or desmoplastic solid tumor. For example, the solid tumor antigen or stromal antigen can be present on a tumor, e.g., a tumor of a class typified by having one or more of: limited tumor perfusion, compressed blood vessels, or fibrotic tumor interstitium.


In certain embodiments, the solid tumor antigen is chosen from one or more of: mesothelin, gangloside 2 (GD2), prostate stem cell antigen (PSCA), prostate specific membrane antigen (PMSA), prostate-specific antigen (PSA), carcinoembryonic antigen (CEA), Ron Kinase, c-Met, Immature laminin receptor, TAG-72, BING-4, Calcium-activated chloride channel 2, Cyclin-B1, 9D7, Ep-CAM, EphA3, Her2/neu, Telomerase, SAP-1, Survivin, NY-ESO-1/LAGE-1, PRAME, SSX-2, Melan-A/MART-1, Gp100/pmel17, Tyrosinase, TRP-1/-2, MC1R, β-catenin, BRCA1/2, CDK4, CML66, Fibronectin, p53, Ras, TGF-B receptor, AFP, ETA, MAGE, MUC-1, CA-125, BAGE, GAGE, NY-ESO-1, β-catenin, CDK4, CDC27, α actinin-4, TRP1/gp75, TRP2, gp100, Melan-A/MART1, gangliosides, WT1, EphA3, Epidermal growth factor receptor (EGFR), CD20, MART-2, MART-1, MUC1, MUC2, MUM1, MUM2, MUM3, NA88-1, NPM, OA1, OGT, RCC, RUI1, RUI2, SAGE, TRG, TRP1, or TSTA. In some embodiments, the solid tumor antigen is chosen from: Mesothelin, GD2, PMSA, PSCA, CEA, Ron Kinase, or c-Met. In some embodiments, the solid tumor antigen is Mesothelin.


Cytokine Molecules


In certain embodiments, the multispecific antibody molecules disclosed herein can further include a cytokine molecule.


Cytokines are proteinaceous signaling compounds that are mediators of the immune response. They control many different cellular functions including proliferation, differentiation and cell survival/apoptosis; cytokines are also involved in several pathophysiological processes including viral infections and autoimmune diseases. Cytokines are synthesized under various stimuli by a variety of cells of both the innate (monocytes, macrophages, dendritic cells) and adaptive (T- and B-cells) immune systems. Cytokines can be classified into two groups: pro- and anti-inflammatory. Pro-inflammatory cytokines, including IFNgamma, IL-1, IL-6 and TNF-alpha, are predominantly derived from the innate immune cells and Th1 cells. Anti-inflammatory cytokines, including IL-10, IL-4, IL-13 and IL-5, are synthesized from Th2 immune cells.


The present disclosure provides, inter alia, multi-specific (e.g., bi-, tri-, quad-specific) proteins, that include, e.g., are engineered to contain, one or more cytokine molecules, e.g., immunomodulatory (e.g., proinflammatory) cytokines and variants, e.g., functional variants, thereof. Accordingly, in some embodiments, the cytokine molecule is an interleukin or a variant, e.g., a functional variant thereof. In some embodiments the interleukin is a proinflammatory interleukin. In some embodiments the interleukin is chosen from interleukin-2 (IL-2), interleukin-12 (IL-12), interleukin-15 (IL-15), interleukin-18 (IL-18), interleukin-21 (IL-21), or interferon gamma. In some embodiments the interleukin is interleukin-2 (IL-2). In some embodiments, the cytokine molecule is a proinflammatory cytokine.


In some embodiments, the multispecific molecules disclosed herein include a cytokine molecule. In embodiments, the cytokine molecule includes a full length, a fragment or a variant of a cytokine; a cytokine receptor domain, e.g., a cytokine receptor dimerizing domain; or an agonist of a cytokine receptor, e.g., an antibody molecule (e.g., an agonistic antibody) to a cytokine receptor.


In some embodiments the cytokine molecule is chosen from IL-2, IL-12, IL-15, IL-18, IL-21, or interferon gamma, or a fragment or variant thereof, or a combination of any of the aforesaid cytokines. The cytokine molecule can be a monomer or a dimer. In embodiments, the cytokine molecule can further include a cytokine receptor dimerizing domain.


In other embodiments, the cytokine molecule is an agonist of a cytokine receptor, e.g., an antibody molecule (e.g., an agonistic antibody) to a cytokine receptor chosen from an IL-15Ra or IL-21R.


Immune Cell Engagers


In certain embodiments, the multispecific antibody molecules disclosed herein can include an immune cell engager.


The immune cell engagers of the multispecific molecules disclosed herein can mediate binding to, and/or activation of, an immune cell, e.g., an immune effector cell. In some embodiments, the immune cell is chosen from an NK cell, a B cell, a dendritic cell, or a macrophage cell engager, or a combination thereof. In some embodiments, the immune cell engager is chosen from one, two, three, or all of an NK cell engager, a B cell engager, a dendritic cell engager, or a macrophage cell engager, or a combination thereof. The immune cell engager can be an agonist of the immune system. In some embodiments, the immune cell engager can be an antibody molecule, a ligand molecule (e.g., a ligand that further comprises an immunoglobulin constant region, e.g., an Fc region), a small molecule, a nucleotide molecule.


Natural Killer Cell Engagers


Natural Killer (NK) cells recognize and destroy tumors and virus-infected cells in an antibody-independent manner. The regulation of NK cells is mediated by activating and inhibiting receptors on the NK cell surface. One family of activating receptors is the natural cytotoxicity receptors (NCRs) which include NKp30, NKp44 and NKp46. The NCRs initiate tumor targeting by recognition of heparan sulfate on cancer cells. NKG2D is a receptor that provides both stimulatory and costimulatory innate immune responses on activated killer (NK) cells, leading to cytotoxic activity. DNAM1 is a receptor involved in intercellular adhesion, lymphocyte signaling, cytotoxicity and lymphokine secretion mediated by cytotoxic T-lymphocyte (CTL) and NK cell. DAP10 (also known as HCST) is a transmembrane adapter protein which associates with KLRK1 to form an activation receptor KLRK1-HCST in lymphoid and myeloid cells; this receptor plays a major role in triggering cytotoxicity against target cells expressing cell surface ligands such as MHC class I chain-related MICA and MICB, and U(optionally L1)6-binding proteins (ULBPs); it KLRK1-HCST receptor plays a role in immune surveillance against tumors and is required for cytolysis of tumors cells; indeed, melanoma cells that do not express KLRK1 ligands escape from immune surveillance mediated by NK cells. CD16 is a receptor for the Fc region of IgG, which binds complexed or aggregated IgG and also monomeric IgG and thereby mediates antibody-dependent cellular cytotoxicity (ADCC) and other antibody-dependent responses, such as phagocytosis.


In some embodiments, the NK cell engager is a viral hemagglutinin (HA), HA is a glycoprotein found on the surface of influenza viruses. It is responsible for binding the virus to cells with sialic acid on the membranes, such as cells in the upper respiratory tract or erythrocytes. HA has at least 18 different antigens. These subtypes are named H1 through H18. NCRs can recognize viral proteins. NKp46 has been shown to be able to interact with the HA of influenza and the HA-NA of Paramyxovirus, including Sendai virus and Newcastle disease virus. Besides NKp46, NKp44 can also functionally interact with HA of different influenza subtypes.


The present disclosure provides, inter alia, multi-specific (e.g., bi-, tri-, quad-specific) proteins, that are engineered to contain one or more NK cell engager that mediate binding to and/or activation of an NK cell. Accordingly, in some embodiments, the NK cell engager is selected from an antigen binding domain or ligand that binds to (e.g., activates): NKp30, NKp40, NKp44, NKp46, NKG2D, DNAM1, DAP10, CD16 (e.g., CD16a, CD16b, or both), CRTAM, CD27, PSGL1, CD96, CD100 (SEMA4D), NKp80 or CD244 (also known as SLAMF4 or 2B4). in some embodiments, the NK cell engager is selected from an antigen binding domain or ligand that binds to (e.g., activates): NKp30 or NKp46.


In other embodiments, the NK cell engager is a ligand of NKp44 or NKp46, which is a viral HA. Viral hemagglutinins (HA) are glyco proteins which are on the surface of viruses. HA proteins allow viruses to bind to the membrane of cells via sialic acid sugar moieties which contributes to the fusion of viral membranes with the cell membranes (see e.g., Eur J Immunol. 2001 September; 31(9):2680-9 “Recognition of viral hemagglutinins by NKp44 but not by NKp30”; and Nature. 2001 Feb. 22; 409(6823):1055-60 “Recognition of haemaglutinins on virus-infected cells by NKp46 activates lysis by human NK cells” the contents of each of which are incorporated by reference herein).


In other embodiments, the NK cell engager is a ligand of NKG2D chosen from MICA, MICB, or ULBP1.


In other embodiments, the NK cell engager is a ligand of DNAM1 chosen from NECTIN2 or NECL5.


In yet other embodiments, the NK cell engager is a ligand of DAP10, which is an adapter for NKG2D (see e.g., Proc Natl Acad Sci USA. 2005 May 24; 102(21): 7641-7646; and Blood, 15 Sep. 2011 Volume 118, Number 11, the full contents of each of which is incorporated by reference herein).


In other embodiments, the NK cell engager is a ligand of CD16, which is a CD16a/b ligand, e.g., a CD16a/b ligand further comprising an antibody Fc region (see e.g., Front Immunol. 2013; 4: 76 discusses how antibodies use the Fc to trigger NK cells through CD16, the full contents of which are incorporated herein).


B Cell, Macrophage & Dendritic Cell Engagers


Broadly, B cells, also known as B lymphocytes, are a type of white blood cell of the lymphocyte subtype. They function in the humoral immunity component of the adaptive immune system by secreting antibodies. Additionally, B cells present antigen (they are also classified as professional antigen-presenting cells (APCs)) and secrete cytokines. Macrophages are a type of white blood cell that engulfs and digests cellular debris, foreign substances, microbes, cancer cells via phagocytosis. Besides phagocytosis, they play important roles in nonspecific defense (innate immunity) and also help initiate specific defense mechanisms (adaptive immunity) by recruiting other immune cells such as lymphocytes. For example, they are important as antigen presenters to T cells. Beyond increasing inflammation and stimulating the immune system, macrophages also play an important anti-inflammatory role and can decrease immune reactions through the release of cytokines. Dendritic cells (DCs) are antigen-presenting cells that function in processing antigen material and present it on the cell surface to the T cells of the immune system.


The present disclosure provides, inter alia, multi-specific (e.g., bi-, tri-, quad-specific) proteins, that include, e.g., are engineered to contain, one or more B cell, macrophage, and/or dendritic cell engager that mediate binding to and/or activation of a B cell, macrophage, and/or dendritic cell.


Accordingly, in some embodiments, the immune cell engager comprises a B cell, macrophage, and/or dendritic cell engager chosen from one or more of CD40 ligand (CD40L) or a CD70 ligand; an antibody molecule that binds to CD40 or CD70; an antibody molecule to OX40; an OX40 ligand (OX40L); an agonist of a Toll-like receptor (e.g., as described herein, e.g., a TLR4, e.g., a constitutively active TLR4 (caTLR4), or a TLR9 agonists); a 41BB; a CD2; a CD47; or a STING agonist, or a combination thereof.


In some embodiments, the B cell engager is a CD40L, an OX40L, or a CD70 ligand, or an antibody molecule that binds to OX40, CD40 or CD70.


In some embodiments, the macrophage engager is a CD2 agonist. In some embodiments, the macrophage engager is an antigen binding domain that binds to: CD40L or antigen binding domain or ligand that binds CD40, a Toll like receptor (TLR) agonist (e.g., as described herein), e.g., a TLR9 or TLR4 (e.g., caTLR4 (constitutively active TLR4), CD47, or a STING agonist. In some embodiments, the STING agonist is a cyclic dinucleotide, e.g., cyclic di-GMP (cdGMP) or cyclic di-AMP (cdAMP). In some embodiments, the STING agonist is biotinylated.


In some embodiments, the dendritic cell engager is a CD2 agonist. In some embodiments, the dendritic cell engager is a ligand, a receptor agonist, or an antibody molecule that binds to one or more of: OX40L, 41BB, a TLR agonist (e.g., as described herein) (e.g., TLR9 agonist, TLR4 (e.g., caTLR4 (constitutively active TLR4)), CD47, or and a STING agonist. In some embodiments, the STING agonist is a cyclic dinucleotide, e.g., cyclic di-GMP (cdGMP) or cyclic di-AMP (cdAMP). In some embodiments, the STING agonist is biotinylated.


In other embodiments, the immune cell engager mediates binding to, or activation of, one or more of a B cell, a macrophage, and/or a dendritic cell. Exemplary B cell, macrophage, and/or dendritic cell engagers can be chosen from one or more of CD40 ligand (CD40L) or a CD70 ligand; an antibody molecule that binds to CD40 or CD70; an antibody molecule to OX40; an OX40 ligand (OX40L); a Toll-like receptor agonist (e.g., a TLR4, e.g., a constitutively active TLR4 (caTLR4) or a TLR9 agonist); a 41BB agonist; a CD2; a CD47; or a STING agonist, or a combination thereof.


In some embodiments, the B cell engager is chosen from one or more of a CD40L, an OX40L, or a CD70 ligand, or an antibody molecule that binds to OX40, CD40 or CD70.


In other embodiments, the macrophage cell engager is chosen from one or more of a CD2 agonist; a CD40L; an OX40L; an antibody molecule that binds to OX40, CD40 or CD70; a Toll-like receptor agonist or a fragment thereof (e.g., a TLR4, e.g., a constitutively active TLR4 (caTLR4)); a CD47 agonist; or a STING agonist.


In other embodiments, the dendritic cell engager is chosen from one or more of a CD2 agonist, an OX40 antibody, an OX40L, 41BB agonist, a Toll-like receptor agonist or a fragment thereof (e.g., a TLR4, e.g., a constitutively active TLR4 (caTLR4)), CD47 agonist, or a STING agonist.


In yet other embodiments, the STING agonist comprises a cyclic dinucleotide, e.g., a cyclic di-GMP (cdGMP), a cyclic di-AMP (cdAMP), or a combination thereof, optionally with 2′,5′ or 3′,5′ phosphate linkages.


Toll-Like Receptors


Toll-Like Receptors (TLRs) are evolutionarily conserved receptors are homologues of the Drosophila Toll protein, and recognize highly conserved structural motifs known as pathogen-associated microbial patterns (PAMPs), which are exclusively expressed by microbial pathogens, or danger-associated molecular patterns (DAMPs) that are endogenous molecules released from necrotic or dying cells. PAMPs include various bacterial cell wall components such as lipopolysaccharide (LPS), peptidoglycan (PGN) and lipopeptides, as well as flagellin, bacterial DNA and viral double-stranded RNA. DAMPs include intracellular proteins such as heat shock proteins as well as protein fragments from the extracellular matrix. Stimulation of TLRs by the corresponding PAMPs or DAMPs initiates signaling cascades leading to the activation of transcription factors, such as AP-1, NF-κB and interferon regulatory factors (IRFs). Signaling by TLRs results in a variety of cellular responses, including the production of interferons (IFNs), pro-inflammatory cytokines and effector cytokines that direct the adaptive immune response. TLRs are implicated in a number of inflammatory and immune disorders and play a role in cancer (Rakoff-Nahoum S. & Medzhitov R., 2009. Toll-like receptors and cancer. Nat Revs Cancer 9:57-63.)


TLRs are type I transmembrane proteins characterized by an extracellular domain containing leucine-rich repeats (LRRs) and a cytoplasmic tail that contains a conserved region called the Toll/IL-1 receptor (TIR) domain. Ten human and twelve murine TLRs have been characterized, TLR1 to TLR10 in humans, and TLR1 to TLR9, TLR11, TLR12 and TLR13 in mice, the homolog of TLR10 being a pseudogene. TLR2 is essential for the recognition of a variety of PAMPs from Gram-positive bacteria, including bacterial lipoproteins, lipomannans and lipoteichoic acids. TLR3 is implicated in virus-derived double-stranded RNA. TLR4 is predominantly activated by lipopolysaccharide. TLR5 detects bacterial flagellin and TLR9 is required for response to unmethylated CpG DNA. Finally, TLR7 and TLR8 recognize small synthetic antiviral molecules, and single-stranded RNA was reported to be their natural ligand. TLR11 has been reported to recognize uropathogenic E. coli and a profilin-like protein from Toxoplasma gondii. The repertoire of specificities of the TLRs is apparently extended by the ability of TLRs to heterodimerize with one another. For example, dimers of TLR2 and TLR6 are required for responses to diacylated lipoproteins while TLR2 and TLR1 interact to recognize triacylated lipoproteins. Specificities of the TLRs are also influenced by various adapter and accessory molecules, such as MD-2 and CD14 that form a complex with TLR4 in response to LPS.


TLR signaling consists of at least two distinct pathways: a MyD88-dependent pathway that leads to the production of inflammatory cytokines, and a MyD88-independent pathway associated with the stimulation of IFN-β and the maturation of dendritic cells. The MyD88-dependent pathway is common to all TLRs, except TLR3 (Adachi O. et al., 1998. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity. 9(1):143-50). Upon activation by PAMPs or DAMPs, TLRs hetero- or homodimerize inducing the recruitment of adaptor proteins via the cytoplasmic TIR domain. Individual TLRs induce different signaling responses by usage of the different adaptor molecules. TLR4 and TLR2 signaling requires the adaptor TIRAP/Mal, which is involved in the MyD88-dependent pathway. TLR3 triggers the production of IFN-β in response to double-stranded RNA, in a MyD88-independent manner, through the adaptor TRIF/TICAM-1. TRAM/TICAM-2 is another adaptor molecule involved in the MyD88-independent pathway which function is restricted to the TLR4 pathway.


TLR3, TLR7, TLR8 and TLR9 recognize viral nucleic acids and induce type I IFNs. The signaling mechanisms leading to the induction of type I IFNs differ depending on the TLR activated. They involve the interferon regulatory factors, IRFs, a family of transcription factors known to play a critical role in antiviral defense, cell growth and immune regulation. Three IRFs (IRF3, IRF5 and IRF7) function as direct transducers of virus-mediated TLR signaling. TLR3 and TLR4 activate IRF3 and IRF7, while TLR7 and TLR8 activate IRF5 and IRF7 (Doyle S. et al., 2002. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity. 17(3):251-63). Furthermore, type I IFN production stimulated by TLR9 ligand CpG-A has been shown to be mediated by PI(3)K and mTOR (Costa-Mattioli M. & Sonenberg N. 2008. RAPping production of type I interferon in pDCs through mTOR. Nature Immunol. 9: 1097-1099).


TLR-9


TLR9 recognizes unmethylated CpG sequences in DNA molecules. CpG sites are relatively rare (˜1%) on vertebrate genomes in comparison to bacterial genomes or viral DNA. TLR9 is expressed by numerous cells of the immune system such as B lymphocytes, monocytes, natural killer (NK) cells, and plasmacytoid dendritic cells. TLR9 is expressed intracellularly, within the endosomal compartments and functions to alert the immune system of viral and bacterial infections by binding to DNA rich in CpG motifs. TLR9 signals leads to activation of the cells initiating pro-inflammatory reactions that result in the production of cytokines such as type-I interferon and IL-12.


TLR Agonists


A TLR agonist can agonize one or more TLR, e.g., one or more of human TLR-1, 2, 3, 4, 5, 6, 7, 8, 9, or 10. In some embodiments, an adjunctive agent described herein is a TLR agonist. In some embodiments, the TLR agonist specifically agonizes human TLR-9. In some embodiments, the TLR-9 agonist is a CpG moiety. As used herein, a CpG moiety, is a linear dinucleotide having the sequence: 5′-C-phosphate-G-3′, that is, cytosine and guanine separated by only one phosphate.


In some embodiments, the CpG moiety comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more CpG dinucleotides. In some embodiments, the CpG moiety consists of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 CpG dinucleotides. In some embodiments, the CpG moiety has 1-5, 1-10, 1-20, 1-30, 1-40, 1-50, 5-10, 5-20, 5-30, 10-20, 10-30, 10-40, or 10-50 CpG dinucleotides.


In some embodiments, the TLR-9 agonist is a synthetic ODN (oligodeoxynucleotides). CpG ODNs are short synthetic single-stranded DNA molecules containing unmethylated CpG dinucleotides in particular sequence contexts (CpG motifs). CpG ODNs possess a partially or completely phosphorothioated (PS) backbone, as opposed to the natural phosphodiester (PO) backbone found in genomic bacterial DNA. There are three major classes of CpG ODNs: classes A, B and C, which differ in their immunostimulatory activities. CpG-A ODNs are characterized by a PO central CpG-containing palindromic motif and a PS-modified 3′ poly-G string. They induce high IFN-α production from pDCs but are weak stimulators of TLR9-dependent NF-κB signaling and pro-inflammatory cytokine (e.g., IL-6) production. CpG-B ODNs contain a full PS backbone with one or more CpG dinucleotides. They strongly activate B cells and TLR9-dependent NF-κB signaling but weakly stimulate IFN-α secretion. CpG-C ODNs combine features of both classes A and B. They contain a complete PS backbone and a CpG-containing palindromic motif. C-Class CpG ODNs induce strong IFN-α production from pDC as well as B cell stimulation.


Exemplary Multispecific Antibody Molecules

Exemplary kappa and lambda multispecific antibody molecules are provided in Tables 17 and 18.









TABLE 17







Exemplary amino acid sequences of antibodies












Heavy Chain Variable Domain
Light Chain Variable


Target
Antibody
Sequence
Domain Sequence





Rabphilin
Ab237
SEQ ID NO: 401
SEQ ID NO 402:


3A

QVQLQESGPGLVKPSQTLSLTCT
DIQMTQSPSSLSASVGDRVTI




VSGGSINNNNYYWTWIRQHPGK
TCRASQSINNYLNWYQQKPG




GLEWIGYIYYSGSTFYNPSLKSR
KAPTLLIYAASSLQSGVPSRFS




VTISVDTSKTQFSLKLSSVTAAD
GSRSGTDFTLTISSLQPEDFAA




TAVYYCAREDTMTGLDVWGQG
YFCQQTYSNPTFGQGTKVEV




TTVTVSS
K





PD-L1
Avelumab
SEQ ID NO 403:
SEQ ID NO 404:




EVQLLESGGGLVQPGGSLRLSC
QSALTQPASVSGSPGQSITISC




AASGFTFSSYIMMWVRQAPGKG
TGTSSDVGGYNYVSWYQQH




LEWVSSIYPSGGITFYADTVKGR
PGKAPKLMIYDVSNRPSGVS




FTISRDNSKNTLYLQMNSLRAED
NRFSGSKSGNTASLTISGLQA




TAVYYCARIKLGTVTTVDYWG
EDEADYYCSSYTSSSTRVFGT




QGTLVTVSS
GTKVTVL





CTLA-4
Ipilumumab
SEQ ID NO 405:
SEQ ID NO 406:




QVQLVESGGGVVQPGRSLRLSC
EIVLTQSPGTLSLSPGERATLS




AASGFTFSSYTMHWVRQAPGK
CRASQSVGSSYLAWYQQKPG




GLEWVTFISYDGNNKYYADSVK
QAPRLLIYGAFSRATGIPDRFS




GRFTISRDNSKNTLYLQMNSLR
GSGSGTDFTLTISRLEPEDFAV




AEDTAIYYCARTGWLGPFDYW
YYCQQYGSSPWTFGQGTKVE




GQGTLVTVSS
IK





IL-12/23
Briakinumab
SEQ ID NO 407:
SEQ ID NO 408:




QVQLVESGGGVVQPGRSLRLSC
QSVLTQPPSVSGAPGQRVTIS




AASGFTFSSYGMHWVRQAPGK
CSGSRSNIGSNTVKWYQQLP




GLEWVAFIRYDGSNKYYADSVK
GTAPKLLIYYNDQRPSGVPDR




GRFTISRDNSKNTLYLQMNSLR
FSGSKSGTSASLAITGLQAED




AEDTAVYYCKTHGSHDNWGQG
EADYYCQSYDRYTHPALLFG




TMVTVSS
TGTKVTVL





PD-1
Nivolumab
SEQ ID NO 409:
SEQ ID NO 410:




QVQLVESGGGVVQPGRSLRLDC
EIVLTQSPATLSLSPGERATLS




KASGITFSNSGMHWVRQAPGKG
CRASQSVSSYLAWYQQKPGQ




LEWVAVIWYDGSKRYYADSVK
APRLLIYDASNRATGIPARFS




GRFTISRDNSKNTLFLQMNSLRA
GSGSGTDFTLTISSLEPEDFAV




EDTAVYYCATNDDYWGQGTLV
YYCQQSSNWPRTFGQGTKVE




TVSS
IK





TRAIL-R2
Lexatumumab
SEQ ID NO 411:
SEQ ID NO 412:




EVQLVQSGGGVERPGGSLRLSC
SSELTQDPAVSVALGQTVRIT




AASGFTFDDYGMSWVRQAPGK
CQGDSLRSYYASWYQQKPG




GLEWVSGINWNGGSTGYADSV
QAPVLVIYGKNNRPSGIPDRF




KGRVTISRDNAKNSLYLQMNSL
SGSSSGNTASLTITGAQAEDE




RAEDTAVYYCAKILGAGRGWY
ADYYCNSRDSSGNHVVFGGG




FDLWGKGTTVTVSS
TKLTVL





CD20
Ofatumumab
SEQ ID NO 413:
SEQ ID NO 414:




EVQLVESGGGLVQPGRSLRLSC
EIVLTQSPATLSLSPGERATLS




AASGFTFNDYAMHWVRQAPGK
CRASQSVSSYLAWYQQKPGQ




GLEWVSTISWNSGSIGYADSVK
APRLLIYDASNRATGIPARFS




GRFTISRDNAKKSLYLQMNSLR
GSGSGTDFTLTISSLEPEDFAV




AEDTALYYCAKDIQYGNYYYG
YYCQQRSNWPITFGQGTRLEI




MDVWGQGTTVTVSS
K





IGF-1R
Cixutumumab
SEQ ID NO 415:
SEQ ID NO 416:




EVQLVQSGAEVKKPGSSVKVSC
SSELTQDPAVSVALGQTVRIT




KASGGTFSSYAISWVRQAPGQG
CQGDSLRSYYATWYQQKPG




LEWMGGIIPIFGTANYAQKFQGR
QAPILVIYGENKRPSGIPDRFS




VTITADKSTSTAYMELSSLRSED
GSSSGNTASLTITGAQAEDEA




TAVYYCARAPLRFLEWSTQDHY
DYYCKSRDGSGQHLVFGGGT




YYYYMDVWGKGTTVTVSS
KLTVL





Mesothelin
m912
SEQ ID NO: 417
SEQ ID NO: 418




QVQLQESGPGLVKPSETLSLTCT
DIQMTQSPSSLSASVGDRVTI




VSGGSVSSGSYYWSWIRQPPGK
TCRASQSISSYLNWYQQKPG




GLEWIGYIYYSGSTNYNPSLKSR
KAPKLLIYAASSLQSGVPSGF




VTISVDTSKNQFSLKLSSVTAAD
SGSGSGTDFTLTISSLQPEDFA




TAVYYCAREGKNGAFDIWGQG
TYYCQQSYSTPLTFGGGTKV




TMVTVSS
EIK
















TABLE 18







Exemplary pairings of kappa and lambda antibodies








Kappa
Lambda Antibodies











Antibodies
Avelumab
Briakinumab
Lexatumumab
Cixutumumab





Ab237
SEQ ID NO: 401,
SEQ ID NO: 401,
SEQ ID NO: 401,
SEQ ID NO: 401,



SEQ ID NO: 402,
SEQ ID NO: 402,
SEQ ID NO: 402,
SEQ ID NO: 402,



SEQ ID NO: 403,
SEQ ID NO: 407,
SEQ ID NO: 411,
SEQ ID NO: 415,



SEQ ID NO: 404
SEQ ID NO: 408
SEQ ID NO: 412
SEQ ID NO: 416


Ipilumumab
SEQ ID NO: 405,
SEQ ID NO: 405,
SEQ ID NO: 405,
SEQ ID NO: 405,



SEQ ID NO: 406,
SEQ ID NO: 406,
SEQ ID NO: 406,
SEQ ID NO: 406,



SEQ ID NO: 403,
SEQ ID NO: 407,
SEQ ID NO: 411,
SEQ ID NO: 415,



SEQ ID NO: 404
SEQ ID NO: 408
SEQ ID NO: 412
SEQ ID NO: 416


Nivolumab
SEQ ID NO: 409,
SEQ ID NO: 409,
SEQ ID NO: 409,
SEQ ID NO: 409,



SEQ ID NO: 410,
SEQ ID NO: 410,
SEQ ID NO: 410,
SEQ ID NO: 410,



SEQ ID NO: 403,
SEQ ID NO: 407,
SEQ ID NO: 411,
SEQ ID NO: 415,



SEQ ID NO: 404
SEQ ID NO: 408
SEQ ID NO: 412
SEQ ID NO: 416


Ofatumumab
SEQ ID NO: 413,
SEQ ID NO: 413,
SEQ ID NO: 413,
SEQ ID NO: 413,



SEQ ID NO: 414,
SEQ ID NO: 414,
SEQ ID NO: 414,
SEQ ID NO: 414,



SEQ ID NO: 403,
SEQ ID NO: 407,
SEQ ID NO: 411,
SEQ ID NO: 415,



SEQ ID NO: 404
SEQ ID NO: 408
SEQ ID NO: 412
SEQ ID NO: 416


m912
SEQ ID NO: 417,
SEQ ID NO: 417,
SEQ ID NO: 417,
SEQ ID NO: 417,



SEQ ID NO: 418,
SEQ ID NO: 418,
SEQ ID NO: 418,
SEQ ID NO: 418,



SEQ ID NO: 403,
SEQ ID NO: 407,
SEQ ID NO: 411,
SEQ ID NO: 415,



SEQ ID NO: 404
SEQ ID NO: 408
SEQ ID NO: 412
SEQ ID NO: 416









Nucleic Acids

The invention also features nucleic acids comprising nucleotide sequences that encode heavy and light chain variable regions and CDRs or hypervariable loops of the antibody molecules, as described herein. For example, the invention features a first and second nucleic acid encoding heavy and light chain variable regions, respectively, of an antibody molecule chosen from one or more of the antibody molecules disclosed herein. The nucleic acid can comprise a nucleotide sequence as set forth in the tables herein, or a sequence substantially identical thereto (e.g., a sequence at least about 85%, 90%, 95%, 99% or more identical thereto, or which differs by no more than 3, 6, 15, 30, or 45 nucleotides from the sequences shown in the tables herein.


In certain embodiments, the nucleic acid can comprise a nucleotide sequence encoding at least one, two, or three CDRs or hypervariable loops from a heavy chain variable region having an amino acid sequence as set forth in the tables herein, or a sequence substantially homologous thereto (e.g., a sequence at least about 85%, 90%, 95%, 99% or more identical thereto, and/or having one or more substitutions, e.g., conserved substitutions). In other embodiments, the nucleic acid can comprise a nucleotide sequence encoding at least one, two, or three CDRs or hypervariable loops from a light chain variable region having an amino acid sequence as set forth in the tables herein, or a sequence substantially homologous thereto (e.g., a sequence at least about 85%, 90%, 95%, 99% or more identical thereto, and/or having one or more substitutions, e.g., conserved substitutions). In yet another embodiment, the nucleic acid can comprise a nucleotide sequence encoding at least one, two, three, four, five, or six CDRs or hypervariable loops from heavy and light chain variable regions having an amino acid sequence as set forth in the tables herein, or a sequence substantially homologous thereto (e.g., a sequence at least about 85%, 90%, 95%, 99% or more identical thereto, and/or having one or more substitutions, e.g., conserved substitutions).


In certain embodiments, the nucleic acid can comprise a nucleotide sequence encoding at least one, two, or three CDRs or hypervariable loops from a heavy chain variable region having the nucleotide sequence as set forth in the tables herein, a sequence substantially homologous thereto (e.g., a sequence at least about 85%, 90%, 95%, 99% or more identical thereto, and/or capable of hybridizing under the stringency conditions described herein). In another embodiment, the nucleic acid can comprise a nucleotide sequence encoding at least one, two, or three CDRs or hypervariable loops from a light chain variable region having the nucleotide sequence as set forth in the tables herein, or a sequence substantially homologous thereto (e.g., a sequence at least about 85%, 90%, 95%, 99% or more identical thereto, and/or capable of hybridizing under the stringency conditions described herein). In yet another embodiment, the nucleic acid can comprise a nucleotide sequence encoding at least one, two, three, four, five, or six CDRs or hypervariable loops from heavy and light chain variable regions having the nucleotide sequence as set forth in the tables herein, or a sequence substantially homologous thereto (e.g., a sequence at least about 85%, 90%, 95%, 99% or more identical thereto, and/or capable of hybridizing under the stringency conditions described herein).


In another aspect, the application features host cells and vectors containing the nucleic acids described herein. The nucleic acids may be present in a single vector or separate vectors present in the same host cell or separate host cell, as described in more detail hereinbelow.


Vectors

Further provided herein are vectors comprising the nucleotide sequences encoding an antibody molecule described herein. In one embodiment, the vectors comprise nucleotides encoding an antibody molecule described herein. In one embodiment, the vectors comprise the nucleotide sequences described herein. The vectors include, but are not limited to, a virus, plasmid, cosmid, lambda phage or a yeast artificial chromosome (YAC).


Numerous vector systems can be employed. For example, one class of vectors utilizes DNA elements which are derived from animal viruses such as, for example, bovine papilloma virus, polyoma virus, adenovirus, vaccinia virus, baculovirus, retroviruses (Rous Sarcoma Virus, MMTV or MOMLV) or SV40 virus. Another class of vectors utilizes RNA elements derived from RNA viruses such as Semliki Forest virus, Eastern Equine Encephalitis virus and Flaviviruses.


Additionally, cells which have stably integrated the DNA into their chromosomes may be selected by introducing one or more markers which allow for the selection of transfected host cells. The marker may provide, for example, prototropy to an auxotrophic host, biocide resistance (e.g., antibiotics), or resistance to heavy metals such as copper, or the like. The selectable marker gene can be either directly linked to the DNA sequences to be expressed, or introduced into the same cell by cotransformation. Additional elements may also be needed for optimal synthesis of mRNA. These elements may include splice signals, as well as transcriptional promoters, enhancers, and termination signals.


Once the expression vector or DNA sequence containing the constructs has been prepared for expression, the expression vectors may be transfected or introduced into an appropriate host cell. Various techniques may be employed to achieve this, such as, for example, protoplast fusion, calcium phosphate precipitation, electroporation, retroviral transduction, viral transfection, gene gun, lipid based transfection or other conventional techniques. In the case of protoplast fusion, the cells are grown in media and screened for the appropriate activity.


Methods and conditions for culturing the resulting transfected cells and for recovering the antibody molecule produced are known to those skilled in the art, and may be varied or optimized depending upon the specific expression vector and mammalian host cell employed, based upon the present description.


Cells

In another aspect, the application features host cells and vectors containing the nucleic acids described herein. The nucleic acids may be present in a single vector or separate vectors present in the same host cell or separate host cell. The host cell can be a eukaryotic cell, e.g., a mammalian cell, an insect cell, a yeast cell, or a prokaryotic cell, e.g., E. coli. For example, the mammalian cell can be a cultured cell or a cell line. Exemplary mammalian cells include lymphocytic cell lines (e.g., NSO), Chinese hamster ovary cells (CHO), COS cells, oocyte cells, and cells from a transgenic animal, e.g., mammary epithelial cell.


The invention also provides host cells comprising a nucleic acid encoding an antibody molecule as described herein.


In one embodiment, the host cells are genetically engineered to comprise nucleic acids encoding the antibody molecule.


In one embodiment, the host cells are genetically engineered by using an expression cassette. The phrase “expression cassette,” refers to nucleotide sequences, which are capable of affecting expression of a gene in hosts compatible with such sequences. Such cassettes may include a promoter, an open reading frame with or without introns, and a termination signal. Additional factors necessary or helpful in effecting expression may also be used, such as, for example, an inducible promoter.


The invention also provides host cells comprising the vectors described herein.


The cell can be, but is not limited to, a eukaryotic cell, a bacterial cell, an insect cell, or a human cell. Suitable eukaryotic cells include, but are not limited to, Vero cells, HeLa cells, COS cells, CHO cells, HEK293 cells, BHK cells and MDCKII cells. Suitable insect cells include, but are not limited to, Sf9 cells.


Methods of Making the Multispecific Molecules


The multispecific antibody molecules can be produced by recombinant expression, e.g., of at least one or more component, in a host system. Exemplary host systems include eukaryotic cells (e.g., mammalian cells, e.g., CHO cells, or insect cells, e.g., SF9 or S2 cells) and prokaryotic cells (e.g., E. coli). In one embodiment, the host cell is a mammalian cell, a stable mammalian cell, e.g., a CHO cell. Bispecific antibody molecules can be produced by separate expression of the components in different host cells and subsequent purification/assembly. Alternatively, the antibody molecules can be produced by expression of the components in a single host cell. Purification of bispecific antibody molecules can be performed by various methods such as affinity chromatography, e.g., using protein A and sequential pH elution. In other embodiments, affinity tags can be used for purification, e.g., histidine-containing tag, myc tag, or streptavidin tag.


In some embodiments, a method for generating bispecific antibodies disclosed herein comprises: generating a human antibody with a light chain of a lambda subtype; generating a human antibody with a light chain of kappa subtype; transfecting cells with DNA of both antibody arms; purifying the antibody with Protein A resin; confirming the presence of both lambda and kappa light chains with KappaSelect and LambdaFab Select resin; analyzing the correct lambda and kappa heavy and light chain pairing by cleaving Fab arms with papain and running mass spectrometry. Experimental conditions for making and testing the multispecific molecules are provided in the Examples below.


Uses and Combination Therapies

Methods described herein include treating a cancer in a subject by using a multispecific molecule described herein, e.g., using a pharmaceutical composition described herein. Also provided are methods for reducing or ameliorating a symptom of a cancer in a subject, as well as methods for inhibiting the growth of a cancer and/or killing one or more cancer cells. In embodiments, the methods described herein decrease the size of a tumor and/or decrease the number of cancer cells in a subject administered with a described herein or a pharmaceutical composition described herein.


In embodiments, the cancer is a hematological cancer. In embodiments, the hematological cancer is a leukemia or a lymphoma. As used herein, a “hematologic cancer” refers to a tumor of the hematopoietic or lymphoid tissues, e.g., a tumor that affects blood, bone marrow, or lymph nodes. Exemplary hematologic malignancies include, but are not limited to, leukemia (e.g., acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CIVIL), hairy cell leukemia, acute monocytic leukemia (AMoL), chronic myelomonocytic leukemia (CMML), juvenile myelomonocytic leukemia (JMML), or large granular lymphocytic leukemia), lymphoma (e.g., AIDS-related lymphoma, cutaneous T-cell lymphoma, Hodgkin lymphoma (e.g., classical Hodgkin lymphoma or nodular lymphocyte-predominant Hodgkin lymphoma), mycosis fungoides, non-Hodgkin lymphoma (e.g., B-cell non-Hodgkin lymphoma (e.g., Burkitt lymphoma, small lymphocytic lymphoma (CLL/SLL), diffuse large B-cell lymphoma, follicular lymphoma, immunoblastic large cell lymphoma, precursor B-lymphoblastic lymphoma, or mantle cell lymphoma) or T-cell non-Hodgkin lymphoma (mycosis fungoides, anaplastic large cell lymphoma, or precursor T-lymphoblastic lymphoma)), primary central nervous system lymphoma, Sézary syndrome, Waldenström macroglobulinemia), chronic myeloproliferative neoplasm, Langerhans cell histiocytosis, multiple myeloma/plasma cell neoplasm, myelodysplastic syndrome, or myelodysplastic/myeloproliferative neoplasm.


In embodiments, the cancer is a solid cancer. Exemplary solid cancers include, but are not limited to, ovarian cancer, rectal cancer, stomach cancer, testicular cancer, cancer of the anal region, uterine cancer, colon cancer, rectal cancer, renal-cell carcinoma, liver cancer, non-small cell carcinoma of the lung, cancer of the small intestine, cancer of the esophagus, melanoma, Kaposi's sarcoma, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular malignant melanoma, uterine cancer, brain stem glioma, pituitary adenoma, epidermoid cancer, carcinoma of the cervix squamous cell cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the vagina, sarcoma of soft tissue, cancer of the urethra, carcinoma of the vulva, cancer of the penis, cancer of the bladder, cancer of the kidney or ureter, carcinoma of the renal pelvis, spinal axis tumor, neoplasm of the central nervous system (CNS), primary CNS lymphoma, tumor angiogenesis, metastatic lesions of said cancers, or combinations thereof.


In embodiments, the multispecific molecules (or pharmaceutical composition) are administered in a manner appropriate to the disease to be treated or prevented. The quantity and frequency of administration will be determined by such factors as the condition of the patient, and the type and severity of the patient's disease. Appropriate dosages may be determined by clinical trials. For example, when “an effective amount” or “a therapeutic amount” is indicated, the precise amount of the pharmaceutical composition (or multispecific molecules) to be administered can be determined by a physician with consideration of individual differences in tumor size, extent of infection or metastasis, age, weight, and condition of the subject. In embodiments, the pharmaceutical composition described herein can be administered at a dosage of 104 to 109 cells/kg body weight, e.g., 105 to 106 cells/kg body weight, including all integer values within those ranges. In embodiments, the pharmaceutical composition described herein can be administered multiple times at these dosages. In embodiments, the pharmaceutical composition described herein can be administered using infusion techniques described in immunotherapy (see, e.g., Rosenberg et al., New Eng. J. of Med. 319:1676, 1988).


In embodiments, the multispecific molecules or pharmaceutical composition is administered to the subject parenterally. In embodiments, the cells are administered to the subject intravenously, subcutaneously, intratumorally, intranodally, intramuscularly, intradermally, or intraperitoneally. In embodiments, the cells are administered, e.g., injected, directly into a tumor or lymph node. In embodiments, the cells are administered as an infusion (e.g., as described in Rosenberg et al., New Eng. J. of Med. 319:1676, 1988) or an intravenous push. In embodiments, the cells are administered as an injectable depot formulation.


In embodiments, the subject is a mammal. In embodiments, the subject is a human, monkey, pig, dog, cat, cow, sheep, goat, rabbit, rat, or mouse. In embodiments, the subject is a human. In embodiments, the subject is a pediatric subject, e.g., less than 18 years of age, e.g., less than 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 or less years of age. In embodiments, the subject is an adult, e.g., at least 18 years of age, e.g., at least 19, 20, 21, 22, 23, 24, 25, 25-30, 30-35, 35-40, 40-50, 50-60, 60-70, 70-80, or 80-90 years of age.


Combination Therapies

The multispecific molecules disclosed herein can be used in combination with a second therapeutic agent or procedure.


In embodiments, the multispecific molecule and the second therapeutic agent or procedure are administered/performed after a subject has been diagnosed with a cancer, e.g., before the cancer has been eliminated from the subject. In embodiments, the multispecific molecule and the second therapeutic agent or procedure are administered/performed simultaneously or concurrently. For example, the delivery of one treatment is still occurring when the delivery of the second commences, e.g., there is an overlap in administration of the treatments. In other embodiments, the multispecific molecule and the second therapeutic agent or procedure are administered/performed sequentially. For example, the delivery of one treatment ceases before the delivery of the other treatment begins.


In embodiments, combination therapy can lead to more effective treatment than monotherapy with either agent alone. In embodiments, the combination of the first and second treatment is more effective (e.g., leads to a greater reduction in symptoms and/or cancer cells) than the first or second treatment alone. In embodiments, the combination therapy permits use of a lower dose of the first or the second treatment compared to the dose of the first or second treatment normally required to achieve similar effects when administered as a monotherapy. In embodiments, the combination therapy has a partially additive effect, wholly additive effect, or greater than additive effect.


In one embodiment, the multispecific molecule is administered in combination with a therapy, e.g., a cancer therapy (e.g., one or more of anti-cancer agents, immunotherapy, photodynamic therapy (PDT), surgery and/or radiation). The terms “chemotherapeutic,” “chemotherapeutic agent,” and “anti-cancer agent” are used interchangeably herein. The administration of the multispecific molecule and the therapy, e.g., the cancer therapy, can be sequential (with or without overlap) or simultaneous. Administration of the multispecific molecule can be continuous or intermittent during the course of therapy (e.g., cancer therapy). Certain therapies described herein can be used to treat cancers and non-cancerous diseases. For example, PDT efficacy can be enhanced in cancerous and non-cancerous conditions (e.g., tuberculosis) using the methods and compositions described herein (reviewed in, e.g., Agostinis, P. et al. (2011) CA Cancer J. Clin. 61:250-281).


Anti-Cancer Therapies

In other embodiments, the multispecific molecule is administered in combination with a low or small molecular weight chemotherapeutic agent. Exemplary low or small molecular weight chemotherapeutic agents include, but not limited to, 13-cis-retinoic acid (isotretinoin, ACCUTANE®), 2-CdA (2-chlorodeoxyadenosine, cladribine, LEUSTATIN™), 5-azacitidine (azacitidine, VIDAZA®), 5-fluorouracil (5-FU, fluorouracil, ADRUCIL®), 6-mercaptopurine (6-MP, mercaptopurine, PURINETHOL®), 6-TG (6-thioguanine, thioguanine, THIOGUANINE TABLOID®), abraxane (paclitaxel protein-bound), actinomycin-D (dactinomycin, COSMEGEN®), alitretinoin (PANRETIN®), all-transretinoic acid (ATRA, tretinoin, VESANOID®), altretamine (hexamethylmelamine, HMM, HEXALEN®), amethopterin (methotrexate, methotrexate sodium, MTX, TREXALL™, RHEUMATREX®), amifostine (ETHYOL®), arabinosylcytosine (Ara-C, cytarabine, CYTOSAR-U®), arsenic trioxide (TRISENOX®), asparaginase (Erwinia L-asparaginase, L-asparaginase, ELSPAR®, KIDROLASE®), BCNU (carmustine, BiCNU®), bendamustine (TREANDA®), bexarotene (TARGRETIN®), bleomycin (BLENOXANE®), busulfan (BUSULFEX®, MYLERAN®), calcium leucovorin (Citrovorum Factor, folinic acid, leucovorin), camptothecin-11 (CPT-11, irinotecan, CAMPTOSAR®), capecitabine (XELODA®), carboplatin (PARAPLATIN®), carmustine wafer (prolifeprospan 20 with carmustine implant, GLIADEL® wafer), CCI-779 (temsirolimus, TORISEL®), CCNU (lomustine, CeeNU), CDDP (cisplatin, PLATINOL®, PLATINOL-AQ®), chlorambucil (leukeran), cyclophosphamide (CYTOXAN®, NEOSAR®), dacarbazine (DIC, DTIC, imidazole carboxamide, DTIC-DOME®), daunomycin (daunorubicin, daunorubicin hydrochloride, rubidomycin hydrochloride, CERUBIDINE®), decitabine (DACOGEN®), dexrazoxane (ZINECARD®), DHAD (mitoxantrone, NOVANTRONE®), docetaxel (TAXOTERE®), doxorubicin (ADRIAMYCIN®, RUBEX®), epirubicin (ELLENCE™), estramustine (EMCYT®), etoposide (VP-16, etoposide phosphate, TOPOSAR®, VEPESID®, ETOPOPHOS®), floxuridine (FUDR®), fludarabine (FLUDARA®), fluorouracil (cream) (CARAC™, EFUDEX®, FLUOROPLEX®), gemcitabine (GEMZAR®), hydroxyurea (HYDREA®, DROXIA™, MYLOCEL™), idarubicin (IDAMYCIN®), ifosfamide (IFEX®), ixabepilone (IXEMPRA™), LCR (leurocristine, vincristine, VCR, ONCOVIN®, VINCASAR PFS®), L-PAM (L-sarcolysin, melphalan, phenylalanine mustard, ALKERAN®), mechlorethamine (mechlorethamine hydrochloride, mustine, nitrogen mustard, MUSTARGEN®), mesna (MESNEX™), mitomycin (mitomycin-C, MTC, MUTAMYCIN®), nelarabine (ARRANON®), oxaliplatin (ELOXATIN™), paclitaxel (TAXOL®, ONXAL™), pegaspargase (PEG-L-asparaginase, ONCOSPAR®), PEMETREXED (ALIMTA®), pentostatin (NIPENT®), procarbazine (MATULANE®), streptozocin (ZANOSAR®), temozolomide (TEMODAR®), teniposide (VM-26, VUMON®), TESPA (thiophosphoamide, thiotepa, TSPA, THIOPLEX®), topotecan (HYCAMTIN®), vinblastine (vinblastine sulfate, vincaleukoblastine, VLB, ALKABAN-AQ®, VELBAN®), vinorelbine (vinorelbine tartrate, NAVELBINE®), and vorinostat (ZOLINZA®).


In another embodiment, the multispecific molecule is administered in conjunction with a biologic. Biologics useful in the treatment of cancers are known in the art and a binding molecule of the invention may be administered, for example, in conjunction with such known biologics. For example, the FDA has approved the following biologics for the treatment of breast cancer: HERCEPTIN® (trastuzumab, Genentech Inc., South San Francisco, Calif.; a humanized monoclonal antibody that has anti-tumor activity in HER2-positive breast cancer); FASLODEX® (fulvestrant, AstraZeneca Pharmaceuticals, LP, Wilmington, Del.; an estrogen-receptor antagonist used to treat breast cancer); ARIMIDEX® (anastrozole, AstraZeneca Pharmaceuticals, LP; a nonsteroidal aromatase inhibitor which blocks aromatase, an enzyme needed to make estrogen); Aromasin® (exemestane, Pfizer Inc., New York, N.Y.; an irreversible, steroidal aromatase inactivator used in the treatment of breast cancer); FEMARA® (letrozole, Novartis Pharmaceuticals, East Hanover, N.J.; a nonsteroidal aromatase inhibitor approved by the FDA to treat breast cancer); and NOLVADEX® (tamoxifen, AstraZeneca Pharmaceuticals, LP; a nonsteroidal antiestrogen approved by the FDA to treat breast cancer). Other biologics with which the binding molecules of the invention may be combined include: AVASTIN® (bevacizumab, Genentech Inc.; the first FDA-approved therapy designed to inhibit angiogenesis); and ZEVALIN® (ibritumomab tiuxetan, Biogen Idec, Cambridge, Mass.; a radiolabeled monoclonal antibody currently approved for the treatment of B-cell lymphomas).


In addition, the FDA has approved the following biologics for the treatment of colorectal cancer: AVASTIN®; ERBITUX® (cetuximab, ImClone Systems Inc., New York, N.Y., and Bristol-Myers Squibb, New York, N.Y.; is a monoclonal antibody directed against the epidermal growth factor receptor (EGFR)); GLEEVEC® (imatinib mesylate; a protein kinase inhibitor); and ERGAMISOL® (levamisole hydrochloride, Janssen Pharmaceutica Products, LP, Titusville, N.J.; an immunomodulator approved by the FDA in 1990 as an adjuvant treatment in combination with 5-fluorouracil after surgical resection in patients with Dukes' Stage C colon cancer).


For the treatment of lung cancer, exemplary biologics include TARCEVA® (erlotinib HCL, OSI Pharmaceuticals Inc., Melville, N.Y.; a small molecule designed to target the human epidermal growth factor receptor 1 (HER1) pathway).


For the treatment of multiple myeloma, exemplary biologics include VELCADE® Velcade (bortezomib, Millennium Pharmaceuticals, Cambridge Mass.; a proteasome inhibitor). Additional biologics include THALIDOMID® (thalidomide, Clegene Corporation, Warren, N.J.; an immunomodulatory agent and appears to have multiple actions, including the ability to inhibit the growth and survival of myeloma cells and anti-angiogenesis).


Additional exemplary cancer therapeutic antibodies include, but are not limited to, 3F8, abagovomab, adecatumumab, afutuzumab, alacizumab pegol, alemtuzumab (CAMPATH®, MABCAMPATH®), altumomab pentetate (HYBRI-CEAKER®), anatumomab mafenatox, anrukinzumab (IMA-638), apolizumab, arcitumomab (CEA-SCAN®), bavituximab, bectumomab (LYMPHOSCAN®), belimumab (BENLYSTA®, LYMPHOSTAT-B®), besilesomab (SCINTIMUN®), bevacizumab (AVASTIN®), bivatuzumab mertansine, blinatumomab, brentuximab vedotin, cantuzumab mertansine, capromab pendetide (PROSTASCINT®), catumaxomab (REMOVAB®), CC49, cetuximab (C225, ERBITUX®), citatuzumab bogatox, cixutumumab, clivatuzumab tetraxetan, conatumumab, dacetuzumab, denosumab (PROLIA®), detumomab, ecromeximab, edrecolomab (PANOREX®), elotuzumab, epitumomab cituxetan, epratuzumab, ertumaxomab (REXOMUN®), etaracizumab, farletuzumab, figitumumab, fresolimumab, galiximab, gemtuzumab ozogamicin (MYLOTARG®), girentuximab, glembatumumab vedotin, ibritumomab (ibritumomab tiuxetan, ZEVALIN®), igovomab (INDIMACIS-125®), intetumumab, inotuzumab ozogamicin, ipilimumab, iratumumab, labetuzumab (CEA-CIDE®), lexatumumab, lintuzumab, lucatumumab, lumiliximab, mapatumumab, matuzumab, milatuzumab, minretumomab, mitumomab, nacolomab tafenatox, naptumomab estafenatox, necitumumab, nimotuzumab (THERACIM®, THERALOC®), nofetumomab merpentan (VERLUMA®), ofatumumab (ARZERRA®), olaratumab, oportuzumab monatox, oregovomab (OVAREX®), panitumumab (VECTIBIX®), pemtumomab (THERAGYN®), pertuzumab (OMNITARG®), pintumomab, pritumumab, ramucirumab, ranibizumab (LUCENTIS®), rilotumumab, rituximab (MABTHERA®, RITUXAN®), robatumumab, satumomab pendetide, sibrotuzumab, siltuximab, sontuzumab, tacatuzumab tetraxetan (AFP-CIDE®), taplitumomab paptox, tenatumomab, TGN1412, ticilimumab (tremelimumab), tigatuzumab, TNX-650, tositumomab (BEXXAR®), trastuzumab (HERCEPTIN®), tremelimumab, tucotuzumab celmoleukin, veltuzumab, volociximab, votumumab (HUMASPECT®), zalutumumab (HUMAX-EGFR®), and zanolimumab (HUMAX-CD4®).


In other embodiments, the multispecific molecule is administered in combination with a viral cancer therapeutic agent. Exemplary viral cancer therapeutic agents include, but not limited to, vaccinia virus (vvDD-CDSR), carcinoembryonic antigen-expressing measles virus, recombinant vaccinia virus (TK-deletion plus GM-CSF), Seneca Valley virus-001, Newcastle virus, coxsackie virus A21, GL-ONC1, EBNA1 C-terminal/LMP2 chimeric protein-expressing recombinant modified vaccinia Ankara vaccine, carcinoembryonic antigen-expressing measles virus, G207 oncolytic virus, modified vaccinia virus Ankara vaccine expressing p53, OncoVEX GM-CSF modified herpes-simplex 1 virus, fowlpox virus vaccine vector, recombinant vaccinia prostate-specific antigen vaccine, human papillomavirus 16/18 L1 virus-like particle/AS04 vaccine, MVA-EBNA1/LMP2 Inj. vaccine, quadrivalent HPV vaccine, quadrivalent human papillomavirus (types 6, 11, 16, 18) recombinant vaccine (GARDASIL®), recombinant fowlpox-CEA(6D)/TRICOM vaccine; recombinant vaccinia-CEA(6D)-TRICOM vaccine, recombinant modified vaccinia Ankara-5T4 vaccine, recombinant fowlpox-TRICOM vaccine, oncolytic herpes virus NV1020, HPV L1 VLP vaccine V504, human papillomavirus bivalent (types 16 and 18) vaccine (CERVARIX®), herpes simplex virus HF10, Ad5CMV-p53 gene, recombinant vaccinia DF3/MUC1 vaccine, recombinant vaccinia-MUC-1 vaccine, recombinant vaccinia-TRICOM vaccine, ALVAC MART-1 vaccine, replication-defective herpes simplex virus type I (HSV-1) vector expressing human Preproenkephalin (NP2), wild-type reovirus, reovirus type 3 Dearing (REOLYSIN®), oncolytic virus HSV1716, recombinant modified vaccinia Ankara (MVA)-based vaccine encoding Epstein-Barr virus target antigens, recombinant fowlpox-prostate specific antigen vaccine, recombinant vaccinia prostate-specific antigen vaccine, recombinant vaccinia-B7.1 vaccine, rAd-p53 gene, Ad5-delta24RGD, HPV vaccine 580299, JX-594 (thymidine kinase-deleted vaccinia virus plus GM-CSF), HPV-16/18 L1/AS04, fowlpox virus vaccine vector, vaccinia-tyrosinase vaccine, MEDI-517 HPV-16/18 VLP AS04 vaccine, adenoviral vector containing the thymidine kinase of herpes simplex virus TK99UN, HspE7, FP253/Fludarabine, ALVAC(2) melanoma multi-antigen therapeutic vaccine, ALVAC-hB7.1, canarypox-hIL-12 melanoma vaccine, Ad-REIC/Dkk-3, rAd-IFN SCH 721015, TIL-Ad-INFg, Ad-ISF35, and coxsackievirus A21 (CVA21, CAVATAK®).


In other embodiments, the multispecific molecule is administered in combination with a nanopharmaceutical. Exemplary cancer nanopharmaceuticals include, but not limited to, ABRAXANE® (paclitaxel bound albumin nanoparticles), CRLX101 (CPT conjugated to a linear cyclodextrin-based polymer), CRLX288 (conjugating docetaxel to the biodegradable polymer poly (lactic-co-glycolic acid)), cytarabine liposomal (liposomal Ara-C, DEPOCYT™), daunorubicin liposomal (DAUNOXOME®), doxorubicin liposomal (DOXIL®, CAELYX®), encapsulated-daunorubicin citrate liposome (DAUNOXOME®), and PEG anti-VEGF aptamer (MACUGEN®).


In some embodiments, the multispecific molecule is administered in combination with paclitaxel or a paclitaxel formulation, e.g., TAXOL®, protein-bound paclitaxel (e.g., ABRAXANE®). Exemplary paclitaxel formulations include, but are not limited to, nanoparticle albumin-bound paclitaxel (ABRAXANE®, marketed by Abraxis Bioscience), docosahexaenoic acid bound-paclitaxel (DHA-paclitaxel, Taxoprexin, marketed by Protarga), polyglutamate bound-paclitaxel (PG-paclitaxel, paclitaxel poliglumex, CT-2103, XYOTAX, marketed by Cell Therapeutic), the tumor-activated prodrug (TAP), ANG105 (Angiopep-2 bound to three molecules of paclitaxel, marketed by ImmunoGen), paclitaxel-EC-1 (paclitaxel bound to the erbB2-recognizing peptide EC-1; see Li et al., Biopolymers (2007) 87:225-230), and glucose-conjugated paclitaxel (e.g., 2′-paclitaxel methyl 2-glucopyranosyl succinate, see Liu et al., Bioorganic & Medicinal Chemistry Letters (2007) 17:617-620).


Exemplary RNAi and antisense RNA agents for treating cancer include, but not limited to, CALAA-01, siG12D LODER (Local Drug EluteR), and ALN-VSP02.


Other cancer therapeutic agents include, but not limited to, cytokines (e.g., aldesleukin (IL-2, Interleukin-2, PROLEUKIN®), alpha Interferon (IFN-alpha, Interferon alfa, INTRON® A (Interferon alfa-2b), ROFERON-A® (Interferon alfa-2a)), Epoetin alfa (PROCRIT®), filgrastim (G-CSF, Granulocyte—Colony Stimulating Factor, NEUPOGEN®), GM-CSF (Granulocyte Macrophage Colony Stimulating Factor, sargramostim, LEUKINE™) IL-11 (Interleukin-11, oprelvekin, NEUMEGA®), Interferon alfa-2b (PEG conjugate) (PEG interferon, PEG-INTRON™), and pegfilgrastim (NEULASTA™)), hormone therapy agents (e.g., aminoglutethimide (CYTADREN®), anastrozole (ARIMIDEX®), bicalutamide (CASODEX®), exemestane (AROMASIN®), fluoxymesterone (HALOTESTIN®), flutamide (EULEXIN®), fulvestrant (FASLODEX®), goserelin (ZOLADEX®), letrozole (FEMARA®), leuprolide (ELIGARD™, LUPRON®, LUPRON DEPOT®, VIADUR™), megestrol (megestrol acetate, MEGACE®), nilutamide (ANANDRON®, NILANDRON®), octreotide (octreotide acetate, SANDOSTATIN®, SANDOSTATIN LAR®), raloxifene (EVISTA®), romiplostim (NPLATE®), tamoxifen (NOVALDEX®), and toremifene (FARESTON®)), phospholipase A2 inhibitors (e.g., anagrelide (AGRYLIN®)), biologic response modifiers (e.g., BCG (THERACYS®, TICE®), and Darbepoetin alfa (ARANESP®)), target therapy agents (e.g., bortezomib (VELCADE®), dasatinib (SPRYCEL™), denileukin diftitox (ONTAK®), erlotinib (TARCEVA®), everolimus (AFINITOR®), gefitinib (IRESSA®), imatinib mesylate (STI-571, GLEEVEC™), lapatinib (TYKERB®), sorafenib (NEXAVAR®), and SU11248 (sunitinib, SUTENT®)), immunomodulatory and antiangiogenic agents (e.g., CC-5013 (lenalidomide, REVLIMID®), and thalidomide (THALOMID®)), glucocorticosteroids (e.g., cortisone (hydrocortisone, hydrocortisone sodium phosphate, hydrocortisone sodium succinate, ALA-CORT®, HYDROCORT ACETATE®, hydrocortone phosphate LANACORT®, SOLU-CORTEF®), decadron (dexamethasone, dexamethasone acetate, dexamethasone sodium phosphate, DEXASONE®, DIODEX®, HEXADROL®, MAXIDEX®), methylprednisolone (6-methylprednisolone, methylprednisolone acetate, methylprednisolone sodium succinate, DURALONE®, MEDRALONE®, MEDROL®, M-PREDNISOL®, SOLU-MEDROL®), prednisolone (DELTA-CORTEF®, ORAPRED®, PEDIAPRED®, PRELONE®), and prednisone (DELTASONE®, LIQUID PRED®, METICORTEN®, ORASONE®)), and bisphosphonates (e.g., pamidronate (AREDIA®), and zoledronic acid (ZOMETA®))


In some embodiments, the multispecific molecule is used in combination with a tyrosine kinase inhibitor (e.g., a receptor tyrosine kinase (RTK) inhibitor). Exemplary tyrosine kinase inhibitor include, but are not limited to, an epidermal growth factor (EGF) pathway inhibitor (e.g., an epidermal growth factor receptor (EGFR) inhibitor), a vascular endothelial growth factor (VEGF) pathway inhibitor (e.g., an antibody against VEGF, a VEGF trap, a vascular endothelial growth factor receptor (VEGFR) inhibitor (e.g., a VEGFR-1 inhibitor, a VEGFR-2 inhibitor, a VEGFR-3 inhibitor)), a platelet derived growth factor (PDGF) pathway inhibitor (e.g., a platelet derived growth factor receptor (PDGFR) inhibitor (e.g., a PDGFR-B inhibitor)), a RAF-1 inhibitor, a KIT inhibitor and a RET inhibitor. In some embodiments, the anti-cancer agent used in combination with the AHCM agent is selected from the group consisting of: axitinib (AG013736), bosutinib (SKI-606), cediranib (RECENTIN™, AZD2171), dasatinib (SPRYCEL®, BMS-354825), erlotinib (TARCEVA®), gefitinib (IRESSA®), imatinib (Gleevec®, CGP57148B, STI-571), lapatinib (TYKERB®, TYVERB®), lestaurtinib (CEP-701), neratinib (HKI-272), nilotinib (TASIGNA®), semaxanib (semaxinib, SU5416), sunitinib (SUTENT®, SU11248), toceranib (PALLADIA®), vandetanib (ZACTIMA®, ZD6474), vatalanib (PTK787, PTK/ZK), trastuzumab (HERCEPTIN®), bevacizumab (AVASTIN®), rituximab (RITUXAN®), cetuximab (ERBITUX®), panitumumab (VECTIBIX®), ranibizumab (Lucentis®), nilotinib (TASIGNA®), sorafenib (NEXAVAR®), alemtuzumab (CAMPATH®), gemtuzumab ozogamicin (MYLOTARG®), ENMD-2076, PCI-32765, AC220, dovitinib lactate (TKI258, CHIR-258), BIBW 2992 (TOVOK™), SGX523, PF-04217903, PF-02341066, PF-299804, BMS-777607, ABT-869, MP470, BIBF 1120 (VARGATEF®), AP24534, JNJ-26483327, MGCD265, DCC-2036, BMS-690154, CEP-11981, tivozanib (AV-951), OSI-930, MM-121, XL-184, XL-647, XL228, AEE788, AG-490, AST-6, BMS-599626, CUDC-101, PD153035, pelitinib (EKB-569), vandetanib (zactima), WZ3146, WZ4002, WZ8040, ABT-869 (linifanib), AEE788, AP24534 (ponatinib), AV-951 (tivozanib), axitinib, BAY 73-4506 (regorafenib), brivanib alaninate (BMS-582664), brivanib (BMS-540215), cediranib (AZD2171), CHIR-258 (dovitinib), CP 673451, CYC116, E7080, Ki8751, masitinib (AB1010), MGCD-265, motesanib diphosphate (AMG-706), MP-470, OSI-930, Pazopanib Hydrochloride, PD173074, nSorafenib Tosylate(Bay 43-9006), SU 5402, TSU-68 (SU6668), vatalanib, XL880 (GSK1363089, EXEL-2880). Selected tyrosine kinase inhibitors are chosen from sunitinib, erlotinib, gefitinib, or sorafenib. In one embodiment, the tyrosine kinase inhibitor is sunitinib.


In one embodiment, the multispecific molecule is administered in combination with one of more of: an anti-angiogenic agent, or a vascular targeting agent or a vascular disrupting agent. Exemplary anti-angiogenic agents include, but are not limited to, VEGF inhibitors (e.g., anti-VEGF antibodies (e.g., bevacizumab); VEGF receptor inhibitors (e.g., itraconazole); inhibitors of cell proliferation and/or migration of endothelial cells (e.g., carboxyamidotriazole, TNP-470); inhibitors of angiogenesis stimulators (e.g., suramin), among others. A vascular-targeting agent (VTA) or vascular disrupting agent (VDA) is designed to damage the vasculature (blood vessels) of cancer tumors causing central necrosis (reviewed in, e.g., Thorpe, P. E. (2004) Clin. Cancer Res. Vol. 10:415-427). VTAs can be small-molecule. Exemplary small-molecule VTAs include, but are not limited to, microtubule destabilizing drugs (e.g., combretastatin A-4 disodium phosphate (CA4P), ZD6126, AVE8062, Oxi 4503); and vadimezan (ASA404).


Immune Checkpoint Inhibitors

In other embodiments, methods described herein comprise use of an immune checkpoint inhibitor in combination with the multispecific molecule. The methods can be used in a therapeutic protocol in vivo.


In embodiments, an immune checkpoint inhibitor inhibits a checkpoint molecule. Exemplary checkpoint molecules include but are not limited to CTLA4, PD1, PD-L1, PD-L2, LAG3, CD160, 2B4, CD80, CD86, B7-H3 (CD276), B7-H4 (VTCN1), HVEM (TNFRSF14 or CD270), BTLA, KIR, MHC class I, MHC class II, GALS, VISTA, BTLA, TIGIT, LAIR1, and A2aR. See, e.g., Pardoll. Nat. Rev. Cancer 12.4 (2012):252-64, incorporated herein by reference.


In embodiments, the immune checkpoint inhibitor is a PD-1 inhibitor, e.g., an anti-PD-1 antibody such as Nivolumab, Pembrolizumab or Pidilizumab. Nivolumab (also called MDX-1106, MDX-1106-04, ONO-4538, or BMS-936558) is a fully human IgG4 monoclonal antibody that specifically inhibits PD1. See, e.g., U.S. Pat. No. 8,008,449 and WO2006/121168. Pembrolizumab (also called Lambrolizumab, MK-3475, MK03475, SCH-900475 or KEYTRUDA®; Merck) is a humanized IgG4 monoclonal antibody that binds to PD-1. See, e.g., Hamid, O. et al. (2013) New England Journal of Medicine 369 (2): 134-44, U.S. Pat. No. 8,354,509 and WO2009/114335. Pidilizumab (also called CT-011 or Cure Tech) is a humanized IgG1k monoclonal antibody that binds to PD1. See, e.g., WO2009/101611. In one embodiment, the inhibitor of PD-1 is an antibody molecule having a sequence substantially identical or similar thereto, e.g., a sequence at least 85%, 90%, 95% identical or higher to the sequence of Nivolumab, Pembrolizumab or Pidilizumab. Additional anti-PD1 antibodies, e.g., AMP 514 (Amplimmune), are described, e.g., in U.S. Pat. No. 8,609,089, US 2010028330, and/or US 20120114649.


In some embodiments, the PD-1 inhibitor is an immunoadhesin, e.g., an immunoadhesin comprising an extracellular/PD-1 binding portion of a PD-1 ligand (e.g., PD-L1 or PD-L2) that is fused to a constant region (e.g., an Fc region of an immunoglobulin). In embodiments, the PD-1 inhibitor is AMP-224 (B7-DCIg, e.g., described in WO2011/066342 and WO2010/027827), a PD-L2 Fc fusion soluble receptor that blocks the interaction between B7-H1 and PD-1.


In embodiments, the immune checkpoint inhibitor is a PD-L1 inhibitor, e.g., an antibody molecule. In some embodiments, the PD-L1 inhibitor is YW243.55.570, MPDL3280A, MEDI-4736, MSB-0010718C, or MDX-1105. In some embodiments, the anti-PD-L1 antibody is MSB0010718C (also called A09-246-2; Merck Serono), which is a monoclonal antibody that binds to PD-L1. Exemplary humanized anti-PD-L1 antibodies are described, e.g., in WO2013/079174. In one embodiment, the PD-L1 inhibitor is an anti-PD-L1 antibody, e.g., YW243.55.570. The YW243.55.570 antibody is described, e.g., in WO 2010/077634. In one embodiment, the PD-L1 inhibitor is MDX-1105 (also called BMS-936559), which is described, e.g., in WO2007/005874. In one embodiment, the PD-L1 inhibitor is MDPL3280A (Genentech/Roche), which is a human Fc-optimized IgG1 monoclonal antibody against PD-L1. See, e.g., U.S. Pat. No. 7,943,743 and U.S Publication No.: 20120039906. In one embodiment, the inhibitor of PD-L1 is an antibody molecule having a sequence substantially identical or similar thereto, e.g., a sequence at least 85%, 90%, 95% identical or higher to the sequence of YW243.55.570, MPDL3280A, MEDI-4736, MSB-0010718C, or MDX-1105.


In embodiments, the immune checkpoint inhibitor is a PD-L2 inhibitor, e.g., AMP-224 (which is a PD-L2 Fc fusion soluble receptor that blocks the interaction between PD1 and B7-H1. See, e.g., WO2010/027827 and WO2011/066342.


In one embodiment, the immune checkpoint inhibitor is a LAG-3 inhibitor, e.g., an anti LAG-3 antibody molecule. In embodiments, the anti-LAG-3 antibody is BMS-986016 (also called BMS986016; Bristol-Myers Squibb). BMS-986016 and other humanized anti-LAG-3 antibodies are described, e.g., in US 2011/0150892, WO2010/019570, and WO2014/008218.


In embodiments, the immune checkpoint inhibitor is a TIM-3 inhibitor, e.g., anti-TIM3 antibody molecule, e.g., described in U.S. Pat. No. 8,552,156, WO 2011/155607, EP 2581113 and U.S Publication No.: 2014/044728.


In embodiments, the immune checkpoint inhibitor is a CTLA-4 inhibitor, e.g., anti-CTLA-4 antibody molecule. Exemplary anti-CTLA4 antibodies include Tremelimumab (IgG2 monoclonal antibody from Pfizer, formerly known as ticilimumab, CP-675,206); and Ipilimumab (also called MDX-010, CAS No. 477202-00-9). Other exemplary anti-CTLA-4 antibodies are described, e.g., in U.S. Pat. No. 5,811,097.


EXAMPLES

The following examples are intended to be illustrative, and are not meant in any way to be limiting.


Methods

1. Construction of the Plasmids of NanoBiT Constructs.


The DNA encoding the protein sequences was optimized for expression in Cricetulus griseus, synthesized, and cloned into the pcDNA3.4-TOPO (Life Technologies A14697) using Gateway cloning. The nucleic acid sequences used are shown in Table 1.









TABLE 1







Nucleic acid sequences of ORFs.









SEQ




ID NO
Description
Nucleic Acid Sequence





SEQ
α-amyloid
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
β heavy-
CAGGATCTACAGGACAGGTGCAGCTGGTTGAATCTGGTGGCGGAG


NO: 1
LgBiT
TGGTGCAGCCTGGCAGATCTCTGAGACTGTCTTGTGCCGCCTCTGG




CTTCGCCTTCTCTTCTTACGGCATGCACTGGGTCCGACAGGCCCCT




GGAAAAGGACTGGAATGGGTCGCCGTGATTTGGTTCGACGGCACC




AAGAAGTACTACACCGACTCCGTGAAGGGCAGATTCACCATCAGC




CGGGACAACTCCAAGAACACCCTGTACCTGCAGATGAATACCCTG




AGAGCCGAGGACACCGCCGTGTACTACTGTGCCAGAGATAGAGGC




ATCGGCGCTCGGAGAGGCCCTTACTATATGGATGTGTGGGGCAAG




GGCACCACCGTGACAGTGTCCTCTGCTTCTACCAAGGGACCCAGC




GTTTTCCCTCTGGCTCCATCCTCTAAGTCCACCTCTGGTGGAACCG




CTGCTCTGGGCTGTCTGGTCAAGGATTACTTCCCTGAGCCTGTGAC




CGTGTCCTGGAACTCTGGTGCTCTGACATCCGGCGTGCACACCTTT




CCAGCTGTGCTGCAGTCCTCTGGCCTGTACTCTCTGTCCTCTGTCGT




GACCGTGCCTTCTAGCTCTCTGGGCACCCAGACCTACATCTGCAAC




GTGAACCACAAGCCTTCCAACACCAAAGTGGACAAGAGAGTGGA




ACCCAAGTCCTGCGGATCTTCTGGCGGCGGAGGAAGCGGAGGCGG




AGGATCTAGCGGCGGAGTGTTCACCCTGGAAGATTTCGTCGGCGA




TTGGGAGCAGACCGCCGCCTATAATCTGGACCAGGTTCTGGAACA




AGGCGGCGTGTCCTCTCTGCTGCAGAATCTGGCTGTGTCTGTGACC




CCTATCCAGAGAATCGTGCGCTCTGGCGAGAACGCCCTGAAGATC




GACATCCACGTGATCATCCCTTACGAGGGCCTGTCTGCCGATCAGA




TGGCTCAGATCGAAGAGGTGTTCAAGGTGGTGTACCCCGTGGACG




ACCACCACTTCAAAGTGATCCTGCCTTACGGCACCCTGGTCATCGA




TGGCGTGACCCCAAACATGCTGAACTACTTCGGCAGACCCTACGA




GGGAATCGCCGTGTTCGATGGCAAGAAAATCACCGTGACCGGCAC




ACTGTGGAACGGCAACAAGATCATCGACGAGCGGCTGATCACCCC




TGACGGCTCTATGCTGTTCAGAGTGACCATCAACTCCTAATGA





SEQ
α-amyloid
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
β light-
CAGGCTCTACCGGCGACATCCAGATGACCCAGTCTCCATCCTCTCT


NO: 2
SmBiT
GTCTGCCTCTGTGGGCGACAGAGTGACCATCACCTGTAGAGCCAG




CCAGTCCATCTCCTCCTACCTGAACTGGTATCAGCAGAAGCCTGGC




AAGGCTCCCAAGCTGCTGATCTACGCTGCTAGCTCTCTGCAGTCTG




GCGTGCCCTCTAGATTTTCCGGCTCTGGCTCTGGCACCGACTTCAC




CCTGACAATCAGTTCCCTGCAGCCTGAGGACTTCGCCACCTACTAC




TGCCAGCAGTCCTACAGCACACCCTTGACCTTTGGCGGAGGCACC




AAGGTGGAAATCAAGAGAACCGTGGCCGCTCCTTCCGTGTTCATC




TTCCCACCATCCGACGAACAGCTGAAGTCCGGCACAGCTTCTGTCG




TGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGCAGT




GGAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGTCTG




TGACCGAGCAGGACTCCAAGGACTCTACCTACAGCCTGTCCTCCA




CACTGACCCTGTCTAAGGCCGACTACGAGAAGCACAAGGTGTACG




CCTGTGAAGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAAGT




CTTTCAACAGAGGCGAGTGCGGATCTTCTGGTGGCGGAGGAAGCG




GAGGCGGAGGATCATCTGGCGGAGTGACCGGCTACAGACTGTTCG




AAGAGATCCTGTAATGA





SEQ
α-amyloid
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
β light
CAGGCTCTACCGGCGACATCCAGATGACCCAGTCTCCATCCTCTCT


NO: 3

GTCTGCCTCTGTGGGCGACAGAGTGACCATCACCTGTAGAGCCAG




CCAGTCCATCTCCTCCTACCTGAACTGGTATCAGCAGAAGCCTGGC




AAGGCTCCCAAGCTGCTGATCTACGCTGCTAGCTCTCTGCAGTCTG




GCGTGCCCTCTAGATTTTCCGGCTCTGGCTCTGGCACCGACTTCAC




CCTGACAATCAGTTCCCTGCAGCCTGAGGACTTCGCCACCTACTAC




TGCCAGCAGTCCTACAGCACACCCTTGACCTTTGGCGGAGGCACC




AAGGTGGAAATCAAGAGAACCGTGGCCGCTCCTTCCGTGTTCATC




TTCCCACCATCCGACGAACAGCTGAAGTCCGGCACAGCTTCTGTCG




TGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGCAGT




GGAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGTCTG




TGACCGAGCAGGACTCCAAGGACTCTACCTACAGCCTGTCCTCCA




CACTGACCCTGTCTAAGGCCGACTACGAGAAGCACAAGGTGTACG




CCTGTGAAGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAAGT




CTTTCAACAGAGGCGAGTGCTAATGA





SEQ
α-
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
Clostridium
CAGGATCTACAGGCGAAGTGCAGTTGGTGCAGTCTGGCGCCGAAG


NO: 4
difficile
TGAAGAAGTCCGGCGAGTCCCTGAAGATCTCCTGCAAAGGCTCCG



toxin B
GCTACTCCTTCACCTCTTACTGGATCGGCTGGGTCCGACAGATGCC



heavy-
TGGCAAAGGACTGGAATGGATGGGCATCTTCTACCCCGGCGACTC



LgBIT
CTCTACCAGATACTCCCCTAGCTTTCAGGGCCAAGTGACCATCTCC




GCCGACAAGTCTGTGAACACCGCCTACCTGCAGTGGTCCTCTCTGA




AGGCCTCTGACACCGCCATGTACTACTGCGCCAGAAGAAGAAACT




GGGGCAACGCCTTCGATATCTGGGGCCAGGGAACAATGGTCACCG




TGTCCTCTGCTTCCACCAAGGGACCTTCCGTGTTTCCTCTGGCTCCT




TCCAGCAAGTCTACCTCTGGTGGAACCGCTGCTCTGGGCTGCCTGG




TCAAGGATTACTTTCCTGAGCCTGTGACCGTGTCTTGGAACTCTGG




TGCTCTGACCTCCGGCGTGCACACATTTCCAGCTGTGCTGCAGTCC




TCCGGCCTGTACTCTCTGTCCTCTGTCGTGACCGTGCCTTCTAGCTC




TCTGGGCACCCAGACCTACATCTGCAACGTGAACCACAAGCCTTC




CAACACCAAGGTGGACAAGAGAGTGGAACCCAAGTCTTGCGGATC




TTCCGGTGGCGGAGGATCTGGCGGAGGTGGAAGTAGTGGCGGAGT




GTTCACCCTGGAAGATTTCGTCGGCGATTGGGAGCAGACCGCCGC




CTATAATCTGGACCAGGTTCTGGAACAAGGCGGCGTCAGCTCTCT




GCTGCAGAATCTGGCTGTGTCTGTGACCCCTATCCAGAGAATCGTG




CGCTCTGGCGAGAACGCTCTGAAGATCGACATCCACGTGATCATC




CCTTACGAGGGCCTGTCTGCCGATCAGATGGCTCAGATCGAAGAG




GTGTTCAAGGTGGTGTACCCCGTGGACGACCACCACTTCAAAGTG




ATCCTGCCTTACGGCACCCTGGTCATCGATGGCGTGACCCCAAACA




TGCTGAACTACTTCGGCAGACCCTACGAGGGAATCGCCGTGTTCG




ACGGCAAGAAAATCACCGTGACCGGCACACTGTGGAACGGCAAC




AAGATCATCGACGAGCGGCTGATCACCCCTGACGGCTCTATGCTG




TTCCGCGTGACCATCAACTCCTAATGA





SEQ
α-
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
Clostridium
CAGGATCTACAGGCGAGATCGTGCTGACCCAGTCTCCTGGCACAT


NO: 5
difficile
TGTCTCTGAGTCCTGGCGAGAGAGCTACCCTGTCTTGCAGAGCTTC



toxin B
CCAGTCCGTGTCCTCTTCCTACCTGGCCTGGTATCAGCAGAAGCCT



light-
GGACAGGCTCCCAGACTGCTGATCTACGGCGCCTCTTCTAGAGCC



SmBiT
ACAGGCATCCCTGACAGATTCTCCGGCTCTGGCTCTGGCACCGACT




TCACCCTGACCATCTCTAGACTGGAACCCGAGGACTTCGCCGTGTA




CTACTGCCAGCAGTATGGCTCCTCTACCTGGACCTTTGGACAGGGC




ACCAAGGTGGAAATCAAGAGAACCGTGGCCGCTCCTTCCGTGTTC




ATCTTCCCACCATCTGACGAGCAGCTGAAGTCCGGCACAGCTTCTG




TCGTGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGC




AGTGGAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGT




CTGTGACCGAGCAGGACTCCAAGGACTCTACCTACAGCCTGTCCTC




CACACTGACCCTGTCTAAGGCCGACTACGAGAAGCACAAGGTGTA




CGCCTGTGAAGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAA




GTCTTTCAACAGAGGCGAGTGCGGATCTTCTGGTGGCGGAGGATC




TGGCGGAGGCGGATCTAGTGGCGGAGTGACCGGCTACAGACTGTT




CGAAGAGATCCTGTAATGA





SEQ
α-
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
Clostridium
CAGGATCTACAGGCGAGATCGTGCTGACCCAGTCTCCTGGCACAT


NO: 6
difficile
TGTCTCTGAGTCCTGGCGAGAGAGCTACCCTGTCTTGCAGAGCTTC



toxin B
CCAGTCCGTGTCCTCTTCCTACCTGGCCTGGTATCAGCAGAAGCCT



light
GGACAGGCTCCCAGACTGCTGATCTACGGCGCCTCTTCTAGAGCC




ACAGGCATCCCTGACAGATTCTCCGGCTCTGGCTCTGGCACCGACT




TCACCCTGACCATCTCTAGACTGGAACCCGAGGACTTCGCCGTGTA




CTACTGCCAGCAGTATGGCTCCTCTACCTGGACCTTTGGACAGGGC




ACCAAGGTGGAAATCAAGAGAACCGTGGCCGCTCCTTCCGTGTTC




ATCTTCCCACCATCTGACGAGCAGCTGAAGTCCGGCACAGCTTCTG




TCGTGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGC




AGTGGAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGT




CTGTGACCGAGCAGGACTCCAAGGACTCTACCTACAGCCTGTCCTC




CACACTGACCCTGTCTAAGGCCGACTACGAGAAGCACAAGGTGTA




CGCCTGTGAAGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAA




GTCTTTCAACAGAGGCGAGTGCTAATGA





SEQ
α-
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
connective
CAGGATCTACAGGCGAAGGCCAGTTGGTTCAGTCTGGCGGAGGAC


NO: 7
tissue
TTGTTCACCCTGGCGGATCTCTGAGACTGTCTTGTGCTGGCTCTGG



growth
CTTCACCTTCTCCAGCTACGGCATGCACTGGGTTCGACAGGCCCCT



factor
GGAAAAGGACTGGAATGGGTGTCCGGAATCGGCACCGGCGGAGG



heavy-
CACCTATTCTACCGATTCTGTGAAGGGCAGATTCACCATCAGCCGG



LgBIT
GACAACGCCAAGAACTCCCTGTACCTGCAGATGAACAGCCTGAGA




GCCGAGGACATGGCCGTGTACTACTGTGCCAGAGGCGATTACTAC




GGCTCCGGCTCTTTCTTCGACTGTTGGGGACAGGGCACACTGGTCA




CCGTGTCCTCTGCTTCTACCAAGGGACCCTCTGTGTTCCCTCTGGCT




CCTTCCAGCAAGTCTACCTCTGGTGGAACCGCTGCTCTGGGCTGCC




TGGTCAAGGATTACTTTCCTGAGCCTGTGACCGTGTCTTGGAACTC




TGGTGCTCTGACCTCCGGCGTGCACACATTTCCAGCTGTGCTGCAG




TCCTCCGGCCTGTACTCTCTGTCCTCTGTCGTGACCGTGCCTTCTAG




CTCTCTGGGCACCCAGACCTACATCTGCAACGTGAACCACAAGCC




TTCCAACACCAAGGTGGACAAGAGAGTGGAACCCAAGTCTTGCGG




ATCTTCTGGCGGCGGAGGAAGCGGAGGCGGAGGATCTAGTGGCGG




AGTGTTTACCCTGGAAGATTTCGTCGGCGATTGGGAGCAGACCGC




CGCCTATAATCTGGACCAGGTTCTGGAACAAGGCGGCGTCAGCTC




TCTGCTGCAGAATCTGGCTGTGTCTGTGACCCCTATCCAGAGAATC




GTGCGCTCTGGCGAGAACGCCCTGAAGATCGACATCCACGTGATC




ATCCCTTACGAGGGCCTGTCTGCCGATCAGATGGCTCAGATCGAA




GAGGTGTTCAAGGTGGTGTACCCCGTGGACGACCACCACTTCAAA




GTGATCCTGCCTTACGGCACCCTGGTCATCGATGGCGTGACCCCAA




ACATGCTGAACTACTTCGGCAGACCCTACGAGGGAATCGCCGTGT




TCGACGGCAAGAAAATCACCGTGACCGGCACACTGTGGAACGGCA




ACAAGATCATCGACGAGCGGCTGATCACCCCTGACGGCTCCATGC




TGTTTAGAGTGACCATCAACTCCTAATGA





SEQ
α-
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
connective
CAGGCTCTACCGGCGACATCCAGATGACCCAGTCTCCATCCTCTCT


NO: 8
tissue
GTCTGCCTCTGTGGGCGACAGAGTGACCATCACCTGTAGAGCCTCT



growth
CAGGGCATCTCTAGCTGGCTGGCCTGGTATCAGCAGAAGCCTGAG



factor light
AAGGCCCCTAAGAGCCTGATCTACGCTGCCAGTTCTCTGCAGTCTG



-SmBiT
GCGTGCCCTCTAGATTCTCTGGCTCTGGATCTGGCACCGACTTCAC




CCTGACAATCTCTAGCCTGCAGCCTGAGGACTTCGCCACCTACTAC




TGCCAGCAGTACAACAGCTACCCTCCTACCTTTGGCCAGGGCACC




AAGCTGGAAATCAAGAGAACCGTGGCCGCTCCTTCCGTGTTCATCT




TCCCACCATCTGACGAGCAGCTGAAGTCCGGCACAGCTTCTGTCGT




GTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGCAGTG




GAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGTCTGT




GACCGAGCAGGACTCCAAGGACTCTACCTACAGCCTGTCCTCCAC




ACTGACCCTGTCTAAGGCCGACTACGAGAAGCACAAGGTGTACGC




CTGTGAAGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAAGTC




TTTCAACAGAGGCGAGTGCGGATCTTCTGGTGGCGGAGGATCTGG




CGGAGGTGGAAGTAGTGGCGGCGTGACCGGCTACAGACTGTTCGA




AGAGATCCTGTAATGA





SEQ
α-
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
connective
CAGGCTCTACCGGCGACATCCAGATGACCCAGTCTCCATCCTCTCT


NO: 9
tissue
GTCTGCCTCTGTGGGCGACAGAGTGACCATCACCTGTAGAGCCTCT



growth
CAGGGCATCTCTAGCTGGCTGGCCTGGTATCAGCAGAAGCCTGAG



factor light
AAGGCCCCTAAGAGCCTGATCTACGCTGCCAGTTCTCTGCAGTCTG




GCGTGCCCTCTAGATTCTCTGGCTCTGGATCTGGCACCGACTTCAC




CCTGACAATCTCTAGCCTGCAGCCTGAGGACTTCGCCACCTACTAC




TGCCAGCAGTACAACAGCTACCCTCCTACCTTTGGCCAGGGCACC




AAGCTGGAAATCAAGAGAACCGTGGCCGCTCCTTCCGTGTTCATCT




TCCCACCATCTGACGAGCAGCTGAAGTCCGGCACAGCTTCTGTCGT




GTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGCAGTG




GAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGTCTGT




GACCGAGCAGGACTCCAAGGACTCTACCTACAGCCTGTCCTCCAC




ACTGACCCTGTCTAAGGCCGACTACGAGAAGCACAAGGTGTACGC




CTGTGAAGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAAGTC




TTTCAACAGAGGCGAGTGCTAATGA





SEQ
α-CSF2
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
heavy-
CAGGATCTACAGGACAGGTGCAGTTGGTGCAGTCTGGCGCCGAAG


NO:
LgBiT
TGAAGAAACCTGGCGCTTCTGTGAAGGTGTCCTGCAAGGCCTCTG


10

GCTACTCCTTCACCAACTACTACATCCACTGGGTCCGACAGGCCCC




TGGACAGAGATTGGAGTGGATGGGCTGGATCAACGCCGGCAACGG




CAACACCAAGTACTCCCAGAAATTCCAGGGCAGAGTGACCATCAC




CAGAGACACCTCTGCCTCCACCGCCTACATGGAACTGTCCAGCCTG




AGATCTGAGGACACCGCCGTGTACTACTGCGTGCGGAGACAGCGG




TTCCCCTACTACTTTGATTATTGGGGCCAGGGCACCCTGGTCACCG




TGTCCTCTGCTTCTACAAAGGGCCCCTCTGTGTTCCCTCTGGCTCCT




TCCTCTAAATCCACCTCTGGCGGAACAGCTGCTCTGGGCTGTCTGG




TCAAGGACTACTTTCCTGAGCCTGTGACCGTGTCTTGGAACTCTGG




TGCTCTGACATCCGGCGTGCACACCTTTCCAGCTGTGCTGCAGTCC




TCTGGCCTGTACTCTCTGTCCTCTGTCGTGACCGTGCCTTCTAGCTC




TCTGGGCACCCAGACCTACATCTGCAACGTGAACCACAAGCCTTCT




AACACCAAGGTGGACAAGAGAGTGGAACCCAAGTCTTGCGGATCT




TCTGGTGGCGGAGGATCTGGCGGAGGCGGATCTAGTGGCGGAGTG




TTCACCCTGGAAGATTTCGTCGGCGATTGGGAGCAGACCGCCGCC




TATAATCTGGACCAGGTTCTGGAACAAGGCGGGGTGTCCTCTCTGC




TGCAGAATCTGGCTGTGTCTGTGACCCCTATCCAGAGAATCGTGCG




CTCTGGCGAGAACGCCCTGAAGATCGACATCCACGTGATCATCCC




TTACGAGGGCCTGTCTGCCGATCAGATGGCTCAGATCGAAGAGGT




GTTCAAGGTGGTGTACCCCGTGGACGACCACCACTTCAAAGTGAT




CCTGCCTTACGGCACCCTCGTGATCGATGGCGTGACCCCAAACATG




CTGAACTACTTCGGCAGACCCTACGAGGGAATCGCCGTGTTCGAC




GGCAAGAAAATCACCGTGACCGGCACACTGTGGAACGGAAACAA




GATCATCGACGAGCGGCTGATCACCCCTGACGGCTCTATGCTGTTT




AGAGTGACAATCAACTCCTAATGA





SEQ
α-CSF2
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
light-
CAGGATCTACAGGCGAGATCGTGCTGACCCAGTCTCCTGCCACATT


NO:
SmBiT
GTCTGTGTCTCCCGGCGAGAGAGCTACCCTGTCTTGTAGAGCTTCT


11

CAGTCCGTGGGCACCAACGTGGCCTGGTATCAGCAGAAACCTGGA




CAGGCCCCTCGGGTGCTGATCTACTCTACCTCTTCTAGAGCCACCG




GCATCACCGACAGATTCTCTGGCTCTGGATCTGGCACCGACTTCAC




CCTGACCATCTCCAGACTGGAACCTGAGGACTTCGCCGTGTACTAC




TGCCAGCAGTTCAACAAGTCCCCTCTGACCTTTGGCGGAGGCACC




AAGGTGGAAATCAAGAGAACCGTGGCCGCTCCTTCCGTGTTCATC




TTCCCACCATCTGACGAGCAGCTGAAGTCCGGCACAGCTTCTGTCG




TGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGCAGT




GGAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGTCTG




TGACCGAGCAGGACTCCAAGGACTCTACCTACAGCCTGTCCTCCA




CACTGACCCTGTCTAAGGCCGACTACGAGAAGCACAAGGTGTACG




CCTGTGAAGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAAGT




CTTTCAACAGAGGCGAGTGCGGATCTTCTGGTGGCGGAGGAAGCG




GAGGCGGAGGATCATCTGGCGGAGTGACCGGCTACAGACTGTTCG




AAGAGATCCTGTAATGA





SEQ
α-CSF2
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
light
CAGGATCTACAGGCGAGATCGTGCTGACCCAGTCTCCTGCCACATT


NO:

GTCTGTGTCTCCCGGCGAGAGAGCTACCCTGTCTTGTAGAGCTTCT


12

CAGTCCGTGGGCACCAACGTGGCCTGGTATCAGCAGAAACCTGGA




CAGGCCCCTCGGGTGCTGATCTACTCTACCTCTTCTAGAGCCACCG




GCATCACCGACAGATTCTCTGGCTCTGGATCTGGCACCGACTTCAC




CCTGACCATCTCCAGACTGGAACCTGAGGACTTCGCCGTGTACTAC




TGCCAGCAGTTCAACAAGTCCCCTCTGACCTTTGGCGGAGGCACC




AAGGTGGAAATCAAGAGAACCGTGGCCGCTCCTTCCGTGTTCATC




TTCCCACCATCTGACGAGCAGCTGAAGTCCGGCACAGCTTCTGTCG




TGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGCAGT




GGAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGTCTG




TGACCGAGCAGGACTCCAAGGACTCTACCTACAGCCTGTCCTCCA




CACTGACCCTGTCTAAGGCCGACTACGAGAAGCACAAGGTGTACG




CCTGTGAAGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAAGT




CTTTCAACAGAGGCGAGTGCTAATGA





SEQ
α-CTLA4
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


ID
heavy-
CAGGATCTACAGGACAGGTGCAGCTGGTGGAATCTGGTGGCGGAG


NO:
LgBiT
TTGTGCAGCCTGGCAGATCCCTGAGACTGTCTTGTGCCGCCTCCGG


13

CTTCACCTTCTCCAGCTACACCATGCACTGGGTCCGACAGGCCCCT




GGCAAAGGATTGGAGTGGGTCACCTTCATCTCTTACGACGGCAAC




AACAAGTACTACGCCGACTCCGTGAAGGGCAGATTCACCATCTCT




CGGGACAACTCCAAGAACACCCTGTACCTGCAGATGAACTCCCTG




AGAGCCGAGGACACCGCCATCTACTACTGTGCTAGAACCGGCTGG




CTGGGCCCCTTTGATTATTGGGGACAGGGCACCCTGGTCACCGTGT




CCTCTGCTTCTACCAAGGGACCCAGCGTGTTCCCTCTGGCTCCTTC




CAGCAAGTCTACCTCTGGCGGAACAGCTGCTCTGGGCTGCCTGGTC




AAGGACTACTTTCCTGAGCCTGTGACCGTGTCTTGGAACTCTGGCG




CTCTGACATCCGGCGTGCACACATTTCCAGCTGTGCTGCAGTCCTC




CGGCCTGTACTCTCTGTCCTCTGTCGTGACCGTGCCTTCCAGCTCTC




TGGGAACCCAGACCTACATCTGCAATGTGAACCACAAGCCTTCCA




ACACCAAGGTGGACAAGAGAGTGGAACCCAAGTCCTGCGGATCTT




CTGGCGGCGGAGGATCTGGCGGAGGTGGTAGTTCAGGCGGAGTGT




TCACCCTGGAAGATTTCGTCGGCGACTGGGAGCAGACCGCCGCCT




ATAATCTGGACCAGGTGCTGGAACAAGGCGGCGTTAGTTCCCTGC




TGCAGAACCTGGCTGTGTCTGTGACCCCTATCCAGAGAATCGTGCG




GAGCGGCGAGAACGCCCTGAAGATCGATATCCACGTGATCATCCC




TTACGAGGGCCTGAGCGCCGATCAGATGGCTCAGATCGAAGAGGT




GTTCAAGGTGGTGTACCCCGTGGACGACCACCACTTCAAAGTGAT




CCTGCCTTACGGCACCCTCGTGATCGATGGCGTGACCCCAAACATG




CTGAACTACTTCGGCAGACCCTACGAGGGAATCGCCGTGTTCGAC




GGCAAGAAAATCACCGTGACCGGCACACTGTGGAATGGCAACAA




GATCATCGACGAGCGGCTGATCACCCCTGACGGCTCCATGCTGTTC




AGAGTGACCATCAACAGCTGATGA





SEQ
α-CTLA4
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


NO:
light-
CAGGATCTACAGGCGAGATCGTGCTGACCCAGTCTCCTGGCACAT


14
SmBiT
TGTCTCTGAGTCCTGGCGAGAGAGCTACCCTGTCTTGCAGAGCTTC


ID

CCAGTCCGTGGGATCTTCCTACCTGGCCTGGTATCAGCAGAAGCCT




GGACAGGCTCCCAGACTGCTGATCTACGGCGCCTTTTCTAGAGCCA




CAGGCATCCCTGACAGATTCTCCGGCTCTGGCTCTGGCACCGACTT




CACCCTGACCATCTCTAGACTGGAACCCGAGGACTTCGCCGTGTAC




TACTGCCAGCAGTATGGCTCCTCTCCTTGGACCTTTGGACAGGGCA




CCAAGGTGGAAATCAAGAGAACCGTGGCCGCTCCTTCCGTGTTCA




TCTTCCCACCATCTGACGAGCAGCTGAAGTCCGGCACAGCTTCTGT




CGTGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGCA




GTGGAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGTC




TGTGACCGAGCAGGACTCCAAGGACTCTACCTACAGCCTGTCCTCC




ACACTGACCCTGTCTAAGGCCGACTACGAGAAGCACAAGGTGTAC




GCCTGTGAAGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAAG




TCTTTCAACAGAGGCGAGTGCGGATCTTCTGGTGGCGGAGGATCT




GGCGGAGGCGGATCTAGTGGCGGAGTGACCGGCTACAGACTGTTC




GAAGAGATCCTGTAATGA





SEQ
α-CTLA4
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


ID
light
CAGGATCTACAGGCGAGATCGTGCTGACCCAGTCTCCTGGCACAC


NO:

TGTCACTGTCTCCAGGCGAGAGAGCTACCCTGTCCTGTAGAGCCTC


15

TCAGTCCGTGGGCTCCTCTTACCTGGCTTGGTATCAGCAGAAGCCC




GGCCAGGCTCCTAGACTGTTGATCTACGGCGCCTTCTCCAGAGCCA




CAGGCATCCCTGATAGATTCTCCGGCTCTGGCTCTGGCACCGACTT




CACCCTGACCATCTCCAGACTGGAACCCGAGGACTTCGCCGTGTA




CTACTGTCAGCAGTACGGCTCCTCTCCTTGGACCTTTGGCCAGGGC




ACCAAGGTGGAAATCAAGCGGACAGTGGCCGCTCCTTCCGTGTTC




ATCTTCCCACCTTCCGACGAGCAGCTGAAGTCCGGCACAGCTTCTG




TCGTGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGC




AGTGGAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGT




CTGTGACCGAGCAGGACTCCAAGGACAGCACCTACAGCCTGTCCT




CCACACTGACCCTGTCCAAGGCCGACTACGAGAAGCACAAGGTGT




ACGCCTGCGAAGTGACCCATCAGGGCCTGTCTAGCCCTGTGACCA




AGTCTTTCAACCGGGGCGAGTGCTGATGA





SEQ
α-IFN
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
heavy-
CAGGATCTACAGGCGAAGTGCAGTTGGTGCAGTCTGGCGCCGAAG


NO:
LgBiT
TGAAGAAGCCTGGCGAGTCCCTGAAGATCTCCTGCAAAGGCTCCG


16

GCTACATCTTCACCAACTACTGGATCGCCTGGGTCCGACAGATGCC




TGGCAAAGGCCTGGAATCCATGGGCATCATCTACCCCGGCGACTC




CGACATCAGATACAGCCCATCTTTCCAGGGCCAAGTGACCATCTCC




GCCGACAAGTCTATCACCACCGCCTACCTGCAGTGGTCCTCTCTGA




AGGCCTCTGACACCGCCATGTACTACTGCGCCAGACACGACATCG




AGGGCTTCGATTATTGGGGCAGAGGCACCCTGGTCACCGTGTCCTC




TGCTTCTACAAAGGGCCCCTCTGTGTTCCCTCTGGCTCCTTCCTCTA




AATCCACCTCTGGCGGAACCGCTGCTCTGGGCTGTCTGGTCAAGG




ATTACTTCCCTGAGCCTGTGACCGTGTCTTGGAACTCTGGTGCTCT




GACATCCGGCGTGCACACCTTTCCAGCTGTGCTGCAGTCCTCTGGC




CTGTACTCTCTGTCCTCTGTCGTGACCGTGCCTTCTAGCTCTCTGGG




CACCCAGACCTACATCTGCAACGTGAACCACAAGCCTTCCAACAC




CAAGGTGGACAAGAGAGTGGAACCCAAGTCTTGCGGATCTTCTGG




TGGCGGAGGATCTGGCGGAGGCGGATCTAGTGGCGGAGTGTTCAC




CCTGGAAGATTTCGTCGGCGATTGGGAGCAGACCGCCGCCTATAA




TCTGGACCAGGTTCTGGAACAAGGCGGCGTCAGCTCTCTGCTGCA




GAATCTGGCTGTGTCTGTGACCCCTATCCAGAGAATCGTGCGCTCT




GGCGAGAACGCTCTGAAGATCGACATCCACGTGATCATCCCTTAC




GAGGGCCTGTCTGCCGATCAGATGGCTCAGATCGAAGAGGTGTTC




AAGGTGGTGTACCCCGTGGACGACCACCACTTCAAAGTGATCCTG




CCTTACGGCACCCTCGTGATCGATGGCGTGACCCCAAACATGCTG




AACTACTTCGGCAGACCCTACGAGGGAATCGCCGTGTTCGACGGC




AAGAAAATCACCGTGACCGGCACACTGTGGAACGGCAACAAGATC




ATCGACGAGCGGCTGATCACCCCTGACGGCTCTATGCTGTTCCGCG




TGACCATCAACTCCTAATGA





SEQ
α-IFN light
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
-SmBiT
CAGGATCTACAGGCGAGATCGTGCTGACCCAGTCTCCTGGCACAT


NO:

TGTCTCTGAGTCCTGGCGAGAGAGCTACCCTGTCTTGCAGAGCTTC


17

CCAGTCCGTGTCCTCTAGCTTCTTCGCCTGGTATCAGCAGAAGCCC




GGACAGGCTCCTAGACTGCTGATCTACGGCGCCTCTTCTAGAGCCA




CAGGCATCCCTGATAGACTGTCCGGCTCTGGCTCTGGCACCGACTT




TACCCTGACCATCACCAGACTGGAACCCGAGGACTTCGCCGTGTA




CTACTGCCAGCAGTACGACTCCTCTGCCATCACCTTTGGCCAGGGC




ACAAGACTGGAAATCAAGAGAACCGTGGCCGCTCCTTCCGTGTTC




ATCTTCCCACCATCTGACGAGCAGCTGAAGTCCGGCACAGCTTCTG




TCGTGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGC




AGTGGAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGT




CTGTGACCGAGCAGGACTCCAAGGACTCTACCTACAGCCTGTCCTC




CACACTGACCCTGTCTAAGGCCGACTACGAGAAGCACAAGGTGTA




CGCCTGTGAAGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAA




GTCTTTCAACAGAGGCGAGTGCGGATCTTCTGGTGGCGGAGGATC




TGGCGGAGGCGGATCTAGTGGCGGAGTGACCGGCTACAGACTGTT




CGAAGAGATCCTGTAATGA





SEQ
α-IFN light
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID

CAGGATCTACAGGCGAGATCGTGCTGACCCAGTCTCCTGGCACAT


NO:

TGTCTCTGAGTCCTGGCGAGAGAGCTACCCTGTCTTGCAGAGCTTC


18

CCAGTCCGTGTCCTCTAGCTTCTTCGCCTGGTATCAGCAGAAGCCC




GGACAGGCTCCTAGACTGCTGATCTACGGCGCCTCTTCTAGAGCCA




CAGGCATCCCTGATAGACTGTCCGGCTCTGGCTCTGGCACCGACTT




TACCCTGACCATCACCAGACTGGAACCCGAGGACTTCGCCGTGTA




CTACTGCCAGCAGTACGACTCCTCTGCCATCACCTTTGGCCAGGGC




ACAAGACTGGAAATCAAGAGAACCGTGGCCGCTCCTTCCGTGTTC




ATCTTCCCACCATCTGACGAGCAGCTGAAGTCCGGCACAGCTTCTG




TCGTGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGC




AGTGGAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGT




CTGTGACCGAGCAGGACTCCAAGGACTCTACCTACAGCCTGTCCTC




CACACTGACCCTGTCTAAGGCCGACTACGAGAAGCACAAGGTGTA




CGCCTGTGAAGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAA




GTCTTTCAACAGAGGCGAGTGCTAATGA





SEQ
α-IFNa
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
heavy-
CAGGATCTACAGGACAGGTGCAGTTGGTGCAGTCTGGCGCCGAAG


NO:
LgBiT
TGAAGAAACCTGGCGCTTCTGTGAAGGTGTCCTGCAAGGCCTCTG


19

GCTACACCTTTACCAGCTACTCCATCTCCTGGGTCCGACAGGCTCC




TGGACAAGGATTGGAGTGGATGGGCTGGATCTCCGTGTACAACGG




CAACACCAACTACGCCCAGAAATTCCAGGGCAGAGTGACCATGAC




CACCGACACCTCTACCTCCACCGCCTACCTGGAACTGAGATCCCTG




AGATCTGACGACACCGCCGTGTACTACTGCGCCAGAGATCCTATC




GCTGCTGGCTATTGGGGACAGGGCACACTGGTTACCGTGTCCTCTG




CTTCTACCAAGGGACCCTCTGTGTTCCCTCTGGCTCCTTCCAGCAA




GTCTACCTCTGGTGGAACCGCTGCTCTGGGCTGTCTGGTCAAGGAT




TACTTCCCTGAGCCTGTGACCGTGTCTTGGAACTCTGGTGCTCTGA




CCTCCGGCGTGCACACATTTCCAGCTGTGCTGCAGTCCTCCGGCCT




GTACTCTCTGTCCTCTGTCGTGACCGTGCCTTCTAGCTCTCTGGGCA




CCCAGACCTACATCTGCAACGTGAACCACAAGCCTTCCAACACCA




AGGTGGACAAGAGAGTGGAACCCAAGTCTTGCGGATCTTCTGGTG




GCGGAGGATCTGGCGGAGGTGGAAGTAGTGGCGGAGTGTTCACCC




TGGAAGATTTCGTCGGCGATTGGGAGCAGACCGCCGCCTATAATC




TGGACCAGGTTCTGGAACAAGGCGGCGTCAGCTCTCTGCTGCAGA




ATCTGGCTGTGTCTGTGACCCCTATCCAGAGAATTGTGCGCTCTGG




CGAGAACGCCCTGAAGATCGACATCCACGTGATCATCCCTTACGA




GGGCCTGTCTGCCGATCAGATGGCTCAGATCGAAGAGGTGTTCAA




GGTGGTGTACCCCGTGGACGACCACCACTTCAAAGTGATCCTGCCT




TACGGCACCCTGGTCATCGATGGCGTGACCCCAAACATGCTGAAC




TACTTCGGCAGACCCTACGAGGGAATCGCCGTGTTCGACGGCAAG




AAAATCACCGTGACCGGCACACTGTGGAACGGAAACAAGATCATC




GACGAGCGGCTGATCACCCCTGACGGCTCTATGCTGTTCCGCGTGA




CCATCAACTCCTAATGA





SEQ
α-IFNa
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
light-
CAGGATCTACAGGCGAGATCGTGCTGACCCAGTCTCCTGGCACAT


NO:
SmBiT
TGTCTCTGAGTCCTGGCGAGAGAGCTACCCTGTCTTGCAGAGCTTC


20

CCAGTCCGTGTCCTCTACCTACCTGGCCTGGTATCAGCAGAAGCCT




GGACAGGCTCCCAGACTGCTGATCTACGGCGCCTCTTCTAGAGCC




ACAGGCATCCCTGACAGATTCTCCGGCTCTGGCTCTGGCACCGACT




TCACCCTGACCATCTCTAGACTGGAACCCGAGGACTTCGCCGTGTA




CTACTGCCAGCAGTATGGCTCCTCTCCTCGGACCTTTGGACAGGGC




ACCAAGGTGGAAATCAAGAGAACCGTGGCCGCTCCTTCCGTGTTC




ATCTTCCCACCATCTGACGAGCAGCTGAAGTCCGGCACAGCTTCTG




TCGTGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGC




AGTGGAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGT




CTGTGACCGAGCAGGACTCCAAGGACTCTACCTACAGCCTGTCCTC




CACACTGACCCTGTCTAAGGCCGACTACGAGAAGCACAAGGTGTA




CGCCTGTGAAGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAA




GTCTTTCAACAGAGGCGAGTGCGGATCTTCTGGTGGCGGAGGATC




TGGCGGAGGCGGATCTAGTGGCGGAGTGACCGGCTACAGACTGTT




CGAAGAGATCCTGTAATGA





SEQ
α-IFNa
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
LgBiT
CAGGATCTACAGGCGAGATCGTGCTGACCCAGTCTCCTGGCACAT


NO:

TGTCTCTGAGTCCTGGCGAGAGAGCTACCCTGTCTTGCAGAGCTTC


21

CCAGTCCGTGTCCTCTACCTACCTGGCCTGGTATCAGCAGAAGCCT




GGACAGGCTCCCAGACTGCTGATCTACGGCGCCTCTTCTAGAGCC




ACAGGCATCCCTGACAGATTCTCCGGCTCTGGCTCTGGCACCGACT




TCACCCTGACCATCTCTAGACTGGAACCCGAGGACTTCGCCGTGTA




CTACTGCCAGCAGTATGGCTCCTCTCCTCGGACCTTTGGACAGGGC




ACCAAGGTGGAAATCAAGAGAACCGTGGCCGCTCCTTCCGTGTTC




ATCTTCCCACCATCTGACGAGCAGCTGAAGTCCGGCACAGCTTCTG




TCGTGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGC




AGTGGAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGT




CTGTGACCGAGCAGGACTCCAAGGACTCTACCTACAGCCTGTCCTC




CACACTGACCCTGTCTAAGGCCGACTACGAGAAGCACAAGGTGTA




CGCCTGTGAAGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAA




GTCTTTCAACAGAGGCGAGTGCTAATGA





SEQ
α-IGF1R
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
heavy-
CAGGATCTACAGGCCAGGTCCAGCTGCAAGAATCTGGCCCTGGAC


NO:
light
TGGTCAAGCCTTCTGGCACCCTGTCTCTGACATGTGCTGTGTCCGG


22

CGGCTCCATCTCCTCCTCTAATTGGTGGTCTTGGGTCCGACAGCCT




CCTGGCAAAGGACTGGAATGGATCGGCGAGATCTACCACTCCGGC




TCCACCAACTACAACCCCAGCCTGAAGTCCAGAGTGACCATCTCC




GTGGACAAGTCCAAGAACCAGTTCTCCCTGAAGCTGTCCTCTGTGA




CCGCTGCCGATACCGCCGTGTACTACTGTGCTAGATGGACCGGCA




GAACCGACGCCTTTGATATCTGGGGCCAGGGCACAATGGTCACCG




TGTCCTCTGCTTCTACCAAGGGACCCTCTGTGTTCCCTCTGGCTCCT




TCCAGCAAGTCTACCTCTGGTGGAACCGCTGCTCTGGGCTGCCTGG




TCAAGGATTACTTTCCTGAGCCTGTGACCGTGTCTTGGAACTCTGG




TGCTCTGACCTCCGGCGTGCACACATTTCCAGCTGTGCTGCAGTCT




AGCGGCCTGTACTCTCTGTCTAGCGTCGTGACCGTGCCTTCTAGCT




CTCTGGGCACCCAGACCTACATCTGCAACGTGAACCACAAGCCTT




CCAACACCAAGGTGGACAAGAGAGTGGAACCCAAGTCTTGCGGAT




CTTCTGGTGGCGGAGGATCTGGCGGAGGTGGAAGTAGTGGCGGAG




TGTTCACCCTGGAAGATTTCGTCGGCGATTGGGAGCAGACCGCCG




CCTATAATCTGGACCAGGTTCTGGAACAAGGCGGCGTCAGCTCTCT




GCTGCAGAATCTCGCTGTGTCTGTGACCCCTATCCAGAGAATCGTG




CGCTCTGGCGAGAACGCCCTGAAGATCGACATCCACGTGATCATC




CCTTACGAGGGCCTGTCTGCCGATCAGATGGCTCAGATCGAAGAG




GTGTTCAAGGTGGTGTACCCCGTGGACGACCACCACTTCAAAGTG




ATCCTGCCTTACGGCACCCTGGTCATCGATGGCGTGACCCCAAACA




TGCTGAACTACTTCGGCAGACCCTACGAGGGAATCGCCGTGTTCG




ACGGCAAGAAAATCACCGTGACCGGCACACTGTGGAACGGCAAC




AAGATCATCGACGAGCGGCTGATCACCCCTGACGGCTCTATGCTG




TTCCGCGTGACCATCAACTCCTAATGA





SEQ
α-IGF1R
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
light-
CAGGATCTACAGGCGACGTCGTGATGACCCAGTCTCCTCTGTCTCT


NO:
SmBiT
GCCTGTGACACCTGGCGAGCCTGCCTCCATCTCTTGCAGATCTTCT


23

CAGTCCCTGCTGCACTCCAACGGCTACAACTACCTGGACTGGTATC




TGCAGAAGCCCGGCCAGTCTCCACAGCTGCTGATCTACCTGGGCTC




TAACAGAGCCTCTGGCGTGCCCGATAGATTCTCTGGCTCTGGATCT




GGCACCGACTTCACCCTGAAGATCTCCAGAGTGGAAGCCGAGGAC




GTGGGCGTGTACTACTGTATGCAGGGCACCCACTGGCCTCTGACCT




TTGGACAGGGCACCAAGGTGGAAATCAAGAGAACCGTGGCCGCTC




CTTCCGTGTTCATCTTCCCACCATCTGACGAGCAGCTGAAGTCCGG




CACAGCTTCTGTCGTGTGCCTGCTGAACAACTTCTACCCTCGGGAA




GCCAAGGTGCAGTGGAAGGTGGACAATGCCCTGCAGTCCGGCAAC




TCCCAAGAGTCTGTGACCGAGCAGGACTCCAAGGACTCTACCTAC




AGCCTGTCCTCCACACTGACCCTGTCTAAGGCCGACTACGAGAAG




CACAAGGTGTACGCCTGTGAAGTGACCCACCAGGGACTGTCTAGC




CCCGTGACCAAGTCTTTCAACAGAGGCGAGTGCGGATCTTCTGGT




GGCGGAGGATCTGGCGGAGGTGGAAGTAGTGGCGGCGTGACCGG




CTACAGACTGTTCGAAGAGATCCTGTAATGA





SEQ
α-IGF1R
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
light
CAGGATCTACAGGCGACGTCGTGATGACCCAGTCTCCTCTGTCTCT


NO:

GCCTGTGACACCTGGCGAGCCTGCCTCCATCTCTTGCAGATCTTCT


24

CAGTCCCTGCTGCACTCCAACGGCTACAACTACCTGGACTGGTATC




TGCAGAAGCCCGGCCAGTCTCCACAGCTGCTGATCTACCTGGGCTC




TAACAGAGCCTCTGGCGTGCCCGATAGATTCTCTGGCTCTGGATCT




GGCACCGACTTCACCCTGAAGATCTCCAGAGTGGAAGCCGAGGAC




GTGGGCGTGTACTACTGTATGCAGGGCACCCACTGGCCTCTGACCT




TTGGACAGGGCACCAAGGTGGAAATCAAGAGAACCGTGGCCGCTC




CTTCCGTGTTCATCTTCCCACCATCTGACGAGCAGCTGAAGTCCGG




CACAGCTTCTGTCGTGTGCCTGCTGAACAACTTCTACCCTCGGGAA




GCCAAGGTGCAGTGGAAGGTGGACAATGCCCTGCAGTCCGGCAAC




TCCCAAGAGTCTGTGACCGAGCAGGACTCCAAGGACTCTACCTAC




AGCCTGTCCTCCACACTGACCCTGTCTAAGGCCGACTACGAGAAG




CACAAGGTGTACGCCTGTGAAGTGACCCACCAGGGACTGTCTAGC




CCCGTGACCAAGTCTTTCAACAGAGGCGAGTGCTAATGA





SEQ
α-IGF1R
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
heavy-
CAGGATCTACAGGCGAAGTGCAGTTGTTGCAGTCTGGCGGAGGAT


NO
LgBiT
TGGTTCAGCCTGGCGGATCTCTGAGACTGTCTTGTGCCGCCTCCGG


25

CTTCATGTTCAGCAGATACCCTATGCACTGGGTCCGACAGGCCCCT




GGAAAAGGACTGGAATGGGTCGGATCTATCTCTGGCAGTGGCGGC




GCTACCCCTTACGCTGATTCTGTGAAGGGCAGATTCACCATCAGCC




GGGACAACTCCAAGAACACCCTGTACCTGCAGATGAACTCCCTGA




GAGCCGAGGACACCGCCGTGTACTACTGCGCCAAGGACTTCTATC




AGATCCTGACCGGCAACGCCTTCGATTATTGGGGCCAGGGCACAA




CCGTGACCGTGTCCTCTGCTTCTACCAAGGGACCCTCTGTGTTCCC




TCTGGCTCCTTCCAGCAAGTCTACCTCTGGTGGAACCGCTGCTCTG




GGCTGCCTGGTCAAGGATTACTTTCCTGAGCCTGTGACAGTGTCCT




GGAACTCTGGTGCTCTGACCTCCGGCGTGCACACATTTCCAGCTGT




GCTGCAGTCCTCCGGCCTGTACTCTCTGTCCTCTGTCGTGACAGTG




CCTTCCAGCTCTCTGGGCACCCAGACCTACATCTGCAACGTGAACC




ACAAGCCTTCCAACACCAAGGTGGACAAGAGAGTGGAACCCAAGT




CTTGCGGATCTTCTGGTGGCGGTGGAAGTGGCGGAGGTGGAAGTT




CAGGCGGAGTGTTCACCCTGGAAGATTTCGTCGGCGATTGGGAGC




AGACCGCCGCCTATAATCTGGACCAGGTTCTGGAACAAGGCGGCG




TTAGCTCTCTGCTGCAGAATCTGGCTGTGTCTGTGACCCCTATCCA




GAGAATCGTGCGCTCTGGCGAGAACGCCCTGAAGATCGACATCCA




CGTGATCATCCCTTACGAGGGCCTGTCTGCCGATCAGATGGCTCAG




ATCGAAGAGGTGTTCAAGGTGGTGTACCCCGTGGACGACCACCAC




TTCAAAGTGATCCTGCCTTACGGCACCCTGGTCATCGATGGCGTGA




CCCCAAACATGCTGAACTACTTCGGCAGACCCTACGAGGGAATCG




CCGTGTTCGACGGCAAGAAAATCACCGTGACAGGCACCCTGTGGA




ACGGCAACAAGATCATCGACGAGCGGCTGATCACCCCTGACGGCT




CTATGCTGTTCAGAGTGACCATCAACTCCTAATGA





SEQ
α-IGF1R
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
light-
CAGGCTCTACCGGCGACATCCAGATGACCCAGTCTCCAAGCTCTCT


NO:
SmBiT
GTCTGCCTCTCTGGGCGACAGAGTGACCATCACCTGTAGAGCCTCT


26

CAGGGCATCTCCTCCTACCTGGCCTGGTATCAGCAGAAGCCTGGC




AAGGCTCCCAAGCTGCTGATCTACGCTAAGTCTACCCTGCAGTCCG




GCGTGCCCTCTAGATTTTCTGGCTCTGGATCTGGCACCGACTTCAC




CCTGACCATCAGTTCTCTGCAGCCTGAGGACTCCGCCACCTACTAC




TGTCAGCAGTACTGGACCTTTCCTCTGACCTTCGGCGGAGGCACCA




AGGTGGAAATCAAGAGAACCGTGGCCGCTCCTTCCGTGTTCATCTT




CCCACCATCTGACGAGCAGCTGAAGTCCGGCACAGCTTCTGTCGT




GTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGCAGTG




GAAGGTGGACAATGCCCTGCAGAGCGGCAACTCCCAAGAGTCTGT




GACCGAGCAGGACTCCAAGGACTCTACCTACAGCCTGTCCTCCAC




ACTGACCCTGTCTAAGGCCGACTACGAGAAGCACAAGGTGTACGC




CTGTGAAGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAAGTC




TTTCAACAGAGGCGAGTGCGGATCTTCTGGCGGCGGAGGAAGCGG




AGGCGGAGGATCTAGCGGCGGAGTTACCGGCTACAGACTGTTCGA




AGAGATCCTGTAATGA





SEQ
α-IGF1R
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


ID
light
CAGGATCTACCGGCGACATCCAGATGACCCAGTCTCCATCCTCTCT


NO:

GTCTGCCAGCCTGGGCGACAGAGTGACCATCACCTGTAGAGCCTC


27

TCAGGGCATCTCCTCCTACCTGGCCTGGTATCAGCAGAAGCCTGGC




AAGGCTCCCAAGCTGCTGATCTACGCCAAGAGCACACTGCAGTCT




GGCGTGCCCTCTAGATTCTCCGGCTCTGGCTCTGGCACCGACTTTA




CCCTGACAATCTCCAGCCTGCAGCCTGAGGACTCCGCCACCTACTA




CTGTCAGCAGTACTGGACCTTTCCACTGACCTTCGGCGGAGGCACC




AAGGTGGAAATCAAGAGAACCGTGGCCGCTCCTTCCGTGTTCATC




TTCCCACCTTCCGACGAGCAGCTGAAGTCCGGCACAGCTTCTGTCG




TGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAAGTGCAGT




GGAAGGTGGACAACGCTCTGCAGTCCGGCAACTCCCAAGAGTCTG




TGACCGAGCAGGACTCCAAGGACAGCACCTACAGCCTGTCCTCCA




CACTGACCCTGTCCAAGGCCGACTACGAGAAGCACAAGGTGTACG




CCTGCGAAGTGACCCATCAGGGCCTGTCTAGCCCTGTGACCAAGT




CTTTCAACCGGGGCGAGTGCTGATGA





SEQ
α-IGF1R
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
heavy-
CAGGATCTACAGGCGAAGTGCAGTTGGTTCAGTCTGGCGGAGGAC


NO:
LgBiT
TGGTTAAGCCTGGCGGATCTCTGAGACTGTCTTGTGCCGCCTCTGG


28

CTTCACCTTCTCTAGCTTTGCCATGCACTGGGTCCGACAGGCCCCT




GGAAAAGGCCTGGAATGGATCTCCGTGATCGATACCAGAGGCGCC




ACCTACTACGCCGACTCTGTGAAGGGCAGATTCACCATCTCTCGGG




ACAACGCCAAGAACTCCCTGTACCTGCAGATGAACAGCCTGAGAG




CCGAGGACACCGCCGTGTACTATTGTGCCAGACTGGGCAACTTCT




ACTACGGCATGGATGTGTGGGGCCAGGGCACAACAGTGACCGTGT




CCTCTGCTTCTACCAAGGGACCCTCTGTGTTCCCTCTGGCTCCTTCC




AGCAAGTCTACCTCTGGTGGAACCGCTGCTCTGGGCTGCCTGGTCA




AGGATTACTTTCCTGAGCCTGTGACAGTGTCCTGGAACTCTGGTGC




TCTGACCTCCGGCGTGCACACATTTCCAGCTGTGCTGCAGTCCTCT




GGCCTGTACTCTCTGTCCTCTGTCGTGACCGTGCCTTCTAGCTCTCT




GGGCACCCAGACCTACATCTGCAACGTGAACCACAAGCCTTCCAA




CACCAAGGTGGACAAGAGAGTGGAACCCAAGTCTTGCGGATCTTC




TGGTGGCGGTGGAAGCGGAGGCGGAGGATCTAGTGGCGGAGTGTT




CACCCTGGAAGATTTCGTCGGCGATTGGGAGCAGACCGCCGCCTA




TAATCTGGACCAGGTTCTGGAACAAGGCGGCGTCAGCTCTCTGCT




GCAGAATCTGGCTGTGTCTGTGACCCCTATCCAGAGAATCGTGCGC




TCTGGCGAGAACGCCCTGAAGATCGACATCCACGTGATCATCCCTT




ACGAGGGCCTGTCTGCCGATCAGATGGCTCAGATCGAAGAGGTGT




TCAAGGTGGTGTACCCCGTGGACGACCACCACTTCAAAGTGATCC




TGCCTTACGGCACCCTGGTCATCGATGGCGTGACCCCAAACATGCT




GAACTACTTCGGCAGACCCTACGAGGGAATCGCCGTGTTCGACGG




CAAGAAAATCACCGTGACCGGCACACTGTGGAACGGCAACAAGAT




CATCGACGAGCGGCTGATCACCCCTGACGGCTCCATGCTGTTTAGA




GTGACCATCAACTCCTAATGA





SEQ
α-IGF1R
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
light-
CAGGATCTACAGGCGAGATCGTGCTGACCCAGTCTCCTGGCACAT


NO:
SmBiT
TGTCTGTGTCTCCCGGCGAGAGAGCTACCCTGTCTTGTAGAGCTTC


29

CCAGTCCATCGGCTCCAGCCTGCACTGGTATCAGCAGAAACCTGG




ACAGGCCCCTCGGCTGCTGATTAAGTACGCCTCTCAGTCCCTGTCT




GGCATCCCTGACAGATTCTCTGGCTCTGGCTCCGGCACCGACTTCA




CCCTGACAATCTCTAGACTGGAACCCGAGGACTTCGCCGTGTACTA




CTGCCACCAGTCTAGCAGACTGCCTCACACCTTTGGCCAGGGCACC




AAGGTGGAAATCAAGAGAACCGTGGCCGCTCCTTCCGTGTTCATC




TTCCCACCATCTGACGAGCAGCTGAAGTCTGGCACCGCTTCTGTCG




TGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGCAGT




GGAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGTCTG




TGACCGAGCAGGACTCCAAGGACTCTACCTACAGCCTGTCCTCCA




CACTGACCCTGTCTAAGGCCGACTACGAGAAGCACAAGGTGTACG




CCTGTGAAGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAAGT




CTTTCAACAGAGGCGAGTGCGGATCTTCTGGTGGCGGAGGATCTG




GCGGAGGTGGAAGTAGTGGCGGCGTGACCGGCTACAGACTGTTCG




AAGAGATCCTGTAATGA





SEQ
α-IGF1R
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
light
CAGGATCTACAGGCGAGATCGTGCTGACCCAGTCTCCTGGCACAT


NO:

TGTCTGTGTCTCCCGGCGAGAGAGCTACCCTGTCTTGTAGAGCTTC


30

CCAGTCCATCGGCTCCAGCCTGCACTGGTATCAGCAGAAACCTGG




ACAGGCCCCTCGGCTGCTGATTAAGTACGCCTCTCAGTCCCTGTCT




GGCATCCCTGACAGATTCTCTGGCTCTGGCTCCGGCACCGACTTCA




CCCTGACAATCTCTAGACTGGAACCCGAGGACTTCGCCGTGTACTA




CTGCCACCAGTCTAGCAGACTGCCTCACACCTTTGGCCAGGGCACC




AAGGTGGAAATCAAGAGAACCGTGGCCGCTCCTTCCGTGTTCATC




TTCCCACCATCTGACGAGCAGCTGAAGTCTGGCACCGCTTCTGTCG




TGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGCAGT




GGAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGTCTG




TGACCGAGCAGGACTCCAAGGACTCTACCTACAGCCTGTCCTCCA




CACTGACCCTGTCTAAGGCCGACTACGAGAAGCACAAGGTGTACG




CCTGTGAAGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAAGT




CTTTCAACAGAGGCGAGTGCTAATGA





SEQ
α-IGF1R
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
heavy-
CAGGATCTACCGGACAGGTGGAACTGGTTGAATCTGGTGGCGGAG


NO:
LgBiT
TGGTGCAGCCTGGCAGATCTCAGAGACTGTCTTGTGCCGCCTCTGG


31

CTTCACCTTCTCCTCTTACGGCATGCACTGGGTCCGACAGGCCCCT




GGAAAAGGACTGGAATGGGTCGCCATCATTTGGTTCGACGGCTCC




TCTACCTACTACGCCGATTCTGTGCGGGGCAGATTCACCATCTCTC




GGGACAACTCCAAGAACACCCTGTACCTGCAGATGAACTCCCTGA




GAGCCGAGGATACCGCCGTGTACTTCTGTGCCAGAGAGCTGGGGA




GAAGATACTTCGATCTGTGGGGCAGAGGCACCCTGGTGTCTGTGT




CCTCTGCTTCTACCAAGGGACCCAGCGTTTTCCCTCTGGCTCCATC




CTCTAAGTCCACCTCTGGTGGAACCGCTGCTCTGGGCTGTCTGGTC




AAGGATTACTTCCCTGAGCCTGTGACCGTGTCCTGGAACTCTGGTG




CTCTGACATCCGGCGTGCACACCTTTCCAGCTGTGCTGCAGTCCTC




TGGCCTGTACTCTCTGTCCTCTGTCGTGACCGTGCCTTCTTCTAGCC




TGGGCACCCAGACCTACATCTGCAACGTGAACCACAAGCCTTCCA




ACACCAAAGTGGACAAGAGAGTGGAACCCAAGTCTTGCGGATCTT




CTGGCGGCGGAGGAAGCGGAGGCGGAGGATCTAGCGGCGGAGTG




TTCACCCTGGAAGATTTCGTCGGCGATTGGGAGCAGACCGCCGCC




TATAATCTGGACCAGGTTCTGGAACAAGGCGGCGTGTCCTCTCTGC




TGCAGAATCTGGCTGTGTCTGTGACCCCTATCCAGAGAATCGTGCG




CTCTGGCGAGAACGCCCTGAAGATCGACATCCACGTGATCATCCC




TTACGAGGGCCTGTCTGCCGATCAGATGGCCCAGATTGAAGAGGT




GTTCAAGGTGGTGTACCCCGTGGACGACCACCACTTCAAAGTGAT




CCTGCCTTACGGCACCCTCGTGATCGATGGCGTGACCCCAAACATG




CTGAACTACTTCGGCAGACCCTACGAGGGAATCGCCGTGTTCGAT




GGCAAGAAAATCACCGTGACCGGCACACTGTGGAACGGCAACAA




GATCATCGACGAGCGGCTGATCACCCCTGACGGCTCTATGCTGTTC




AGAGTGACCATCAACTCCTAATGA





SEQ
α-IGF1R
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
light-
CAGGATCTACAGGCGAGATCGTGCTGACCCAGTCTCCTGCCACATT


NO:
SmBiT
GTCTCTGAGTCCTGGCGAGAGAGCTACCCTGTCTTGCAGAGCTTCC


32

CAGTCCGTGTCCTCCTACCTGGCCTGGTATCAGCAGAAACCTGGAC




AGGCCCCTCGGCTGCTGATCTACGATGCTTCTAAGAGAGCCACAG




GCATCCCCGCCAGATTTTCTGGCTCTGGATCTGGCACCGACTTCAC




CCTGACCATCTCTAGCCTGGAACCTGAGGACTTCGCCGTGTACTAC




TGCCAGCAGAGATCCAAGTGGCCTCCTTGGACCTTTGGACAGGGC




ACCAAGGTGGAATCTAAGAGAACCGTGGCCGCTCCTTCCGTGTTC




ATCTTCCCACCATCTGACGAGCAGCTGAAGTCCGGCACAGCTTCTG




TCGTGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGC




AGTGGAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGT




CTGTGACCGAGCAGGACTCCAAGGACTCTACCTACAGCCTGTCCTC




CACACTGACCCTGTCTAAGGCCGACTACGAGAAGCACAAGGTGTA




CGCCTGTGAAGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAA




GTCTTTCAACAGAGGCGAGTGCGGATCTTCTGGTGGCGGAGGATC




TGGCGGAGGCGGATCTAGTGGCGGAGTGACCGGCTACAGACTGTT




CGAAGAGATCCTGTAATGA





SEQ
α-IGF1R
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
LgBiT
GTCTCTGAGTCCTGGCGAGAGAGCTACCCTGTCTTGCAGAGCTTCC


NO:

CAGTCCGTGTCCTCCTACCTGGCCTGGTATCAGCAGAAACCTGGAC


33

AGGCCCCTCGGCTGCTGATCTACGATGCTTCTAAGAGAGCCACAG




GCATCCCCGCCAGATTTTCTGGCTCTGGATCTGGCACCGACTTCAC




CCTGACCATCTCTAGCCTGGAACCTGAGGACTTCGCCGTGTACTAC




TGCCAGCAGAGATCCAAGTGGCCTCCTTGGACCTTTGGACAGGGC




ACCAAGGTGGAATCTAAGAGAACCGTGGCCGCTCCTTCCGTGTTC




ATCTTCCCACCATCTGACGAGCAGCTGAAGTCCGGCACAGCTTCTG




TCGTGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGC




AGTGGAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGT




CTGTGACCGAGCAGGACTCCAAGGACTCTACCTACAGCCTGTCCTC




CACACTGACCCTGTCTAAGGCCGACTACGAGAAGCACAAGGTGTA




CGCCTGTGAAGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAA




GTCTTTCAACAGAGGCGAGTGCTAATGA





SEQ
α-IL6R
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
heavy-
CAGGATCTACAGGCGAGGTGCAGTTGGTTGAATCTGGCGGAGGAC


NO:
light
TGGTGCAGCCTGGCAGATCTCTGAGACTGTCTTGCGCCGCCTCCAG


34

ATTCACCTTCGACGATTACGCCATGCACTGGGTCCGACAGGCCCCT




GGAAAAGGATTGGAGTGGGTGTCCGGCATCTCCTGGAACTCTGGC




AGAATCGGCTACGCCGACTCCGTGAAGGGCAGATTCACAATCTCC




CGGGACAACGCCGAGAACTCCCTGTTCCTGCAGATGAATGGCCTG




AGAGCCGAGGACACCGCTCTGTACTATTGCGCCAAGGGCAGAGAC




TCCTTCGATATCTGGGGCCAGGGCACCATGGTCACCGTGTCCTCTG




CTTCTACCAAGGGACCCTCTGTGTTCCCTCTGGCTCCTTCCAGCAA




GTCTACCTCTGGTGGAACCGCTGCTCTGGGCTGCCTGGTCAAGGAT




TACTTTCCTGAGCCTGTGACCGTGTCTTGGAACTCCGGTGCTCTGA




CATCCGGCGTGCACACATTTCCAGCTGTGCTGCAGTCCTCTGGCCT




GTACTCTCTGTCCTCTGTCGTGACCGTGCCTTCTAGCTCTCTGGGCA




CCCAGACCTACATCTGCAACGTGAACCACAAGCCTTCCAACACCA




AGGTGGACAAGAGAGTGGAACCCAAGTCTTGCGGATCTTCTGGTG




GCGGTGGAAGCGGAGGCGGAGGATCTAGTGGCGGAGTGTTCACCC




TGGAAGATTTCGTCGGCGATTGGGAGCAGACCGCCGCCTATAATC




TGGACCAGGTTCTGGAACAAGGCGGCGTCAGCTCTCTGCTGCAGA




ATCTGGCTGTGTCTGTGACCCCTATCCAGAGAATCGTGCGCTCTGG




CGAGAACGCCCTGAAGATCGACATCCACGTGATCATCCCTTACGA




GGGCCTGTCTGCCGATCAGATGGCTCAGATCGAAGAGGTGTTCAA




GGTGGTGTACCCCGTGGACGACCACCACTTCAAAGTGATCCTGCCT




TACGGCACCCTGGTCATCGATGGCGTGACCCCAAACATGCTGAAC




TACTTCGGCAGACCCTACGAGGGAATCGCCGTGTTCGACGGCAAG




AAAATCACCGTGACCGGCACACTGTGGAACGGCAACAAGATCATC




GACGAGCGGCTGATCACCCCTGACGGCTCTATGCTGTTCAGAGTG




ACCATCAACTCCTAATGA





SEQ
α-IL6R
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
light-
CAGGCTCTACCGGCGACATCCAGATGACCCAGTCTCCATCCTCTGT


NO:
SmBiT
GTCTGCCTCTGTGGGCGACAGAGTGACCATCACCTGTAGAGCCTCT


35

CAGGGCATCTCTAGCTGGCTGGCCTGGTATCAGCAGAAGCCTGGA




AAGGCCCCTAAGCTGCTGATCTACGGCGCCTCTTCTCTGGAATCTG




GCGTGCCCTCTAGATTCTCCGGCTCTGGCTCTGGCACCGACTTTAC




CCTGACAATCAGCTCCCTGCAGCCTGAGGACTTCGCCTCTTACTAC




TGCCAGCAGGCCAACAGCTTCCCCTATACCTTTGGCCAGGGCACC




AAGCTGGAAATCAAGAGAACCGTGGCCGCTCCTTCCGTGTTCATCT




TCCCACCATCTGACGAGCAGCTGAAGTCCGGCACAGCTTCTGTCGT




GTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGCAGTG




GAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGTCTGT




GACCGAGCAGGACTCCAAGGACTCTACCTACAGCCTGTCCTCCAC




ACTGACCCTGTCTAAGGCCGACTACGAGAAGCACAAGGTGTACGC




CTGTGAAGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAAGTC




TTTCAACAGAGGCGAGTGCGGATCTTCTGGTGGCGGAGGATCTGG




CGGAGGTGGAAGTAGTGGCGGCGTGACCGGCTACAGACTGTTCGA




AGAGATCCTGTAATGA





SEQ
α-IL6R
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
light
CAGGCTCTACCGGCGACATCCAGATGACCCAGTCTCCATCCTCTGT


NO:

GTCTGCCTCTGTGGGCGACAGAGTGACCATCACCTGTAGAGCCTCT


36

CAGGGCATCTCTAGCTGGCTGGCCTGGTATCAGCAGAAGCCTGGA




AAGGCCCCTAAGCTGCTGATCTACGGCGCCTCTTCTCTGGAATCTG




GCGTGCCCTCTAGATTCTCCGGCTCTGGCTCTGGCACCGACTTTAC




CCTGACAATCAGCTCCCTGCAGCCTGAGGACTTCGCCTCTTACTAC




TGCCAGCAGGCCAACAGCTTCCCCTATACCTTTGGCCAGGGCACC




AAGCTGGAAATCAAGAGAACCGTGGCCGCTCCTTCCGTGTTCATCT




TCCCACCATCTGACGAGCAGCTGAAGTCCGGCACAGCTTCTGTCGT




GTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGCAGTG




GAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGTCTGT




GACCGAGCAGGACTCCAAGGACTCTACCTACAGCCTGTCCTCCAC




ACTGACCCTGTCTAAGGCCGACTACGAGAAGCACAAGGTGTACGC




CTGTGAAGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAAGTC




TTTCAACAGAGGCGAGTGCTAATGA





SEQ
α-LINGO-
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
1 heavy-
CAGGATCTACAGGCGAGGTGCAGTTGTTGGAATCTGGCGGAGGAT


NO:
LgBiT
TGGTGCAGCCTGGCGGATCTCTGAGACTGTCTTGTGCCGCCTCTGG


37

CTTCACCTTCTCCGCCTATGAGATGAAGTGGGTCCGACAGGCTCCT




GGCAAAGGACTGGAATGGGTGTCCGTGATTGGCCCTTCTGGCGGC




TTTACCTTTTACGCCGACTCCGTGAAGGGCAGATTCACCATCTCTC




GGGACAACTCCAAGAACACCCTGTACCTGCAGATGAACTCCCTGA




GAGCCGAGGACACCGCCGTGTACTATTGTGCCACCGAGGGCGACA




ACGACGCCTTTGATATTTGGGGCCAGGGCACCACCGTGACCGTGT




CCTCTGCTTCTACAAAGGGCCCCTCTGTGTTCCCTCTGGCTCCTTCC




TCTAAATCCACCTCTGGCGGAACCGCTGCTCTGGGCTGTCTGGTCA




AGGATTACTTCCCTGAGCCTGTGACAGTGTCCTGGAACTCTGGTGC




TCTGACATCCGGCGTGCACACCTTTCCAGCTGTGCTGCAGTCCTCT




GGCCTGTACTCTCTGTCCTCTGTCGTGACAGTGCCTTCCAGCTCTCT




GGGCACCCAGACCTACATCTGCAACGTGAACCACAAGCCTTCCAA




CACCAAGGTGGACAAGAGAGTGGAACCCAAGTCTTGCGGATCTTC




CGGCGGAGGTGGAAGTGGCGGAGGCGGATCAAGCGGCGGAGTGT




TCACACTGGAAGATTTCGTCGGCGATTGGGAGCAGACCGCCGCCT




ATAATCTGGACCAGGTTCTGGAACAAGGCGGCGTTAGCTCTCTGCT




GCAGAATCTGGCTGTGTCTGTGACCCCTATCCAGAGAATCGTGCGC




TCTGGCGAGAACGCCCTGAAGATCGACATCCACGTGATCATCCCTT




ACGAGGGCCTGTCTGCCGATCAGATGGCTCAGATCGAAGAGGTGT




TCAAGGTGGTGTACCCCGTGGACGACCACCACTTCAAAGTGATCC




TGCCTTACGGCACCCTGGTCATCGATGGCGTGACCCCAAACATGCT




GAACTACTTCGGCAGACCCTACGAGGGAATCGCCGTGTTCGACGG




CAAGAAAATCACCGTGACAGGCACCCTGTGGAACGGCAACAAGAT




CATCGACGAGCGGCTGATCACCCCTGACGGCTCTATGCTGTTCAGA




GTGACCATCAACTCCTAATGA





SEQ
α-LINGO-
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
1 light-
CAGGATCTACAGGCGATATCCAGATGACCCAGTCTCCTGCCACATT


NO:
SmBiT
GTCTCTGAGTCCTGGCGAGAGAGCTACCCTGTCTTGCAGAGCTTCC


38

CAGTCCGTGTCCTCCTACCTGGCCTGGTATCAGCAGAAACCTGGAC




AGGCCCCTCGGCTGCTGATCTACGATGCCTCTAATAGAGCCACAG




GCATCCCCGCCAGATTCTCTGGCTCTGGATCTGGCACCGACTTCAC




CCTGACCATCTCTAGCCTGGAACCTGAGGACTTCGCCGTGTACTAC




TGCCAGCAGAGATCCAACTGGCCTATGTACACCTTCGGCCAGGGC




ACCAAGCTGGAAATCAAGAGAACCGTGGCCGCTCCTTCCGTGTTC




ATCTTCCCACCATCTGACGAGCAGCTGAAGTCCGGCACAGCTTCTG




TCGTGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGC




AGTGGAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGT




CTGTGACCGAGCAGGACTCCAAGGACTCTACCTACAGCCTGTCCTC




CACACTGACCCTGTCTAAGGCCGACTACGAGAAGCACAAGGTGTA




CGCCTGTGAAGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAA




GTCTTTCAACAGAGGCGAGTGCGGATCTTCTGGTGGCGGAGGAAG




CGGAGGCGGAGGATCATCTGGCGGAGTGACCGGCTACAGACTGTT




CGAAGAGATCCTGTAATGA





SEQ
α-LINGO-
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
1 light
CAGGATCTACAGGCGATATCCAGATGACCCAGTCTCCTGCCACATT


NO:

GTCTCTGAGTCCTGGCGAGAGAGCTACCCTGTCTTGCAGAGCTTCC


39

CAGTCCGTGTCCTCCTACCTGGCCTGGTATCAGCAGAAACCTGGAC




AGGCCCCTCGGCTGCTGATCTACGATGCCTCTAATAGAGCCACAG




GCATCCCCGCCAGATTCTCTGGCTCTGGATCTGGCACCGACTTCAC




CCTGACCATCTCTAGCCTGGAACCTGAGGACTTCGCCGTGTACTAC




TGCCAGCAGAGATCCAACTGGCCTATGTACACCTTCGGCCAGGGC




ACCAAGCTGGAAATCAAGAGAACCGTGGCCGCTCCTTCCGTGTTC




ATCTTCCCACCATCTGACGAGCAGCTGAAGTCCGGCACAGCTTCTG




TCGTGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGC




AGTGGAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGT




CTGTGACCGAGCAGGACTCCAAGGACTCTACCTACAGCCTGTCCTC




CACACTGACCCTGTCTAAGGCCGACTACGAGAAGCACAAGGTGTA




CGCCTGTGAAGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAA




GTCTTTCAACAGAGGCGAGTGCTAATGA





SEQ
α-
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
neuropilin
CAGGATCTACAGGCGAGGTGCAGTTGGTTGAATCTGGCGGAGGAT


NO:
1 heavy-
TGGTGCAGCCTGGCGGATCTCTGAGACTGTCTTGTGCCGCCTCCGG


40
LgBiT
CTTCACCTTCTCCTCTTACGCTATGTCCTGGGTCCGACAGGCTCCTG




GCAAAGGATTGGAGTGGGTGTCCCAGATTTCTCCCGCTGGCGGCT




ACACCAACTACGCCGATTCTGTGAAGGGCAGATTCACCATCTCCG




CCGACACCTCCAAGAACACCGCCTACCTGCAGATGAACTCCCTGA




GAGCTGAGGACACCGCCGTGTACTATTGTGCTAGAGGCGAGCTGC




CCTACTACCGGATGTCCAAAGTGATGGATGTGTGGGGCCAGGGCA




CACTGGTTACCGTGTCCTCTGCTTCTACCAAGGGACCCTCTGTGTT




CCCTCTGGCTCCTTCCAGCAAGTCTACCTCTGGTGGAACCGCTGCT




CTGGGCTGCCTGGTCAAGGATTACTTTCCTGAGCCTGTGACCGTGT




CTTGGAACTCTGGTGCTCTGACCTCCGGCGTGCACACATTTCCAGC




TGTGCTGCAGTCCTCCGGCCTGTACTCTCTGTCCTCTGTCGTGACC




GTGCCTTCTAGCTCTCTGGGCACCCAGACCTACATCTGCAACGTGA




ACCACAAGCCTTCCAACACCAAGGTGGACAAGAGAGTGGAACCCA




AGTCTTGCGGATCTTCTGGTGGCGGTGGAAGTGGCGGAGGTGGAA




GTTCAGGCGGAGTGTTCACCCTGGAAGATTTCGTCGGCGATTGGG




AGCAGACCGCCGCCTATAATCTGGACCAGGTTCTGGAACAAGGCG




GCGTCAGCTCTCTGCTGCAGAATCTGGCTGTGTCTGTGACCCCTAT




CCAGAGAATCGTGCGCTCTGGCGAGAACGCCCTGAAGATCGACAT




CCACGTGATCATCCCTTACGAGGGCCTGTCTGCCGATCAGATGGCT




CAGATCGAAGAGGTGTTCAAGGTGGTGTACCCCGTGGACGACCAC




CACTTCAAAGTGATCCTGCCTTACGGCACCCTGGTCATCGATGGCG




TGACCCCAAACATGCTGAACTACTTCGGCAGACCCTACGAGGGAA




TCGCCGTGTTCGACGGCAAGAAAATCACCGTGACCGGCACACTGT




GGAACGGCAACAAGATCATCGACGAGCGGCTGATCACCCCTGACG




GCTCTATGCTGTTCAGAGTGACCATCAACTCCTAATGA





SEQ
α-
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
neuropilin
CAGGCTCTACCGGCGACATCCAGATGACCCAGTCTCCATCCTCTCT


NO:
1 light-
GTCTGCCTCTGTGGGCGACAGAGTGACCATCACCTGTCGGGCCTCT


41
SmBiT
CAGTACTTCTCCTCCTACCTGGCCTGGTATCAGCAGAAGCCTGGCA




AGGCTCCCAAGCTGCTGATCTACGGCGCCTCTTCTAGAGCCTCTGG




CGTGCCATCTAGATTCTCCGGCTCTGGCTCTGGCACCGACTTTACC




CTGACAATCAGCTCCCTGCAGCCTGAGGACTTCGCCACCTACTACT




GTCAGCAGTACCTGGGCTCTCCTCCAACCTTTGGCCAGGGCACCAA




GGTGGAAATCAAGAGAACCGTGGCCGCTCCTTCCGTGTTCATCTTC




CCACCATCTGACGAGCAGCTGAAGTCCGGCACAGCTTCTGTCGTGT




GCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGCAGTGGA




AGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGTCTGTGA




CCGAGCAGGACTCCAAGGACTCTACCTACAGCCTGTCCTCCACACT




GACCCTGTCTAAGGCCGACTACGAGAAGCACAAGGTGTACGCCTG




TGAAGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAAGTCTTTC




AACAGAGGCGAGTGCGGATCTTCTGGTGGCGGAGGATCTGGCGGA




GGTGGAAGTAGTGGCGGCGTGACCGGCTACAGACTGTTCGAAGAG




ATCCTGTAATGA





SEQ
α-
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
neuropilin
CAGGCTCTACCGGCGACATCCAGATGACCCAGTCTCCATCCTCTCT


NO:
1 light
GTCTGCCTCTGTGGGCGACAGAGTGACCATCACCTGTCGGGCCTCT


42

CAGTACTTCTCCTCCTACCTGGCCTGGTATCAGCAGAAGCCTGGCA




AGGCTCCCAAGCTGCTGATCTACGGCGCCTCTTCTAGAGCCTCTGG




CGTGCCATCTAGATTCTCCGGCTCTGGCTCTGGCACCGACTTTACC




CTGACAATCAGCTCCCTGCAGCCTGAGGACTTCGCCACCTACTACT




GTCAGCAGTACCTGGGCTCTCCTCCAACCTTTGGCCAGGGCACCAA




GGTGGAAATCAAGAGAACCGTGGCCGCTCCTTCCGTGTTCATCTTC




CCACCATCTGACGAGCAGCTGAAGTCCGGCACAGCTTCTGTCGTGT




GCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGCAGTGGA




AGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGTCTGTGA




CCGAGCAGGACTCCAAGGACTCTACCTACAGCCTGTCCTCCACACT




GACCCTGTCTAAGGCCGACTACGAGAAGCACAAGGTGTACGCCTG




TGAAGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAAGTCTTTC




AACAGAGGCGAGTGCTAATGA





SEQ
α-CD221
ATGGAAACCGATACATTGCTTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
heavy-
CAGGATCTACAGGCGAAGTGCAGTTGGTGCAGTCTGGCGCCGAAG


NO:
LgBiT
TGAAGAAACCTGGCTCCTCTGTGAAGGTGTCCTGCAAGGCTTCTGG


43

CGGCACCTTCTCCTCTTACGCCATCTCTTGGGTCCGACAGGCTCCT




GGACAAGGCTTGGAGTGGATGGGCGGCATCATCCCTATCTTCGGC




ACCGCCAACTACGCCCAGAAATTCCAGGGCAGAGTGACCATCACC




GCCGACAAGTCTACCTCCACCGCCTACATGGAACTGTCCAGCCTG




AGATCTGAGGACACCGCCGTGTACTACTGTGCTAGAGCCCCTCTGC




GGTTCCTGGAATGGTCTACCCAGGACCACTACTACTATTACTACAT




GGACGTGTGGGGCAAGGGCACCACCGTGACAGTTTCTTCCGCTTC




CACCAAGGGACCCAGCGTTTTCCCTCTGGCTCCATCCTCCAAGTCC




ACCTCTGGTGGAACAGCTGCTCTGGGCTGCCTGGTCAAGGATTACT




TTCCTGAGCCTGTGACCGTGTCCTGGAACTCTGGTGCTCTGACATC




CGGCGTGCACACCTTTCCAGCTGTGCTGCAGTCCTCTGGCCTGTAC




TCTCTGTCCTCTGTCGTGACCGTGCCTTCTAGCTCTCTGGGCACCCA




GACCTACATCTGCAACGTGAACCACAAGCCTTCCAACACCAAAGT




GGACAAGAGAGTGGAACCCAAGTCTTGCGGATCTTCCGGTGGCGG




AGGATCTGGCGGAGGTGGAAGTAGTGGCGGAGTGTTCACCCTGGA




AGATTTCGTCGGCGATTGGGAGCAGACCGCCGCCTATAATCTGGA




CCAGGTTCTGGAACAAGGCGGCGTGTCCTCTCTGCTGCAGAATCTG




GCTGTGTCTGTGACCCCTATCCAGAGAATCGTGCGCTCTGGCGAGA




ACGCCCTGAAGATCGACATCCACGTGATCATCCCTTACGAGGGCC




TGTCTGCCGATCAGATGGCTCAGATCGAAGAGGTGTTCAAGGTGG




TGTACCCCGTGGACGACCACCACTTCAAAGTGATCCTGCCTTACGG




CACCCTGGTCATCGATGGCGTGACCCCAAACATGCTGAACTACTTC




GGCAGACCCTACGAGGGAATCGCCGTGTTCGACGGCAAGAAAATC




ACCGTGACCGGCACACTGTGGAACGGCAACAAGATCATCGACGAG




CGGCTGATCACCCCTGACGGCTCTATGCTGTTTAGAGTGACAATCA




ACTCCTAATGA





SEQ
α-CD221
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
light-
CAGGCTCTACCGGATCCTCTGAGTTGACACAGGACCCTGCTGTGTC


NO:
SmBiT
TGTGGCTCTGGGACAGACAGTGCGGATTACCTGTCAGGGCGACTC


44

CCTGAGATCTTACTACGCCACCTGGTATCAGCAGAAGCCCGGACA




GGCTCCCATCCTGGTTATCTACGGCGAGAACAAGCGGCCCTCTGG




CATCCCTGATAGATTCTCTGGCTCCTCCTCCGGCAATACCGCCTCT




CTGACAATTACTGGCGCCCAGGCTGAGGACGAGGCCGACTACTAT




TGCAAGTCCAGAGATGGCTCTGGCCAGCACTTGGTGTTTGGCGGC




GGAACAAAACTGACCGTGCTGGGCCAGCCTAAGGCCAATCCTACA




GTGACCCTGTTTCCTCCATCCTCCGAGGAACTGCAGGCCAACAAG




GCTACCCTCGTGTGCCTGATCTCTGACTTTTACCCTGGCGCTGTGA




CCGTGGCTTGGAAGGCTGATGGATCTCCTGTGAAGGCCGGCGTGG




AAACCACCAAGCCTAGCAAGCAGTCCAACAACAAATACGCCGCCT




CCTCCTACCTGTCTCTGACCCCTGAACAGTGGAAGTCCCACCGGTC




CTACTCTTGCCAAGTGACCCATGAGGGCTCCACCGTGGAAAAGAC




AGTGGCCCCTACCGAGTGCTCTGGATCTTCTGGTGGCGGAGGATCT




GGCGGAGGTGGAAGTAGTGGCGGCGTGACCGGCTACAGACTGTTC




GAAGAGATCCTGTAATGA





SEQ
α-CD221
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


ID
light
CAGGCTCTACCGGATCCTCTGAGCTGACACAGGACCCTGCTGTGTC


NO:

TGTGGCTCTGGGCCAGACAGTGCGGATTACCTGTCAGGGCGACTC


45

CCTGAGATCCTACTACGCCACCTGGTATCAGCAGAAGCCTGGACA




GGCTCCCATCCTGGTCATCTACGGCGAGAACAAGCGGCCCTCTGG




CATCCCTGATAGATTCTCCGGCTCCTCCAGCGGCAATACCGCCTCT




CTGACAATTACCGGCGCTCAGGCTGAGGACGAGGCCGACTACTAC




TGCAAGTCCAGAGATGGCTCCGGCCAGCACCTGGTTTTTGGCGGA




GGAACAAAGCTGACCGTGCTGGGCCAGCCTAAGGCCAATCCTACC




GTGACACTGTTCCCTCCATCCTCCGAGGAACTGCAGGCCAACAAG




GCTACCCTCGTGTGCCTGATCTCCGACTTTTACCCTGGCGCTGTGA




CCGTGGCCTGGAAGGCTGATGGATCTCCTGTGAAGGCTGGCGTGG




AAACCACCAAGCCTTCCAAGCAGTCCAACAACAAATACGCCGCCT




CCTCCTACCTGTCTCTGACCCCTGAACAGTGGAAGTCCCACCGGTC




CTACAGCTGCCAAGTGACCCATGAGGGCTCCACCGTGGAAAAGAC




CGTGGCTCCTACCGAGTGCTCCTGATGA





SEQ
α-death
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
receptor 5
CAGGATCTACAGGCGAAGTGCAGTTGGTTCAGTCTGGCGGCGGAG


NO:
heavy-
TTGAAAGACCTGGCGGATCTCTGAGACTGTCTTGTGCCGCCTCTGG


46
LgBiT
CTTCACCTTCGACGACTACGCTATGTCCTGGGTCCGACAGGCTCCT




GGCAAAGGATTGGAATGGGTGTCCGGCATCAACTGGCAAGGCGGC




TCTACCGGCTACGCCGATTCTGTGAAGGGCAGAGTGACCATCTCTC




GGGACAACGCCAAGAACTCCCTGTACCTGCAGATGAACAGCCTGA




GAGCCGAGGACACCGCCGTGTACTACTGTGCTAAGATCCTCGGCG




CTGGCAGAGGCTGGTACTTCGATTATTGGGGCAAGGGCACCACCG




TGACCGTGTCCTCTGCTTCTACAAAGGGCCCCTCTGTGTTCCCTCT




GGCTCCTTCCTCTAAATCCACCTCTGGCGGAACCGCTGCTCTGGGC




TGTCTGGTCAAGGATTACTTCCCTGAGCCTGTGACAGTGTCCTGGA




ACTCTGGTGCTCTGACATCCGGCGTGCACACCTTTCCAGCTGTGCT




GCAGTCCTCTGGCCTGTACTCTCTGTCCTCTGTCGTGACAGTGCCTT




CCAGCTCTCTGGGCACCCAGACCTACATCTGCAACGTGAACCACA




AGCCTTCCAACACCAAGGTGGACAAGAGAGTGGAACCCAAGTCTT




GTGGATCTTCTGGCGGAGGTGGAAGCGGAGGCGGAGGATCAAGTG




GCGGAGTGTTCACCCTGGAAGATTTCGTCGGCGATTGGGAGCAGA




CCGCCGCCTATAATCTGGACCAGGTTCTGGAACAAGGCGGCGTTA




GCTCTCTGCTGCAGAATCTGGCTGTGTCTGTGACCCCTATCCAGAG




AATCGTGCGCTCTGGCGAGAACGCCCTGAAGATCGACATCCACGT




GATCATCCCTTACGAGGGCCTGTCTGCCGATCAGATGGCTCAGATC




GAAGAGGTGTTCAAGGTGGTGTACCCCGTGGACGACCACCACTTC




AAAGTGATCCTGCCTTACGGCACCCTGGTCATCGATGGCGTGACCC




CAAACATGCTGAACTACTTCGGCAGACCCTACGAGGGAATCGCCG




TGTTCGACGGCAAGAAAATCACCGTGACAGGCACCCTGTGGAACG




GCAACAAGATCATCGACGAGCGGCTGATCACCCCTGACGGCTCCA




TGCTGTTTCGCGTGACCATCAACTCCTAATGA





SEQ
α-death
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
receptor 5
CAGGCTCTACCGGATCCTCTGAGTTGACACAGGACCCTGCTGTGTC


NO:
light-
TGTGGCTCTGGGACAGACAGTGCGGATCACCTGTTCCGGCGACTC


47
SmBiT
CCTGAGATCTTACTACGCCTCCTGGTATCAGCAGAAGCCTGGACA




GGCTCCCGTGCTGGTTATCTACGGCGCCAACAACAGACCTTCTGGC




ATCCCTGACAGATTCTCCGGCTCCAGCTCTGGCAATACCGCCTCTC




TGACAATTACCGGCGCTCAGGCTGAGGACGAGGCCGACTACTACT




GCAACTCTGCCGACTCTTCCGGCAATCACGTTGTGTTTGGCGGAGG




CACCAAGCTGACAGTGCTGGGCCAACCTAAGGCCAATCCTACCGT




GACACTGTTCCCTCCATCCTCCGAGGAACTGCAGGCTAACAAGGC




TACCCTCGTGTGCCTGATCTCCGATTTTTACCCTGGCGCTGTGACC




GTGGCTTGGAAGGCTGATGGATCTCCTGTGAAGGCCGGCGTGGAA




ACCACCAAGCCTAGCAAGCAGTCCAACAACAAATACGCCGCCTCC




TCCTACCTGTCTCTGACCCCTGAACAGTGGAAGTCCCACCGGTCCT




ACTCTTGCCAAGTGACCCATGAGGGCTCCACCGTGGAAAAGACAG




TGGCCCCTACCGAGTGCTCTGGATCTTCTGGTGGCGGAGGAAGCG




GAGGCGGAGGATCATCTGGCGGAGTGACCGGCTACAGACTGTTCG




AAGAGATCCTGTAATGA





SEQ
α-death
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
receptor 5
CAGGCTCTACCGGATCCTCTGAGTTGACACAGGACCCTGCTGTGTC


NO:
light
TGTGGCTCTGGGACAGACAGTGCGGATCACCTGTTCCGGCGACTC


48

CCTGAGATCTTACTACGCCTCCTGGTATCAGCAGAAGCCTGGACA




GGCTCCCGTGCTGGTTATCTACGGCGCCAACAACAGACCTTCTGGC




ATCCCTGACAGATTCTCCGGCTCCAGCTCTGGCAATACCGCCTCTC




TGACAATTACCGGCGCTCAGGCTGAGGACGAGGCCGACTACTACT




GCAACTCTGCCGACTCTTCCGGCAATCACGTTGTGTTTGGCGGAGG




CACCAAGCTGACAGTGCTGGGCCAACCTAAGGCCAATCCTACCGT




GACACTGTTCCCTCCATCCTCCGAGGAACTGCAGGCTAACAAGGC




TACCCTCGTGTGCCTGATCTCCGATTTTTACCCTGGCGCTGTGACC




GTGGCTTGGAAGGCTGATGGATCTCCTGTGAAGGCCGGCGTGGAA




ACCACCAAGCCTAGCAAGCAGTCCAACAACAAATACGCCGCCTCC




TCCTACCTGTCTCTGACCCCTGAACAGTGGAAGTCCCACCGGTCCT




ACTCTTGCCAAGTGACCCATGAGGGCTCCACCGTGGAAAAGACAG




TGGCCCCTACCGAGTGCTCTTAATGA





SEQ
α-IL23
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
heavy-
CAGGATCTACAGGCGAAGTGCAGTTGGTGCAGTCTGGCGCCGAAG


NO:
LgBiT
TGAAGAAGCCTGGCGAGTCCCTGAAGATCTCCTGCAAAGGCTCCG


49

GCTACTCCTTCTCCAACTACTGGATCGGCTGGGTCCGACAGATGCC




TGGCAAAGGACTGGAATGGATGGGCATCATCGACCCCTCCAACAG




CTACACCAGATACAGCCCTAGCTTCCAGGGCCAAGTGACCATCTC




CGCCGACAAGTCTATCTCCACCGCCTACCTGCAGTGGTCCTCTCTG




AAGGCCTCTGACACCGCCATGTACTACTGCGCCAGATGGTACTAC




AAGCCCTTCGATGTGTGGGGCCAGGGCACACTGGTTACCGTGTCCT




CTGCTTCTACCAAGGGACCCTCTGTGTTCCCTCTGGCTCCTTCCAG




CAAGTCTACCTCTGGTGGAACCGCTGCTCTGGGCTGCCTGGTCAAG




GATTACTTTCCTGAGCCTGTGACCGTGTCTTGGAACTCTGGTGCTC




TGACCTCCGGCGTGCACACATTTCCAGCTGTGCTGCAGTCCTCCGG




CCTGTACTCTCTGTCCTCTGTCGTGACCGTGCCTTCTAGCTCTCTGG




GCACCCAGACCTACATCTGCAACGTGAACCACAAGCCTTCCAACA




CCAAGGTGGACAAGAGAGTGGAACCCAAGTCTTGCGGATCTTCTG




GTGGCGGAGGATCTGGCGGAGGTGGAAGTAGTGGCGGAGTGTTCA




CCCTGGAAGATTTCGTCGGCGATTGGGAGCAGACCGCCGCCTATA




ATCTGGACCAGGTTCTGGAACAAGGCGGCGTCAGCTCTCTGCTGC




AGAATCTGGCTGTGTCTGTGACCCCTATCCAGAGAATCGTGCGCTC




TGGCGAGAACGCTCTGAAGATCGACATCCACGTGATCATCCCTTA




CGAGGGCCTGTCTGCCGATCAGATGGCTCAGATCGAAGAGGTGTT




CAAGGTGGTGTACCCCGTGGACGACCACCACTTCAAAGTGATCCT




GCCTTACGGCACCCTGGTCATCGATGGCGTGACCCCAAACATGCT




GAACTACTTCGGCAGACCCTACGAGGGAATCGCCGTGTTCGACGG




CAAGAAAATCACCGTGACCGGCACACTGTGGAACGGCAACAAGAT




CATCGACGAGCGGCTGATCACCCCTGACGGCTCTATGCTGTTCCGC




GTGACCATCAACTCCTAATGA





SEQ
α-IL23
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
light-
CAGGCTCTACAGGCCAGTCTGTTCTGACTCAGCCTCCTTCTGTTTCT


NO:
SmBiT
GGCGCTCCTGGCCAGAGAGTGACCATCTCCTGTACCGGCTCCTCCT


50

CTAACATCGGCTCTGGCTACGACGTGCACTGGTATCAGCAGCTGCC




TGGCACAGCCCCTAAACTGCTGATCTACGGCAACTCCAAGAGGCC




TTCTGGCGTGCCCGATAGATTCTCCGGCTCTAAGTCTGGCACCTCT




GCTTCTCTGGCTATCACCGGCCTGCAGTCTGAGGACGAGGCCGATT




ACTACTGCGCTTCTTGGACCGATGGCCTGAGCCTGGTTGTGTTTGG




CGGCGGAACAAAGCTGACAGTGCTGGGCCAGCCTAAGGCCAATCC




TACCGTGACACTGTTCCCTCCATCCTCCGAGGAACTGCAGGCTAAC




AAGGCTACCCTCGTGTGCCTGATCTCCGATTTTTACCCTGGCGCTG




TGACCGTGGCTTGGAAGGCTGATGGATCTCCTGTGAAGGCCGGCG




TGGAAACCACCAAGCCTAGCAAGCAGTCCAACAACAAATACGCCG




CCTCCTCCTACCTGTCTCTGACCCCTGAACAGTGGAAGTCCCACCG




GTCCTACTCTTGCCAAGTGACCCATGAGGGCTCCACCGTGGAAAA




GACAGTGGCCCCTACCGAGTGCTCTGGATCTTCTGGTGGCGGAGG




ATCTGGCGGAGGTGGAAGTAGTGGCGGCGTGACCGGCTACAGACT




GTTCGAAGAGATCCTGTAATGA





SEQ
α-IL23
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
light
CAGGCTCTACAGGCCAGTCTGTTCTGACTCAGCCTCCTTCTGTTTCT


NO:

GGCGCTCCTGGCCAGAGAGTGACCATCTCCTGTACCGGCTCCTCCT


51

CTAACATCGGCTCTGGCTACGACGTGCACTGGTATCAGCAGCTGCC




TGGCACAGCCCCTAAACTGCTGATCTACGGCAACTCCAAGAGGCC




TTCTGGCGTGCCCGATAGATTCTCCGGCTCTAAGTCTGGCACCTCT




GCTTCTCTGGCTATCACCGGCCTGCAGTCTGAGGACGAGGCCGATT




ACTACTGCGCTTCTTGGACCGATGGCCTGAGCCTGGTTGTGTTTGG




CGGCGGAACAAAGCTGACAGTGCTGGGCCAGCCTAAGGCCAATCC




TACCGTGACACTGTTCCCTCCATCCTCCGAGGAACTGCAGGCTAAC




AAGGCTACCCTCGTGTGCCTGATCTCCGATTTTTACCCTGGCGCTG




TGACCGTGGCTTGGAAGGCTGATGGATCTCCTGTGAAGGCCGGCG




TGGAAACCACCAAGCCTAGCAAGCAGTCCAACAACAAATACGCCG




CCTCCTCCTACCTGTCTCTGACCCCTGAACAGTGGAAGTCCCACCG




GTCCTACTCTTGCCAAGTGACCCATGAGGGCTCCACCGTGGAAAA




GACAGTGGCCCCTACCGAGTGCTCTTAATGA





SEQ
α-HER3
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
heavy-
CAGGATCTACAGGACAGGTGCAGTTGGTTCAGTCTGGCGGAGGAC


NO:
LgBiT
TTGTTCAGCCAGGCGGATCTCTGAGACTGTCTTGTGCCGCCTCTGG


52

CTTCACCTTCGACGATTACGCTATGCACTGGGTCCGACAGGCCCCT




GGAAAAGGATTGGAATGGGTGGCCGGCATCTCCTGGGATTCTGGC




TCTACCGGCTACGCCGATTCCGTGAAGGGCAGATTCACCATCTCTC




GGGACAACGCCAAGAACTCCCTGTACCTGCAGATGAACAGCCTGA




GAGCCGAGGACACCGCTCTGTACTACTGTGCTAGAGATCTGGGCG




CCTACCAGTGGGTGGAAGGCTTTGATTATTGGGGCCAGGGCACCC




TGGTCACCGTGTCCTCTGCTTCTACAAAGGGCCCCTCTGTGTTCCC




TCTGGCTCCTTCCTCTAAATCCACCTCTGGCGGAACCGCTGCTCTG




GGCTGTCTGGTCAAGGATTACTTCCCTGAGCCTGTGACCGTGTCTT




GGAACTCTGGTGCTCTGACATCCGGCGTGCACACCTTTCCAGCTGT




GCTGCAGTCCTCTGGCCTGTACTCTCTGTCCTCTGTCGTGACCGTG




CCTTCTAGCTCTCTGGGCACCCAGACCTACATCTGCAACGTGAACC




ACAAGCCTAGCAACACCAAGGTGGACAAGAGAGTGGAACCCAAG




TCTTGCGGATCTTCTGGCGGCGGAGGAAGCGGAGGCGGAGGATCT




AGTGGCGGAGTGTTCACCCTGGAAGATTTCGTCGGCGATTGGGAG




CAGACCGCCGCCTATAATCTGGACCAGGTTCTGGAACAAGGCGGC




GTCAGCTCTCTGCTGCAGAATCTGGCTGTGTCTGTGACCCCTATCC




AGAGAATCGTGCGCTCTGGCGAGAACGCCCTGAAGATCGACATCC




ACGTGATCATCCCTTACGAGGGCCTGTCTGCCGATCAGATGGCTCA




GATCGAAGAGGTGTTCAAGGTGGTGTACCCCGTGGACGACCACCA




CTTCAAAGTGATCCTGCCTTACGGCACCCTCGTGATCGATGGCGTG




ACCCCAAACATGCTGAACTACTTCGGCAGACCCTACGAGGGAATC




GCCGTGTTCGACGGCAAGAAAATCACCGTGACCGGCACACTGTGG




AACGGCAACAAGATCATCGACGAGCGGCTGATCACCCCTGACGGC




TCCATGCTGTTTAGAGTGACCATCAACTCCTAATGA





SEQ
α-HER3
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
light-
CAGGCTCTACCGGCTCTTACGAGTTGACACAGGACCCTGCTGTGTC


NO:
SmBiT
TGTGGCTCTGGGACAGACAGTGCGGATTACCTGTCAGGGCGACTC


53

CCTGAGATCCTACTACGCCTCCTGGTATCAGCAGAAGCCTGGACA




GGCTCCCGTGCTGGTCATCTACGGCAAGAACAACAGACCCTCTGG




CATCCCTGACCGGTTCTCTGGCTCTACCTCTGGCAATTCCGCCAGC




CTGACAATTACTGGCGCTCAGGCTGAGGACGAGGCCGACTACTAC




TGCAACTCTAGAGACTCCCCTGGCAACCAGTGGGTGTTCGGCGGA




GGAACAAAAGTGACAGTGCTCGGCGGCCAGCCTAAGGCCAATCCT




ACAGTGACCCTGTTTCCTCCATCCTCCGAGGAACTGCAGGCCAACA




AGGCTACCCTCGTGTGCCTGATCTCTGACTTTTACCCTGGCGCTGT




GACCGTGGCTTGGAAGGCTGATGGATCTCCTGTGAAGGCCGGCGT




GGAAACCACCAAGCCTAGCAAGCAGTCCAACAACAAATACGCCGC




CTCCTCCTACCTGTCTCTGACCCCTGAACAGTGGAAGTCCCACCGG




TCCTACTCTTGCCAAGTGACCCATGAGGGCTCCACCGTGGAAAAG




ACAGTGGCCCCTACCGAGTGCTCTGGATCTTCTGGTGGCGGAGGA




TCTGGCGGAGGTGGAAGTAGTGGCGGCGTGACCGGCTACAGACTG




TTCGAAGAGATCCTGTAATGA





SEQ
α-HER3
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


NO:
light
CAGGCTCTACCGGCTCTTACGAGCTGACACAGGACCCTGCTGTGTC


54

TGTGGCTCTGGGCCAGACAGTGCGGATTACCTGTCAGGGCGACTC




CCTGAGATCCTACTACGCCTCCTGGTATCAGCAGAAGCCTGGACA




GGCTCCCGTGCTGGTCATCTACGGCAAGAACAACCGGCCTAGCGG




CATCCCTGACAGATTCTCCGGCTCTACCTCCGGCAACTCTGCCAGC




CTGACAATTACTGGCGCCCAGGCTGAGGACGAGGCCGACTACTAC




TGCAACTCCAGAGACTCCCCTGGCAACCAGTGGGTTTTCGGCGGA




GGCACCAAAGTGACAGTGCTCGGAGGACAGCCCAAGGCCAATCCT




ACCGTGACACTGTTCCCTCCATCCTCCGAGGAACTGCAGGCCAAC




AAGGCTACCCTCGTGTGCCTGATCTCCGACTTTTACCCTGGCGCTG




TGACCGTGGCCTGGAAGGCTGATGGATCTCCTGTGAAGGCTGGCG




TGGAAACCACCAAGCCTTCCAAGCAGTCCAACAACAAATACGCCG




CCTCCTCCTACCTGTCTCTGACCCCTGAACAGTGGAAGTCCCACCG




GTCCTACAGCTGCCAAGTGACCCATGAGGGCTCCACCGTGGAAAA




GACCGTGGCTCCTACCGAGTGCTCCTGATGA





SEQ
α-
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
TRAILR2
CAGGATCTACAGGCGAAGTGCAGTTGGTTCAGTCTGGCGGCGGAG


NO:
heavy-
TTGAAAGACCTGGCGGATCTCTGAGACTGTCTTGTGCCGCCTCTGG


55
LgBiT
CTTCACCTTCGACGACTATGGCATGTCCTGGGTCCGACAGGCTCCT




GGCAAAGGATTGGAATGGGTGTCCGGCATCAACTGGAATGGCGGC




TCTACCGGCTACGCCGATTCTGTGAAGGGCAGAGTGACCATCTCTC




GGGACAACGCCAAGAACTCCCTGTACCTGCAGATGAACAGCCTGA




GAGCCGAGGACACCGCCGTGTACTACTGTGCTAAGATCCTCGGCG




CTGGCAGAGGCTGGTATTTCGATCTGTGGGGCAAGGGCACCACCG




TGACAGTGTCCTCTGCTTCTACCAAGGGACCCAGCGTTTTCCCTCT




GGCTCCATCCTCTAAGTCCACCTCTGGTGGAACCGCTGCTCTGGGC




TGTCTGGTCAAGGATTACTTCCCTGAGCCTGTGACCGTGTCCTGGA




ACTCTGGTGCTCTGACATCCGGCGTGCACACCTTTCCAGCTGTGCT




GCAGTCCTCTGGCCTGTACTCTCTGTCCTCTGTCGTGACCGTGCCTT




CTAGCTCTCTGGGCACCCAGACCTACATCTGCAACGTGAACCACA




AGCCTTCCAACACCAAAGTGGACAAGAGAGTGGAACCCAAGTCCT




GCGGATCTTCTGGTGGCGGAGGATCTGGCGGAGGTGGAAGTAGTG




GCGGAGTGTTCACCCTGGAAGATTTCGTCGGCGATTGGGAGCAGA




CCGCCGCCTATAATCTGGACCAGGTTCTGGAACAAGGCGGCGTGT




CCTCTCTGCTGCAGAATCTGGCTGTGTCTGTGACCCCTATCCAGAG




AATCGTGCGCTCTGGCGAGAACGCCCTGAAGATCGACATCCACGT




GATCATCCCTTACGAGGGCCTGTCTGCCGATCAGATGGCTCAGATC




GAAGAGGTGTTCAAGGTGGTGTACCCCGTGGACGACCACCACTTC




AAAGTGATCCTGCCTTACGGCACCCTGGTCATCGATGGCGTGACCC




CAAACATGCTGAACTACTTCGGCAGACCCTACGAGGGAATCGCCG




TGTTCGACGGCAAGAAAATCACCGTGACCGGCACACTGTGGAACG




GCAACAAGATCATCGACGAGCGGCTGATCACCCCTGACGGCTCCA




TGCTGTTTCGCGTGACCATCAACTCCTAATGA





SEQ
α-
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
TRAILR2
CAGGCTCTACCGGATCCTCTGAGTTGACACAGGACCCTGCTGTGTC


NO:
light-
TGTGGCTCTGGGACAGACAGTGCGGATTACCTGTCAGGGCGACTC


56
SmBiT
CCTGAGATCCTACTACGCCTCCTGGTATCAGCAGAAGCCTGGACA




GGCTCCCGTGCTGGTCATCTACGGCAAGAACAACAGACCCTCTGG




CATCCCTGACCGGTTCTCCGGATCTAGCTCTGGCAATACCGCCAGC




CTGACAATTACTGGCGCTCAGGCTGAGGACGAGGCCGACTACTAC




TGCAACTCCAGAGACTCTTCCGGCAATCACGTGGTGTTTGGCGGCG




GAACAAAGCTGACAGTGCTGGGCCAGCCTAAGGCCAATCCTACCG




TGACACTGTTCCCTCCATCCTCCGAGGAACTGCAGGCTAACAAGG




CTACCCTCGTGTGCCTGATCTCCGATTTTTACCCTGGCGCTGTGAC




CGTGGCTTGGAAGGCTGATGGATCTCCTGTGAAGGCCGGCGTGGA




AACCACCAAGCCTAGCAAGCAGTCCAACAACAAATACGCCGCCTC




CTCCTACCTGTCTCTGACCCCTGAACAGTGGAAGTCCCACCGGTCC




TACTCTTGCCAAGTGACCCATGAGGGCTCCACCGTGGAAAAGACA




GTGGCCCCTACCGAGTGCTCTGGATCTTCTGGTGGCGGAGGATCTG




GCGGAGGTGGAAGTAGTGGCGGCGTGACCGGCTACAGACTGTTCG




AAGAGATCCTGTAATGA





SEQ
α-
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


ID
TRAILR2
CAGGCTCTACCGGATCCTCTGAGCTGACACAGGACCCTGCTGTGTC


NO:
light
TGTGGCTCTGGGCCAGACAGTGCGGATTACCTGTCAGGGCGACTC


57

CCTGAGATCCTACTACGCCTCCTGGTATCAGCAGAAGCCTGGACA




GGCTCCCGTGCTGGTCATCTACGGCAAGAACAACCGGCCTAGCGG




CATCCCTGACAGATTCTCCGGATCTTCCAGCGGCAATACCGCCAGC




CTGACAATTACTGGCGCCCAGGCTGAGGACGAGGCCGACTACTAC




TGCAACTCCAGAGACTCCTCCGGCAATCACGTGGTGTTTGGCGGC




GGAACAAAGCTGACAGTGCTGGGCCAGCCTAAGGCCAATCCTACC




GTGACACTGTTCCCTCCATCCTCCGAGGAACTGCAGGCCAACAAG




GCTACCCTCGTGTGCCTGATCTCCGACTTTTACCCTGGCGCTGTGA




CCGTGGCCTGGAAGGCTGATGGATCTCCTGTGAAGGCTGGCGTGG




AAACCACCAAGCCTTCCAAGCAGTCCAACAACAAATACGCCGCCT




CCTCCTACCTGTCTCTGACCCCTGAACAGTGGAAGTCCCACCGGTC




CTACAGCTGCCAAGTGACCCATGAGGGCTCCACCGTGGAAAAGAC




CGTGGCTCCTACCGAGTGCTCCTGATGA





SEQ
α-activin
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
receptors
CAGGATCTACAGGACAGGTGCAGTTGGTGCAGTCTGGCGCCGAAG


NO:
heavy-
TGAAGAAACCTGGCGCTTCTGTGAAGGTGTCCTGCAAGGCCTCTG


58
LgBiT
GCTACACCTTTACCTCCAGCTACATCAACTGGGTCCGACAGGCTCC




TGGACAGGGACTTGAGTGGATGGGCACCATCAATCCTGTGTCCGG




CTCTACCAGCTACGCCCAGAAATTCCAGGGCAGAGTGACCATGAC




CAGAGACACCTCCATCTCCACCGCCTACATGGAACTGTCCCGGCTG




AGATCTGACGACACCGCCGTGTACTATTGTGCCAGAGGCGGATGG




TTCGATTACTGGGGACAGGGCACACTGGTCACCGTGTCCTCTGCTT




CTACCAAGGGACCCTCTGTGTTCCCTCTGGCTCCTTCCAGCAAGTC




TACCTCTGGTGGAACCGCTGCTCTGGGCTGCCTGGTCAAGGATTAC




TTTCCTGAGCCTGTGACCGTGTCTTGGAACTCTGGTGCTCTGACCT




CCGGCGTGCACACATTTCCAGCTGTGCTGCAGTCCTCCGGCCTGTA




CTCTCTGTCCTCTGTCGTGACCGTGCCTTCTAGCTCTCTGGGCACCC




AGACCTACATCTGCAACGTGAACCACAAGCCTTCCAACACCAAGG




TGGACAAGAGAGTGGAACCCAAGTCTTGCGGATCTTCTGGTGGCG




GAGGATCTGGCGGAGGTGGAAGTAGTGGCGGAGTGTTCACCCTGG




AAGATTTCGTCGGCGATTGGGAGCAGACCGCCGCCTATAATCTGG




ACCAGGTTCTGGAACAAGGCGGCGTCAGCTCTCTGCTGCAGAATC




TGGCTGTGTCTGTGACCCCTATCCAGAGAATTGTGCGCTCTGGCGA




GAACGCCCTGAAGATCGACATCCACGTGATCATCCCTTACGAGGG




CCTGTCTGCCGATCAGATGGCTCAGATCGAAGAGGTGTTCAAGGT




GGTGTACCCCGTGGACGACCACCACTTCAAAGTGATCCTGCCTTAC




GGCACCCTGGTCATCGATGGCGTGACCCCAAACATGCTGAACTAC




TTCGGCAGACCCTACGAGGGAATCGCCGTGTTCGACGGCAAGAAA




ATCACCGTGACCGGCACACTGTGGAACGGCAACAAGATCATCGAC




GAGCGGCTGATCACCCCTGACGGCTCTATGCTGTTCCGCGTGACCA




TCAACTCCTAATGA





SEQ
α-activin
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
receptors
CAGGCTCTACAGGCCAGTCTGCTTTGACTCAGCCTGCCTCTGTGTC


NO:
light-
TGGCTCCCCTGGCCAGTCTATCACCATCTCTTGTACCGGCACCTCC


59
SmBiT
TCCGACGTGGGCTCCTACAACTACGTGAACTGGTATCAGCAGCAC




CCCGGCAAGGCCCCTAAGCTGATGATCTACGGCGTGTCCAAACGG




CCCAGCGGAGTGTCTAACAGATTCTCCGGCTCCAAGTCTGGCAAC




ACCGCTTCTCTGACAATCAGCGGACTGCAGGCCGAGGACGAGGCT




GATTACTACTGTGGCACCTTCGCTGGCGGCTCCTACTATGGTGTTT




TTGGCGGCGGAACAAAGCTGACCGTGCTGGGCCAACCTAAGGCCA




ATCCTACCGTGACACTGTTCCCTCCATCCTCCGAGGAACTGCAGGC




TAACAAGGCTACCCTCGTGTGCCTGATCTCCGATTTTTACCCTGGC




GCTGTGACCGTGGCTTGGAAGGCTGATGGATCTCCTGTGAAGGCC




GGCGTGGAAACCACCAAGCCTAGCAAGCAGTCCAACAACAAATAC




GCCGCCTCCTCCTACCTGTCTCTGACCCCTGAACAGTGGAAGTCCC




ACCGGTCCTACTCTTGCCAAGTGACCCATGAGGGCTCCACCGTGG




AAAAGACAGTGGCCCCTACCGAGTGCTCTGGATCTTCTGGTGGCG




GAGGATCTGGCGGAGGTGGAAGTAGTGGCGGCGTGACCGGCTACA




GACTGTTCGAAGAGATCCTGTAATGA





SEQ
α-activin
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
receptors
CAGGCTCTACAGGCCAGTCTGCTTTGACTCAGCCTGCCTCTGTGTC


NO:
light
TGGCTCCCCTGGCCAGTCTATCACCATCTCTTGTACCGGCACCTCC


60

TCCGACGTGGGCTCCTACAACTACGTGAACTGGTATCAGCAGCAC




CCCGGCAAGGCCCCTAAGCTGATGATCTACGGCGTGTCCAAACGG




CCCAGCGGAGTGTCTAACAGATTCTCCGGCTCCAAGTCTGGCAAC




ACCGCTTCTCTGACAATCAGCGGACTGCAGGCCGAGGACGAGGCT




GATTACTACTGTGGCACCTTCGCTGGCGGCTCCTACTATGGTGTTT




TTGGCGGCGGAACAAAGCTGACCGTGCTGGGCCAACCTAAGGCCA




ATCCTACCGTGACACTGTTCCCTCCATCCTCCGAGGAACTGCAGGC




TAACAAGGCTACCCTCGTGTGCCTGATCTCCGATTTTTACCCTGGC




GCTGTGACCGTGGCTTGGAAGGCTGATGGATCTCCTGTGAAGGCC




GGCGTGGAAACCACCAAGCCTAGCAAGCAGTCCAACAACAAATAC




GCCGCCTCCTCCTACCTGTCTCTGACCCCTGAACAGTGGAAGTCCC




ACCGGTCCTACTCTTGCCAAGTGACCCATGAGGGCTCCACCGTGG




AAAAGACAGTGGCCCCTACCGAGTGCTCTTAATGA





SEQ
complement
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
C5 heavy
CAGGATCTACAGGCGAAGTGCAGTTGGTGCAGTCTGGCGCCGAAG


NO:
-LgBiT
TGAAGAAACCTGGCTCCTCTGTGAAGGTGTCCTGCAAGGCTTCTGG


61

CGGCACCTTCTCCTCTTACGCCATCTCTTGGGTCCGACAGGCTCCT




GGACAAGGCTTGGAGTGGATGGGCGGCATCGGCCCTTTTTTCGGC




ACCGCCAACTACGCCCAGAAATTCCAGGGCAGAGTGACCATCACC




GCCGACGAGTCTACCTCCACCGCTTACATGGAACTGTCCAGCCTGA




GATCTGAGGACACCGCCGTGTACTACTGCGCCAGAGACACCCCTT




ACTTCGATTATTGGGGCCAGGGCACCCTGGTCACCGTGTCCTCTGC




TTCTACAAAGGGCCCCTCTGTGTTCCCTCTGGCTCCTAGCTCTAAG




TCTACATCTGGCGGAACCGCTGCTCTGGGCTGCCTGGTCAAGGATT




ACTTTCCTGAGCCTGTGACCGTGTCTTGGAACTCTGGTGCTCTGAC




CTCCGGCGTGCACACATTTCCAGCTGTGCTGCAGTCCTCCGGCCTG




TACTCTCTGTCCTCTGTCGTGACCGTGCCTTCTAGCTCTCTGGGCAC




CCAGACCTACATCTGCAACGTGAACCACAAGCCTTCCAACACCAA




GGTGGACAAGAGAGTGGAACCCAAGTCTTGCGGATCTTCCGGTGG




CGGAGGAAGCGGAGGCGGAGGATCTAGTGGCGGAGTGTTCACCCT




GGAAGATTTCGTCGGCGATTGGGAGCAGACCGCCGCCTATAATCT




GGACCAGGTTCTGGAACAAGGCGGGGTGTCCTCTCTGCTGCAGAA




TCTGGCTGTGTCTGTGACCCCTATCCAGAGAATCGTGCGCTCTGGC




GAGAACGCCCTGAAGATCGACATCCACGTGATCATCCCTTACGAG




GGCCTGTCTGCCGATCAGATGGCTCAGATCGAAGAGGTGTTCAAG




GTGGTGTACCCCGTGGACGACCACCACTTCAAAGTGATCCTGCCTT




ACGGCACCCTCGTGATCGATGGCGTGACCCCAAACATGCTGAACT




ACTTCGGCAGACCCTACGAGGGAATCGCCGTGTTCGACGGCAAGA




AAATCACCGTGACCGGCACACTGTGGAACGGCAACAAGATCATCG




ACGAGCGGCTGATCACCCCTGACGGCTCTATGCTGTTTAGAGTGAC




AATCAACTCCTAATGA





SEQ
α-
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
complement
CAGGCTCTACCGGCTCTTATGAGCTGACACAGCCTCTGTCTGTGTC


NO:
C5 light-
TGTGGCTCTGGGCCAGACCGCCAGAATCACCTGTTCTGGCGACAG


62
SmBiT
CATCCCCAACTACTACGTGTACTGGTATCAGCAGAAGCCCGGCCA




GGCTCCTGTGCTGGTCATCTACGACGACTCCAACAGACCCAGCGG




CATCCCTGAGAGATTCTCCGGCTCTAACTCTGGCAACACCGCCACA




CTGACCATCTCTAGAGCACAGGCTGGCGACGAGGCCGACTACTAC




TGCCAGTCTTTCGACAGCTCTCTGAACGCCGAAGTGTTCGGCGGAG




GCACAAAACTGACAGTGCTGGGCCAGCCTAAGGCCAATCCTACCG




TGACACTGTTCCCTCCATCCTCCGAGGAACTGCAGGCTAACAAGG




CTACCCTCGTGTGCCTGATCTCCGATTTTTACCCTGGCGCTGTGAC




CGTGGCTTGGAAGGCTGATGGATCTCCTGTGAAGGCCGGCGTGGA




AACCACCAAGCCTAGCAAGCAGTCCAACAACAAATACGCCGCCTC




CTCCTACCTGTCTCTGACCCCTGAACAGTGGAAGTCCCACCGGTCC




TACTCTTGCCAAGTGACCCATGAGGGCTCCACCGTGGAAAAGACA




GTGGCCCCTACCGAGTGCTCTGGATCTTCTGGTGGCGGAGGATCTG




GCGGAGGTGGAAGTAGTGGCGGCGTGACCGGCTACAGACTGTTCG




AAGAGATCCTGTAATGA





SEQ
α-
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
complement
CAGGCTCTACCGGCTCTTATGAGCTGACACAGCCTCTGTCTGTGTC


NO:
 C5 light
TGTGGCTCTGGGCCAGACCGCCAGAATCACCTGTTCTGGCGACAG


63

CATCCCCAACTACTACGTGTACTGGTATCAGCAGAAGCCCGGCCA




GGCTCCTGTGCTGGTCATCTACGACGACTCCAACAGACCCAGCGG




CATCCCTGAGAGATTCTCCGGCTCTAACTCTGGCAACACCGCCACA




CTGACCATCTCTAGAGCACAGGCTGGCGACGAGGCCGACTACTAC




TGCCAGTCTTTCGACAGCTCTCTGAACGCCGAAGTGTTCGGCGGAG




GCACAAAACTGACAGTGCTGGGCCAGCCTAAGGCCAATCCTACCG




TGACACTGTTCCCTCCATCCTCCGAGGAACTGCAGGCTAACAAGG




CTACCCTCGTGTGCCTGATCTCCGATTTTTACCCTGGCGCTGTGAC




CGTGGCTTGGAAGGCTGATGGATCTCCTGTGAAGGCCGGCGTGGA




AACCACCAAGCCTAGCAAGCAGTCCAACAACAAATACGCCGCCTC




CTCCTACCTGTCTCTGACCCCTGAACAGTGGAAGTCCCACCGGTCC




TACTCTTGCCAAGTGACCCATGAGGGCTCCACCGTGGAAAAGACA




GTGGCCCCTACCGAGTGCTCTTAATGA





SEQ
α-CCR2
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
heavy-
CAGGATCTACAGGCGAAGTGCAGTTGGTGCAGTCTGGCGCCGAAG


NO:
LgBiT
TGAAGAAACCTGGCGCTTCTGTGAAGGTGTCCTGCAAGGCCTCTG


64

GCTACACCTTTACCGGCTACCACATGCACTGGGTCCGACAGGCTCC




AGGACAAGGATTGGAGTGGATGGGCTGGATCAACCCCAACTCCGG




CGTGACCAAATACGCCCAGAAATTCCAGGGCAGAGTGACCATGAC




CAGAGACACCTCCATCAACACCGCCTACATGGAACTGTCCCGGCT




GAGATTCGACGACACCGACGTGTACTATTGTGCCACCGGCGGCTTT




GGCTATTGGGGAGAGGGAACACTGGTCACCGTGTCCTCTGCTTCTA




CCAAGGGACCCTCCGTGTTTCCTCTGGCTCCTTCCAGCAAGTCTAC




CTCTGGTGGAACCGCTGCTCTGGGCTGCCTGGTCAAGGATTACTTT




CCTGAGCCTGTGACCGTGTCTTGGAACTCTGGTGCTCTGACCAGCG




GCGTGCACACATTTCCAGCTGTGCTGCAGTCCTCCGGCCTGTACTC




TCTGTCCTCTGTCGTGACCGTGCCTTCTAGCTCTCTGGGCACCCAG




ACCTACATCTGCAACGTGAACCACAAGCCTTCCAACACCAAGGTG




GACAAGAGAGTGGAACCCAAGTCTTGCGGATCTTCTGGTGGCGGA




GGATCTGGCGGAGGTGGAAGTAGTGGCGGAGTGTTCACCCTGGAA




GATTTCGTCGGCGATTGGGAGCAGACCGCCGCCTATAATCTGGAC




CAGGTTCTGGAACAAGGCGGCGTCAGCTCTCTGCTGCAGAATCTG




GCTGTGTCTGTGACCCCTATCCAGAGAATCGTGCGCTCTGGCGAGA




ACGCCCTGAAGATCGACATCCACGTGATCATCCCTTACGAGGGCC




TGTCTGCCGATCAGATGGCTCAGATCGAAGAGGTGTTCAAGGTGG




TGTACCCCGTGGACGACCACCACTTCAAAGTGATCCTGCCTTACGG




CACCCTGGTCATCGATGGCGTGACCCCAAACATGCTGAACTACTTC




GGCAGACCCTACGAGGGAATCGCCGTGTTCGACGGCAAGAAAATC




ACCGTGACCGGCACACTGTGGAACGGCAACAAGATCATCGACGAG




CGGCTGATCACCCCTGACGGCTCTATGCTGTTCCGCGTGACCATCA




ACTCCTAATGA





SEQ
α-CCR2
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
light-
CAGGATCTACAGGCCTGCCTGTTCTGACACAGCCTCCTAGCGTGTC


NO:
SmBiT
CAAGGGCCTGAGACAGACCGCTACACTGACCTGCACCGGCAACTC


65

TAACAACGTGGGAAATCAGGGCGCTGCCTGGTTGCAGCAGCATCA




GGGACAACCTCCAAAGCTGCTGTCCTACCGGAACCACAATAGACC




TTCCGGCGTGTCCGAGCGGTTCAGCCCTTCTAGATCTGGCGACACC




TCTAGCCTGACCATCACTGGACTGCAGCCTGAGGACGAGGCCGAT




TACTACTGTCTGGCCTGGGATTCTTCTCTGCGGGCCTTTGTGTTTGG




CACCGGCACAAAACTGACCGTGCTGGGCCAGCCTAAGGCCAATCC




TACAGTGACCCTGTTTCCTCCATCCTCCGAGGAACTGCAGGCCAAC




AAGGCTACCCTCGTGTGCCTGATCTCTGACTTTTACCCTGGCGCTG




TGACCGTGGCTTGGAAGGCTGATGGATCTCCTGTGAAGGCCGGCG




TGGAAACCACCAAGCCTAGCAAGCAGTCCAACAACAAATACGCCG




CCTCCTCCTACCTGTCTCTGACCCCTGAACAGTGGAAGTCCCACCG




GTCCTACTCTTGCCAAGTGACCCATGAGGGCTCCACCGTGGAAAA




GACAGTGGCCCCTACCGAGTGCTCTGGATCTTCTGGTGGCGGAGG




ATCTGGCGGAGGTGGAAGTAGTGGCGGCGTGACCGGCTACAGACT




GTTCGAAGAGATCCTGTAATGA





SEQ
α-CCR2
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


ID
light
CAGGATCTACAGGACTGCCCGTGTTGACCCAGCCTCCTAGCGTTTC


NO:

CAAGGGCCTGAGACAGACCGCCACACTGACCTGTACCGGCAACTC


66

TAACAACGTGGGCAATCAGGGCGCTGCCTGGTTGCAGCAGCATCA




GGGACAGCCTCCAAAGCTGCTGTCCTACCGGAACCACAACAGACC




TAGCGGCGTGTCCGAGCGGTTCAGCCCTTCTAGATCTGGCGACACC




TCCAGCCTGACCATCACTGGACTGCAGCCTGAGGACGAGGCCGAC




TACTATTGTCTGGCCTGGGACAGCTCCCTGCGGGCCTTTGTTTTTG




GCACCGGCACCAAGCTGACCGTGCTGGGACAACCTAAGGCCAATC




CTACCGTGACACTGTTCCCTCCATCCTCCGAGGAACTGCAGGCCAA




CAAGGCTACCCTCGTGTGCCTGATCTCCGACTTTTACCCTGGCGCT




GTGACCGTGGCCTGGAAGGCTGATGGATCTCCTGTGAAGGCTGGC




GTGGAAACCACCAAGCCTTCCAAGCAGTCCAACAACAAATACGCC




GCCTCCTCCTACCTGTCTCTGACCCCTGAACAGTGGAAGTCCCACC




GGTCCTACAGCTGCCAAGTGACCCATGAGGGCTCCACCGTGGAAA




AGACCGTGGCTCCTACCGAGTGCTCCTGATGA





SEQ
α-CCR2
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
heavy-
CAGGATCTACAGGCGAGGTGCAGTTGGTTGAATCTGGCGGAGGAT


NO:
LgBiT
TGGTGCAGCCTGGCGGATCTCTGAGACTGTCTTGTGTGGCCTCCGG


67

CTTCACCTTCTCCGACTACTGGATGTCCTGGGTCCGACAGGCTCCT




GGCAAAGGACTGGAATGGGTCGCCAACATCAAGAAAGACGGCTC




CGTGAACTACTACGTGGACTCCGTGAAGGGCAGATTCACCATCTCT




CGGGACAACGCCAAGAACTCCCTGTACCTGCAGATGAACAGCCTG




AGAGCCGAGGACACCGCCGTGTACTACTGCACCAGATTCGATTAT




TGGGGCCAGGGCACCCTGGTCACCGTGTCCTCTGCTTCTACAAAGG




GCCCCTCTGTGTTCCCTCTGGCTCCTTCCTCTAAATCCACCTCTGGC




GGAACCGCTGCTCTGGGCTGTCTGGTCAAGGATTACTTCCCTGAGC




CTGTGACCGTGTCTTGGAACTCTGGTGCTCTGACATCCGGCGTGCA




CACCTTTCCAGCTGTGCTGCAGTCCTCTGGCCTGTACTCTCTGTCCT




CTGTCGTGACCGTGCCTTCTAGCTCTCTGGGCACCCAGACCTACAT




CTGCAACGTGAACCACAAGCCTTCCAACACCAAGGTGGACAAGAG




AGTGGAACCCAAGTCTTGCGGATCTTCTGGTGGTGGTGGAAGTGG




CGGAGGCGGTTCTTCAGGCGGAGTGTTCACCCTGGAAGATTTCGTC




GGCGATTGGGAGCAGACCGCCGCCTATAATCTGGACCAGGTTCTG




GAACAAGGCGGCGTCAGCTCTCTGCTGCAGAATCTGGCTGTGTCT




GTGACCCCTATCCAGAGAATCGTGCGCTCTGGCGAGAACGCCCTG




AAGATCGACATCCACGTGATCATCCCTTACGAGGGCCTGTCTGCCG




ATCAGATGGCTCAGATCGAAGAGGTGTTCAAGGTGGTGTACCCCG




TGGACGACCACCACTTCAAAGTGATCCTGCCTTACGGCACCCTCGT




GATCGATGGCGTGACCCCAAACATGCTGAACTACTTCGGCAGACC




CTACGAGGGAATCGCCGTGTTCGACGGCAAGAAAATCACCGTGAC




CGGCACACTGTGGAACGGCAACAAGATCATCGACGAGCGGCTGAT




CACCCCTGACGGCTCCATGCTGTTTAGAGTGACCATCAACTCCTAA




TGA





SEQ
α-CCR2
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGTTGTTGTGGGTGC


ID
light-
CAGGATCTACAGGCCAGGCTGGATTGACACAGCCTCCTAGCGTGT


NO:
SmBiT
CCAAGGGCCTGAGACAGACCGCTACACTGACCTGCACCGGCAACT


68

CTAACAACGTGGGAAATCAGGGCGCTGCCTGGTTGCAGCAGCATC




AGGGACATCCTCCAAAGCTGCTGTTCTACCGGAACAACAATAGAG




CCTCCGGCATCTCCGAGCGGCTGTCTGCTTCTAGATCTGGCAATAC




CGCCAGCCTGACCATCACTGGACTGCAGCCTGAGGACGAGGCCGA




CTACTATTGCCTGACCTGGGACTCCTCTCTGTCCGTGGTTGTGTTTG




GCGGCGGAACAAAGCTGACAGTGCTGGGCCAGCCTAAGGCCAATC




CTACCGTGACACTGTTCCCTCCATCCTCCGAGGAACTGCAGGCTAA




CAAGGCTACCCTCGTGTGCCTGATCTCCGATTTTTACCCTGGCGCT




GTGACCGTGGCTTGGAAGGCTGATGGATCTCCTGTGAAGGCCGGC




GTGGAAACCACCAAGCCTAGCAAGCAGTCCAACAACAAATACGCC




GCCTCCTCCTACCTGTCTCTGACCCCTGAACAGTGGAAGTCCCACC




GGTCCTACTCTTGCCAAGTGACCCATGAGGGCTCCACCGTGGAAA




AGACAGTGGCCCCTACCGAGTGCTCTGGATCTTCTGGTGGCGGAG




GATCTGGCGGAGGTGGAAGTAGTGGCGGCGTGACCGGCTACAGAC




TGTTCGAAGAGATCCTGTAATGA





SEQ
α-CCR2
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


ID
light
CAGGATCTACAGGACAGGCTGGCTTGACCCAGCCTCCTAGCGTTTC


NO:

CAAGGGCCTGAGACAGACCGCCACACTGACCTGTACCGGCAACTC


69

TAACAACGTGGGCAATCAGGGCGCTGCCTGGTTGCAGCAGCATCA




GGGACATCCTCCAAAGCTGCTGTTCTACCGGAACAACAACAGAGC




CTCCGGCATCTCCGAGCGGCTGTCTGCTTCTAGATCCGGCAATACC




GCCAGCCTGACCATCACTGGACTGCAGCCTGAGGACGAGGCCGAC




TACTATTGCCTGACCTGGGACTCCTCTCTGTCCGTGGTGGTTTTTGG




CGGAGGCACCAAGCTGACAGTGCTGGGACAGCCTAAGGCCAATCC




TACCGTGACACTGTTCCCTCCATCCTCCGAGGAACTGCAGGCCAAC




AAGGCTACCCTCGTGTGCCTGATCTCCGACTTTTACCCTGGCGCTG




TGACCGTGGCCTGGAAGGCTGATGGATCTCCTGTGAAGGCTGGCG




TGGAAACCACCAAGCCTTCCAAGCAGTCCAACAACAAATACGCCG




CCTCCTCCTACCTGTCTCTGACCCCTGAACAGTGGAAGTCCCACCG




GTCCTACAGCTGCCAAGTGACCCATGAGGGCTCCACCGTGGAAAA




GACCGTGGCTCCTACCGAGTGCTCCTGATGA





SEQ
α-IL12β
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


ID
heavy-
CAGGATCTACAGGACAGGTGCAGCTGGTGGAATCTGGTGGCGGAG


NO:
LgBiT
TTGTGCAGCCTGGCAGATCCCTGAGACTGTCTTGTGCCGCCTCCGG


70

CTTCACCTTCTCCTCTTACGGAATGCACTGGGTCCGACAGGCCCCT




GGCAAAGGATTGGAGTGGGTCGCCTTCATCAGATACGACGGCTCC




AACAAGTACTACGCCGACTCCGTGAAGGGCAGATTCACCATCTCT




CGGGACAACTCCAAGAACACCCTGTACCTGCAGATGAACTCCCTG




AGAGCCGAGGACACCGCCGTGTACTACTGCAAGACCCACGGCTCT




CACGACAATTGGGGCCAGGGCACAATGGTCACCGTGTCCTCTGCT




TCCACCAAGGGACCCTCTGTGTTCCCTCTGGCTCCTTCCAGCAAGT




CTACCTCTGGCGGAACAGCTGCTCTGGGCTGCCTGGTCAAGGACT




ACTTTCCTGAGCCTGTGACCGTGTCTTGGAACTCTGGCGCTCTGAC




ATCCGGCGTGCACACCTTTCCAGCTGTGCTGCAATCCTCCGGCCTG




TACTCTCTGTCCTCCGTCGTGACCGTGCCTTCTAGCTCTCTGGGCAC




CCAGACCTACATCTGCAATGTGAACCACAAGCCTTCCAACACCAA




GGTGGACAAGAGAGTGGAACCCAAGTCCTGCGGATCTTCTGGCGG




CGGAGGATCTGGCGGAGGTGGTAGTTCAGGCGGAGTGTTCACCCT




GGAAGATTTCGTCGGCGACTGGGAGCAGACCGCCGCCTATAATCT




GGACCAGGTGCTGGAACAAGGCGGCGTCAGTTCTCTGCTGCAGAA




CCTGGCTGTGTCTGTGACCCCTATCCAGAGAATCGTGCGGAGCGG




CGAGAACGCCCTGAAGATCGATATCCACGTGATCATCCCTTACGA




GGGCCTGAGCGCCGATCAGATGGCTCAGATCGAAGAGGTGTTCAA




GGTGGTGTACCCCGTGGACGACCACCACTTCAAAGTGATCCTGCCT




TACGGCACCCTGGTCATCGATGGCGTGACCCCAAACATGCTGAAC




TACTTCGGCAGACCCTACGAGGGAATCGCCGTGTTCGACGGCAAG




AAAATCACCGTGACCGGCACACTGTGGAACGGCAACAAGATCATC




GACGAGCGGCTGATCACCCCTGACGGCTCTATGCTGTTCAGAGTG




ACCATCAACAGCTGATGA





SEQ
α-IL12β
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


ID
light-
CAGGATCTACCGGACAGTCCGTGTTGACCCAGCCTCCTTCTGTTTC


NO:
SmBiT
TGGCGCTCCTGGCCAGAGAGTGACCATCTCTTGCTCCGGCTCTCGG


71

TCCAACATCGGCTCCAATACCGTGAAGTGGTATCAGCAGCTGCCC




GGCACAGCTCCCAAACTGCTGATCTACTACAACGACCAGCGGCCT




TCTGGCGTGCCCGATAGATTCTCTGGCTCCAAGTCTGGCACCTCTG




CCAGCCTGGCTATTACCGGACTGCAGGCTGAGGACGAGGCCGACT




ACTACTGCCAGTCTTACGACCGGTACACCCATCCTGCTCTGCTGTT




TGGCACCGGCACCAAAGTGACAGTGCTGGGCCAGCCTAAGGCCAA




TCCTACCGTGACACTGTTCCCTCCATCCTCCGAAGAACTGCAGGCC




AACAAGGCTACCCTCGTGTGCCTGATCTCCGACTTTTACCCTGGCG




CTGTGACCGTGGCCTGGAAGGCTGATGGATCTCCTGTGAAGGCTG




GCGTGGAAACCACCAAGCCTTCCAAGCAGTCCAACAACAAATACG




CCGCCTCCTCCTACCTGTCTCTGACCCCTGAACAGTGGAAGTCCCA




CCGGTCCTACAGCTGCCAAGTGACCCATGAGGGCTCCACCGTGGA




AAAGACCGTGGCTCCTACCGAGTGCTCCGGATCTTCTGGTGGCGG




AGGATCTGGCGGAGGCGGTTCTTCAGGCGGAGTGACCGGCTACAG




ACTGTTCGAAGAGATCCTGTGATGA





SEQ
α-IL12β
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


ID
light
CAGGATCTACCGGACAGTCCGTGTTGACCCAGCCTCCTTCTGTTTC


NO:

TGGCGCTCCTGGCCAGAGAGTGACCATCTCTTGCTCCGGCTCTCGG


72

TCCAACATCGGCTCCAATACCGTGAAGTGGTATCAGCAGCTGCCC




GGCACAGCTCCCAAACTGCTGATCTACTACAACGACCAGCGGCCT




TCTGGCGTGCCCGATAGATTCTCTGGCTCCAAGTCTGGCACCTCTG




CCAGCCTGGCTATTACCGGACTGCAGGCTGAGGACGAGGCCGACT




ACTACTGCCAGTCTTACGACCGGTACACCCATCCTGCTCTGCTGTT




TGGCACCGGCACCAAAGTGACAGTGCTGGGCCAGCCTAAGGCCAA




TCCTACCGTGACACTGTTCCCTCCATCCTCCGAAGAACTGCAGGCC




AACAAGGCTACCCTCGTGTGCCTGATCTCCGACTTTTACCCTGGCG




CTGTGACCGTGGCCTGGAAGGCTGATGGATCTCCTGTGAAGGCTG




GCGTGGAAACCACCAAGCCTTCCAAGCAGTCCAACAACAAATACG




CCGCCTCCTCCTACCTGTCTCTGACCCCTGAACAGTGGAAGTCCCA




CCGGTCCTACAGCTGCCAAGTGACCCATGAGGGCTCCACCGTGGA




AAAGACCGTGGCTCCTACCGAGTGCTCCTGATGA





SEQ
α-CTLA4
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


ID
heavy-
CAGGATCTACAGGACAGGTGCAGCTGGTGGAATCTGGTGGCGGAG


NO:
hCHIg
TTGTGCAGCCTGGCAGATCCCTGAGACTGTCTTGTGCCGCCTCCGG


73

CTTCACCTTCTCCAGCTACACCATGCACTGGGTCCGACAGGCCCCT




GGCAAAGGATTGGAGTGGGTCACCTTCATCTCTTACGACGGCAAC




AACAAGTACTACGCCGACTCCGTGAAGGGCAGATTCACCATCTCT




CGGGACAACTCCAAGAACACCCTGTACCTGCAGATGAACTCCCTG




AGAGCCGAGGACACCGCCATCTACTACTGTGCTAGAACCGGCTGG




CTGGGCCCCTTTGATTATTGGGGACAGGGCACCCTGGTCACCGTGT




CCTCTGCTTCTACCAAGGGACCCAGCGTGTTCCCTCTGGCTCCTTC




CAGCAAGTCTACCTCTGGCGGAACAGCTGCTCTGGGCTGCCTGGTC




AAGGACTACTTTCCTGAGCCTGTGACCGTGTCTTGGAACTCTGGCG




CTCTGACATCCGGCGTGCACACATTTCCAGCTGTGCTGCAGTCCTC




CGGCCTGTACTCTCTGTCCTCTGTCGTGACCGTGCCTTCCAGCTCTC




TGGGAACCCAGACCTACATCTGCAATGTGAACCACAAGCCTTCCA




ACACCAAGGTGGACAAGAGAGTGGAACCCAAGTCCTGCGACAAG




ACCCACACCTGTCCACCATGTCCTGCTCCAGAACTGCTCGGCGGAC




CTTCCGTGTTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGATGAT




CTCTCGGACCCCTGAAGTGACCTGCGTGGTGGTGGATGTGTCTCAC




GAGGATCCCGAAGTGAAGTTCAATTGGTACGTGGACGGCGTGGAA




GTGCACAACGCCAAGACCAAGCCTAGAGAGGAACAGTACAACTCC




ACCTACAGAGTGGTGTCCGTGCTGACCGTGCTGCACCAGGATTGG




CTGAACGGCAAAGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTG




CCTGCTCCTATCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCT




AGGGAACCCCAGGTTTACACCCTGCCTCCAAGCCGGGAAGAGATG




ACCAAGAACCAGGTGTCCCTGACCTGCCTCGTGAAGGGATTCTAC




CCCTCCGATATCGCCGTGGAATGGGAGTCTAATGGCCAGCCTGAG




AACAACTACAAGACAACCCCTCCTGTGCTGGACTCCGACGGCTCA




TTCTTCCTGTACTCCAAGCTGACAGTGGACAAGTCCAGATGGCAGC




AGGGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACA




ATCACTACACCCAGAAGTCCCTGTCTCTGAGCCCCGGCAAGTGAT




GA





SEQ
α-IL12β
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


ID
heavy-
CAGGATCTACAGGACAGGTGCAGCTGGTGGAATCTGGTGGCGGAG


NO:
hCHIg
TTGTGCAGCCTGGCAGATCCCTGAGACTGTCTTGTGCCGCCTCCGG


74

CTTCACCTTCTCCTCTTACGGAATGCACTGGGTCCGACAGGCCCCT




GGCAAAGGATTGGAGTGGGTCGCCTTCATCAGATACGACGGCTCC




AACAAGTACTACGCCGACTCCGTGAAGGGCAGATTCACCATCTCT




CGGGACAACTCCAAGAACACCCTGTACCTGCAGATGAACTCCCTG




AGAGCCGAGGACACCGCCGTGTACTACTGCAAGACCCACGGCTCT




CACGACAATTGGGGCCAGGGCACAATGGTCACCGTGTCCTCTGCT




TCCACCAAGGGACCCTCTGTGTTCCCTCTGGCTCCTTCCAGCAAGT




CTACCTCTGGCGGAACAGCTGCTCTGGGCTGCCTGGTCAAGGACT




ACTTTCCTGAGCCTGTGACCGTGTCTTGGAACTCTGGCGCTCTGAC




ATCCGGCGTGCACACCTTTCCAGCTGTGCTGCAATCCTCCGGCCTG




TACTCTCTGTCCTCCGTCGTGACCGTGCCTTCTAGCTCTCTGGGCAC




CCAGACCTACATCTGCAATGTGAACCACAAGCCTTCCAACACCAA




GGTGGACAAGAGAGTGGAACCCAAGTCCTGCGATAAGACCCACAC




CTGTCCACCATGTCCTGCTCCAGAACTGCTCGGCGGACCTTCCGTG




TTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGATGATCTCTCGGA




CCCCTGAAGTGACCTGCGTGGTGGTGGATGTGTCTCACGAGGATC




CCGAAGTGAAGTTCAATTGGTACGTGGACGGCGTGGAAGTGCACA




ACGCCAAGACCAAGCCTAGAGAGGAACAGTACAACTCCACCTACA




GAGTGGTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAACG




GCAAAGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCTGCTC




CTATCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTAGGGAAC




CCCAGGTTTACACCCTGCCTCCAAGCCGGGAAGAGATGACCAAGA




ACCAGGTGTCCCTGACCTGCCTCGTGAAGGGATTCTACCCCTCCGA




TATCGCCGTGGAATGGGAGTCTAATGGCCAGCCTGAGAACAACTA




CAAGACCACACCTCCTGTGCTGGACTCCGACGGCTCATTCTTCCTG




TACTCCAAGCTGACAGTGGACAAGTCCAGATGGCAGCAGGGCAAC




GTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAATCACTACA




CCCAGAAGTCCCTGTCTCTGAGCCCCGGCAAGTGATGA





SEQ
α-IL12β
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


ID
light-
CAGGATCTACCGGACAGTCCGTGTTGACCCAGCCTCCTTCTGTTTC


NO:
hCLIg_vl-
TGGCGCTCCTGGCCAGAGAGTGACCATCTCTTGCTCCGGCTCTCGG


75
IL2
TCCAACATCGGCTCCAATACCGTGAAGTGGTATCAGCAGCTGCCC




GGCACAGCTCCCAAACTGCTGATCTACTACAACGACCAGCGGCCT




TCTGGCGTGCCCGATAGATTCTCTGGCTCCAAGTCTGGCACCTCTG




CCAGCCTGGCTATTACCGGACTGCAGGCTGAGGACGAGGCCGACT




ACTACTGCCAGTCTTACGACCGGTACACCCATCCTGCTCTGCTGTT




TGGCACCGGCACCAAAGTGACAGTGCTGGGCCAGCCTAAGGCCAA




TCCTACCGTGACACTGTTCCCTCCATCCTCCGAAGAACTGCAGGCC




AACAAGGCTACCCTCGTGTGCCTGATCTCCGACTTTTACCCTGGCG




CTGTGACCGTGGCCTGGAAGGCTGATGGATCTCCTGTGAAGGCTG




GCGTGGAAACCACCAAGCCTTCCAAGCAGTCCAACAACAAATACG




CCGCCTCCTCCTACCTGTCTCTGACCCCTGAACAGTGGAAGTCCCA




CCGGTCCTACAGCTGCCAAGTGACCCATGAGGGCTCCACCGTGGA




AAAGACCGTGGCTCCTACAGAGTGTTCTGGCGGCGGAGGATCTGG




CGGAGGTGGAAGCGGAGGCGGTGGATCTGCTCCTACCTCCTCCAG




CACCAAGAAAACCCAGCTGCAGTTGGAGCATCTGCTGCTGGACCT




GCAGATGATCCTGAACGGCATCAACAACTACAAGAACCCCAAGCT




GACCCGGATGCTGACCGCCAAGTTTGCCATGCCTAAGAAGGCCAC




CGAGCTGAAACATCTGCAGTGCCTGGAAGAGGAACTGAAGCCCCT




GGAAGAAGTGCTGAATCTGGCCCAGTCCAAGAACTTCCACCTGAG




GCCTCGGGACCTGATCAGCAACATCAACGTGATCGTGCTCGAGCT




GAAGGGCTCCGAGACAACCTTCATGTGCGAGTACGCCGACGAGAC




AGCTACCATCGTGGAATTTCTGAACCGGTGGATCACCTTCTGCCAG




TCCATCATCAGCACCCTGACCTGATGA





SEQ
α-IL12β
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


ID
heavy-
CAGGATCTACAGGACAGGTGCAGCTGGTGGAATCTGGTGGCGGAG


NO:
hCHIg_
TTGTGCAGCCTGGCAGATCCCTGAGACTGTCTTGTGCCGCCTCCGG


76
Hole_Cys
CTTCACCTTCTCCTCTTACGGAATGCACTGGGTCCGACAGGCCCCT




GGCAAAGGATTGGAGTGGGTCGCCTTCATCAGATACGACGGCTCC




AACAAGTACTACGCCGACTCCGTGAAGGGCAGATTCACCATCTCT




CGGGACAACTCCAAGAACACCCTGTACCTGCAGATGAACTCCCTG




AGAGCCGAGGACACCGCCGTGTACTACTGCAAGACCCACGGCTCT




CACGACAATTGGGGCCAGGGCACAATGGTCACCGTGTCCTCTGCT




TCCACCAAGGGACCCTCTGTGTTCCCTCTGGCTCCTTCCAGCAAGT




CTACCTCTGGCGGAACAGCTGCTCTGGGCTGCCTGGTCAAGGACT




ACTTTCCTGAGCCTGTGACCGTGTCTTGGAACTCTGGCGCTCTGAC




ATCCGGCGTGCACACCTTTCCAGCTGTGCTGCAATCCTCCGGCCTG




TACTCTCTGTCCTCCGTCGTGACCGTGCCTTCTAGCTCTCTGGGCAC




CCAGACCTACATCTGCAATGTGAACCACAAGCCTTCCAACACCAA




GGTGGACAAGAGAGTGGAACCCAAGTCCTGCGATAAGACCCACAC




CTGTCCACCATGTCCTGCTCCAGAACTGCTCGGCGGACCTTCCGTG




TTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGATGATCTCTCGGA




CCCCTGAAGTGACCTGCGTGGTGGTGGATGTGTCTCACGAGGATC




CCGAAGTGAAGTTCAATTGGTACGTGGACGGCGTGGAAGTGCACA




ACGCCAAGACCAAGCCTAGAGAGGAACAGTACAACTCCACCTACA




GAGTGGTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAACG




GCAAAGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCTGCTC




CTATCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTCGGGAAC




CTCAAGTCTGTACCCTGCCTCCTAGCCGGGAAGAGATGACCAAGA




ACCAGGTGTCCCTGTCCTGCGCTGTGAAGGGCTTCTACCCTTCCGA




TATCGCCGTGGAATGGGAGAGCAATGGCCAGCCTGAGAACAACTA




CAAGACCACACCTCCTGTGCTGGACTCCGACGGCTCATTCTTCCTG




GTGTCCAAGCTGACAGTGGACAAGTCCAGATGGCAGCAGGGCAAC




GTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAATCACTACA




CCCAGAAGTCCCTGTCTCTGTCTCCCGGAAAAGGCGGCGGAGGAT




CTGGCGGAGGTGGTAGCGGAGGCGGTGGATCTGCTCCTACCTCCT




CCAGCACCAAGAAAACCCAGCTGCAGTTGGAGCATCTGCTGCTGG




ACCTCCAGATGATCCTGAATGGCATCAACAATTACAAGAACCCCA




AGCTCACCCGGATGCTGACCGCCAAGTTTGCCATGCCTAAGAAGG




CCACCGAGCTGAAACATCTGCAGTGCCTGGAAGAGGAACTGAAGC




CCCTGGAAGAAGTGCTGAATCTGGCCCAGTCCAAGAACTTCCACC




TGAGGCCTCGGGACCTGATCTCCAACATCAACGTGATCGTGCTCG




AGCTGAAGGGCTCCGAGACAACCTTCATGTGCGAGTACGCCGACG




AGACAGCTACCATCGTGGAATTTCTGAACCGGTGGATCACCTTCTG




CCAGTCCATCATCAGCACCCTGACCTGATGA





SEQ
α-IL12β
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


ID
heavy-
CAGGATCTACAGGACAGGTGCAGCTGGTGGAATCTGGTGGCGGAG


NO:
hCHIg
TTGTGCAGCCTGGCAGATCCCTGAGACTGTCTTGTGCCGCCTCCGG


77

CTTCACCTTCTCCTCTTACGGAATGCACTGGGTCCGACAGGCCCCT




GGCAAAGGATTGGAGTGGGTCGCCTTCATCAGATACGACGGCTCC




AACAAGTACTACGCCGACTCCGTGAAGGGCAGATTCACCATCTCT




CGGGACAACTCCAAGAACACCCTGTACCTGCAGATGAACTCCCTG




AGAGCCGAGGACACCGCCGTGTACTACTGCAAGACCCACGGCTCT




CACGACAATTGGGGCCAGGGCACAATGGTCACCGTGTCCTCTGCT




TCCACCAAGGGACCCTCTGTGTTCCCTCTGGCTCCTTCCAGCAAGT




CTACCTCTGGCGGAACAGCTGCTCTGGGCTGCCTGGTCAAGGACT




ACTTTCCTGAGCCTGTGACCGTGTCTTGGAACTCTGGCGCTCTGAC




ATCCGGCGTGCACACCTTTCCAGCTGTGCTGCAATCCTCCGGCCTG




TACTCTCTGTCCTCCGTCGTGACCGTGCCTTCTAGCTCTCTGGGCAC




CCAGACCTACATCTGCAATGTGAACCACAAGCCTTCCAACACCAA




GGTGGACAAGAGAGTGGAACCCAAGTCCTGCGATAAGACCCACAC




CTGTCCACCATGTCCTGCTCCAGAACTGCTCGGCGGACCTTCCGTG




TTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGATGATCTCTCGGA




CCCCTGAAGTGACCTGCGTGGTGGTGGATGTGTCTCACGAGGATC




CCGAAGTGAAGTTCAATTGGTACGTGGACGGCGTGGAAGTGCACA




ACGCCAAGACCAAGCCTAGAGAGGAACAGTACAACTCCACCTACA




GAGTGGTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAACG




GCAAAGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCTGCTC




CTATCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTAGGGAAC




CCCAGGTTTACACCCTGCCTCCAAGCCGGGAAGAGATGACCAAGA




ACCAGGTGTCCCTGACCTGCCTCGTGAAGGGATTCTACCCCTCCGA




TATCGCCGTGGAATGGGAGTCTAATGGCCAGCCTGAGAACAACTA




CAAGACCACACCTCCTGTGCTGGACTCCGACGGCTCATTCTTCCTG




TACTCCAAGCTGACAGTGGACAAGTCCAGATGGCAGCAGGGCAAC




GTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAATCACTACA




CCCAGAAGTCCCTGTCTCTGTCTCCCGGAAAAGGCGGCGGAGGAT




CTGGCGGAGGTGGTAGCGGAGGCGGTGGATCTGCTCCTACCTCCT




CCAGCACCAAGAAAACCCAGCTGCAGTTGGAGCATCTGCTGCTGG




ACCTCCAGATGATCCTGAATGGCATCAACAATTACAAGAACCCCA




AGCTCACCCGGATGCTGACCGCCAAGTTTGCCATGCCTAAGAAGG




CCACCGAGCTGAAACATCTGCAGTGCCTGGAAGAGGAACTGAAGC




CCCTGGAAGAAGTGCTGAATCTGGCCCAGTCCAAGAACTTCCACC




TGAGGCCTCGGGACCTGATCTCCAACATCAACGTGATCGTGCTCG




AGCTGAAGGGCTCCGAGACAACCTTCATGTGCGAGTACGCCGACG




AGACAGCTACCATCGTGGAATTTCTGAACCGGTGGATCACCTTCTG




CCAGTCCATCATCTCCACACTGACCTGATGA





SEQ
α-CTLA4
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


ID
heavy-
CAGGATCTACAGGACAGGTGCAGCTGGTGGAATCTGGTGGCGGAG


NO:
hCHIg_
TTGTGCAGCCTGGCAGATCCCTGAGACTGTCTTGTGCCGCCTCCGG


78
Knob_Cys
CTTCACCTTCTCCAGCTACACCATGCACTGGGTCCGACAGGCCCCT




GGCAAAGGATTGGAGTGGGTCACCTTCATCTCTTACGACGGCAAC




AACAAGTACTACGCCGACTCCGTGAAGGGCAGATTCACCATCTCT




CGGGACAACTCCAAGAACACCCTGTACCTGCAGATGAACTCCCTG




AGAGCCGAGGACACCGCCATCTACTACTGTGCTAGAACCGGCTGG




CTGGGCCCCTTTGATTATTGGGGACAGGGCACCCTGGTCACCGTGT




CCTCTGCTTCTACCAAGGGACCCAGCGTGTTCCCTCTGGCTCCTTC




CAGCAAGTCTACCTCTGGCGGAACAGCTGCTCTGGGCTGCCTGGTC




AAGGACTACTTTCCTGAGCCTGTGACCGTGTCTTGGAACTCTGGCG




CTCTGACATCCGGCGTGCACACATTTCCAGCTGTGCTGCAGTCCTC




CGGCCTGTACTCTCTGTCCTCTGTCGTGACCGTGCCTTCCAGCTCTC




TGGGAACCCAGACCTACATCTGCAATGTGAACCACAAGCCTTCCA




ACACCAAGGTGGACAAGAGAGTGGAACCCAAGTCCTGCGACAAG




ACCCACACCTGTCCACCATGTCCTGCTCCAGAACTGCTCGGCGGAC




CTTCCGTGTTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGATGAT




CTCTCGGACCCCTGAAGTGACCTGCGTGGTGGTGGATGTGTCTCAC




GAGGATCCCGAAGTGAAGTTCAATTGGTACGTGGACGGCGTGGAA




GTGCACAACGCCAAGACCAAGCCTAGAGAGGAACAGTACAACTCC




ACCTACAGAGTGGTGTCCGTGCTGACCGTGCTGCACCAGGATTGG




CTGAACGGCAAAGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTG




CCTGCTCCTATCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCT




AGGGAACCCCAGGTTTACACCCTGCCTCCATGCCGGGAAGAGATG




ACCAAGAACCAGGTGTCCCTGTGGTGCCTGGTTAAGGGCTTCTACC




CCTCCGATATCGCCGTGGAATGGGAGTCTAATGGCCAGCCTGAGA




ACAACTACAAGACAACCCCTCCTGTGCTGGACTCCGACGGCTCATT




CTTCCTGTACTCCAAGCTGACAGTGGACAAGTCCAGATGGCAGCA




GGGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAAT




CACTACACCCAGAAGTCCCTGTCTCTGAGCCCCGGCAAGTGATGA





SEQ
α-CTLA4
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


ID
heavy-
CAGGATCTACAGGACAGGTGCAGCTGGTGGAATCTGGTGGCGGAG


NO:
hCHIg_
TTGTGCAGCCTGGCAGATCCCTGAGACTGTCTTGTGCCGCCTCCGG


79
Knob_Cys-
CTTCACCTTCTCCAGCTACACCATGCACTGGGTCCGACAGGCCCCT



GH scFv
GGCAAAGGATTGGAGTGGGTCACCTTCATCTCTTACGACGGCAAC




AACAAGTACTACGCCGACTCCGTGAAGGGCAGATTCACCATCTCT




CGGGACAACTCCAAGAACACCCTGTACCTGCAGATGAACTCCCTG




AGAGCCGAGGACACCGCCATCTACTACTGTGCTAGAACCGGCTGG




CTGGGCCCCTTTGATTATTGGGGACAGGGCACCCTGGTCACCGTGT




CCTCTGCTTCTACCAAGGGACCCAGCGTGTTCCCTCTGGCTCCTTC




CAGCAAGTCTACCTCTGGCGGAACAGCTGCTCTGGGCTGCCTGGTC




AAGGACTACTTTCCTGAGCCTGTGACCGTGTCTTGGAACTCTGGCG




CTCTGACATCCGGCGTGCACACATTTCCAGCTGTGCTGCAGTCCTC




CGGCCTGTACTCTCTGTCCTCTGTCGTGACCGTGCCTTCCAGCTCTC




TGGGAACCCAGACCTACATCTGCAATGTGAACCACAAGCCTTCCA




ACACCAAGGTGGACAAGAGAGTGGAACCCAAGTCCTGCGACAAG




ACCCACACCTGTCCACCATGTCCTGCTCCAGAACTGCTCGGCGGAC




CTTCCGTGTTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGATGAT




CTCTCGGACCCCTGAAGTGACCTGCGTGGTGGTGGATGTGTCTCAC




GAGGATCCCGAAGTGAAGTTCAATTGGTACGTGGACGGCGTGGAA




GTGCACAACGCCAAGACCAAGCCTAGAGAGGAACAGTACAACTCC




ACCTACAGAGTGGTGTCCGTGCTGACCGTGCTGCACCAGGATTGG




CTGAACGGCAAAGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTG




CCTGCTCCTATCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCT




AGGGAACCCCAGGTTTACACCCTGCCTCCATGCCGGGAAGAGATG




ACCAAGAACCAGGTGTCCCTGTGGTGCCTGGTTAAGGGCTTCTACC




CCTCCGATATCGCCGTGGAATGGGAGTCTAATGGCCAGCCTGAGA




ACAACTACAAGACAACCCCTCCTGTGCTGGACTCCGACGGCTCATT




CTTCCTGTACTCCAAGCTGACAGTGGACAAGTCCAGATGGCAGCA




GGGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAAT




CACTACACCCAGAAGTCCCTGTCTCTGTCTCCCGGAAAAGGCGGC




GGAGGATCTGGCGGAGGTGGTAGCGGAGGCGGTGGATCTGAAGTT




CAGCTGGTTGAGAGTGGCGGCGGACTGGTTAAGCCTGGTGGTTCT




CTGAGACTGAGCTGCGCCGCTTCTGGCTTCACATTCAGCCCCTACT




CCGTGTTCTGGGTTCGACAAGCTCCAGGCAAGGGCCTCGAATGGG




TGTCCTCTATCAACACCGACAGCACCTACAAGTATTACGCTGACAG




CGTGAAAGGCCGGTTTACCATCAGCAGAGACAACGCCGAGAACTC




CATCTTCCTCCAGATGAATTCTCTGCGCGCTGAGGATACCGCTGTG




TACTACTGCGCCAGAGACAGATCCTACTACGCCTTCTCCTCCGGCT




CTCTGTCTGACTACTACTACGGCCTGGATGTGTGGGGCCAGGGAA




CACTTGTGACAGTGTCAAGTGGCGGTGGCGGTAGTGGCGGAGGCG




GTTCTGGTGGTGGTGGTTCAGGCGGTGGTGGCAGCGATATCGTGA




TGACCCAGTCTCCACTGAGCCTGAGCGTGACACCTGGCGAGCCTG




CCTCTATCTCCTGCAGATCCTCTCAGTCCCTGCTGCACACCAACCT




GTACAACTACCTGGATTGGTATGTGCAGAAGCCCGGCCAGTCTCCT




CAGCTGCTGATCTACCTGGCCTCCAACAGAGCTTCTGGCGTGCCCG




ATAGATTCTCCGGTTCTGGCTCTGGCACCGACTTCACCCTGAAGAT




TTCCAGAGTGGAAACAGAGGACGTGGGCGTGTACTATTGCATGCA




GGCTCTGCAGATTCCCCGGACCTTCGGCCAGGGCACCAAACTGGA




AATCAAGTGATGA





SEQ
α-CTLA4
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


ID
light-
CAGGATCTACAGGCGAGATCGTGCTGACCCAGTCTCCTGGCACAC


NO:
hCLIg_vk-
TGTCACTGTCTCCAGGCGAGAGAGCTACCCTGTCCTGTAGAGCCTC


80
IL2
TCAGTCCGTGGGCTCCTCTTACCTGGCTTGGTATCAGCAGAAGCCC




GGCCAGGCTCCTAGACTGTTGATCTACGGCGCCTTCTCCAGAGCCA




CAGGCATCCCTGATAGATTCTCCGGCTCTGGCTCTGGCACCGACTT




CACCCTGACCATCTCCAGACTGGAACCCGAGGACTTCGCCGTGTA




CTACTGTCAGCAGTACGGCTCCTCTCCTTGGACCTTTGGCCAGGGC




ACCAAGGTGGAAATCAAGCGGACAGTGGCCGCTCCTTCCGTGTTC




ATCTTCCCACCTTCCGACGAGCAGCTGAAGTCCGGCACAGCTTCTG




TCGTGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGC




AGTGGAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGT




CTGTGACCGAGCAGGACTCCAAGGACAGCACCTACAGCCTGTCCT




CCACACTGACCCTGTCCAAGGCCGACTACGAGAAGCACAAGGTGT




ACGCCTGCGAAGTGACCCATCAGGGCCTGTCTAGCCCTGTGACCA




AGTCTTTCAACAGAGGCGAGTGTGGCGGCGGAGGATCTGGCGGAG




GTGGAAGCGGAGGCGGTGGATCTGCTCCTACCTCCTCCAGCACCA




AGAAAACCCAGCTGCAGTTGGAGCATCTGCTGCTGGACCTGCAGA




TGATCCTGAACGGCATCAACAACTACAAGAACCCCAAGCTGACCC




GGATGCTGACCGCCAAGTTTGCCATGCCTAAGAAGGCCACCGAGC




TGAAACATCTGCAGTGCCTGGAAGAGGAACTGAAGCCCCTGGAAG




AAGTGCTGAATCTGGCCCAGTCCAAGAACTTCCACCTGAGGCCTC




GGGACCTGATCTCCAACATCAACGTGATCGTGCTCGAGCTGAAGG




GCTCCGAGACAACCTTCATGTGCGAGTACGCCGACGAGACTGCTA




CCATCGTGGAATTTCTGAACCGGTGGATCACCTTCTGCCAGTCCAT




CATCTCTACCCTGACCTGATGA





SEQ
α-
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


ID
TRAILR2
CAGGATCTACAGGCGAAGTGCAGCTGGTTCAATCTGGCGGCGGAG


NO:
heavy-
TGGAAAGACCTGGCGGATCTCTGAGACTGTCTTGTGCCGCCTCTGG


81
hCHIg_
CTTCACCTTCGACGACTACGGAATGTCCTGGGTCCGACAGGCTCCT



Hole_Cys
GGCAAAGGACTGGAATGGGTGTCCGGCATCAATTGGAACGGCGGC




TCTACCGGCTACGCCGACTCTGTGAAGGGCAGAGTGACCATCTCC




AGAGACAACGCCAAGAACTCCCTGTACCTGCAGATGAACAGCCTG




AGAGCCGAGGACACCGCCGTGTACTACTGTGCTAAGATCCTCGGC




GCTGGCAGAGGCTGGTACTTTGATCTGTGGGGCAAGGGCACCACC




GTGACCGTTTCTTCCGCTTCCACCAAGGGACCCAGCGTGTTCCCTC




TGGCTCCTTCCAGCAAGTCTACCTCTGGCGGAACAGCTGCTCTGGG




CTGCCTGGTCAAGGACTACTTTCCTGAGCCTGTGACCGTGTCCTGG




AACTCTGGCGCTCTGACATCTGGCGTGCACACCTTTCCAGCTGTGC




TGCAGTCCTCCGGCCTGTACTCTCTGTCCTCTGTCGTGACCGTGCCT




TCCAGCTCTCTGGGAACCCAGACCTACATCTGCAATGTGAACCAC




AAGCCTTCCAACACCAAGGTGGACAAGAGAGTGGAACCCAAGTCC




TGCGACAAGACCCACACCTGTCCTCCATGTCCTGCTCCAGAACTGC




TCGGCGGACCTTCCGTGTTCCTGTTTCCTCCAAAGCCTAAGGACAC




CCTGATGATCTCTCGGACCCCTGAAGTGACCTGCGTGGTGGTGGAT




GTGTCTCACGAGGATCCCGAAGTGAAGTTCAATTGGTACGTGGAC




GGCGTGGAAGTGCACAATGCCAAGACCAAGCCTAGAGAGGAACA




GTACAACTCCACCTACAGAGTGGTGTCCGTGCTGACCGTGCTGCAC




CAGGATTGGCTGAACGGCAAAGAGTACAAGTGCAAGGTGTCCAAC




AAGGCCCTGCCTGCTCCTATCGAAAAGACCATCAGCAAGGCCAAG




GGCCAGCCTCGGGAACCTCAAGTCTGTACCCTGCCTCCTAGCCGG




GAAGAGATGACCAAGAACCAGGTGTCCCTGTCCTGTGCCGTGAAG




GGCTTCTACCCTTCCGATATCGCCGTGGAATGGGAGAGCAATGGC




CAGCCAGAGAACAACTACAAGACAACCCCTCCTGTGCTGGACTCC




GACGGCTCATTCTTCCTGGTGTCCAAGCTGACAGTGGACAAGTCCA




GATGGCAGCAGGGCAACGTGTTCTCCTGCTCCGTGATGCACGAGG




CCCTGCACAATCACTACACCCAGAAGTCCCTGTCTCTGAGCCCCGG




CAAGTGATGA





SEQ
α-meso
ATGGAAACCGATACACTGCTGCTGTGGGTGCTGCTCCTCTGGGTGC


ID
AB237
CAGGATCTACAGGCCAGGTCCAGCTGCAGGAAAGCGGCCCTGGAC


NO:
heavy-
TGGTCAAGCCTAGCCAGACCCTGAGCCTGACCTGTACCGTGTCCG


82
hCHIg_
GCGGCAGCATCAACAACAACAATTACTACTGGACATGGATCCGGC



Knob_Cys
AGCACCCCGGCAAGGGCCTGGAATGGATCGGCTACATCTACTACA




GCGGCTCCACCTTCTACAACCCCAGCCTGAAGTCCAGAGTGACCA




TCAGCGTGGACACCAGCAAGACCCAGTTCTCCCTGAAGCTGAGCA




GCGTGACAGCCGCCGACACAGCCGTGTACTACTGCGCCAGAGAAG




ATACCATGACCGGCCTGGATGTGTGGGGCCAGGGCACCACAGTGA




CAGTGTCTAGCGCCAGCACCAAGGGCCCTAGCGTGTTCCCTCTGGC




CCCTAGCTCTAAGAGCACATCTGGCGGAACAGCCGCCCTGGGCTG




CCTGGTCAAGGATTACTTTCCTGAGCCCGTGACCGTGTCCTGGAAC




TCTGGTGCTCTGACCAGCGGCGTGCACACCTTTCCAGCTGTGCTGC




AGAGCAGCGGCCTGTACAGCCTGTCTAGCGTGGTCACAGTGCCTA




GCAGCAGCCTGGGCACACAGACCTACATCTGCAACGTGAACCACA




AGCCCAGCAACACCAAGGTGGACAAGCGGGTGGAACCCAAGAGC




TGCGACAAGACCCACACCTGTCCTCCCTGTCCTGCCCCTGAACTGC




TGGGCGGACCTTCCGTGTTCCTGTTCCCTCCAAAGCCCAAGGACAC




CCTGATGATCAGCCGGACCCCTGAAGTGACCTGCGTGGTGGTGGA




TGTGTCCCACGAGGATCCCGAAGTGAAGTTCAATTGGTACGTGGA




CGGCGTGGAAGTGCACAACGCCAAGACCAAGCCCAGAGAGGAAC




AGTACAACAGCACCTACCGGGTGGTGTCCGTGCTGACCGTGCTGC




ACCAGGACTGGCTGAACGGCAAAGAGTACAAGTGCAAGGTGTCCA




ACAAGGCCCTGCCAGCCCCTATCGAGAAAACCATCAGCAAGGCCA




AGGGCCAGCCCCGCGAACCTCAGGTGTACACACTGCCTCCCTGCC




GGGAAGAGATGACCAAGAACCAGGTGTCCCTGTGGTGTCTCGTGA




AGGGCTTCTACCCCTCCGATATCGCCGTGGAATGGGAGAGCAACG




GCCAGCCCGAGAACAACTACAAGACCACCCCTCCCGTGCTGGACA




GCGACGGCAGCTTCTTCCTGTACTCCAAACTGACCGTGGACAAGA




GCCGGTGGCAGCAGGGCAATGTGTTCAGCTGTAGCGTGATGCACG




AGGCCCTGCACAACCACTACACCCAGAAGTCCCTGTCCCTGAGCC




CTGGCAAGTAATGA





SEQ
α-meso
ATGGAAACCGATACACTGCTGCTGTGGGTGCTGCTCCTCTGGGTGC




CAGGCAGCACCGGCGATATCCAGATGACACAGAGCCCTAGCAGCC


ID
AB237
TGAGCGCCAGCGTGGGCGATAGAGTGACCATCACCTGTCGGGCCA


NO:
light-
GCCAGAGCATCAACAACTACCTGAACTGGTATCAGCAGAAGCCCG


83
hCLIg_vk
GCAAGGCCCCTACCCTGCTGATCTATGCCGCTTCTAGCCTGCAGAG




CGGCGTGCCCAGCAGATTTTCTGGCAGCAGATCCGGCACCGACTT




CACCCTGACAATCAGCAGCCTGCAGCCCGAGGACTTCGCCGCCTA




CTTCTGCCAGCAGACCTACAGCAATCCCACCTTCGGCCAGGGCAC




CAAGGTGGAAGTGAAGAGAACAGTGGCCGCTCCCAGCGTGTTCAT




CTTCCCACCCAGCGACGAGCAGCTGAAGTCTGGCACAGCCAGCGT




CGTGTGCCTGCTGAACAACTTCTACCCCAGAGAAGCCAAGGTGCA




GTGGAAGGTGGACAACGCCCTGCAGTCCGGCAACAGCCAGGAAA




GCGTCACCGAGCAGGACAGCAAGGACTCCACCTACAGCCTGTCCA




GCACCCTGACCCTGAGCAAGGCCGACTACGAGAAGCACAAAGTGT




ACGCCTGCGAAGTGACCCACCAGGGCCTGAGCAGCCCCGTGACCA




AGAGCTTCAATAGAGGCGAGTGCTAATGA





SEQ
α-PDL1
ATGGAAACCGATACCCTGCTGCTGTGGGTGCTGCTCCTCTGGGTGC


ID
heavy-
CAGGATCTACAGGCGAGGTGCAGCTGCTGGAATCTGGCGGAGGAC


NO:
hCHIg_
TGGTGCAGCCTGGCGGCTCTCTGAGACTGTCTTGTGCCGCCTCCGG


84
Hole_Cys
CTTCACCTTCTCCAGCTATATCATGATGTGGGTCCGACAGGCCCCT




GGCAAGGGCCTGGAATGGGTGTCCTCTATCTACCCCTCCGGCGGC




ATCACCTTTTACGCCGACACCGTGAAGGGCCGGTTCACCATCTCCC




GGGACAACTCCAAGAACACCCTGTACCTGCAGATGAACTCCCTGC




GGGCCGAGGACACCGCCGTGTACTACTGCGCTAGAATCAAGCTGG




GCACCGTGACCACCGTGGACTATTGGGGCCAGGGCACCCTGGTCA




CCGTGTCCTCTGCTTCTACCAAGGGCCCCTCCGTGTTCCCTCTGGC




CCCTTCCAGCAAGTCCACCTCTGGCGGAACCGCTGCTCTGGGCTGC




CTGGTCAAGGACTACTTCCCCGAGCCCGTGACCGTGTCTTGGAACT




CTGGCGCCCTGACCAGCGGCGTGCACACATTTCCAGCCGTGCTGC




AGTCCAGCGGCCTGTACTCTCTGTCCTCCGTCGTGACAGTGCCCTC




CAGCTCTCTGGGCACACAGACCTACATCTGCAACGTGAACCACAA




GCCCTCCAACACCAAGGTGGACAAGCGGGTGGAACCCAAGTCCTG




CGACAAGACCCACACCTGTCCTCCCTGTCCTGCCCCTGAACTGCTG




GGCGGACCCAGCGTGTTCCTGTTCCCTCCAAAGCCTAAGGACACC




CTGATGATCTCCCGGACCCCTGAAGTGACCTGCGTGGTGGTGGAC




GTGTCCCACGAGGATCCCGAAGTGAAGTTCAATTGGTACGTGGAC




GGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGAGAGGAACA




GTACAACTCCACCTACCGGGTGGTGTCCGTGCTGACAGTGCTGCAT




CAGGACTGGCTGAACGGCAAAGAGTACAAGTGCAAGGTGTCCAAC




AAGGCCCTGCCAGCCCCTATCGAAAAGACCATCTCCAAGGCCAAG




GGCCAGCCAAGAGAGCCTCAAGTCTGCACACTGCCTCCCAGCCGG




GAAGAGATGACCAAGAACCAGGTGTCCCTGAGCTGCGCTGTGAAG




GGCTTCTACCCTTCCGATATCGCCGTGGAATGGGAGAGCAACGGC




CAGCCCGAGAACAATTACAAGACCACCCCTCCCGTGCTGGACTCC




GACGGCTCATTCTTCCTGGTGTCCAAGCTGACCGTGGACAAGTCCC




GGTGGCAGCAGGGCAACGTGTTCTCCTGCTCTGTGATGCACGAGG




CCCTGCACAACCACTACACCCAGAAGTCCCTGTCCCTGTCTCCCGG




CAAGTAATGA





SEQ
α-PDL1
ATGGAAACCGATACCCTGCTGCTGTGGGTGCTGCTCCTCTGGGTGC


ID
light-
CAGGCTCTACCGGCCAGTCTGCTCTGACCCAGCCTGCCTCTGTGTC


NO:
hCLIg_vl
TGGCTCCCCTGGCCAGTCCATCACCATCAGCTGTACCGGCACCTCC


85

TCCGACGTGGGCGGCTACAACTACGTGTCCTGGTATCAGCAGCAT




CCCGGCAAGGCCCCTAAGCTGATGATCTACGACGTGTCCAACCGG




CCCTCCGGCGTGTCCAATCGGTTCTCTGGCTCCAAGTCCGGCAACA




CCGCCTCCCTGACAATCAGCGGACTGCAGGCCGAGGACGAGGCCG




ACTACTACTGCTCCTCCTACACCTCCAGCTCTACCCGGGTGTTCGG




CACCGGCACCAAAGTGACAGTGCTGGGCCAGCCCAAGGCCAACCC




CACCGTGACCCTGTTCCCTCCATCCTCCGAGGAACTGCAGGCTAAC




AAGGCCACCCTCGTGTGCCTGATCTCCGACTTCTACCCTGGCGCCG




TGACCGTGGCTTGGAAGGCTGATGGCTCTCCTGTGAAGGCCGGCG




TGGAAACCACCAAGCCCTCCAAGCAGTCCAACAACAAATACGCCG




CCTCCAGCTACCTGTCCCTGACCCCTGAGCAGTGGAAGTCCCACCG




GTCCTACAGCTGCCAGGTCACACATGAGGGCTCCACCGTGGAAAA




GACCGTGGCCCCTACCGAGTGCTCCTAATGA





SEQ
α-HER3
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


ID
heavy-
CAGGATCTACAGGACAGGTGCAGCTGGTTCAGTCTGGCGGAGGAT


NO:
mFc Knob
TGGTTCAGCCAGGCGGATCCCTGAGACTGTCTTGTGCCGCTTCTGG


86
_Cys
CTTCACCTTCGACGACTACGCTATGCACTGGGTCCGACAGGCCCCT




GGCAAAGGATTGGAATGGGTGGCCGGCATCTCTTGGGACTCTGGC




TCTACCGGCTACGCCGACTCTGTGAAGGGCAGATTCACCATCTCTC




GGGACAACGCCAAGAACTCCCTGTACCTGCAGATGAACAGCCTGA




GAGCCGAGGACACCGCTCTGTACTACTGCGCTAGAGATCTGGGCG




CCTACCAGTGGGTGGAAGGCTTTGATTATTGGGGCCAGGGCACCC




TGGTCACCGTGTCCTCTGCTTCTACCAAGGGACCCAGCGTGTTCCC




TCTGGCTCCTTCCAGCAAGTCTACCTCTGGCGGAACAGCTGCTCTG




GGCTGCCTGGTCAAGGACTACTTTCCTGAGCCTGTGACCGTGTCTT




GGAACTCCGGCGCTCTGACATCTGGCGTGCACACCTTTCCAGCTGT




GCTGCAGTCCTCCGGCCTGTACTCTCTGTCCTCTGTCGTGACCGTG




CCTTCCAGCTCTCTGGGAACCCAGACCTACATCTGCAATGTGAACC




ACAAGCCTAGCAACACCAAGGTGGACAAGAGAGTGGAACCCAAG




TCCTGCACCATCAAGCCCTGTCCTCCATGCAAGTGCCCCGCTCCTA




ATCTGCTCGGAGGCCCTTCCGTGTTCATCTTCCCACCTAAGATCAA




GGACGTGCTGATGATCTCCCTGTCTCCTATCGTGACCTGCGTGGTG




GTGGACGTGTCCGAGGATGATCCTGACGTGCAGATCAGTTGGTTC




GTGAACAACGTGGAAGTGCACACCGCTCAGACCCAGACACACAGA




GAGGACTACAACAGCACCCTGAGAGTGGTGTCTGCCCTGCCTATC




CAGCACCAGGATTGGATGTCCGGCAAAGAATTCAAGTGCAAAGTC




AACAACAAGGACCTGCCTGCTCCAATCGAGCGGACCATCTCTAAG




CCTAAGGGCTCTGTCAGGGCCCCTCAGGTGTACGTTCTGCCTCCTT




GCGAGGAAGAGATGACCAAGAAACAAGTGACCCTGTGGTGCATG




GTCACCGACTTCATGCCCGAGGACATCTACGTGGAATGGACCAAC




AACGGCAAGACCGAGCTGAACTACAAGAACACCGAGCCTGTGCTG




GACTCCGACGGCTCCTACTTCATGTACTCCAAGCTGCGCGTCGAGA




AGAAGAACTGGGTCGAGAGAAACTCCTACTCCTGCTCCGTGGTGC




ACGAGGGCCTGCACAATCACCACACCACCAAGTCCTTCTCTCGGA




CCCCTGGAAAGTGATGA





SEQ
α-IGF1R
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


ID
heavy-
CAGGATCTACAGGCGAAGTGCAGCTGTTGCAGTCTGGCGGAGGAT


NO:
mFc_Hole
TGGTTCAGCCTGGCGGATCCCTGAGACTGTCTTGTGCCGCCTCTGG


87
Cys
CTTCATGTTCAGCAGATACCCCATGCACTGGGTCCGACAGGCCCCT




GGAAAAGGACTGGAATGGGTCGGATCCATCTCCGGAAGTGGCGGC




GCTACCCCTTACGCCGATTCTGTGAAGGGCAGATTCACCATCAGCC




GGGACAACTCCAAGAACACCCTGTACCTGCAGATGAACTCCCTGA




GAGCCGAGGACACCGCCGTGTACTACTGCGCCAAGGACTTCTACC




AGATCCTGACCGGCAACGCCTTCGACTATTGGGGCCAGGGCACAA




CCGTGACCGTGTCCTCTGCTTCTACCAAGGGACCCAGCGTGTTCCC




TCTGGCTCCTTCCAGCAAGTCTACCTCTGGCGGAACAGCTGCTCTG




GGCTGCCTGGTCAAGGACTACTTTCCTGAGCCTGTGACAGTGTCCT




GGAACTCTGGCGCTCTGACATCCGGCGTGCACACCTTTCCAGCTGT




GCTGCAATCCAGCGGCCTGTACTCTCTGTCCTCCGTCGTGACAGTG




CCTTCCAGCTCTCTGGGAACCCAGACCTACATCTGCAATGTGAACC




ACAAGCCTTCCAACACCAAGGTGGACAAGAGAGTGGAACCCAAGT




CCTGCACCATCAAGCCCTGTCCTCCATGCAAGTGCCCCGCTCCTAA




TCTGCTCGGAGGCCCTTCCGTGTTCATCTTCCCACCTAAGATCAAG




GACGTGCTGATGATCTCCCTGTCTCCTATCGTGACCTGCGTGGTGG




TGGACGTGTCCGAGGATGATCCTGACGTGCAGATCAGTTGGTTCGT




GAACAACGTGGAAGTGCACACCGCTCAGACCCAGACACACAGAG




AGGACTACAACAGCACCCTGAGAGTGGTGTCTGCCCTGCCTATCC




AGCACCAGGATTGGATGTCCGGCAAAGAATTCAAGTGCAAAGTCA




ACAACAAGGACCTGCCTGCTCCAATCGAGCGGACCATCTCTAAGC




CTAAGGGCTCTGTGCGGGCTCCCCAAGTTTGTGTTCTGCCTCCACC




TGAGGAAGAGATGACCAAGAAACAAGTGACCCTGTCCTGCGCCGT




GACCGACTTCATGCCTGAGGACATCTACGTGGAATGGACCAACAA




CGGCAAGACCGAGCTGAATTACAAGAACACAGAGCCTGTGCTGGA




CTCCGACGGCTCCTACTTCATGGTGTCTAAGCTGCGCGTCGAGAAG




AAGAACTGGGTCGAGAGAAACTCCTACTCCTGCTCCGTGGTGCAC




GAGGGCCTGCACAATCACCACACCACCAAGTCCTTCTCTCGGACC




CCTGGCAAGTGATGA





SEQ
α-CD221
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


ID
heavy-
CAGGATCTACAGGCGAAGTGCAGCTGGTTCAGTCTGGCGCCGAAG


NO:
hCHIg_
TGAAGAAACCTGGCTCCTCCGTGAAGGTGTCCTGCAAGGCTTCTG


88
Hole_Cys
GCGGCACCTTCTCCTCTTACGCCATCTCCTGGGTCCGACAGGCTCC




TGGACAAGGCTTGGAATGGATGGGCGGCATCATCCCCATCTTCGG




CACCGCCAATTACGCCCAGAAATTCCAGGGCAGAGTGACCATCAC




CGCCGACAAGTCTACCTCCACCGCCTACATGGAACTGTCCAGCCTG




AGATCTGAGGACACCGCCGTGTACTACTGCGCTAGAGCCCCTCTG




AGATTCCTGGAATGGTCTACCCAGGACCACTACTACTATTACTACA




TGGACGTGTGGGGCAAGGGCACCACCGTGACAGTTTCTTCCGCCT




CCACCAAGGGACCCAGCGTTTTCCCTCTGGCTCCATCCTCCAAGTC




CACCTCTGGTGGAACAGCTGCTCTGGGCTGCCTGGTCAAGGACTA




CTTTCCTGAGCCTGTGACCGTGTCCTGGAACTCTGGCGCTCTGACA




TCTGGCGTGCACACCTTTCCAGCTGTGCTGCAGTCCTCCGGCCTGT




ACTCTCTGTCCTCTGTCGTGACCGTGCCTTCCAGCTCTCTGGGAAC




CCAGACCTACATCTGCAATGTGAACCACAAGCCTTCCAACACCAA




GGTCGACAAGAGAGTGGAACCCAAGTCCTGCGACAAGACCCACAC




CTGTCCTCCATGTCCTGCTCCAGAACTGCTCGGCGGACCTTCCGTG




TTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGATGATCTCTCGGA




CCCCTGAAGTGACCTGCGTGGTGGTGGATGTGTCTCACGAGGACC




CAGAAGTGAAGTTCAATTGGTACGTGGACGGCGTGGAAGTGCACA




ACGCCAAGACCAAGCCTAGAGAGGAACAGTACAACTCCACCTACA




GAGTGGTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAACG




GCAAAGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCTGCTC




CTATCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTCGGGAAC




CTCAAGTCTGTACCCTGCCTCCTAGCCGGGAAGAGATGACCAAGA




ACCAGGTGTCCCTGTCCTGTGCCGTGAAGGGCTTCTACCCTTCCGA




TATCGCCGTGGAATGGGAGAGCAATGGCCAGCCAGAGAACAACTA




CAAGACAACCCCTCCTGTGCTGGACTCCGACGGCTCATTCTTCCTG




GTGTCCAAGCTGACAGTGGACAAGTCCAGATGGCAGCAGGGCAAC




GTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAATCACTACA




CACAGAAGTCCCTGTCTCTGAGCCCCGGCAAGTGATGA





SEQ
α-PD1
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


ID
heavy-
CAGGATCTACAGGACAGGTGCAGCTGGTGGAATCTGGTGGCGGAG


NO:
hCHIg_
TTGTGCAGCCTGGCAGATCTCTGAGACTGGACTGCAAGGCCTCCG


89
Knob_Cys
GCATCACCTTCTCCAACTCTGGCATGCACTGGGTCCGACAGGCCCC




TGGAAAAGGACTGGAATGGGTCGCCGTGATTTGGTACGACGGCTC




CAAGAGGTACTACGCCGACTCCGTGAAGGGCAGATTCACCATCTC




TCGGGACAACTCCAAGAACACCCTGTTTCTGCAGATGAACTCCCTG




AGAGCCGAGGACACCGCCGTGTACTACTGTGCCACCAACGACGAT




TATTGGGGCCAGGGCACACTGGTCACCGTGTCCTCTGCTTCTACCA




AGGGACCCAGCGTGTTCCCTCTGGCTCCTTCCAGCAAGTCTACCTC




TGGCGGAACAGCTGCTCTGGGCTGCCTGGTCAAGGACTACTTTCCT




GAGCCTGTGACCGTGTCTTGGAACTCTGGCGCTCTGACATCCGGCG




TGCACACCTTTCCAGCTGTGCTGCAATCCTCCGGCCTGTACTCTCT




GTCCTCCGTCGTGACCGTGCCTTCTAGCTCTCTGGGCACCCAGACC




TACATCTGCAATGTGAACCACAAGCCTTCCAACACCAAGGTGGAC




AAGAGAGTGGAACCCAAGTCCTGCGACAAGACCCACACCTGTCCA




CCATGTCCTGCTCCAGAACTGCTCGGCGGACCTTCCGTGTTCCTGT




TTCCTCCAAAGCCTAAGGACACCCTGATGATCTCTCGGACCCCTGA




AGTGACCTGCGTGGTGGTGGATGTGTCTCACGAGGATCCCGAAGT




GAAGTTCAATTGGTACGTGGACGGCGTGGAAGTGCACAACGCCAA




GACCAAGCCTAGAGAGGAACAGTACAACTCCACCTACAGAGTGGT




GTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAACGGCAAAGA




GTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCTGCTCCTATCGA




AAAGACCATCTCCAAGGCCAAGGGCCAGCCTAGGGAACCCCAGGT




TTACACCCTGCCTCCATGCCGGGAAGAGATGACCAAGAACCAGGT




GTCCCTGTGGTGCCTGGTTAAGGGCTTCTACCCCTCCGATATCGCC




GTGGAATGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAGACA




ACCCCTCCTGTGCTGGACTCCGACGGCTCATTCTTCCTGTACTCCA




AGCTGACAGTGGACAAGTCCAGATGGCAGCAGGGCAACGTGTTCT




CCTGCTCCGTGATGCACGAGGCCCTGCACAATCACTACACCCAGA




AGTCCCTGTCTCTGTCCCCTGGCAAGTGATGA





SEQ
α-PD1 light
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


ID
-hCLIg_vk
CAGGATCTACAGGCGAGATCGTGCTGACCCAGTCTCCTGCCACAC


NO:

TGTCACTGTCTCCAGGCGAGAGAGCTACCCTGTCCTGTAGAGCCTC


90

TCAGTCCGTGTCCTCTTACCTGGCCTGGTATCAGCAGAAGCCTGGA




CAGGCTCCCCGGCTGCTGATCTACGATGCCTCTAATAGAGCCACA




GGCATCCCCGCCAGATTCTCCGGATCTGGCTCTGGCACAGACTTTA




CCCTGACCATCTCCAGCCTGGAACCTGAGGACTTCGCCGTGTACTA




CTGCCAGCAGTCCTCTAACTGGCCTCGGACCTTTGGCCAGGGCACC




AAGGTGGAAATCAAGCGGACAGTGGCCGCTCCTTCCGTGTTCATC




TTCCCACCTTCCGACGAGCAGCTGAAGTCTGGCACCGCTTCTGTCG




TGTGCCTGCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGCAGT




GGAAGGTGGACAATGCCCTGCAGTCCGGCAACTCCCAAGAGTCTG




TGACCGAGCAGGACTCCAAGGACAGCACCTACAGCCTGTCCTCCA




CACTGACCCTGTCCAAGGCCGACTACGAGAAGCACAAGGTGTACG




CCTGCGAAGTGACCCATCAGGGCCTGTCTAGCCCTGTGACCAAGT




CTTTCAACCGGGGCGAGTGCTGATGA





SEQ
α-IL12β
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTCTTGTGGGTGC


ID
heavy-
CAGGATCTACAGGACAGGTGCAGCTGGTGGAATCTGGTGGCGGAG


NO:
hCHIg_
TTGTGCAGCCTGGCAGATCCCTGAGACTGTCTTGTGCCGCCTCCGG


91
Hole_Cys
CTTCACCTTCTCCTCTTACGGAATGCACTGGGTCCGACAGGCCCCT




GGCAAAGGATTGGAGTGGGTCGCCTTCATCAGATACGACGGCTCC




AACAAGTACTACGCCGACTCCGTGAAGGGCAGATTCACCATCTCT




CGGGACAACTCCAAGAACACCCTGTACCTGCAGATGAACTCCCTG




AGAGCCGAGGACACCGCCGTGTACTACTGCAAGACCCACGGCTCT




CACGACAATTGGGGCCAGGGCACAATGGTCACCGTGTCCTCTGCT




TCCACCAAGGGACCCTCTGTGTTCCCTCTGGCTCCTTCCAGCAAGT




CTACCTCTGGCGGAACAGCTGCTCTGGGCTGCCTGGTCAAGGACT




ACTTTCCTGAGCCTGTGACCGTGTCTTGGAACTCTGGCGCTCTGAC




ATCCGGCGTGCACACCTTTCCAGCTGTGCTGCAATCCTCCGGCCTG




TACTCTCTGTCCTCCGTCGTGACCGTGCCTTCTAGCTCTCTGGGCAC




CCAGACCTACATCTGCAATGTGAACCACAAGCCTTCCAACACCAA




GGTGGACAAGAGAGTGGAACCCAAGTCCTGCGATAAGACCCACAC




CTGTCCACCATGTCCTGCTCCAGAACTGCTCGGCGGACCTTCCGTG




TTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGATGATCTCTCGGA




CCCCTGAAGTGACCTGCGTGGTGGTGGATGTGTCTCACGAGGATC




CCGAAGTGAAGTTCAATTGGTACGTGGACGGCGTGGAAGTGCACA




ACGCCAAGACCAAGCCTAGAGAGGAACAGTACAACTCCACCTACA




GAGTGGTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAACG




GCAAAGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCTGCTC




CTATCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTCGGGAAC




CTCAAGTCTGTACCCTGCCTCCTAGCCGGGAAGAGATGACCAAGA




ACCAGGTGTCCCTGTCCTGCGCTGTGAAGGGCTTCTACCCTTCCGA




TATCGCCGTGGAATGGGAGAGCAATGGCCAGCCTGAGAACAACTA




CAAGACCACACCTCCTGTGCTGGACTCCGACGGCTCATTCTTCCTG




GTGTCCAAGCTGACAGTGGACAAGTCCAGATGGCAGCAGGGCAAC




GTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAATCACTACA




CCCAGAAGTCCCTGTCTCTGAGCCCCGGCAAGTGATGA









2. Expression and purification of NanoBiT constructs.


The plasmids were co-transfected into ExpiCHO cells (Life Technologies A29127). Transfections were performed using 1 mg of total DNA per liter for a multispecific construct with a 1:1:1 heavy chain to light chain to competing light chain ratio. The ExpiCHO transfection was performed according to the manufacturer's instructions. ExpiCHO cells were grown for 7 days at 32° C. with 5% CO2 after transfection. The cells were pelleted by centrifugation at 3000×g. CaptureSelect CH1-XL affinity resin (GE 2943452010) was added to the supernatant and incubated for 1-3 hours at room temperature. The resin was packed into a fritted filter plate (Nunc fritted deepwell filter plates 278011), washed with 3×1 mL of Dulbecco's phosphate-buffered saline (DPBS, Life Technologies 14190-144). The bound protein was eluted from the column with 20 mM citrate, 100 mM NaCl, pH 2.9. The elution fractions were neutralized using 1 M Tris-HCl, pH 8.0. Table 2 shows the amino acid sequences for all the NanoBiT constructs.









TABLE 2







Amino Acid sequences for NanoBiT constructs. All constructs contained an Ig


Kappa leader sequence (SEQ ID NO 214: METDTLLLWVLLLWVPGSTG).











SEQ ID



Corresponding 


NO
Amino Acid Sequence
Description
Germline
DNA SEQ ID NO





SEQ ID
QVQLVESGGGVVQPGRSLRLSCAASGFAFSS
α-amyloid
VH3-33*01
SEQ ID NO: 1


NO: 92
YGMHWVRQAPGKGLEWVAVIWFDGTKKYYTD
β heavy-
(SEQ ID 




SVKGRFTISRDNSKNTLYLQMNTLRAEDTAV
LgBiT
NO: 193)




YYCARDRGIGARRGPYYMDVWGKGTTVTVSS






ASTKGPSVFPLAPSSKSTSGGTAALGCLVKD






YFPEPVTVSWNSGALTSGVHTFPAVLQSSGL






YSLSSVVTVPSSSLGTQTYICNVNHKPSNTK






VDKRVEPKSCGSSGGGGSGGGGSSGGVFTLE






DFVGDWEQTAAYNLDQVLEQGGVSSLLQNLA






VSVTPIQRIVRSGENALKIDIHVIIPYEGLS






ADQMAQIEEVFKVVYPVDDHHFKVILPYGTL






VIDGVTPNMLNYFGRPYEGIAVFDGKKITVT






GTLWNGNKIIDERLITPDGSMLFRVTINS








SEQ ID
DIQMTQSPSSLSASVGDRVTITCRASQSISS
α-amyloid
Vk1-39*01
SEQ ID NO: 2


NO: 93
YLNWYQQKPGKAPKLLIYAASSLQSGVPSRF
ß light-
(SEQ ID




SGSGSGTDFTLTISSLQPEDFATYYCQQSYS
SmBiT
NO: 201)




TPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQ






LKSGTASVVCLLNNFYPREAKVQWKVDNALQ






SGNSQESVTEQDSKDSTYSLSSTLTLSKADY






EKHKVYACEVTHQGLSSPVTKSFNRGECGSS






GGGGSGGGGSSGGVTGYRLFEEIL








SEQ ID
DIQMTQSPSSLSASVGDRVTITCRASQSISS
α-amyloid
Vk1-39*01
SEQ ID NO: 3


NO: 94
YLNWYQQKPGKAPKLLIYAASSLQSGVPSRF
ß light
(SEQ ID




SGSGSGTDFTLTISSLQPEDFATYYCQQSYS

NO: 201)




TPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQ






LKSGTASVVCLLNNFYPREAKVQWKVDNALQ






SGNSQESVTEQDSKDSTYSLSSTLTLSKADY






EKHKVYACEVTHQGLSSPVTKSFNRGEC








SEQ ID
EVQLVQSGAEVKKSGESLKISCKGSGYSFTS
α-
VH5-
SEQ ID NO: 4


NO: 95
YWIGWVRQMPGKGLEWMGIFYPGDSSTRYSP

Clostridium

51*01




SFQGQVTISADKSVNTAYLQWSSLKASDTAM

difficile

(SEQ ID




YYCARRRNWGNAFDIWGQGTMVTVSSASTKG
toxin B
NO: 198)




PSVFPLAPSSKSTSGGTAALGCLVKDYFPEP
heavy-





VTVSWNSGALTSGVHTFPAVLQSSGLYSLSS
LgBiT





VVTVPSSSLGTQTYICNVNHKPSNTKVDKRV






EPKSCGSSGGGGSGGGGSSGGVFTLEDFVGD






WEQTAAYNLDQVLEQGGVSSLLQNLAVSVTP






IQRIVRSGENALKIDIHVIIPYEGLSADQMA






QIEEVFKVVYPVDDHHFKVILPYGTLVIDGV






TPNMLNYFGRPYEGIAVFDGKKITVTGTLWN






GNKIIDERLITPDGSMLFRVTINS








SEQ ID
EIVLTQSPGTLSLSPGERATLSCRASQSVSS
α-
Vk3-20*01
SEQ ID NO: 5


NO: 96
SYLAWYQQKPGQAPRLLIYGASSRATGIPDR

Clostridium

(SEQ ID




FSGSGSGTDFTLTISRLEPEDFAVYYCQQYG

difficile

NO: 205)




SSTWTFGQGTKVEIKRTVAAPSVFIFPPSDE
toxin B





QLKSGTASVVCLLNNFYPREAKVQWKVDNAL
light-





QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD
SmBiT





YEKHKVYACEVTHQGLSSPVTKSFNRGECGS






SGGGGSGGGGSSGGVTGYRLFEEIL








SEQ ID
EIVLTQSPGTLSLSPGERATLSCRASQSVSS
α-
Vk3-20*01
SEQ ID NO: 6


NO: 97
SYLAWYQQKPGQAPRLLIYGASSRATGIPDR

Clostridium

(SEQ ID




FSGSGSGTDFTLTISRLEPEDFAVYYCQQYG

difficile

NO: 205)




SSTWTFGQGTKVEIKRTVAAPSVFIFPPSDE
toxin B





QLKSGTASVVCLLNNFYPREAKVQWKVDNAL
light





QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD






YEKHKVYACEVTHQGLSSPVTKSFNRGEC








SEQ ID
EGQLVQSGGGLVHPGGSLRLSCAGSGFTFSS
α-
VH3-
SEQ IDNO: 7


NO: 98
YGMHWVRQAPGKGLEWVSGIGTGGGTYSTDS
connective
13*01




VKGRFTISRDNAKNSLYLQMNSLRAEDMAVY
tissue
(SEQ ID




YCARGDYYGSGSFFDCWGQGTLVTVSSASTK
growth
NO: 188)




GPSVFPLAPSSKSTSGGTAALGCLVKDYFPE
factor





PVTVSWNSGALTSGVHTFPAVLQSSGLYSLS
heavy-





SVVTVPSSSLGTQTYICNVNHKPSNTKVDKR
LgBiT





VEPKSCGSSGGGGSGGGGSSGGVFTLEDFVG






DWEQTAAYNLDQVLEQGGVSSLLQNLAVSVT






PIQRIVRSGENALKIDIHVIIPYEGLSADQM






AQIEEVFKVVYPVDDHHFKVILPYGTLVIDG






VTPNMLNYFGRPYEGIAVFDGKKITVTGTLW






NGNKIIDERLITPDGSMLFRVTINS








SEQ ID
DIQMTQSPSSLSASVGDRVTITCRASQGISS
α-
Vk1D-
SEQ ID NO: 8


NO: 99
WLAWYQQKPEKAPKSLIYAASSLQSGVPSRF
connective
16*01




SGSGSGTDFTLTISSLQPEDFATYYCQQYNS
tissue
(SEQ ID




YPPTFGQGTKLEIKRTVAAPSVFIFPPSDEQ
growth
NO: 202)




LKSGTASVVCLLNNFYPREAKVQWKVDNALQ
factor 





SGNSQESVTEQDSKDSTYSLSSTLTLSKADY
light-SmBiT





EKHKVYACEVTHQGLSSPVTKSFNRGECGSS






GGGGSGGGGSSGGVTGYRLFEEIL








SEQ ID
DIQMTQSPSSLSASVGDRVTITCRASQGISS
α-
Vk1D-
SEQ ID NO: 9


NO:
WLAWYQQKPEKAPKSLIYAASSLQSGVPSRF
connective
16*01



100
SGSGSGTDFTLTISSLQPEDFATYYCQQYNS
tissue
(SEQ ID




YPPTFGQGTKLEIKRTVAAPSVFIFPPSDEQ
growth
NO: 202)




LKSGTASVVCLLNNFYPREAKVQWKVDNALQ
factor light





SGNSQESVTEQDSKDSTYSLSSTLTLSKADY






EKHKVYACEVTHQGLSSPVTKSFNRGEC








SEQ ID
QVQLVQSGAEVKKPGASVKVSCKASGYSFTN
α-CSF2
VH1-3*01
SEQ ID NO: 10


NO:
YYIHWVRQAPGQRLEWMGWINAGNGNTKYSQ
heavy-
(SEQ ID



101
KFQGRVTITRDTSASTAYMELSSLRSEDTAV
LgBiT
NO: 185)




YYCVRRQRFPYYFDYWGQGTLVTVSSASTKG






PSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSS






VVTVPSSSLGTQTYICNVNHKPSNTKVDKRV






EPKSCGSSGGGGSGGGGSSGGVFTLEDFVGD






WEQTAAYNLDQVLEQGGVSSLLQNLAVSVTP






IQRIVRSGENALKIDIHVIIPYEGLSADQMA






QIEEVFKVVYPVDDHHFKVILPYGTLVIDGV






TPNMLNYFGRPYEGIAVFDGKKITVTGTLWN






GNKIIDERLITPDGSMLFRVTINS








SEQ ID
EIVLTQSPATLSVSPGERATLSCRASQSVGT
α-CSF2
Vk3D-
SEQ ID NO: 11


NO:
NVAWYQQKPGQAPRVLIYSTSSRATGITDRF
light-
20*01



102
SGSGSGTDFTLTISRLEPEDFAVYYCQQFNK
SmBiT
(SEQ ID




SPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQ

NO: 206)




LKSGTASVVCLLNNFYPREAKVQWKVDNALQ






SGNSQESVTEQDSKDSTYSLSSTLTLSKADY






EKHKVYACEVTHQGLSSPVTKSFNRGECGSS






GGGGSGGGGSSGGVTGYRLFEEIL








SEQ ID
EIVLTQSPATLSVSPGERATLSCRASQSVGT
α-CSF2
Vk3D-
SEQ ID NO: 12


NO:
NVAWYQQKPGQAPRVLIYSTSSRATGITDRF
light
20*01



103
SGSGSGTDFTLTISRLEPEDFAVYYCQQFNK

(SEQ ID




SPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQ

NO: 206)




LKSGTASVVCLLNNFYPREAKVQWKVDNALQ






SGNSQESVTEQDSKDSTYSLSSTLTLSKADY






EKHKVYACEVTHQGLSSPVTKSFNRGEC








SEQ ID
QVQLVESGGGVVQPGRSLRLSCAASGFTFSS
α-CTLA4
VH3-
SEQ ID NO: 13


NO:
YTMHWVRQAPGKGLEWVTFISYDGNNKYYAD
heavy-
30*01



104
SVKGRFTISRDNSKNTLYLQMNSLRAEDTAI
LgBiT
(SEQ ID




YYCARTGWLGPFDYWGQGTLVTVSSASTKGP

NO: 192)




SVFPLAPSSKSTSGGTAALGCLVKDYFPEPV






TVSWNSGALTSGVHTFPAVLQSSGLYSLSSV






VTVPSSSLGTQTYICNVNHKPSNTKVDKRVE






PKSCGSSGGGGSGGGGSSGGVFTLEDFVGDW






EQTAAYNLDQVLEQGGVSSLLQNLAVSVTPI






QRIVRSGENALKIDIHVIIPYEGLSADQMAQ






IEEVFKVVYPVDDHHFKVILPYGTLVIDGVT






PNMLNYFGRPYEGIAVFDGKKITVTGTLWNG






NKIIDERLITPDGSMLFRVTINS








SEQ ID
EIVLTQSPGTLSLSPGERATLSCRASQSVGS
α-CTLA4
Vk3-20*01
SEQ ID NO: 14


NO:
SYLAWYQQKPGQAPRLLIYGAFSRATGIPDR
light
(SEQ ID



105
FSGSGSGTDFTLTISRLEPEDFAVYYCQQYG
SmBiT
NO: 205)




SSPWTFGQGTKVEIKRTVAAPSVFIFPPSDE






QLKSGTASVVCLLNNFYPREAKVQWKVDNAL






QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD






YEKHKVYACEVTHQGLSSPVTKSFNRGECGS






SGGGGSGGGGSSGGVTGYRLFEEIL








SEQ ID
EIVLTQSPGTLSLSPGERATLSCRASQSVGS
α-CTLA4
Vk3-20*01
SEQ ID NO: 15


NO:
SYLAWYQQKPGQAPRLLIYGAFSRATGIPDR
light
(SEQ ID



106
FSGSGSGTDFTLTISRLEPEDFAVYYCQQYG

NO: 205)




SSPWTFGQGTKVEIKRTVAAPSVFIFPPSDE






QLKSGTASVVCLLNNFYPREAKVQWKVDNAL






QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD






YEKHKVYACEVTHQGLSSPVTKSFNRGEC








SEQ ID
EVQLVQSGAEVKKPGESLKISCKGSGYIFTN
α-IFN
VH5-
SEQ ID NO: 16


NO
YWIAWVRQMPGKGLESMGIIYPGDSDIRYSP
heavy-
51*01



107
SFQGQVTISADKSITTAYLQWSSLKASDTAM
LgBiT
(SEQ ID




YYCARHDIEGFDYWGRGTLVTVSSASTKGPS

NO: 198)




VFPLAPSSKSTSGGTAALGCLVKDYFPEPVT






VSWNSGALTSGVHTFPAVLQSSGLYSLSSVV






TVPSSSLGTQTYICNVNHKPSNTKVDKRVEP






KSCGSSGGGGSGGGGSSGGVFTLEDFVGDWE






QTAAYNLDQVLEQGGVSSLLQNLAVSVTPIQ






RIVRSGENALKIDIHVIIPYEGLSADQMAQI






EEVFKVVYPVDDHHFKVILPYGTLVIDGVTP






NMLNYFGRPYEGIAVFDGKKITVTGTLWNGN






KIIDERLITPDGSMLFRVTINS








SEQ ID
EIVLTQSPGTLSLSPGERATLSCRASQSVSS
α-IFN
Vk3-20*01
SEQ ID NO: 17


NO:
SFFAWYQQKPGQAPRLLIYGASSRATGIPDR
light-
(SEQ ID



108
LSGSGSGTDFTLTITRLEPEDFAVYYCQQYD
SmBiT
NO: 205)




SSAITFGQGTRLEIKRTVAAPSVFIFPPSDE






QLKSGTASVVCLLNNFYPREAKVQWKVDNAL






QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD






YEKHKVYACEVTHQGLSSPVTKSFNRGECGS






SGGGGSGGGGSSGGVTGYRLFEEIL








SEQ ID
EIVLTQSPGTLSLSPGERATLSCRASQSVSS
α-IFN
Vk3-20*01
SEQ ID NO: 18


NO:
SFFAWYQQKPGQAPRLLIYGASSRATGIPDR
light
(SEQ ID



109
LSGSGSGTDFTLTITRLEPEDFAVYYCQQYD

NO: 205)




SSAITFGQGTRLEIKRTVAAPSVFIFPPSDE






QLKSGTASVVCLLNNFYPREAKVQWKVDNAL






QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD






YEKHKVYACEVTHQGLSSPVTKSFNRGEC








SEQ ID
QVQLVQSGAEVKKPGASVKVSCKASGYTFTS
α-IFNα
VH1-
SEQ ID NO: 19


NO:
YSISWVRQAPGQGLEWMGWISVYNGNTNYAQ
heavy-
18*01



110
KFQGRVTMTTDTSTSTAYLELRSLRSDDTAV
LgBiT
(SEQ ID




YYCARDPIAAGYWGQGTLVTVSSASTKGPSV

NO: 183)




FPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKRVEPK






SCGSSGGGGSGGGGSSGGVFTLEDFVGDWEQ






TAAYNLDQVLEQGGVSSLLQNLAVSVTPIQR






IVRSGENALKIDIHVIIPYEGLSADQMAQIE






EVFKVVYPVDDHHFKVILPYGTLVIDGVTPN






MLNYFGRPYEGIAVFDGKKITVTGTLWNGNK






IIDERLITPDGSMLFRVTINS








SEQ ID
EIVLTQSPGTLSLSPGERATLSCRASQSVSS
α-IFNα
Vk3-20*01
SEQ ID NO: 20


NO:
TYLAWYQQKPGQAPRLLIYGASSRATGIPDR
light-
(SEQ ID



111
FSGSGSGTDFTLTISRLEPEDFAVYYCQQYG
SmBiT
NO: 205)




SSPRTFGQGTKVEIKRTVAAPSVFIFPPSDE






QLKSGTASVVCLLNNFYPREAKVQWKVDNAL






QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD






YEKHKVYACEVTHQGLSSPVTKSFNRGECGS






SGGGGSGGGGSSGGVTGYRLFEEIL








SEQ ID
EIVLTQSPGTLSLSPGERATLSCRASQSVSS
α-IFNα
Vk3-20*01
SEQ ID NO: 21


NO:
TYLAWYQQKPGQAPRLLIYGASSRATGIPDR
light
(SEQ ID



112
FSGSGSGTDFTLTISRLEPEDFAVYYCQQYG

NO: 205)




SSPRTFGQGTKVEIKRTVAAPSVFIFPPSDE






QLKSGTASVVCLLNNFYPREAKVQWKVDNAL






QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD






YEKHKVYACEVTHQGLSSPVTKSFNRGEC








SEQ ID
QVQLQESGPGLVKPSGTLSLTCAVSGGSISS
α-IGF1R
VH4-4*01
SEQ ID NO: 22


NO:
SNWWSWVRQPPGKGLEWIGEIYHSGSTNYNP
heavy-
(SEQ ID



113
SLKSRVTISVDKSKNQFSLKLSSVTAADTAV
LgBiT
NO: 197)




YYCARWTGRTDAFDIWGQGTMVTVSSASTKG






PSVFPLAPSSKSTSGGTAALGCLVKDYFPEP






VTVSWNSGALTSGVHTFPAVLQSSGLYSLSS






VVTVPSSSLGTQTYICNVNHKPSNTKVDKRV






EPKSCGSSGGGGSGGGGSSGGVFTLEDFVGD






WEQTAAYNLDQVLEQGGVSSLLQNLAVSVTP






IQRIVRSGENALKIDIHVIIPYEGLSADQMA






QIEEVFKVVYPVDDHHFKVILPYGTLVIDGV






TPNMLNYFGRPYEGIAVFDGKKITVTGTLWN






GNKIIDERLITPDGSMLFRVTINS








SEQ ID
DVVMTQSPLSLPVTPGEPASISCRSSQSLLH
α-IGF1R
Vk2-28*01
SEQ ID NO: 23


NO:
SNGYNYLDWYLQKPGQSPQLLIYLGSNRASG
light-
(SEQ ID



114
VPDRFSGSGSGTDFTLKISRVEAEDVGVYYC
SmBiT
NO: 203)




MQGTHWPLTFGQGTKVEIKRTVAAPSVFIFP






PSDEQLKSGTASVVCLLNNFYPREAKVQWKV






DNALQSGNSQESVTEQDSKDSTYSLSSTLTL






SKADYEKHKVYACEVTHQGLSSPVTKSFNRG






ECGSSGGGGSGGGGSSGGVTGYRLFEEIL








SEQ ID
DVVMTQSPLSLPVTPGEPASISCRSSQSLLH
α-IGF1R
Vk2-28*01
SEQ ID NO: 24


NO:
SNGYNYLDWYLQKPGQSPQLLIYLGSNRASG
light
(SEQ ID



115
VPDRFSGSGSGTDFTLKISRVEAEDVGVYYC

NO: 203)




MQGTHWPLTFGQGTKVEIKRTVAAPSVFIFP






PSDEQLKSGTASVVCLLNNFYPREAKVQWKV






DNALQSGNSQESVTEQDSKDSTYSLSSTLTL






SKADYEKHKVYACEVTHQGLSSPVTKSFNRG






EC








SEQ ID
EVQLLQSGGGLVQPGGSLRLSCAASGFMFSR
α-IGF1R
VH3-
SEQ ID NO: 25


NO:
YPMHWVRQAPGKGLEWVGSISGSGGATPYAD
heavy-
23*01



116
SVKGRFTISRDNSKNTLYLQMNSLRAEDTAV
LgBiT
(SEQ ID




YYCAKDFYQILTGNAFDYWGQGTTVTVSSAS

NO: 191)




TKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVD






KRVEPKSCGSSGGGGSGGGGSSGGVFTLEDF






VGDWEQTAAYNLDQVLEQGGVSSLLQNLAVS






VTPIQRIVRSGENALKIDIHVIIPYEGLSAD






QMAQIEEVFKVVYPVDDHHFKVILPYGTLVI






DGVTPNMLNYFGRPYEGIAVFDGKKITVTGT






LWNGNKIIDERLITPDGSMLFRVTINS








SEQ ID
DIQMTQSPSSLSASLGDRVTITCRASQGISS
α-IGF1R
Vk1-27*01
SEQ ID NO: 26


NO:
YLAWYQQKPGKAPKLLIYAKSTLQSGVPSRF
light-
(SEQ ID



117
SGSGSGTDFTLTISSLQPEDSATYYCQQYWT
SmBiT
NO: 200)




FPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQ






LKSGTASVVCLLNNFYPREAKVQWKVDNALQ






SGNSQESVTEQDSKDSTYSLSSTLTLSKADY






EKHKVYACEVTHQGLSSPVTKSFNRGECGSS






GGGGSGGGGSSGGVTGYRLFEEIL








SEQ ID
DIQMTQSPSSLSASLGDRVTITCRASQGISS
α-IGF1R
Vk1-27*01
SEQ ID NO: 27


NO:
YLAWYQQKPGKAPKLLIYAKSTLQSGVPSRF
light
(SEQ ID



118
SGSGSGTDFTLTISSLQPEDSATYYCQQYWT

NO: 200)




FPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQ






LKSGTASVVCLLNNFYPREAKVQWKVDNALQ






SGNSQESVTEQDSKDSTYSLSSTLTLSKADY






EKHKVYACEVTHQGLSSPVTKSFNRGEC








SEQ ID
EVQLVQSGGGLVKPGGSLRLSCAASGFTFSS
α-IGF1R
VH3-
SEQ ID NO: 28


NO:
FAMHWVRQAPGKGLEWISVIDTRGATYYADS
heavy-
21*01



119
VKGRFTISRDNAKNSLYLQMNSLRAEDTAVY
LgBiT
(SEQ ID




YCARLGNFYYGMDVWGQGTTVTVSSASTKGP

NO: 190)




SVFPLAPSSKSTSGGTAALGCLVKDYFPEPV






TVSWNSGALTSGVHTFPAVLQSSGLYSLSSV






VTVPSSSLGTQTYICNVNHKPSNTKVDKRVE






PKSCGSSGGGGSGGGGSSGGVFTLEDFVGDW






EQTAAYNLDQVLEQGGVSSLLQNLAVSVTPI






QRIVRSGENALKIDIHVIIPYEGLSADQMAQ






IEEVFKVVYPVDDHHFKVILPYGTLVIDGVT






PNMLNYFGRPYEGIAVFDGKKITVTGTLWNG






NKIIDERLITPDGSMLFRVTINS








SEQ ID
EIVLTQSPGTLSVSPGERATLSCRASQSIGS
α-IGF1R
Vk3-20*01
SEQ ID NO: 29


NO:
SLHWYQQKPGQAPRLLIKYASQSLSGIPDRF
light-
(SEQ ID



120
SGSGSGTDFTLTISRLEPEDFAVYYCHQSSR
SmBiT
NO: 205)




LPHTFGQGTKVEIKRTVAAPSVFIFPPSDEQ






LKSGTASVVCLLNNFYPREAKVQWKVDNALQ






SGNSQESVTEQDSKDSTYSLSSTLTLSKADY






EKHKVYACEVTHQGLSSPVTKSFNRGECGSS






GGGGSGGGGSSGGVTGYRLFEEIL








SEQ ID
EIVLTQSPGTLSVSPGERATLSCRASQSIGS
α-IGF1R
Vk3-20*01
SEQ ID NO: 30


NO:
SLHWYQQKPGQAPRLLIKYASQSLSGIPDRF
light
(SEQ ID



121
SGSGSGTDFTLTISRLEPEDFAVYYCHQSSR

NO: 205)




LPHTFGQGTKVEIKRTVAAPSVFIFPPSDEQ






LKSGTASVVCLLNNFYPREAKVQWKVDNALQ






SGNSQESVTEQDSKDSTYSLSSTLTLSKADY






EKHKVYACEVTHQGLSSPVTKSFNRGEC








SEQ ID
QVELVESGGGVVQPGRSQRLSCAASGFTFSS
α-IGF1R
VH3-
SEQ ID NO: 31


NO:
YGMHWVRQAPGKGLEWVAIIWFDGSSTYYAD
heavy-
33*01



122
SVRGRFTISRDNSKNTLYLQMNSLRAEDTAV
LgBiT
(SEQ ID




YFCARELGRRYFDLWGRGTLVSVSSASTKGP

NO: 193)




SVFPLAPSSKSTSGGTAALGCLVKDYFPEPV






TVSWNSGALTSGVHTFPAVLQSSGLYSLSSV






VTVPSSSLGTQTYICNVNHKPSNTKVDKRVE






PKSCGSSGGGGSGGGGSSGGVFTLEDFVGDW






EQTAAYNLDQVLEQGGVSSLLQNLAVSVTPI






QRIVRSGENALKIDIHVIIPYEGLSADQMAQ






IEEVFKVVYPVDDHHFKVILPYGTLVIDGVT






PNMLNYFGRPYEGIAVFDGKKITVTGTLWNG






NKIIDERLITPDGSMLFRVTINS








SEQ ID
EIVLTQSPATLSLSPGERATLSCRASQSVSS
α-IGF1R
Vk3-11*01
SEQ ID NO: 32


NO:
YLAWYQQKPGQAPRLLIYDASKRATGIPARF
light-
(SEQ ID



123
SGSGSGTDFTLTISSLEPEDFAVYYCQQRSK
SmBiT
NO: 204)




WPPWTFGQGTKVESKRTVAAPSVFIFPPSDE






QLKSGTASVVCLLNNFYPREAKVQWKVDNAL






QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD






YEKHKVYACEVTHQGLSSPVTKSFNRGECGS






SGGGGSGGGGSSGGVTGYRLFEEIL








SEQ ID
EIVLTQSPATLSLSPGERATLSCRASQSVSS
α-IGF1R
Vk3-11*01
SEQ ID NO: 33


NO:
YLAWYQQKPGQAPRLLIYDASKRATGIPARF
light
(SEQ ID



124
SGSGSGTDFTLTISSLEPEDFAVYYCQQRSK

NO: 204)




WPPWTFGQGTKVESKRTVAAPSVFIFPPSDE






QLKSGTASVVCLLNNFYPREAKVQWKVDNAL






QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD






YEKHKVYACEVTHQGLSSPVTKSFNRGEC








SEQ ID
EVOLVESGGGLVQPGRSLRLSCAASRFTFDD
α-IL6R
VH3-9*01
SEQ ID NO: 34


NO:
YAMHWVRQAPGKGLEWVSGISWNSGRIGYAD
heavy-
(SEQ ID



125
SVKGRFTISRDNAENSLFLQMNGLRAEDTAL
LgBiT
NO: 196)




YYCAKGRDSFDIWGQGTMVTVSSASTKGPSV






FPLAPSSKSTSGGTAALGCLVKDYFPEPVTV






SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKRVEPK






SCGSSGGGGSGGGGSSGGVFTLEDFVGDWEQ






TAAYNLDQVLEQGGVSSLLQNLAVSVTPIQR






IVRSGENALKIDIHVIIPYEGLSADQMAQIE






EVFKVVYPVDDHHFKVILPYGTLVIDGVTPN






MLNYFGRPYEGIAVFDGKKITVTGTLWNGNK






IIDERLITPDGSMLFRVTINS








SEQ ID
DIQMTQSPSSVSASVGDRVTITCRASQGISS
α-IL6R
Vk1-12*01
SEQ ID NO: 35


NO:
WLAWYQQKPGKAPKLLIYGASSLESGVPSRF
light-
(SEQ ID



126
SGSGSGTDFTLTISSLQPEDFASYYCQQANS
SmBiT
NO: 199)




FPYTFGQGTKLEIKRTVAAPSVFIFPPSDEQ






LKSGTASVVCLLNNFYPREAKVQWKVDNALQ






SGNSQESVTEQDSKDSTYSLSSTLTLSKADY






EKHKVYACEVTHQGLSSPVTKSFNRGECGSS






GGGGSGGGGSSGGVTGYRLFEEIL








SEQ ID
DIQMTQSPSSVSASVGDRVTITCRASQGISS
α-IL6R
Vk1-12*01
SEQ ID NO: 36


NO:
WLAWYQQKPGKAPKLLIYGASSLESGVPSRF
light
(SEQ ID



127
SGSGSGTDFTLTISSLQPEDFASYYCQQANS

NO: 199)




FPYTFGQGTKLEIKRTVAAPSVFIFPPSDEQ






LKSGTASVVCLLNNFYPREAKVQWKVDNALQ






SGNSQESVTEQDSKDSTYSLSSTLTLSKADY






EKHKVYACEVTHQGLSSPVTKSFNRGEC








SEQ ID
EVQLLESGGGLVQPGGSLRLSCAASGFTFSA
α-LINGO-
VH3-
SEQ ID NO: 37


NO:
YEMKWVRQAPGKGLEWVSVIGPSGGFTFYAD
1 heavy-
23*01



128
SVKGRFTISRDNSKNTLYLQMNSLRAEDTAV
LgBiT
(SEQ ID




YYCATEGDNDAFDIWGQGTTVTVSSASTKGP

NO: 191)




SVFPLAPSSKSTSGGTAALGCLVKDYFPEPV






TVSWNSGALTSGVHTFPAVLQSSGLYSLSSV






VTVPSSSLGTQTYICNVNHKPSNTKVDKRVE






PKSCGSSGGGGSGGGGSSGGVFTLEDFVGDW






EQTAAYNLDQVLEQGGVSSLLQNLAVSVTPI






QRIVRSGENALKIDIHVIIPYEGLSADQMAQ






IEEVFKVVYPVDDHHFKVILPYGTLVIDGVT






PNMLNYFGRPYEGIAVFDGKKITVTGTLWNG






NKIIDERLITPDGSMLFRVTINS








SEQ ID
DIQMTQSPATLSLSPGERATLSCRASQSVSS
α-LINGO-
Vk3-11*01
SEQ ID NO: 38


NO:
YLAWYQQKPGQAPRLLIYDASNRATGIPARF
1 light-
(SEQ ID



129
SGSGSGTDFTLTISSLEPEDFAVYYCQQRSN
SmBiT
NO: 204)




WPMYTFGQGTKLEIKRTVAAPSVFIFPPSDE






QLKSGTASVVCLLNNFYPREAKVQWKVDNAL






QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD






YEKHKVYACEVTHQGLSSPVTKSFNRGECGS






SGGGGSGGGGSSGGVTGYRLFEEIL








SEQ ID
DIQMTQSPATLSLSPGERATLSCRASQSVSS
α-LINGO-
Vk3-11*01
SEQ ID NO: 39


NO:
YLAWYQQKPGQAPRLLIYDASNRATGIPARF
1 light
(SEQ ID



130
SGSGSGTDFTLTISSLEPEDFAVYYCQQRSN

NO: 204)




WPMYTFGQGTKLEIKRTVAAPSVFIFPPSDE






QLKSGTASVVCLLNNFYPREAKVQWKVDNAL






QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD






YEKHKVYACEVTHQGLSSPVTKSFNRGEC








SEQ ID
EVOLVESGGGLVQPGGSLRLSCAASGFTFSS
α-
VH3-
SEQ ID NO: 40


NO:
YAMSWVRQAPGKGLEWVSQISPAGGYTNYAD
neuropilin
66*01



131
SVKGRFTISADTSKNTAYLQMNSLRAEDTAV
1 heavy-
(SEQ ID




YYCARGELPYYRMSKVMDVWGQGTLVTVSSA
LgBiT
NO: 194)




STKGPSVFPLAPSSKSTSGGTAALGCLVKDY






FPEPVTVSWNSGALTSGVHTFPAVLQSSGLY






SLSSVVTVPSSSLGTQTYICNVNHKPSNTKV






DKRVEPKSCGSSGGGGSGGGGSSGGVFTLED






FVGDWEQTAAYNLDQVLEQGGVSSLLQNLAV






SVTPIQRIVRSGENALKIDIHVIIPYEGLSA






DQMAQIEEVFKVVYPVDDHHFKVILPYGTLV






IDGVTPNMLNYFGRPYEGIAVFDGKKITVTG






TLWNGNKIIDERLITPDGSMLFRVTINS








SEQ ID
DIQMTQSPSSLSASVGDRVTITCRASQYFSS
α-
Vk1-39*01
SEQ ID NO: 41


NO:
YLAWYQQKPGKAPKLLIYGASSRASGVPSRF
neuropilin
(SEQ ID



132
SGSGSGTDFTLTISSLQPEDFATYYCQQYLG
1 light-
NO: 201)




SPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQ
SmBiT





LKSGTASVVCLLNNFYPREAKVQWKVDNALQ






SGNSQESVTEQDSKDSTYSLSSTLTLSKADY






EKHKVYACEVTHQGLSSPVTKSFNRGECGSS






GGGGSGGGGSSGGVTGYRLFEEIL








SEQ ID
DIQMTQSPSSLSASVGDRVTITCRASQYFSS
α-
Vk1-39*01
SEQ ID NO: 42


NO:
YLAWYQQKPGKAPKLLIYGASSRASGVPSRF
neuropilin
(SEQ ID



133
SGSGSGTDFTLTISSLQPEDFATYYCQQYLG
1 light
NO: 201)




SPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQ






LKSGTASVVCLLNNFYPREAKVQWKVDNALQ






SGNSQESVTEQDSKDSTYSLSSTLTLSKADY






EKHKVYACEVTHQGLSSPVTKSFNRGEC








SEQ ID
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSS
α-CD221
VH1-
SEQ ID NO: 43


NO:
YAISWVRQAPGQGLEWMGGIIPIFGTANYAQ
heavy-
69*01



134
KFQGRVTITADKSTSTAYMELSSLRSEDTAV
LgBiT
(SEQ ID




YYCARAPLRFLEWSTQDHYYYYYMDVWGKGT

NO: 187)




TVTVSSASTKGPSVFPLAPSSKSTSGGTAAL






GCLVKDYFPEPVTVSWNSGALTSGVHTFPAV






LQSSGLYSLSSVVTVPSSSLGTQTYICNVNH






KPSNTKVDKRVEPKSCGSSGGGGSGGGGSSG






GVFTLEDFVGDWEQTAAYNLDQVLEQGGVSS






LLQNLAVSVTPIQRIVRSGENALKIDIHVII






PYEGLSADQMAQIEEVFKVVYPVDDHHFKVI






LPYGTLVIDGVTPNMLNYFGRPYEGIAVFDG






KKITVTGTLWNGNKIIDERLITPDGSMLFRV






TINS








SEQ ID
SSELTQDPAVSVALGQTVRITCQGDSLRSYY
α-CD221
V13-19*01
SEQ ID NO: 44


NO:
ATWYQQKPGQAPILVIYGENKRPSGIPDRFS
light-
(SEQ ID



135
GSSSGNTASLTITGAQAEDEADYYCKSRDGS
SmBiT
NO: 211)




GQHLVFGGGTKLTVLGQPKANPTVTLFPPSS






EELQANKATLVCLISDFYPGAVTVAWKADGS






PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ






WKSHRSYSCQVTHEGSTVEKTVAPTECSGSS






GGGGSGGGGSSGGVTGYRLFEEIL








SEQ ID
SSELTQDPAVSVALGQTVRITCQGDSLRSYY
α-CD221
V13-19*01
SEQ ID NO: 45


NO:
ATWYQQKPGQAPILVIYGENKRPSGIPDRFS
light
(SEQ ID



136
GSSSGNTASLTITGAQAEDEADYYCKSRDGS

NO: 211)




GQHLVFGGGTKLTVLGQPKANPTVTLFPPSS






EELQANKATLVCLISDFYPGAVTVAWKADGS






PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ






WKSHRSYSCQVTHEGSTVEKTVAPTECS








SEQ ID
EVQLVQSGGGVERPGGSLRLSCAASGFTFDD
α-death
VH3-
SEQ ID NO: 46


NO:
YAMSWVRQAPGKGLEWVSGINWQGGSTGYAD
receptor 5
20*01



137
SVKGRVTISRDNAKNSLYLQMNSLRAEDTAV
heavy-
(SEQ ID




YYCAKILGAGRGWYFDYWGKGTTVTVSSAST
LgBiT
NO: 189)




KGPSVFPLAPSSKSTSGGTAALGCLVKDYFP






EPVTVSWNSGALTSGVHTFPAVLQSSGLYSL






SSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






RVEPKSCGSSGGGGSGGGGSSGGVFTLEDFV






GDWEQTAAYNLDQVLEQGGVSSLLQNLAVSV






TPIQRIVRSGENALKIDIHVIIPYEGLSADQ






MAQIEEVFKVVYPVDDHHFKVILPYGTLVID






GVTPNMLNYFGRPYEGIAVFDGKKITVTGTL






WNGNKIIDERLITPDGSMLFRVTINS








SEQ ID
SSELTQDPAVSVALGQTVRITCSGDSLRSYY
α-death
V13-19*01
SEQ ID NO: 47


NO:
ASWYQQKPGQAPVLVIYGANNRPSGIPDRFS
receptor 5
(SEQ ID



138
GSSSGNTASLTITGAQAEDEADYYCNSADSS
light-
NO: 211)




GNHVVFGGGTKLTVLGQPKANPTVTLFPPSS
S





EELQANKATLVCLISDFYPGAVTVAWKADGS
SmBiT





PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ






WKSHRSYSCQVTHEGSTVEKTVAPTECSGSS






GGGGSGGGGSSGGVTGYRLFEEIL








SEQ ID
SSELTQDPAVSVALGQTVRITCSGDSLRSYY
α-death
V13-19*01
SEQ ID NO: 48


NO:
ASWYQQKPGQAPVLVIYGANNRPSGIPDRFS
receptor 5
(SEQ ID



139
GSSSGNTASLTITGAQAEDEADYYCNSADSS
light
NO: 211)




GNHVVFGGGTKLTVLGQPKANPTVTLFPPSS






EELQANKATLVCLISDFYPGAVTVAWKADGS






PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ






WKSHRSYSCQVTHEGSTVEKTVAPTECS








SEQ ID
EVQLVQSGAEVKKPGESLKISCKGSGYSFSN
α-IL23
VH5-
SEQ ID NO: 49


NO:
YWIGWVRQMPGKGLEWMGIIDPSNSYTRYSP
heavy-
51*01



140
SFQGQVTISADKSISTAYLQWSSLKASDTAM
LgBiT
(SEQ ID




YYCARWYYKPFDVWGQGTLVTVSSASTKGPS

NO: 198)




VFPLAPSSKSTSGGTAALGCLVKDYFPEPVT






VSWNSGALTSGVHTFPAVLQSSGLYSLSSVV






TVPSSSLGTQTYICNVNHKPSNTKVDKRVEP






KSCGSSGGGGSGGGGSSGGVFTLEDFVGDWE






QTAAYNLDQVLEQGGVSSLLQNLAVSVTPIQ






RIVRSGENALKIDIHVIIPYEGLSADQMAQI






EEVFKVVYPVDDHHFKVILPYGTLVIDGVTP






NMLNYFGRPYEGIAVFDGKKITVTGTLWNGN






KIIDERLITPDGSMLFRVTINS








SEQ ID
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGS
α-IL23
V11-40*01
SEQ ID NO: 50


NO:
GYDVHWYQQLPGTAPKLLIYGNSKRPSGVPD
light-
(SEQ ID



141
RFSGSKSGTSASLAITGLQSEDEADYYCASW
SmBiT
NO: 208)




TDGLSLVVFGGGTKLTVLGQPKANPTVTLFP






PSSEELQANKATLVCLISDFYPGAVTVAWKA






DGSPVKAGVETTKPSKQSNNKYAASSYLSLT






PEQWKSHRSYSCQVTHEGSTVEKTVAPTECS






GSSGGGGSGGGGSSGGVTGYRLFEEIL








SEQ ID
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGS
α-IL23
V11-40*01
SEQ ID NO: 51


NO:
GYDVHWYQQLPGTAPKLLIYGNSKRPSGVPD
light
(SEQ ID



142
RFSGSKSGTSASLAITGLQSEDEADYYCASW

NO: 208)




TDGLSLVVFGGGTKLTVLGQPKANPTVTLFP






PSSEELQANKATLVCLISDFYPGAVTVAWKA






DGSPVKAGVETTKPSKQSNNKYAASSYLSLT






PEQWKSHRSYSCQVTHEGSTVEKTVAPTECS








SEQ ID
QVQLVQSGGGLVQPGGSLRLSCAASGFTFDD
α-HER3
VH3-9*01
SEQ ID NO: 52


NO:
YAMHWVRQAPGKGLEWVAGISWDSGSTGYAD
heavy-
(SEQ ID



143
SVKGRFTISRDNAKNSLYLQMNSLRAEDTAL
LgBiT
NO: 196)




YYCARDLGAYQWVEGFDYWGQGTLVTVSSAS






TKGPSVFPLAPSSKSTSGGTAALGCLVKDYF






PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS






LSSVVTVPSSSLGTQTYICNVNHKPSNTKVD






KRVEPKSCGSSGGGGSGGGGSSGGVFTLEDF






VGDWEQTAAYNLDQVLEQGGVSSLLQNLAVS






VTPIQRIVRSGENALKIDIHVIIPYEGLSAD






QMAQIEEVFKVVYPVDDHHFKVILPYGTLVI






DGVTPNMLNYFGRPYEGIAVFDGKKITVTGT






LWNGNKIIDERLITPDGSMLFRVTINS








SEQ ID
SYELTQDPAVSVALGQTVRITCQGDSLRSYY
α-HER3
V13-19*01
SEQ ID NO: 53


NO:
ASWYQQKPGQAPVLVIYGKNNRPSGIPDRFS
light-
(SEQ ID



144
GSTSGNSASLTITGAQAEDEADYYCNSRDSP
SmBiT
NO: 211)




GNQWVFGGGTKVTVLGGQPKANPTVTLFPPS






SEELQANKATLVCLISDFYPGAVTVAWKADG






SPVKAGVETTKPSKQSNNKYAASSYLSLTPE






QWKSHRSYSCQVTHEGSTVEKTVAPTECSGS






SGGGGSGGGGSSGGVTGYRLFEEIL








SEQ ID
SYELTQDPAVSVALGQTVRITCQGDSLRSYY
α-HER3
V13-19*01
SEQ ID NO: 54


NO:
ASWYQQKPGQAPVLVIYGKNNRPSGIPDRFS
light
(SEQ ID



145
GSTSGNSASLTITGAQAEDEADYYCNSRDSP

NO: 211)




GNQWVFGGGTKVTVLGGQPKANPTVTLFPPS






SEELQANKATLVCLISDFYPGAVTVAWKADG






SPVKAGVETTKPSKQSNNKYAASSYLSLTPE






QWKSHRSYSCQVTHEGSTVEKTVAPTECS








SEQ ID
EVQLVQSGGGVERPGGSLRLSCAASGFTFDD
α-
VH3-
SEQ ID NO: 55


NO:
YGMSWVRQAPGKGLEWVSGINWNGGSTGYAD
TRAILR2
20*01



146
SVKGRVTISRDNAKNSLYLQMNSLRAEDTAV
heavy-
(SEQ ID




YYCAKILGAGRGWYFDLWGKGTTVTVSSAST
LgBiT
NO: 189)




KGPSVFPLAPSSKSTSGGTAALGCLVKDYFP






EPVTVSWNSGALTSGVHTFPAVLQSSGLYSL






SSVVTVPSSSLGTQTYICNVNHKPSNTKVDK






RVEPKSCGSSGGGGSGGGGSSGGVFTLEDFV






GDWEQTAAYNLDQVLEQGGVSSLLQNLAVSV






TPIQRIVRSGENALKIDIHVIIPYEGLSADQ






MAQIEEVFKVVYPVDDHHFKVILPYGTLVID






GVTPNMLNYFGRPYEGIAVFDGKKITVTGTL






WNGNKIIDERLITPDGSMLFRVTINS








SEQ ID
SSELTQDPAVSVALGQTVRITCQGDSLRSYY
α-
V13-19*01
SEQ ID NO: 56


NO:
ASWYQQKPGQAPVLVIYGKNNRPSGIPDRFS
TRAILR2
(SEQ ID



147
GSSSGNTASLTITGAQAEDEADYYCNSRDSS
light-
NO: 211)




GNHVVFGGGTKLTVLGQPKANPTVTLFPPSS
SmBiT





EELQANKATLVCLISDFYPGAVTVAWKADGS






PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ






WKSHRSYSCQVTHEGSTVEKTVAPTECSGSS






GGGGSGGGGSSGGVTGYRLFEEIL








SEQ ID
SSELTQDPAVSVALGQTVRITCQGDSLRSYY
α-
V13-19*01
SEQ ID NO: 57


NO:
ASWYQQKPGQAPVLVIYGKNNRPSGIPDRFS
TRAILR2
(SEQ ID



148
GSSSGNTASLTITGAQAEDEADYYCNSRDSS
light
NO: 211)




GNHVVFGGGTKLTVLGQPKANPTVTLFPPSS






EELQANKATLVCLISDFYPGAVTVAWKADGS






PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ






WKSHRSYSCQVTHEGSTVEKTVAPTECS








SEQ ID
QVQLVQSGAEVKKPGASVKVSCKASGYTFTS
α-activin
VH1-
SEQ ID NO: 58


NO:
SYINWVRQAPGQGLEWMGTINPVSGSTSYAQ
receptors
46*01



149
KFQGRVTMTRDTSISTAYMELSRLRSDDTAV
heavy-
(SEQ ID




YYCARGGWFDYWGQGTLVTVSSASTKGPSVF
LgBiT
NO: 186)




PLAPSSKSTSGGTAALGCLVKDYFPEPVTVS






WNSGALTSGVHTFPAVLQSSGLYSLSSVVTV






PSSSLGTQTYICNVNHKPSNTKVDKRVEPKS






CGSSGGGGSGGGGSSGGVFTLEDFVGDWEQT






AAYNLDQVLEQGGVSSLLQNLAVSVTPIQRI






VRSGENALKIDIHVIIPYEGLSADQMAQIEE






VFKVVYPVDDHHFKVILPYGTLVIDGVTPNM






LNYFGRPYEGIAVFDGKKITVTGTLWNGNKI






IDERLITPDGSMLFRVTINS








SEQ ID
QSALTQPASVSGSPGQSITISCTGTSSDVGS
α-activin
V12-14*01
SEQ ID NO: 59


NO:
YNYVNWYQQHPGKAPKLMIYGVSKRPSGVSN
receptors
(SEQ ID



150
RFSGSKSGNTASLTISGLQAEDEADYYCGTF
light-
NO: 210)




AGGSYYGVFGGGTKLTVLGQPKANPTVTLFP
SmBiT





PSSEELQANKATLVCLISDFYPGAVTVAWKA






DGSPVKAGVETTKPSKQSNNKYAASSYLSLT






PEQWKSHRSYSCQVTHEGSTVEKTVAPTECS






GSSGGGGSGGGGSSGGVTGYRLFEEIL








SEQ ID
QSALTQPASVSGSPGQSITISCTGTSSDVGS
α-activin
V12-14*01
SEQ ID NO: 60


NO:
YNYVNWYQQHPGKAPKLMIYGVSKRPSGVSN
receptors
(SEQ ID



151
RFSGSKSGNTASLTISGLQAEDEADYYCGTF
light
NO: 210)




AGGSYYGVFGGGTKLTVLGQPKANPTVTLFP






PSSEELQANKATLVCLISDFYPGAVTVAWKA






DGSPVKAGVETTKPSKQSNNKYAASSYLSLT






PEQWKSHRSYSCQVTHEGSTVEKTVAPTECS








SEQ ID
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSS
α-
VH1-
SEQ ID NO: 61


NO:
YAISWVRQAPGQGLEWMGGIGPFFGTANYAQ
complement
69*01



152
KFQGRVTITADESTSTAYMELSSLRSEDTAV
C5
(SEQ ID




YYCARDTPYFDYWGQGTLVTVSSASTKGPSV
heavy-
NO: 187)




FPLAPSSKSTSGGTAALGCLVKDYFPEPVTV
LgBiT





SWNSGALTSGVHTFPAVLQSSGLYSLSSVVT






VPSSSLGTQTYICNVNHKPSNTKVDKRVEPK






SCGSSGGGGSGGGGSSGGVFTLEDFVGDWEQ






TAAYNLDQVLEQGGVSSLLQNLAVSVTPIQR






IVRSGENALKIDIHVIIPYEGLSADQMAQIE






EVFKVVYPVDDHHFKVILPYGTLVIDGVTPN






MLNYFGRPYEGIAVFDGKKITVTGTLWNGNK






IIDERLITPDGSMLFRVTINS








SEQ ID
SYELTQPLSVSVALGQTARITCSGDSIPNYY
α-
V13-9*01
SEQ ID NO: 62


NO:
VYWYQQKPGQAPVLVIYDDSNRPSGIPERFS
complement
(SEQ ID



153
GSNSGNTATLTISRAQAGDEADYYCQSFDSS
C5 light-
NO: 212)




LNAEVFGGGTKLTVLGQPKANPTVTLFPPSS
SmBiT





EELQANKATLVCLISDFYPGAVTVAWKADGS






PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ






WKSHRSYSCQVTHEGSTVEKTVAPTECSGSS






GGGGSGGGGSSGGVTGYRLFEEIL








SEQ ID
SYELTQPLSVSVALGQTARITCSGDSIPNYY
α-
V13-9*01
SEQ ID NO: 63


NO:
VYWYQQKPGQAPVLVIYDDSNRPSGIPERFS
complement
(SEQ ID



154
GSNSGNTATLTISRAQAGDEADYYCQSFDSS
C5 light
NO: 212)




LNAEVFGGGTKLTVLGQPKANPTVTLFPPSS






EELQANKATLVCLISDFYPGAVTVAWKADGS






PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ






WKSHRSYSCQVTHEGSTVEKTVAPTECS








SEQ ID
EVQLVQSGAEVKKPGASVKVSCKASGYTFTG
α-CCR2
VH1-2*01
SEQ ID NO: 64


NO:
YHMHWVRQAPGQGLEWMGWINPNSGVTKYAQ
heavy-
(SEQ ID



155
KFQGRVTMTRDTSINTAYMELSRLRFDDTDV
LgBiT
NO: 184)




YYCATGGFGYWGEGTLVTVSSASTKGPSVFP






LAPSSKSTSGGTAALGCLVKDYFPEPVTVSW






NSGALTSGVHTFPAVLQSSGLYSLSSVVTVP






SSSLGTQTYICNVNHKPSNTKVDKRVEPKSC






GSSGGGGSGGGGSSGGVFTLEDFVGDWEQTA






AYNLDQVLEQGGVSSLLQNLAVSVTPIQRIV






RSGENALKIDIHVIIPYEGLSADQMAQIEEV






FKVVYPVDDHHFKVILPYGTLVIDGVTPNML






NYFGRPYEGIAVFDGKKITVTGTLWNGNKII






DERLITPDGSMLFRVTINS








SEQ ID
LPVLTQPPSVSKGLRQTATLTCTGNSNNVGN
α-CCR2
V110-
SEQ ID NO: 65


NO:
QGAAWLQQHQGQPPKLLSYRNHNRPSGVSER
light-
54*01



156
FSPSRSGDTSSLTITGLQPEDEADYYCLAWD
SmBiT
(SEQ ID




SSLRAFVFGTGTKLTVLGQPKANPTVTLFPP

NO: 207)




SSEELQANKATLVCLISDFYPGAVTVAWKAD






GSPVKAGVETTKPSKQSNNKYAASSYLSLTP






EQWKSHRSYSCQVTHEGSTVEKTVAPTECSG






SSGGGGSGGGGSSGGVTGYRLFEEIL








SEQ ID
LPVLTQPPSVSKGLRQTATLTCTGNSNNVGN
α-CCR2
V110-
SEQ ID NO: 66


NO:
QGAAWLQQHQGQPPKLLSYRNHNRPSGVSER
light
54*01



157
FSPSRSGDTSSLTITGLQPEDEADYYCLAWD

(SEQ ID




SSLRAFVFGTGTKLTVLGQPKANPTVTLFPP

NO: 207)




SSEELQANKATLVCLISDFYPGAVTVAWKAD






GSPVKAGVETTKPSKQSNNKYAASSYLSLTP






EQWKSHRSYSCQVTHEGSTVEKTVAPTECS








SEQ ID
EVOLVESGGGLVQPGGSLRLSCVASGFTFSD
α-CCR2
VH3-7*01
SEQ ID NO: 67


NO:
YWMSWVRQAPGKGLEWVANIKKDGSVNYYVD
heavy-
(SEQ ID



158
SVKGRFTISRDNAKNSLYLQMNSLRAEDTAV
LgBiT
NO: 195)




YYCTRFDYWGQGTLVTVSSASTKGPSVFPLA






PSSKSTSGGTAALGCLVKDYFPEPVTVSWNS






GALTSGVHTFPAVLQSSGLYSLSSVVTVPSS






SLGTQTYICNVNHKPSNTKVDKRVEPKSCGS






SGGGGSGGGGSSGGVFTLEDFVGDWEQTAAY






NLDQVLEQGGVSSLLQNLAVSVTPIQRIVRS






GENALKIDIHVIIPYEGLSADQMAQIEEVFK






VVYPVDDHHFKVILPYGTLVIDGVTPNMLNY






FGRPYEGIAVFDGKKITVTGTLWNGNKIIDE






RLITPDGSMLFRVTINS








SEQ ID
QAGLTQPPSVSKGLRQTATLTCTGNSNNVGN
α-CCR2
V110-54*01
SEQ ID NO: 68


NO:
QGAAWLQQHQGHPPKLLFYRNNNRASGISER
light-
(SEQ ID



159
LSASRSGNTASLTITGLQPEDEADYYCLTWD
SmBiT
NO: 207)




SSLSVVVFGGGTKLTVLGQPKANPTVTLFPP






SSEELQANKATLVCLISDFYPGAVTVAWKAD






GSPVKAGVETTKPSKQSNNKYAASSYLSLTP






EQWKSHRSYSCQVTHEGSTVEKTVAPTECSG






SSGGGGSGGGGSSGGVTGYRLFEEIL








SEQ ID
QAGLTOPPSVSKGLRQTATLTCTGNSNNVGN
α-CCR2
V110-
SEQ ID NO: 69


NO:
QGAAWLQQHQGHPPKLLFYRNNNRASGISER
light
54*01



160
LSASRSGNTASLTITGLQPEDEADYYCLTWD

(SEQ ID




SSLSVVVFGGGTKLTVLGQPKANPTVTLFPP

NO: 207)




SSEELQANKATLVCLISDFYPGAVTVAWKAD






GSPVKAGVETTKPSKQSNNKYAASSYLSLTP






EQWKSHRSYSCQVTHEGSTVEKTVAPTECS








SEQ ID
QVQLVESGGGVVQPGRSLRLSCAASGFTFSS
α-IL12ß
VH3-
SEQ ID NO: 70


NO:
YGMHWVRQAPGKGLEWVAFIRYDGSNKYYAD
heavy-
33*01



161
SVKGRFTISRDNSKNTLYLQMNSLRAEDTAV
LgBiT
(SEQ ID




YYCKTHGSHDNWGQGTMVTVSSASTKGPSVF

NO: 193)




PLAPSSKSTSGGTAALGCLVKDYFPEPVTVS






WNSGALTSGVHTFPAVLQSSGLYSLSSVVTV






PSSSLGTQTYICNVNHKPSNTKVDKRVEPKS






CGSSGGGGSGGGGSSGGVFTLEDFVGDWEQT






AAYNLDQVLEQGGVSSLLQNLAVSVTPIQRI






VRSGENALKIDIHVIIPYEGLSADQMAQIEE






VFKVVYPVDDHHFKVILPYGTLVIDGVTPNM






LNYFGRPYEGIAVFDGKKITVTGTLWNGNKI






IDERLITPDGSMLFRVTINS








SEQ ID
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGS
α-IL12ß
V11-44*01
SEQ ID NO: 71 


NO:
NTVKWYQQLPGTAPKLLIYYNDQRPSGVPDR
light-
SEQ ID 



162
FSGSKSGTSASLAITGLQAEDEADYYCQSYD
SmBiT
NO: 209)




RYTHPALLFGTGTKVTVLGQPKANPTVTLFP






PSSEELQANKATLVCLISDFYPGAVTVAWKA






DGSPVKAGVETTKPSKQSNNKYAASSYLSLT






PEQWKSHRSYSCQVTHEGSTVEKTVAPTECS






GSSGGGGSGGGGSSGGVTGYRLFEEIL








SEQ ID
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGS
α-IL12ß
V11-44*01
SEQ ID NO: 72 


NO:
NTVKWYQQLPGTAPKLLIYYNDQRPSGVPDR
light
SEQ ID 



163
FSGSKSGTSASLAITGLQAEDEADYYCQSYD

NO: 209)




RYTHPALLFGTGTKVTVLGQPKANPTVTLFP






PSSEELQANKATLVCLISDFYPGAVTVAWKA






DGSPVKAGVETTKPSKQSNNKYAASSYLSLT






PEQWKSHRSYSCQVTHEGSTVEKTVAPTECS









3. NanoBiT Competition Assay.


First, a NanoBiT assay was conducted to test the binding between a heavy chain polypeptide (HCP2) and its cognate kappa light chain polypeptide (KLCP) in the presence of a competing lambda light chain polypeptide (LLCP). As shown in FIGS. 3A-3C, a LgBiT was fused to the C-terminus of the HCP2 and a SmBiT was fused to the C-terminus of the KLCP. The competing LLCP was expressed as an un-modified chain. When HCP2 and KLCP form a Fab, the LgBiT and SmBiT generate a fully functional NanoLuc domain, which has luciferase activity (FIG. 3A). When HCP2 and LLCP form a Fab, the NanoLuc is not complete and is inactive (FIG. 3B). A 1:1:1 competition of LLCP and KLCP for HCP2 results in the HCP2/KLCP Fab with a functional NanoLuc and the HCP2/LLCP Fab with a nonfunctional NanoLuc (FIG. 3C). Each testing included a positive control where the competing light chain was absent, as well as a negative control where the competing light chain was the same KLCP without the SmBiT fusion. The positive control represented 100% pairing; whereas, the negative control represented 50% pairing. The luminescence readings for the positive and negative controls (100% and 50%, respectively) and the luminescence readings for each test pair in the presence of a competing light chain, were compared to quantify the percent pairing for each test pair.


A similar NanoBiT assay was used to test the binding between a heavy chain polypeptide (HCP1) and a lambda light chain polypeptide (LLCP) in the presence of a competing kappa chain polypeptide (KLCP) (FIGS. 4A-4C). In this assay, a LgBiT was fused to the C-terminus of the HCP1 and a SmBiT was fused to the C-terminus of the LLCP. The competing KLCP was expressed as an un-modified light chain. Expression of the HCP1, LLCP, and KLCP at 1:1:1 leads to formation of the HCP1/LLCP Fab with a functional NanoLuc, and the HCP1/KLCP Fab with a nonfunctional NanoLuc (FIG. 4C). Similarly, luminescence readings for each test pair in the presence of a competing light chain were compared with those for positive controls (the competing light chain was absent; 100% pairing) and negative controls (the competing light chain was the same LLCP without the SmBiT fusion; 50% pairing) to determine the percent pairing for each test pair.


The NanoBiT competition assays were performed with 100 μL of protein at 1 μg/mL in 96 well plates. A 5× stock solution was made of the Promega Nano-Glo (N1110) assay system following the manufacturer's instructions. Each well received 20 μL of 5× NanoLuc stock solution and the luminescence of the plate was immediately read using a SpectraMax i3× plate reader.


4. Expression and Purification of Multispecific Molecules.


The plasmids were co-transfected into either Expi293 cells (Life Technologies A14527) or ExpiCHO cells (Life Technologies A29127). Transfections were performed using 1 mg of total DNA for a multispecific construct with a 1:1 knob to hole heavy chain ratio and 3:2 light chain to heavy chain ratio. To investigate possible misbalance in expression of the chains, the transfections were performed using varying ratios of heavy chain ranging from 3:1 to 1:3 of knob to hole heavy chain DNA, with the same 3:2 light chain to heavy chain ratio. Transfection in Expi293 cells was done using linear 25,000 Da polyethylenimine (PEI, Polysciences Inc 23966) in a 3:1 ratio with the total DNA. The DNA and PEI were each added to 50 mL of OptiMem (Life Technologies 31985088) medium and sterile filtered. The DNA and PEI were combined for 10 minutes and added to the Expi293 cells with a cell density of 1.8-2.8×106 cells/mL and a viability of at least 95%. The ExpiCHO transfection was performed according to the manufacturer's instructions. Expi293 cells were grown in a humidified incubator at 37° C. with 8% CO2 for 5-7 days after transfection and ExpiCHO cells were grown for 14 days at 32° C. with 5% CO2. The cells were pelleted by centrifugation at 18,000×g and the supernatant was filtered through a 0.2 μm membrane. Protein A resin (GE 17-1279-03) was added to the filtered supernatant and incubated for 1-3 hours at room temperature. The resin was packed into a column, washed with 3×10 column volumes of Dulbecco's phosphate-buffered saline (DPBS, Life Technologies 14190-144). The bound protein was eluted from the column with 20 mM citrate, 100 mM NaCl, pH 2.9. When necessary, the proteins were further purified using size exclusion chromatography on a Superdex 200 column with a running buffer of DPBS.


Table 4 contains the sequences unique to the multispecific constructs. Some of the light chain sequences shown in Table 2 were also used to express the multispecific constructs. A total of 12 multispecific molecules were expressed as described above. The amino acid sequences of these molecules are provided in Table 5a. Table 5b provides the corresponding germline sequences for the multispecific molecules.









TABLE 4







Amino acid sequences used to construct multispecific constructs.















Corresponding


SEQ



DNA SEQ


ID NO
Amino Acid Sequence
Description
Germline
ID NO





SEQ
QVQLQESGPGLVKPSQTLSLTCTVSGGSIN
α-
VH4-
SEQ ID NO:


ID
NNNYYWTWIRQHPGKGLEWIGYIYYSGST
mesothelin
31*01
82


NO:
FYNPSLKSRVTISVDTSKTQFSLKLSSVTAA
AB237
(SEQ ID



164
DTAVYYCAREDTMTGLDVWGQGTTVTVS
heavy-
NO: 213)




SASTKGPSVFPLAPSSKSTSGGTAALGCLV
hCHIg_





KDYFPEPVTVSWNSGALTSGVHTFPAVLQS
Knob_Cys





SGLYSLSSVVTVPSSSLGTQTYICNVNHKPS






NTKVDKRVEPKSCDKTHTCPPCPAPELLGG






PSVFLFPPKPKDTLMISRTPEVTCVVVDVSH






EDPEVKFNWYVDGVEVHNAKTKPREEQY






NSTYRVVSVLTVLHQDWLNGKEYKCKVS






NKALPAPIEKTISKAKGQPREPQVYTLPPCR






EEMTKNQVSLWCLVKGFYPSDIAVEWESN






GQPENNYKTTPPVLDSDGSFFLYSKLTVDK






SRWQQGNVFSCSVMHEALHNHYTQKSLSL






SPGK








SEQ
DIQMTQSPSSLSASVGDRVTITCRASQSINN
α-
Vk1-
SEQ ID NO:


ID
YLNWYQQKPGKAPTLLIYAASSLQSGVPSR
mesothelin
39*01
83


NO:
FSGSRSGTDFTLTISSLQPEDFAAYFCQQTY
AB237
(SEQ ID



165
SNPTFGQGTKVEVKRTVAAPSVFIFPPSDEQ
light-
NO: 201)




LKSGTASVVCLLNNFYPREAKVQWKVDN
hCLIg_vk





ALQSGNSQESVTEQDSKDSTYSLSSTLTLS






KADYEKHKVYACEVTHQGLSSPVTKSFNR






GEC








SEQ
EVQLLESGGGLVQPGGSLRLSCAASGFTFS
α-PDL1
VH3-
SEQ ID NO:


ID
SYIMMWVRQAPGKGLEWVSSIYPSGGITFY
heavy-
66*01
84


NO:
ADTVKGRFTISRDNSKNTLYLQMNSLRAE
hCHIg_
(SEQ ID



166
DTAVYYCARIKLGTVTTVDYWGQGTLVTV
Hole_Cys
NO: 194)




SSASTKGPSVFPLAPSSKSTSGGTAALGCLV






KDYFPEPVTVSWNSGALTSGVHTFPAVLQS






SGLYSLSSVVTVPSSSLGTQTYICNVNHKPS






NTKVDKRVEPKSCDKTHTCPPCPAPELLGG






PSVFLFPPKPKDTLMISRTPEVTCVVVDVSH






EDPEVKFNWYVDGVEVHNAKTKPREEQY






NSTYRVVSVLTVLHQDWLNGKEYKCKVS






NKALPAPIEKTISKAKGQPREPQVCTLPPSR






EEMTKNQVSLSCAVKGFYPSDIAVEWESN






GQPENNYKTTPPVLDSDGSFFLVSKLTVDK






SRWQQGNVFSCSVMHEALHNHYTQKSLSL






SPGK








SEQ
QSALTQPASVSGSPGQSITISCTGTSSDVGG
α-PDL1
Vl2-
SEQ ID NO:


ID
YNYVSWYQQHPGKAPKLMIYDVSNRPSG
light-
14*01
85


NO:
VSNRFSGSKSGNTASLTISGLQAEDEADYY
hCLIg_vl
(SEQ ID



167
CSSYTSSSTRVFGTGTKVTVLGQPKANPTV

NO: 210)




TLFPPSSEELQANKATLVCLISDFYPGAVTV






AWKADGSPVKAGVETTKPSKQSNNKYAA






SSYLSLTPEQWKSHRSYSCQVTHEGSTVEK






TVAPTECS








SEQ
QVQLVESGGGVVQPGRSLRLSCAASGFTFS
α-CTLA4
VH3-
SEQ ID NO:


ID
SYTMHWVRQAPGKGLEWVTFISYDGNNK
heavy-
30*01
78


NO:
YYADSVKGRFTISRDNSKNTLYLQMNSLR
hCHIg_
(SEQ ID



168
AEDTAIYYCARTGWLGPFDYWGQGTLVTV
Knob_Cys
NO: 192)




SSASTKGPSVFPLAPSSKSTSGGTAALGCLV






KDYFPEPVTVSWNSGALTSGVHTFPAVLQS






SGLYSLSSVVTVPSSSLGTQTYICNVNHKPS






NTKVDKRVEPKSCDKTHTCPPCPAPELLGG






PSVFLFPPKPKDTLMISRTPEVTCVVVDVSH






EDPEVKFNWYVDGVEVHNAKTKPREEQY






NSTYRVVSVLTVLHQDWLNGKEYKCKVS






NKALPAPIEKTISKAKGQPREPQVYTLPPCR






EEMTKNQVSLWCLVKGFYPSDIAVEWESN






GQPENNYKTTPPVLDSDGSFFLYSKLTVDK






SRWQQGNVFSCSVMHEALHNHYTQKSLSL






SPGK








SEQ
QVQLVESGGGVVQPGRSLRLSCAASGFTFS
α-CTLA4
VH3-
SEQ ID NO:


ID
SYTMHWVRQAPGKGLEWVTFISYDGNNK
heavy-
30*01
79


NO:
YYADSVKGRFTISRDNSKNTLYLQMNSLR
hCHIg_
(SEQ ID



169
AEDTAIYYCARTGWLGPFDYWGQGTLVTV
Knob_Cys-
NO: 192)




SSASTKGPSVFPLAPSSKSTSGGTAALGCLV
GH_scFv





KDYFPEPVTVSWNSGALTSGVHTFPAVLQS






SGLYSLSSVVTVPSSSLGTQTYICNVNHKPS






NTKVDKRVEPKSCDKTHTCPPCPAPELLGG






PSVFLFPPKPKDTLMISRTPEVTCVVVDVSH






EDPEVKFNWYVDGVEVHNAKTKPREEQY






NSTYRVVSVLTVLHQDWLNGKEYKCKVS






NKALPAPIEKTISKAKGQPREPQVYTLPPCR






EEMTKNQVSLWCLVKGFYPSDIAVEWESN






GQPENNYKTTPPVLDSDGSFFLYSKLTVDK






SRWQQGNVFSCSVMHEALHNHYTQKSLSL






SPGKGGGGSGGGGSGGGGSEVQLVESGGG






LVKPGGSLRLSCAASGFTFSPYSVFWVRQA






PGKGLEWVSSINTDSTYKYYADSVKGRFTI






SRDNAENSIFLQMNSLRAEDTAVYYCARD






RSYYAFSSGSLSDYYYGLDVWGQGTLVTV






SSGGGGSGGGGSGGGGSGGGGSDIVMTQS






PLSLSVTPGEPASISCRSSQSLLHTNLYNYL






DWYVQKPGQSPQLLIYLASNRASGVPDRFS






GSGSGTDFTLKISRVETEDVGVYYCMQAL






QIPRTFGQGTKLEIK








SEQ
QVQLVESGGGVVQPGRSLRLSCAASGFTFS
α-IL12β
VH3-
SEQ ID NO:


ID
SYGMHWVRQAPGKGLEWVAFIRYDGSNK
heavy-
33*01
91


NO:
YYADSVKGRFTISRDNSKNTLYLQMNSLR
hCHIg_
(SEQ ID



170
AEDTAVYYCKTHGSHDNWGQGTMVTVSS
Hole_Cys
NO: 193)




ASTKGPSVFPLAPSSKSTSGGTAALGCLVK






DYFPEPVTVSWNSGALTSGVHTFPAVLQSS






GLYSLSSVVTVPSSSLGTQTYICNVNHKPS






NTKVDKRVEPKSCDKTHTCPPCPAPELLGG






PSVFLFPPKPKDTLMISRTPEVTCVVVDVSH






EDPEVKFNWYVDGVEVHNAKTKPREEQY






NSTYRVVSVLTVLHQDWLNGKEYKCKVS






NKALPAPIEKTISKAKGQPREPQVCTLPPSR






EEMTKNQVSLSCAVKGFYPSDIAVEWESN






GQPENNYKTTPPVLDSDGSFFLVSKLTVDK






SRWQQGNVFSCSVMHEALHNHYTQKSLSL






SPGK








SEQ
QVQLVESGGGVVQPGRSLRLSCAASGFTFS
α-CTLA4
VH3-
SEQ ID NO:


ID
SYTMHWVRQAPGKGLEWVTFISYDGNNK
heavy-
30*01
73


NO:
YYADSVKGRFTISRDNSKNTLYLQMNSLR
hCHIg
(SEQ ID



171
AEDTAIYYCARTGWLGPFDYWGQGTLVTV

NO: 192)




SSASTKGPSVFPLAPSSKSTSGGTAALGCLV






KDYFPEPVTVSWNSGALTSGVHTFPAVLQS






SGLYSLSSVVTVPSSSLGTQTYICNVNHKPS






NTKVDKRVEPKSCDKTHTCPPCPAPELLGG






PSVFLFPPKPKDTLMISRTPEVTCVVVDVSH






EDPEVKFNWYVDGVEVHNAKTKPREEQY






NSTYRVVSVLTVLHQDWLNGKEYKCKVS






NKALPAPIEKTISKAKGQPREPQVYTLPPSR






EEMTKNQVSLTCLVKGFYPSDIAVEWESN






GQPENNYKTTPPVLDSDGSFFLYSKLTVDK






SRWQQGNVFSCSVMHEALHNHYTQKSLSL






SPGK








SEQ
QVQLVESGGGVVQPGRSLRLSCAASGFTFS
α-IL12β
VH3-
SEQ ID NO:


ID
SYGMHWVRQAPGKGLEWVAFIRYDGSNK
heavy-
33*01
74


NO:
YYADSVKGRFTISRDNSKNTLYLQMNSLR
hCHIg
(SEQ ID



172
AEDTAVYYCKTHGSHDNWGQGTMVTVSS

NO: 193)




ASTKGPSVFPLAPSSKSTSGGTAALGCLVK






DYFPEPVTVSWNSGALTSGVHTFPAVLQSS






GLYSLSSVVTVPSSSLGTQTYICNVNHKPS






NTKVDKRVEPKSCDKTHTCPPCPAPELLGG






PSVFLFPPKPKDTLMISRTPEVTCVVVDVSH






EDPEVKFNWYVDGVEVHNAKTKPREEQY






NSTYRVVSVLTVLHQDWLNGKEYKCKVS






NKALPAPIEKTISKAKGQPREPQVYTLPPSR






EEMTKNQVSLTCLVKGFYPSDIAVEWESN






GQPENNYKTTPPVLDSDGSFFLYSKLTVDK






SRWQQGNVFSCSVMHEALHNHYTQKSLSL






SPGK








SEQ
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGS
α-IL12β
Vl1-
SEQ ID NO:


ID
NTVKWYQQLPGTAPKLLIYYNDQRPSGVP
light-
44*01
75


NO:
DRFSGSKSGTSASLAITGLQAEDEADYYCQ
hCLIg_vl-
(SEQ ID



173
SYDRYTHPALLFGTGTKVTVLGQPKANPT
IL2
NO: 209)




VTLFPPSSEELQANKATLVCLISDFYPGAVT






VAWKADGSPVKAGVETTKPSKQSNNKYA






ASSYLSLTPEQWKSHRSYSCQVTHEGSTVE






KTVAPTECSGGGGSGGGGSGGGGSAPTSSS






TKKTQLQLEHLLLDLQMILNGINNYKNPKL






TRMLTAKFAMPKKATELKHLQCLEEELKP






LEEVLNLAQSKNFHLRPRDLISNINVIVLEL






KGSETTFMCEYADETATIVEFLNRWITFCQ






SIISTLT








SEQ
QVQLVESGGGVVQPGRSLRLSCAASGFTFS
α-IL12β
VH3-
SEQ ID NO:


ID
SYGMHWVRQAPGKGLEWVAFIRYDGSNK
heavy-
33*01
76


NO:
YYADSVKGRFTISRDNSKNTLYLQMNSLR
hCHIg_
(SEQ ID



174
AEDTAVYYCKTHGSHDNWGQGTMVTVSS
Hole_Cys
NO: 193)




ASTKGPSVFPLAPSSKSTSGGTAALGCLVK






DYFPEPVTVSWNSGALTSGVHTFPAVLQSS






GLYSLSSVVTVPSSSLGTQTYICNVNHKPS






NTKVDKRVEPKSCDKTHTCPPCPAPELLGG






PSVFLFPPKPKDTLMISRTPEVTCVVVDVSH






EDPEVKFNWYVDGVEVHNAKTKPREEQY






NSTYRVVSVLTVLHQDWLNGKEYKCKVS






NKALPAPIEKTISKAKGQPREPQVCTLPPSR






EEMTKNQVSLSCAVKGFYPSDIAVEWESN






GQPENNYKTTPPVLDSDGSFFLVSKLTVDK






SRWQQGNVFSCSVMHEALHNHYTQKSLSL






SPGKGGGGSGGGGSGGGGSAPTSSSTKKT






QLQLEHLLLDLQMILNGINNYKNPKLTRML






TAKFAMPKKATELKHLQCLEEELKPLEEVL






NLAQSKNFHLRPRDLISNINVIVLELKGSET






TFMCEYADETATIVEFLNRWITFCQSIISTLT








SEQ
QVQLVESGGGVVQPGRSLRLSCAASGFTFS
α-IL12β
VH3-
SEQ ID NO:


ID
SYGMHWVRQAPGKGLEWVAFIRYDGSNK
heavy-
33*01
77


NO:
YYADSVKGRFTISRDNSKNTLYLQMNSLR
hCHIg
(SEQ ID



175
AEDTAVYYCKTHGSHDNWGQGTMVTVSS

NO: 193)




ASTKGPSVFPLAPSSKSTSGGTAALGCLVK






DYFPEPVTVSWNSGALTSGVHTFPAVLQSS






GLYSLSSVVTVPSSSLGTQTYICNVNHKPS






NTKVDKRVEPKSCDKTHTCPPCPAPELLGG






PSVFLFPPKPKDTLMISRTPEVTCVVVDVSH






EDPEVKFNWYVDGVEVHNAKTKPREEQY






NSTYRVVSVLTVLHQDWLNGKEYKCKVS






NKALPAPIEKTISKAKGQPREPQVYTLPPSR






EEMTKNQVSLTCLVKGFYPSDIAVEWESN






GQPENNYKTTPPVLDSDGSFFLYSKLTVDK






SRWQQGNVFSCSVMHEALHNHYTQKSLSL






SPGKGGGGSGGGGSGGGGSAPTSSSTKKT






QLQLEHLLLDLQMILNGINNYKNPKLTRML






TAKFAMPKKATELKHLQCLEEELKPLEEVL






NLAQSKNFHLRPRDLISNINVIVLELKGSET






TFMCEYADETATIVEFLNRWITFCQSIISTLT








SEQ
EIVLTQSPGTLSLSPGERATLSCRASQSVGS
α-CTLA4
Vk3-
SEQ ID NO:


ID
SYLAWYQQKPGQAPRLLIYGAFSRATGIPD
light-
20*01
80


NO:
RFSGSGSGTDFTLTISRLEPEDFAVYYCQQY
hCLIg_vk-
(SEQ ID



176
GSSPWTFGQGTKVEIKRTVAAPSVFIFPPSD
IL2
NO: 205)




EQLKSGTASVVCLLNNFYPREAKVQWKVD






NALQSGNSQESVTEQDSKDSTYSLSSTLTL






SKADYEKHKVYACEVTHQGLSSPVTKSFN






RGECGGGGSGGGGSGGGGSAPTSSSTKKT






QLQLEHLLLDLQMILNGINNYKNPKLTRML






TAKFAMPKKATELKHLQCLEEELKPLEEVL






NLAQSKNFHLRPRDLISNINVIVLELKGSET






TFMCEYADETATIVEFLNRWITFCQSIISTLT








SEQ
EVQLVQSGGGVERPGGSLRLSCAASGFTFD
α-
Vk3-
SEQ ID NO:


ID
DYGMSWVRQAPGKGLEWVSGINWNGGST
TNFR10β
20*01
81


NO:
GYADSVKGRVTISRDNAKNSLYLQMNSLR
heavy-
(SEQ ID



177
AEDTAVYYCAKILGAGRGWYFDLWGKGT
hCHIg_
NO: 205)




TVTVSSASTKGPSVFPLAPSSKSTSGGTAAL
Hole_Cys





GCLVKDYFPEPVTVSWNSGALTSGVHTFP






AVLQSSGLYSLSSVVTVPSSSLGTQTYICNV






NHKPSNTKVDKRVEPKSCDKTHTCPPCPAP






ELLGGPSVFLFPPKPKDTLMISRTPEVTCVV






VDVSHEDPEVKFNWYVDGVEVHNAKTKP






REEQYNSTYRVVSVLTVLHQDWLNGKEY






KCKVSNKALPAPIEKTISKAKGQPREPQVC






TLPPSREEMTKNQVSLSCAVKGFYPSDIAV






EWESNGQPENNYKTTPPVLDSDGSFFLVSK






LTVDKSRWQQGNVFSCSVMHEALHNHYT






QKSLSLSPGK








SEQ
QVQLVQSGGGLVQPGGSLRLSCAASGFTF
α-HER3
VH3-
SEQ ID NO:


ID
DDYAMHWVRQAPGKGLEWVAGISWDSGS
heavy-
9*01
86


NO:
TGYADSVKGRFTISRDNAKNSLYLQMNSL
mFc_Knob_
(SEQ ID



178
RAEDTALYYCARDLGAYQWVEGFDYWGQ
Cys
NO: 196)




GTLVTVSSASTKGPSVFPLAPSSKSTSGGTA






ALGCLVKDYFPEPVTVSWNSGALTSGVHT






FPAVLQSSGLYSLSSVVTVPSSSLGTQTYIC






NVNHKPSNTKVDKRVEPKSCTIKPCPPCKC






PAPNLLGGPSVFIFPPKIKDVLMISLSPIVTC






VVVDVSEDDPDVQISWFVNNVEVHTAQTQ






THREDYNSTLRVVSALPIQHQDWMSGKEF






KCKVNNKDLPAPIERTISKPKGSVRAPQVY






VLPPCEEEMTKKQVTLWCMVTDFMPEDIY






VEWTNNGKTELNYKNTEPVLDSDGSYFMY






SKLRVEKKNWVERNSYSCSVVHEGLHNH






HTTKSFSRTPGK








SEQ
EVQLLQSGGGLVQPGGSLRLSCAASGFMFS
α-IGF1R
VH3-
SEQ ID NO:


ID
RYPMHWVRQAPGKGLEWVGSISGSGGATP
heavy-
23*01
87


NO:
YADSVKGRFTISRDNSKNTLYLQMNSLRA
mFc_Hole_
(SEQ ID



179
EDTAVYYCAKDFYQILTGNAFDYWGQGTT
Cys
NO: 191)




VTVSSASTKGPSVFPLAPSSKSTSGGTAALG






CLVKDYFPEPVTVSWNSGALTSGVHTFPA






VLQSSGLYSLSSVVTVPSSSLGTQTYICNVN






HKPSNTKVDKRVEPKSCTIKPCPPCKCPAP






NLLGGPSVFIFPPKIKDVLMISLSPIVTCVVV






DVSEDDPDVQISWFVNNVEVHTAQTQTHR






EDYNSTLRVVSALPIQHQDWMSGKEFKCK






VNNKDLPAPIERTISKPKGSVRAPQVCVLPP






PEEEMTKKQVTLSCAVTDFMPEDIYVEWT






NNGKTELNYKNTEPVLDSDGSYFMVSKLR






VEKKNWVERNSYSCSVVHEGLHNHHTTKS






FSRTPGK








SEQ
EVQLVQSGAEVKKPGSSVKVSCKASGGTF
α-CD221
VH1-
SEQ ID NO:


ID
SSYAISWVRQAPGQGLEWMGGIIPIFGTAN
heavy-
69*01
88


NO:
YAQKFQGRVTITADKSTSTAYMELSSLRSE
hCHIg_
(SEQ ID



180
DTAVYYCARAPLRFLEWSTQDHYYYYYM
Hole_Cys
NO: 187)




DVWGKGTTVTVSSASTKGPSVFPLAPSSKS






TSGGTAALGCLVKDYFPEPVTVSWNSGAL






TSGVHTFPAVLQSSGLYSLSSVVTVPSSSLG






TQTYICNVNHKPSNTKVDKRVEPKSCDKT






HTCPPCPAPELLGGPSVFLFPPKPKDTLMIS






RTPEVTCVVVDVSHEDPEVKFNWYVDGVE






VHNAKTKPREEQYNSTYRVVSVLTVLHQD






WLNGKEYKCKVSNKALPAPIEKTISKAKG






QPREPQVCTLPPSREEMTKNQVSLSCAVKG






FYPSDIAVEWESNGQPENNYKTTPPVLDSD






GSFFLVSKLTVDKSRWQQGNVFSCSVMHE






ALHNHYTQKSLSLSPGK








SEQ
QVQLVESGGGVVQPGRSLRLDCKASGITFS
α-PD1
VH3-
SEQ ID NO:


ID
NSGMHWVRQAPGKGLEWVAVIWYDGSK
heavy-
33*01
89


NO:
RYYADSVKGRFTISRDNSKNTLFLQMNSLR
hCHIg_
(SEQ ID



181
AEDTAVYYCATNDDYWGQGTLVTVSSAS
Knob_Cys
NO: 193)




TKGPSVFPLAPSSKSTSGGTAALGCLVKDY






FPEPVTVSWNSGALTSGVHTFPAVLQSSGL






YSLSSVVTVPSSSLGTQTYICNVNHKPSNT






KVDKRVEPKSCDKTHTCPPCPAPELLGGPS






VFLFPPKPKDTLMISRTPEVTCVVVDVSHE






DPEVKFNWYVDGVEVHNAKTKPREEQYN






STYRVVSVLTVLHQDWLNGKEYKCKVSN






KALPAPIEKTISKAKGQPREPQVYTLPPCRE






EMTKNQVSLWCLVKGFYPSDIAVEWESNG






QPENNYKTTPPVLDSDGSFFLYSKLTVDKS






RWQQGNVFSCSVMHEALHNHYTQKSLSLS






PGK








SEQ
EIVLTQSPATLSLSPGERATLSCRASQSVSS
α-PD1
Vk3-
SEQ ID NO:


ID
YLAWYQQKPGQAPRLLIYDASNRATGIPA
light-
11*01
90


NO:
RFSGSGSGTDFTLTISSLEPEDFAVYYCQQS
hCLIg_vk
(SEQ ID



182
SNWPRTFGQGTKVEIKRTVAAPSVFIFPPSD

NO: 204)




EQLKSGTASVVCLLNNFYPREAKVQWKVD






NALQSGNSQESVTEQDSKDSTYSLSSTLTL






SKADYEKHKVYACEVTHQGLSSPVTKSFN






RGEC
















TABLE 15







Germline sequences shown in


Tables 2 and 4 (full-length sequences).









SEQ




ID
Des-



NO
cription
Amino acid sequences





183
VH1-
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQAPGQGLEWMG



18*01
WISAYNGNTNYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCAR





184
VH1-
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMG



2*01
RINPNSGGTNYAQKFQGRVTSTRDTSISTAYMELSRLRSDDTVVYYCAR





185
VH1-
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYAMHWVRQAPGQRLEWMG



3*01
WINAGNGNTKYSQKFQGRVTITRDTSASTAYMELSSLRSEDTAVYYCAR





186
VH1-
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVRQAPGQGLEWMG



46*01
IINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCAR





187
VH1-
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMG



69*01
GIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCAR





188
VH3-
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYDMHWVRQATGKGLEWVS



13*01
AIGTAGDTYYPGSVKGRFTISRENAKNSLYLQMNSLRAGDTAVYYCAR





189
VH3-
EVQLVESGGGVVRPGGSLRLSCAASGFTFDDYGMSWVRQAPGKGLEWVS



20*01
GINWNGGSTGYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTALYHCAR





190
VH3-
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVS



21*01
SISSSSSYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR





191
VH3-
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVS



23*01
AISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK





192
VH3-
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVA



30*01
VISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR





193
VH3-
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVA



33*01
VIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR





194
VH3-
EVOLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVS



66*01
VIYSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR





195
VH3-
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMSWVRQAPGKGLEWVA



7*01
NIKQDGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR





196
VH3-
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVS



9*01
GISWNSGSIGYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTALYYCAK





197
VH4-
QVQLQESGPGLVKPPGTLSLTCAVSGGSISSSNWWSWVRQPPGKGLEWI



4*01
GEIYHSGSTNYNPSLKSRVTISVDKSKNQFSLKLSSVTAADTAVYCCAR





198
VH5-
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMG



51*01
IIYPGDSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCAR





199
Vk1-
DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQKPGKAPKLLIY



12*01
AASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYC





200
Vk1-
DIQMTQSPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLIY



27*01
AASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYC





201
Vk1-
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY



39*01
AASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYC





202
Vk1D-
DIQMTQSPSSLSASVGDRVTITCRASQGISSWLAWYQQKPEKAPKSLIY



16*01
AASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYC





203
Vk2-
DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQSP



28*01
QLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYC





204
Vk3-
EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIY



11*01
DASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYC





205
Vk3-
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLI



20*01
YGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYC





206
Vk3D-
EIVLTQSPATLSLSPGERATLSCGASQSVSSSYLAWYQQKPGLAPRLLI



20*01
YDASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYC





207
Vl10-
QAGLTQPPSVSKGLRQTATLTCTGNSNNVGNQGAAWLQQHQGHPPKLLS



54*01
YRNNNRPSGISERLSASRSGNTASLTITGLQPEDEADYYC





208
Vl1-
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKLL



40*01
IYGNSNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYC





209
Vl1-
QSVLTQPPSASGTPGQRVTISCSGSSSNIGSNTVNWYQQLPGTAPKLLI



44*01
YSNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYC





210
Vl2-
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLM



14*01
IYEVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYC





211
Vl3-
SSELTQDPAVSVALGQTVRITCQGDSLRSYYASWYQQKPGQAPVLVIYG



19*01
KNNRPSGIPDRFSGSSSGNTASLTITGAQAEDEADYYC





212
Vl3-
SYELTQPLSVSVALGQTARITCGGNNIGSKNVHWYQQKPGQAPVLVIYR



9*01
DSNRPSGIPERFSGSNSGNTATLTISRAQAGDEADYYC





213
VH4-
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSWIRQHPGKGLEW



31*01
IGYIYYSGSTYYNPSLKSLVTISVDTSKNQFSLKLSSVTAADTAVYYCA




R
















TABLE 16







Germline sequences shown in Tables 2 and 4


(framework 1, CDR1, framework 2, CDR2, and


framework 3 sequences).












Germline
Framework 1
Kabat CDR 1
Framework 2
Kabat CDR 2
Framework 3





VH1-18*01
QVQLVQSGA
GYTFTSYGIS
WVRQAPGQG
WISAYNGNT
RVTMTTDTST


(SEQ ID
EVKKPGASV
(SEQ ID NO:
LEWMG (SEQ
NYAQKLQG
STAYMELRSL


NO: 183)
KVSCKAS
216)
ID NO: 217)
(SEQ ID NO:
RSDDTAVYY



(SEQ ID NO:


218)
CAR (SEQ ID



215)



NO: 219)





VH1-2*01
QVQLVQSGA
GYTFTGYYM
WVRQAPGQG
RINPNSGGTN
RVTSTRDTSIS


(SEQ ID
EVKKPGASV
H (SEQ ID NO:
LEWMG (SEQ
YAQKFQG
TAYMELSRL


NO: 184)
KVSCKAS
220)
ID NO: 217)
(SEQ ID NO:
RSDDTVVYY



(SEQ ID NO:


221)
CAR (SEQ ID



215)



NO: 222)





VH1-3*01
QVQLVQSGA
GYTFTSYAM
WVRQAPGQR
WINAGNGNT
RVTITRDTSA


(SEQ ID
EVKKPGASV
H (SEQ ID NO:
LEWMG(SEQ
KYSQKFQG
STAYMELSSL


NO: 185)
KVSCKAS
223)
ID NO: 224)
(SEQ ID NO:
RSEDTAVYY



(SEQ ID NO:


225)
CAR (SEQ ID



215)



NO: 226)





VH1-46*01
QVQLVQSGA
GYTFTSYYM
WVRQAPGQG
IINPSGGSTSY
RVTMTRDTS


(SEQ ID
EVKKPGASV
H (SEQ ID NO:
LEWMG (SEQ
AQKFQG
TSTVYMELSS


NO: 186)
KVSCKAS
227)
ID NO: 217)
(SEQ ID NO:
LRSEDTAVY



(SEQ ID NO:


228)
YCAR (SEQ ID



215)



NO: 229)





VH1-69*01
QVQLVQSGA
GGTFSSYAIS
WVRQAPGQG
GIIPIFGTANY
RVTITADEST


(SEQ ID
EVKKPGSSVK
(SEQ ID NO:
LEWMG (SEQ
AQKFQG
STAYMELSSL


NO: 187)
VSCKAS (SEQ
231)
ID NO: 217)
(SEQ ID NO:
RSEDTAVYY



ID NO: 230)


232)
CAR (SEQ ID







NO: 233)





VH3-13*01
EVQLVESGG
GFTFSSYDMH
WVRQATGKG
AIGTAGDTYY
RFTISRENAK


(SEQ ID
GLVQPGGSLR
(SEQ ID NO:
LEWVS (SEQ
PGSVKG (SEQ
NSLYLQMNS


NO: 188)
LSCAAS (SEQ
235)
ID NO: 236)
ID NO: 237)
LRAGDTAVY



ID NO: 234)



YCAR (SEQ ID







NO: 238)





VH3-20*01
EVQLVESGG
GFTFDDYGM
WVRQAPGKG
GINWNGGST
RFTISRDNAK


(SEQ ID
GVVRPGGSL
S (SEQ ID NO:
LEWVS (SEQ
GYADSVKG
NSLYLQMNS


NO: 189)
RLSCAAS
240)
ID NO: 241)
(SEQ ID NO:
LRAEDTALY



(SEQ ID NO:


242)
HCAR (SEQ ID



239)



NO: 243)





VH3-21*01
EVQLVESGG
GFTFSSYSMN
WVRQAPGKG
SISSSSSYIYY
RFTISRDNAK


(SEQ ID
GLVKPGGSLR
(SEQ ID NO:
LEWVS (SEQ
ADSVKG
NSLYLQMNS


NO: 190)
LSCAAS (SEQ
245)
ID NO: 241)
(SEQ ID NO:
LRAEDTAVY



ID NO: 244)


246)
YCAR (SEQ ID







NO: 247)





VH3-23*01
EVQLLESGGG
GFTFSSYAMS
WVRQAPGKG
AISGSGGSTY
RFTISRDNSK


(SEQ ID
LVQPGGSLRL
(SEQ ID NO:
LEWVS (SEQ
YADSVKG
NTLYLQMNS


NO: 191)
SCAAS (SEQ
249)
ID NO: 241)
(SEQ ID NO:
LRAEDTAVY



ID NO: 248)


250)
YCAK (SEQ ID







NO: 251)





VH3-30*01
QVQLVESGG
GFTFSSYAMH
WVRQAPGKG
VISYDGSNKY
RFTISRDNSK


(SEQ ID
GVVQPGRSL
(SEQ ID NO:
LEWVA (SEQ
YADSVKG
NTLYLQMNS


NO: 192)
RLSCAAS
253)
ID NO: 254)
(SEQ ID NO:
LRAEDTAVY



(SEQ ID NO:


255)
YCAR (SEQ ID



252)



NO: 256)





VH3-33*01
QVQLVESGG
GFTFSSYGMH
WVRQAPGKG
VIWYDGSNK
RFTISRDNSK


(SEQ ID
GVVQPGRSL
(SEQ ID NO:
LEWVA (SEQ
YYADSVKG
NTLYLQMNS


NO: 193)
RLSCAAS
257)
ID NO: 254)
(SEQ ID NO:
LRAEDTAVY



(SEQ ID NO:


258)
YCAR (SEQ ID



252)



NO: 256)





VH3-66*01
EVQLVESGG
GFTVSSNYMS
WVRQAPGKG
VIYSGGSTYY
RFTISRDNSK


(SEQ ID
GLVQPGGSLR
(SEQ ID NO:
LEWVS (SEQ
ADSVKG
NTLYLQMNS


NO: 194)
LSCAAS (SEQ
259)
ID NO: 241)
(SEQ ID NO:
LRAEDTAVY



ID NO: 234)


260)
YCAR (SEQ ID







NO: 256)





VH3-7*01
EVQLVESGG
GFTFSSYWM
WVRQAPGKG
NIKQDGSEKY
RFTISRDNAK


(SEQ ID
GLVQPGGSLR
S (SEQ ID NO:
LEWVA (SEQ
YVDSVKG
NSLYLQMNS


NO: 195)
LSCAAS (SEQ
261)
ID NO: 254)
(SEQ ID NO:
LRAEDTAVY



ID NO: 234)


262)
YCAR (SEQ ID







NO: 247)





VH3-9*01
EVQLVESGG
GFTFDDYAM
WVRQAPGKG
GISWNSGSIG
RFTISRDNAK


(SEQ ID
GLVQPGRSLR
H (SEQ ID NO:
LEWVS (SEQ
YADSVKG
NSLYLQMNS


NO: 196)
LSCAAS (SEQ
264)
ID NO: 241)
(SEQ ID NO:
LRAEDTALY



ID NO: 263)


265)
YCAK (SEQ ID







NO: 266)





VH4-4*01
QVQLQESGP
GGSISSSNWW
WVRQPPGKG
EIYHSGSTNY
RVTISVDKSK


(SEQ ID
GLVKPPGTLS
S (SEQ ID NO:
LEWIG (SEQ
NPSLKS (SEQ
NQFSLKLSSV


NO: 197)
LTCAVS (SEQ
268)
ID NO: 269)
ID NO: 270)
TAADTAVYC



ID NO: 267)



CAR (SEQ ID







NO: 271)





VH5-51*01
EVQLVQSGA
GYSFTSYWIG
WVRQMPGK
IIYPGDSDTR
QVTISADKSIS


(SEQ ID
EVKKPGESLK
(SEQ ID NO:
GLEWMG
YSPSFQG
TAYLQWSSL


NO: 198)
ISCKGS (SEQ
273)
(SEQ ID NO:
(SEQ ID NO:
KASDTAMYY



ID NO: 272)

274)
275)
CAR (SEQ ID







NO: 276)





Vk1-12*01
DIQMTQSPSS
RASQGISSWL
WYQQKPGKA
AASSLQS
GVPSRFSGSG


(SEQ ID
VSASVGDRV
A (SEQ ID NO:
PKLLIY (SEQ
(SEQ ID NO:
SGTDFTLTISS


NO: 199)
TITC (SEQ ID
278)
ID NO: 279)
280)
LQPEDFATYY



NO: 277)



C (SEQ ID NO:







281)





Vk1-27*01
DIQMTQSPSS
RASQGISNYL
WYQQKPGKV
AASTLQS
GVPSRFSGSG


(SEQ ID
LSASVGDRVT
A (SEQ ID NO:
PKLLIY (SEQ
(SEQ ID NO:
SGTDFTLTISS


NO: 200)
ITC (SEQ ID
283)
ID NO: 284)
285)
LQPEDVATY



NO: 282)



YC (SEQ ID







NO: 286)





Vk1-39*01
DIQMTQSPSS
RASQSISSYL
WYQQKPGKA
AASSLQS
GVPSRFSGSG


(SEQ ID
LSASVGDRVT
N (SEQ ID NO:
PKLLIY (SEQ
(SEQ ID NO:
SGTDFTLTISS


NO: 201)
ITC (SEQ ID
287)
ID NO: 279)
280)
LQPEDFATYY



NO: 282



C (SEQ ID NO:







281)





Vk1D-
DIQMTQSPSS
RASQGISSWL
WYQQKPEKA
AASSLQS
GVPSRFSGSG


16*01
LSASVGDRVT
A (SEQ ID NO:
PKSLIY (SEQ
(SEQ ID NO:
SGTDFTLTISS


(SEQ ID
ITC (SEQ ID
278)
ID NO: 288)
280)
LQPEDFATYY


NO: 202)
NO: 282



C (SEQ ID NO:







281)





Vk2-28*01
DIVMTQSPLS
RSSQSLLHSN
WYLQKPGQS
LGSNRAS
GVPDRFSGSG


(SEQ ID
LPVTPGEPASI
GYNYLD
PQLLIY (SEQ
(SEQ ID NO:
SGTDFTLKIS


NO: 203)
SC (SEQ ID
(SEQ ID NO:
ID NO: 291)
292)
RVEAEDVGV



NO: 289)
290)


YYC (SEQ ID







NO: 293)





Vk3-11*01
EIVLTQSPAT
RASQSVSSYL
WYQQKPGQA
DASNRAT
GIPARFSGSG


(SEQ ID
LSLSPGERAT
A (SEQ ID NO:
PRLLIY (SEQ
(SEQ ID NO:
SGTDFTLTISS


NO: 204)
LSC (SEQ ID
295)
ID NO: 296)
297)
LEPEDFAVYY



NO: 294)



C (SEQ ID NO:







298)





Vk3-20*01
EIVLTQSPGT
RASQSVSSSY
WYQQKPGQA
GASSRAT
GIPDRFSGSG


(SEQ ID
LSLSPGERAT
LA (SEQ ID
PRLLIY (SEQ
(SEQ ID NO:
SGTDFTLTISR


NO: 205)
LSC (SEQ ID
NO: 300)
ID NO: 296)
301)
LEPEDFAVYY



NO: 299)



C (SEQ ID NO:







302)





Vk3D-
EIVLTQSPAT
GASQSVSSSY
WYQQKPGLA
DASSRAT
GIPDRFSGSG


20*01
LSLSPGERAT
LA (SEQ ID
PRLLIY (SEQ
(SEQ ID NO:
SGTDFTLTISR


(SEQ ID
LSC (SEQ ID
NO: 303)
ID NO: 304)
305)
LEPEDFAVYY


NO: 206)
NO: 294)



C (SEQ ID NO:







302)





Vl10-
QAGLTQPPSV
TGNSNNVGN
WLQQHQGHP
RNNNRPS
GISERLSASRS


54*01
SKGLRQTATL
QGAA (SEQ
PKLLSY (SEQ
(SEQ ID NO:
GNTASLTITG


(SEQ ID
TC (SEQ ID
ID NO: 307)
ID NO: 308)
309)
LQPEDEADY


NO: 207)
NO: 306)



YC (SEQ ID







NO: 310)





Vl1-40*01
QSVLTQPPSV
TGSSSNIGAG
WYQQLPGTA
GNSNRPS
GVPDRFSGSK


(SEQ ID
SGAPGQRVTI
YDVH (SEQ
PKLLIY (SEQ
(SEQ ID NO:
SGTSASLAIT


NO: 208)
SC (SEQ ID
ID NO: 312)
ID NO: 313)
314)
GLQAEDEAD



NO: 311)



YYC (SEQ ID







NO: 315)





Vl1-44*01
QSVLTQPPSA
SGSSSNIGSNT
WYQQLPGTA
SNNQRPS
GVPDRFSGSK


(SEQ ID
SGTPGQRVTI
VN (SEQ ID
PKLLIY (SEQ
(SEQ ID NO:
SGTSASLAIS


NO: 209)
SC (SEQ ID
NO: 317)
ID NO: 313)
318)
GLQSEDEAD



NO: 316)



YYC (SEQ ID







NO: 319)





Vl2-14*01
QSALTQPASVS
TGTSSDVGG
WYQQHPGKA
EVSNRPS
GVSNRFSGSK


(SEQ ID
GSPGQSITISC
YNYVS (SEQ
PKLMIY (SEQ
(SEQ ID NO:
SGNTASLTIS


NO: 210)
(SEQ ID NO:
ID NO: 321)
ID NO: 322)
323)
GLQAEDEAD



320)



YYC (SEQ ID







NO: 324)





Vl3-19*01
SSELTQDPAV
QGDSLRSYY
WYQQKPGQA
GKNNRPS
GIPDRFSGSSS


(SEQ ID
SVALGQTVRI
AS (SEQ ID
PVLVIY (SEQ
(SEQ ID NO:
GNTASLTITG


NO: 211)
TC (SEQ ID
NO: 326)
ID NO: 327)
328)
AQAEDEADY



NO: 325)



YC (SEQ ID







NO: 329)





Vl3-9*01
SYELTQPLSV
GGNNIGSKN
WYQQKPGQA
RDSNRPS
GIPERFSGSNS


(SEQ ID
SVALGQTARI
VH (SEQ ID
PVLVIY (SEQ
(SEQ ID NO:
GNTATLTISR


NO: 212)
TC (SEQ ID
NO: 331)
ID NO: 327)
332)
AQAGDEADY



NO: 330)



YC (SEQ ID







NO: 333)





VH4-31*01
QVQLQESGP
GGSISSGSYY
WIRQHPGKG
YIYYSGSTYY
RVTISVDTSK


(SEQ ID
GLVKPSQTLS
WS (SEQ ID
LEWIG (SEQ
NPSLKS (SEQ
NQFSLKLSSV


NO: 213)
LTCTVS (SEQ
NO: 335)
ID NO: 336)
ID NO: 337)
TAADTAVYY



ID NO: 334)



(SEQ ID NO:







338)
















TABLE 5a







Sequences used to construct multispecific molecules.













Column 3: lambda

Column 5: kappa



Column 2: heavy
light chain
Column 4: heavy
light chain


Column 1:
chain polypeptide
polypeptide
chain polypeptide
polypeptide


Construct
1 (HCP1)
(LLCP)
2 (HCP2)
(KLCP)





Multispecific
SEQ ID NO: 178
SEQ ID NO: 145
SEQ ID NO: 179
SEQ ID NO: 118


molecule 1






Multispecific
SEQ ID NO: 166
SEQ ID NO: 167
SEQ ID NO: 164
SEQ ID NO: 165


molecule 2






Multispecific
SEQ ID NO: 170
SEQ ID NO: 163
SEQ ID NO: 168
SEQ ID NO: 106


molecule 3






Multispecific
SEQ ID NO: 177
SEQ ID NO: 148
SEQ ID NO: 168
SEQ ID NO: 106


molecule 4






Multispecific
SEQ ID NO: 180
SEQ ID NO: 136
SEQ ID NO: 168
SEQ ID NO: 106


molecule 5






Multispecific
SEQ ID NO: 177
SEQ ID NO: 148
SEQ ID NO: 181
SEQ ID NO: 182


molecule 6






Multispecific
SEQ ID NO: 166
SEQ ID NO: 167
SEQ ID NO: 181
SEQ ID NO: 182


molecule 7






Multispecific
SEQ ID NO: 172
SEQ ID NO: 173
SEQ ID NO: 171
SEQ ID NO: 106


molecule 8






Multispecific
SEQ ID NO: 170
SEQ ID NO: 173
SEQ ID NO: 168
SEQ ID NO: 106


molecule 9






Multispecific
SEQ ID NO: 175
SEQ ID NO: 173
SEQ ID NO: 171
SEQ ID NO: 106


molecule 10






Multispecific
SEQ ID NO: 174
SEQ ID NO: 173
SEQ ID NO: 168
SEQ ID NO: 106


molecule 11






Multispecific
SEQ ID NO: 177
SEQ ID NO: 148
SEQ ID NO: 169
SEQ ID NO: 176


molecule 12
















TABLE 5b







Corresponding germline sequences of multispecific molecules.













Column 3: lambda

Column 5: kappa



Column 2: heavy
light chain
Column 4: heavy
light chain



chain polypeptide
polypeptide
chain polypeptide
polypeptide



1 (HCP1)
(LLCP)
2 (HCP2)
(KLCP)


Column 1:
corresponding
corresponding
corresponding
corresponding


Construct
germline sequence
germline sequence
germline sequence
germline sequence





Multispecific
VH3-9*01 (SEQ
Vl3-19*01 (SEQ ID
VH3-23*01 (SEQ
Vk1-27*01 (SEQ


molecule 1
ID NO: 196)
NO: 211)
ID NO: 191)
ID NO: 200)





Multispecific
VH3-66*01 (SEQ
Vl2-14*01 (SEQ ID
VH4-31*01 (SEQ
Vk1-39*01 (SEQ


molecule 2
ID NO: 194)
NO: 210)
ID NO: 213)
ID NO: 201)





Multispecific
VH3-33*01 (SEQ
Vl1-44*01 (SEQ ID
VH3-30*01 (SEQ
Vk3-20*01 (SEQ


molecule 3
ID NO: 193)
NO: 209)
ID NO: 192)
ID NO: 205)





Multispecific
Vk3-20*01 (SEQ
Vl3-19*01 (SEQ ID
VH3-30*01 (SEQ
Vk3-20*01 (SEQ


molecule 4
ID NO: 205)
NO: 211)
ID NO: 192)
ID NO: 205)





Multispecific
VH1-69*01 (SEQ
Vl3-19*01 (SEQ ID
VH3-30*01 (SEQ
Vk3-20*01 (SEQ


molecule 5
ID NO: 187)
NO: 211)
ID NO: 192)
ID NO: 205)





Multispecific
Vk3-20*01 (SEQ
Vl3-19*01 (SEQ ID
VH3-33*01 (SEQ
Vk3-11*01 (SEQ


molecule 6
ID NO: 205)
NO: 211)
ID NO: 193)
ID NO: 204)





Multispecific
VH3-66*01 (SEQ
Vl2-14*01 (SEQ ID
VH3-33*01 (SEQ
Vk3-11*01 (SEQ


molecule 7
ID NO: 194)
NO: 210)
ID NO: 193)
ID NO: 204)





Multispecific
VH3-33*01 (SEQ
Vl1-44*01 (SEQ ID
VH3-30*01 (SEQ
Vk3-20*01 (SEQ


molecule 8
ID NO: 193)
NO: 209)
ID NO: 192)
ID NO: 205)





Multispecific
VH3-33*01 (SEQ
Vl1-44*01 (SEQ ID
VH3-30*01 (SEQ
Vk3-20*01 (SEQ


molecule 9
ID NO: 193)
NO: 209)
ID NO: 192)
ID NO: 205)





Multispecific
VH3-33*01 (SEQ
Vl1-44*01 (SEQ ID
VH3-30*01 (SEQ
Vk3-20*01 (SEQ


molecule 10
ID NO: 193)
NO: 209)
ID NO: 192)
ID NO: 205)





Multispecific
VH3-33*01 (SEQ
Vl1-44*01 (SEQ ID
VH3-30*01 (SEQ
Vk3-20*01 (SEQ


molecule 11
ID NO: 193)
NO: 209)
ID NO: 192)
ID NO: 205)





Multispecific
Vk3-20*01 (SEQ
Vl3-19*01 (SEQ ID
VH3-30*01 (SEQ
Vk3-20*01 (SEQ


molecule 12
ID NO: 205)
NO: 211)
ID NO: 192)
ID NO: 205)









5. Kappa/Lambda Select Resin Analysis of Chain Pairing.


The kappa and lambda light chain pairing of bispecific constructs was analyzed by incubating 1 mg of protein with 100 μL of either KappaSelect (GE 17-5458-01) or LambdaFab Select (GE 17-5482-01) resin. After incubating for 1-3 hours, the resin was packed into a column, washed with 3×10 column volumes of Dulbecco's phosphate-buffered saline (DPBS, Life Technologies 14190-144). The bound protein was eluted from the column with 100 mM citrate, pH 2.46. The content of the load, flow-through, and elution fractions was analyzed using gels of samples reduced with 200 mM Bond-Breaker TCEP (Thermo Scientific 77720), allowing for the identification of the various chains. For quantitative assessment of the chain pairing, the amount of protein in the load and flow-through fractions was assessed using the absorbance at 280 nm with a NanoDrop.


The KappaSelect resin is an affinity resin that binds to the constant light chain of kappa antibodies. The elution from the KappaSelect will contain molecules with both a lambda and kappa light chain, where there are three possibilities (FIGS. 1A, 1B, and 1D). The LambdaFabSelect resin is an affinity resin that binds to the constant light chain of lambda antibodies. The elution from the LambdaFabSelect will contain molecules with both lambda and kappa light chain, where there are three possibilities (FIGS. 1A, 1C, and 1D).


6. Mass Spectrometry for Analysis of Chain Pairing.


To characterize the chain pairing in multispecific molecules, the purified samples were digested with immobilized papain (Thermo Scientific 20341) according to the manufacturer's instructions. Papain cleaves after the hinge region (FIG. 2), yielding two Fab arms. The digested molecules were run on a mass spectrometer, allowing identification of the two Fab arms based on the intact masses measured. The MS analysis allows for the discrimination of the different configurations (FIG. 1A vs. FIG. 1D), and the characterization of the extent of light-chain swapping.


Results
Example 1

NanoBiT based constructs were expressed by co-transfecting cells with DNA in a 1:1:1 heavy chain to light chain to competing light chain ratio. Table 3 shows individual combinations of a heavy chain (column 2), a light chain (column 3), and a competing light chain (column 4). Column 1 in Table 3 provides identifiers for each sequence combination. The molecules were purified and the luminescence assay was performed using the Nano-Glo reagent. The positive controls and negative controls are indicated. Positive controls represented 100% perfect pairing and the negative controls represented 50% perfect pairing. These values were used to quantify the pairing of the test constructs.


Table 6 shows the percent pairing for heavy chains and kappa light chains in the presence of competing lambda light chains (only the sequence combinations with a percent pairing of 75% or greater were included). Table 7 shows the percent pairing for heavy chains and lambda light chains in the presence of competing kappa light chains (only the sequence combinations with a percent pairing of 75% or greater were included). The identifiers shown in column 1 of Tables 6 and 7 correspond to the identifiers in column 1 of Table 3. In addition, Tables 6 and 7 also provide the corresponding germline sequences for the heavy chains (column 3), the light chains (column 4), and the competing light chains (column 5) used in each sequence combination.


Table 8a is a compilation of Tables 6 and 7 with samples that were successful in both directions. Each row of Table 8a shows a heavy chain/kappa light chain pair and a heavy chain/lambda light chain pair (indicated by the ID number), where the swapping of light chains between these two pairs is low based on the NanoBiT assay. Table 8b provides the corresponding germline sequences for the heavy chain/light chain pairs included in Table 8a. The identifiers shown in Tables 8a and 8b correspond to the identifiers in column 1 of Table 3.









TABLE 3







Sequences used to generate competition constructs.










Identifier for sequence


Competing light


combinations
Heavy chain
Light chain
chain





ID183 (positive control)
SEQ ID NO: 92
SEQ ID NO: 93



ID184 (negative control)
SEQ ID NO: 92
SEQ ID NO: 93
SEQ ID NO: 94


ID185
SEQ ID NO: 92
SEQ ID NO: 93
SEQ ID NO: 136


ID186
SEQ ID NO: 92
SEQ ID NO: 93
SEQ ID NO: 139


ID187
SEQ ID NO: 92
SEQ ID NO: 93
SEQ ID NO: 142


ID188
SEQ ID NO: 92
SEQ ID NO: 93
SEQ ID NO: 145


ID189
SEQ ID NO: 92
SEQ ID NO: 93
SEQ ID NO: 148


ID190
SEQ ID NO: 92
SEQ ID NO: 93
SEQ ID NO: 151


ID191
SEQ ID NO: 92
SEQ ID NO: 93
SEQ ID NO: 154


ID192
SEQ ID NO: 92
SEQ ID NO: 93
SEQ ID NO: 157


ID193
SEQ ID NO: 92
SEQ ID NO: 93
SEQ ID NO: 160


ID194
SEQ ID NO: 92
SEQ ID NO: 93
SEQ ID NO: 163


ID195 (positive control)
SEQ ID NO: 95
SEQ ID NO: 96



ID196 (negative control)
SEQ ID NO: 95
SEQ ID NO: 96
SEQ ID NO: 97


ID197
SEQ ID NO: 95
SEQ ID NO: 96
SEQ ID NO: 136


ID198
SEQ ID NO: 95
SEQ ID NO: 96
SEQ ID NO: 139


ID199
SEQ ID NO: 95
SEQ ID NO: 96
SEQ ID NO: 142


ID200
SEQ ID NO: 95
SEQ ID NO: 96
SEQ ID NO: 145


ID201
SEQ ID NO: 95
SEQ ID NO: 96
SEQ ID NO: 148


ID202
SEQ ID NO: 95
SEQ ID NO: 96
SEQ ID NO: 151


ID203
SEQ ID NO: 95
SEQ ID NO: 96
SEQ ID NO: 154


ID204
SEQ ID NO: 95
SEQ ID NO: 96
SEQ ID NO: 157


ID205
SEQ ID NO: 95
SEQ ID NO: 96
SEQ ID NO: 160


ID206
SEQ ID NO: 95
SEQ ID NO: 96
SEQ ID NO: 163


ID207 (positive control)
SEQ ID NO: 98
SEQ ID NO: 99



ID208 (negative control)
SEQ ID NO: 98
SEQ ID NO: 99
SEQ ID NO: 100


ID209
SEQ ID NO: 98
SEQ ID NO: 99
SEQ ID NO: 136


ID210
SEQ ID NO: 98
SEQ ID NO: 99
SEQ ID NO: 139


ID211
SEQ ID NO: 98
SEQ ID NO: 99
SEQ ID NO: 142


ID212
SEQ ID NO: 98
SEQ ID NO: 99
SEQ ID NO: 145


ID213
SEQ ID NO: 98
SEQ ID NO: 99
SEQ ID NO: 148


ID214
SEQ ID NO: 98
SEQ ID NO: 99
SEQ ID NO: 151


ID215
SEQ ID NO: 98
SEQ ID NO: 99
SEQ ID NO: 154


ID216
SEQ ID NO: 98
SEQ ID NO: 99
SEQ ID NO: 157


ID217
SEQ ID NO: 98
SEQ ID NO: 99
SEQ ID NO: 160


ID218
SEQ ID NO: 98
SEQ ID NO: 99
SEQ ID NO: 163


ID219 (positive control)
SEQ ID NO: 101
SEQ ID NO: 102



ID220 (negative control)
SEQ ID NO: 101
SEQ ID NO: 102
SEQ ID NO: 103


ID221
SEQ ID NO: 101
SEQ ID NO: 102
SEQ ID NO: 136


ID222
SEQ ID NO: 101
SEQ ID NO: 102
SEQ ID NO: 139


ID223
SEQ ID NO: 101
SEQ ID NO: 102
SEQ ID NO: 142


ID224
SEQ ID NO: 101
SEQ ID NO: 102
SEQ ID NO: 145


ID225
SEQ ID NO: 101
SEQ ID NO: 102
SEQ ID NO: 148


ID226
SEQ ID NO: 101
SEQ ID NO: 102
SEQ ID NO: 151


ID227
SEQ ID NO: 101
SEQ ID NO: 102
SEQ ID NO: 154


ID228
SEQ ID NO: 101
SEQ ID NO: 102
SEQ ID NO: 157


ID229
SEQ ID NO: 101
SEQ ID NO: 102
SEQ ID NO: 160


ID230
SEQ ID NO: 101
SEQ ID NO: 102
SEQ ID NO: 163


ID231 (positive control)
SEQ ID NO: 104
SEQ ID NO: 105



ID232 (negative control)
SEQ ID NO: 104
SEQ ID NO: 105
SEQ ID NO: 106


ID233
SEQ ID NO: 104
SEQ ID NO: 105
SEQ ID NO: 136


ID234
SEQ ID NO: 104
SEQ ID NO: 105
SEQ ID NO: 139


ID235
SEQ ID NO: 104
SEQ ID NO: 105
SEQ ID NO: 142


ID236
SEQ ID NO: 104
SEQ ID NO: 105
SEQ ID NO: 145


ID237
SEQ ID NO: 104
SEQ ID NO: 105
SEQ ID NO: 148


ID238
SEQ ID NO: 104
SEQ ID NO: 105
SEQ ID NO: 151


ID239
SEQ ID NO: 104
SEQ ID NO: 105
SEQ ID NO: 154


ID240
SEQ ID NO: 104
SEQ ID NO: 105
SEQ ID NO: 157


ID241
SEQ ID NO: 104
SEQ ID NO: 105
SEQ ID NO: 160


ID242
SEQ ID NO: 104
SEQ ID NO: 105
SEQ ID NO: 163


ID243 (positive control)
SEQ ID NO: 107
SEQ ID NO: 108



ID244 (negative control)
SEQ ID NO: 107
SEQ ID NO: 108
SEQ ID NO: 109


ID245
SEQ ID NO: 107
SEQ ID NO: 108
SEQ ID NO: 136


ID246
SEQ ID NO: 107
SEQ ID NO: 108
SEQ ID NO: 139


ID247
SEQ ID NO: 107
SEQ ID NO: 108
SEQ ID NO: 142


ID248
SEQ ID NO: 107
SEQ ID NO: 108
SEQ ID NO: 145


ID249
SEQ ID NO: 107
SEQ ID NO: 108
SEQ ID NO: 148


ID250
SEQ ID NO: 107
SEQ ID NO: 108
SEQ ID NO: 151


ID251
SEQ ID NO: 107
SEQ ID NO: 108
SEQ ID NO: 154


ID252
SEQ ID NO: 107
SEQ ID NO: 108
SEQ ID NO: 157


ID253
SEQ ID NO: 107
SEQ ID NO: 108
SEQ ID NO: 160


ID254
SEQ ID NO: 107
SEQ ID NO: 108
SEQ ID NO: 163


ID255 (positive control)
SEQ ID NO: 110
SEQ ID NO: 111



ID256 (negative control)
SEQ ID NO: 110
SEQ ID NO: 111
SEQ ID NO: 112


ID257
SEQ ID NO: 110
SEQ ID NO: 111
SEQ ID NO: 136


ID258
SEQ ID NO: 110
SEQ ID NO: 111
SEQ ID NO: 139


ID259
SEQ ID NO: 110
SEQ ID NO: 111
SEQ ID NO: 142


ID260
SEQ ID NO: 110
SEQ ID NO: 111
SEQ ID NO: 145


ID261
SEQ ID NO: 110
SEQ ID NO: 111
SEQ ID NO: 148


ID262
SEQ ID NO: 110
SEQ ID NO: 111
SEQ ID NO: 151


ID263
SEQ ID NO: 110
SEQ ID NO: 111
SEQ ID NO: 154


ID264
SEQ ID NO: 110
SEQ ID NO: 111
SEQ ID NO: 157


ID265
SEQ ID NO: 110
SEQ ID NO: 111
SEQ ID NO: 160


ID266
SEQ ID NO: 110
SEQ ID NO: 111
SEQ ID NO: 163


ID267 (positive control)
SEQ ID NO: 113
SEQ ID NO: 114



ID268 (negative control)
SEQ ID NO: 113
SEQ ID NO: 114
SEQ ID NO: 115


ID269
SEQ ID NO: 113
SEQ ID NO: 114
SEQ ID NO: 136


ID270
SEQ ID NO: 113
SEQ ID NO: 114
SEQ ID NO: 139


ID271
SEQ ID NO: 113
SEQ ID NO: 114
SEQ ID NO: 142


ID272
SEQ ID NO: 113
SEQ ID NO: 114
SEQ ID NO: 145


ID273
SEQ ID NO: 113
SEQ ID NO: 114
SEQ ID NO: 148


ID274
SEQ ID NO: 113
SEQ ID NO: 114
SEQ ID NO: 151


ID275
SEQ ID NO: 113
SEQ ID NO: 114
SEQ ID NO: 154


ID276
SEQ ID NO: 113
SEQ ID NO: 114
SEQ ID NO: 157


ID277
SEQ ID NO: 113
SEQ ID NO: 114
SEQ ID NO: 160


ID278
SEQ ID NO: 113
SEQ ID NO: 114
SEQ ID NO: 163


ID279 (positive control)
SEQ ID NO: 116
SEQ ID NO: 117



ID280 (negative control)
SEQ ID NO: 116
SEQ ID NO: 117
SEQ ID NO: 118


ID281
SEQ ID NO: 116
SEQ ID NO: 117
SEQ ID NO: 136


ID282
SEQ ID NO: 116
SEQ ID NO: 117
SEQ ID NO: 139


ID283
SEQ ID NO: 116
SEQ ID NO: 117
SEQ ID NO: 142


ID284
SEQ ID NO: 116
SEQ ID NO: 117
SEQ ID NO: 145


ID285
SEQ ID NO: 116
SEQ ID NO: 117
SEQ ID NO: 148


ID286
SEQ ID NO: 116
SEQ ID NO: 117
SEQ ID NO: 151


ID287
SEQ ID NO: 116
SEQ ID NO: 117
SEQ ID NO: 154


ID288
SEQ ID NO: 116
SEQ ID NO: 117
SEQ ID NO: 157


ID289
SEQ ID NO: 116
SEQ ID NO: 117
SEQ ID NO: 160


ID290
SEQ ID NO: 116
SEQ ID NO: 117
SEQ ID NO: 163


ID291 (positive control)
SEQ ID NO: 119
SEQ ID NO: 120



ID292 (negative control)
SEQ ID NO: 119
SEQ ID NO: 120
SEQ ID NO: 121


ID293
SEQ ID NO: 119
SEQ ID NO: 120
SEQ ID NO: 136


ID294
SEQ ID NO: 119
SEQ ID NO: 120
SEQ ID NO: 139


ID295
SEQ ID NO: 119
SEQ ID NO: 120
SEQ ID NO: 142


ID296
SEQ ID NO: 119
SEQ ID NO: 120
SEQ ID NO: 145


ID297
SEQ ID NO: 119
SEQ ID NO: 120
SEQ ID NO: 148


ID298
SEQ ID NO: 119
SEQ ID NO: 120
SEQ ID NO: 151


ID299
SEQ ID NO: 119
SEQ ID NO: 120
SEQ ID NO: 154


ID300
SEQ ID NO: 119
SEQ ID NO: 120
SEQ ID NO: 157


ID301
SEQ ID NO: 119
SEQ ID NO: 120
SEQ ID NO: 160


ID302
SEQ ID NO: 119
SEQ ID NO: 120
SEQ ID NO: 163


ID303 (positive control)
SEQ ID NO: 122
SEQ ID NO: 123



ID304 (negative control)
SEQ ID NO: 122
SEQ ID NO: 123
SEQ ID NO: 124


ID305
SEQ ID NO: 122
SEQ ID NO: 123
SEQ ID NO: 136


ID306
SEQ ID NO: 122
SEQ ID NO: 123
SEQ ID NO: 139


ID307
SEQ ID NO: 122
SEQ ID NO: 123
SEQ ID NO: 142


ID308
SEQ ID NO: 122
SEQ ID NO: 123
SEQ ID NO: 145


ID309
SEQ ID NO: 122
SEQ ID NO: 123
SEQ ID NO: 148


ID310
SEQ ID NO: 122
SEQ ID NO: 123
SEQ ID NO: 151


ID311
SEQ ID NO: 122
SEQ ID NO: 123
SEQ ID NO: 154


ID312
SEQ ID NO: 122
SEQ ID NO: 123
SEQ ID NO: 157


ID313
SEQ ID NO: 122
SEQ ID NO: 123
SEQ ID NO: 160


ID314
SEQ ID NO: 122
SEQ ID NO: 123
SEQ ID NO: 163


ID315 (positive control)
SEQ ID NO: 125
SEQ ID NO: 126



ID316 (negative control)
SEQ ID NO: 125
SEQ ID NO: 126
SEQ ID NO: 127


ID317
SEQ ID NO: 125
SEQ ID NO: 126
SEQ ID NO: 136


ID318
SEQ ID NO: 125
SEQ ID NO: 126
SEQ ID NO: 139


ID319
SEQ ID NO: 125
SEQ ID NO: 126
SEQ ID NO: 142


ID320
SEQ ID NO: 125
SEQ ID NO: 126
SEQ ID NO: 145


ID321
SEQ ID NO: 125
SEQ ID NO: 126
SEQ ID NO: 148


ID322
SEQ ID NO: 125
SEQ ID NO: 126
SEQ ID NO: 151


ID323
SEQ ID NO: 125
SEQ ID NO: 126
SEQ ID NO: 154


ID324
SEQ ID NO: 125
SEQ ID NO: 126
SEQ ID NO: 157


ID325
SEQ ID NO: 125
SEQ ID NO: 126
SEQ ID NO: 160


ID326
SEQ ID NO: 125
SEQ ID NO: 126
SEQ ID NO: 163


ID327 (positive control)
SEQ ID NO: 128
SEQ ID NO: 129



ID328 (negative control)
SEQ ID NO: 128
SEQ ID NO: 129
SEQ ID NO: 130


ID329
SEQ ID NO: 128
SEQ ID NO: 129
SEQ ID NO: 136


ID330
SEQ ID NO: 128
SEQ ID NO: 129
SEQ ID NO: 139


ID331
SEQ ID NO: 128
SEQ ID NO: 129
SEQ ID NO: 142


ID332
SEQ ID NO: 128
SEQ ID NO: 129
SEQ ID NO: 145


ID333
SEQ ID NO: 128
SEQ ID NO: 129
SEQ ID NO: 148


ID334
SEQ ID NO: 128
SEQ ID NO: 129
SEQ ID NO: 151


ID335
SEQ ID NO: 128
SEQ ID NO: 129
SEQ ID NO: 154


ID336
SEQ ID NO: 128
SEQ ID NO: 129
SEQ ID NO: 157


ID337
SEQ ID NO: 128
SEQ ID NO: 129
SEQ ID NO: 160


ID338
SEQ ID NO: 128
SEQ ID NO: 129
SEQ ID NO: 163


ID339 (positive control)
SEQ ID NO: 131
SEQ ID NO: 132



ID340 (negative control)
SEQ ID NO: 131
SEQ ID NO: 132
SEQ ID NO: 133


ID341
SEQ ID NO: 131
SEQ ID NO: 132
SEQ ID NO: 136


ID342
SEQ ID NO: 131
SEQ ID NO: 132
SEQ ID NO: 139


ID343
SEQ ID NO: 131
SEQ ID NO: 132
SEQ ID NO: 142


ID344
SEQ ID NO: 131
SEQ ID NO: 132
SEQ ID NO: 145


ID345
SEQ ID NO: 131
SEQ ID NO: 132
SEQ ID NO: 148


ID346
SEQ ID NO: 131
SEQ ID NO: 132
SEQ ID NO: 151


ID347
SEQ ID NO: 131
SEQ ID NO: 132
SEQ ID NO: 154


ID348
SEQ ID NO: 131
SEQ ID NO: 132
SEQ ID NO: 157


ID349
SEQ ID NO: 131
SEQ ID NO: 132
SEQ ID NO: 160


ID350
SEQ ID NO: 131
SEQ ID NO: 132
SEQ ID NO: 163


ID351 (positive control)
SEQ ID NO: 134
SEQ ID NO: 135



ID352 (negative control)
SEQ ID NO: 134
SEQ ID NO: 135
SEQ ID NO: 136


ID353
SEQ ID NO: 134
SEQ ID NO: 135
SEQ ID NO: 94


ID354
SEQ ID NO: 134
SEQ ID NO: 135
SEQ ID NO: 97


ID355
SEQ ID NO: 134
SEQ ID NO: 135
SEQ ID NO: 100


ID356
SEQ ID NO: 134
SEQ ID NO: 135
SEQ ID NO: 103


ID357
SEQ ID NO: 134
SEQ ID NO: 135
SEQ ID NO: 106


ID358
SEQ ID NO: 134
SEQ ID NO: 135
SEQ ID NO: 109


ID359
SEQ ID NO: 134
SEQ ID NO: 135
SEQ ID NO: 112


ID360
SEQ ID NO: 134
SEQ ID NO: 135
SEQ ID NO: 115


ID361
SEQ ID NO: 134
SEQ ID NO: 135
SEQ ID NO: 118


ID362
SEQ ID NO: 134
SEQ ID NO: 135
SEQ ID NO: 121


ID363
SEQ ID NO: 134
SEQ ID NO: 135
SEQ ID NO: 124


ID364
SEQ ID NO: 134
SEQ ID NO: 135
SEQ ID NO: 127


ID365
SEQ ID NO: 134
SEQ ID NO: 135
SEQ ID NO: 130


ID366
SEQ ID NO: 134
SEQ ID NO: 135
SEQ ID NO: 133


ID367 (positive control)
SEQ ID NO: 137
SEQ ID NO: 138



ID368 (negative control)
SEQ ID NO: 137
SEQ ID NO: 138
SEQ ID NO: 139


ID369
SEQ ID NO: 137
SEQ ID NO: 138
SEQ ID NO: 94


ID370
SEQ ID NO: 137
SEQ ID NO: 138
SEQ ID NO: 97


ID371
SEQ ID NO: 137
SEQ ID NO: 138
SEQ ID NO: 100


ID372
SEQ ID NO: 137
SEQ ID NO: 138
SEQ ID NO: 103


ID373
SEQ ID NO: 137
SEQ ID NO: 138
SEQ ID NO: 106


ID374
SEQ ID NO: 137
SEQ ID NO: 138
SEQ ID NO: 109


ID375
SEQ ID NO: 137
SEQ ID NO: 138
SEQ ID NO: 112


ID376
SEQ ID NO: 137
SEQ ID NO: 138
SEQ ID NO: 115


ID377
SEQ ID NO: 137
SEQ ID NO: 138
SEQ ID NO: 118


ID378
SEQ ID NO: 137
SEQ ID NO: 138
SEQ ID NO: 121


ID379
SEQ ID NO: 137
SEQ ID NO: 138
SEQ ID NO: 124


ID380
SEQ ID NO: 137
SEQ ID NO: 138
SEQ ID NO: 127


ID381
SEQ ID NO: 137
SEQ ID NO: 138
SEQ ID NO: 130


ID382
SEQ ID NO: 137
SEQ ID NO: 138
SEQ ID NO: 133


ID383 (positive control)
SEQ ID NO: 140
SEQ ID NO: 141



ID384 (negative control)
SEQ ID NO: 140
SEQ ID NO: 141
SEQ ID NO: 142


ID385
SEQ ID NO: 140
SEQ ID NO: 141
SEQ ID NO: 94


ID386
SEQ ID NO: 140
SEQ ID NO: 141
SEQ ID NO: 97


ID387
SEQ ID NO: 140
SEQ ID NO: 141
SEQ ID NO: 100


ID388
SEQ ID NO: 140
SEQ ID NO: 141
SEQ ID NO: 103


ID389
SEQ ID NO: 140
SEQ ID NO: 141
SEQ ID NO: 106


ID390
SEQ ID NO: 140
SEQ ID NO: 141
SEQ ID NO: 109


ID391
SEQ ID NO: 140
SEQ ID NO: 141
SEQ ID NO: 112


ID392
SEQ ID NO: 140
SEQ ID NO: 141
SEQ ID NO: 115


ID393
SEQ ID NO: 140
SEQ ID NO: 141
SEQ ID NO: 118


ID394
SEQ ID NO: 140
SEQ ID NO: 141
SEQ ID NO: 121


ID395
SEQ ID NO: 140
SEQ ID NO: 141
SEQ ID NO: 124


ID396
SEQ ID NO: 140
SEQ ID NO: 141
SEQ ID NO: 127


ID397
SEQ ID NO: 140
SEQ ID NO: 141
SEQ ID NO: 130


ID398
SEQ ID NO: 140
SEQ ID NO: 141
SEQ ID NO: 133


ID399 (positive control)
SEQ ID NO: 143
SEQ ID NO: 144



ID400 (negative control)
SEQ ID NO: 143
SEQ ID NO: 144
SEQ ID NO: 145


ID401
SEQ ID NO: 143
SEQ ID NO: 144
SEQ ID NO: 94


ID402
SEQ ID NO: 143
SEQ ID NO: 144
SEQ ID NO: 97


ID403
SEQ ID NO: 143
SEQ ID NO: 144
SEQ ID NO: 100


ID404
SEQ ID NO: 143
SEQ ID NO: 144
SEQ ID NO: 103


ID405
SEQ ID NO: 143
SEQ ID NO: 144
SEQ ID NO: 106


ID406
SEQ ID NO: 143
SEQ ID NO: 144
SEQ ID NO: 109


ID407
SEQ ID NO: 143
SEQ ID NO: 144
SEQ ID NO: 112


ID408
SEQ ID NO: 143
SEQ ID NO: 144
SEQ ID NO: 115


ID409
SEQ ID NO: 143
SEQ ID NO: 144
SEQ ID NO: 118


ID410
SEQ ID NO: 143
SEQ ID NO: 144
SEQ ID NO: 121


ID411
SEQ ID NO: 143
SEQ ID NO: 144
SEQ ID NO: 124


ID412
SEQ ID NO: 143
SEQ ID NO: 144
SEQ ID NO: 127


ID413
SEQ ID NO: 143
SEQ ID NO: 144
SEQ ID NO: 130


ID414
SEQ ID NO: 143
SEQ ID NO: 144
SEQ ID NO: 133


ID415 (positive control)
SEQ ID NO: 146
SEQ ID NO: 147



ID416 (negative control)
SEQ ID NO: 146
SEQ ID NO: 147
SEQ ID NO: 148


ID417
SEQ ID NO: 146
SEQ ID NO: 147
SEQ ID NO: 94


ID418
SEQ ID NO: 146
SEQ ID NO: 147
SEQ ID NO: 97


ID419
SEQ ID NO: 146
SEQ ID NO: 147
SEQ ID NO: 100


ID420
SEQ ID NO: 146
SEQ ID NO: 147
SEQ ID NO: 103


ID421
SEQ ID NO: 146
SEQ ID NO: 147
SEQ ID NO: 106


ID422
SEQ ID NO: 146
SEQ ID NO: 147
SEQ ID NO: 109


ID423
SEQ ID NO: 146
SEQ ID NO: 147
SEQ ID NO: 112


ID424
SEQ ID NO: 146
SEQ ID NO: 147
SEQ ID NO: 115


ID425
SEQ ID NO: 146
SEQ ID NO: 147
SEQ ID NO: 118


ID426
SEQ ID NO: 146
SEQ ID NO: 147
SEQ ID NO: 121


ID427
SEQ ID NO: 146
SEQ ID NO: 147
SEQ ID NO: 124


ID428
SEQ ID NO: 146
SEQ ID NO: 147
SEQ ID NO: 127


ID429
SEQ ID NO: 146
SEQ ID NO: 147
SEQ ID NO: 130


ID430
SEQ ID NO: 146
SEQ ID NO: 147
SEQ ID NO: 133


ID431 (positive control)
SEQ ID NO: 149
SEQ ID NO: 150



ID432 (negative control)
SEQ ID NO: 149
SEQ ID NO: 150
SEQ ID NO: 151


ID433
SEQ ID NO: 149
SEQ ID NO: 150
SEQ ID NO: 94


ID434
SEQ ID NO: 149
SEQ ID NO: 150
SEQ ID NO: 97


ID435
SEQ ID NO: 149
SEQ ID NO: 150
SEQ ID NO: 100


ID436
SEQ ID NO: 149
SEQ ID NO: 150
SEQ ID NO: 103


ID437
SEQ ID NO: 149
SEQ ID NO: 150
SEQ ID NO: 106


ID438
SEQ ID NO: 149
SEQ ID NO: 150
SEQ ID NO: 109


ID439
SEQ ID NO: 149
SEQ ID NO: 150
SEQ ID NO: 112


ID440
SEQ ID NO: 149
SEQ ID NO: 150
SEQ ID NO: 115


ID441
SEQ ID NO: 149
SEQ ID NO: 150
SEQ ID NO: 118


ID442
SEQ ID NO: 149
SEQ ID NO: 150
SEQ ID NO: 121


ID443
SEQ ID NO: 149
SEQ ID NO: 150
SEQ ID NO: 124


ID444
SEQ ID NO: 149
SEQ ID NO: 150
SEQ ID NO: 127


ID445
SEQ ID NO: 149
SEQ ID NO: 150
SEQ ID NO: 130


ID446
SEQ ID NO: 149
SEQ ID NO: 150
SEQ ID NO: 133


ID447 (positive control)
SEQ ID NO: 152
SEQ ID NO: 153



ID448 (negative control)
SEQ ID NO: 152
SEQ ID NO: 153
SEQ ID NO: 154


ID449
SEQ ID NO: 152
SEQ ID NO: 153
SEQ ID NO: 94


ID450
SEQ ID NO: 152
SEQ ID NO: 153
SEQ ID NO: 97


ID451
SEQ ID NO: 152
SEQ ID NO: 153
SEQ ID NO: 100


ID452
SEQ ID NO: 152
SEQ ID NO: 153
SEQ ID NO: 103


ID453
SEQ ID NO: 152
SEQ ID NO: 153
SEQ ID NO: 106


ID454
SEQ ID NO: 152
SEQ ID NO: 153
SEQ ID NO: 109


ID455
SEQ ID NO: 152
SEQ ID NO: 153
SEQ ID NO: 112


ID456
SEQ ID NO: 152
SEQ ID NO: 153
SEQ ID NO: 115


ID457
SEQ ID NO: 152
SEQ ID NO: 153
SEQ ID NO: 118


ID458
SEQ ID NO: 152
SEQ ID NO: 153
SEQ ID NO: 121


ID459
SEQ ID NO: 152
SEQ ID NO: 153
SEQ ID NO: 124


ID460
SEQ ID NO: 152
SEQ ID NO: 153
SEQ ID NO: 127


ID461
SEQ ID NO: 152
SEQ ID NO: 153
SEQ ID NO: 130


ID462
SEQ ID NO: 152
SEQ ID NO: 153
SEQ ID NO: 133


ID463 (positive control)
SEQ ID NO: 155
SEQ ID NO: 156



ID464 (negative control)
SEQ ID NO: 155
SEQ ID NO: 156
SEQ ID NO: 157


ID465
SEQ ID NO: 155
SEQ ID NO: 156
SEQ ID NO: 94


ID466
SEQ ID NO: 155
SEQ ID NO: 156
SEQ ID NO: 97


ID467
SEQ ID NO: 155
SEQ ID NO: 156
SEQ ID NO: 100


ID468
SEQ ID NO: 155
SEQ ID NO: 156
SEQ ID NO: 103


ID469
SEQ ID NO: 155
SEQ ID NO: 156
SEQ ID NO: 106


ID470
SEQ ID NO: 155
SEQ ID NO: 156
SEQ ID NO: 109


ID471
SEQ ID NO: 155
SEQ ID NO: 156
SEQ ID NO: 112


ID472
SEQ ID NO: 155
SEQ ID NO: 156
SEQ ID NO: 115


ID473
SEQ ID NO: 155
SEQ ID NO: 156
SEQ ID NO: 118


ID474
SEQ ID NO: 155
SEQ ID NO: 156
SEQ ID NO: 121


ID475
SEQ ID NO: 155
SEQ ID NO: 156
SEQ ID NO: 124


ID476
SEQ ID NO: 155
SEQ ID NO: 156
SEQ ID NO: 127


ID477
SEQ ID NO: 155
SEQ ID NO: 156
SEQ ID NO: 130


ID478
SEQ ID NO: 155
SEQ ID NO: 156
SEQ ID NO: 133


ID479 (positive control)
SEQ ID NO: 158
SEQ ID NO: 159



ID480 (negative control)
SEQ ID NO: 158
SEQ ID NO: 159
SEQ ID NO: 160


ID481
SEQ ID NO: 158
SEQ ID NO: 159
SEQ ID NO: 94


ID482
SEQ ID NO: 158
SEQ ID NO: 159
SEQ ID NO: 97


ID483
SEQ ID NO: 158
SEQ ID NO: 159
SEQ ID NO: 100


ID484
SEQ ID NO: 158
SEQ ID NO: 159
SEQ ID NO: 103


ID485
SEQ ID NO: 158
SEQ ID NO: 159
SEQ ID NO: 106


ID486
SEQ ID NO: 158
SEQ ID NO: 159
SEQ ID NO: 109


ID487
SEQ ID NO: 158
SEQ ID NO: 159
SEQ ID NO: 112


ID488
SEQ ID NO: 158
SEQ ID NO: 159
SEQ ID NO: 115


ID489
SEQ ID NO: 158
SEQ ID NO: 159
SEQ ID NO: 118


ID490
SEQ ID NO: 158
SEQ ID NO: 159
SEQ ID NO: 121


ID491
SEQ ID NO: 158
SEQ ID NO: 159
SEQ ID NO: 124


ID492
SEQ ID NO: 158
SEQ ID NO: 159
SEQ ID NO: 127


ID493
SEQ ID NO: 158
SEQ ID NO: 159
SEQ ID NO: 130


ID494
SEQ ID NO: 158
SEQ ID NO: 159
SEQ ID NO: 133


ID495 (positive control)
SEQ ID NO: 161
SEQ ID NO: 162



ID496 (negative control)
SEQ ID NO: 161
SEQ ID NO: 162
SEQ ID NO: 163


ID497
SEQ ID NO: 161
SEQ ID NO: 162
SEQ ID NO: 94


ID498
SEQ ID NO: 161
SEQ ID NO: 162
SEQ ID NO: 97


ID499
SEQ ID NO: 161
SEQ ID NO: 162
SEQ ID NO: 100


ID500
SEQ ID NO: 161
SEQ ID NO: 162
SEQ ID NO: 103


ID501
SEQ ID NO: 161
SEQ ID NO: 162
SEQ ID NO: 106


ID502
SEQ ID NO: 161
SEQ ID NO: 162
SEQ ID NO: 109


ID503
SEQ ID NO: 161
SEQ ID NO: 162
SEQ ID NO: 112


ID504
SEQ ID NO: 161
SEQ ID NO: 162
SEQ ID NO: 115


ID505
SEQ ID NO: 161
SEQ ID NO: 162
SEQ ID NO: 118


ID506
SEQ ID NO: 161
SEQ ID NO: 162
SEQ ID NO: 121


ID507
SEQ ID NO: 161
SEQ ID NO: 162
SEQ ID NO: 124


ID508
SEQ ID NO: 161
SEQ ID NO: 162
SEQ ID NO: 127


ID509
SEQ ID NO: 161
SEQ ID NO: 162
SEQ ID NO: 130


ID510
SEQ ID NO: 161
SEQ ID NO: 162
SEQ ID NO: 133
















TABLE 6







Percent pairing for heavy chains and kappa light chains in the presence


of competing lambda light chains as measured by the NanoBiT assay.













Column 3: heavy
Column 4: kappa
Column 5: competing


Column 1:
Column
chain polypeptide
light chain
lambda light chain


Identifier
2:
2 (HCP2)
polypeptide (KLCP)
polypeptide (LLCP)


for sequence
Percent
corresponding
corresponding
corresponding


combinations
pairing
germline
germline
germline





ID185
 98
VH3-33*01 (SEQ ID
Vk1-39*01 (SEQ ID
Vl3-19*01 (SEQ ID




NO: 193)
NO: 201)
NO: 211)





ID189
 82
VH3-33*01 (SEQ ID
Vk1-39*01 (SEQ ID
Vl3-19*01 (SEQ ID




NO: 193)
NO: 201)
NO: 211)





ID190
100
VH3-33*01 (SEQ ID
Vk1-39*01 (SEQ ID
Vl2-14*01 (SEQ ID




NO: 193)
NO: 201)
NO: 210)





ID191
100
VH3-33*01 (SEQ ID
Vk1-39*01 (SEQ ID
Vl3-9*01 (SEQ ID NO:




NO: 193)
NO: 201)
212)





ID192
 87
VH3-33*01 (SEQ ID
Vk1-39*01 (SEQ ID
Vl10-54*01 (SEQ ID




NO: 193)
NO: 201)
NO: 207)





ID198
 93
VH5-51*01 (SEQ ID
Vk3-20*01 (SEQ ID
Vl3-19*01 (SEQ ID




NO: 198)
NO: 205)
NO: 211)





ID205
100
VH5-51*01 (SEQ ID
Vk3-20*01 (SEQ ID
Vl10-54*01 (SEQ ID




NO: 198)
NO: 205)
NO: 207)





ID206
 93
VH5-51*01 (SEQ ID
Vk3-20*01 (SEQ ID
Vl1-44*01 (SEQ ID




NO: 198)
NO: 205)
NO: 209)





ID209
 95
VH3-13*01 (SEQ ID
Vk1D-16*01 (SEQ ID
Vl3-19*01 (SEQ ID




NO: 188)
NO: 202)
NO: 211)





ID211
 93
VH3-13*01 (SEQ ID
Vk1D-16*01 (SEQ ID
Vl1-40*01 (SEQ ID




NO: 188)
NO: 202)
NO: 208)





ID213
 90
VH3-13*01 (SEQ ID
Vk1D-16*01 (SEQ ID
Vl3-19*01 (SEQ ID




NO: 188)
NO: 202)
NO: 211)





ID214
100
VH3-13*01 (SEQ ID
Vk1D-16*01 (SEQ ID
Vl2-14*01 (SEQ ID




NO: 188)
NO: 202)
NO: 210)





ID215
 95
VH3-13*01 (SEQ ID
Vk1D-16*01 (SEQ ID
Vl3-9*01 (SEQ ID NO:




NO: 188)
NO: 202)
212)





ID216
 96
VH3-13*01 (SEQ ID
Vk1D-16*01 (SEQ ID
Vl10-54*01 (SEQ ID




NO: 188)
NO: 202)
NO: 207)





ID217
100
VH3-13*01 (SEQ ID
Vk1D-16*01 (SEQ ID
Vl10-54*01 (SEQ ID




NO: 188)
NO: 202)
NO: 207)





ID218
100
VH3-13*01 (SEQ ID
Vk1D-16*01 (SEQ ID
Vl1-44*01 (SEQ ID




NO: 188)
NO: 202)
NO: 209)





ID222
100
VH1-3*01 (SEQ ID
Vk3D-20*01 (SEQ ID
Vl3-19*01 (SEQ ID




NO: 185)
NO: 206)
NO: 211)





ID229
 98
VH1-3*01 (SEQ ID
Vk3D-20*01 (SEQ ID
Vl10-54*01 (SEQ ID




NO: 185)
NO: 206)
NO: 207)





ID230
 83
VH1-3*01 (SEQ ID
Vk3D-20*01 (SEQ ID
Vl1-44*01 (SEQ ID




NO: 185)
NO: 206)
NO: 209)





ID228
 93
VH1-3*01 (SEQ ID
Vk3D-20*01 (SEQ ID
Vl10-54*01 (SEQ ID




NO: 185)
NO: 206)
NO: 207)





ID235
 90
VH3-30*01 (SEQ ID
Vk3-20*01 (SEQ ID
Vl1-40*01 (SEQ ID




NO: 192)
NO: 205)
NO: 208)





ID236
100
VH3-30*01 (SEQ ID
Vk3-20*01 (SEQ ID
Vl3-19*01 (SEQ ID




NO: 192)
NO: 205)
NO: 211)





ID242
100
VH3-30*01 (SEQ ID
Vk3-20*01 (SEQ ID
Vl1-44*01 (SEQ ID




NO: 192)
NO: 205)
NO: 209)





ID241
100
VH3-30*01 (SEQ ID
Vk3-20*01 (SEQ ID
Vl10-54*01 (SEQ ID




NO: 192)
NO: 205)
NO: 207)





ID259
 75
VH1-18*01 (SEQ ID
Vk3-20*01 (SEQ ID
Vl1-40*01 (SEQ ID




NO: 183)
NO: 205)
NO: 208)





ID262
 90
VH1-18*01 (SEQ ID
Vk3-20*01 (SEQ ID
Vl2-14*01 (SEQ ID




NO: 183)
NO: 205)
NO: 210)





ID288
 95
VH3-23*01 (SEQ ID
Vk1-27*01 (SEQ ID
Vl10-54*01 (SEQ ID




NO: 191)
NO: 200)
NO: 207)





ID289
100
VH3-23*01 (SEQ ID
Vk1-27*01 (SEQ ID
Vl10-54*01 (SEQ ID




NO: 191)
NO: 200)
NO: 207)





ID284
 84
VH3-23*01 (SEQ ID
Vk1-27*01 (SEQ ID
Vl3-19*01 (SEQ ID




NO: 191)
NO: 200)
NO: 211)





ID286
 81
VH3-23*01 (SEQ ID
Vk1-27*01 (SEQ ID
Vl2-14*01 (SEQ ID




NO: 191)
NO: 200)
NO: 210)





ID290
 96
VH3-23*01 (SEQ ID
Vk1-27*01 (SEQ ID
Vl1-44*01 (SEQ ID




NO: 191)
NO: 200)
NO: 209)





ID295
 95
VH3-21*01 (SEQ ID
Vk3-20*01 (SEQ ID
Vl1-40*01 (SEQ ID




NO: 190)
NO: 205)
NO: 208)





ID299
 99
VH3-21*01 (SEQ ID
Vk3-20*01 (SEQ ID
Vl3-9*01 (SEQ ID NO:




NO: 190)
NO: 205)
212)





ID302
100
VH3-21*01 (SEQ ID
Vk3-20*01 (SEQ ID
Vl1-44*01 (SEQ ID




NO: 190)
NO: 205)
NO: 209)





ID301
100
VH3-21*01 (SEQ ID
Vk3-20*01 (SEQ ID
Vl10-54*01 (SEQ ID




NO: 190)
NO: 205)
NO: 207)





ID306
 94
VH3-33*01 (SEQ ID
Vk3-11*01 (SEQ ID
Vl3-19*01 (SEQ ID




NO: 193)
NO: 204)
NO: 211)





ID307
 98
VH3-33*01 (SEQ ID
Vk3-11*01 (SEQ ID
Vl1-40*01 (SEQ ID




NO: 193)
NO: 204)
NO: 208)





ID308
100
VH3-33*01 (SEQ ID
Vk3-11*01 (SEQ ID
Vl3-19*01 (SEQ ID




NO: 193)
NO: 204)
NO: 211)





ID309
 93
VH3-33*01 (SEQ ID
Vk3-11*01 (SEQ ID
Vl3-19*01 (SEQ ID




NO: 193)
NO: 204)
NO: 211)





ID310
 94
VH3-33*01 (SEQ ID
Vk3-11*01 (SEQ ID
Vl2-14*01 (SEQ ID




NO: 193)
NO: 204)
NO: 210)





ID312
 88
VH3-33*01 (SEQ ID
Vk3-11*01 (SEQ ID
Vl10-54*01 (SEQ ID




NO: 193)
NO: 204)
NO: 207)





ID313
100
VH3-33*01 (SEQ ID
Vk3-11*01 (SEQ ID
Vl10-54*01 (SEQ ID




NO: 193)
NO: 204)
NO: 207)





ID314
100
VH3-33*01 (SEQ ID
Vk3-11*01 (SEQ ID
Vl1-44*01 (SEQ ID




NO: 193)
NO: 204)
NO: 209)





ID317
100
VH3-9*01 (SEQ ID
Vk1-12*01 (SEQ ID
Vl3-19*01 (SEQ ID




NO: 196)
NO: 199)
NO: 211)





ID318
 99
VH3-9*01 (SEQ ID
Vk1-12*01 (SEQ ID
Vl3-19*01 (SEQ ID




NO: 196)
NO: 199)
NO: 211)





ID320
100
VH3-9*01 (SEQ ID
Vk1-12*01 (SEQ ID
Vl3-19*01 (SEQ ID




NO: 196)
NO: 199)
NO: 211)





ID324
100
VH3-9*01 (SEQ ID
Vk1-12*01 (SEQ ID
Vl10-54*01 (SEQ ID




NO: 196)
NO: 199)
NO: 207)





ID323
 84
VH3-9*01 (SEQ ID
Vk1-12*01 (SEQ ID
Vl3-9*01 (SEQ ID NO:




NO: 196)
NO: 199)
212)





ID246
100
VH5-51*01 (SEQ ID
Vk3-20*01 (SEQ ID
Vl3-19*01 (SEQ ID




NO: 198)
NO: 205)
NO: 211)





ID253
 80
VH5-51*01 (SEQ ID
Vk3-20*01 (SEQ ID
Vl10-54*01 (SEQ ID




NO: 198)
NO: 205)
NO: 207)





ID254
100
VH5-51*01 (SEQ ID
Vk3-20*01 (SEQ ID
Vl1-44*01 (SEQ ID




NO: 198)
NO: 205)
NO: 209)





ID274
 79
VH4-4*01 (SEQ ID
Vk2-28*01 (SEQ ID
Vl2-14*01 (SEQ ID




NO: 197)
NO: 203)
NO: 210)





ID278
 79
VH4-4*01 (SEQ ID
Vk2-28*01 (SEQ ID
Vl1-44*01 (SEQ ID




NO: 197)
NO: 203)
NO: 209)





ID336
 76
VH3-23*01 (SEQ ID
Vk3-11*01 (SEQ ID
Vl10-54*01 (SEQ ID




NO: 191)
NO: 204)
NO: 207)





ID341
100
VH3-66*01 (SEQ ID
Vk1-39*01 (SEQ ID
Vl3-19*01 (SEQ ID




NO: 194)
NO: 201)
NO: 211)





ID349
100
VH3-66*01 (SEQ ID
Vk1-39*01 (SEQ ID
Vl10-54*01 (SEQ ID




NO: 194)
NO: 201)
NO: 207)





ID344
100
VH3-66*01 (SEQ ID
Vk1-39*01 (SEQ ID
Vl3-19*01 (SEQ ID




NO: 194)
NO: 201)
NO: 211)





ID342
100
VH3-66*01 (SEQ ID
Vk1-39*01 (SEQ ID
Vl3-19*01 (SEQ ID




NO: 194)
NO: 201)
NO: 211)





ID343
 84
VH3-66*01 (SEQ ID
Vk1-39*01 (SEQ ID
Vl1-40*01 (SEQ ID




NO: 194)
NO: 201)
NO: 208)





ID347
100
VH3-66*01 (SEQ ID
Vk1-39*01 (SEQ ID
Vl3-9*01 (SEQ ID NO:




NO: 194)
NO: 201)
212)





ID348
100
VH3-66*01 (SEQ ID
Vk1-39*01 (SEQ ID
Vl10-54*01 (SEQ ID




NO: 194)
NO: 201)
NO: 207)





ID350
100
VH3-66*01 (SEQ ID
Vk1-39*01 (SEQ ID
Vl1-44*01 (SEQ ID




NO: 194)
NO: 201)
NO: 209)
















TABLE 7







Percent pairing for heavy chains and lambda light chains in the presence


of competing kappa light chains as measured by the NanoBiT assay.













Column 3: heavy
Column 4: lambda
Column 5: Competing


Column 1:
Column
chain polypeptide
light chain
kappa light chain


Identifier
2:
1 (HCP1)
polypeptide (LLCP)
polypeptide (KLCP)


for sequence
Percent
corresponding
corresponding
corresponding


combinations
pairing
germline
germline
germline





ID357
 96
VH1-69*01 (SEQ ID
Vl3-19*01 (SEQ ID
Vk3-20*01 (SEQ ID




NO: 187)
NO: 211)
NO: 205)





ID359
 95
VH1-69*01 (SEQ ID
Vl3-19*01 (SEQ ID
Vk3-20*01 (SEQ ID




NO: 187)
NO: 211)
NO: 205)





ID363
100
VH1-69*01 (SEQ ID
Vl3-19*01 (SEQ ID
Vk3-11*01 (SEQ ID




NO: 187)
NO: 211)
NO: 204)





ID366
100
VH1-69*01 (SEQ ID
Vl3-19*01 (SEQ ID
Vk1-39*01 (SEQ ID




NO: 187)
NO: 211)
NO: 201)





ID378
 94
VH3-20*01 (SEQ ID
Vl3-19*01 (SEQ ID
Vk3-20*01 (SEQ ID




NO: 189)
NO: 211)
NO: 205)





ID379
100
VH3-20*01 (SEQ ID
Vl3-19*01 (SEQ ID
Vk3-11*01 (SEQ ID




NO: 189)
NO: 211)
NO: 204)





ID372
100
VH3-20*01 (SEQ ID
Vl3-19*01 (SEQ ID
Vk3D-20*01 (SEQ ID




NO: 189)
NO: 211)
NO: 206)





ID374
100
VH3-20*01 (SEQ ID
Vl3-19*01 (SEQ ID
Vk3-20*01 (SEQ ID




NO: 189)
NO: 211)
NO: 205)





ID380
 95
VH3-20*01 (SEQ ID
Vl3-19*01 (SEQ ID
Vk1-12*01 (SEQ ID




NO: 189)
NO: 211)
NO: 199)





ID386
 96
VH5-51*01 (SEQ ID
Vl1-40*01 (SEQ ID
Vk3-20*01 (SEQ ID




NO: 198)
NO: 208)
NO: 205)





ID392
 93
VH5-51*01 (SEQ ID
Vl1-40*01 (SEQ ID
Vk2-28*01 (SEQ ID




NO: 198)
NO: 208)
NO: 203)





ID393
 91
VH5-51*01 (SEQ ID
Vl1-40*01 (SEQ ID
Vk1-27*01 (SEQ ID




NO: 198)
NO: 208)
NO: 200)





ID395
100
VH5-51*01 (SEQ ID
Vl1-40*01 (SEQ ID
Vk3-11*01 (SEQ ID




NO: 198)
NO: 208)
NO: 204)





ID462
 79
VH1-69*01 (SEQ ID
Vl3-9*01 (SEQ ID
Vk1-39*01 (SEQ ID




NO: 187)
NO: 212)
NO: 201)





ID472
 90
VH1-2*01 (SEQ ID
Vl10-54*01 (SEQ ID
Vk2-28*01 (SEQ ID




NO: 184)
NO: 207)
NO: 203)





ID475
 80
VH1-2*01 (SEQ ID
Vl10-54*01 (SEQ ID
Vk3-11*01 (SEQ ID




NO: 184)
NO: 207)
NO: 204)





ID476
 77
VH1-2*01 (SEQ ID
Vl10-54*01 (SEQ ID
Vk1-12*01 (SEQ ID




NO: 184)
NO: 207)
NO: 199)





ID477
100
VH1-2*01 (SEQ ID
Vl10-54*01 (SEQ ID
Vk3-11*01 (SEQ ID




NO: 184)
NO: 207)
NO: 204)





ID478
100
VH1-2*01 (SEQ ID
Vl10-54*01 (SEQ ID
Vk1-39*01 (SEQ ID




NO: 184)
NO: 207)
NO: 201)





ID481
100
VH3-7*01 (SEQ ID
Vl10-54*01 (SEQ ID
Vk1-39*01 (SEQ ID




NO: 195)
NO: 207)
NO: 201)





ID482
 89
VH3-7*01 (SEQ ID
Vl10-54*01 (SEQ ID
Vk3-20*01 (SEQ ID




NO: 195)
NO: 207)
NO: 205)





ID483
 99
VH3-7*01 (SEQ ID
Vl10-54*01 (SEQ ID
Vk1D-16*01 (SEQ ID




NO: 195)
NO: 207)
NO: 202)





ID484
100
VH3-7*01 (SEQ ID
Vl10-54*01 (SEQ ID
Vk3D-20*01 (SEQ ID




NO: 195)
NO: 207)
NO: 206)





ID485
 98
VH3-7*01 (SEQ ID
Vl10-54*01 (SEQ ID
Vk3-20*01 (SEQ ID




NO: 195)
NO: 207)
NO: 205)





ID486
 95
VH3-7*01 (SEQ ID
Vl10-54*01 (SEQ ID
Vk3-20*01 (SEQ ID




NO: 195)
NO: 207)
NO: 205)





ID488
 97
VH3-7*01 (SEQ ID
Vl10-54*01 (SEQ ID
Vk2-28*01 (SEQ ID




NO: 195)
NO: 207
NO: 203)





ID493
 99
VH3-7*01 (SEQ ID
Vl10-54*01 (SEQ ID
Vk3-11*01 (SEQ ID




NO: 195)
NO: 207)
NO: 204)





ID494
 99
VH3-7*01 (SEQ ID
Vl10-54*01 (SEQ ID
Vk1-39*01 (SEQ ID




NO: 195)
NO: 207)
NO: 201)





ID402
100
VH3-9*01 (SEQ ID
Vl3-19*01 (SEQ ID
Vk3-20*01 (SEQ ID




NO: 196)
NO: 211)
NO: 205)





ID404
 80
VH3-9*01 (SEQ ID
Vl3-19*01 (SEQ ID
Vk3D-20*01 (SEQ ID




NO: 196)
NO: 211)
NO: 206)





ID405
 93
VH3-9*01 (SEQ ID
Vl3-19*01 (SEQ ID
Vk3-20*01 (SEQ ID




NO: 196)
NO: 211)
NO: 205)





ID407
100
VH3-9*01 (SEQ ID
Vl3-19*01 (SEQ ID
Vk3-20*01 (SEQ ID




NO: 196)
NO: 211)
NO: 205)





ID408
 86
VH3-9*01 (SEQ ID
Vl3-19*01 (SEQ ID
Vk2-28*01 (SEQ ID




NO: 196)
NO: 211)
NO: 203)





ID409
 90
VH3-9*01 (SEQ ID
Vl3-19*01 (SEQ ID
Vk1-27*01 (SEQ ID




NO: 196)
NO: 211)
NO: 200)





ID411
100
VH3-9*01 (SEQ ID
Vl3-19*01 (SEQ ID
Vk3-11*01 (SEQ ID




NO: 196)
NO: 211)
NO: 204)





ID412
100
VH3-9*01 (SEQ ID
Vl3-19*01 (SEQ ID
Vk1-12*01 (SEQ ID




NO: 196)
NO: 211)
NO: 199)





ID414
100
VH3-9*01 (SEQ ID
Vl3-19*01 (SEQ ID
Vk1-39*01 (SEQ ID




NO: 196)
NO: 211)
NO: 201)





ID418
100
VH3-20*01 (SEQ ID
Vl3-19*01 (SEQ ID
Vk3-20*01 (SEQ ID




NO: 189)
NO: 211)
NO: 205)





ID420
 84
VH3-20*01 (SEQ ID
Vl3-19*01 (SEQ ID
Vk3D-20*01 (SEQ ID




NO: 189)
NO: 211)
NO: 206)





ID421
 77
VH3-20*01 (SEQ ID
Vl3-19*01 (SEQ ID
Vk3-20*01 (SEQ ID




NO: 189)
NO: 211)
NO: 205)





ID422
100
VH3-20*01 (SEQ ID
Vl3-19*01 (SEQ ID
Vk3-20*01 (SEQ ID




NO: 189)
NO: 211)
NO: 205)





ID423
100
VH3-20*01 (SEQ ID
Vl3-19*01 (SEQ ID
Vk3-20*01 (SEQ ID




NO: 189)
NO: 211)
NO: 205)





ID424
 81
VH3-20*01 (SEQ ID
Vl3-19*01 (SEQ ID
Vk2-28*01 (SEQ ID




NO: 189)
NO: 211)
NO: 203)





ID430
100
VH3-20*01 (SEQ ID
Vl3-19*01 (SEQ ID
Vk1-39*01 (SEQ ID




NO: 189)
NO: 211)
NO: 201)





ID434
 90
VH1-46*01 (SEQ ID
Vl2-14*01 (SEQ ID
Vk3-20*01 (SEQ ID




NO: 186)
NO: 210)
NO: 205)





ID435
 90
VH1-46*01 (SEQ ID
Vl2-14*01 (SEQ ID
Vk1D-16*01 (SEQ ID




NO: 186)
NO: 210)
NO: 202)





ID436
 81
VH1-46*01 (SEQ ID
Vl2-14*01 (SEQ ID
Vk3D-20*01 (SEQ ID




NO: 186)
NO: 210)
NO: 206)





ID440
 75
VH1-46*01 (SEQ ID
Vl2-14*01 (SEQ ID
Vk2-28*01 (SEQ ID




NO: 186)
NO: 210)
NO: 203)





ID441
 79
VH1-46*01 (SEQ ID
Vl2-14*01 (SEQ ID
Vk1-27*01 (SEQ ID




NO: 186)
NO: 210)
NO: 200)





ID443
100
VH1-46*01 (SEQ ID
Vl2-14*01 (SEQ ID
Vk3-11*01 (SEQ ID




NO: 186)
NO: 210)
NO: 204)





ID446
 87
VH1-46*01 (SEQ ID
Vl2-14*01 (SEQ ID
Vk1-39*01 (SEQ ID




NO: 186)
NO: 210)
NO: 201)





ID498
100
VH3-33*01 (SEQ ID
Vl1-44*01 (SEQ ID
Vk3-20*01 (SEQ ID




NO: 193)
NO: 209)
NO: 205)





ID499
100
VH3-33*01 (SEQ ID
Vl1-44*01 (SEQ ID
Vk1D-16*01 (SEQ ID




NO: 193)
NO: 209)
NO: 202)





ID500
100
VH3-33*01 (SEQ ID
Vl1-44*01 (SEQ ID
Vk3D-20*01 (SEQ ID




NO: 193)
NO: 209)
NO: 206)





ID501
100
VH3-33*01 (SEQ ID
Vl1-44*01 (SEQ ID
Vk3-20*01 (SEQ ID




NO: 193)
NO: 209)
NO: 205)





ID502
 80
VH3-33*01 (SEQ ID
Vl1-44*01 (SEQ ID
Vk3-20*01 (SEQ ID




NO: 193)
NO: 209)
NO: 205)





ID506
100
VH3-33*01 (SEQ ID
Vl1-44*01 (SEQ ID
Vk3-20*01 (SEQ ID




NO: 193)
NO: 209)
NO: 205)
















TABLE 8a







Two-way pairs based on NanoBiT data.










Identifier for sequence
Percent
Identifier for sequence
Percent


combinations
pairing
combinations
pairing













ID205
100
ID482
89


ID206
93
ID498
100


ID214
100
ID435
90


ID217
100
ID483
99


ID218
100
ID499
100


ID222
100
ID372
100


ID229
98
ID484
100


ID230
83
ID500
100


ID236
100
ID405
93


ID242
100
ID501
100


ID241
100
ID485
98


ID259
75
ID392
93


ID284
84
ID409
90


ID286
81
ID441
79


ID302
100
ID506
100


ID306
94
ID379
100


ID307
98
ID395
100


ID308
100
ID411
100


ID310
94
ID443
100


ID312
88
ID475
80


ID318
99
ID380
95


ID320
100
ID412
100


ID324
100
ID476
77


ID246
100
ID374
100


ID253
80
ID486
95


ID254
100
ID502
80


ID274
79
ID440
75


ID336
76
ID477
100


ID341
100
ID366
100


ID349
100
ID494
99


ID344
100
ID414
100


ID347
100
ID462
79


ID348
100
ID478
100
















TABLE 8b







Corresponding germline sequences of two-way pairs based on NanoBiT data














Column 3:


Column 6:



Column 2:
lambda light

Column 5:
kappa light


Column 1:
heavy chain
chain
Column 4:
heavy chain
chain


Identifier
polypeptide 1
polypeptide
Identifier
polypeptide 2
polypeptide


for
(HCP1)
(LLCP)
for
(HCP2)
(KLCP)


sequence
corresponding
corresponding
sequence
corresponding
corresponding


combinations
germline
germline
combinations
germline
germline





ID205
VH5-51*01
VK3-20*01
ID482
VH3-7*01
Vl10-54*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



198)
205)

195)
207)





ID206
VH5-51*01
VK3-20*01
ID498
VH3-33*01
Vl1-44*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



198)
205)

193)
209)





ID214
VH3-13*01
VK1D-16*01
ID435
VH1-46*01
Vl2-14*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



188)
202)

186)
210)





ID217
VH3-13*01
VK1D-16*01
ID483
VH3-7*01
Vl10-54*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



188)
202)

195)
207)





ID218
VH3-13*01
VKID-16*01
ID499
VH3-33*01
Vl1-44*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



188)
202)

193)
209)





ID222
VH1-3*01
VK3D-20*01
ID372
VH3-20*01
Vl3-19*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



185)
206)

189)
211)





ID229
VH1-3*01
VK3D-20*01
ID484
VH3-7*01
Vl10-54*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



185)
206)

195)
207)





ID230
VH1-3*01
VK3D-20*01
ID500
VH3-33*01
Vl1-44*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



185)
206)

193)
209)





ID236
VH3-30*01
VK3-20*01
ID405
VH3-9*01
Vl3-19*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



192)
205)

196)
211)





ID242
VH3-30*01
VK3-20*01
ID501
VH3-33*01
Vl1-44*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



192)
205)

193)
209)





ID241
VH3-30*01
VK3-20*01
ID485
VH3-7*01
Vl10-54*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



192)
205)

195)
207)





ID259
VH1-18*01
VK3-20*01
ID392
VH5-51*01
Vl1-40*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



183)
205)

198)
208)





ID284
VH3-23*01
VK1-27*01
ID409
VH3-9*01
Vl3-19*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



191)
200)

196)
211)





ID286
VH3-23*01
VK1-27*01
ID441
VH1-46*01
Vl2-14*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



191)
200)

186)
210)





ID302
VH3-21*01
VK3-20*01
ID506
VH3-33*01
Vl1-44*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



190)
205)

193)
209)





ID306
VH3-33*01
Vk3-11*01
ID379
VH3-20*01
Vl3-19*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



193)
204)

189)
211)





ID307
VH3-33*01
Vk3-11*01
ID395
VH5-51*01
Vl1-40*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



193)
204)

198)
208)





ID308
VH3-33*01
Vk3-11*01
ID411
VH3-9*01
Vl3-19*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



193)
204)

196)
211)





ID310
VH3-33*01
Vk3-11*01
ID443
VH1-46*01
Vl2-14*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



193)
204)

186)
210)





ID312
VH3-33*01
Vk3-11*01
ID475
VH1-2*01
Vl10-54*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



193)
204)

184)
207)





ID318
VH3-9*01
Vk1-12*01
ID380
VH3-20*01
Vl3-19*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



196)
199)

189)
211)





ID320
VH3-9*01
Vk1-12*01
ID412
VH3-9*01
Vl3-19*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



196)
199)

196)
211)





ID324
VH3-9*01
Vk1-12*01
ID476
VH1-2*01
Vl10-54*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



196)
199)

184)
207)





ID246
VH5-51*01
VK3-20*01
ID374
VH3-20*01
Vl3-19*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



198)
205)

189)
211)





ID253
VH5-51*01
VK3-20*01
ID486
VH3-7*01
Vl10-54*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



198)
205)

195)
207)





ID254
VH5-51*01
VK3-20*01
ID502
VH3-33*01
Vl1-44*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



198)
205)

193)
209)





ID274
VH4-4*01
VK2-28*01
ID440
VH1-46*01
Vl2-14*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



197)
203

186)
210)





ID336
VH3-23*01
Vk3-11*01
ID477
VH1-2*01
Vl10-54*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



191
204)

184)
207)





ID341
VH3-66*01
Vk1-39*01
ID366
VH1-69*01
Vl3-19*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



194)
201)

187)
211)





ID349
VH3-66*01
Vk1-39*01
ID494
VH3-7*01
Vl10-54*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



194)
201)

195)
207)





ID344
VH3-66*01
Vk1-39*01
ID414
VH3-9*01
Vl3-19*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



194
201)

196)
211)





ID347
VH3-66*01
Vk1-39*01
ID462
VH1-69*01
Vl3-9*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



194)
201)

187)
212)





ID348
VH3-66*01
Vk1-39*01
ID478
VH1-2*01
Vl10-54*01



(SEQ ID NO:
(SEQ ID NO:

(SEQ ID NO:
(SEQ ID NO:



194)
201)

184)
207)









Example 2

Multispecific molecule 1 comprises an α-IGF1R arm and an α-HER3 arm. The α-IGF1R arm comprises a first chain of the amino acid sequence of SEQ ID NO: 179 and a second chain of the amino acid sequence of SEQ ID NO: 118. The α-HER3 arm comprises a first chain of the amino acid sequence of SEQ ID NO: 178 and a second chain of the amino acid sequence of SEQ ID NO: 145. The configuration of multispecific molecule 1 is shown in FIG. 5.


Multispecific molecule 1 was expressed by co-transfecting cells with expression vectors comprising polynucleotide sequences of SEQ ID NO: 86, SEQ ID NO: 54, SEQ ID NO: 87, and SEQ ID NO: 27. Multispecific molecule 1 was purified and a SDS-PAGE gel of the final product is shown in FIG. 11. FIG. 19 shows the size exclusion chromatogram of multispecific molecule 1. A KappaSelect and LambdaFabSelect analysis was performed with multispecific molecule 1, shown in FIG. 24. The gel shows a small amount of protein in the flow-through from the KappaSelect and LambdaFab columns. The quantitative results of this analysis are shown in Table 9, giving 85% fidelity for the kappa chain and 85% fidelity for the lambda chain. These results correlate with the NanoBiT data of ID284 and ID409, which have the same Fab arms, with 84% and 90% fidelity, respectively.









TABLE 9







Results of quantitative kappa/lambda select analysis.










Percent pairing from
Percent pairing from


Construct
KappaSelect column
LambdaFabSelect





Multispecific molecule 1
85
85


Multispecific molecule 2
88
86









Example 3

Multispecific molecule 2 comprises an α-mesothelin arm and an α-PDL1 arm. The α-mesothelin arm comprises a first chain of the amino acid sequence of SEQ ID NO: 164 and a second chain of the amino acid sequence of SEQ ID NO: 165. The α-PDL1 arm comprises a first chain of the amino acid sequence of SEQ ID NO: 166 and a second chain of the amino acid sequence of SEQ ID NO: 167. The configuration of multispecific molecule 2 is shown in FIG. 5.


Multispecific molecule 2 was expressed by co-transfecting cells with expression vectors comprising polynucleotide sequences of SEQ ID NO: 82, SEQ ID NO: 83, SEQ ID NO: 84, and SEQ ID NO: 85. A KappaSelect and LambdaFabSelect analysis was performed with multispecific molecule 2, shown in FIG. 23. The gel shows a small amount of protein in the flow-through from the KappaSelect and LambdaFab columns. The quantitative results of this analysis are shown in Table 9. The fidelity for the KappaSelect column is 88% and the fidelity for the LambdaFabSelect column is 86%.


Example 4

Multispecific molecule 3 comprises an α-CTLA4 arm and an α-IL12β arm. The α-CTLA4 arm comprises a first chain of the amino acid sequence of SEQ ID NO: 168 and a second chain of the amino acid sequence of SEQ ID NO: 106. The α-IL12β arm comprises a first chain of the amino acid sequence of SEQ ID NO: 170 and a second chain of the amino acid sequence of SEQ ID NO: 163. The configuration of multispecific molecule 3 is shown in FIG. 5.


Multispecific molecule 3 was expressed by co-transfecting cells with expression vectors comprising polynucleotide sequences of SEQ ID NO: 78, SEQ ID NO: 15, SEQ ID NO: 91, and SEQ ID NO: 72. Multispecific molecule 3 was purified and a SDS-PAGE gel of the final product is shown in FIG. 12. FIG. 20. shows the size exclusion chromatogram of multispecific molecule 3. A KappaSelect and LambdaFabSelect analysis was performed with multispecific molecule 3, shown in FIG. 25. The gel shows no protein in the flow-through of the KappaSelect or LambdaFabSelect columns, suggesting correct light chain pairing. The mass spectrometry data of the papain cleavage of multispecific molecule 3 is shown in FIG. 31 and summarized in Table 10. This data only shows correctly paired Fabs, further illustrating that there is no mispairing for these kappa and lambda chains. These results also correlate with the NanoBiT data of ID242 and ID501, which have the same Fab arms, and both showed 100% chain fidelity.









TABLE 10







Mass spectrometry results for multispecific molecule 3.









Fab Pairing
Predicted Mass (Da)
Observed Mass (Da)





Kappa heavy chain/kappa light chain
47652.9
47634.9


Kappa heavy chain/lambda light chain
47390.4
N/A


Lambda heavy chain/lambda light chain
46974.6
46940.4


Lambda heavy chain/kappa light chain
47237.2
N/A









Example 5

Multispecific molecule 4 comprises an α-CTLA4 arm and an α-TRAILR2 arm. The α-CTLA4 arm comprises a first chain of the amino acid sequence of SEQ ID NO: 168 and a second chain of the amino acid sequence of SEQ ID NO: 106. The α-TRAILR2 arm comprises a first chain of the amino acid sequence of SEQ ID NO: 177 and a second chain of the amino acid sequence of SEQ ID NO: 148. The configuration of multispecific molecule 4 is shown in FIG. 5.


Multispecific molecule 4 was expressed by co-transfecting cells with expression vectors comprising polynucleotide sequences of SEQ ID NO: 78, SEQ ID NO: 15, SEQ ID NO: 81, and SEQ ID NO: 57. Multispecific molecule 4 was purified and a SDS-PAGE gel of the final product is shown in FIG. 13. The mass spectrometry data of the papain cleavage of multispecific molecule 4 is shown in FIG. 31 and summarized in Table 11. This data shows one incorrect Fab pairing where the kappa heavy chain is paired with the lambda light chain. This correlates with the NanoBiT data of ID237 and ID421, which have the same Fab arms as multispecific molecule 4, where chain fidelity is seen in one direction: the lambda heavy chain with the competing kappa light chain.









TABLE 11







Mass spectrometry results for multispecific molecule 4.









Fab Pairing
Predicted Mass (Da)
Observed Mass (Da)





Kappa heavy chain/kappa light chain
47634.9
47634.6


Kappa heavy chain/lambda light chain
46880.4
46879.0


Lambda heavy chain/lambda light chain
46779.2
46779.4


Lambda heavy chain/kappa light chain
47481.7
N/A









Example 6

Multispecific molecule 5 comprises an α-CTLA4 arm and an α-CD221 arm. The α-CTLA4 arm comprises a first chain of the amino acid sequence of SEQ ID NO: 168 and a second chain of the amino acid sequence of SEQ ID NO: 106. The α-TRAILR2 arm comprises a first chain of the amino acid sequence of SEQ ID NO: 180 and a second chain of the amino acid sequence of SEQ ID NO: 136. The configuration of multispecific molecule 5 is shown in FIG. 5.


Multispecific molecule 5 was expressed by co-transfecting cells with expression vectors comprising polynucleotide sequences of SEQ ID NO: 78, SEQ ID NO: 15, SEQ ID NO: 88, and SEQ ID NO: 45. Multispecific molecule 5 was purified and a SDS-PAGE gel of the final product is shown in FIG. 14. The mass spectrometry data of the papain cleavage of multispecific molecule 5 is shown in FIG. 33 and summarized in Table 12, where there is one incorrect Fab pairing with the lambda heavy chain paired with the kappa light chain.









TABLE 12







Mass spectrometry results for multispecific molecule 5.









Fab Pairing
Predicted Mass (Da)
Observed Mass (Da)





Kappa heavy chain/kappa light chain
47634.9
47635.1


Kappa heavy chain/lambda light chain
47652.9
N/A


Lambda heavy chain/lambda light chain
48205.1
48202.3


Lambda heavy chain/kappa light chain
48817.2
48814.3









Example 7

Multispecific molecule 6 comprises an α-PD1 arm and an α-TRAILR2 arm. The α-PD1 arm comprises a first chain of the amino acid sequence of SEQ ID NO: 181 and a second chain of the amino acid sequence of SEQ ID NO: 182. The α-TRAILR2 arm comprises a first chain of the amino acid sequence of SEQ ID NO: 177 and a second chain of the amino acid sequence of SEQ ID NO: 148. The configuration of multispecific molecule 6 is shown in FIG. 5.


Multispecific molecule 6 was expressed by co-transfecting cells with expression vectors comprising polynucleotide sequences of SEQ ID NO: 89, SEQ ID NO: 90, SEQ ID NO: 81, and SEQ ID NO: 57. Multispecific molecule 6 was purified and a SDS-PAGE gel of the final product is shown in FIG. 15. The mass spectrometry data of the papain cleavage of multispecific molecule 6 is shown in FIG. 34 and summarized in Table 13, where there is one incorrect Fab pairing with the lambda heavy chain paired with the kappa light chain.









TABLE 13







Mass spectrometry results for multispecific molecule 6.









Fab Pairing
Predicted Mass (Da)
Observed Mass (Da)





Kappa heavy chain/kappa light chain
46933.9
46934.8


Kappa heavy chain/lambda light chain
46329.6
N/A


Lambda heavy chain/lambda light chain
46779.2
46779.0


Lambda heavy chain/kappa light chain
47400.5
47400.4









Example 8

Multispecific molecule 7 comprises an α-PD1 arm and an α-PDL1 arm. The α-PD1 arm comprises a first chain of the amino acid sequence of SEQ ID NO: 181 and a second chain of the amino acid sequence of SEQ ID NO: 182. The α-PDL1 arm comprises a first chain of the amino acid sequence of SEQ ID NO: 166 and a second chain of the amino acid sequence of SEQ ID NO: 167. The configuration of multispecific molecule 7 is shown in FIG. 5.


Multispecific molecule 7 was expressed by co-transfecting cells with expression vectors comprising polynucleotide sequences of SEQ ID NO: 89, SEQ ID NO: 90, SEQ ID NO: 84, and SEQ ID NO: 85. Multispecific molecule 7 was purified and a SDS-PAGE gel of the final product is shown in FIG. 16. The mass spectrometry data of the papain cleavage of multispecific molecule 7 is shown in FIG. 35 and summarized in Table 14, where there is one incorrect Fab pairing with the lambda heavy chain paired with the kappa light chain.









TABLE 14







Mass spectrometry results for multispecific molecule 7.









Fab Pairing
Predicted Mass (Da)
Observed Mass (Da)












Kappa heavy chain/kappa light chain
46933.9
46933.0


Kappa heavy chain/lambda light chain
46382.56
N/A


Lambda heavy chain/lambda light chain
46882.7
46883.7


Lambda heavy chain/kappa light chain
47469.0
47467.6









Example 9

Multispecific molecule 8 comprises an α-CTLA4 arm, an α-IL12β arm, and an IL-2 polypeptide. The IL-2 polypeptide is fused to the C-terminus of the lambda light chain of the α-IL12β arm. The α-CTLA4 arm comprises a first chain of the amino acid sequence of SEQ ID NO: 171 and a second chain of the amino acid sequence of SEQ ID NO: 106. The α-IL12β arm, together with the fused IL-2 polypeptide, comprises a first chain of the amino acid sequence of SEQ ID NO: 172 and a second chain of the amino acid sequence of SEQ ID NO: 173. The two heavy chains of multispecific molecule 8 do not comprise the knobs-into-holes mutations. The configuration of multispecific molecule 8 is shown in FIG. 7.


Multispecific molecule 8 was expressed by co-transfecting cells with expression vectors comprising polynucleotide sequences of SEQ ID NO: 73, SEQ ID NO: 15, SEQ ID NO: 74, and SEQ ID NO: 75. Multispecific molecule 8 was purified and a SDS-PAGE gel of the final product is shown in FIG. 17. FIG. 21 shows the size exclusion chromatogram of multispecific molecule 8. A KappaSelect and LambdaFabSelect analysis was performed with multispecific molecule 8, shown in FIG. 26. Both the KappaSelect and LambdaFabSelect flow-through fractions contained no protein, suggesting good chain fidelity.


Example 10

Multispecific molecule 9 comprises an α-CTLA4 arm, an α-IL12β arm, and an IL-2 polypeptide. The IL-2 polypeptide is fused to the C-terminus of the lambda light chain of the α-IL12β arm. The α-CTLA4 arm comprises a first chain of the amino acid sequence of SEQ ID NO: 168 and a second chain of the amino acid sequence of SEQ ID NO: 106. The α-IL12β arm, together with the fused IL-2 polypeptide, comprises a first chain of the amino acid sequence of SEQ ID NO: 170 and a second chain of the amino acid sequence of SEQ ID NO: 173. Different from multispecific molecule 8, the two heavy chains of multispecific molecule 9 comprise the knobs-into-holes mutations. The configuration of multispecific molecule 9 is shown in FIG. 6.


Multispecific molecule 9 was expressed by co-transfecting cells with expression vectors comprising polynucleotide sequences of SEQ ID NO: 78, SEQ ID NO: 15, SEQ ID NO: 91, and SEQ ID NO: 75. Multispecific molecule 9 was purified and a SDS-PAGE gel of the final product is shown in FIG. 18. FIG. 22 shows the size exclusion chromatogram of multispecific molecule 9. A KappaSelect and LambdaFabSelect analysis was performed with multispecific molecule 9, shown in FIG. 27. Both the KappaSelect and LambdaFabSelect flow-through fractions contained no protein, suggesting good chain fidelity.


Example 11

Multispecific molecule 10 comprises an α-CTLA4 arm, an α-IL12β arm, and two IL-2 polypeptides. The first IL-2 polypeptide is fused to the C-terminus of the lambda light chain of the α-IL12β arm. The second IL-2 polypeptide is fused to the C-terminus of the heavy chain of the α-IL12β arm. The α-CTLA4 arm comprises a first chain of the amino acid sequence of SEQ ID NO: 171 and a second chain of the amino acid sequence of SEQ ID NO: 106. The α-IL12β arm, together with the two fused IL-2 polypeptides, comprises a first chain of the amino acid sequence of SEQ ID NO: 175 and a second chain of the amino acid sequence of SEQ ID NO: 173. The two heavy chains of multispecific molecule 10 do not comprise the knobs-into-holes mutations. The configuration of multispecific molecule 10 is shown in FIG. 9.


Multispecific molecule 10 was expressed by co-transfecting cells with expression vectors comprising polynucleotide sequences of SEQ ID NO: 73, SEQ ID NO: 15, SEQ ID NO: 77, and SEQ ID NO: 75. A KappaSelect and LambdaFabSelect analysis was performed with multispecific molecule 10, shown in FIG. 29. The flow-through from the KappaSelect column contained no protein, while the flow-through from the LambdaFabSelect column had protein primarily composed of the kappa heavy chain (knob) and kappa light chain. This suggests that the expression for the kappa pieces was greater than that of the lambda chains, rather than an issue with chain fidelity.


Example 12

Multispecific molecule 11 comprises an α-CTLA4 arm, an α-IL12β arm, and two IL-2 polypeptides. The first IL-2 polypeptide is fused to the C-terminus of the lambda light chain of the α-IL12β arm. The second IL-2 polypeptide is fused to the C-terminus of the heavy chain of the α-IL12β arm. The α-CTLA4 arm comprises a first chain of the amino acid sequence of SEQ ID NO: 168 and a second chain of the amino acid sequence of SEQ ID NO: 106. The α-IL12β arm, together with the two fused IL-2 polypeptides, comprises a first chain of the amino acid sequence of SEQ ID NO: 174 and a second chain of the amino acid sequence of SEQ ID NO: 173. Different from multispecific molecule 10, the two heavy chains of multispecific molecule 11 comprise the knobs-into-holes mutations. The configuration of multispecific molecule 11 is shown in FIG. 8.


Multispecific molecule 11 was expressed by co-transfecting cells with expression vectors comprising polynucleotide sequences of SEQ ID NO: 78, SEQ ID NO: 15, SEQ ID NO: 76, and SEQ ID NO: 75. A KappaSelect and LambdaFab Select analysis was performed with multispecific molecule 11, shown in FIG. 28. The flow-through from the KappaSelect column contained no protein, while the flow-through from the LambdaFab Select column had protein primarily composed of the kappa heavy chain (knob) and kappa light chain. This suggests that the expression for the kappa pieces was greater than that of the lambda chains, rather than an issue with chain fidelity. This agrees with the what was seen with multispecific molecule 10, which is the same molecule except for the absence of the knob-in-hole mutations.


Example 13

Multispecific molecule 12 comprises an α-CTLA4 arm, an α-TRAILR2 arm, a scFv targeting arm, and an IL-2 polypeptide. The IL-2 polypeptide is fused to the C-terminus of the kappa light chain of the α-CTLA4 arm. The scFv is fused to the C-terminus of the heavy chain of the α-CTLA4 arm. The α-CTLA4 arm, together with the fused IL-2 polypeptide and the scFv, comprises a first chain of the amino acid sequence of SEQ ID NO: 169 and a second chain of the amino acid sequence of SEQ ID NO: 176. The α-TRAILR2 arm comprises a first chain of the amino acid sequence of SEQ ID NO: 177 and a second chain of the amino acid sequence of SEQ ID NO: 148. The two heavy chains of multispecific molecule 12 comprise the knobs-into-holes mutations. The configuration of multispecific molecule 12 is shown in FIG. 10.


Multispecific molecule 12 was expressed by co-transfecting cells with expression vectors comprising polynucleotide sequences of SEQ ID NO: 79, SEQ ID NO: 80, SEQ ID NO: 81, and SEQ ID NO: 57. A KappaSelect and LambdaFabSelect analysis was performed with multispecific molecule 12, shown in FIG. 30. The ratios indicate the ratios of DNA used at the time of transfection, varying from 3:1 to 1:3 of kappa to lambda. In all cases, there is protein in the flow-through of both the KappaSelect and LambdaFab Select columns. The protein in the KappaSelect flow-through is composed of the kappa heavy chain, lambda heavy chain, and lambda light chain. The protein in the LambdaFab Select flow-through is composed of the kappa heavy and light chains and diminishes as the ratio of the lambda chains increases. These data are in agreement with the data from multispecific molecule 4, which has the same Fab components and only shows the lambda light chain pairing with the kappa heavy chain and not vice versa.


EXEMPLARY EMBODIMENTS
Exemplary Embodiments 1

The present application is based, at least in part, on the unexpected finding that light chain shuffle in the context of a multispecific antibody molecule, e.g., a bispecific IgG molecule, can be prevented by using one kappa light chain polypeptide and one lambda light chain polypeptide. This is based, in part, on the observation that kappa light chains do not pair with a heavy chain from a lambda antibody and vice versa. Thus, described herein are novel multispecific, e.g., bispecific, antibody molecules that include a kappa light chain polypeptide and a lambda light chain polypeptide, and methods of making and using the multispecific antibody molecules.


Accordingly, in one aspect, disclosed herein is a multispecific antibody molecule, e.g., an antibody molecule comprising two binding specificities, e.g., a bispecific antibody molecule. The multispecific antibody molecule comprises: i) a first antigen-binding domain that binds to a first antigen, wherein the first antigen-binding domain comprises: a) a first heavy chain polypeptide (HCP1) comprising: a first heavy chain variable region sequence (HCVRS) sufficient that, when paired with i)b) allows the first antigen-binding domain to bind to the first antigen; and b) a lambda light chain polypeptide (LLCP) comprising: a lambda light chain variable region sequence (LLCVRS) sufficient that, when paired with i)a) allows the first antigen-binding domain to bind to the first antigen; and ii) a second antigen-binding domain that binds to a second antigen, wherein the second antigen-binding domain comprises: a) a second heavy chain polypeptide (HCP2) comprising: a second heavy chain variable region sequence (HCVRS) sufficient that, when paired with ii)b) allows the second antigen-binding domain to bind to the second antigen; and b) a kappa light chain polypeptide (KLCP) comprising: a kappa light chain variable region sequence (KLCVRS) sufficient that, when paired with ii)a) allows the second antigen-binding domain to bind to the second antigen.


In one embodiment, the first HCVRS comprises one, two, or all of framework 1 sequence, framework 2 sequence, or framework 3 sequence. In one embodiment, the framework 1 sequence, framework 2 sequence, or framework 3 sequence of the first HCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a corresponding region in a first heavy chain germline sequence selected from column 3 of Table 7, column 2 of Table 8b, or column 2 of Table 5b. In one embodiment, the framework 1 sequence, framework 2 sequence, or framework 3 sequence of the first HCVRS comprises no more than 1, 2, 3, 4, 5, 6, 7, or 8 amino acid mutations (e.g., substitutions, insertions, or deletions, e.g., conserved substitutions) relative to a corresponding region in a first heavy chain germline sequence selected from column 3 of Table 7, column 2 of Table 8b, or column 2 of Table 5b. In one embodiment, the first HCVRS comprises a framework sequence selected from Table 16.


In one embodiment, the LLCVRS comprises one, two, or all of framework 1 sequence, framework 2 sequence, or framework 3 sequence. In one embodiment, the framework 1 sequence, framework 2 sequence, or framework 3 sequence of the LLCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a corresponding region in a lambda light chain germline sequence selected from column 4 of Table 7, column 3 of Table 8b; or column 3 of Table 5b. In one embodiment, the framework 1 sequence, framework 2 sequence, or framework 3 sequence of the LLCVRS comprises no more than 1, 2, 3, 4, 5, 6, 7, or 8 amino acid mutations (e.g., substitutions, insertions, or deletions, e.g., conserved substitutions) relative to a corresponding region in a lambda light chain germline sequence selected from column 4 of Table 7, column 3 of Table 8b; or column 3 of Table 5b. In one embodiment, the LLCVRS comprises a framework sequence selected from Table 16.


In one embodiment, the second HCVRS comprises one, two, or all of framework 1 sequence, framework 2 sequence, or framework 3 sequence. In one embodiment, the framework 1 sequence, framework 2 sequence, or framework 3 sequence of the first HCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a corresponding region in a second heavy chain germline sequence selected from column 3 of Table 6, column 5 of Table 8b, or column 4 of Table 5b. In one embodiment, the framework 1 sequence, framework 2 sequence, or framework 3 sequence of the second HCVRS comprises no more than 1, 2, 3, 4, 5, 6, 7, or 8 amino acid mutations (e.g., substitutions, insertions, or deletions, e.g., conserved substitutions) relative to a corresponding region in a second heavy chain germline sequence selected from column 3 of Table 6, column 5 of Table 8b, or column 4 of Table 5b. In one embodiment, the second HCVRS comprises a framework sequence selected from Table 16.


In one embodiment, the KLCVRS comprises one, two, or all of framework 1 sequence, framework 2 sequence, or framework 3 sequence. In one embodiment, the framework 1 sequence, framework 2 sequence, or framework 3 sequence of the LLCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a corresponding region in a kappa light chain germline sequence selected from column 4 of Table 6, column 6 of Table 8b, or column 5 of Table 5b. In one embodiment, the framework 1 sequence, framework 2 sequence, or framework 3 sequence of the KLCVRS comprises no more than 1, 2, 3, 4, 5, 6, 7, or 8 amino acid mutations (e.g., substitutions, insertions, or deletions, e.g., conserved substitutions) relative to a corresponding region in a kappa light chain germline sequence selected from column 4 of Table 6, column 6 of Table 8b, or column 5 of Table 5b. In one embodiment, the KLCVRS comprises a framework sequence selected from Table 16.


In one embodiment, 1) the first HCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a first heavy chain germline sequence selected from column 3 of Table 7, column 2 of Table 8b, or column 2 of Table 5b; 2) the LLCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a lambda light chain germline sequence selected from column 4 of Table 7, column 3 of Table 8b; or column 3 of Table 5b; 3) the second HCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a second heavy chain germline sequence selected from column 3 of Table 6, column 5 of Table 8b, or column 4 of Table 5b; or 4) the KLCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a kappa light chain germline sequence selected from column 4 of Table 6, column 6 of Table 8b, or column 5 of Table 5b.


In one embodiment, the first HCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a first heavy chain germline sequence selected from column 3 of Table 7, column 2 of Table 8b, or column 2 of Table 5b. In one embodiment, the first heavy chain germline sequence and the lambda light chain germline sequence are selected from a single row of Table 7, Table 8b, or Table 5b. In one embodiment, the first heavy chain germline sequence, the lambda light chain germline sequence, and the kappa light chain germline sequence are selected from a single row of Table 7, Table 8b, or Table 5b. In one embodiment, the second heavy chain germline sequence and the kappa light chain germline sequence are selected from a single row of Table 6, Table 8b, or Table 5b. In one embodiment, the second heavy chain germline sequence, the kappa light chain germline sequence, and the lambda light chain germline sequence are selected from a single row of Table 6, Table 8b, or Table 5b. In one embodiment, at least two (e.g., two, three, or all) of the following: the first heavy chain germline sequence, the lambda light chain germline sequence, the second heavy chain germline sequence, and the kappa light chain germline sequence, are selected from a single row of Table 8b or Table 5b.


In one embodiment, the LLCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a lambda light chain germline sequence selected from column 4 of Table 7, column 3 of Table 8b; or column 3 of Table 5b. In one embodiment, the first heavy chain germline sequence and the lambda light chain germline sequence are selected from a single row of Table 7, Table 8b, or Table 5b. In one embodiment, the first heavy chain germline sequence, the lambda light chain germline sequence, and the kappa light chain germline sequence are selected from a single row of Table 7, Table 8b, or Table 5b. In one embodiment, the second heavy chain germline sequence and the kappa light chain germline sequence are selected from a single row of Table 6, Table 8b, or Table 5b. In one embodiment, the second heavy chain germline sequence, the kappa light chain germline sequence, and the lambda light chain germline sequence are selected from a single row of Table 6, Table 8b, or Table 5b. In one embodiment, at least two (e.g., two, three, or all) of the following: the first heavy chain germline sequence, the lambda light chain germline sequence, the second heavy chain germline sequence, and the kappa light chain germline sequence, are selected from a single row of Table 8b or Table 5b.


In one embodiment, the second HCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a second heavy chain germline sequence selected from column 3 of Table 6, column 5 of Table 8b, or column 4 of Table 5b. In one embodiment, the first heavy chain germline sequence and the lambda light chain germline sequence are selected from a single row of Table 7, Table 8b, or Table 5b. In one embodiment, the first heavy chain germline sequence, the lambda light chain germline sequence, and the kappa light chain germline sequence are selected from a single row of Table 7, Table 8b, or Table 5b. In one embodiment, the second heavy chain germline sequence and the kappa light chain germline sequence are selected from a single row of Table 6, Table 8b, or Table 5b. In one embodiment, the second heavy chain germline sequence, the kappa light chain germline sequence, and the lambda light chain germline sequence are selected from a single row of Table 6, Table 8b, or Table 5b. In one embodiment, at least two (e.g., two, three, or all) of the following: the first heavy chain germline sequence, the lambda light chain germline sequence, the second heavy chain germline sequence, and the kappa light chain germline sequence, are selected from a single row of Table 8b or Table 5b.


In one embodiment, the KLCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a kappa light chain germline sequence selected from column 4 of Table 6, column 6 of Table 8b, or column 5 of Table 5b. In one embodiment, the first heavy chain germline sequence and the lambda light chain germline sequence are selected from a single row of Table 7, Table 8b, or Table 5b. In one embodiment, the first heavy chain germline sequence, the lambda light chain germline sequence, and the kappa light chain germline sequence are selected from a single row of Table 7, Table 8b, or Table 5b. In one embodiment, the second heavy chain germline sequence and the kappa light chain germline sequence are selected from a single row of Table 6, Table 8b, or Table 5b. In one embodiment, the second heavy chain germline sequence, the kappa light chain germline sequence, and the lambda light chain germline sequence are selected from a single row of Table 6, Table 8b, or Table 5b. In one embodiment, at least two (e.g., two, three, or all) of the following: the first heavy chain germline sequence, the lambda light chain germline sequence, the second heavy chain germline sequence, and the kappa light chain germline sequence, are selected from a single row of Table 8b or Table 5b.


In one embodiment, the first heavy chain germline sequence and the lambda light chain germline sequence are selected from a single row of Table 8b or Table 5b. In one embodiment, the first heavy chain germline sequence and the second heavy chain germline sequence are selected from a single row of Table 8b or Table 5b. In one embodiment, the first heavy chain germline sequence and the kappa light chain germline sequence are selected from a single row of Table 8b or Table 5b. In one embodiment, the lambda light chain germline sequence and the second heavy chain germline sequence are selected from a single row of Table 8b or Table 5b. In one embodiment, the lambda light chain germline sequence and the kappa light chain germline sequence are selected from a single row of Table 8b or Table 5b. In one embodiment, the second heavy chain germline sequence and the kappa light chain germline sequence are selected from a single row of Table 8b or Table 5b. In one embodiment, the first heavy chain germline sequence, the lambda light chain germline sequence, and the second heavy chain germline sequence are selected from a single row of Table 8b or Table 5b. In one embodiment, the first heavy chain germline sequence, the lambda light chain germline sequence, and the kappa light chain germline sequence are selected from a single row of Table 8b or Table 5b. In one embodiment, the first heavy chain germline sequence, the second heavy chain germline sequence, and the kappa light chain germline sequence are selected from a single row of Table 8b or Table 5b. In one embodiment, the lambda light chain germline sequence, the second heavy chain germline sequence, and the kappa light chain germline sequence are selected from a single row of Table 8b or Table 5b. In one embodiment, the first heavy chain germline sequence, the lambda light chain germline sequence, the second heavy chain germline sequence, and the kappa light chain germline sequence are selected from a single row of Table 8b or Table 5b.


In certain embodiments of the foregoing aspects, the multispecific antibody molecule further comprises an accessory moiety, wherein the accessory moiety has a property chosen from: 1) the accessory moiety has a molecular weight of at least 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 kDa; 2) the accessory moiety comprises a polypeptide having at least 30, 40, 50, 60, 70, 80, 90, or 100 amino acid residues; 3) the accessory moiety comprises a polypeptide having the ability to modulate the activity of an immune cell, e.g., a T cell, a B cell, an antigen presenting cell (APC), or an NK cell; or 4) the accessory moiety is chosen from one or more of an immune cell engager (e.g., a CD40 agonist, e.g., a CD40L polypeptide or an agonistic anti-CD40 antibody molecule, or a PD-1 binding moiety, e.g., a PD-1 binding sequence of PDL-1 or an anti-PD-1 antibody molecule), a cytokine molecule (e.g. an IL-2 molecule), a cytokine antagonist (e.g., a TGF-β antagonist), an enzyme, a toxin, or a labeling agent.


In one aspect, disclosed herein is a multispecific antibody molecule comprising: i) a first antigen-binding domain that binds to a first antigen, wherein the first antigen-binding domain comprises: a) a first heavy chain polypeptide (HCP1) comprising: a first heavy chain variable region sequence (HCVRS) sufficient that, when paired with i)b) allows the first antigen-binding domain to bind to the first antigen; and b) a lambda light chain polypeptide (LLCP) comprising: a lambda light chain variable region sequence (LLCVRS) sufficient that, when paired with i)a) allows the first antigen-binding domain to bind to the first antigen; and ii) a second antigen-binding domain that binds to a second antigen, wherein the second antigen-binding domain comprises: a) a second heavy chain polypeptide (HCP2) comprising: a second heavy chain variable region sequence (HCVRS) sufficient that, when paired with ii)b) allows the second antigen-binding domain to bind to the second antigen; and b) a kappa light chain polypeptide (KLCP) comprising: a kappa light chain variable region sequence (KLCVRS) sufficient that, when paired with ii)a) allows the second antigen-binding domain to bind to the second antigen, wherein: the multispecific antibody molecule further comprises an accessory moiety, wherein the accessory moiety has a property chosen from: 1) the accessory moiety has a molecular weight of at least 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 kDa; 2) the accessory moiety comprises a polypeptide having at least 30, 40, 50, 60, 70, 80, 90, or 100 amino acid residues; 3) the accessory moiety comprises a polypeptide having the ability to modulate the activity of an immune cell, e.g., a T cell, a B cell, an antigen presenting cell (APC), or an NK cell; or 4) the accessory moiety is chosen from one or more of an immune cell engager (e.g., a CD40 agonist, e.g., a CD40L polypeptide or an agonistic anti-CD40 antibody molecule, or a PD-1 binding moiety, e.g., a PD-1 binding sequence of PDL-1 or an anti-PD-1 antibody molecule), a cytokine molecule (e.g. an IL-2 molecule), a cytokine antagonist (e.g., a TGF-β antagonist), an enzyme, a toxin, or a labeling agent.


Exemplary multispecific antibody molecules with one or more accessory moieties are shown in FIGS. 6-10 and described in Examples (e.g., multispecific molecule 8 described in Example 9, multispecific molecule 9 described in Example 10, multispecific molecule 10 described in Example 11, multispecific molecule 11 described in Example 12, multispecific molecule 12 described in Example 13).


In one embodiment, the accessory moiety has a molecular weight of at least 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 kDa. In one embodiment, the accessory moiety comprises a polypeptide having at least 30, 40, 50, 60, 70, 80, 90, or 100 amino acid residues. In one embodiment, the accessory moiety comprises a polypeptide having the ability to modulate the activity of an immune cell, e.g., a T cell, a B cell, an antigen presenting cell (APC), or an NK cell. In one embodiment, the accessory moiety is chosen from one or more of an immune cell engager (e.g., a CD40 agonist, e.g., a CD40L polypeptide or an agonistic anti-CD40 antibody molecule, or a PD-1 binding moiety, e.g., a PD-1 binding sequence of PDL-1 or an anti-PD-1 antibody molecule), a cytokine molecule (e.g. an IL-2 molecule), a cytokine antagonist (e.g., a TGF-β antagonist), an enzyme, a toxin, or a labeling agent.


In one embodiment, the accessory moiety is fused to the polypeptide of a, b, c, or d of the multispecific antibody molecule. In one embodiment, the accessory moiety is fused to any of the following: the HCP1, first HCVRS, LLCP, LLCVRS, HCP2, second HCVRS, KLCP, or KLCVRS of the multispecific antibody molecule, e.g., the C-terminus or N-terminus of HCP1, first HCVRS, LLCP, LLCVRS, HCP2, second HCVRS, KLCP, or KLCVRS of the multispecific antibody molecule. In one embodiment, the accessory moiety is fused to the HCP1. In one embodiment, the accessory moiety is fused to the first HCVRS (e.g., the C-terminus or N-terminus of the first HCVRS). In one embodiment, the accessory moiety is fused to the LLCP (e.g., the C-terminus or N-terminus of the LLCP). In one embodiment, the accessory moiety is fused to the LLCVRS (e.g., the C-terminus or N-terminus of the LLCVRS). In one embodiment, the accessory moiety is fused to the HCP2 (e.g., the C-terminus or N-terminus of the HCP2). In one embodiment, the accessory moiety is fused to the second HCVRS (e.g., the C-terminus or N-terminus of the second HCVRS). In one embodiment, the accessory moiety is fused to the KLCP (e.g., the C-terminus or N-terminus of the KLCP). In one embodiment, the accessory moiety is fused to the KLCVRS (e.g., the C-terminus or N-terminus of the KLCVRS). In one embodiment, the HCP1 comprises a first heavy chain constant region sequence (HCCRS) (e.g., CH1, CH2, and CH3 sequences), wherein the accessory moiety is fused to the first HCCRS, e.g., the C-terminus of the first HCCRS. In one embodiment, the HCP2 comprises a second heavy chain constant region sequence (HCCRS) (e.g., CH1, CH2, and CH3 sequences), wherein the accessory moiety is fused to the second HCCRS, e.g., the C-terminus of the second HCCRS. In one embodiment, the LLCP comprises a lambda light chain constant region sequence (LLCCRS), wherein the accessory moiety is fused to the LLCCRS, e.g., the C-terminus of the LLCCRS. In one embodiment, the KLCP comprises a kappa light chain constant region sequence (KLCCRS), wherein the accessory moiety is fused to the KLCCRS, e.g., the C-terminus of the KLCCRS.


In one embodiment, the multispecific antibody molecule comprises one or more (e.g., two, three, four, five, or more) accessory molecule. In one embodiment, the multispecific antibody molecule comprises a first accessory moiety and a second accessory moiety, wherein the first or second accessory moiety has a property chosen from: 1) the first or second accessory moiety has a molecular weight of at least 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 kDa; 2) the first or second accessory moiety comprises a polypeptide having at least 30, 40, 50, 60, 70, 80, 90, or 100 amino acid residues; 3) the first or second accessory moiety comprises a polypeptide having the ability to modulate the active of an immune cell, e.g., a T cell, a B cell, an antigen presenting cell (APC), or an NK cell; or 4) the first or second accessory moiety is chosen from one or more of an immune cell engager (e.g., a CD40 agonist, e.g., a CD40L polypeptide or an agonistic anti-CD40 antibody molecule, or a PD-1 binding moiety, e.g., a PD-1 binding sequence of PDL-1 or an anti-PD-1 antibody molecule), a cytokine molecule (e.g. an IL-2 molecule), a cytokine antagonist (e.g., a TGF-β antagonist), an enzyme, a toxin, or a labeling agent.


In one embodiment, the first and second accessory moieties are the same. In one embodiment, the first and second accessory moieties are different. In one embodiment, i) the first accessory moiety is fused to the HCP1 or HCP2, e.g., the C-terminus of the HCP1 or HCP2; and ii) the second accessory moiety is fused to the LLCP or KLCP, e.g., the C-terminus of the LLCP or KLCP. In one embodiment, i) the first accessory moiety is fused to the HCP1, e.g., the C-terminus of the HCP1; and ii) the second accessory moiety is fused to the LLCP, e.g., the C-terminus of the LLCP. In one embodiment, i) the first accessory moiety is fused to the HCP1, e.g., the C-terminus of the HCP1; and ii) the second accessory moiety is fused to the KLCP, e.g., the C-terminus of the KLCP. In one embodiment, i) the first accessory moiety is fused to the HCP2, e.g., the C-terminus of the HCP2; and ii) the second accessory moiety is fused to the LLCP, e.g., the C-terminus of the LLCP. In one embodiment, i) the first accessory moiety is fused to the HCP2, e.g., the C-terminus of the HCP2; and ii) the second accessory moiety is fused to the KLCP, e.g., the C-terminus of the KLCP. In one embodiment, i) the first accessory moiety is fused to the KLCP, e.g., the C-terminus of the KLCP; and ii) the second accessory moiety is fused to the LLCP, e.g., the C-terminus of the LLCP. In one embodiment, i) the first accessory moiety is fused to the LLCP, e.g., the C-terminus of the LLCP; and ii) the second accessory moiety is fused to the KLCP, e.g., the C-terminus of the KLCP. In one embodiment, i) the HCP1 comprises a first heavy chain constant region sequence (HCCRS) (e.g., CH1, CH2, and CH3 sequences), wherein the first accessory moiety is fused to the first HCCRS, e.g., the C-terminus of the first HCCRS; and ii) the LLCP comprises a lambda light chain constant region sequence (LLCCRS), wherein the second accessory moiety is fused to the LLCCRS, e.g., the C-terminus of the LLCCRS. In one embodiment, i) the HCP2 comprises a second heavy chain constant region sequence (HCCRS) (e.g., CH1, CH2, and CH3 sequences), wherein the accessory moiety is fused to the second HCCRS, e.g., the C-terminus of the second HCCRS; and ii) the KLCP comprises a kappa light chain constant region sequence (KLCCRS), wherein the accessory moiety is fused to the KLCCRS, e.g., the C-terminus of the KLCCRS. In one embodiment, i) the HCP1 comprises a first heavy chain constant region sequence (HCCRS) (e.g., CH1, CH2, and CH3 sequences), wherein the first accessory moiety is fused to the first HCCRS, e.g., the C-terminus of the first HCCRS; and ii) the KLCP comprises a kappa light chain constant region sequence (KLCCRS), wherein the accessory moiety is fused to the KLCCRS, e.g., the C-terminus of the KLCCRS. In one embodiment, i) the HCP2 comprises a second heavy chain constant region sequence (HCCRS) (e.g., CH1, CH2, and CH3 sequences), wherein the accessory moiety is fused to the second HCCRS, e.g., the C-terminus of the second HCCRS; and ii) the LLCP comprises a lambda light chain constant region sequence (LLCCRS), wherein the second accessory moiety is fused to the LLCCRS, e.g., the C-terminus of the LLCCRS.


In certain embodiments of the foregoing aspects, the multispecific antibody molecule comprises: i)a) the HCP1 comprises a first heavy chain constant region sequence (HCCRS) (e.g., a first CH1 sequence), i)b) the LLCP comprises a lambda light chain constant region sequence (LLCCRS), ii)a) the HCP2 comprises a second heavy chain constant region sequence (HCCRS) (e.g., a second CH1 sequence), and ii)b) the KLCP comprises a kappa light chain constant region sequence (KLCCRS), wherein: 1) the multispecific antibody molecule does not comprise a mutation in the first HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence) that promotes the preferential pairing of the HCP1 and the LLCP, compared with pairing of the HCP1 and the LLCP without the mutation, or the multispecific antibody molecule does not comprise a mutation in the LLCCRS (e.g., a mutation relative to a naturally existing lambda light chain constant region sequence) that promotes the preferential pairing of the HCP1 and the LLCP, compared with pairing of the HCP1 and the LLCP without the mutation; and 2) the multispecific antibody molecule does not comprise a mutation in the second HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence) that promotes the preferential pairing of the HCP2 and the KLCP, compared with pairing of the HCP2 and the KLCP without the mutation, or the multispecific antibody molecule does not comprise a mutation in the KLCCRS (e.g., a mutation relative to a naturally existing kappa light chain constant region sequence) that promotes the preferential pairing of the HCP2 and the KLCP, compared with pairing of the HCP2 and the KLCP without the mutation.


In one aspect, disclosed herein is a multispecific antibody comprising: i) a first antigen-binding domain that binds to a first antigen, wherein the first antigen-binding domain comprises: a) a first heavy chain polypeptide (HCP1) comprising: a first heavy chain variable region sequence (HCVRS) sufficient that, when paired with i)b) allows the first antigen-binding domain to bind to the first antigen; and a first heavy chain constant region sequence (HCCRS) (e.g., a first CH1 sequence), and b) a lambda light chain polypeptide (LLCP) comprising: a lambda light chain variable region sequence (LLCVRS) sufficient that, when paired with i)a) allows the first antigen-binding domain to bind to the first antigen; and a lambda light chain constant region sequence (LLCCRS), and ii) a second antigen-binding domain that binds to a second antigen, wherein the second antigen-binding domain comprises: a) a second heavy chain polypeptide (HCP2) comprising: a second heavy chain variable region sequence (HCVRS) sufficient that, when paired with ii)b) allows the second antigen-binding domain to bind to the second antigen; and a second heavy chain constant region sequence (HCCRS) (e.g., a second CH1 sequence) and b) a kappa light chain polypeptide (KLCP) comprising: a kappa light chain variable region sequence (KLCVRS) sufficient that, when paired with ii)a) allows the second antigen-binding domain to bind to the second antigen; and a kappa light chain constant region sequence (KLCCRS), wherein: 1) the multispecific antibody molecule does not comprise a mutation in the first HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence) that promotes the preferential pairing of the HCP1 and the LLCP, compared with pairing of the HCP1 and the LLCP without the mutation, or the multispecific antibody molecule does not comprise a mutation in the LLCCRS (e.g., a mutation relative to a naturally existing lambda light chain constant region sequence) that promotes the preferential pairing of the HCP1 and the LLCP, compared with pairing of the HCP1 and the LLCP without the mutation; and 2) the multispecific antibody molecule does not comprise a mutation in the second HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence) that promotes the preferential pairing of the HCP2 and the KLCP, compared with pairing of the HCP2 and the KLCP without the mutation, or the multispecific antibody molecule does not comprise a mutation in the KLCCRS (e.g., a mutation relative to a naturally existing kappa light chain constant region sequence) that promotes the preferential pairing of the HCP2 and the KLCP, compared with pairing of the HCP2 and the KLCP without the mutation.


In one embodiment, 1) the multispecific antibody molecule does not comprise a mutation in the first HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence) that promotes the preferential pairing of the HCP1 and the LLCP, compared with pairing of the HCP1 and the LLCP without the mutation; and 2) the multispecific antibody molecule does not comprise a mutation in the second HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence) that promotes the preferential pairing of the HCP2 and the KLCP, compared with pairing of the HCP2 and the KLCP without the mutation.


In one embodiment, 1) the multispecific antibody molecule does not comprise a mutation in the first HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence) that promotes the preferential pairing of the HCP1 and the LLCP, compared with pairing of the HCP1 and the LLCP without the mutation; and 2) the multispecific antibody molecule does not comprise a mutation in the KLCCRS (e.g., a mutation relative to a naturally existing kappa light chain constant region sequence) that promotes the preferential pairing of the HCP2 and the KLCP, compared with pairing of the HCP2 and the KLCP without the mutation.


In one embodiment, 1) the multispecific antibody molecule does not comprise a mutation in the LLCCRS (e.g., a mutation relative to a naturally existing lambda light chain constant region sequence) that promotes the preferential pairing of the HCP1 and the LLCP, compared with pairing of the HCP1 and the LLCP without the mutation; and 2) the multispecific antibody molecule does not comprise a mutation in the second HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence) that promotes the preferential pairing of the HCP2 and the KLCP, compared with pairing of the HCP2 and the KLCP without the mutation.


In one embodiment, 1) the multispecific antibody molecule does not comprise a mutation in the LLCCRS (e.g., a mutation relative to a naturally existing lambda light chain constant region sequence) that promotes the preferential pairing of the HCP1 and the LLCP, compared with pairing of the HCP1 and the LLCP without the mutation; and 2) the multispecific antibody molecule does not comprise a mutation in the KLCCRS (e.g., a mutation relative to a naturally existing kappa light chain constant region sequence) that promotes the preferential pairing of the HCP2 and the KLCP, compared with pairing of the HCP2 and the KLCP without the mutation.


In one embodiment, 1) the multispecific antibody molecule does not comprise a mutation in the first HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence) that promotes the preferential pairing of the HCP1 and the LLCP, compared with pairing of the HCP1 and the LLCP without the mutation, and the multispecific antibody molecule does not comprise a mutation in the LLCCRS (e.g., a mutation relative to a naturally existing lambda light chain constant region sequence) that promotes the preferential pairing of the HCP1 and the LLCP, compared with pairing of the HCP1 and the LLCP without the mutation; and 2) the multispecific antibody molecule does not comprise a mutation in the second HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence) that promotes the preferential pairing of the HCP2 and the KLCP, compared with pairing of the HCP2 and the KLCP without the mutation, or the multispecific antibody molecule does not comprise a mutation in the KLCCRS (e.g., a mutation relative to a naturally existing kappa light chain constant region sequence) that promotes the preferential pairing of the HCP2 and the KLCP, compared with pairing of the HCP2 and the KLCP without the mutation.


In one embodiment, 1) the multispecific antibody molecule does not comprise a mutation in the first HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence) that promotes the preferential pairing of the HCP1 and the LLCP, compared with pairing of the HCP1 and the LLCP without the mutation, or the multispecific antibody molecule does not comprise a mutation in the LLCCRS (e.g., a mutation relative to a naturally existing lambda light chain constant region sequence) that promotes the preferential pairing of the HCP1 and the LLCP, compared with pairing of the HCP1 and the LLCP without the mutation; and 2) the multispecific antibody molecule does not comprise a mutation in the second HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence) that promotes the preferential pairing of the HCP2 and the KLCP, compared with pairing of the HCP2 and the KLCP without the mutation, and the multispecific antibody molecule does not comprise a mutation in the KLCCRS (e.g., a mutation relative to a naturally existing kappa light chain constant region sequence) that promotes the preferential pairing of the HCP2 and the KLCP, compared with pairing of the HCP2 and the KLCP without the mutation.


In one embodiment, 1) the multispecific antibody molecule does not comprise a mutation in the first HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence) that promotes the preferential pairing of the HCP1 and the LLCP, compared with pairing of the HCP1 and the LLCP without the mutation, and the multispecific antibody molecule does not comprise a mutation in the LLCCRS (e.g., a mutation relative to a naturally existing lambda light chain constant region sequence) that promotes the preferential pairing of the HCP1 and the LLCP, compared with pairing of the HCP1 and the LLCP without the mutation; and 2) the multispecific antibody molecule does not comprise a mutation in the second HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence) that promotes the preferential pairing of the HCP2 and the KLCP, compared with pairing of the HCP2 and the KLCP without the mutation, and the multispecific antibody molecule does not comprise a mutation in the KLCCRS (e.g., a mutation relative to a naturally existing kappa light chain constant region sequence) that promotes the preferential pairing of the HCP2 and the KLCP, compared with pairing of the HCP2 and the KLCP without the mutation.


In one embodiment, the multispecific antibody molecule does not comprise a mutation in the first HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence) that increases the preferential pairing of the HCP1 and the LLCP by at least 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, or 50 folds, compared with pairing of the HCP1 and the LLCP without the mutation. In one embodiment, the multispecific antibody molecule does not comprise a mutation in the LLCCRS (e.g., a mutation relative to a naturally existing lambda light chain constant region sequence) that increases the preferential pairing of the HCP1 and the LLCP by at least 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, or 50 folds, compared with pairing of the HCP1 and the LLCP without the mutation.


In one embodiment, the multispecific antibody molecule does not comprise a mutation in the second HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence) that increases the preferential pairing of the HCP2 and the KLCP by at least 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, or 50 folds, compared with pairing of the HCP2 and the KLCP without the mutation. In one embodiment, the multispecific antibody molecule does not comprise a mutation in the KLCCRS (e.g., a mutation relative to a naturally existing kappa light chain constant region sequence) that increases the preferential pairing of the HCP2 and the KLCP by at least 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, or 50 folds, compared with pairing of the HCP2 and the KLCP without the mutation.


In certain embodiments of the foregoing aspects, the multispecific antibody molecule comprises: i)a) the HCP1 comprises a first heavy chain constant region sequence (HCCRS) (e.g., a first CH1 sequence), i)b) the LLCP comprises a lambda light chain constant region sequence (LLCCRS), ii)a) the HCP2 comprises a second heavy chain constant region sequence (HCCRS) (e.g., a second CH1 sequence), and ii)b) the KLCP comprises a kappa light chain constant region sequence (KLCCRS), wherein: 1) the multispecific antibody molecule does not comprise a mutation in the first HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence), or the multispecific antibody molecule does not comprise a mutation in the LLCCRS (e.g., a mutation relative to a naturally existing lambda light chain constant region sequence); and 2) the multispecific antibody molecule does not comprise a mutation in the second HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence), or the multispecific antibody molecule does not comprise a mutation in the KLCCRS (e.g., a mutation relative to a naturally existing kappa light chain constant region sequence).


In one aspect, disclosed herein is a multispecific antibody comprising: i) a first antigen-binding domain that binds to a first antigen, wherein the first antigen-binding domain comprises: a) a first heavy chain polypeptide (HCP1) comprising: a first heavy chain variable region sequence (HCVRS) sufficient that, when paired with i)b) allows the first antigen-binding domain to bind to the first antigen; and a first heavy chain constant region sequence (HCCRS) (e.g., a first CH1 sequence), and b) a lambda light chain polypeptide (LLCP) comprising: a lambda light chain variable region sequence (LLCVRS) sufficient that, when paired with i)a) allows the first antigen-binding domain to bind to the first antigen; and a lambda light chain constant region sequence (LLCCRS), and ii) a second antigen-binding domain that binds to a second antigen, wherein the second antigen-binding domain comprises: a) a second heavy chain polypeptide (HCP2) comprising: a second heavy chain variable region sequence (HCVRS) sufficient that, when paired with ii)b) allows the second antigen-binding domain to bind to the second antigen; and a second heavy chain constant region sequence (HCCRS) (e.g., a second CH1 sequence) and b) a kappa light chain polypeptide (KLCP) comprising: a kappa light chain variable region sequence (KLCVRS) sufficient that, when paired with ii)a) allows the second antigen-binding domain to bind to the second antigen; and a kappa light chain constant region sequence (KLCCRS), wherein: 1) the multispecific antibody molecule does not comprise a mutation in the first HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence), or the multispecific antibody molecule does not comprise a mutation in the LLCCRS (e.g., a mutation relative to a naturally existing lambda light chain constant region sequence); and 2) the multispecific antibody molecule does not comprise a mutation in the second HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence), or the multispecific antibody molecule does not comprise a mutation in the KLCCRS (e.g., a mutation relative to a naturally existing kappa light chain constant region sequence).


In one embodiment, the multispecific antibody molecule does not comprise a mutation in the first HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence), and the multispecific antibody molecule does not comprise a mutation in the second HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence).


In one embodiment, the multispecific antibody molecule does not comprise a mutation in the first HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence), and the multispecific antibody molecule does not comprise a mutation in the KLCCRS (e.g., a mutation relative to a naturally existing kappa light chain constant region sequence).


In one embodiment, the multispecific antibody molecule does not comprise a mutation in the LLCCRS (e.g., a mutation relative to a naturally existing lambda light chain constant region sequence), and the multispecific antibody molecule does not comprise a mutation in the second HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence).


In one embodiment, the multispecific antibody molecule does not comprise a mutation in the LLCCRS (e.g., a mutation relative to a naturally existing lambda light chain constant region sequence), and the multispecific antibody molecule does not comprise a mutation in the KLCCRS (e.g., a mutation relative to a naturally existing kappa light chain constant region sequence).


In one embodiment, 1) the multispecific antibody molecule does not comprise a mutation in the first HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence), and the multispecific antibody molecule does not comprise a mutation in the LLCCRS (e.g., a mutation relative to a naturally existing lambda light chain constant region sequence); and 2) the multispecific antibody molecule does not comprise a mutation in the second HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence), or the multispecific antibody molecule does not comprise a mutation in the KLCCRS (e.g., a mutation relative to a naturally existing kappa light chain constant region sequence).


In one embodiment, 1) the multispecific antibody molecule does not comprise a mutation in the first HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence), or the multispecific antibody molecule does not comprise a mutation in the LLCCRS (e.g., a mutation relative to a naturally existing lambda light chain constant region sequence); and 2) the multispecific antibody molecule does not comprise a mutation in the second HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence), and the multispecific antibody molecule does not comprise a mutation in the KLCCRS (e.g., a mutation relative to a naturally existing kappa light chain constant region sequence).


In one embodiment, 1) the multispecific antibody molecule does not comprise a mutation in the first HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence), and the multispecific antibody molecule does not comprise a mutation in the LLCCRS (e.g., a mutation relative to a naturally existing lambda light chain constant region sequence); and 2) the multispecific antibody molecule does not comprise a mutation in the second HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence), and the multispecific antibody molecule does not comprise a mutation in the KLCCRS (e.g., a mutation relative to a naturally existing kappa light chain constant region sequence).


In one embodiment, the multispecific antibody molecule does not comprise a mutation in any of the following: the first HCCRS, the LLCCRS, the second HCCRS, and the KLCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence, a naturally existing lambda light chain constant region sequence, or a naturally existing kappa light chain constant region sequence).


In one embodiment, the multispecific antibody molecule does not comprise a mutation disclosed in WO2017059551.


In certain embodiments of the foregoing aspects, the multispecific antibody molecule comprises: i)a) the HCP1 comprises a first heavy chain constant region sequence (HCCRS) (e.g., a first CH1 sequence), i)b) the LLCP comprises a lambda light chain constant region sequence (LLCCRS), ii)a) the HCP2 comprises a second heavy chain constant region sequence (HCCRS) (e.g., a second CH1 sequence) and ii)b) the KLCP comprises a kappa light chain constant region sequence (KLCCRS), wherein: 1) the first HCCRS comprises a naturally existing heavy chain constant region sequence, or the LLCCRS comprises a naturally existing lambda light chain constant region sequence; and 2) the second HCCRS comprises a naturally existing heavy chain constant region sequence, or the KLCCRS comprises a naturally existing kappa light chain constant region sequence.


In one aspect, disclosed herein is a multispecific antibody molecule comprising: i) a first antigen-binding domain that binds to a first antigen, wherein the first antigen-binding domain comprises: a) a first heavy chain polypeptide (HCP1) comprising: a first heavy chain variable region sequence (HCVRS) sufficient that, when paired with i)b) allows the first antigen-binding domain to bind to the first antigen; and a first heavy chain constant region sequence (HCCRS) (e.g., a first CH1 sequence), and b) a lambda light chain polypeptide (LLCP) comprising: a lambda light chain variable region sequence (LLCVRS) sufficient that, when paired with i)a) allows the first antigen-binding domain to bind to the first antigen; and a lambda light chain constant region sequence (LLCCRS), and ii) a second antigen-binding domain that binds to a second antigen, wherein the second antigen-binding domain comprises: a) a second heavy chain polypeptide (HCP2) comprising: a second heavy chain variable region sequence (HCVRS) sufficient that, when paired with ii)b) allows the second antigen-binding domain to bind to the second antigen; and a second heavy chain constant region sequence (HCCRS) (e.g., a second CH1 sequence) and b) a kappa light chain polypeptide (KLCP) comprising: a kappa light chain variable region sequence (KLCVRS) sufficient that, when paired with ii)a) allows the second antigen-binding domain to bind to the second antigen; and a kappa light chain constant region sequence (KLCCRS), wherein: 1) the first HCCRS comprises a naturally existing heavy chain constant region sequence, or the LLCCRS comprises a naturally existing lambda light chain constant region sequence; and 2) the second HCCRS comprises a naturally existing heavy chain constant region sequence, or the KLCCRS comprises a naturally existing kappa light chain constant region sequence.


In one embodiment, 1) the first HCCRS comprises a naturally existing heavy chain constant region sequence; and 2) the second HCCRS comprises a naturally existing heavy chain constant region sequence. In one embodiment, 1) the first HCCRS comprises a naturally existing heavy chain constant region sequence; and 2) the KLCCRS comprises a naturally existing kappa light chain constant region sequence. In one embodiment, 1) the LLCCRS comprises a naturally existing lambda light chain constant region sequence; and 2) the second HCCRS comprises a naturally existing heavy chain constant region sequence. In one embodiment, 1) the LLCCRS comprises a naturally existing lambda light chain constant region sequence; and 2) the KLCCRS comprises a naturally existing kappa light chain constant region sequence. In one embodiment, 1) the first HCCRS comprises a naturally existing heavy chain constant region sequence, and the LLCCRS comprises a naturally existing lambda light chain constant region sequence; and 2) the second HCCRS comprises a naturally existing heavy chain constant region sequence, or the KLCCRS comprises a naturally existing kappa light chain constant region sequence. In one embodiment, 1) the first HCCRS comprises a naturally existing heavy chain constant region sequence, or the LLCCRS comprises a naturally existing lambda light chain constant region sequence; and 2) the second HCCRS comprises a naturally existing heavy chain constant region sequence, and the KLCCRS comprises a naturally existing kappa light chain constant region sequence.


In one embodiment, i) the first HCCRS comprises a naturally existing heavy chain constant region sequence, ii) the LLCCRS comprises a naturally existing lambda light chain constant region sequence, iii) the second HCCRS comprises a naturally existing heavy chain constant region sequence, and iv) the KLCCRS comprises a naturally existing kappa light chain constant region sequence.


In certain embodiments of the foregoing aspects, the HCP1 preferentially binds to the LLCP over the KLCP. In certain embodiments of the foregoing aspects, the LLCP preferentially binds to the HCP1 over the HCP2. In certain embodiments of the foregoing aspects, the HCP2 preferentially binds to the KLCP over the LLCP. In certain embodiments of the foregoing aspects, the KLCP preferentially binds to the HCP2 over the HCP1. In one embodiment, the HCP1 has a higher affinity, e.g., a substantially higher affinity, for the LLCP than for the KLCP (e.g., the KD for the binding between the HCP1 and the LLCP is no more than 50%, 40%, 30%, 20%, 10%, 1%, 0.1%, or 0.01% of the KD for the binding between the HCP1 and the KLCP). In one embodiment, the LLCP has a higher affinity, e.g., a substantially higher affinity, for the HCP1 than for the HCP2 (e.g., the KD for the binding between the LLCP and the HCP1 is no more than 50%, 40%, 30%, 20%, 10%, 1%, 0.1%, or 0.01% of the KD for the binding between the LLCP and the first HCP2). In one embodiment, the HCP2 has a higher affinity, e.g., a substantially higher affinity, for the KLCP than for the LLCP (e.g., the KD for the binding between the HCP2 and the KLCP is no more than 50%, 40%, 30%, 20%, 10%, 1%, 0.1%, or 0.01% of the KD for the binding between the HCP2 and the LLCP). In one embodiment, the KLCP has a higher affinity, e.g., a substantially higher affinity, for the HCP2 than for the HCP1 (e.g., the KD for the binding between the KLCP and the HCP2 is no more than 50%, 40%, 30%, 20%, 10%, 1%, 0.1%, or 0.01% of the KD for the binding between the KLCP and the HCP1).


In one embodiment, the percent binding between the HCP1 and the LLCP in the presence of the KLCP is at least 75, 80, 90, 95, 98, 99, or 99.5%. In one embodiment, when the HCP1, LLCP, and KLCP are present at 1:1:1, the percent binding between the HCP1 and the LLCP in the presence of the KLCP is at least 75, 80, 90, 95, 98, 99, or 99.5% (setting the binding between the HCP1 and the LLCP in the absence of any competing peptide to 100%, and the binding between the HCP1 and the LLCP in the presence of LLCP to 50%). In one embodiment, the percent binding was measured by an assay described herein, e.g., the NanoBiT assay.


In one embodiment, the percent binding between the HCP1 and the LLCP in the presence of the HCP2 is at least 75, 80, 90, 95, 98, 99, or 99.5%. In one embodiment, when HCP1, LLCP, and HCP2 are present at 1:1:1, the percent binding between the HCP1 and the LLCP in the presence of the HCP2 is at least 75, 80, 90, 95, 98, 99, or 99.5% (setting the binding between the HCP1 and the LLCP in the absence of any competing peptide to 100%, and the binding between the HCP1 and the LLCP in the presence of HCP1 to 50%). In one embodiment, the percent binding was measured by an assay described herein, e.g., the NanoBiT assay.


In one embodiment, the percent binding between the HCP2 and the KLCP in the presence of the LLCP is at least 75, 80, 90, 95, 98, 99, or 99.5%. In one embodiment, when HCP2, KLCP, and LLCP are present at 1:1:1, the percent binding between the HCP2 and the KLCP in the presence of the LLCP is at least 75, 80, 90, 95, 98, 99, or 99.5% (setting the binding between the HCP2 and the KLCP in the absence of any competing peptide to 100%, and the binding between the HCP2 and the KLCP in the presence of KLCP to 50%). In one embodiment, the percent binding was measured by an assay described herein, e.g., the NanoBiT assay.


In one embodiment, the percent binding between the HCP2 and the KLCP in the presence of the HCP1 is at least 75, 80, 90, 95, 98, 99, or 99.5%. In one embodiment, when HCP2, KLCP, and HCP1 are present at 1:1:1, the percent binding between the HCP2 and the KLCP in the presence of the HCP1 is at least 75, 80, 90, 95, 98, 99, or 99.5% (setting the binding between the HCP2 and the KLCP in the absence of any competing peptide to 100%, and the binding between the HCP2 and the KLCP in the presence of HCP2 to 50%). In one embodiment, the percent binding was measured by an assay described herein, e.g., the NanoBiT assay.


In one embodiment, when the HCP1, LLCP, HCP2, and KLCP are present under preselected conditions, e.g., in aqueous buffer, e.g., at pH 7, in saline, e.g., at pH 7, or under physiological conditions: at least 70, 75, 80, 90, 95, 98, 99, 99.5, or 99.9% of the HCP1 is complexed, or interfaced with, the LLCP. In one embodiment, when the HCP1, LLCP, HCP2, and KLCP are present under preselected conditions, e.g., in aqueous buffer, e.g., at pH 7, in saline, e.g., at pH 7, or under physiological conditions: at least 70, 75, 80, 90, 95, 98, 99, 99.5, or 99.9% of the LLCP is complexed, or interfaced with, the HCP1. In one embodiment, when the HCP1, LLCP, HCP2, and KLCP are present under preselected conditions, e.g., in aqueous buffer, e.g., at pH 7, in saline, e.g., at pH 7, or under physiological conditions: at least 70, 75, 80, 90, 95, 98, 99, 99.5, or 99.9% of the HCP2 is complexed, or interfaced with, the KLCP. In one embodiment, when the HCP1, LLCP, HCP2, and KLCP are present under preselected conditions, e.g., in aqueous buffer, e.g., at pH 7, in saline, e.g., at pH 7, or under physiological conditions: at least 70, 75, 80, 90, 95, 98, 99, 99.5, or 99.9% of the KLCP is complexed, or interfaced with, the HCP2.


In certain embodiments of the foregoing aspects, the multispecific antibody molecule comprises: i)a) the HCP1 comprises a first heavy chain constant region sequence (HCCRS) (e.g., a first CH1 sequence), i)b) the LLCP comprises a lambda light chain constant region sequence (LLCCRS), ii)a) the HCP2 comprises a second heavy chain constant region sequence (HCCRS) (e.g., a second CH1 sequence) and ii)b) the KLCP comprises a kappa light chain constant region sequence (KLCCRS), wherein: 1) the first HCCRS is complexed, or interfaced with, LLCCRS, and 2) the second HCCRS is complexed, or interfaced with, KLCCRS.


In certain embodiments of the foregoing aspects, the HCP1 is complexed, or interfaced with, the HCP2. In one embodiment, the HCP1 has a greater affinity, e.g., a substantially greater affinity, for HCP2, than for a second molecule of HCP1. In one embodiment, the HCP2 has a greater affinity, e.g., a substantially greater affinity, for HCP1, than for a second molecule of HCP2. In one embodiment, the HCP1 comprises a sequence element that increases the ratio of HCP1-HCP2:HCP1-HCP1 pairings, compared to the ratio that would be seen in the absence of the sequence element, e.g., where a naturally occurring sequence replaces the sequence element. In one embodiment, the HCP2 comprises a sequence element that increases the ratio of HCP1-HCP2:HCP2-HCP2 pairings, compared to the ratio that would be seen in the absence of the sequence element, e.g., where a naturally occurring sequence replaces the sequence element. In one embodiment, the sequence element is not a naturally occurring constant region sequence. In one embodiment, the sequence element is disposed in CH3. In one embodiment, one or both of HCP1 and HCP2 were selected to minimize self-dimerization (e.g., HCP1-HCP1) as opposed to heterodimerization (e.g., HCP2-HCP2). In one embodiment, HCP1 and HCP2 are members of a paired protuberance/cavity, e.g., knob and hole pair. In one embodiment, HCP1-HCP2 paring is promoted by an electrostatic interaction. In one embodiment, HCP1-HCP2 paring is promoted by strand exchange. In one embodiment, HCP1 and HCP2 are not members of a paired protuberance/cavity, e.g., knob and hole pair. In one embodiment, the HCP1 comprises a first heavy chain constant region sequence (HCCRS), wherein the first HCCRS does not comprise a mutation (e.g., a mutation relative to a naturally existing heavy chain constant region sequence). In one embodiment, the HCP2 comprises a second heavy chain constant region sequence (HCCRS), wherein the second HCCRS does not comprise a mutation (e.g., a mutation relative to a naturally existing heavy chain constant region sequence). In one embodiment, i) the HCP1 comprises a first heavy chain constant region sequence (HCCRS), wherein the first HCCRS does not comprise a mutation (e.g., a mutation relative to a naturally existing heavy chain constant region sequence); and ii) the HCP2 comprises a second heavy chain constant region sequence (HCCRS), wherein the second HCCRS does not comprise a mutation (e.g., a mutation relative to a naturally existing heavy chain constant region sequence). In one embodiment, the HCP1 comprises a first CH2 domain sequence and a first CH3 domain sequence, wherein the first CH2 domain sequence and the first CH3 domain sequence do not comprise a mutation (e.g., a mutation relative to a naturally existing CH2 domain sequence or a naturally existing CH3 domain sequence). In one embodiment, the HCP2 comprises a second CH2 domain sequence and a second CH3 domain sequence, wherein the second CH2 domain sequence and the second CH3 domain sequence do not comprise a mutation (e.g., a mutation relative to a naturally existing CH2 domain sequence or a naturally existing CH3 domain sequence). In one embodiment, i) the HCP1 comprises a first CH2 domain sequence and a first CH3 domain sequence, wherein the first CH2 domain sequence and the first CH3 domain sequence do not comprise a mutation (e.g., a mutation relative to a naturally existing CH2 domain sequence or a naturally existing CH3 domain sequence); and ii) the HCP2 comprises a second CH2 domain sequence and a second CH3 domain sequence, wherein the second CH2 domain sequence and the second CH3 domain sequence do not comprise a mutation (e.g., a mutation relative to a naturally existing CH2 domain sequence or a naturally existing CH3 domain sequence).


In certain embodiments of the foregoing aspects, the HCP1 is derived from an antibody arising, either in vivo or in vitro, as a lambda antibody. In certain embodiments of the foregoing aspects, the HCP2 is derived from an antibody arising, either in vivo or in vitro, as a kappa antibody.


In one embodiment, the HCP1 and LLCP comprise amino acid sequences selected from Table 18 (e.g., as paired in Table 18) or Table 5a (e.g., as paired in Table 5a), or functional variant or fragment thereof. In one embodiment, the HCP2 and KLCP comprise amino acid sequences selected from Table 18 (e.g., as paired in Table 18) or Table 5a (e.g., as paired in Table 5a), or functional variant or fragment thereof. In one embodiment, the HCP1, LLCP, HCP2, and KLCP comprise amino acid sequences selected from Table 18 (e.g., a single cell of Table 18) or Table 5a (e.g., a single row of Table 5a), or functional variant or fragment thereof.


In one embodiment, the first or second antigen is a tumor antigen, e.g., a pancreatic, lung, or colorectal tumor antigen. In one embodiment, the first or second antigen is chosen from: PD-L1, HER3, TROP2, mesothelin, IGF-1R, or CA19-9. In one embodiment, the first or second antigen is chosen from: PD-L1, HER3, TROP2, VEGF-A, EGFR, MUC1, DLL4, or HGF. In one embodiment, the first or second antigen is chosen from: PD-L1, HER3, TROP2, VEGF-A, EGFR, MUC1, MAGE-A3, gpA33, NY-ESO-1, ANG2, RSPO3, HER2, CEACAM5, or CEA. In one embodiment, the first or second antigen is an antigen of an immune effector cell, e.g., a T cell, an NK cell, or a myeloid cell. In one embodiment, the first or second antigen is chosen from: CD3, PD-1, LAG-3, TIM-3, CTLA-4, VISTA, TIGIT, PD-L1, B7-H3, 4-1BB, or ICOS. In one embodiment, the first antigen is a tumor antigen, e.g., mesothelin, and the second antigen is an antigen chosen from NKP30, PD-L1, CD3, NKG2D, CD47, 4-1BB, or NKP46; or the second antigen is a tumor antigen, e.g., mesothelin, and the first antigen is an antigen chosen from NKP30, PD-L1, CD3, NKG2D, CD47, 4-1BB, or NKP46. In one embodiment, the first antigen is IGF1R and the second antigen is HER3, or the second antigen is IGF1R and the first antigen is HER3. In one embodiment, the first antigen is mesothelin and the second antigen is PD-L1, or the second antigen is mesothelin and the first antigen is PD-L1. In one embodiment, the first antigen is CTLA4 and the second antigen is IL12β, or the second antigen is CTLA4 and the first antigen is IL12β. In one embodiment, the first antigen is CTLA4 and the second antigen is TRAILR2, or the second antigen is CTLA4 and the first antigen is TRAILR2. In one embodiment, the first antigen is CTLA4 and the second antigen is CD221, or the second antigen is CTLA4 and the first antigen is CD221. In one embodiment, the first antigen is PD1 and the second antigen is TRAILR2, or the second antigen is PD1 and the first antigen is TRAILR2. In one embodiment, the first antigen is PD1 and the second antigen is PDL1, or the second antigen is PD1 and the first antigen is PDL1. In one embodiment, the first antigen is PD1 and the second antigen is PDL1, or the second antigen is PD1 and the first antigen is PDL1. In one embodiment, the multispecific antibody molecule further comprises an IL-2 molecule. In one embodiment, the multispecific antibody molecule further comprises a CD40 agonist, e.g., a CD40L polypeptide or an agonistic anti-CD40 antibody molecule.


In one aspect, disclosed herein is a multispecific antibody molecule, e.g., an antibody molecule comprising two binding specificities, e.g., a bispecific antibody molecule. The multispecific antibody molecule includes: a lambda light chain polypeptide (LLCP) specific for a first epitope; a heavy chain polypeptide 1 (HCP1) specific for the first epitope; a kappa light chain polypeptide (KLCP) specific for a second epitope; and a heavy chain polypeptide 2 (HCP2) specific for the second epitope.


In another aspect, disclosed herein is a multispecific, e.g., a bispecific, antibody molecule that includes: (i) a first heavy chain polypeptide (HCP1) (e.g., a heavy chain polypeptide comprising one, two, three or all of a first heavy chain variable region (first VH), a first CH1, a first heavy chain constant region (e.g., a first CH2, a first CH3, or both)), e.g., wherein the HCP1 binds to a first epitope; (ii) a second heavy chain polypeptide (HCP2) (e.g., a heavy chain polypeptide comprising one, two, three or all of a second heavy chain variable region (second VH), a second CH1, a second heavy chain constant region (e.g., a second CH2, a second CH3, or both)), e.g., wherein the HCP2 binds to a second epitope; (iii) a lambda light chain polypeptide (LLCP) (e.g., a lambda light variable region (VU), a lambda light constant chain (VLλ), or both) that preferentially associates with the first heavy chain polypeptide (e.g., the first VH), e.g., wherein the LLCP binds to a first epitope; and (iv) a kappa light chain polypeptide (KLCP) (e.g., a kappa light variable region (VLκ), a kappa light constant chain (VLκ), or both) that preferentially associates with the second heavy chain polypeptide (e.g., the second VH), e.g., wherein the KLCP binds to a second epitope. In embodiments, the first and second heavy chain polypeptides form an Fc interface that enhances heterodimerization.


In some embodiments of the multispecific antibody molecule disclosed herein: LLCP has a higher affinity for HCP1 than for HCP2; and/or KLCP has a higher affinity for HCP2 than for HCP1.


In embodiments, the affinity of LLCP for HCP1 is sufficiently greater than its affinity for HCP2, such that under preselected conditions, e.g., in aqueous buffer, e.g., at pH 7, in saline, e.g., at pH 7, or under physiological conditions, at least 75%, 80, 90, 95, 98, 99, 99.5, or 99.9% of the multispecific antibody molecule molecules have a LLCP complexed, or interfaced with, a HCP.


In some embodiments of the multispecific antibody molecule disclosed herein: the HCP1 has a greater affinity for HCP2, than for a second molecule of HCP1; and/or the HCP2 has a greater affinity for HCP1, than for a second molecule of HCP2.


In embodiments, the affinity of HCP1 for HCP2 is sufficiently greater than its affinity for a second molecule of HCP1, such that under preselected conditions, e.g., in aqueous buffer, e.g., at pH 7, in saline, e.g., at pH 7, or under physiological conditions, at least 75%, 80, 90, 95, 98, 99 99.5 or 99.9% of the multispecific antibody molecule molecules have a HCP1 complexed, or interfaced with, a HCP2.


In another aspect, disclosed herein is a method for making, or producing, a multispecific antibody molecule. The method includes: (i) providing a first heavy chain polypeptide (e.g., a heavy chain polypeptide comprising one, two, three or all of a first heavy chain variable region (first VH), a first CH1, a first heavy chain constant region (e.g., a first CH2, a first CH3, or both)); (ii) providing a second heavy chain polypeptide (e.g., a heavy chain polypeptide comprising one, two, three or all of a second heavy chain variable region (second VH), a second CH1, a second heavy chain constant region (e.g., a second CH2, a second CH3, or both)); (iii) providing a lambda chain polypeptide (e.g., a lambda light variable region (VU), a lambda light constant chain (VU), or both) that preferentially associates with the first heavy chain polypeptide (e.g., the first VH); and (iv) providing a kappa chain polypeptide (e.g., a kappa light variable region (VLκ), a kappa light constant chain (VLκ), or both) that preferentially associates with the second heavy chain polypeptide (e.g., the second VH), under conditions where (i)-(iv) associate.


In embodiments, the first and second heavy chain polypeptides form an Fc interface that enhances heterodimerization.


In another aspect, disclosed herein is a method for making, or producing, a multispecific antibody molecule. The method includes: (i) providing a first heavy chain polypeptide (e.g., a heavy chain polypeptide comprising one, two, three or all of a first heavy chain variable region (first VH), a first CH1, a first heavy chain constant region (e.g., a first CH2, a first CH3, or both)); (ii) providing a second heavy chain polypeptide (e.g., a heavy chain polypeptide comprising one, two, three or all of a second heavy chain variable region (second VH), a second CH1, a second heavy chain constant region (e.g., a second CH2, a second CH3, or both)); (iii) providing a lambda chain polypeptide (e.g., a lambda light variable region (VU), a lambda light constant chain (VU), or both) that preferentially associates with the first heavy chain polypeptide (e.g., the first VH), and further comprising an effector moiety (e.g., IL2); and (iv) providing a kappa chain polypeptide (e.g., a kappa light variable region (VLκ), a kappa light constant chain (VLκ), or both) that preferentially associates with the second heavy chain polypeptide (e.g., the second VH), and optionally further comprising an antigen binding moiety (e.g., a scFv), under conditions where (i)-(iv) associate. In embodiments, (i)-(iv) (e.g., nucleic acid encoding (i)-(iv)) are introduced in a single cell, e.g., a single mammalian cell, e.g., a CHO cell. In embodiments, (i)-(iv) are expressed in the cell.


In embodiments, (i)-(iv) (e.g., nucleic acid encoding (i)-(iv)) are introduced in different cells, e.g., different mammalian cells, e.g., two or more CHO cell. In embodiments, (i)-(iv) are expressed in the cells.


In embodiments, the method further comprises purifying a cell-expressed antibody molecule, e.g., using a lambda- and/or -kappa-specific purification, e.g., affinity chromatography.


In embodiments, the method further comprises evaluating the cell-expressed multispecific antibody molecule. For example, the purified cell-expressed multispecific antibody molecule can be analyzed by techniques known in the art, include mass spectrometry. In one embodiment, the purified cell-expressed antibody molecule is cleaved, e.g., digested with papain to yield the Fab moieties and evaluated using mass spectrometry.


In embodiments, the method produces correctly paired kappa/lambda multispecific, e.g., bispecific, antibody molecules in a high yield, e.g., at least 75%, 80, 90, 95, 98, 99 99.5 or 99.9%.


Nucleic acid molecules, vectors and host cells encoding the aforesaid multispecific molecules are also disclosed.


Pharmaceutical compositions comprising the aforesaid multispecific molecules and a pharmaceutical acceptable carrier are also disclosed.


In another aspect, the invention features a method of treating a subject having a disorder, e.g., cancer, using the multispecific antibody molecules disclosed herein.


Additional features and embodiments of the multispecific antibody molecules and methods disclosed herein include one or more of the following.


In some embodiments, the multispecific antibody molecule is isolated or purified. In some embodiments, an interface of a first and second heavy chain polypeptide of the multispecific antibody molecule, e.g., the first and second heavy chain constant regions (e.g., a first and a second Fc region) is altered, e.g., mutated, to increase heterodimerization, e.g., relative to a non-engineered interface, e.g., a naturally-occurring interface. In one embodiment, heterodimerization of the first and second heavy chain polypeptides is enhanced by providing an Fc interface of a first and a second Fc region with one or more of: a paired protuberance-cavity (“knob-in-a hole”), an electrostatic interaction, or a strand-exchange, such that a greater ratio of heteromultimer to homomultimer forms, e.g., relative to a non-engineered interface. In some embodiments, the multispecific antibody molecules include a paired amino acid substitution at a position chosen from one or more of 347, 349, 350, 351, 366, 368, 370, 392, 394, 395, 397, 398, 399, 405, 407, or 409, e.g., of the Fc region of human IgG1 For example, the first immunoglobulin chain constant region (e.g., Fc region) can include a paired an amino acid substitution chosen from: T366S, L368A, or Y407V (e.g., corresponding to a cavity or hole), and the second immunoglobulin chain constant region comprises a T366W (e.g., corresponding to a protuberance or knob).


In some embodiments, an interface of a first and second heavy chain polypeptide of the multispecific antibody molecule, e.g., the first and second heavy chain constant regions (e.g., a first and a second Fc region) is not altered, e.g., not mutated, to increase heterodimerization, e.g., relative to a non-engineered interface, e.g., a naturally-occurring interface. In one embodiment, heterodimerization of the first and second heavy chain polypeptides is not enhanced by providing an Fc interface of a first and a second Fc region with one or more of: a paired protuberance-cavity (“knob-in-a hole”).


In some embodiments, one or more (e.g., all) of a CH1 chain, a lambda light constant chain (VLλ), and a kappa light constant chain (VLκ) is not altered, e.g., not mutated, to increase heterodimerization, e.g., relative to a non-engineered interface, e.g., a naturally-occurring interface. In some embodiments, one or more (e.g., all) of a CH1 chain, a lambda light constant chain (VLλ), and a kappa light constant chain (VLκ) is naturally occurring.


In some embodiments, the heavy chain variable region (VH, e.g., FR1, FR2, FR3, and optionally, CDRs 1-2) is derived from a germline family described by IMGT®, the international ImMunoGeneTics (Lefranc, M.-P., “IMGT, the international ImMunoGeneTics database” Nucl. Acids Res., 29, 207-209 (2001) and Scaviner, D., Barbié, V., Ruiz, M. and Lefranc, M.-P., “Protein displays of the human immunoglobulin heavy, kappa and lambda variable and joining regions”, Exp. Clin. Immunogenet., 16, 234-240 (1999)), or an amino acid sequence substantially identical thereto.


In some embodiments, the light chain variable region (VL kappa or lambda, e.g., FR1, FR2, FR3, and optionally, CDRs 1-2) is derived from a germline family described by IMGT, or an amino acid sequence substantially identical thereto.


In embodiments, the multispecific antibody molecules include a plurality (e.g., two, three or more) binding specificities (or functionalities).


In an embodiment, the multispecific antibody molecule is a bispecific (or bifunctional) molecule, a trispecific (or trifunctional) molecule, or a tetraspecific (or tetrafunctional) molecule.


In some embodiments, the multispecific antibody molecules include a first binding specificity to a first epitope, and a second binding specificity to a second epitope. In some embodiments, the first and second epitopes are on the same antigen, e.g., the same polypeptide. In other embodiments, the first and second epitopes are on different antigens, e.g., different polypeptide. In some embodiments, the first epitope is on a first antigen, e.g., a first polypeptide and the second epitope is on a second antigen, e.g., a second polypeptide. In some embodiments, the antigen, or polypeptide, is selected an antigen recognized by an antibody from Tables 2, 4, 5a, 17 and 18, e.g., a first and second antigen recognized by a lambda and kappa antibody disclosed in Tables 2, 4, 5a, 17 and 18. Exemplary pairings of lambda and kappa antibodies are depicted in Tables 5a and 18.


In some embodiments the multispecific antibody molecule includes a first binding specificity to a first epitope, wherein the first epitope is on a tumor antigen, e.g., a pancreatic, lung, or colorectal tumor antigen. In some embodiments, the first epitope is on an antigen chosen from: PD-L1, HER3, TROP2, mesothelin, IGF-1R, or CA19-9. In other embodiments, the first epitope is on an antigen chosen from PD-L1, HER3, TROP2, VEGF-A, EGFR, MUC1, DLL4, or HGF. In yet other embodiments, the first epitope is on an antigen chosen from PD-L1, HER3, TROP2, VEGF-A, EGFR, MUC1, MAGE-A3, gpA33, NY-ESO-1, ANG2, RSPO3, HER2, CEACAM5, or CEA.


In some embodiments, the multispecific antibody molecule includes a second binding specificity to a second epitope, wherein the second epitope is on an antigen of an immune effector cell, e.g., a T cell, an NK cell, or a myeloid cell. In some embodiments, the second epitope is chosen from CD3, PD-1, LAG-3, TIM-3, CTLA-4, VISTA, TIGIT, PD-L1, B7-H3, 4-1BB, or ICOS.


In some embodiments, the multispecific antibody molecule binds to a first epitope on a tumor antigen, e.g., mesothelin, and a second epitope on an antigen chosen from NKP30, PD-L1, CD3, NKG2D, CD47, 4-1BB, or NKP46. In some embodiments, the multispecific antibody molecule binds mesothelin and PD-L1. In some embodiments, the multispecific antibody molecule binds mesothelin and PDL1, and further comprises a cytokine (e.g., IL2). In some embodiments, the multispecific antibody molecule binds mesothelin; PDL1; and NKp30, and further comprises a cytokine (e.g., IL2).


In some embodiments, the multispecific antibody molecules include a plurality (e.g., two or more) binding specificities (or functionalities). In some embodiments, a first binding specificity selectively localizes to a cancer cell, e.g., it includes a tumor-targeting moiety; and the second (or third, or fourth) binding specificity includes one or both of: an immune cell engager (e.g., chosen from one, two, three, or all of an NK cell engager, a B cell engager, a dendritic cell engager, or a macrophage cell engager); and/or a cytokine molecule. Exemplary tumor-targeting moieties, immune cell engagers and cytokine molecules are described in the Detailed Description.


Exemplary Embodiments 2

In one aspect, provided herein is a multispecific antibody molecule comprising: i) a first antigen-binding domain that binds to a first antigen, wherein the first antigen-binding domain comprises: a) a first heavy chain polypeptide (HCP1) comprising: a first heavy chain variable region sequence (HCVRS) sufficient that, when paired with i)b) allows the first antigen-binding domain to bind to the first antigen; and b) a lambda light chain polypeptide (LLCP) comprising: a lambda light chain variable region sequence (LLCVRS) sufficient that, when paired with i)a) allows the first antigen-binding domain to bind to the first antigen; and ii) a second antigen-binding domain that binds to a second antigen, wherein the second antigen-binding domain comprises: a) a second heavy chain polypeptide (HCP2) comprising: a second heavy chain variable region sequence (HCVRS) sufficient that, when paired with ii)b) allows the second antigen-binding domain to bind to the second antigen; and b) a kappa light chain polypeptide (KLCP) comprising: a kappa light chain variable region sequence (KLCVRS) sufficient that, when paired with ii)a) allows the second antigen-binding domain to bind to the second antigen, wherein: 1) the first HCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a first heavy chain germline sequence selected from column 3 of Table 7, column 2 of Table 8b, or column 2 of Table 5b; 2) the LLCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a lambda light chain germline sequence selected from column 4 of Table 7, column 3 of Table 8b; or column 3 of Table 5b; 3) the second HCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a second heavy chain germline sequence selected from column 3 of Table 6, column 5 of Table 8b, or column 4 of Table 5b; or 4) the KLCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a kappa light chain germline sequence selected from column 4 of Table 6, column 6 of Table 8b, or column 5 of Table 5b.


In some embodiments, 1) the first HCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a first heavy chain germline sequence selected from column 3 of Table 7, column 2 of Table 8b, or column 2 of Table 5b.


In some embodiments, 2) the LLCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a lambda light chain germline sequence selected from column 4 of Table 7, column 3 of Table 8b; or column 3 of Table 5b.


In some embodiments, 3) the second HCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a second heavy chain germline sequence selected from column 3 of Table 6, column 5 of Table 8b, or column 4 of Table 5b.


In some embodiments, 4) the KLCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a kappa light chain germline sequence selected from column 4 of Table 6, column 6 of Table 8b, or column 5 of Table 5b.


In some embodiments, the first heavy chain germline sequence and the lambda light chain germline sequence are selected from a single row of Table 7, Table 8b, or Table 5b.


In some embodiments, the first heavy chain germline sequence, the lambda light chain germline sequence, and the kappa light chain germline sequence are selected from a single row of Table 7, Table 8b, or Table 5b.


In some embodiments, the second heavy chain germline sequence and the kappa light chain germline sequence are selected from a single row of Table 6, Table 8b, or Table 5b.


In some embodiments, the second heavy chain germline sequence, the kappa light chain germline sequence, and the lambda light chain germline sequence are selected from a single row of Table 6, Table 8b, or Table 5b.


In some embodiments, at least two (e.g., two, three, or all) of the following: the first heavy chain germline sequence, the lambda light chain germline sequence, the second heavy chain germline sequence, and the kappa light chain germline sequence, are selected from a single row of Table 8b or Table 5b.


In some embodiments, 2) the LLCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a lambda light chain germline sequence selected from column 4 of Table 7, column 3 of Table 8b; or column 3 of Table 5b.


In some embodiments, 1) the first HCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a first heavy chain germline sequence selected from column 3 of Table 7, column 2 of Table 8b, or column 2 of Table 5b.


In some embodiments, 3) the second HCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a second heavy chain germline sequence selected from column 3 of Table 6, column 5 of Table 8b, or column 4 of Table 5b.


In some embodiments, 4) the KLCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a kappa light chain germline sequence selected from column 4 of Table 6, column 6 of Table 8b, or column 5 of Table 5b.


In some embodiments, the first heavy chain germline sequence and the lambda light chain germline sequence are selected from a single row of Table 7, Table 8b, or Table 5b.


In some embodiments, the first heavy chain germline sequence, the lambda light chain germline sequence, and the kappa light chain germline sequence are selected from a single row of Table 7, Table 8b, or Table 5b.


In some embodiments, the second heavy chain germline sequence and the kappa light chain germline sequence are selected from a single row of Table 6, Table 8b, or Table 5b.


In some embodiments, the second heavy chain germline sequence, the kappa light chain germline sequence, and the lambda light chain germline sequence are selected from a single row of Table 6, Table 8b, or Table 5b.


In some embodiments, at least two (e.g., two, three, or all) of the following: the first heavy chain germline sequence, the lambda light chain germline sequence, the second heavy chain germline sequence, and the kappa light chain germline sequence, are selected from a single row of Table 8b or Table 5b.


In some embodiments, 3) the second HCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a second heavy chain germline sequence selected from column 3 of Table 6, column 5 of Table 8b, or column 4 of Table 5b.


In some embodiments, 1) the first HCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a first heavy chain germline sequence selected from column 3 of Table 7, column 2 of Table 8b, or column 2 of Table 5b.


In some embodiments, 2) the LLCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a lambda light chain germline sequence selected from column 4 of Table 7, column 3 of Table 8b; or column 3 of Table 5b.


In some embodiments, 4) the KLCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a kappa light chain germline sequence selected from column 4 of Table 6, column 6 of Table 8b, or column 5 of Table 5b.


In some embodiments, the first heavy chain germline sequence and the lambda light chain germline sequence are selected from a single row of Table 7, Table 8b, or Table 5b.


In some embodiments, the first heavy chain germline sequence, the lambda light chain germline sequence, and the kappa light chain germline sequence are selected from a single row of Table 7, Table 8b, or Table 5b.


In some embodiments, the second heavy chain germline sequence and the kappa light chain germline sequence are selected from a single row of Table 6, Table 8b, or Table 5b.


In some embodiments, the second heavy chain germline sequence, the kappa light chain germline sequence, and the lambda light chain germline sequence are selected from a single row of Table 6, Table 8b, or Table 5b.


In some embodiments, at least two (e.g., two, three, or all) of the following: the first heavy chain germline sequence, the lambda light chain germline sequence, the second heavy chain germline sequence, and the kappa light chain germline sequence, are selected from a single row of Table 8b or Table 5b.


In some embodiments, 4) the KLCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a kappa light chain germline sequence selected from column 4 of Table 6, column 6 of Table 8b, or column 5 of Table 5b.


In some embodiments, 1) the first HCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a first heavy chain germline sequence selected from column 3 of Table 7, column 2 of Table 8b, or column 2 of Table 5b.


In some embodiments, 2) the LLCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a lambda light chain germline sequence selected from column 4 of Table 7, column 3 of Table 8b; or column 3 of Table 5b.


In some embodiments, 3) the second HCVRS has at least 75, 80, 85, 90, 95, 98, or 100% sequence identity with a second heavy chain germline sequence selected from column 3 of Table 6, column 5 of Table 8b, or column 4 of Table 5b.


In some embodiments, the first heavy chain germline sequence and the lambda light chain germline sequence are selected from a single row of Table 7, Table 8b, or Table 5b.


In some embodiments, the first heavy chain germline sequence, the lambda light chain germline sequence, and the kappa light chain germline sequence are selected from a single row of Table 7, Table 8b, or Table 5b.


In some embodiments, the second heavy chain germline sequence and the kappa light chain germline sequence are selected from a single row of Table 6, Table 8b, or Table 5b.


In some embodiments, the second heavy chain germline sequence, the kappa light chain germline sequence, and the lambda light chain germline sequence are selected from a single row of Table 6, Table 8b, or Table 5b.


In some embodiments, at least two (e.g., two, three, or all) of the following: the first heavy chain germline sequence, the lambda light chain germline sequence, the second heavy chain germline sequence, and the kappa light chain germline sequence, are selected from a single row of Table 8b or Table 5b.


In some embodiments, the first heavy chain germline sequence, the lambda light chain germline sequence, the second heavy chain germline sequence, and the kappa light chain germline sequence are selected from a single row of Table 8b or Table 5b.


In another aspect, provided herein is a multispecific antibody molecule comprising: i) a first antigen-binding domain that binds to a first antigen, wherein the first antigen-binding domain comprises: a) a first heavy chain polypeptide (HCP1) comprising: a first heavy chain variable region sequence (HCVRS) sufficient that, when paired with i)b) allows the first antigen-binding domain to bind to the first antigen; and b) a lambda light chain polypeptide (LLCP) comprising: a lambda light chain variable region sequence (LLCVRS) sufficient that, when paired with i)a) allows the first antigen-binding domain to bind to the first antigen; and ii) a second antigen-binding domain that binds to a second antigen, wherein the second antigen-binding domain comprises: a) a second heavy chain polypeptide (HCP2) comprising: a second heavy chain variable region sequence (HCVRS) sufficient that, when paired with ii)b) allows the second antigen-binding domain to bind to the second antigen; and b) a kappa light chain polypeptide (KLCP) comprising: a kappa light chain variable region sequence (KLCVRS) sufficient that, when paired with ii)a) allows the second antigen-binding domain to bind to the second antigen, wherein: the multispecific antibody molecule further comprises an accessory moiety, wherein the accessory moiety has a property chosen from: 1) the accessory moiety has a molecular weight of at least 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 kDa; 2) the accessory moiety comprises a polypeptide having at least 30, 40, 50, 60, 70, 80, 90, or 100 amino acid residues; 3) the accessory moiety comprises a polypeptide having the ability to modulate the activity of an immune cell, e.g., a T cell, a B cell, an antigen presenting cell (APC), or an NK cell; or 4) the accessory moiety is chosen from one or more of an immune cell engager (e.g., a CD40 agonist, e.g., a CD40L polypeptide or an agonistic anti-CD40 antibody molecule, or a PD-1 binding moiety, e.g., a PD-1 binding sequence of PDL-1 or an anti-PD-1 antibody molecule), a cytokine molecule (e.g. an IL-2 molecule), a cytokine antagonist (e.g., a TGF-β antagonist), an enzyme, a toxin, or a labeling agent.


In some embodiments, the multispecific antibody molecule further comprises an accessory moiety, wherein the accessory moiety has a property chosen from: 1) the accessory moiety has a molecular weight of at least 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 kDa; 2) the accessory moiety comprises a polypeptide having at least 30, 40, 50, 60, 70, 80, 90, or 100 amino acid residues; 3) the accessory moiety comprises a polypeptide having the ability to modulate the active of an immune cell, e.g., a T cell, a B cell, an antigen presenting cell (APC), or an NK cell; or 4) the accessory moiety is chosen from one or more of an immune cell engager (e.g., a CD40 agonist, e.g., a CD40L polypeptide or an agonistic anti-CD40 antibody molecule, or a PD-1 binding moiety, e.g., a PD-1 binding sequence of PDL-1 or an anti-PD-1 antibody molecule), a cytokine molecule (e.g. an IL-2 molecule), a cytokine antagonist (e.g., a TGF-β antagonist), an enzyme, a toxin, or a labeling agent.


In some embodiments, the accessory moiety is fused to the polypeptide of a, b, c, or d of the multispecific antibody molecule.


In some embodiments, the accessory moiety is fused to any of the following: the HCP1, first HCVRS, LLCP, LLCVRS, HCP2, second HCVRS, KLCP, or KLCVRS of the multispecific antibody molecule, e.g., the C-terminus or N-terminus of HCP1, first HCVRS, LLCP, LLCVRS, HCP2, second HCVRS, KLCP, or KLCVRS of the multispecific antibody molecule.


In some embodiments, the HCP1 comprises a first heavy chain constant region sequence (HCCRS) (e.g., CH1, CH2, and CH3 sequences), wherein the accessory moiety is fused to the first HCCRS, e.g., the C-terminus of the first HCCRS.


In some embodiments, the HCP2 comprises a second heavy chain constant region sequence (HCCRS) (e.g., CH1, CH2, and CH3 sequences), wherein the accessory moiety is fused to the second HCCRS, e.g., the C-terminus of the second HCCRS.


In some embodiments, the LLCP comprises a lambda light chain constant region sequence (LLCCRS), wherein the accessory moiety is fused to the LLCCRS, e.g., the C-terminus of the LLCCRS.


In some embodiments, the KLCP comprises a kappa light chain constant region sequence (KLCCRS), wherein the accessory moiety is fused to the KLCCRS, e.g., the C-terminus of the KLCCRS.


In some embodiments, the multispecific antibody molecule as provided herein comprises a first accessory moiety and a second accessory moiety, wherein the first or second accessory moiety has a property chosen from: 1) the first or second accessory moiety has a molecular weight of at least 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 kDa; 2) the first or second accessory moiety comprises a polypeptide having at least 30, 40, 50, 60, 70, 80, 90, or 100 amino acid residues; 3) the first or second accessory moiety comprises a polypeptide having the ability to modulate the active of an immune cell, e.g., a T cell, a B cell, an antigen presenting cell (APC), or an NK cell; or 4) the first or second accessory moiety is chosen from one or more of an immune cell engager (e.g., a CD40 agonist, e.g., a CD40L polypeptide or an agonistic anti-CD40 antibody molecule, or a PD-1 binding moiety, e.g., a PD-1 binding sequence of PDL-1 or an anti-PD-1 antibody molecule), a cytokine molecule (e.g. an IL-2 molecule), a cytokine antagonist (e.g., a TGF-β antagonist), an enzyme, a toxin, or a labeling agent.


In some embodiments, the first and second accessory moieties are the same.


In some embodiments, the first and second accessory moieties are different.


In some embodiments, i) the first accessory moiety is fused to the HCP1 or HCP2, e.g., the C-terminus of the HCP1 or HCP2; and ii) the second accessory moiety is fused to the LLCP or KLCP, e.g., the C-terminus of the LLCP or KLCP.


In some embodiments, i) the HCP1 comprises a first heavy chain constant region sequence (HCCRS) (e.g., CH1, CH2, and CH3 sequences), wherein the first accessory moiety is fused to the first HCCRS, e.g., the C-terminus of the first HCCRS; and ii) the LLCP comprises a lambda light chain constant region sequence (LLCCRS), wherein the second accessory moiety is fused to the LLCCRS, e.g., the C-terminus of the LLCCRS.


In some embodiments, i) the HCP2 comprises a second heavy chain constant region sequence (HCCRS) (e.g., CH1, CH2, and CH3 sequences), wherein the accessory moiety is fused to the second HCCRS, e.g., the C-terminus of the second HCCRS; and ii) the KLCP comprises a kappa light chain constant region sequence (KLCCRS), wherein the accessory moiety is fused to the KLCCRS, e.g., the C-terminus of the KLCCRS.


In another aspect, provided herein is a multispecific antibody molecule comprising: i) a first antigen-binding domain that binds to a first antigen, wherein the first antigen-binding domain comprises: a) a first heavy chain polypeptide (HCP1) comprising: a first heavy chain variable region sequence (HCVRS) sufficient that, when paired with i)b) allows the first antigen-binding domain to bind to the first antigen; and a first heavy chain constant region sequence (HCCRS) (e.g., a first CH1 sequence), and b) a lambda light chain polypeptide (LLCP) comprising: a lambda light chain variable region sequence (LLCVRS) sufficient that, when paired with i)a) allows the first antigen-binding domain to bind to the first antigen; and a lambda light chain constant region sequence (LLCCRS), and ii) a second antigen-binding domain that binds to a second antigen, wherein the second antigen-binding domain comprises: a) a second heavy chain polypeptide (HCP2) comprising: a second heavy chain variable region sequence (HCVRS) sufficient that, when paired with ii)b) allows the second antigen-binding domain to bind to the second antigen; and a second heavy chain constant region sequence (HCCRS) (e.g., a second CH1 sequence) and b) a kappa light chain polypeptide (KLCP) comprising: a kappa light chain variable region sequence (KLCVRS) sufficient that, when paired with ii)a) allows the second antigen-binding domain to bind to the second antigen; and a kappa light chain constant region sequence (KLCCRS), wherein: 1) the multispecific antibody molecule does not comprise a mutation in the first HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence) that promotes the preferential pairing of the HCP1 and the LLCP, compared with pairing of the HCP1 and the LLCP without the mutation, or the multispecific antibody molecule does not comprise a mutation in the LLCCRS (e.g., a mutation relative to a naturally existing lambda light chain constant region sequence) that promotes the preferential pairing of the HCP1 and the LLCP, compared with pairing of the HCP1 and the LLCP without the mutation; and 2) the multispecific antibody molecule does not comprise a mutation in the second HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence) that promotes the preferential pairing of the HCP2 and the KLCP, compared with pairing of the HCP2 and the KLCP without the mutation, or the multispecific antibody molecule does not comprise a mutation in the KLCCRS (e.g., a mutation relative to a naturally existing kappa light chain constant region sequence) that promotes the preferential pairing of the HCP2 and the KLCP, compared with pairing of the HCP2 and the KLCP without the mutation.


In some embodiments, i)a) the HCP1 comprises a first heavy chain constant region sequence (HCCRS) (e.g., a first CH1 sequence), i)b) the LLCP comprises a lambda light chain constant region sequence (LLCCRS), ii)a) the HCP2 comprises a second heavy chain constant region sequence (HCCRS) (e.g., a second CH1 sequence), and ii)b) the KLCP comprises a kappa light chain constant region sequence (KLCCRS), wherein: 1) the multispecific antibody molecule does not comprise a mutation in the first HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence) that promotes the preferential pairing of the HCP1 and the LLCP, compared with pairing of the HCP1 and the LLCP without the mutation, or the multispecific antibody molecule does not comprise a mutation in the LLCCRS (e.g., a mutation relative to a naturally existing lambda light chain constant region sequence) that promotes the preferential pairing of the HCP1 and the LLCP, compared with pairing of the HCP1 and the LLCP without the mutation; and 2) the multispecific antibody molecule does not comprise a mutation in the second HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence) that promotes the preferential pairing of the HCP2 and the KLCP, compared with pairing of the HCP2 and the KLCP without the mutation, or the multispecific antibody molecule does not comprise a mutation in the KLCCRS (e.g., a mutation relative to a naturally existing kappa light chain constant region sequence) that promotes the preferential pairing of the HCP2 and the KLCP, compared with pairing of the HCP2 and the KLCP without the mutation.


In some embodiments, the multispecific antibody molecule does not comprise a mutation in the first HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence) that increases the preferential pairing of the HCP1 and the LLCP by at least 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, or 50 folds, compared with pairing of the HCP1 and the LLCP without the mutation, or the multispecific antibody molecule does not comprise a mutation in the LLCCRS (e.g., a mutation relative to a naturally existing lambda light chain constant region sequence) that increases the preferential pairing of the HCP1 and the LLCP by at least 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, or 50 folds, compared with pairing of the HCP1 and the LLCP without the mutation.


In some embodiments, the multispecific antibody molecule does not comprise a mutation in the second HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence) that increases the preferential pairing of the HCP2 and the KLCP by at least 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, or 50 folds, compared with pairing of the HCP2 and the KLCP without the mutation, or the multispecific antibody molecule does not comprise a mutation in the KLCCRS (e.g., a mutation relative to a naturally existing kappa light chain constant region sequence) that increases the preferential pairing of the HCP2 and the KLCP by at least 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, or 50 folds, compared with pairing of the HCP2 and the KLCP without the mutation.


In another aspect, provided herein is a multispecific antibody molecule comprising: i) a first antigen-binding domain that binds to a first antigen, wherein the first antigen-binding domain comprises: a) a first heavy chain polypeptide (HCP1) comprising: a first heavy chain variable region sequence (HCVRS) sufficient that, when paired with i)b) allows the first antigen-binding domain to bind to the first antigen; and a first heavy chain constant region sequence (HCCRS) (e.g., a first CH1 sequence), and b) a lambda light chain polypeptide (LLCP) comprising: a lambda light chain variable region sequence (LLCVRS) sufficient that, when paired with i)a) allows the first antigen-binding domain to bind to the first antigen; and a lambda light chain constant region sequence (LLCCRS), and ii) a second antigen-binding domain that binds to a second antigen, wherein the second antigen-binding domain comprises: a) a second heavy chain polypeptide (HCP2) comprising: a second heavy chain variable region sequence (HCVRS) sufficient that, when paired with ii)b) allows the second antigen-binding domain to bind to the second antigen; and a second heavy chain constant region sequence (HCCRS) (e.g., a second CH1 sequence) and b) a kappa light chain polypeptide (KLCP) comprising: a kappa light chain variable region sequence (KLCVRS) sufficient that, when paired with ii)a) allows the second antigen-binding domain to bind to the second antigen; and a kappa light chain constant region sequence (KLCCRS), wherein: 1) the multispecific antibody molecule does not comprise a mutation in the first HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence), or the multispecific antibody molecule does not comprise a mutation in the LLCCRS (e.g., a mutation relative to a naturally existing lambda light chain constant region sequence); and 2) the multispecific antibody molecule does not comprise a mutation in the second HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence), or the multispecific antibody molecule does not comprise a mutation in the KLCCRS (e.g., a mutation relative to a naturally existing kappa light chain constant region sequence).


In some embodiments, the multispecific antibody molecule as provided herein comprises: i)a) the HCP1 comprises a first heavy chain constant region sequence (HCCRS) (e.g., a first CH1 sequence), i)b) the LLCP comprises a lambda light chain constant region sequence (LLCCRS), ii)a) the HCP2 comprises a second heavy chain constant region sequence (HCCRS) (e.g., a second CH1 sequence), and ii)b) the KLCP comprises a kappa light chain constant region sequence (KLCCRS), wherein: 1) the multispecific antibody molecule does not comprise a mutation in the first HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence), or the multispecific antibody molecule does not comprise a mutation in the LLCCRS (e.g., a mutation relative to a naturally existing lambda light chain constant region sequence); and 2) the multispecific antibody molecule does not comprise a mutation in the second HCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence), or the multispecific antibody molecule does not comprise a mutation in the KLCCRS (e.g., a mutation relative to a naturally existing kappa light chain constant region sequence).


In some embodiments, the multispecific antibody molecule does not comprise a mutation in any of the following: the first HCCRS, the LLCCRS, the second HCCRS, and the KLCCRS (e.g., a mutation relative to a naturally existing heavy chain constant region sequence, a naturally existing lambda light chain constant region sequence, or a naturally existing kappa light chain constant region sequence).


In another aspect, provided herein is a multispecific antibody molecule comprising: i) a first antigen-binding domain that binds to a first antigen, wherein the first antigen-binding domain comprises: a) a first heavy chain polypeptide (HCP1) comprising: a first heavy chain variable region sequence (HCVRS) sufficient that, when paired with i)b) allows the first antigen-binding domain to bind to the first antigen; and a first heavy chain constant region sequence (HCCRS) (e.g., a first CH1 sequence), and b) a lambda light chain polypeptide (LLCP) comprising: a lambda light chain variable region sequence (LLCVRS) sufficient that, when paired with i)a) allows the first antigen-binding domain to bind to the first antigen; and a lambda light chain constant region sequence (LLCCRS), and ii) a second antigen-binding domain that binds to a second antigen, wherein the second antigen-binding domain comprises: a) a second heavy chain polypeptide (HCP2) comprising: a second heavy chain variable region sequence (HCVRS) sufficient that, when paired with ii)b) allows the second antigen-binding domain to bind to the second antigen; and a second heavy chain constant region sequence (HCCRS) (e.g., a second CH1 sequence) and b) a kappa light chain polypeptide (KLCP) comprising: a kappa light chain variable region sequence (KLCVRS) sufficient that, when paired with ii)a) allows the second antigen-binding domain to bind to the second antigen; and a kappa light chain constant region sequence (KLCCRS), wherein: 1) the first HCCRS comprises a naturally existing heavy chain constant region sequence, or the LLCCRS comprises a naturally existing lambda light chain constant region sequence; and 2) the second HCCRS comprises a naturally existing heavy chain constant region sequence, or the KLCCRS comprises a naturally existing kappa light chain constant region sequence.


In some embodiments, i)a) the HCP1 comprises a first heavy chain constant region sequence (HCCRS) (e.g., a first CH1 sequence), i)b) the LLCP comprises a lambda light chain constant region sequence (LLCCRS), ii)a) the HCP2 comprises a second heavy chain constant region sequence (HCCRS) (e.g., a second CH1 sequence), and ii)b) the KLCP comprises a kappa light chain constant region sequence (KLCCRS), wherein: 1) the first HCCRS comprises a naturally existing heavy chain constant region sequence, or the LLCCRS comprises a naturally existing lambda light chain constant region sequence; and 2) the second HCCRS comprises a naturally existing heavy chain constant region sequence, or the KLCCRS comprises a naturally existing kappa light chain constant region sequence.


In some embodiments, i) the first HCCRS comprises a naturally existing heavy chain constant region sequence, ii) the LLCCRS comprises a naturally existing lambda light chain constant region sequence, iii) the second HCCRS comprises a naturally existing heavy chain constant region sequence, and iv) the KLCCRS comprises a naturally existing kappa light chain constant region sequence.


In some embodiments, the HCP1 preferentially binds to the LLCP over the KLCP.


In some embodiments, the LLCP preferentially binds to the HCP1 over the HCP2.


In some embodiments, the HCP2 preferentially binds to the KLCP over the LLCP.


In some embodiments, the KLCP preferentially binds to the HCP2 over the HCP1.


In some embodiments, the HCP1 has a higher affinity, e.g., a substantially higher affinity, for the LLCP than for the KLCP (e.g., the KD for the binding between the HCP1 and the LLCP is no more than 50%, 40%, 30%, 20%, 10%, 1%, 0.1%, or 0.01% of the KD for the binding between the HCP1 and the KLCP).


In some embodiments, the LLCP has a higher affinity, e.g., a substantially higher affinity, for the HCP1 than for the HCP2 (e.g., the KD for the binding between the LLCP and the HCP1 is no more than 50%, 40%, 30%, 20%, 10%, 1%, 0.1%, or 0.01% of the KD for the binding between the LLCP and the first HCP2).


In some embodiments, the HCP2 has a higher affinity, e.g., a substantially higher affinity, for the KLCP than for the LLCP (e.g., the KD for the binding between the HCP2 and the KLCP is no more than 50%, 40%, 30%, 20%, 10%, 1%, 0.1%, or 0.01% of the KD for the binding between the HCP2 and the LLCP).


In some embodiments, the KLCP has a higher affinity, e.g., a substantially higher affinity, for the HCP2 than for the HCP1 (e.g., the KD for the binding between the KLCP and the HCP2 is no more than 50%, 40%, 30%, 20%, 10%, 1%, 0.1%, or 0.01% of the KD for the binding between the KLCP and the HCP1).


In some embodiments, the percent binding between the HCP1 and the LLCP in the presence of the KLCP is at least 75, 80, 90, 95, 98, 99, or 99.5%.


In some embodiments, the percent binding between the HCP1 and the LLCP in the presence of the HCP2 is at least 75, 80, 90, 95, 98, 99, or 99.5%.


In some embodiments, the percent binding between the HCP2 and the KLCP in the presence of the LLCP is at least 75, 80, 90, 95, 98, 99, or 99.5%.


In some embodiments, the percent binding between the HCP2 and the KLCP in the presence of the HCP1 is at least 75, 80, 90, 95, 98, 99, or 99.5%.


In some embodiments, when the HCP1, LLCP, HCP2, and KLCP are present under preselected conditions, e.g., in aqueous buffer, e.g., at pH 7, in saline, e.g., at pH 7, or under physiological conditions: i) at least 70, 75, 80, 90, 95, 98, 99, 99.5, or 99.9% of the HCP1 is complexed, or interfaced with, the LLCP; ii) at least 70, 75, 80, 90, 95, 98, 99, 99.5, or 99.9% of the LLCP is complexed, or interfaced with, the HCP1; iii) at least 70, 75, 80, 90, 95, 98, 99, 99.5, or 99.9% of the HCP2 is complexed, or interfaced with, the KLCP; or iv) at least 70, 75, 80, 90, 95, 98, 99, 99.5, or 99.9% of the KLCP is complexed, or interfaced with, the HCP2.


In some embodiments, the HCP1 is complexed, or interfaced with, the HCP2.


In some embodiments, the HCP1 has a greater affinity, e.g., a substantially greater affinity, for HCP2, than for a second molecule of HCP1.


In some embodiments, the HCP2 has a greater affinity, e.g., a substantially greater affinity, for HCP1, than for a second molecule of HCP2.


In some embodiments, the HCP1 comprises a sequence element that increases the ratio of HCP1-HCP2:HCP1-HCP1 pairings, compared to the ratio that would be seen in the absence of the sequence element, e.g., where a naturally occurring sequence replaces the sequence element.


In some embodiments, the HCP2 comprises a sequence element that increases the ratio of HCP1-HCP2:HCP2-HCP2 pairings, compared to the ratio that would be seen in the absence of the sequence element, e.g., where a naturally occurring sequence replaces the sequence element.


In some embodiments, the sequence element is not a naturally occurring constant region sequence.


In some embodiments, the sequence element is disposed in CH3.


In some embodiments, one or both of HCP1 and HCP2 were selected to minimize self-dimerization (e.g., HCP1-HCP1) as opposed to heterodimerization (e.g., HCP2-HCP2).


In some embodiments, HCP1 and HCP2 are members of a paired protuberance/cavity, e.g., knob and hole pair.


In some embodiments, HCP1-HCP2 paring is promoted by an electrostatic interaction.


In some embodiments, HCP1-HCP2 paring is promoted by strand exchange.


In some embodiments, HCP1 and HCP2 are not members of a paired protuberance/cavity, e.g., knob and hole pair.


In some embodiments, the HCP1 comprises a first heavy chain constant region sequence (HCCRS), wherein the first HCCRS does not comprise a mutation (e.g., a mutation relative to a naturally existing heavy chain constant region sequence).


In some embodiments, the HCP2 comprises a second heavy chain constant region sequence (HCCRS), wherein the second HCCRS does not comprise a mutation (e.g., a mutation relative to a naturally existing heavy chain constant region sequence).


In some embodiments, i) the HCP1 comprises a first heavy chain constant region sequence (HCCRS), wherein the first HCCRS does not comprise a mutation (e.g., a mutation relative to a naturally existing heavy chain constant region sequence); and ii) the HCP2 comprises a second heavy chain constant region sequence (HCCRS), wherein the second HCCRS does not comprise a mutation (e.g., a mutation relative to a naturally existing heavy chain constant region sequence).


In some embodiments, the HCP1 comprises a first CH2 domain sequence and a first CH3 domain sequence, wherein the first CH2 domain sequence and the first CH3 domain sequence do not comprise a mutation (e.g., a mutation relative to a naturally existing CH2 domain sequence or a naturally existing CH3 domain sequence).


In some embodiments, the HCP2 comprises a second CH2 domain sequence and a second CH3 domain sequence, wherein the second CH2 domain sequence and the second CH3 domain sequence do not comprise a mutation (e.g., a mutation relative to a naturally existing CH2 domain sequence or a naturally existing CH3 domain sequence).


In some embodiments, i) the HCP1 comprises a first CH2 domain sequence and a first CH3 domain sequence, wherein the first CH2 domain sequence and the first CH3 domain sequence do not comprise a mutation (e.g., a mutation relative to a naturally existing CH2 domain sequence or a naturally existing CH3 domain sequence); and ii) the HCP2 comprises a second CH2 domain sequence and a second CH3 domain sequence, wherein the second CH2 domain sequence and the second CH3 domain sequence do not comprise a mutation (e.g., a mutation relative to a naturally existing CH2 domain sequence or a naturally existing CH3 domain sequence).


In some embodiments, the HCP1 is derived from an antibody arising, either in vivo or in vitro, as a lambda antibody.


In some embodiments, the HCP2 is derived from an antibody arising, either in vivo or in vitro, as a kappa antibody.


In some embodiments, the HCP1 and LLCP comprise amino acid sequences selected from Table 18 (e.g., as paired in Table 18) or Table 5a (e.g., as paired in Table 5a), or functional variant or fragment thereof.


In some embodiments, the HCP2 and KLCP comprise amino acid sequences selected from Table 18 (e.g., as paired in Table 18) or Table 5a (e.g., as paired in Table 5a), or functional variant or fragment thereof.


In some embodiments, the HCP1, LLCP, HCP2, and KLCP comprise amino acid sequences selected from Table 18 (e.g., a single cell of Table 18) or Table 5a (e.g., a single row of Table 5a), or functional variant or fragment thereof.


In some embodiments, the first or second antigen is a tumor antigen, e.g., a pancreatic, lung, or colorectal tumor antigen.


In some embodiments, the first or second antigen is chosen from: PD-L1, HER3, TROP2, mesothelin, IGF-1R, or CA19-9.


In some embodiments, the first or second antigen is chosen from: PD-L1, HER3, TROP2, VEGF-A, EGFR, MUC1, DLL4, or HGF.


In some embodiments, the first or second antigen is chosen from: PD-L1, HER3, TROP2, VEGF-A, EGFR, MUC1, MAGE-A3, gpA33, NY-ESO-1, ANG2, RSPO3, HER2, CEACAM5, or CEA.


In some embodiments, the first or second antigen is an antigen of an immune effector cell, e.g., a T cell, an NK cell, or a myeloid cell.


In some embodiments, the first or second antigen is chosen from: CD3, PD-1, LAG-3, TIM-3, CTLA-4, VISTA, TIGIT, PD-L1, B7-H3, 4-1BB, or ICOS.


In some embodiments, the first antigen is a tumor antigen, e.g., mesothelin, and the second antigen is an antigen chosen from NKP30, PD-L1, CD3, NKG2D, CD47, 4-1BB, or NKP46; or the second antigen is a tumor antigen, e.g., mesothelin, and the first antigen is an antigen chosen from NKP30, PD-L1, CD3, NKG2D, CD47, 4-1BB, or NKP46.


In some embodiments, the first antigen is IGF1R and the second antigen is HER3, or the second antigen is IGF1R and the first antigen is HER3.


In some embodiments, the first antigen is mesothelin and the second antigen is PD-L1, or the second antigen is mesothelin and the first antigen is PD-L1.


In some embodiments, the first antigen is CTLA4 and the second antigen is IL12β, or the second antigen is CTLA4 and the first antigen is IL12β.


In some embodiments, the first antigen is CTLA4 and the second antigen is TRAILR2, or the second antigen is CTLA4 and the first antigen is TRAILR2.


In some embodiments, the first antigen is CTLA4 and the second antigen is CD221, or the second antigen is CTLA4 and the first antigen is CD221.


In some embodiments, the first antigen is PD1 and the second antigen is TRAILR2, or the second antigen is PD1 and the first antigen is TRAILR2.


In some embodiments, the first antigen is PD1 and the second antigen is PDL1, or the second antigen is PD1 and the first antigen is PDL1.


In some embodiments, the first antigen is PD1 and the second antigen is PDL1, or the second antigen is PD1 and the first antigen is PDL1.


In some embodiments, the multispecific antibody molecule as provided herein further comprises an IL-2 molecule or a CD40 agonist, e.g., a CD40L polypeptide or an agonistic anti-CD40 antibody molecule.


In another aspect, provided herein is a nucleic acid which encodes one, two, three, or all of HCP1, LLCP, HCP2, or KLCP as provided herein.


In another aspect, provided herein is a vector comprising the nucleic acid as provided herein.


In another aspect, provided herein is a host cell comprising the nucleic acid as provided herein or the vector as provided herein.


In another aspect, provided herein is a method of making one, two, three or all of HCP1, LLCP, HCP2, or KLCP, comprising culturing the cell as provided herein, to thereby produce one, two, three or all of HCP1, LLCP, HCP2, or KLCP.


In another aspect, provided herein is a method of making a multispecific antibody molecule comprising HCP1, LLCP, HCP2, and KLCP, e.g., a multispecific antibody molecule e as provided herein, comprising: combining HCP1, LLCP, HCP2, and KLCP under conditions suitable for association of HCP1, LLCP, HCP2, and KLCP; thereby making a multispecific antibody molecule comprising HCP1, LLCP, HCP2, and KLCP.


In some embodiments, the method produces correctly paired kappa/lambda multispecific antibody molecules in high yield.


In another aspect, provided herein is a preparation comprising the multispecific antibody molecule as provided herein.


In another aspect, provided herein is a preparation of multispecific antibody molecules, where at least 50, 60, 70, 80, 90, 95, 98, 99, or 99.9% of the multispecific antibody molecules comprise: a lambda light chain polypeptide (LLCP) complexed with, or interfaced with, a first heavy chain polypeptide (HCP1); and a kappa light chain polypeptide (KLCP) complexed with, or interfaced with, a second heavy chain polypeptide (HCP2), wherein: the HCP1 is complexed with, or interfaced with the HCP2.


In some embodiments, the multispecific antibody molecule comprises the multispecific antibody molecule as provided herein.


In some embodiments, the preparation is a pharmaceutically accepted preparation, and, e.g., comprises a pharmaceutically acceptable diluent or excipient.


In another aspect, provided herein is a pharmaceutical composition comprising the multispecific antibody molecule as provided herein and a pharmaceutically acceptable diluent or excipient.


In another aspect, provided herein is a method of providing a subject with a multispecific antibody molecule, comprising: providing the subject with a pharmaceutical preparation comprising the multispecific antibody molecule as provided herein.


In another aspect, provided herein is a method of treating a subject in need thereof, the method comprising: administering to the subject an effective amount of the multispecific antibody molecule as provided herein or the pharmaceutical composition as provided herein.

Claims
  • 1. A composition comprising a molecule.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional application of U.S. application Ser. No. 16/335,822, filed Mar. 22, 2019, which is a U.S. national phase entry of International Application No. PCT/US2017/053053 filed Sep. 22, 2017, which claims priority to U.S. Provisional Application No. 62/399,319 filed Sep. 23, 2016, and U.S. Provisional No. 62/474,569 filed Mar. 21, 2017, the entire contents of each of which are incorporated herein by reference.

Provisional Applications (2)
Number Date Country
62399319 Sep 2016 US
62474569 Mar 2017 US
Divisions (1)
Number Date Country
Parent 16335822 Mar 2019 US
Child 18316804 US